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Abstract 

The Casualty Actuarial Society (CAS) has a series of monograph publications related to 

the work of property-casualty insurance. This project is based on the monograph 

Stochastic Loss Reserving Using Generalized Linear Models by Greg Taylor and Gráinne 

McGuire, which discusses the application of generalized linear models (GLMs) to loss 

reserving, with an emphasis on the chain ladder algorithm. For this project, the team 

reviewed and explained the concepts presented in the monograph, supported the 

explanations with additional examples, and recreated the numerical examples in the 

monograph using the provided dataset and SAS software. Due to time constraints and 

considering the relevance of topics, the project concentrates on the first four chapters and 

part of Chapter 5 of the monograph, which include topics on the chain ladder algorithm, 

over-dispersed Poisson distributions, GLMs, the Mack and cross-classified models for 

loss reserving, prediction errors, and the bootstrap method for estimating outstanding 

losses. 

During the project, we contacted the authors of the monograph, Greg Taylor and Gráinne 

McGuire. They graciously clarified some points of confusion for us and offered advice in 

SAS coding to enable us to reproduce some tables from their paper.  In addition, we were 

able to alert them to some errors we found in the paper for which they were appreciative. 
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Introduction 

The Casualty Actuarial Society (CAS) is a professional organization of actuaries 

specializing in property-casualty insurance. The CAS has published a series of 

monographs on related topics, and the basis of this project is the monograph Stochastic 

Loss Reserving Using Generalized Linear Models by Greg Taylor and Gráinne McGuire. 

The team reviewed and explained the monograph in an accessible approach to assist 

readers with less background knowledge on loss reserving or generalized linear models in 

understanding the original monograph. To improve accessibility, the team explained the 

notations and definitions from the monograph, clarified derivations of formulas, and 

provided additional examples. To supplement the theoretical content, the team also 

reproduced data analysis of numerical examples in the monograph using SAS and Excel, 

and provided SAS code for readers to experiment with. 

The monograph starts by introducing the chain ladder algorithm for loss reserving. While 

the chain ladder method itself is non-stochastic, a stochastic version of the model with 

distribution and error prediction also exists. The original monograph concentrates on the 

two families of stochastic models that generate the chain ladder algorithm, the Mack 

model and the cross-classified model. The monograph introduces these stochastic models 

and their respective GLM formulations, with an emphasis on using statistical software to 

implement the formulations. Our project specifically concentrates on interpreting the 

content of the first four chapters and the bootstrapping portion from Chapter 5 of the 

monograph with supplement numerical examples. The topics are as follows. 

In Chapter 1, aligning with the monograph, our paper introduces the chain ladder 

algorithm for loss reserving and the associated notations of the paper, with numerical 

examples of how to apply the chain ladder method to estimate future loss development. 

The dataset of this chapter will be used and frequently referenced in following chapters. 

In Chapter 2, the monograph provides the theoretical background of the exponential 

dispersion family (EDF) of distributions, and the generalized linear model (GLM). In our 

paper, referencing the monograph, we first introduce the EDF distributions and its two 

sub-families, the Tweedie sub-family (sub-family of EDF) and the over-dispersed 

Poisson (ODP) sub-family (sub-family of the Tweedie Sub-family). The ODP 

distribution is a crucial assumption for the incremental loss dataset, and will be used in 

application of GLMs to loss reserving in later chapters. The chapter then defines GLM, 

and discusses the two types of covariates, categorical and continuous, and certain aspects 

of goodness-of-fit of a GLM, which will be discussed in more detail in Chapter 4. 

In Chapter 3, our paper defines and explains the two types of stochastic model for the 

chain ladder algorithm, the ODP Mack Model and ODP cross-classified Model. These 

two models produce the same maximum likelihood estimates as the chain ladder 
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algorithm, with additional estimation for distributions of each estimate. Moreover, the 

estimators also possess certain minimum variance properties, which are summarized in 

three theorems. We first introduce the theoretical background of algorithms, with 

numerical examples showing the procedures of how to manually apply the algorithm to 

derive the parameters. Then the chapter explains the concept of data input and output in 

SAS to apply the algorithms, with numerical examples and associated coding provided 

for illustration. 

In Chapter 4, our paper introduces the concept of prediction error, which can be 

decomposed into three components: parameter error, process error and model error. The 

chapter discusses these types of error and provides examples to explain the definitions. 

The first example is independent of the chain ladder algorithm to lead into the definitions, 

and later examples involve the chain ladder algorithm to explain the definitions within 

the context of the topic. This chapter also introduces mean square error of prediction and 

information criterion that measure the reliability of models, as well as cross validation of 

model fitness, which involves using a training and test set from the observations. 

In Chapter 5, the original monograph introduces two types of estimation methods of 

prediction errors for the chain ladder algorithm and associated forecasts. The two 

methods are the delta method and the bootstrap method. Our paper focuses solely on the 

bootstrap method. The chapter explains the procedures of resampling the residuals to 

eventually obtain a distribution of outstanding losses, and illustrates the concept with 

diagrams. Bootstrapping in the context of SAS application is also discussed with a 

numerical example to demonstrate the idea. 

After reading this paper, the readers should have a clear understanding of the chain ladder 

algorithm, and loss reserving using GLMs. Also, with the additional explanations of 

numerical examples, readers can further assess their understanding of the models by 

reproducing the examples with the given algorithms and data. Finally, based on the 

understanding of the stochastic models gained from this paper and the original 

monograph, readers can further research and modify the models introduced to improve 

accuracy and efficiency for their own purposes. 
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1. The Chain Ladder Algorithm 

1.1. Introduction  

The chain ladder algorithm (or the development method) is a technique to estimate future 

claims (also known as outstanding claims or outstanding losses) according to the selected 

age-to-age factors. This chapter explains the steps in the chain ladder algorithm using a 

numerical example. The data and notations introduced in this chapter will also be used 

throughout the paper. 

In later chapters, we will also show how to use GLMs (generalized linear models) to 

apply the chain ladder method. 

1.2. Framework and Notation 

Consider the incremental claim observations. There are two indices that determine the 

position of an observation: the accident period and the development period. The periods 

can be weeks, months, years, etc. Accident periods are time periods in which accidents 

occurred, and development periods are periods in which incurred losses develop. Denote 

the incremental claim observations as 𝑌𝑘𝑗. If we arrange all past and future observations 

into a table, we obtain a 𝐾 × 𝐽 rectangle of data, where k represents the accident periods 

𝑘 = 1, 2, . . . , 𝐾 

For example, in Table 1.1 we have incremental losses for different accident years k: 

Incremental Paid Losses in Development Year 1 ($000) 

Accident 

Year K (accident periods) Losses (j=1) 

1988 1 $41,821 

1989 2 $48,167 

1990 3 $52,058 

1991 4 $57,251 

1992 5 $59,213 

1993 6 $59,475 

1994 7 $65,607 

1995 8 $56,748 

1996 9 $52,212 

1997 10 $43,962 

Table 1.1 
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j represents development periods of losses, where 

𝑗 = 1, 2, . . . , 𝐽 

And j denotes the columns in paid losses matrices. 

Incremental Paid Losses in Development Year ($000) 

Accident Year  j=1 j=2 j=3 

1988 k=1 $41,821 $34,729 $20,147 

1989 k=2 $48,167 $39,495 $24,444 

1990 k=3 $52,058 $47,459 $27,359 

Table 1.2 

For example, in Table 1.2, 𝑌32 is the incremental paid loss for the second development 

period of accident year 1990. Note the data is incremental, meaning this is the amount of 

claim paid in during the year of 1992 only. 

Claim observations consist of past and future observations. The past observations form a 

development trapezoid, which can be written as a subset 

𝔇𝐾 = {𝑌𝑘𝑗: 1 ≤ 𝑘 ≤ 𝐾 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑚𝑖𝑛 ( 𝐽, 𝐾 − 𝑘 + 1)} 

This is illustrated in Table 1.3, where 𝔇𝐾 is highlighted by yellow below 

Incremental Paid Losses in Development Year ($000) 

Accident Year  1 2 3 

1988 1 41,821 34,729 20,147 

1989 2 48,167 39,495  

1990 3 52,058   
Table 1.3 

Notice that the development trapezoid becomes a triangle when 𝐾 = 𝐽. When 𝐾 ≠ 𝐽, the 

development matrix will look more like a trapezoid: 

(K=3, J=4, Current time is 1992) 

Incremental Paid Losses in Development Year ($000) 

Accident Year K \ J 1 2 3 4 

1988 1 41,821 34,729 20,147 15,965 

1989 2 48,167 39,495 24,444  

1990 3 52,058 47,459   
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Or 

(K=4, J=3, Current time is 1992) 

Incremental Paid Losses in Development Year ($000) 

Accident Year K \ J 1 2 3 

1988 1 41,821 34,729 20,147 

1989 2 48,167 39,495 24,444 

1990 3 52,058 47,459  

1991 4 57,251   

 

Similarly, for future losses trapezoid, which also becomes a triangle when 𝐾 = 𝐽) 

Note the past observations 𝑌𝑘𝑗 can be of accident period from 1 to K, but of development 

period only from 1 to the main diagonal of the rectangle. This is because the diagonals 

refer to the calendar years, and the main diagonal represents the current calendar year, 

where the latest losses we observed are (see Table 1.4) 

(Losses occur in 1990) 

Incremental Paid Losses in Development Year ($000) 

Accident Year K \ J 1 2 3 

1988 1 41,821 34,729 20,147 

1989 2 48,167 39,495  

1990 3 52,058   
Table 1.4 

The future observations, which are unknown and to be estimated, form the complement 

of the above set, and can be written as: 

𝔇𝐾
𝑐 = {𝑌𝑘𝑗: 1 ≤ 𝑘 ≤ 𝐾 𝑎𝑛𝑑 𝑚𝑖𝑛 ( 𝐽, 𝐾 − 𝑘 + 1) < 𝑗 ≤ 𝐽} 

     = {𝑌𝑘𝑗: 𝐾 − 𝐽 + 1 < 𝑘 ≤ 𝐾 𝑎𝑛𝑑 𝐾 − 𝑘 + 1 < 𝑗 ≤ 𝐽} 

Where 𝔇𝐾
𝑐  is highlighted below: 

Incremental Paid Losses in Development Year ($000) 

Accident Year K \ J 1 2 3 

1988 1 41,821 34,729 20,147 

1989 2 48,167 39,495  

1990 3 52,058   
Table 1.5 
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The future observations 𝑌𝑘𝑗 can be of accident period from the 1 to K, and of 

development period from the diagonal to J. 

The set of both past and future claim observations is thus denoted  

𝔇𝐾
+ =  𝔇𝐾  ∪  𝔇𝐾

𝑐  

Which is illustrated in Table 1.6: 

Incremental Paid Losses in Development Year ($000) 

Accident Year K \ J 1 2 3 

1988 1 41,821 34,729 20,147 

1989 2 48,167 39,495  

1990 3 52,058   
Table 1.6 

By adding the incremental observations of the same accident period from 1 to the 

development period j, we can obtain the cumulative row sums up to development period 

j, i.e., 

𝑋𝑘𝑗 = ∑𝑌𝑘𝑖

𝑗

𝑖=1

 

(1-1) 

For example, 𝑋1,3 = $41,821 + $34,729 + $20,147 = $96,697 

This is also known as the cumulative claim observation, denoted 𝑋𝑘𝑗. 

Table 1.7 below shows the cumulative observations computed from the incremental paid 

loss table above: 

Cumulative Paid Losses in Development Year ($000) 

Accident Year 1 2 3 

1988 1 41,821 76,550 96,697 

1989 2 48,167 87,662  

1990 3 52,058   
Table 1.7 

 

 



10 

 

The same notations for incremental losses and cumulative losses will be used throughout 

the paper, where 

𝑌: 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 

𝑋: 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑙𝑜𝑠𝑠 

For a fixed accident year, Year 𝑘, we can calculate the summation of the entire 𝑘-th row 

in 𝔇𝐾 (all past observations) as ∑ℛ(𝑘), where  

∑ℛ(𝑘) = ∑𝑗=1
𝑚𝑖𝑛(𝐽,𝐾−𝑘+1)

 

Incremental Paid Losses in Development Year ($000) 

Accident Year     K \ J 1 2 3 ℛ(𝑘) 

1988 1 41,821 34,729 20,147 96,697 

1989 2 48,167 39,495   87,662 

1990 3 52,058     52,058 

Table 1.8 

Similarly, for a fixed 𝑗, we can calculate the column sum as  

∑𝒞(𝑘) = ∑𝑘=1
𝐾−𝑗+1

 

Incremental Paid Losses in Development Year ($000) 

Accident Year K \ J 1 2 3 

1988 1 41,821 34,729 20,147 

1989 2 48,167 39,495   

1990 3 52,058     

 Column Sum 𝒞(𝑗) 142,046 74,224 20,147 

Table 1.9 

For Year 𝑘, denote the amount of outstanding losses as 𝑅𝑘, which is the summation of all 

future claim observations in row 𝑘 , or equivalently, the ultimate loss subtracting the last 

known cumulative observation:  

𝑅𝑘 = ∑ 𝑌𝑘𝑗

𝐽

𝑗=𝐾−𝑘+2

=  𝑋𝑘𝐽 − 𝑋𝑘,𝐾−𝑘+1 

(1-2) 



11 

 

For example, suppose we know the future observations 𝑌2,3 = 18,000, 𝑌3,2 =

35,000, 𝑌3,3 = 15,000 (highlighted in green), then, 𝑅𝑘, the total outstanding losses of 

Year 𝑘 can be found (highlighted in blue) 

Incremental Paid Losses in Development Year ($000)   

Accident Year     K \ J 1 2 3 𝑅𝑘 

1988 1 41,821 34,729 20,147 0 

1989 2 48,167 39,495 18,000 18,000 

1990 3 52,058 35,000 15,000 50,000 

Table 1.10 

By summing the outstanding losses of all accident years, we obtain the sum of all future 

observations, i.e. the total outstanding losses, in 𝔇𝐾
𝑐  as 

𝑅 =  ∑ 𝑅𝑘

𝐾

𝑘=2

 

(1-3) 

for 𝑘 = 𝐾 − 𝐽 + 2, . . . , 𝐾.  

Note that k starts from 2 because Year 1 has completed development. 

Using the previous example, we get 𝑅 = 𝑅2 + 𝑅3 = 18,000 + 50,000 = 68,000 

1.3. Data for Numerical Examples 

 
Table 1.11 

Table 1.11 presents the example data set used throughout the paper. It references the 

database from the Meyers and Shi (2011), of the worker compensations of the New 

Jersey Manufacturers Group. The data set is an incremental paid loss triangle 

consisting of past incremental claim observations 𝑌𝑘𝑗, with accident periods of Year 1 to 

Year 10, and development periods of 1 year to 10 years. 
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However, the chain ladder algorithm uses cumulative losses instead of incremental 

losses. Thus we need to first transform the table into cumulative paid loss table by 

calculating the row sums using equation (1-1), 𝑋𝑘𝑗 = ∑ 𝑌𝑘𝑖
𝑗
𝑖=1 , and obtain Table 1.12 

from the data in Table 1.11: 

 
Table 1.12 

This is known as the cumulative loss triangle, which consists of cumulative paid claim 

observations 𝑋𝑘𝑗. 

Beside incremental or cumulative paid loss triangles, we could also have incurred loss 

triangles, or claim counts triangles. These datasets differ from paid loss triangles by using 

reported claims and numbers of claims instead of paid claims. However, these datasets 

are not used in this paper. 

1.4. The Chain Ladder Algorithm 

The chain ladder algorithm or development method is a technique to estimate future 

losses according to selected age-to-age factors. In the chain ladder algorithm, for each 

development periods from 1 to 𝐽 − 1, an age-to-age factor is selected to estimate the 

growth in the cumulative loss. 

Example of Chain Ladder Algorithm 

We use a subset of Table 1.12 as an example (see Table 1.13).  

Cumulative Paid Losses in Development Year ($000) 

Accident Year 1 2 3 

1988 1 41,821 76,550 96,697 

1989 2 48,167 87,662   

1990 3 52,058     

Table 1.13 
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We can calculate the age-to-age factors by dividing the cumulative loss of the next 

development period by the cumulative loss of the current development period, which 

generates table 1.14. 

Age-to-age Factors in Development Year 

Accident Year 1 2 

1988 1 𝑓11 = 76,550 41,821⁄ ≈ 1.83 𝑓12 = 96,697 76,550⁄ ≈ 1.26 

1989 2 𝑓21 = 87,662 48,167⁄ ≈ 1.82   

Table 1.14 

The main purpose to calculate the age-to-age factors is to select or estimate one age-to-

age factor for each development period. With age-to-age factors corresponding to each 

development period, we can then use the known losses to estimate future claim losses. 

From the data in table 1.14, we can use 𝑓2 = 𝑓12 = 1.26 to be the age-to-age factor for 

the second development period, and select a number between 1.82 and 1.83 to be our 𝑓1. 

Or we could use the weighted average of the two as 𝑓1, with the claim amount being the 

weight, i.e., 

𝑓1 =
1.83 ∗ 41,821 + 1.82 ∗ 48,167

41,821 + 48,167
≈ 1.825 

Notice that this method can be simplified by working out the equivalent calculation 

𝑓1 =
76,550 + 87,662

41,821 + 48,167
 ≈ 1.825 

Then, we can estimate future losses with our selected age-to-age factors by multiplying 

the cumulative paid loss and corresponding age-to-age factors (results shown in table 

1.15) 

Cumulative Paid Losses in Development Year ($000) 

Accident Year 1 2 3 

1988 1 41,821 76,550 96,697 

1989 2 48,167 87,662 87,662 ∗ 1.26 ≈ 110,454 

1990 3 52,058 52,058 ∗ 1.825 ≈ 95,006 95,006 ∗ 1.26 ≈ 119,707 

Table 1.15 

To summarize, the first step in the chain ladder method is to calculate the age-to-age 

factors, which is done by dividing the next cumulative observation by the targeting 

cumulative observation of the same accident year. 
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In general, this is represented as 

𝑓𝑘𝑗 =
𝑋𝑘,𝑗+1

𝑋𝑘𝑗
, 𝑘 = 1, 2, . . . , 𝐾 − 1; 𝑗 = 1, 2, . . . , 𝑚𝑖𝑛(𝐽 − 1, 𝐾 − 𝑘) 

(1-4) 

We use formula (1-4) to calculate age-to-age factors between two development periods. 

To calculate the weighted average age-to-age factors between two consecutive 

development periods, we use the following formula  

𝑓𝑗 =  ∑ 𝜔𝑘𝑗𝑓𝑘𝑗

𝐾−𝑗

𝑘=1

 , 𝑗 = 1 …  𝐽 − 1 

(1-5) 

The weights, 𝜔𝑘𝑗, are usually calculated using the size of corresponding cumulative 

losses. Note that the sum of all weights for one age-to-age factor should be 1, i.e. 

∑ 𝜔𝑘𝑗

𝐾−𝑗

𝑘=1

= 1 

(1-6) 

To choose weights, we use 

𝜔𝑘𝑗 = 𝑋𝑘𝑗 ∑ 𝑋𝑘𝑗

𝐾−𝑗

𝑘=1

⁄  

(1-7) 

where we divide the cumulative loss at position k, j by the total known cumulative losses 

for the development period. Combining equations (1-4), (1-5) and (1-7), we obtain the 

following: 

𝑓𝑗 = ∑ 𝑤𝑘𝑗 𝑓𝑘𝑗

𝐾−𝑗

𝑘=1

 

=  ∑ (
𝑋𝑘𝑗

∑ 𝑋𝑘𝑗
𝐾−𝑗
𝑘=1

) × (
𝑋𝑘,𝑗+1

𝑋𝑘𝑗
) 

𝐾−𝑗

𝑘=1
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=  ∑
𝑋𝑘,𝑗+1

∑ 𝑋𝑘𝑗
𝐾−𝑗
𝑘=1

 

𝐾−𝑗

𝑘=1

 

=
∑ 𝑋𝑘,𝑗+1

𝐾−1
𝑘=1

∑ 𝑋𝑘𝑗
𝐾−1
𝑘=1

  

Note from the procedure that the calculations of weighted average age-to-age factors can 

be simplified into 

𝑓𝑗 =  
∑ 𝑋𝑘,𝑗+1

𝐾−𝑗
𝑘=1

∑ 𝑋𝑘𝑗
𝐾−𝑗
𝑘=1

 , 𝑗 = 1 …  𝐽 − 1 

(1-8) 

Intuitively, this means 

𝑓𝑗 = 
𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑙𝑜𝑠𝑠𝑒𝑠 𝑓𝑜𝑟 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑗 + 1

𝑆𝑢𝑚 𝑜𝑓 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑙𝑜𝑠𝑠𝑒𝑠 𝑓𝑜𝑟 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑗 𝑒𝑥𝑐𝑒𝑝𝑡 𝑡ℎ𝑒 𝑙𝑎𝑡𝑒𝑠𝑡 𝑜𝑛𝑒
 

So, when we compute  𝑓𝑗 with weighted average method, we take out the latest 

observation of development period j, and use the remaining rectangle to generate the 

weighted average age-to-age factor. 

After calculating and selecting the age-to-age factors, we can estimate the outstanding 

losses. Define the estimated cumulative value as the last known cumulative losses 

multiplied by corresponding age-to-age factors: 

𝑋̂𝑘𝑗 = 𝑋𝑘,𝐾−𝑘+1𝑓𝐾−𝑘+1 …𝑓𝑗−1 

(1-9) 

In equation (1-9), we use the latest known observation of the accident year k to predict 

the cumulative losses for each of the next development period by multiplying the latest 

observed cumulative loss with the age-to-age factors corresponding to those steps. 

Using the estimated cumulative losses, we can estimate the incremental losses: 

𝑌̂𝑘𝑗 = 𝑋𝑘,𝐾−𝑘+1𝑓𝐾−𝑘+1 …𝑓𝑗−2(𝑓𝑗−1 − 1) 

(1-10) 
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The derivation is shown in the following procedures: 

 𝑌̂𝑘𝑗 =  𝑋̂𝑘𝑗 − 𝑋̂𝑘,𝑗−1 

= 𝑋𝑘,𝐾−𝑘+1𝑓𝐾−𝑘+1 …𝑓𝑗−2𝑓𝑗−1 − 𝑋𝑘,𝐾−𝑘+1𝑓𝐾−𝑘+1 …𝑓𝑗−2 

= 𝑋𝑘,𝐾−𝑘+1𝑓𝐾−𝑘+1 …𝑓𝑗−2(𝑓𝑗−1 − 1) 

The sum of these incremental future losses are the outstanding loses, 𝑅̂𝑘, which can also 

be calculated as 

𝑅̂𝑘 = 𝑋̂𝑘𝐽 − 𝑋𝑘,𝐾−𝑘+1 = 𝑋𝑘,𝐾−𝑘+1(𝑓𝐾−𝑘+1 …𝑓𝐽−1 − 1) 

(1-11) 

Because outstanding losses is the sum of all losses that have not occurred for the accident 

year, we can use the predicted ultimate loss 𝑋̂𝑘𝐽 minus the latest observed loss 𝑋𝑘,𝐾−𝑘+1 

to get the estimated outstanding loss. 

The total outstanding losses across all accident years can be calculated by summing up 

the outstanding losses for each accident year, i.e. 

𝑅̂ = ∑ 𝑅̂𝑘

𝐾−1

𝑘=1

 

(1-12) 
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1.5. Numerical Example 

With the necessary background illustrated earlier in the chapter, we can use the chain 

ladder method with weighted average age-to-age factors to predict future cumulative 

losses based on given data.  

The results are as follows: 

 
 

 

 

   

Table 1.16 

 

Try to work out the triangle and see if your answer matches table 1.16. 
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2. Stochastic Models 

This chapter provides the background for Generalized Linear Models (GLMs). In GLMs, 

the response variables are expressed as a linear combination of the predictors. GLMs 

generalize linear regression, allowing for error distributions other than a normal 

distribution.  Response variables for GLMs can have any distribution from the 

Exponential Dispersion Family (EDF), which include the normal distribution. 

GLMs will be discussed in more detail in the next chapter. After introducing EDF, the 

later parts of this chapter focus instead on the family of distributions for the response 

variables of GLMs. Other aspects of GLMs, such as covariates and goodness-of-fit, are 

also discussed in this chapter. 

2.1. Exponential Dispersion Family 

The response variables of a GLM can take on a distribution that belong to the family of 

distributions called the exponential dispersion family (EDF). In this section, we discuss 

the definition of distributions of EDF, and sub-families of EDF that relate to the topic of 

this paper. 

2.1.1. The Exponential Dispersion Family in General 

Introduced by Nelder and Wedderburn (1972), the distributions that belong to EDF must 

have the probability density function (pdf) of the following form: 

𝑙𝑛 𝜋(𝑦; 𝜃, 𝜙) =
𝑦𝜃 − 𝑏(𝜃)

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙) 

(2-1) 

where 

𝜋(. ) = the actual probability density function 

𝑦 = an observation/predictor 

𝜃 = location parameter; also called canonical parameter 

𝜙 = dispersion parameter/scale parameter 

𝑏(. ) = cumulant function that determines the shape of the distribution 

𝑒𝑥𝑝(𝑐(𝑦, 𝜙)) = normalizing factor, which make ∑𝑓(𝑦; 𝜃,𝜙) = 1 
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For the distribution of an EDF, we need to make the following assumptions: 

1. Functions 𝑎(. ), 𝑏(. ) and 𝑐(. ) are continuous. 

2. 𝑏(. ) is one-to-one and twice differentiable, with the first derivative also one-to-

one. 

There are many well-known distributions that are from the EDF. By selecting specific 

functions of 𝑎(. ), 𝑏(. ) and 𝑐(. ) dependent on the observations and parameters 𝜃 and 𝜙, 

we can obtain a distribution of this family, denoted 𝐸𝐷𝐹(𝜃,𝜙; 𝑎, 𝑏, 𝑐). 

Table 2-1 below (also found in Table 2-1 of the monograph) contains examples of the 

distributions from the EDF 

Distribution 𝑏(𝜃) 𝑎(𝜙) 𝑐(𝑦, 𝜙) 

Normal 1

2
𝜃2 

𝜙 
−

1

2
[
𝑦2

𝜙
+ 𝑙𝑛(2𝜋𝜙)] 

Poisson 𝑒𝑥𝑝 𝜃 1 −𝑙𝑛 𝑦! 

Binomial 𝑙𝑛(1 + 𝑒𝜃) 𝑛−1 𝑙𝑛 (
𝑛
𝑛𝑦) 

Gamma − 𝑙𝑛(−𝜃) 𝑣−1 𝑣 𝑙𝑛(𝑣𝑦) − 𝑙𝑛 𝑦 − 𝑙𝑛(𝛤𝑣) 

Inverse 

Gaussian 
−(−2𝜃)−

1
2 

𝜙 
−

1

2
[𝑙𝑛 (2𝜋𝜙𝑦3 +

1

𝜙
𝑦)] 

Table 2-1 
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Proof for the normal distribution as a member of EDF 

Recall that the normal distribution has the following pdf 

𝑓(𝑥; 𝜇, 𝜎2) =
1

𝜎√2𝜋
𝑒−

1
2(

𝑥−𝜇
𝜎 )2

 

Using the notations for EDF, for the normal distribution we select the following functions 

of 𝑎(. ), 𝑏(. ) and 𝑐(. ) 

𝑎(𝜙) = 𝜙 

𝑏(𝜃) =
1

2
𝜃2 

𝑐(𝑦, 𝜙) = −
1

2
[
𝑦2

𝜙
+ 𝑙𝑛(2𝜋𝜙)] 

If we write the pdf in EDF form (2-1) with the above functions, we obtain 

𝑙𝑛 𝜋(𝑦; 𝜃, 𝜙) =
𝑦𝜃 −

1
2𝜃2

𝜙
−

1

2
[
𝑦2

𝜙
+ 𝑙𝑛(2𝜋𝜙)] 

= −
1

2
(
−2𝑦𝜃 + 𝜃2 + 𝑦2

𝜙
) −

1

2
𝑙𝑛(2𝜋𝜙) 

= −
1

2
(
𝑦 − 𝜃

√𝜙
)

2

−
1

2
𝑙𝑛(2𝜋𝜙) 

which is equivalent to 

𝜋(𝑦; 𝜃, 𝜙) =
1

√2𝜋𝜙
𝑒

−
1
2(

𝑦−𝜃

√𝜙
)2

 

Note that if we let 𝜋(. ) = 𝑓(. ), 𝜃 = 𝜇, 𝜙 = 𝜎2, and 𝑦 = 𝑥, this is the same as the first 

pdf we have for the normal distribution. ∎ 
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Proof for Poisson distribution as a member of EDF 

Recall 2-1: 

𝑙𝑛 𝜋(𝑦; 𝜃, 𝜙) =
𝑦𝜃 − 𝑏(𝜃)

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙) 

For Poisson distribution, use (see table 2-1) 

𝑎(𝜙) = 1, 𝑏(𝜃) = 𝑒𝑥𝑝𝜃 , 𝑐(𝑦, 𝜙) = − 𝑙𝑛 𝑦! 

Substitute function a, b, and c in (2-1), we have: 

𝑙𝑛 𝜋(𝑦; 𝜃, 𝜙) =
𝑦𝜃 − 𝑒𝜃

1
− 𝑙𝑛 𝑦! 

=>  𝜋(𝑦; 𝜃, 𝜙) =
𝑒𝑦𝜃𝑒−𝑒𝜃

𝑦!
 

=
(𝑒𝜃)𝑦𝑒−(𝑒𝜃)

𝑦!
 

which is the same as  

𝑓(𝑥; 𝜆) =
𝑒−𝜆𝜆𝑥

𝑥!
 

when 𝑒𝜃 = 𝜆 , 𝑦 = 𝑥. ∎ 
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Proof for binomial distribution as a member of EDF 

Recall 2-1: 

𝑙𝑛 𝜋(𝑦; 𝜃, 𝜙) =
𝑦𝜃 − 𝑏(𝜃)

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙) 

For Binomial distribution, use (see table 2-1) 

𝑎(𝜙) = n−1, 𝑏(θ) = ln(1 + 𝑒𝜃) , 𝑐(𝑦,𝜙) = ln (
𝑛
𝑛𝑦) 

 Substitute function a, b, and c in 2-1: 

𝑙𝑛 𝜋(𝑦; 𝜃, 𝜙) =
𝑦𝜃 − ln(1 + 𝑒𝜃)

n−1
+ ln (

𝑛
𝑛𝑦) 

= 𝑛𝑦𝜃 − 𝑛𝑙𝑛(1 + 𝑒𝜃) + ln (
𝑛
𝑛𝑦) 

=>  𝜋(𝑦; 𝜃, 𝜙) = 𝑒𝑛𝑦𝜃(1 + 𝑒𝜃)
−𝑛

(
𝑛
𝑛𝑦) 

= (𝑒𝜃)𝑛𝑦 (
1

1 + 𝑒𝜃
)

𝑛+𝑛𝑦−𝑛𝑦

(
𝑛
𝑛𝑦) 

= (𝑒𝜃)𝑛𝑦 (
1

1 + 𝑒𝜃
)

𝑛𝑦

(
1

1 + 𝑒𝜃
)
𝑛−𝑛𝑦

(
𝑛
𝑛𝑦) 

= (
𝑒𝜃

1 + 𝑒𝜃
)

𝑛𝑦

(
1

1 + 𝑒𝜃
)

𝑛−𝑛𝑦

(
𝑛
𝑛𝑦) 

which is the same as  

𝑓(𝑘; 𝑛, 𝑝) = 𝑝𝑘(1 − 𝑝)𝑛−𝑘 (
𝑛
𝑘
) 

for 𝑘 = 𝑛𝑦 , 𝑝 =
𝑒𝜃

1+𝑒𝜃  , 𝑎𝑛𝑑 𝑛 = 𝑛 ∎ 
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Proof for Gamma distribution as a member of EDF 

Recall 2-1: 

𝑙𝑛 𝜋(𝑦; 𝜃, 𝜙) =
𝑦𝜃 − 𝑏(𝜃)

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙) 

For Gamma distribution, use (see table 2-1) 

𝑎(𝜙) = v−1, 𝑏(θ) = − ln(−𝜃) , 𝑐(𝑦, 𝜙) = v ln(𝑣𝑦) − ln 𝑦 − ln(𝛤𝑣) 

Substitute function a, b, and c in 2-1: 

𝑙𝑛 𝜋(𝑦; 𝜃, 𝜙) =
𝑦𝜃 + ln(−𝜃)

v−1
+ v ln(𝑣𝑦) − ln𝑦 − ln(𝛤𝑣) 

= 𝑣𝑦𝜃 + 𝑣𝑙𝑛(−𝜃) + 𝑣𝑙𝑛(𝑣𝑦) − ln 𝑦 − ln(𝛤𝑣) 

=>  𝜋(𝑦; 𝜃, 𝜙) =
𝑒𝑣𝑦𝜃(−𝜃)𝑣(𝑣𝑦)𝑣

𝑣𝑦𝛤
 

=
𝑒𝑣𝑦𝜃(−𝜃𝑣𝑦)𝑣

𝑣𝑦𝛤
 

which is same as  

𝑓(𝑥; 𝛼, 𝜃′) =
(
𝑥
𝜃′

)𝛼𝑒
−

𝑥
𝜃′

𝑥𝛤(𝛼)
 

when 𝑥 = 𝑣𝑦, 𝛤(𝛼) = 𝛤, 𝜃′ = −
1

𝜃
 , 𝛼 = 𝑣 ∎ 
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For a random variable Y that follows an EDF distribution, it can be shown that  

𝐸[𝑌] = 𝑏′(𝜃) 

(2-2) 

Take the normal distribution as an example. We know that 𝑏(𝜃) =
1

2
𝜃2 for a normal 

distribution. Thus its derivative is 

𝑏′(𝜃) = 𝜃 

Recall that we had 𝜃 = 𝜇 for the normal distribution, so the normal distribution satisfies 

(2-2). 

The variance of the same variable Y should also satisfy 

𝑉𝑎𝑟[𝑌] = 𝑎(𝜙)𝑏′′(𝜃) 

(2-3) 

Using the normal distribution again, we know that 𝑉𝑎𝑟(𝑌) = 𝜎2. Because 𝑎(𝜙) = 𝜙 =

𝜎2 and 𝑏′′(𝜃) = 1, 

𝑉𝑎𝑟[𝑌] = 𝜎2 ∙ 1 = 𝑎(𝜙)𝑏′′(𝜃) 

Moreover, because 𝑏(. ) is one-to-one by definition, we can take the inverse of 𝐸[𝑌] =

𝑏′(𝜃) and isolate θ in equation (2-2) as 

𝜃 = (𝑏′)−1(𝐸[𝑌]) 

Denote 𝐸[𝑌] as 𝜇, we obtain 

𝜃 = (𝑏′)−1(𝜇) 

(2-4) 

This explains the description of 𝜃 being a location parameter, as it is a function of the 

center, 𝜇, of the distribution. 

For the variance of Y, we can rewrite (2-3) using the variance function derived from (2-

4) 

𝑉(𝜇) = 𝑏′′((𝑏′)−1(𝜇)) 

(2-6) 
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Equation (2-3) becomes 

𝑉𝑎𝑟[𝑌] = 𝛼(𝜙)𝑉(𝜇) 

(2-5) 

In this form, we can express the variance of Y on μ and ϕ. This means that we have 

variance in a form that depends on the mean and the scale parameter. 

In addition, for practical purposes, we make the following restriction to 𝑎(. ) in this paper 

𝛼(𝜙) =
𝜙

𝑤
 

(2-7) 

where we usually assume 𝑤 = 1 , so 𝛼(𝜙) = 𝜙.  

 

2.1.2. The Tweedie Sub-Family 

Introduced by Tweedie (1984), the Tweedie sub-family belongs to the EDF with the 

following restriction to the variance function 

𝑉(𝜇) = 𝜇𝑝 , 𝑝 ≤ 0 or 𝑝 ≥ 1 

(2-8) 

Using the relations in (2-5) and (2-7) (where we assume 𝑤 = 1), we have that  

𝑉𝑎𝑟[𝑌] = 𝛼(𝜙)𝑉(𝜇) =
𝜙

𝑤
𝑉(𝜇) = 𝜙𝑉(𝜇) = 𝜙𝜇𝑝 

Thus we can see in the Tweedie Sub-Family, the variance of Y is proportional to the 

power of the mean. 

Using the relation between μ, θ, and 𝑉(𝜇), we can further show that 

𝑏(𝜃) = (2 − 𝑝)−1[(1 − 𝑝)𝜃]
2−𝑝
1−𝑝 

(2-9) 
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Note that using (2-9) and the relation of 𝜇 = 𝑏′(𝜃), we can derive μ as 

𝜇 = 𝑏′(𝜃) 

= (2 − 𝑝)−1(1 − 𝑝)
2−𝑝
1−𝑝 (

2 − 𝑝

1 − 𝑝
)𝜃

1
1−𝑝 

= (1 − 𝑝)−1(1 − 𝑝)
2−𝑝
1−𝑝𝜃

1
1−𝑝 

= (1 − 𝑝)
1

1−𝑝𝜃
1

1−𝑝 

and 

𝑏′′(𝜃) = (1 − 𝑝)
1

1−𝑝(1 − 𝑝)−1𝜃
1

1−𝑝−1
= (1 − 𝑝)

𝑝
1−𝑝𝜃

𝑝
1−𝑝 

From (2-6) we know 𝑉(𝜇) = 𝑏′′((𝑏′)−1(𝜇)) = 𝑏′′(𝜃), therefore 

𝑉(𝜇) = 𝑏′′(𝜃) = (1 − 𝑝)
𝑝

1−𝑝𝜃
𝑝

1−𝑝 = ((1 − 𝑝)
1

1−𝑝𝜃
1

1−𝑝)

𝑝

= 𝜇𝑝 

which is consistent with (2-8). 

From the above derivations, we also showed that 

𝜇 = [(1 − 𝑝)𝜃]
1

1−𝑝 

(2-10) 

And from here, we obtain that for distributions of Tweedie Sub-Family, 

𝜃 = (𝜇(1 − 𝑝)
−

1
1−𝑝)

1−𝑝

=
𝜇1−𝑝

1 − 𝑝
 

Using the above relations, we can rewrite the pdf of Tweedie Sub-Family distributions as 

𝑙𝑛 𝜋(𝑦; 𝜇, 𝜙) =
[
𝑦𝜇1−𝑝

1 − 𝑝 −
𝜇2−𝑝

2 − 𝑝]

𝜙
+ 𝑐(𝑦,𝜙) 

(2-11) 

denoted 𝑇𝑤(𝜇, 𝜙; 𝑝). 
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This is derived from the definition of EDF general formula (2-1), where for 

𝑙𝑛 𝜋(𝑦; 𝜃, 𝜙) =
𝑦𝜃 − 𝑏(𝜃)

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙) 

we know that 𝜃 =
𝜇1−𝑝

1−𝑝
 and 

𝑏(𝜃) = (2 − 𝑝)−1[(1 − 𝑝)𝜃]
2−𝑝
1−𝑝 = (2 − 1)−1 [(1 − 𝑝)

𝜇1−𝑝

1 − 𝑝
]

2−𝑝
1−𝑝

=
𝜇2−𝑝

2 − 𝑝
 

In addition, because we restrained 𝑎(𝜙) = 𝜙, by substituting 
𝜇1−𝑝

1−𝑝
 for 𝜃, 

𝜇2−𝑝

2−𝑝
 for 𝑏(𝜃), 

and 𝜙 for 𝑎(𝜙), we can thus obtain (2-11).  

 

Example distribution from Tweedie sub-family – normal distribution 

In addition to being a distribution from the EDF, the normal distribution also belongs to 

the Tweedie sub-family. As we know of the normal distribution, for 𝑌~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2), 

𝑉𝑎𝑟[𝑌] = 𝜎2 = 𝜙 = 𝑎(𝜙) ∙ 1 = 𝛼(𝜙)𝑉(𝜇) 

And because we also know that for a normal distribution, 𝜃 = 𝜇.  

Thus 𝑏(𝜃) =
1

2
𝜃2 =

1

2
𝜇2, which satisfies (2-9), and 

𝑏′′(𝜃) =
𝑑2

𝑑2𝜇
(
1

2
𝜇2) =

𝑑

𝑑𝜇
(𝜇) = 1 = 𝑉(𝜇) 

where we have 𝑝 = 0, which satisfies (2-10).  

Using μ, ϕ, 𝑐(𝑦, 𝜙) = −
1

2
[
𝑦2

𝜙
+ 𝑙𝑛(2𝜋𝜙)], with 𝑝 = 0, we obtain from (2-11) 

𝑙𝑛 𝜋(𝑦; 𝜇, 𝜙) =
[
𝑦𝜇1−𝑝

1 − 𝑝 −
𝜇2−𝑝

2 − 𝑝]

𝜙
+ 𝑐(𝑦,𝜙) 

=
[
𝑦𝜇1−𝑝

1 − 𝑝 −
𝜇2−𝑝

2 − 𝑝]

𝜙
−

1

2
[
𝑦2

𝜙
+ 𝑙𝑛(2𝜋𝜙)] 
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=
[𝑦𝜇 −

𝜇2

2 ]

𝜙
−

1

2
[
𝑦2

𝜙
+ 𝑙𝑛(2𝜋𝜙)] 

= −
1

2

[𝑦2 − 2𝑦𝜇 + 𝜇2]

𝜙
−

1

2
[ln(2𝜋𝜙)] 

= −
1

2

(𝑦 − 𝜇)2

𝜙
−

1

2
[ln(2𝜋𝜙)] 

So for π(. ), we obtain 

π(𝑦; 𝜇, 𝜙) =
1

√2𝜋𝜙
𝑒

−
1
2(

𝑦−𝜇

√𝜙
)2

  

 

Beside the normal distribution, Table 2-2 below contains more examples of the Tweedie 

sub-family with different p values: 

Distribution p 𝑏(𝜃) 𝜇 𝑙𝑛 𝜋(𝑦; 𝜇,𝜙) 

Over-dispersed 

Poisson 

1 𝑒𝑥𝑝 𝜃 𝑒𝑥𝑝(𝜃) [𝑦 𝑙𝑛 𝜇 − 𝜇]

𝜙
 

Gamma 2 𝑙𝑛(−𝜃) 
−

1

𝜃
 [−

𝑦
𝜇

− 𝑙𝑛 𝜇]

𝜙
 

Inverse 

Gaussian 

3 
−(−2𝜃)

1
2 (−2𝜃)−

1
2 [−(

𝑦
2 𝜇2) +

1
𝜇]

𝜙
 

Table 2-2 

 

2.1.3. The Over-Dispersed Poisson Sub-Family 

The Over-Dispersed Poisson (ODP) distribution was introduced in Table 2-2 at the end 

of the previous section. This distribution plays a central role in the rest of the paper, 

particularly in the stochastic models that support the chain ladder algorithms. Thus we 

introduce ODP distribution in more details here. 

As noted in the table, the ODP distribution is part of the Tweedie sub-family with 𝑝 = 1. 

We will thus denote it as 𝑂𝐷𝑃(𝜇, 𝜙), because p is fixed. 
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The pdf of ODP (Table 2-2) is as follows: 

 

𝜋(𝑦; 𝜇, 𝜙) = 𝜇
𝑦
𝜙𝑒

[−
𝜇
𝜙+𝑐(𝑦,𝜙)]

 

(2-14) 

for 𝑦 = 0, 𝜙, 2𝜙,… and 𝜇 = 𝑒𝜃. 

We can rewrite (2-14) in the general form of distribution from EDF 

𝑙𝑛 𝜋(𝑦; 𝜇,𝜙) =
𝑦 𝑙𝑛 𝜇 − 𝜇

𝜙
+ 𝑐(𝑦, 𝜙) 

where in this case, 𝜃 = 𝑙𝑛 𝜇 ↔ 𝜇 = 𝑒𝜃 , 𝑏(𝜃) = 𝜇 = 𝑒𝜃. 

The unit total probability mass, 𝑒𝑥𝑝 𝑐(𝑦, 𝜙) is obtained if 

𝑒𝑐(𝑦,𝜙) = [(
𝑦

𝜙
) !]

−1

 

(2-15) 

If we substitute (2-15) into the pdf of ODP (2-14), we can obtain 

𝜋(𝑦; 𝜇,𝜙) =
𝜇

𝑦
𝜙𝑒

−
𝜇
𝜙

(
𝑦
𝜙) !

 

(2-16) 

for 𝑦 = 0, 𝜙, 2𝜙,… 

the monograph claims from here that from this pdf, we can actually observe that the 

Poisson distribution can be represented by ODP as 

Y

𝜙
~𝑃𝑜𝑖𝑠𝑠 (

𝜇

𝜙
) 

(2-17) 

However, this is not true, as the form does not match exactly the distribution of the 

Poisson distribution. 
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Recall the Poisson distribution as the following form: 

𝑓𝑋(𝑥; 𝜆) =
𝜆𝑥𝑒−𝜆

𝑥!
 

However, from (2-17), we obtain  

𝜋 (
𝑦

𝜙
; 𝜇, 𝜙) =

(
𝜇
𝜙)

𝑦
𝜙

𝑒
−

𝜇
𝜙

(
𝑦
𝜙) !

 

which does not match the form in (2-16). 

On the other hand, if we let 𝜙 = 1 in (2-16), the obtained pdf is 

(𝑦; 𝜇, 1) =
𝜇𝑦𝑒−𝜇

𝑦!
 

Which does reduce to simple Poisson distribution denoted 

𝑌~𝑃𝑜𝑖𝑠𝑠(𝜇) 

(2-20) 

 

2.2. Generalized Linear Models (GLMs) 

2.2.1. Definition 

Let 𝜋(. ;  𝜇, ϕ) denote a distribution of the EDF, and denote 𝑌𝑖, 𝑖 = 1,2,… , 𝑛 as a sample 

of observation. 

Suppose that each 𝑌𝑖 has a known q-vector of predictors (or covariates, which is an 

independent variable of a model), 𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑞. Denote its transpose as 𝑥𝑖 =

(x𝑖1, x𝑖2, … , x𝑖𝑞)
𝑇
. Then a model is called a generalized linear model (GLM) if it 

satisfies the following 3 conditions: 

1. 𝑌𝑖 ~ 𝜋(. ; 𝜇𝑖 , ϕ𝑖) where 𝜇𝑖 are unknown parameters. 

2. ℎ(𝜇𝑖) =  𝑥𝑖
𝑇𝛽, where ℎ(. ) it is a one-to-one link function in (−∞,+∞); 𝛽 is a q-

vector of unknown parameters, where 𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑞)
𝑇
. 

3. Observations 𝑌𝑖 are stochastically independent. 
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In the GLM, the variate 𝑌𝑖 is called the response, and the 𝑥𝑖
𝑇𝛽 is called the linear 

response. 

 

Denote the dispersion parameter ϕ𝑖, where 

𝜙𝑖 =  𝜙/𝑤𝑖 

(2-21) 

The 𝜙 is the overall dispersion parameter, and 𝑤𝑖  are the weights associated with each 𝜙𝑖 

that corresponds to the variates 𝑌𝑖. Usually it is assumed that the overall 𝜙 unknown but 

𝑤𝑖  are known. 

While GLM is more generalized than a linear regression, the GLM is a regression model. 

Its relation with linear regression can be seen in the following example: 

if we let the density function 𝜋(. ; 𝜇𝑖 , ϕ𝑖) be the normal density, 𝑛(. ; 𝜇𝑖 , ϕ𝑖), and let the 

link function ℎ = 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦, then we can rewrite condition (1) and (2) as  

𝑌𝑖 =  𝑥𝑖
𝑇𝛽 + ℇ𝑖 with ℇ𝑖  ~ 𝑁(0, ϕ𝑖) 

(2-22) 

which is a weighted linear regression model.  

For simplicity, we can also express condition (2) in vector and matrix form, which will be 

used frequently in the following chapters. The matrix 𝑋 is called the design matrix of 

regression. Let  

𝑌 – the 𝑛 × 1 vector with 𝑖-th component 𝑌𝑖 

𝜇 – the 𝑛 × 1 vector with 𝑖-th component 𝜇𝑖 

𝑋 – the 𝑛 × 𝑞 matrix with 𝑖-th row 𝑥𝑖
𝑇: 

[

𝑥11 ⋯ 𝑥1𝑞

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑞

] 
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Then we can rewrite condition (2) as  

𝜇 = ℎ−1(𝑋𝛽) 

(2-23) 

where 𝜇 is an 𝑛 × 1 vector like Y, and 𝛽 is a 𝑞 × 1 vector. 

In GLM, each variate will have one canonical parameter (or location parameter). Thus 

combining all canonical parameters, we obtain an 𝑛-vector (𝜃1, … , 𝜃𝑛) for the GLM. 

Denote this vector from now on as 𝜃, then recall from (2-2), which states that  

𝐸[𝑌] = 𝜇 = 𝑏′(𝜃), and combine with (2-23), we obtain the following 

𝑏′(𝜃𝑖) =  𝐸[𝑌𝑖] =  𝜇𝑖 =  ℎ−1(𝑥𝑖
𝑇𝛽) 

(2-24) 

 

2.2.2. Categorical and Continuous Covariates  

Covariates can be divided into two types: categorical and continuous covariates. 

Categorical covariates are covariates that are discrete, such as possible numerical values 

from rolling a dice, or non-numerical values such as genders. Continuous covariates are, 

as the name suggests, numerical within a continuous range, such as age and height. 

Categorical Variates 

Suppose a categorical variate has m possible values, where m is usually referred to as the 

levels of the variate. Denote these possible values as 𝜉1, … , 𝜉𝑚. In the GLM, we can 

represent this as 0-1 variates for a total of m variates, denoted 𝑥𝑘+1, 𝑥𝑘+2, … , 𝑥𝑘+𝑚, with 

other regression covariates denoted as x1, 𝑥2, … , 𝑥𝑘 , 𝑥𝑘+𝑚+1, …. The 0-1 variates are 

defined as follows: 

𝑥𝑘+𝑟 = {
1,  𝑖𝑓 𝑡ℎ𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑎𝑠𝑠𝑢𝑚𝑒𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝜉𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 (2-25) 

For example, if we have gender as our categorical variates in a model, we obtain a level 

of variate of 2, where  

𝑥𝑘+𝑟 = {
1,   𝑖𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑠𝑜𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑖𝑠 𝑎 𝑚𝑎𝑙𝑒
0, 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑠𝑜𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑖𝑠 𝑎 𝑓𝑒𝑚𝑎𝑙𝑒
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Note that for 𝑟 = 1,2,… ,𝑚, 

∑ 𝑥𝑘+𝑟 = 1

𝑚

𝑟=1

 

(2-26) 

which means that only one category can be selected at a time. 

Applying this concept to loss reserve, for example, if we want to include development 

years as a covariate in our model, we need to treat the development years as categorical 

variates 𝜉 with J levels. Specifically, we have the following 0-1 variates 

𝑥𝑘+𝑗 = {
1,   𝑖𝑓 𝜉 = 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Continuous Variates 

Because continuous variates take numerical values, they simply represent themselves in a 

regression model. For example,  

𝐿𝑚𝑀(𝑥) = 𝑚𝑖𝑛[𝑀 − 𝑚,𝑚𝑎𝑥 (0, 𝑥 − 𝑚)] with 𝑚 < 𝑀 

(2-27) 

has unit gradient between 𝑚 and 𝑀 and constant outside this range. Visually this has the 

following graph from the monograph 
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A specific form of 𝐿𝑚𝑀(𝑥),  𝐿𝑚𝑘𝑚𝑘+1
(𝑥), are basis functions, which are usually used to 

construct piecewise linear functions, called linear splines. An example of linear splines is 

as follows: 

∑ 𝛽𝑘

𝐾

𝑘=1

𝐿𝑚𝑘𝑚𝑘+1
(𝑥) 

(2-28) 

which is constructed as a linear combination of the basis functions, and has knots of 𝑥 =

 𝑚1, … ,𝑚𝐾+1 and gradient 𝛽𝑘.  

 

2.2.3. Goodness-of-Fit and Deviance 

If we fit a model with parameters (arranged in a vector) 𝛽 to a set of observations (also 

arranged in a vector) Y, and the parameter estimates 𝛽̂ are maximum likelihood 

estimates (MLEs) of 𝛽, then the vector of fitted values 𝑌̂ is the MLE of 𝜇, written as 

𝑌̂ = ℎ−1(𝑋𝛽̂) 

(2-29) 

To measure how well the MLE parameter estimates 𝛽̂ model the observations means, we 

need to test the goodness-of-fit of the model and MLEs. A common measure of 

goodness-of-fit of a GLM is by calculating its scaled deviance, which is defined as 

𝐷(𝑌, 𝑌̂) = 2[ 𝑙𝑛 𝜋(𝑌; 𝜃(𝑠), ϕ) − 𝑙𝑛 𝜋(𝑌; 𝜃,ϕ)]

= 2∑[𝑙𝑛 𝜋(𝑌𝑖;  𝜃
(𝑠), ϕ) − 𝑙𝑛 𝜋(𝑌𝑖; 𝜃, ϕ)]

𝑛

𝑖=1

 

(2-30) 

where 𝜃 is the location parameter vector and 𝜃 is the MLE of 𝜃, 𝜃(𝑠) is the estimate of 𝜃 

in the saturated model (which means that each observation of the model has a 

corresponding parameter so that 𝑌̂ = 𝑌).  
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For simplicity, refer to the unscaled deviance as simply deviance. For a deviance 

calculation, the scale parameter 𝜙 is ignored (equivalently, set to 1) and the equation is 

defined as follows  

𝐷∗(𝑌, 𝑌̂) = 2∑[𝑙𝑛 𝜋(𝑌𝑖;  𝜃
(𝑠), 1) − 𝑙𝑛 𝜋(𝑌𝑖; 𝜃, 1)]

𝑛

𝑖=1

 

(2-31) 

The MLE minimizes 𝐷∗(𝑌, 𝑌̂) with respect to 𝜃.  

 

2.2.4. Residuals 

Pearson Residuals 

The standardized Pearson residuals for associated observations Y𝑖  are defined as  

𝑅𝑖
𝑃 = (𝑌𝑖 − 𝑌̂𝑖)/𝜎̂𝑖 

(2-33) 

with 𝜎𝑖 being the estimate of 𝜎𝑖 and 𝜎𝑖
2 = 𝑉𝑎𝑟[𝑌𝑖]. We will also use this in Chapter 5 for 

Bootstrapping residuals for re-sampling. 

Assuming that 𝑌𝑖̂ is approximately unbiased as an estimator of 𝜇𝑖, and  

𝑉𝑎𝑟[𝑌𝑖̂ − 𝑌𝑖] ≅ 𝑉𝑎𝑟[𝑌𝑖] 

then we have the following properties for the standardized Pearson residuals: 

𝐸[𝑅𝑖
𝑃] = 0 

𝑉𝑎𝑟[𝑅𝑖
𝑃] = 1 

(2-34) 

Visually, this means if we plot the residuals, they should scatter evenly about the line y =

0, as shown in the following figure from the monograph 
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Beside the unbiasedness, note that the scatterplot also has a uniform dispersion from left 

to right. This feature is called homoscedasticity, and together with unbiasedness, these 

are crucial parts for model validation. 

 

Deviance Residuals 

The standardized deviance residual is defined as  

𝑅𝑖
𝐷 = 𝑠𝑔𝑛(𝑌𝑖 − 𝑌̂𝑖) (

𝑑𝑖

ϕ̂
)

1
2

 

(2-35) 

Where sgn is the sign function defined as 

𝑠𝑔𝑛(𝑥) = {
−1, 𝑥 < 0

0, 𝑥 = 0
    1, 𝑥 > 0

 

and 𝑑𝑖 is the 𝑖-th observation of deviance 𝐷∗(𝑌, 𝑌̂).  

 

The deviance residual is useful because it is not affected by non-normality in the 

observations as the Pearson residuals are, and thus are more applicable when handling 

non-normal distributions. Figure 2-4 and 2-5 from the monograph show an example of 
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plotting the standardized Pearson residuals and deviance residuals for the same dataset 

and model. The figures show that while the histogram of the standardized Pearson 

residuals is heavily skewed toward the right, the deviance residuals greatly reduce the 

skewness and are more normally distributed.  
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2.2.5 Outliers and the Use of Weights 

Use of weights in the case of heteroscedasticity 

Suppose a GLM has the property of homoscedasticity, specifically 

𝑉𝑎𝑟[𝑌𝑖] = 𝜙𝑉(𝜇𝑖) 

(2-36) 

This means the variance of an observation 𝑌𝑖 depends on both the dispersion parameter 

and the variance of its mean. 

Then, suppose the standardized Pearson residual we observed shows heteroscedasticity. 

For example, that the residuals above age 55 has standard deviation twice as large as 

those below age 55. 

If we express the standardized Pearson residual using equations (2-5), (2-7), (2-33), 

which are 

𝑉𝑎𝑟[𝑌] = 𝛼(𝜙)V(μ) 

(2-5) 

𝛼(𝜙) = 𝜙/𝜔 

(2-7) 

𝑅𝑖
𝑃 =

𝑌𝑖−𝑌̂𝑖

𝜎̂𝑖
, where 𝜎̂𝑖

2 = 𝑉𝑎𝑟[𝑌𝑖]      

(2-33) 

Then the standardized Pearson residual can be expressed as 

𝑅𝑖
𝑃 =

𝑌𝑖 − 𝑌̂𝑖

𝜎𝑖
 

=
𝑌𝑖 − 𝑌̂𝑖

𝑉𝑎𝑟[𝑌𝑖]
1
2

 

=
𝑌𝑖 − 𝑌̂𝑖

(𝜙̂V(μ̂i))

1
2
 

 

(2-37) 
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The observed heteroscedasticity suggests that 𝜙 takes different values for those with age 

above 55 and those with age below 55. Specifically, because the standard deviation is 

twice as large, the value of  𝜙 for above 55 is 4 times as large as for 𝜙 below 55. 

Therefore, if we want to remove the heteroscedasticity in this model, we can use weights 

to reflect the variation in 𝜙 over age. Specifically, for the formula of 

𝛼(𝜙) = 𝜙/𝜔 

which is for the 𝜙 that apply to all age, we can adjust it to  

𝛼(𝜙𝑖) = 𝜙/𝜔𝑖 

with 𝜙 being a constant, and 𝜙𝑖 and 𝜔𝑖 are for the corresponding i𝑡ℎ observation. 

Then, let 

𝜔𝑖 = 1  , 𝑎𝑔𝑒 ≤ 55 

𝜔𝑖 =
1

4
 , 𝑎𝑔𝑒 > 55 

such that 

𝛼(𝜙𝑖) = 𝜙, 𝑎𝑔𝑒 ≤ 55 

𝛼(𝜙𝑖) = 4𝜙, 𝑎𝑔𝑒 > 55 

In this way, the model reflects the differences in ϕ for age below and above 55, where the 

value of 𝜙 is now 4 times as large for age above 55 as that below age 55. Thus we can 

eventually achieve homoscedasticity. 

From the above example we can conclude the following: in the default setting with no 

specific introduction of weights, all observations are equally weighted for the purpose of 

parameter estimation. However, if certain groups of observations have variance larger 

than others, they should be weighted less. 

Also, estimation efficiency will be optimized when each observation is weighted 

inversely proportional to its 𝜙. In the above example, where the value of 𝜙 is 4 times 

larger, the assigned weight of 𝜔𝑖 = 1/4 is the inverse of the coefficient for 𝛼(𝜙𝑖). 

Therefore, when we see patterns of heteroscedasticity in the residual plot, we should 

adjust the weights of observations so that the weights are inversely proportional to the 

variance of their residuals. 
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Outliers 

In residual plots, we may identify observations with very large residuals, called outliers. 

These observations influence the accuracy of our regression analysis because they can 

move our fitted model away from its main body. 

When we observe an outlier, we can exclude it from our analysis. However, we should be 

careful because outliers could be the representation of a major change in the environment 

of the population. In this case, the exclusion of outlier would be inappropriate. 

 

 

2.2.6 Forecasts 

Recall that  

𝐸[𝑌𝑖] = 𝜇𝑖 = ℎ−1(𝑥𝑖
𝑇𝛽) 

(2-38) 

In this model, covariates 𝑥𝑖 includes factors that can influence the values of losses. 

When we estimate the losses for future, the difference in covariates 𝑥𝑖 is that it includes 

time variates related to the future. 

To distinguish the difference, for future observations, we use notation * to suggest its 

purpose of forecast, or more commonly referred to in this paper as future estimation. For 

example, (2-38) should be then written as 

𝐸[𝑌𝑖
∗] = 𝜇𝑖

∗ = ℎ−1(𝑥𝑖
∗𝑇𝛽) 
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or using vector form 

𝜇∗ = ℎ−1(𝑋∗𝛽) 

(2-39) 

where 𝑋∗ is the matrix with rows being 𝑥𝑖
∗𝑇

 and called the forecast design matrix. 

Then, the future estimates of 𝑌∗ can be expressed as 

𝑌̂∗ = 𝜇̂∗ = ℎ−1(𝑋∗𝛽̂) 

(2-40) 

This notation will be used for the rest of the paper to identify future observations. 
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3. Stochastic Models Supporting the Chain Ladder Method 

3.1. Mack Models 

The Mack model is a stochastic chain ladder model introduced by Mack (1993). Section 

3.1. provides the theoretical support, and distributional characteristics for the chain ladder 

that Chapter 1 has explained.  

3.1.1. Non-Parametric Mack Model 

There are 3 conditions for the Mack model:  

(M1) For different accident years, i.e.  𝑘1 ≠ 𝑘2, the incremental losses such as 𝑌𝑘1𝑗1 and 

𝑌𝑘2𝑗2 are stochastically independent.  

(M2) For each 𝑘 = 1, 2,… , 𝐾 (i.e. for each row), the 𝑋𝑘𝑗 (𝑗 varying) form a Markov 

chain. A Markov chain is a chain of observations in which the probability and size of the 

𝑗-th observations is only affected by the previous, (𝑗 − 1)-th observations, i.e.  

𝑃(𝑋𝑗|𝑋1 = 𝑥1, … , 𝑋𝑗−1 = 𝑥𝑗−1) = 𝑃(𝑋𝑗|𝑋𝑗−1 = 𝑥𝑗−1). 

(M3) For each 𝑘 = 1, 2,… , 𝐾 and 𝑗 = 1, 2, … , 𝐽 − 1,  

(a) 𝐸[𝑋𝑘,𝑗+1| 𝑋𝑘𝑗] = 𝑓𝑗𝑋𝑘𝑗 for some parameter 𝑓𝑗 > 0  

(b) 𝑉𝑎𝑟[𝑋𝑘,𝑗+1| 𝑋𝑘𝑗] = 𝜎𝑗
2𝑋𝑘𝑗 for some parameter 𝜎𝑗 > 0 

 

Recall here that 𝑓 is the age-to-age factor, and the expectation of X for the next 

development period is calculated by multiplying the current observation with the 𝑓 for 

the current development period.  

𝜎𝑗 is the standard deviation and the variance of X of next development period is 

calculated by multiplying the current observation by the 𝜎𝑗
2 of the current column.  

The Mack model is stochastic because it considers both expected values and the 

variances of the observations. But it is non-parametric as it does not consider the 

distribution of observations.  
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Mack derived the following result for this model: 

Result 1: The conventional chain ladder estimators 𝑓𝑗 of the age-to-age factors 𝑓𝑗 

according to (1-8) are:  

(a) unbiased 

(b) minimum variance among estimators that are unbiased linear combinations of 

the 𝑓𝑘𝑗 defined by (1-4) 

 

Recall (1-4) 

𝑓𝑘𝑗 =
𝑋𝑘,𝑗+1

𝑋𝑘𝑗
, 𝑘 = 1, 2, . . . , 𝐾 − 1; 𝑗 = 1, 2, . . . , 𝑚𝑖𝑛(𝐽 − 1, 𝐾 − 𝑘) 

where the 𝑓𝑘𝑗 are the age-to-age factors for each cumulative observation 𝑋𝑘𝑗 to the next 

𝑋𝑘,𝑗+1, where as in (1-8)  

𝑓𝑗 =
∑ 𝑋𝑘,𝑗+1

𝐾−𝑗
𝑘=1

∑ 𝑋𝑘𝑗
𝐾−𝑗
𝑘=1

 

where the 𝑓𝑗 are the weighted age-to-age factors for the development period 𝑗, and can 

also be calculated by summing the weighted 𝑓𝑘𝑗. 

Result 2: The conventional chain ladder estimators 𝑅̂𝑘 for the total outstanding loss 𝑅𝑘 of 

accident year 𝑘 from (1-11) is unbiased 

(Recall (1-11):  

𝑅̂𝑘 =  𝑋̂𝑘𝐽 − 𝑋𝑘,𝐾−𝑘+1 =  𝑋𝑘,𝐾−𝑘+1(𝑓𝐾−𝑘+1 . . . 𝑓𝐽−1 − 1) 

where the total outstanding loss is obtained by subtracting the last known observation 

from the estimated ultimate loss.) 
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3.1.2. Parametric Mack Models 

EDF Mack model a parametric version of the Mack model, which means the model 

assumes the observations follow a distribution. Parametric versions of the Mack model 

were studied by Taylor (2011). Thus for EDF Mack model, the last condition of the 

model needs to be changed, and are as follows:  

(EDFM1) For different accident years, i.e.  𝑘1 ≠ 𝑘2, the incremental losses such as 𝑌𝑘1𝑗1 

and 𝑌𝑘2𝑗2 are stochastically independent.  

(EDFM2) For each 𝑘 = 1, 2,… , 𝐾 (i.e. for each row), the 𝑋𝑘𝑗 (𝑗 varying) form a Markov 

chain. A Markov chain is a chain of observations that the probability and size of the 𝑗-th 

observations is only affected by the previous, (𝑗 − 1)-th observations, i.e.  

𝑃(𝑋𝑗|𝑋1 = 𝑥1, … , 𝑋𝑗−1 = 𝑥𝑗−1) = 𝑃(𝑋𝑗|𝑋𝑗−1 = 𝑥𝑗−1). 

 (EDFM3) For each 𝑘 = 1, 2,… , 𝐾 and 𝑗 = 1, 2, … , 𝐽 − 1,  

(a) 𝑌𝑘,𝑗+1| 𝑋𝑘𝑗~𝐸𝐷𝐹 (𝜃𝑘𝑗 , 𝜙𝑘𝑗; 𝑎, 𝑏, 𝑐)  

(b) 𝐸[𝑋𝑘,𝑗+1| 𝑋𝑘𝑗] = 𝑓𝑗𝑋𝑘𝑗 for some parameter 𝑓𝑗 > 0  

 

Here, (EDFM3a) provides the distributional assumptions for the observations to some 

specific member of the EDF. 

(EDFM3b) retains the assumption for expected values in (M3a). 

Note that for the parametric form of Mack model, there is no specific condition for the 

form of variance, which allows for a more general form of variance for the model than 

the non-parametric model. However, there is the additional restriction of observations 

following a distribution from the EDF. 

Recall from Chapter 2 that Tweedie and ODP are 2 sub-families of EDF, so the 

parametric Mack models for these families of distributions satisfy the same conditions as 

EDF Mack model, but with the replacement of (EDFM3a) by:  

Tweedie Mack model:  

Replace (EDFM3a) with 𝑌𝑘,𝑗+1| 𝑋𝑘𝑗~𝑇𝑤 (𝜇𝑘𝑗 , 𝜙𝑘𝑗; 𝑝) 

ODP Mack model:  

Replace (EDFM3a) with 𝑌𝑘,𝑗+1| 𝑋𝑘𝑗~𝑂𝐷𝑃(𝜇𝑘𝑗 , 𝜙𝑘𝑗) 
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Taylor derived the following result for the EDF Mack model:  

Theorem 3.1.  

Suppose the dataset of past observations, 𝔇𝐾, is a triangle, i.e. 𝐾 = 𝐽, which has 

observations that satisfy the conditions (EDFM1-3) for the EDF Mack model. 

(a) If a specific assumption of variance for the non-parametric version of the Mack 

model, (M3b), also stands in addition to (EDFM1-3), then the model’s MLEs of 

𝑓𝑗 and the conventional chain ladder estimators 𝑓𝑗 from (1-8) are the same, and are 

both unbiased estimators of 𝑓𝑗. Thus Result 1 from Section 3.1.1 holds.  

(b) If the model assumption is restricted to an ODP Mack model and the dispersion 

parameters 𝜙𝑘𝑗 are only column dependent, i.e. 𝜙𝑘𝑗 = 𝜙𝑗 (note that the condition 

(M3b) holds in this case), then the 𝑓𝑗 from (1-8) are minimum variance unbiased 

estimators (MVUE) of the 𝑓𝑗.  

(c) If the assumptions in (b) hold, then the estimators 𝑋̂𝑘𝑗 and 𝑅̂𝑘 for cumulative 

outstanding losses and total outstanding losses 𝑋𝑘𝑗 and 𝑅𝑘 from (1-9) and (1-11) 

are also MVUEs.  

These results and theorems also extend to some cases when 𝑌𝑘𝑗 follows a binomial 

distribution or negative binomial distribution. 

 

Numerical Example: 

In this section, we use the data set in Table 1-1 to illustrate the manual process of the 

Mack model. 

Recall that the parameters for the Mack are 𝑓𝑗, where by condition (M3a) and (EDF3b), 

𝐸[𝑋𝑘,𝑗+1|𝑋𝑘𝑗] = 𝑓𝑗𝑋𝑘𝑗 

Note that this is the identical to the chain ladder algorithm. For known age-to-age factors 

𝑓𝑗 and past observation 𝑋𝑘𝑗, the expected value of observation of the next development 

period 𝑋𝑘,𝑗+1, should be the product of 𝑓𝑗 and 𝑋𝑘𝑗. Also recall part (a) of Theorem 3.1: 

for an EDF Mack model with additional assumption (M3b) for variance, the estimated 

parameters 𝑓𝑗 are the same for Mack model and conventional chain ladder algorithm. 

Thus, to manually calculate the parameters, we simply apply the conventional chain 

ladder algorithm. 
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Recall from Chapter 1, for the conventional chain ladder algorithm, estimates of future 

cumulative losses are obtained by means of (1-9), where 

𝑋̂𝑘𝑗 = 𝑋𝑘,𝐾−𝑘+1𝑓𝐾−𝑘+1 …𝑓𝑗−1 

And we can use the cumulative estimates to obtain the incremental future losses, where 

𝑌̂𝑘𝑗 = 𝑋̂𝑘𝑗 − 𝑋̂𝑘,𝑗−1 

The age-to-age factors (calculated by taking the weighted average) by conventional chain 

ladder algorithm, 𝑓𝑗, were defined in Chapter 1, (1-8) as 

𝑓𝑗 =  
∑ 𝑋𝑘,𝑗+1

𝐾−𝑗
𝑘=1

∑ 𝑋𝑘𝑗
𝐾−𝑗
𝑘=1

 , 𝑗 = 1 …  𝐽 − 1 

Using the dataset of Table 1-1 (adjusted to cumulative observations, which is Table 1-2), 

we can obtain the following age-to-age factors 

Average age-to-age factor for development year 

1 2 3 4 5 6 7 8 9 

1.815 1.261 1.158 1.088 1.055 1.039 1.030 1.025 1.021 

Table 3-1 

 

And the cumulative outstanding losses in Table 3-2 from the monograph 
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Table 3-2 
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Example of obtaining the age-to-age factor 𝑓2, the cumulative and incremental 

observations 𝑋̂1996,3 and 𝑌̂1996,3 

For this example, because the observations used for the age-to-age factors are cumulative, 

we need to refer not to the original incremental dataset, but the cumulative dataset shown 

in Table 1-2, derived from Table 1-1, shown partially below 

Cumulative Paid Losses ($000) 

k\j 1 2 3 4 5 6 7 8 9 10 

1 41,821 76,550 96,697 112,662 123,947 129,871 134,646 138,388 141,823 144,781 

2 48,167 87,662 112,106 130,284 141,124 148,503 154,186 158,944 162,903  

3 52,058 99,517 126,876 144,792 156,240 165,086 170,955 176,346   

 

The age-to-age factor for development year 8 in the table is obtained using the equation 

(1-8) shown above as follows: 

1.025 =
∑ 𝑋𝑘,9

2
𝑘=1

∑ 𝑋𝑘,8
2
𝑘=1

=
141,823 + 162,903

138,388 + 158,944
 

The estimated cumulative observation 𝑋̂3,9 can thus be calculated using (1-9) as 

𝑋̂3,9 = 𝑋3,8 × 𝑓8 = 176,346 × 1.025 = 180,731 

and the estimated incremental observation 𝑌̂3,9 is 

𝑌̂3,9 = 𝑋̂3,9 − 𝑋3,8 = 180,731 − 176,346 = 4,385 

3.2. Cross-Classified Models 

Unlike the Mack Model which uses the cumulative observations 𝑋𝑘𝑗, the cross-classified 

(CC) model uses incremental observations 𝑌𝑘𝑗 for estimating parameters and future 

losses. The EDF CC model of the past and future observations in 𝐷𝐾
+ = 𝐷𝐾 ∪ 𝐷𝐾

𝑐  satisfy 

the following condition: 

(EDFCC1) The random variables 𝑌𝑘𝑗 ∈ 𝐷𝐾
+ are stochastically independent. 

(EDFCC2) For 𝑘 = 1,2,… , 𝐾 and 𝑗 = 1,2,… , 𝐽, 

a) 𝑌𝑘𝑗~𝐸𝐷𝐹(𝜃𝑘𝑗 , 𝜙𝑘𝑗; 𝑎, 𝑏, 𝑐); 

b) 𝐸[𝑌𝑘𝑗] = 𝛼𝑘𝛽𝑗 for some parameters 𝛼𝑘, 𝛽𝑗 > 0; and 

c) ∑ 𝛽𝑗
𝐽
𝑗=1 = 1. 
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Note that because CC models are subject to (EDFCC1) and (EDFCC2b), they are non-

recursive, which is different from the Mack model. Intuitively this aligns with the dataset 

assumptions of Mack and CC models, because Mack models uses cumulative data, where 

data of each development period is dependent on the data of the previous, while the CC 

model uses incremental data, which is independent both by accident year and 

development year. The EDF CC model also consists of parameters for both the rows 𝑘 

(accident periods), and columns 𝑗 (development periods), whereas the parameters of the 

Mack model 𝑓𝑗 only concerns with the columns 𝑗, because the condition (M2) of 𝑋𝑘𝑗 

varying j form a Markov chain already plays the role of parametrizing the observations in 

each row. The last condition, (EDFCC2c) is placed to remove the excessive parameters 

that can occur, by scaling all the 𝛼𝑘 and 𝛽𝑗  with the standard ∑ 𝛽𝑗
𝐽
𝑗=1 = 1. This restriction 

will ensure the uniqueness of the model parameters, and that the parameter estimates 𝛼̂𝑘 

are the estimated ultimate losses. 

As with the Mack model, there exist the Tweedie and ODP sub-families of the EDF CC 

family, which are called the Tweedie CC family and ODP CC family respectively. For 

the Tweedie CC model and ODP CC model, there would only be change to the condition 

(EDFCC2a), which would become: 

Tweedie CC model – replace (EDFCC2a) by 𝑌𝑘𝑗~𝑇𝑤(𝜇𝑘𝑗 , 𝜙𝑘𝑗; 𝑝). 

ODP CC model – replace (EDFCC2a) by 𝑌𝑘𝑗~𝑂𝐷𝑃(𝜇𝑘𝑗 , 𝜙𝑘𝑗). 

Denote the MLEs of the parameters 𝛼𝑘 and 𝛽𝑗  as 𝛼̂𝑘 and 𝛽̂𝑗, and denote the fitted values 

of  𝑌𝑘𝑗 ∈ 𝐷𝐾
+ as 𝑌̂𝑘𝑗 = 𝛼̂𝑘𝛽̂𝑗. Then the following theorem by England & Verrall (2002) 

hold true for the ODP CC model: 

Theorem 3.2. Suppose that the data array 𝐷𝐾 is a triangle, i.e. 𝐾 = 𝐽, with observations 

subject to the ODP CC model defined by: 

(EDFCC1-2) 

(EDFCC3a) restrict the 𝑌𝑘𝑗 in (EDFCC2a) to ODP distribution, i.e., 𝑌𝑘𝑗~𝑂𝐷𝑃(𝜇𝑘𝑗 , 𝜙𝑘𝑗); 

(EDFCC3b) the dispersion parameters 𝜙𝑘𝑗 are identical for all cells in 𝐷𝐾
+, i.e., 𝜙𝑘𝑗 = 𝜙. 

Then the MLE fitted values and estimates 𝑌̂𝑘𝑗 are the same as those given by the 

conventional chain ladder from (1-10). 

 [recall (1-10): 𝑌̂𝑘𝑗 = 𝑋𝑘,𝐾−𝑘+1𝑓𝐾−𝑘+1 …𝑓𝑗−2(𝑓𝑗−1 − 1), where 𝑓𝑗 are the age-to-age 

factors by the conventional chain ladder method] 
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However, the same result does not hold for more general distributions, such as the 

Tweedie sub-family and EDF distributions. 

The MLEs 𝑌̂𝑘𝑗 is not unbiased in most cases for ODP CC model. But bias can be 

corrected, and according to Taylor (2011) the following result holds true for the bias 

corrected situations: 

Theorem 3.3. Suppose that the data array 𝐷𝐾
+ is subject to the same conditions as in 

Theorem 3.2., and that the current and future fitted values 𝑌̂𝑘𝑗 and 𝑅̂𝑘 are corrected for 

bias. Then they are MVUEs of 𝑌𝑘𝑗 and 𝑅𝑘 respectively. 

Recall that in Theorem 3.1 for the ODP Mack model, there was a similar statement of 

the  𝑋̂𝑘𝑗 and 𝑅̂𝑘 being MVUEs of 𝑋𝑘𝑗 and 𝑅𝑘 with some additional restrictions. Thus 

Theorems 3.1 and 3.2 conclude that the future estimates obtained from the ODP Mack 

and ODP CC models are both identical to the conventional chain ladder, despite the 

models having different formulations. 

 

Numerical example 

In this section, we use the data set in Table 1-1 to illustrate manual process of the CC 

model. 

Because the ODP CC model uses the incremental dataset 𝑌𝑘𝑗, the parameters involve both 

the accident periods and development periods. The parameters of ODP CC model are 𝛼𝑘 

and 𝛽𝑗 , which represent the ultimate losses for accident period k, and incremental 

observations as a proportion of ultimate losses for each development period j, 

respectively. They are estimated using the marginal sum estimation equations (Schmidt 

and Wünsche, 1998), which calculate the row sum observations and column sum 

observations and use these values to find the MLEs for the parameters, 𝛼̂𝑘 and 𝛽̂𝑗 by 

equating the values with the corresponding sum of MLEs. Mathematically, this is 

expressed as 

∑ 𝑌𝑘𝑗

𝑅(𝑘)

= ∑ 𝛼̂𝑘𝛽̂𝑗

𝑅(𝑘)

= 𝛼̂𝑘 ∑ 𝛽̂𝑗

𝑅(𝑘)

= 𝛼̂𝑘 ∑ 𝛽̂𝑗

𝐽−𝑘+1

𝑗=1

= 𝛼̂𝑘 [1 − ∑ 𝛽̂𝑗

𝐽

𝑗=𝐽−𝑘+2

] 

(3-1) 
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Similarly, for column sums we have 

∑ 𝑌𝑘𝑗

𝐶(𝑗)

= ∑ 𝛼̂𝑘𝛽̂𝑗

𝐶(𝑗)

= 𝛽̂𝑗 ∑ 𝛼̂𝑘

𝐶(𝑗)

 

(3-2) 

The following data come from Table 1-1 

Incremental Paid Losses ($000) 

k\j 1 2 3 4 5 6 7 8 9 10 

1 41,821 34,729 20,147 15,965 11,285 5,924 4,775 3,742 3,435 2,958 

2 48,167 39,495 24,444 18,178 10,840 7,379 5,683 4,758 3,959  

3 52,058 47,459 27,359 17,916 11,448 8,846 5,869 5,391   

 

The procedure to compute 𝛼̂𝑘 and 𝛽̂𝑗  is using formula (3-1) and (3-2) alternately. 

 

To apply the formulas, we first calculate the value for 𝛼̂1 using (3-1) 

∑ 𝑌1,𝑗

R(1)

= 41,821 + 34,729 + ⋯+ 2958 = 144,781 = 𝛼̂1 ∑ 𝛽̂𝑗

𝑅(1)

= 𝛼̂1 

Incremental Paid Losses ($000) 

k\j 1 2 3 4 5 6 7 8 9 10 

1 41,821 34,729 20,147 15,965 11,285 5,924 4,775 3,742 3,435 2,958 

2 48,167 39,495 24,444 18,178 10,840 7,379 5,683 4,758 3,959  

3 52,058 47,459 27,359 17,916 11,448 8,846 5,869 5,391   

 

And thus we get 𝛼̂1 = 144,781. Note that in the above calculation we have ∑ 𝛽̂𝑗
𝑅(1) = 1 

by the condition (EDFCC2c) of the CC model. 

With value of 𝛼̂1, we can proceed to the second step to compute 𝛽̂10 by applying (3-2): 

∑ 𝑌𝑘,10

𝐶(10)

= 2,958 = 𝛽̂10 ∑ 𝛼̂𝑘

𝐶(10)

= 𝛼̂1𝛽̂10 

 

Incremental Paid Losses ($000) 

k\j 1 2 3 4 5 6 7 8 9 10 

1 41,821 34,729 20,147 15,965 11,285 5,924 4,775 3,742 3,435 2,958 

2 48,167 39,495 24,444 18,178 10,840 7,379 5,683 4,758 3,959  

3 52,058 47,459 27,359 17,916 11,448 8,846 5,869 5,391   
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Note that we just found 𝛼̂1 = 144,781, and thus we can find 𝛽̂10 as  

𝛽̂10 =
2,958

144,781
= 0.020 

 

Starting from the third step, we have more than one incremental observation to consider 

for the row and column sums. For the third step, we apply (3-1) again as the following: 

∑ 𝑌2,𝑗

R(2)

= 48,167 + 39,495 + ⋯+ 3,959 = 162,903 = 𝛼̂2 ∑ 𝛽̂𝑗

𝑅(2)

= 𝛼̂2(𝛽̂1 + 𝛽̂2 + ⋯+ 𝛽̂9) 

                   = 𝛼̂2(1 − 𝛽̂10) 

Incremental Paid Losses ($000) 

k\j 1 2 3 4 5 6 7 8 9 10 

1 41,821 34,729 20,147 15,965 11,285 5,924 4,775 3,742 3,435 2,958 

2 48,167 39,495 24,444 18,178 10,840 7,379 5,683 4,758 3,959  

3 52,058 47,459 27,359 17,916 11,448 8,846 5,869 5,391   

 

Because we have found 𝛽̂10 from the second step, for 𝛼̂2 we obtain 

𝛼̂2 =
∑ 𝑌2,𝑗

R(2)

(1 − 𝛽̂10)
=

162,903

1 − 0.020
= 166,301 

For the following fourth step, we will need to use both 𝛼̂1 and 𝛼̂2. For this step, we apply 

(3-2) again for the following relation of column sum: 

∑ 𝑌𝑘,9

𝐶(9)

= 3,435 + 3,959 = 𝛽̂9 ∑ 𝛼̂𝑘

𝐶(9)

= 𝛽̂9(𝛼̂1 + 𝛼̂2) 

Incremental Paid Losses ($000) 

k\j 1 2 3 4 5 6 7 8 9 10 

1 41,821 34,729 20,147 15,965 11,285 5,924 4,775 3,742 3,435 2,958 

2 48,167 39,495 24,444 18,178 10,840 7,379 5,683 4,758 3,959  

3 52,058 47,459 27,359 17,916 11,448 8,846 5,869 5,391   

 

And thus for 𝛽̂9 we obtain 

𝛽̂9 =
∑ 𝑌𝑘,9

𝐶(9)

(𝛼̂1 + 𝛼̂2)
=

3,435 + 3,959

144,781 + 166,301
= 0.024 
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To obtain 𝛼̂3, we apply (3-1) for the sum of row 3, and get 

∑ 𝑌3,𝑗

R(3)

= 52,058 + 47,459 + ⋯+ 5,391 = 176,346 = 𝛼̂3 ∑ 𝛽̂𝑗

𝑅(3)

= 3(𝛽̂1 + 𝛽̂2 + ⋯ + 𝛽̂8) = 𝛼̂2(1 − 𝛽̂9 − 𝛽̂10) 

Incremental Paid Losses ($000) 

k\j 1 2 3 4 5 6 7 8 9 10 

1 41,821 34,729 20,147 15,965 11,285 5,924 4,775 3,742 3,435 2,958 

2 48,167 39,495 24,444 18,178 10,840 7,379 5,683 4,758 3,959  

3 52,058 47,459 27,359 17,916 11,448 8,846 5,869 5,391   

 

and 

𝛼̂3 =
∑ 𝑌3,𝑗

R(3)

(1 − 𝛽̂9 − 𝛽̂10)
=

176,346

1 − 0.024 − 0.020
= 184,501 

And to obtain 𝛽̂8, we apply (3-2) once again: 

∑ 𝑌𝑘,8

𝐶(8)

= 3,742 + 4,758 + 5,391 = 𝛽̂8 ∑ 𝛼̂𝑘

𝐶(8)

= 𝛽̂8(𝛼̂1 + 𝛼̂2 + 𝛼̂3) 

Incremental Paid Losses ($000) 

k\j 1 2 3 4 5 6 7 8 9 10 

1 41,821 34,729 20,147 15,965 11,285 5,924 4,775 3,742 3,435 2,958 

2 48,167 39,495 24,444 18,178 10,840 7,379 5,683 4,758 3,959  

3 52,058 47,459 27,359 17,916 11,448 8,846 5,869 5,391   

 

and 

𝛽̂8 =
∑ 𝑌𝑘,8

𝐶(8)

(𝛼̂1 + 𝛼̂2 + 𝛼̂3)
=

3,742 + 4,758 + 5,391

144,781 + 166,301 + 184,501
= 0.028 

Repeating the steps, we will get the results in Table 3-3 on the following page: 
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Parameter Estimates for ODP CC Model 

j/k 𝛼̂𝑘 𝛽̂𝐽 

1 144,781 0.293 

2 166,301 0.239 

3 184,501 0.139 

4 201,845 0.106 

5 212,151 0.069 

6 207,340 0.047 

7 205,725 0.035 

8 182,904 0.028 

9 173,225 0.024 

10 149,836 0.020 

Table 3-3 

After obtaining the estimated parameters, one can find the future estimates using these 

parameters. For example, for the same future loss we calculated in the previous example, 

𝑌̂9,3, using ODP CC model this would simply be 

𝑌̂3,9 = 𝛼̂3𝛽̂9 = 184,501 × 0.024 = 4,385 

Incremental Paid Losses ($000) 

k\j 1 2 3 4 5 6 7 8 9 10 

1 41,821 34,729 20,147 15,965 11,285 5,924 4,775 3,742 3,435 2,958 

2 48,167 39,495 24,444 18,178 10,840 7,379 5,683 4,758 3,959  

3 52,058 47,459 27,359 17,916 11,448 8,846 5,869 5,391   

 

which is consistent with the result from the conventional chain ladder algorithm and the 

ODP Mack model. Similarly, we can also check other future estimates of 𝑌𝑘𝑗 and find 

them all in agreement with the results from chain ladder algorithm and ODP Mack 

model, which reinstates that ODP Mack and ODP CC models yield the same estimates 

for outstanding losses. 

By comparing the parameters in ODP Mack and ODP CC models, we can identify the 

special one-to-one relation between the two models (Verrall 2000), which is 

𝑓𝐽 =
∑ 𝛽𝑖̂

𝑗+1
𝑖=1

∑ 𝛽𝑖̂
𝑗
𝑖=1

 

(3-3) 
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or equivalently, 

𝛽̂𝑗+1 = (𝑓𝑗 − 1)
∏ 𝑓𝑟

j−1
r=1

∏ 𝑓𝑟
𝐽−1
𝑟=1

 

(3-4) 

For example, for 𝑓3 = 1.158, we would get the following equation from (3-3): 

𝑓3 =
∑ 𝛽̂𝜄

4
𝑖=1

∑ 𝛽̂𝜄
3
𝑖=1

=
0.293 + 0.239 + 0.139 + 0.106

0.293 + 0.239 + 0.139
= 1.158 

For 𝛽̂4 = 0.106, we would get the following from (3-4): 

𝛽̂4 = (𝑓3 − 1)
∏ 𝑓𝑟

2
r=1

∏ 𝑓𝑟
9
𝑟=1

= (1.158 − 1)
1.815 × 1.261

1.815 × 1.261 × …× 1.021
= 0.106 

Where the portion (𝑓3 − 1)∏ 𝑓𝑟
2
r=1  can be understood as the proportion corresponding to 

𝑌4 and ∏ 𝑓𝑟
9
𝑟=1  as the proportion corresponding to 𝑋10, or the ultimate cumulative loss. 

 

3.3 GLM Representation of Chain Ladder Models 

3.3.1 ODP Mack Model 

In section 3.1.2, we mentioned that the ODP Mack Model is a specific case of Parametric 

Mack Models with the condition 𝑌𝑘,𝑗+1|𝑋𝑘𝑗~𝐸𝐷𝐹(𝜃𝑘𝑗 , 𝜙𝑘𝑗 , 𝑎, 𝑏, 𝑐) replaced by 

𝑌𝑘,𝑗+1|𝑋𝑘𝑗~𝑂𝐷𝑃(𝜇𝑘𝑗 , 𝜙𝑘𝑗) 

Consider the following ODP Mack model: 

𝑌𝑘,𝑗+1|𝑋𝑘𝑗~𝑂𝐷𝑃 ((𝑓𝑗 − 1)𝑋𝑘𝑗 , 𝜙𝑘𝑗) 

(3-5) 

Note that in this model 𝐸[𝑌𝑘,𝑗+1] = 𝜇𝑘𝑗 = (𝑓𝑗 − 1)𝑋𝑘𝑗. This is derived from the 

following: 

𝑌𝑘𝑗 = 𝑋𝑘,𝑗+1 − 𝑋𝑘𝑗 = 𝑓𝑗𝑋𝑘𝑗 − 𝑋𝑘𝑗 = (𝑓𝑗 − 1)𝑋𝑘𝑗 
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(Note: Recall from Chapter 2 that the distribution of ODP model is (2-14):  

𝜋(𝑦; 𝜇, 𝜙) = 𝜇
𝑦
𝜙𝑒

[−
𝜇
𝜙+𝑐(𝑦,𝜙)]

, 𝑓𝑜𝑟 𝑦 = 0, 𝜙, 2𝜙,…𝑎𝑛𝑑 𝜇 = 𝑒𝜃   

And the Over-Dispersed Poisson Sub-Family is in the Tweedie Sub-Family with p=1.) 

On top of (3-5), we add the following condition 

𝜙𝑘𝑗 = 𝜙𝑗 , 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑘 

(3-6) 

so that the dispersion parameter 𝜙 doesn’t depend on k, which was a pre-requisite to 

ensure that the MLEs of 𝑓𝑗 in this ODP Mack Model are chain ladder estimates. 

With (3-5) and (3-6), we obtain 

𝑌𝑘,𝑗+1|𝑋𝑘𝑗~ 𝑂𝐷𝑃 ((𝑓𝑗 − 1)𝑋𝑘𝑗 , 𝜙𝑗) 

(3-7) 

Where we replaced 𝜙𝑘𝑗 in (3-5) with 𝜙𝑗. 

From formula (1-4) in Chapter 1, we know that 

𝐸[𝑌𝑘,𝑗+1|𝑋𝑘𝑗] = (𝑓𝑗 − 1)𝑋𝑘𝑗 

If we replace 𝑌𝑘,𝑗+1 with 𝑓𝑘𝑗 − 1 to be the variable, with the relation 𝑓𝑘𝑗 − 1 = 𝑌𝑘,𝑗+1/

𝑋𝑘𝑗, then we obtain 

𝐸[𝑓𝑘𝑗 − 1|𝑋𝑘𝑗] = 𝑓𝑗 − 1 

(3-8) 

(This is true because the expected value equation still holds for dividing both sides by 

𝑋𝑘𝑗) 

Also,  

𝑉𝑎𝑟[𝑓𝑘𝑗 − 1|𝑋𝑘𝑗] =
𝑉𝑎𝑟[𝑌𝑘,𝑗+1|𝑋𝑘𝑗]

𝑋𝑘𝑗
2 =

𝜙𝑗(𝑓𝑗 − 1)𝑋𝑘𝑗

𝑋𝑘𝑗
2 =

𝜙𝑗(𝑓𝑗 − 1)

𝑋𝑘𝑗
 

(3-9) 
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Where 𝜙𝑗 is the dispersion parameter. Note that this suggests 𝑓𝑘𝑗 − 1|𝑋𝑘𝑗 follows an 

ODP distribution with 𝜇 = 𝑓𝑗 − 1 and 𝜙 =
𝜙𝑗

𝑋𝑘𝑗
  because the variance of a ODP model is 

𝑉𝑎𝑟[𝑌] = 𝜙𝜇. (This is from Chapter 2 when we discussed the Tweedie sub-family and 

𝑉𝑎𝑟[𝑌] = 𝜙𝜇𝑝, while in ODP situation, 𝑝 = 1.) 

Because ODP family is known to be closed under scaling, which means an ODP variate 

is still an ODP variate after it’s divided by some constant, therefore, 

𝑓𝑘𝑗 − 1|𝑋𝑘𝑗~𝑂𝐷𝑃(𝑓𝑗 − 1,
𝜙𝑗

𝑋𝑘𝑗
) 

(3-10) 

For the purpose of developing the GLM, the expected values of estimated 𝑓𝑘𝑗 − 1|𝑋𝑘𝑗 are 

sometimes expressed in the following form: 

𝐸[𝑓𝑘𝑗 − 1|𝑋𝑘𝑗] = ∑(𝑓𝑖 − 1)𝛿𝑗𝑖

9

𝑖=1

 

(3-11) 

This expression is usually used for GLM software calculation, where 𝛿𝑗𝑖 is called the 

Kronecker delta which has the value of 1 when 𝑖 = 𝑗, and equals 0 otherwise.  

(In words, 3-11 is the summation of multiple 0s, and an 𝑓𝑗 − 1. The purpose of this 

complex model is to get all the 𝑓𝑖 involved in the GLM formula, and the regression can 

thus estimate all the parameters at once. An example will be shown in section 3.3.3) 

Note that with the setting of (3-10), the model includes 𝜙𝑗 with unknown values. The 

following argument will show that the values of 𝜙𝑗 are not required for the purpose of 

estimating 𝑓𝑖−1 

To obtain the MLE of 𝑓𝑗, we start with the log-likelihood of the claims trapezoid 𝔇𝐾 

ℓ(𝔇𝐾) = ∑ ℓ(𝑓𝑘,𝑗−1 − 1)

𝔇𝐾,𝑗≠1

 

(log-likelihood of the trapezoid equals the sum of the log-likelihood for all entries) 
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Recall for ODP,  

𝜋(𝑦; 𝜇, 𝜙) = 𝜇
𝑦
𝜙𝑒

[−
𝜇
𝜙+𝑐(𝑦,𝜙)]

, 𝑓𝑜𝑟 𝑦 = 0,𝜙, 2𝜙,…𝑎𝑛𝑑 𝜇 = 𝑒𝜃 

where 𝑒𝑐(𝑦,𝜙) = [(
𝑦

𝜙
) !]

−1
 

here in this example, 𝑓𝑘,𝑗−1 − 1~ 𝑂𝐷𝑃(𝑓𝑗−1 − 1,
𝜙𝑗−1

𝑋𝑘,𝑗−1
) 

also, 𝑓𝑘,𝑗−1 − 1 =
𝑌𝑘𝑗

𝑋𝑘,𝑗−1
 

Thus, for variable (𝑓𝑘,𝑗−1 − 1) 

ℓ(𝔇𝐾) = ∑ ℓ(𝑓𝑘,𝑗−1 − 1)

𝔇𝐾,𝑗≠1

 

= ∑ ℓ

(

 (𝑓𝑗−1 − 1)

𝑓̂𝑘,𝑗−1−1

𝜙𝑗−1/𝑋𝑘,𝑗−1𝑒
−

𝑓𝑗−1−1

𝜙𝑗−1/𝑋𝑘,𝑗−1 ×

[
 
 
 

(

 
𝑓𝑘,𝑗−1 − 1

𝜙𝑗−1

𝑋𝑘,𝑗−1 )

 !

]
 
 
 
−1

)

 

𝔇𝐾,𝑗≠1

 

(Plug in 𝑦 = 𝑓𝑘,𝑗−1 − 1, 𝜇 = 𝑓𝑗−1 − 1,𝜙 = 𝜙𝑗−1/𝑋𝑘,𝑗−1) 

= ∑ ℓ

(

 (𝑓𝑗−1 − 1)

𝑌𝑘𝑗/𝑋𝑘,𝑗−1 

𝜙𝑗−1/𝑋𝑘,𝑗−1𝑒
−

𝑓𝑗−1−1

𝜙𝑗−1/𝑋𝑘,𝑗−1 ×

[
 
 
 

(

 
𝑌𝑘𝑗/𝑋𝑘,𝑗−1

𝜙𝑗−1

𝑋𝑘,𝑗−1 )

 !

]
 
 
 
−1

)

 

𝔇𝐾,𝑗≠1

 

(Replaced 𝑓𝑘,𝑗−1 − 1 𝑤𝑖𝑡ℎ 𝑌𝑘𝑗/𝑋𝑘,𝑗−1) 

= ∑ ℓ((𝑓𝑗−1 − 1)

𝑌𝑘𝑗 

𝜙𝑗−1 ∗ 𝑒
−

𝑓𝑗−1−1

𝜙𝑗−1/𝑋𝑘,𝑗−1 × [(
𝑌𝑘𝑗

𝜙𝑗−1
) !]

−1

)

𝔇𝐾,𝑗≠1

 

= ∑

(

 
𝑌𝑘𝑗 

𝜙𝑗−1
ln(𝑓𝑗−1 − 1) −

𝑓𝑗−1 − 1

𝜙𝑗−1

𝑋𝑘,𝑗−1

− ln [(
𝑌𝑘𝑗

𝜙𝑗−1
) !]

)

 

𝔇𝐾,𝑗≠1

 

= ∑

(

 
𝑌𝑘𝑗 

𝜙𝑗−1
ln(𝑓𝑗−1 − 1) −

𝑓𝑗−1 − 1

𝜙𝑗−1

𝑋𝑘,𝑗−1

− ln [(
𝑌𝑘𝑗

𝜙𝑗−1
) !]

)

 

𝔇𝐾,𝑗≠1
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= ∑

(

 

𝑌𝑘𝑗 
𝑋𝑘,𝑗−1

ln(𝑓𝑗−1 − 1) − (𝑓𝑗−1 − 1)

𝜙𝑗−1

𝑋𝑘,𝑗−1

− ln [(
𝑌𝑘𝑗

𝜙𝑗−1
) !]

)

 

𝔇𝐾,𝑗≠1

 

(3-12) 

Then, to find MLE of 𝑓𝑗, we take the partial derivative of 𝑓𝑖−1, replace j with i: 

𝜕ℓ(𝔇𝐾)

𝜕𝑓𝑖−1
=

𝜕

𝜕𝑓𝑖−1
( ∑ (

𝑌𝑘𝑖 
𝑋𝑘,𝑖−1

ln(𝑓𝑖−1 − 1) − (𝑓𝑖−1 − 1)

𝜙𝑖−1
𝑋𝑘,𝑖−1

− ln [(
𝑌𝑘𝑖

𝜙𝑖−1
) !])

𝔇𝐾,𝑖≠1

) 

=
𝜕

𝜕𝑓𝑖−1
( ∑ (

𝑌𝑘𝑖  
𝑋𝑘,𝑖−1

ln(𝑓𝑖−1 − 1) − (𝑓𝑖−1 − 1)

𝜙𝑖−1
𝑋𝑘,𝑖−1

)

𝔇𝐾,𝑖≠1

) 

= 𝜙𝑖−1 ∑
𝜕

𝜕𝑓𝑖−1
(𝑌𝑘𝑖 ln(𝑓𝑖−1 − 1) − 𝑋𝑘,𝑖−1(𝑓𝑖−1 − 1))

𝔇(𝑘,𝑖)𝜖𝒞(𝑖)

 

= 𝜙𝑖−1 ∑ (
𝑌𝑘𝑖

𝑓𝑖−1 − 1
− 𝑋𝑘,𝑖−1)

𝔇(𝑘,𝑖)𝜖𝒞(𝑖)

 

 (
1

𝜙𝑖−1
 is moved out because it doesn’t change with respect to 𝑓𝑖−1, use 𝒞(𝑖) instead of 𝔇𝐾 

to use only the column that depends on 𝑓𝑖−1, drop ln [(
𝑌𝑘𝑖

𝜙𝑖−1
) !] because it doesn’t depend 

on 𝑓𝑖−1) 

𝑠𝑒𝑡 = 0 

Then,  

∑ ([
𝑌𝑘𝑖

𝑓𝑖−1 − 1
− 𝑋𝑘,𝑖−1])

(𝑘,𝑖)𝜖𝒞(𝑖)

= 0 

Which is true because 𝑌𝑘𝑖 𝑓𝑖−1 − 1⁄ = 𝑋𝑘,𝑖−1, for all (𝑘, 𝑖)𝜖𝒞(𝑖). 
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Then, separate the summation into 2 parts 

∑ (
𝑌𝑘𝑖

𝑓𝑖−1 − 1
)

(𝑘,𝑖)𝜖𝒞(𝑖)

− ∑ (𝑋𝑘,𝑖−1)

(𝑘,𝑖)𝜖𝒞(𝑖)

= 0 

∑ (
𝑌𝑘𝑖

𝑓𝑖−1 − 1
)

(𝑘,𝑖)𝜖𝒞(𝑖)

= ∑ (𝑋𝑘,𝑖−1)

(𝑘,𝑖)𝜖𝒞(𝑖)

 

For a specific column i and changing k, 𝑓𝑖−1 − 1 can be taken out from the summation: 

1

𝑓𝑖−1 − 1
∑ (𝑌𝑘𝑗)

(𝑘,𝑖)𝜖𝒞(𝑖)

= ∑ (𝑋𝑘,𝑖−1)

(𝑘,𝑖)𝜖𝒞(𝑖)

 

More specifically 

𝑓𝑖−1 − 1 =
∑ 𝑌𝑘𝑖

𝑘−𝑖+1
𝑘=1

∑ 𝑋𝑘,𝑖−1
𝑘−𝑖+1
𝑘=1

 

𝑓𝑖−1𝑀𝐿𝐸
=

∑ 𝑌𝑘𝑖
𝑘−𝑖+1
𝑘=1

∑ 𝑋𝑘,𝑖−1
𝑘−𝑖+1
𝑘=1

+ 1 

Which makes sense because these are the weighted average 𝑓𝑖−1 we get from the chain 

ladder method. Also, this argument shows that the dispersion function 𝜙 doesn’t affect 

the estimation of 𝑓𝑖−1 

GLM of ODP Mack Model: 

With the help of SAS, we can easily obtain parameter estimates for the Mack model and 

CC model. We use the same dataset as analytical computation for SAS algorithm. For 

ODP Mack model, let 

𝜇 = 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑌𝑘𝑗 

Here, 𝜇 is not a matrix, because we are using each 𝑌𝑘𝑗 as observations of the dependent 

variable 𝑌 for the purpose of GLM, such that 

𝜇 = (𝑌1,1, 𝑌1,2, … , 𝑌1,𝐽, 𝑌2,1 … ,𝑌2,𝐽−1, … 𝑌𝐾,1)
𝑇
 

And the vector of 𝑓1 𝑡𝑜 𝑓9, denoted by 𝛽, is what we want to estimate through the GLM 

𝛽 = (𝑓1, 𝑓2, … , 𝑓9)
𝑇 
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Then, for the purpose to include all 𝑓1 𝑡𝑜 𝑓9 in the regression equation, while only 

utilizing one of them in each observation, we use the design matrix X to satisfy this 

purpose. 

Appendix A shows a completed design matrix X of ODP Mack GLM when K=10 and 

J=10. 

With all the setup, we can write the regression function and run the GLM: 

𝜇 = ℎ−1(𝑋𝛽) 

(3-14) 

Here, please note that there are two methods to bring about the regression. The first one 

uses calculated 𝑓𝑘𝑗 as 𝜇, and design matrix X with only 1s and 0s. The second one uses 

𝑋𝑘𝑗 as 𝜇, and design matrix X with values of 𝑋𝑘,𝑗−1 in place of the 1s. They produce 

slightly different results but the idea is very similar. 

The idea behind the first method is, with the setup, we have 45 observations, or 45 

equations, which are: 

𝑓1,1 = 𝑓1 × 1 + 𝑓2 × 0 + ⋯+ 𝑓9 × 0 

𝑓1,2 = 𝑓1 × 0 + 𝑓2 × 1 + ⋯+ 𝑓9 × 0 

… 

𝑓1,9 = 𝑓1 × 0 + 𝑓2 × 0 + ⋯+ 𝑓9 × 1 

… 

𝑓8,1 = 𝑓1 × 1 + 𝑓2 × 0 + ⋯+ 𝑓9 × 0 

𝑓8,2 = 𝑓1 × 0 + 𝑓2 × 1 + ⋯+ 𝑓9 × 0 

𝑓9,1 = 𝑓1 × 1 + 𝑓2 × 0 + ⋯+ 𝑓9 × 0 

Such that the GLM will generate its best estimate of 𝑓1 𝑡𝑜 𝑓9 for us. (In this case, the 

numerical average of 𝑓𝑖,𝑗 ∀𝑗 that applies, to be the estimate of 𝑓𝑖) 
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The idea behind the second method is, with the setup, we have 45 observations, or 45 

equations, which are: 

𝑋1,2 = 𝑓1 × 𝑋1,1 + 𝑓2 × 0 + ⋯+ 𝑓9 × 0 

𝑋1,3 = 𝑓1 × 0 + 𝑓2 × 𝑋1,2 + ⋯+ 𝑓9 × 0 

… 

𝑋1,10 = 𝑓1 × 0 + 𝑓2 × 0 + ⋯+ 𝑓9 × 𝑋1,9 

… 

𝑋8,2 = 𝑓1 × 𝑋8,1 + 𝑓2 × 0 + ⋯+ 𝑓9 × 0 

𝑋8,3 = 𝑓1 × 0 + 𝑓2 × 𝑋8,2 + ⋯+ 𝑓9 × 0 

𝑋9,2 = 𝑓1 × 𝑋9,1 + 𝑓2 × 0 + ⋯+ 𝑓9 × 0 

And the GLM will generate its best estimate of 𝑓1 to 𝑓9 for us (In this case, an estimate 

from 
𝑋𝑖𝑗

𝑋𝑖,𝑗−1
= 𝑓𝑖,𝑗−1 for 𝑗 ≥ 2 and all 𝑖𝜖𝒞(𝑗), to be the estimate of 𝑓𝑗−1). 

 

3.3.2 ODP Cross-Classified Model 

Recall that a Cross-Classified Model has the condition of 𝑌𝑘𝑗~𝐸𝐷𝐹(𝜃𝑘𝑗 , 𝜙𝑘𝑗; 𝑎, 𝑏, 𝑐) 

Here, we modify it to its ODP form, with 𝜇𝑘𝑗 = 𝛼𝑘𝛽𝑗 being the expected value, and        

𝜇𝑘𝑗𝜙𝑘𝑗 = 𝑎𝑘𝑏𝑗𝜙𝑘𝑗 being the variance, such that  

𝑌𝑘𝑗~𝑂𝐷𝑃(𝛼𝑘𝛽𝑗 , 𝜙𝑘𝑗) 

(3-15) 

If we add the further condition to set the dispersion function to be a constant 

𝜙𝑘𝑗 = 𝜙 

(3-16) 
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Then,  

𝑌𝑘𝑗~𝑂𝐷𝑃(𝛼𝑘𝛽𝑗 , 𝜙) = 𝑂𝐷𝑃(𝜇𝑘𝑗 , 𝜙) 

(3-17) 

where  

𝜇𝑘𝑗 = 𝛼𝑘𝛽𝑗 = exp (ln 𝛼𝑘 + ln 𝛽𝑗)  

(3-18) 

The exponential function and ln function are used to convert multiplication to summation 

for the purpose of GLM estimation, because GLM uses the summation of 

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 × 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, not multiplications. 

Somewhat similar to the ODP Mack Model, we use a design matrix X for a GLM 

estimation of CC model. 

The idea behind this design matrix is to  

1. Include all 𝛼𝑘 and 𝛽𝑗  in the regression 

2. Use only one 𝛼𝑘and one 𝛽𝑗  for each observation 

A completed design matrix X of ODP CC GLM when K=10 and J=10 is shown in 

Appendix B. 

The idea behind this GLM is that, with the setup, we have 55 observations, or 55 

equations, they are: 

𝑌1,1 = exp(ln 𝛼1 + ln 𝛽1) = 𝛼1𝛽1 

𝑌1,2 = exp(ln 𝛼1 + ln 𝛽2) = α1𝛽2 

… 

𝑌1,10 = exp(ln 𝛼1 + ln𝛽10) = α1𝛽10 

𝑌2,1 = exp(ln𝛼2 + ln 𝛽1) = α2𝛽1 

… 

𝑌10,1 = exp(ln 𝛼10 + ln 𝛽1) = α10𝛽1 

Such that the GLM will generate its best estimate of all 𝛼𝑘 and 𝛽𝑗  for us. 
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Note that 𝛽𝑗  are essentially the proportions of ultimate losses that occur in each 

development period. However, because most software does not automatically normalize 

𝛽̂𝑗 to make ∑ 𝛽̂𝑗 
𝐽
𝑗=1 = 1, we will first use 𝛽̂1 = 1, or ln(𝛽̂1) = 0 as a standard to generate 

the other 𝛽𝑗 , and then normalize them. The normalizing can be done by replacing each 𝛽̂𝑗  

with 𝛽̂𝑗/∑ 𝛽̂𝑖 
𝐽
𝑗=𝑖 . After normalizing, 𝛼̂𝑘 becomes the expected values of ultimate losses 

for year k. 

With our estimates for 𝛼̂𝑘 and 𝛽̂𝑗, we can then estimate future incremental losses using 

𝑌̂𝑘𝑗 = [𝛼̂𝑘 ∑𝛽̂𝑖

𝐽

𝑖=1

] [
𝛽̂𝑗

∑ 𝛽̂𝑖 
𝐽
𝑗=𝑖

] = 𝛼̂𝑘𝛽̂𝑗 

The middle step is what we can get directly from the GLM software, which returns the 𝛽̂𝑗  

without normalizing, and those ratios are multiplied to 𝛼̂𝑘. 

After the GLM estimation, we can estimate any future incremental losses with our 

estimated 𝛼̂𝑘 and 𝛽̂𝑗 . 

 

3.3.3 Numerical Example 

To align with the monograph Stochastic Loss Reserving Using Generalized Linear 

Models, we use the GLM procedure GENMOD in SAS to generate our estimation. 

 

ODP Mack Model: 

For ODP Mack Model, we use two different ways to generate 𝑓𝑗: 

The first one use 𝑓𝑘𝑗 as dependent observations, and 0-1 design matrix (see Appendix C). 

The second one use 𝑌𝑘𝑗 as dependent observations, and in the design matrix, we use the 

corresponding previous cumulative losses 𝑋𝑘,𝑗−1, instead of 1, to be the values of the x 

variates (see Appendix C). 
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For the first method, note that among the inputs, only the 3 lines 

proc genmod data=ODPMackModelOneZero; 

model Y = f1 f2 f3 f4 f5 f6 f7 f8 f9 / NOINT SCALE = PEARSON; 

run; 

are calculation of 𝑓1 to 𝑓9, the previous parts are all inputs for data and the design matrix. 

Notice that we use the options NOINT to remove intercept from our regression equation, 

as our model does not include an intercept. 

Also, be careful that the f1 to f9 used in the regression formula are actually the x variates 

that correspond to 𝑓1 to 𝑓9, and 𝑓1 to 𝑓9 are actually the coefficients going with these x 

variates. We use f1 to f9 here to make our result easier to read. 

With the above input, we obtain the following result: 

 

This result corresponds to Table 3-4 in the monograph. Notice that the results are slightly 

different from the results in the monograph. The reason is that our code uses the 

numerical average of 𝑓𝑘𝑗 in column j to be our estimated 𝑓𝑗, while the monograph uses 

weighted average. Therefore, the difference comes from different weighting methods for 

each observation in column j, but the idea is the same. 
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For the second method, the idea behind this method is similar to the first method. The 

major difference is we use 𝑋𝑘𝑗 instead of 𝑓𝑘𝑗, and use 𝑋𝑘,𝑗−1 to replace the 1s in the 

design matrix. 

Result is as follows: 

 

This result also corresponds to Table 3-4 in the monograph. Again, the 𝑓𝑗 estimated here 

are slightly different from what the monograph has, because of different weights used for 

the entries in column j. 

 

ODP Cross-Classified Model: 

The SAS coding for ODP CC model is shown in Appendix D. 

Here, the options dist = poisson, and SCALE = PEARSON are all options to give the 

model the properties of ODP. 

The option link = log is to use ln 𝑦 instead of y such that the underlying equation is  

ln 𝑌𝑘𝑗 = ln 𝛼𝑘 + ln𝛽𝑗  
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Also, notice that in the following line of the codes 

model y = a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 b2 b3 b4 b5 b6 b7 b8 b9 b10 / 

b1 is not used in the regression formula. The reason behind is to make ln 𝛽1 equals 0 such 

that 𝛽1 = 1. Be careful that the b1 in our code has values 1 or 0, but that’s not actually 

𝛽1, but the x variate corresponds to 𝛽1. 

Again, we use the option NOINT to remove the intercept from our regression equation 

because ODP CC model doesn’t include an intercept. 

The result is as follows: 

The result generated matches the result in Table 3-5 of the monograph. Try it out and see 

if you can reproduce these 3 GLMs. 
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3.4 Minor Variations of Chain Ladder 

The chain ladder algorithm we used contains no flexibility. In this section, we will 

discuss some variation of the chain ladder method. 

3.4.1 Reliance on Only Recent Experience Years 

Because recent observations can represent the current situation better than observations 

from many years ago, we can adjust our model to put more weights on more recent 

observations, or in this example, only give weights to observations in the recent m years. 

If we only use observations in the recent m years, the observations we use are  

𝑓𝑘𝑗 − 1|𝑋𝑘𝑗 

With k and j that satisfies: 

𝑘 < 𝐾, 𝑘𝜖ℕ 

𝑗 < 𝐽, 𝑗𝜖ℕ 

and 

𝐾 + 1 − 𝑚 ≤ 𝑘 + 𝑗 ≤ 𝐾 

 

The first part of the third inequality 𝐾 + 1 − 𝑚 ≤ 𝑘 + 𝑗 ensures that only those data after 

the calendar year 𝐾 + 1 − 𝑚 are used in our model. 

We can also write it as the following: 

𝜔𝑘𝑗 = 𝑋𝑘𝑗𝐼(𝐾 + 1 − 𝑚 ≤ 𝑘 + 𝑗 ≤ 𝐾) 

(3-20) 

where 𝐼(. ) is an indicator function which equals 1 when the condition is satisfied, and 0 

otherwise: 

𝐼(𝑐) = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑐 𝑖𝑠 𝑡𝑟𝑢𝑒
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                             

 

 (3-21) 
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With the indicator function, while also omitting the 𝑐(𝑦, 𝜙) member because it vanishes 

when partial derivative is taken with respect to 𝑓𝑗−1 − 1, the log-likelihood function of 

𝔇𝐾 becomes: 

ℓ(𝔇𝐾) = ∑ 𝐼(𝐾 + 1 − 𝑚 ≤ 𝑘 + 𝑗 ≤ 𝐾)

(

 

𝑌𝑘𝑗 
𝑋𝑘,𝑗−1

ln(𝑓𝑗−1 − 1) − (𝑓𝑗−1 − 1)

𝜙𝑗−1

𝑋𝑘,𝑗−1 )

 

𝔇𝐾,𝑗≠1

 

(3-22) 

(recall in 3-12: 

ℓ(𝔇𝐾) = ∑

(

 

𝑌𝑘𝑗 
𝑋𝑘,𝑗−1

ln(𝑓𝑗−1 − 1) − (𝑓𝑗−1 − 1)

𝜙𝑗−1

𝑋𝑘,𝑗−1

− ln [(
𝑌𝑘𝑗

𝜙𝑗−1
) !]

)

 

𝔇𝐾,𝑗≠1

 

The member −ln [(
𝑌𝑘𝑗

𝜙𝑗−1
) !] comes from the 𝑐(𝑦, 𝜙) function of the ODP model.) 

 

3.4.2 Outlier Observations 

Similar to giving weights of 0 to observations from many years ago, we can also give a 

weight of 0 to any outlier observations we don’t want to include for our purpose of 

GLM estimation. By giving a weight of 0 to outlier observations, they are excluded from 

the model fitting process. 
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4. Prediction Error 

Estimations with GLMs usually contain errors. The errors can be broken down into three 

components: parameter errors, process errors, and model errors. 

In this chapter, we introduce these three types of error, with a focus on parameter error 

and process error, which are usually more tractable than model error. 

Mean square error of prediction, goodness-of-fit of a model, and information criteria are 

also discussed in this chapter. A key takeaway from this section of the chapter is that an 

increase in goodness-of-fit does not imply reduced forecast error, and penalties are 

applied for an increase in the number of parameters. 

The introduction to prediction error in this chapter is related to, but not limited to loss 

reserve application. In the next chapter, we will introduce methods related to estimating 

prediction error for outstanding loss. 

 

4.1. Parameter Error and Process Error 

In order to demonstrate the concepts for the different components of a prediction error, 

we will start with the following example, unrelated to loss reserve: 

Example: Suppose we want to predict the probability of getting heads when flipping a 

fair coin, and assume the true probability, ½, is unknown. We can achieve this by 

flipping the coin multiple times for multiple trials and compute the average. Suppose we 

flip the coin 1000 times for each trial, for a total of 6 trials, and we get the following 

result: 

Trial # 1 2 3 4 5 6 

# of heads 496 533 521 499 498 513 

 

Which returns an average probability of 0.51. 

Process error: For the 6 trials of flipping a coin, denote the observations, the number of 

heads, as Y, which is a function of the total number of flips, dependent on the true 

probability of getting a head for each flip. Denote our parameter, the true probability of 

getting a head when flipping a fair coin as 𝜃, which we know intuitively is ½. Our model 

can thus be written as 

𝑌 =  𝑛 × 𝜃 
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However, note that in actual trials the number is usually not exactly as expected. For trial 

1, for example, the actual number of heads is 496, whereas using the model, we should 

expect 𝑌 = 1000 ×
1

2
= 500. The difference between the actual number of heads and 

expected number of heads, (496 − 500), is our process error, or noise. 

Parameter estimation: Suppose we do not know the true probability of getting a head 

for a flip. We can estimate it using the trials, by dividing the number of heads by the total 

number of flips for each trial, and obtain the following result: 

Trial # 1 2 3 4 5 6 

Prob. of head .496 .533 .521 .499 .498 .513 

 

By taking the average, we estimate that the probability is 

𝜃 = .51 

The 𝜃 is thus our parameter estimate. Using this estimated probability, suppose we 

want to estimate the number of heads if we flip 500 times. Then the estimated value 

would be 

𝑌̂ = .51 × 500 = 255 

Parameter error and prediction error: Now we have the estimated parameter 𝜃 = .51. 

Using this parameter and trial 1 as an example, we should get 1000 × 0.51 = 510 heads 

in trial 1. Instead, we have 496 heads for trial one. The difference between the actual 

number of heads and the number of heads we would get in theory using 𝜃 is called the 

prediction error associated with trial 1, which can be written as 

𝑒 = 𝑌 − 𝑌̂ = 496 − 510 = (500 − 510) + (496 − 500) 

The first part prediction error,(500 − 510), is the difference between the number of 

heads we should get using the true value of parameter, 1/2, and the parameter estimate of 

0.51. Thus, it is called the parameter error. 
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4.1.1. Individual Observations 

We now introduce the concept for the prediction error and each component. 

Suppose the model used for estimating future claims is loosely defined as follows: 

𝑌𝑘𝑗 = 𝑢(𝑘, 𝑗; 𝜃) + 𝜀𝑘𝑗 , 𝑓𝑜𝑟 𝑌𝑘𝑗 ∈ 𝐷𝐾
+ 

(4-1) 

where 𝑢 is some function of accident period 𝑘 and development period 𝑗, dependent on a 

parameter vector 𝜃 = [𝜃1 𝜃2 …]𝑇, with stochastic error or noise, 𝜀𝑘𝑗 for each observation 

𝑌𝑘𝑗. The expected value or center of the noise should be 0, i.e., 

𝐸[𝜀𝑘𝑗] = 0 

(4-2) 

Recall in the example, for trial 1 the actual number of heads is 496, where we should 

expect 500. In this case the difference of (496 − 500) is our noise. 

Suppose that the model has been calibrated against the data set 𝐷𝐾 by some method, and 

a vector of parameter estimate 𝜃 is returned. Then we can define our fitted values and 

future estimates as 

𝑌̂𝑘𝑗 = 𝑢(𝑘, 𝑗; 𝜃), 𝑓𝑜𝑟 𝑌𝑘𝑗 ∈ 𝐷𝐾
+ 

(4-3) 

where observations in past dataset, 𝑌̂𝑘𝑗 ∈ 𝐷𝐾, are the fitted values, and estimated 

observations associated with future dataset, 𝑌̂𝑘𝑗 ∈ 𝐷𝐾
𝑐 , are the estimated outstanding 

losses. 

Recall in the example, we estimated the parameter to be 𝜃 = .51. Using this 

approximated probability our fitted value for each trial of 1000 flips should be 510 heads. 

When we also want to estimate the number of heads if we flip 500 times, our 𝑌̂ becomes 

𝑌̂ = .51 × 500 = 255. 

Prediction error is the difference between the actual observation and the associated fitted 

value, i.e. 

𝑒𝑘𝑗 = 𝑌𝑘𝑗 −  𝑌̂𝑘𝑗 = [𝑢(𝑘, 𝑗; 𝜃) − 𝑢(𝑘, 𝑗; 𝜃)] + 𝜀𝑘𝑗 

(4-4) 
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Note that from (4-1) and (4-2), we obtain the following result 

𝐸[𝑌𝑘𝑗] = 𝐸[𝑢(𝑘, 𝑗; 𝜃) + 𝜀𝑘𝑗] = 𝐸[𝑢(𝑘, 𝑗; 𝜃)] + 𝐸[𝜀𝑘𝑗] = 𝐸[𝑢(𝑘, 𝑗; 𝜃)] + 0 = 𝑢(𝑘, 𝑗; 𝜃) 

which summarizes to 

𝐸[𝑌𝑘𝑗] = 𝑢(𝑘, 𝑗; 𝜃) 

(4-5) 

Thus we can derive (4-4) into the following form 

𝑒𝑘𝑗 = [𝜇𝑘𝑗 − 𝑌̂𝑘𝑗] + 𝜀𝑘𝑗 

(4-6) 

where 𝜇𝑘𝑗 = 𝐸[𝑌𝑘𝑗]. 

In this format we are representing the prediction error as the sum of parameter error and 

process error, i.e., 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑟𝑟𝑜𝑟 + 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑒𝑟𝑟𝑜𝑟 

The parameter error associated with forecast 𝑌̂𝑘𝑗 is the first term [𝜇𝑘𝑗 − 𝑌̂𝑘𝑗], and the 

remaining term 𝜀𝑘𝑗 is the associated process error, or noise. 

In our example, the prediction error associated with trial 1 using (4-6) is written as 

𝑒 = 𝑌 − 𝑌̂ = 496 − 510 = (500 − 510) + (496 − 500) 

where the first part of (500 − 510) is the parameter error, and (496 − 500) is the noise. 

Usually parameter error and process error are stochastically independent, because 

parameter errors depend on past data, while process error are components of the future 

data. Intuitively, this is because our parameter errors are caused by the parameter 

estimates 𝜃 that we obtain using the past data 𝑌𝑘𝑗 ∈ 𝐷𝐾, whereas process errors 𝜀𝑘𝑗 are 

caused by the stochastic nature of future observations. 

Note that in our definition and example demos, we are assuming that the precise form for 

the model function 𝑢(. ) is known. However, in practice this is not always true, and an 

incorrect model may be used to make future estimates. Denoting this function incorrectly 

selected as 𝑣(. ), the difference between the expected outcome of the selected model, 

𝐸[𝑌𝑘𝑗] = 𝑣(𝑘, 𝑗; 𝜃),and the expected outcome of the true model, 𝐸[𝑌𝑘𝑗] = 𝑢(𝑘, 𝑗; 𝜃), is 

referred to as the model error, which will be discussed in detail in later sections. 
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4.1.2. Loss Reserves 

With the example demonstrations, we have an understanding of prediction errors, 

parameter errors and process errors for GLMs. To understand it in terms of loss reserves, 

we need an example in that context. In the following example, we will explain prediction 

error in the context of loss reserve using the chain ladder algorithm. 

Example loss reserve: suppose we have the following data for cumulative past 

observations of paid loss: 

Cumulative Paid Loss ($000) 

         K \ J 1 2 3 4 5 

1 200 380 470 500 510 

2 210 375 482 503  

3 195 363 486   

4 190 376    

5 204     

 

Using the weighted averages, we can calculate the age-to-age factors as follows: 

Age-to-age factors for development year j 

Development year j 1 2 3 4 

𝑓𝑗 1.879 1.286 1.054 1.020 

 

The weighted averages calculated are thus our estimated parameters for the cumulative 

observations 

𝑋𝑘𝑗~𝑢(𝑘, 𝑗; 𝑓𝑗) 

Using the weighted averages, we can estimate future paid losses and the ultimate losses 

for accident years 2 to 5 as 

Cumulative Paid Loss ($000) 

k\j 1 2 3 4 5 

1 200 380 470 500 510 

2 210 375 482 503 513.06 

3 195 363 486 512.04 522.28 

4 190 376 483.62 509.53 519.72 

5 204 383.37 493.10 519.51 529.90 
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Suppose that the true age-to-age factors are 1.9, 1.3, 1.05, 1.01, with tail factor 1 

(meaning there is no more claim development after the 5th year). 

Consider accident year 2 as an example, using the cumulative paid loss at development 

year 4 and our estimated age-to-age factor at year 4, we get the expected ultimate loss as 

𝑋̂2,5 = 𝑋2,4 × 𝑓4 = 503 × 1.020 = 513.06 

However, assuming a true age-to-age factor of the development year at 1.01, the expected 

ultimate loss should have been 

𝐸[𝑋2,5] = 𝑋2,4 × 𝑓4 = 503 × 1.01 = 508.03 

Thus the parameter error caused by parameter estimation is 

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑟𝑟𝑜𝑟 = 508.03 − 513.06 = −5.03 

Suppose that another year pass and our ultimate loss for accident year 2 is actually 510. 

The difference between the expected value and this actual value is the process error 

caused by the stochastic nature of future observations. Thus our process error is 

𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑒𝑟𝑟𝑜𝑟 = 510 − 508.03 = 1.97 

And our prediction error for the cell is 

𝑒2,5 = 𝑋2,5 − 𝑋̂2,5 = 510 − 513.06 = −3.06 = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑟𝑟𝑜𝑟 + 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑒𝑟𝑟𝑜𝑟 

For simplicity, we can present the prediction errors in vector form. Without concerning 

about the order of the components, denote 

𝑌 – vector formed by the past observations 𝑌𝑘𝑗 ∈ 𝐷𝐾 

𝑌∗ – vector formed by the future observations 𝑌𝑘𝑗 ∈ 𝐷𝐾
𝑐  

𝜇∗ – vector formed by the expected future observations 𝐸[𝑌𝑘𝑗], for 𝑌𝑘𝑗 ∈ 𝐷𝐾
𝑐  

𝑒∗ – vector formed by the prediction errors associated with 𝑌𝑘𝑗 ∈ 𝐷𝐾
𝑐  

𝜀∗ – vector formed by the process errors associated with 𝑌𝑘𝑗 ∈ 𝐷𝐾
𝑐  

Recall the star symbol denotes any elements of the future dataset. Then (4-6) becomes 

𝑒∗ = [𝜇∗ − 𝑌̂∗] + 𝜀∗ 

(4-7) 
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We can also consider linear combinations of the components of vector 𝑌∗ for future 

observations. Denote some vector r as a vector of constants that has the same dimension 

as 𝑌∗ and the other vectors. Then we can represent the linear combination of 𝑌∗ as 𝑟𝑇𝑌∗, 

which would return a scalar that is the linear combinations of the components of 𝑌∗. For 

example, to calculate the total outstanding claims, we need to let 𝑟 = [1 1…1]𝑇, so we 

can have 

𝑟𝑇𝑌∗ = [1 1…1]

[
 
 
 
 
𝑌𝑘1𝑗1

∗

𝑌𝑘1𝑗2
∗

⋮
𝑌𝑘𝑛𝑗𝑛

∗
]
 
 
 
 

= ∑ 𝑌𝑘𝑗
∗

𝑎𝑙𝑙 𝑘,𝑗 𝑓𝑜𝑟 𝐷𝐾
𝑐

= 𝑡𝑜𝑡𝑎𝑙 𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 𝑙𝑜𝑠𝑠 

Or, let r be a vector with 1 in positions for 𝑌𝑘𝑗
∗  of some row k and 0 everywhere else, we 

can get the outstanding loss for accident year by computing 𝑟𝑇𝑌∗ 

𝑟𝑇𝑌∗ = [0 0…1 1…0 0]

[
 
 
 
 
 
 
 
 
 
𝑌𝑘1𝑗1

∗

𝑌𝑘1𝑗2
∗

⋮
𝑌𝑘𝑖𝑗1

∗

𝑌𝑘𝑖𝑗2

⋮
𝑌𝑘𝑖𝑗𝑛

∗

⋮
𝑌𝑘𝑛𝑗𝑛

∗
]
 
 
 
 
 
 
 
 
 

= ∑ 𝑌𝑘𝑗
∗

𝑎𝑙𝑙 𝑗 𝑓𝑜𝑟 𝑌𝑘𝑖𝑗
∗ ∈𝐷𝐾

𝑐

= 𝑡𝑜𝑡𝑎𝑙 𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 𝑙𝑜𝑠𝑠 𝑓𝑜𝑟 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 𝑦𝑒𝑎𝑟 𝑘𝑖 

Denote the prediction error associated with the linear combination 𝑟𝑇𝑌∗ as 𝑒(𝑟)
∗ , then by 

(4-7) we obtain 

𝑒(𝑟)
∗ = 𝑟𝑇𝑒∗ = [𝑟𝑇𝜇∗ − 𝑟𝑇𝑌̂∗] + 𝑟𝑇𝜀∗ 

(4-8) 

where 

𝑒(𝑟)
∗  – a scalar which is the prediction error associated with 𝑟𝑇𝑌∗ 

𝑟𝑇𝜇∗ – a scalar that represent the expected outstanding losses 

𝑟𝑇𝑌̂∗ – a scalar that represent the estimated outstanding losses 

𝑟𝑇𝜀∗ – a scalar of associated noise 
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In (4-8) note that we can also express the prediction error as the sum of parameter error 

and process error, where the term [𝑟𝑇𝜇∗ − 𝑟𝑇𝑌̂∗] represents the parameter error and 𝑟𝑇𝜀∗ 

represents the process error. 

4.2. Mean Square Error of Prediction 

4.2.1. Definition 

The mean square error of prediction (MSEP) for prediction error, denoted 

𝑀𝑆𝐸𝑃[𝑒(𝑟)
∗ ], measures the magnitude of prediction error 𝑒(𝑟)

∗ . It is defined as 

𝑀𝑆𝐸𝑃[𝑒(𝑟)
∗ ] = 𝐸 {[𝑒(𝑟)

∗ ]
2
} 

(4-9) 

which is the expected value (or mean) of the sum of squares of prediction errors. 

When parameter error and process error are stochastically independent, we can substitute 

(4-8) into (4-9) to calculate the MSEP of prediction error in terms of parameter and 

process errors. This means, for 𝑀𝑆𝐸𝑃[𝑒(𝑟)
∗ ] = 𝐸 {[𝑒(𝑟)

∗ ]
2
}, we can rewrite it as 

𝑀𝑆𝐸𝑃[𝑒(𝑟)
∗ ] = 𝐸 {([𝑟𝑇𝜇∗ − 𝑟𝑇𝑌̂∗] + 𝑟𝑇𝜀∗)

2
} = 𝐸 {[𝑒(𝑟)𝑝𝑎𝑟𝑎𝑚

∗ + 𝑒(𝑟)𝑝𝑟𝑜𝑐
∗ ]

2
} 

= 𝐸 {[𝑒(𝑟)𝑝𝑎𝑟𝑎𝑚
∗ ]

2
+ 2𝑒(𝑟)𝑝𝑎𝑟𝑎𝑚

∗ ∙ 𝑒(𝑟)𝑝𝑟𝑜𝑐
∗ + [𝑒(𝑟)𝑝𝑟𝑜𝑐

∗ ]
2
} 

= 𝐸 {[𝑒(𝑟)𝑝𝑎𝑟𝑎𝑚
∗ ]

2
} + 2𝐸{𝑒(𝑟)𝑝𝑎𝑟𝑎𝑚

∗ } ∙ 𝐸{𝑒(𝑟)𝑝𝑟𝑜𝑐
∗ } + 𝐸 {[𝑒(𝑟)𝑝𝑟𝑜𝑐

∗ ]
2
} 

From (4-2) we know the expected value of process error is zero, thus 𝐸{𝑒(𝑟)𝑝𝑟𝑜𝑐
∗ } = 0, so 

the term 2𝐸{𝑒(𝑟)𝑝𝑎𝑟𝑎𝑚
∗ } ∙ 𝐸{𝑒(𝑟)𝑝𝑟𝑜𝑐

∗ } is zero, and we obtain 

𝑀𝑆𝐸𝑃[𝑒(𝑟)
∗ ] = 𝐸 {[𝑒(𝑟)𝑝𝑎𝑟𝑎𝑚

∗ ]
2
} + 𝐸 {[𝑒(𝑟)𝑝𝑟𝑜𝑐

∗ ]
2
} 

(4-10) 

where  

𝑒(𝑟)𝑝𝑎𝑟𝑎𝑚
∗ = 𝑟𝑇𝜇∗ − 𝑟𝑇𝑌̂∗ = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑟𝑟𝑜𝑟 

(4-11) 
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and 

𝑒(𝑟)𝑝𝑟𝑜𝑐
∗ = 𝑟𝑇𝜀∗ = 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑒𝑟𝑟𝑜𝑟 

(4-12) 

 

4.2.2. Goodness-of-Fit and Prediction Error 

As stated in the previous section, the MSEP measures the magnitude of prediction error. 

In other words, it measures the tightness of future estimates around the target. Thus 

usually the smaller a model’s MSEP is, the more preferred the model is. However, MSEP 

is not equivalent to goodness-of-fit of a model, so improving a model’s goodness-of fit 

does not necessarily mean improving the MSEP. 

The goodness-of-fit of a model can be increased by including excessive parameters, but 

this inclusion can destabilize model’s estimations, and thus amounts to over-fitting and 

thus increase the value of MSEP. Therefore, an effective model needs to take into 

account both the goodness-of-fit and the complexity of the model. Figure 4-1 from the 

monograph summarizes the relationship between model error and model complexity. 

 

Suppose we divide the available data set has 2 subsets, a training set and a test (or 

holdout) set. 



79 

 

First the model is fitted to the training set. We can use this to select a form of error, such 

as squared error and deviance, and plot the error against model complexity. Plotting this 

in the graph we can see that the fit of the model is improving (model error decreasing) as 

model complexity increases (Figure 4-1). 

However, as we use the model on the test set to generate the fitted values, we can see the 

fit of the model as an estimator of the test data does not improve monotonically as for the 

training set. When the parameter number is small, the model produces a poor fit in both 

cases, and as model complexity is increased, the model fits both sets better. However, 

after a certain point, the increase of complexity results in over-fitting, where we observe a 

still increasing fit on the training set, but a decrease in fit on estimating the test set, as 

excessive parameters start to destabilize the estimation. 

Thus we can conclude, as model complexity increases, both the fit and estimation of the 

training set and test set can be improved to a certain point, but afterwards, detraction 

appears. Intuitively, we can think of model complexity at the extreme case. If we have a 

model that fit the data perfectly, then this model has as many parameters as the data 

points in the training set, and can produce zero error. But at this point the model is not a 

model in the usual sense anymore. It is only a list of outcome and input with no formulaic 

meaning behind the values, and has lost its predictive value.  

Therefore, it is obvious that the point where model error is at minimum for both the 

training and test sets is the optimal model complexity. Visually, this is the minimum 

point on the test curve in Figure 4-1, which produces the model that has the best 

predictive value.  

4.3. Information Criteria 

The information criteria are the statistics for measuring model fit error relative to a test 

data set. It is defined as 

𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛

= 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑓𝑖𝑡 𝑒𝑟𝑟𝑜𝑟 (𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡)

+ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑜𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

(4-13) 

The information criteria behave similarly to the model fit error relative to a test data set, 

as shown in Figure 4-1. Recall that while initially the model error relative to a test set 

decreases as model complexity increases, after a certain point the model error starts to 

increase again as the model loses predictive value. Similar for information criterion, 

when the model complexity increases, the model fit error for the training set decreases 
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monotonically, but the penalty for number of parameters increases. Thus there will also 

be a point of model complexity where the increase of penalty starts to overwhelm the 

decrease of model fit error. 

For a GLM, (4-13) can be written as following, with 𝑌̂ being the fitted value of 

observation 𝑌 

𝐼𝐶(𝑌, 𝑌̂) = 𝐷(𝑌, 𝑌̂) + 𝑓(𝑝) 

(4-14) 

where 

 𝐼𝐶(𝑌, 𝑌̂) is the information criterion;  

 𝐷(𝑌, 𝑌̂) is the scaled deviance from (2-30);  

 𝑝 is the number of the model parameters; 

 𝑓(. ) is a monotonically increasing function.  

Recall from (2-30), the scaled deviance has the following formula: 

𝐷(𝑌, 𝑌̂) = 2[ 𝑙𝑛 𝜋(𝑌; 𝜃(𝑠), ϕ) − 𝑙𝑛 𝜋(𝑌; 𝜃,ϕ)]

= 2∑[𝑙𝑛 𝜋(𝑌𝑖;  𝜃
(𝑠), ϕ) − 𝑙𝑛 𝜋(𝑌𝑖; 𝜃, ϕ)]

𝑛

𝑖=1

 

Table 4-1 from the monograph shows 2 of the most common information criteria, the 

Akaike Information Criterion (AIC) and the Bayes Information Criterion (BIC). Note in 

BIC, 𝑛 is the number of observations 𝑌 used in the model, so in both cases the penalty 

functions are linear functions of 𝑝. 

 

AIC is independent of the number of observations 𝑛 used in the model, but there is a 

modified version, AICc, which has a correction for finite sample size 𝑛. The last c stands 

for correlation. 
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AICc has the form 

𝑓(𝑝) = 2𝑝 [1 +
𝑝 + 1

𝑛 − 𝑝 − 1
] 

So that as 𝑛/𝑝 increases to infinity, 𝑓(𝑝) approaches 2𝑝: 

𝑓(𝑝) = 2𝑝 [1 +
𝑝 + 1

𝑛 − 𝑝 − 1
] = 2𝑝 [1 +

1 +
1
𝑝

𝑛
𝑝 − 1 −

1
𝑝

] → 2𝑝 

The information criteria are used to compare the loss of information from different 

models of the same data set. For example, if the AIC indicates a smaller number for 

model 1 than for model 2, then model 1 has minimized information loss better, and model 

1 would be favored. 

 

4.4 Generalized Cross-Validation 

Cross-Validation is a method commonly used in regression and non-regression models to 

estimate prediction error. An example of cross-validation would be to divide the data into 

K parts, so that the fitted model can be generated by the first K-1 parts, and tested by the 

Kth part. This is also called the leave-one-out cross-validation. 

 

For linear models, the fitted value can be expressed as 𝑦̂ = 𝐻𝑦, where 𝐻 is called the hat 

matrix (because it gives a “hat” to 𝑦 after the multiplication). An approximation to leave-

one-out validation is the generalized cross-validation (GCV) measure, with formula 

𝐺𝐶𝑉 =
∑ (𝑌𝑖

𝑛
𝑖=1 −𝑌̂𝑖)

2

𝑛 [1 −
𝑡𝑟𝑎𝑐𝑒(𝐻)

𝑛 ]
2 

(4-15) 

 

Part 1 to K-1 Part K Fitted Model 
Generate Test 
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where: 

 𝑌𝑖 is the 𝑖𝑡ℎ observed value (Not referred to incremental losses) 

 𝑌̂𝑖 is the 𝑖𝑡ℎ fitted value 

 n is the number of observations 

In the numerator of the GCV formula, we have the sum of the squared error for fitted 

values, which is divided by the number of observations n in the denominator. We want 

this value to be as small as possible for a good-fitting model. However, we also need to 

take over-fitting into consideration. Thus we have the term [1 −
𝑡𝑟𝑎𝑐𝑒(𝐻)

𝑛
]
2

 in the 

denominator. Here the hat matrix 𝐻 is an n × n diagonal matrix that maps the n × 1 

vector of observations 𝑌 to the n × 1 vector of fitted values 𝑌̂. The trace of the hat 

matrix, 𝑡𝑟𝑎𝑐𝑒(𝐻), is the sum of the diagonal calculated as 

𝑡𝑟𝑎𝑐𝑒(𝐴) = ∑𝑎𝑖𝑖

𝑛

𝑖=1

 

and defined as the effective number of parameters in a model. Because the hat matrix 

maps y to 𝑦̂, we want 𝑡𝑟𝑎𝑐𝑒(𝐻) close to n for a good-fitting model. However, as this 

could also result in over-fitting of the model, we have [1 −
𝑡𝑟𝑎𝑐𝑒(𝐻)

𝑛
]
2

 as a penalty, which 

decreases in value as 𝑡𝑟𝑎𝑐𝑒(𝐻) gets closer to n, and thus increase the value of GCV. 

Therefore, from the overall formula of GCV, we can tell that a smaller GCV suggests a 

better model for the observations not only in terms of the goodness-of-fit of the model, 

but also considering the number of parameters used in the model. 
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4.5 Model Error 

Model Error is the error associated with using an inaccurate model to fit the data. Model 

Error is common when the accurate function to estimate the data is unknown or 

unknowable. In previous sections of this chapter, we only discuss the parameter error and 

process error with the assumption that the function 𝜇(𝑘, 𝑗; 𝜃) underlying the data is 

correctly identified. In this section, we will recognize that the selected modeling function 

can also have errors and affect its fit to the data. 

 

We assume 𝑢(𝑘, 𝑗; 𝜃) is still the correct function for the data. Suppose we incorrectly 

choose function 𝑣(𝑘, 𝑗; 𝜉) as our modeling function, with some parameter 𝜉: 

𝑌𝑘𝑗 = 𝑣(𝑘, 𝑗; 𝜉) + 𝜀𝑘𝑗 𝑓𝑜𝑟 𝑌𝑘𝑗𝜖𝔇𝐾
+ 

(4-16) 

Then, the fitted values for this model would be: 

𝑌̂𝑘𝑗 = 𝑣(𝑘, 𝑗; 𝜉̂)  𝑓𝑜𝑟 𝑌𝑘𝑗𝜖𝔇𝐾
+ 

(4-17) 

In this case, the prediction error 𝑒𝑘𝑗 would be: 

𝑒𝑘𝑗 = 𝑌𝑘𝑗 − 𝑌̂𝑘𝑗 = [ 𝑣(𝑘, 𝑗; 𝜉) −  𝑣(𝑘, 𝑗; 𝜉̂)] + 𝜀𝑘𝑗 + [ 𝜇(𝑘, 𝑗; 𝜃) − (𝑘, 𝑗; 𝜉)] 

 Parameter Error     Process Error      Model Error 

This decomposition of prediction error includes parameter error and process error as in 

(4-4), but now it also includes the term for model error. This term measures the error 

incur by selecting an incorrect modeling function to fit the data. 
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5. The Bootstrap 

In future estimation, we often have limited number of data sets to generate future 

estimations. The purpose of bootstrap is to generate synthetic data sets with the same 

stochastic properties as the original one, and produce estimates of outstanding losses 

from each dataset. With large number of future estimates, we can have a clearer picture 

for the full distribution of our target prediction such that we can set loss reserves with 

certain confidence levels. This chapter focuses on the two ways of bootstrapping for loss 

reserving purpose: semi-parametric bootstrap and parametric bootstrap. 

5.1. Background 

In Chapter 3, we used GLMs to generate the parameter estimates for both ODP Mack 

Model and ODP Cross-Classified Model. Although we showed only the parameter 

estimates in Chapter 3, the associated standard errors for parameter estimates and the 

estimated correlations between each pair of them are also reported by SAS. 

We are interested in these standard errors of parameter estimates and their correlations, 

because with knowledge of the distribution for parameter estimates, we can randomly 

draw pseudo-parameter estimates to form pseudo-data sets. Because we often have 

limited number of data sets to generate future estimates, we cannot determine the 

distribution for our target prediction, which in loss reserving is the total outstanding 

losses. To resolve this problem, we use pseudo-data sets with the same stochastic 

properties as the original one to generate a large number of future estimates so that we 

can estimate the distribution of our target prediction. 
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Table 5-1 from the monograph shows the parameter estimates and their standard errors 

for ODP Cross-Classified Model: 

 

Table 5-1 

Note that standard error of ln (𝛽1) is not included in the table because we set 𝛽1=1 as the 

scale. 

Table 5-2 from the table shows the correlation between the parameter estimates: 
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With the information in these table, we are able to implement a parametric bootstrap to 

estimate the full distribution for outstanding losses. Detail steps for parametric bootstrap 

will be discussed later in section 5.3.2, followed by numerical example in 5.4. 

The SAS codes to reproduce table 5-1 and table 5-2 is included in Appendix D. 
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Reproduced result is shown below: 

 

(Reproduction of table 5-1) 

 

(Reproduction of table 5-2: correlations between ln (𝛼𝑖)) 
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(Reproduction of table 5-2: correlations between ln (𝛼𝑖) and ln (𝛽𝑗)) 

 

(Reproduction of table 5-2: correlations between ln (𝛽𝑗)) 

Check out Appendix D and try to reproduce table 5-1 and table 5-2 with your code. 

 

5.2. The Bootstrap 

The bootstrap method provides a distribution of target estimates, instead of a point 

estimate. In loss reserving, for example, when insurance companies estimate future losses 

and set up loss reserves, it is usually necessary to set up loss reserves with some 

confidence level of covering for the potential loss. This requires for calculating 

probability of adequacy (PoA) of the reserve, and adjust loss reserve based on the 

probability. Mathematically, this means we want the true total outstanding loss 𝑅 to be 

less than an estimated outstanding loss 𝑅̂𝑝 for some given probability 𝑝, i.e. 

𝑃𝑟𝑜𝑏[𝑅 < 𝑅̂𝑝] = 𝑝 

(5-14) 
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And once we have 𝑅̂𝑝, we can set our loss reserve to meet the requirement. Note that in 

order to calculate the probability, we need the distribution of the total outstanding loss, 

which requires the use of bootstrap method. 

There are many approaches to the bootstrap method, which are categorized into “non-

parametric”, “semi-parametric”, and “parametric” bootstrap methods by Shibata (1997). 

This classification involves the level of reliance of prediction error on model and 

distributional assumptions. The sub-sections below will discuss “semi-parametric” and 

“parametric” bootstrap methods in details. 

 

5.2.1. Semi-Parametric Bootstrap 

The original form of the bootstrap by Efron (1979) falls within the general family of re-

sampling, which involves repeated sampling of available data and constructing pseudo 

datasets and fitted values. 

Let 𝑌 be an n-dimensional data vector. Suppose we fit a model to 𝑌, and obtain an n-

dimensional vector of estimations 𝑌̂∗ of future observations 𝑌∗ with parameter estimates 

𝛽̂. 

Let 𝑅(𝑌∗) be the target prediction, where 𝑅(. ) is some function of 𝑌∗ that produces the 

target estimation. In the case of loss reserve, where 𝑌∗ are the future incremental losses, 

the function 𝑅(. ) is simply a summation function, as our target prediction is the total 

outstanding loss, computed by summing all future losses. Because 𝑌∗ are unknown, we 

can estimate 𝑅(𝑌∗) using estimated future observations 𝑌̂∗, which gives 𝑅(𝑌̂∗). 

 

To find the PoA described by (5-14), we need the distribution of the estimated 𝑅(𝑌̂∗), 

which is the objective of the Bootstrap method and re-sampling procedure. 

We can use the known observations for the purpose. Let 𝑌̂ denote the n-dimensional 

vector of the fitted values of 𝑌 using the model and estimated parameters 𝛽̂, and let 

𝑌 𝛽̂ 𝑌̂∗
 𝑅(𝑌̂∗) 

apply model 

for para. est.’s 

future 

estimates 
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𝑆(𝑌; 𝑌̂) denote the vector of associated standardized residuals where the inverse 

𝑆−1(. ; 𝑌̂) exists. 

Recall from Chapter 2 we introduced Pearson residuals, which has the following formula 

from equation (2-33): 

𝑅𝑖
𝑃 =

𝑌𝑖 − 𝑌̂𝑖

𝜎𝑖
 

Assuming we use the Pearson residuals, then the i-th component of the residual vector 

corresponding to the data vector 𝑌, denoted 𝑆(𝑌; 𝑌̂), 𝑖 = 1,… , 𝑛, can be written as 

𝑆𝑖(𝑌; 𝑌̂) =
𝑌𝑖 − 𝑌𝑖̂

𝜎𝑖
 

(5-15) 

where 𝜎𝑖
2 is the estimator of the variance 𝑉𝑎𝑟[𝑌𝑖]. We can then derive (5-15) to and 

represent the i-th component of 𝑌 as the inverse of the residual function, i.e.,  

𝑌𝑖 = 𝑆−1(𝑆𝑖; 𝑌̂) = 𝑌̂𝑖 + 𝜎𝑖𝑆𝑖 

(5-16) 

Suppose 𝑆𝑖 are approximately independent and identically distributed (iid). We can then 

perform data re-sampling of the residuals. We can draw a random n-sample from 

𝑆(𝑌; 𝑌̂) with or without replacement. Denote the sample residual components as 𝑆̃𝑖, 𝑖 =

1,… , 𝑛, and denote the corresponding vector as 𝑆̃. 

Using (5-16), we can form a sample of observations 𝑌̃, where the i-th component is 

defined as 

𝑌̃𝑖 = 𝑆−1(𝑆̃𝑖; 𝑌̂) 

(5-17) 

Note that the index i in (5-17) corresponds to the index in 𝑆̃ instead of the original 

residual set 𝑆. Thus the i-th component of 𝑌̃ uses the same 𝑌̂𝑖 but a usually different 𝑆𝑖 

because orders of the residuals are changed during the random drawing process. So, 𝑌̃ 

doesn’t usually have the same value as the i-th component of the original data vector 𝑌, 

i.e., 

𝑌̃𝑖 ≠ 𝑌𝑖 , 𝑓𝑜𝑟 𝑆̃𝑖 ≠ 𝑆𝑖 

Because 𝑆𝑖 are approximately iid, 𝑆 and 𝑆̃ have the same stochastic properties, and thus 𝑌 

and 𝑌̃ have the same stochastic properties by (5-16) and (5-17). Thus through re-
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sampling we have obtained an alternative data set of observations 𝑌̃ that has the same 

stochastic properties as the original one, which is also known as a pseudo-data set. In 

our case with Pearson residuals, the components of the pseudo-data set 𝑌̃ are defined as  

𝑌̃𝑖 = 𝑆−1(𝑆̃𝑖; 𝑌̂) = 𝑌̂𝑖 + 𝜎̂𝑖𝑌̃𝑖 

(5-18) 

Which is obtained by combining substituting 𝑆𝑖 with 𝑆̃𝑖 in (5-16). 

 

We can draw in total of 𝑛! pseudo-data sets if we sample without replacement and 𝑛𝑛 for 

sampling with replacement. Suppose we draw r pseudo-data sets, where r is sufficiently 

large. Denote these sets as vectors 𝑌̃(1), 𝑌̃(2),…, 𝑌̃(𝑟), and model each of these sets with the 

same model applied to Y originally. That is, the model applied to each 𝑌̃(𝑗), 𝑗 = 1,… , 𝑟 

has the same algebraic structure as the model applied to Y. However, because 𝑌̃(𝑗) do not 

contain exactly the same components as the original Y, the parameters of the model will 

change as the data inputs have changed, and will be different for each of the pseudo-data 

set 𝑌̃(𝑗). 

𝑌̂ 

Fit 

𝑆 

find 

residuals 

𝑆 

resample 

residuals 

𝑌̃ 

𝑆−1 to find 

pseudo-data 

𝑌 𝛽̂ 𝑌̂∗
 𝑅(𝑌̂∗) 

apply model 

for para. est.’s 

future 

estimates 
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For these 𝑌̃(𝑗), we can find the corresponding estimated parameters, called pseudo-

estimates. Arrange the parameter estimates into a vector denoted as 𝛽̂(𝑗) for the 

associated 𝑌̃(𝑗). We can then apply the model with 𝛽̂(𝑗) for the corresponding j-th dataset 

and find the estimated future observations 𝑌̂̃(𝑗)
∗ , and the estimated target prediction 

𝑅 (𝑌̂̃(𝑗)
∗ ) for the corresponding 𝑅(𝑌̃(𝑗)

∗ ). Because we had total of r pseudo-data sets, we 

now have r 𝑅 (𝑌̂̃(𝑗)
∗ ) for the pseudo-data sets. 

 

Similar to 𝑆̃ and 𝑌̃, the pseudo-forecast denoted 𝑅(𝑌̃(𝑗)
∗ ) have the same stochastic 

properties as 𝑅(𝑌∗). Note that because the algebraic structure of the underlying model is 

always the same as the model applied to the original dataset 𝑌, and the only differences 

are the parameter estimates, the variation between the 𝑅(𝑌∗) and 𝑅(𝑌̃(𝑗)
∗ ) thus reflect 

parameter error introduced in Chapter 4. Recall that parameter errors are errors caused by 

inaccurate model parameter estimates, that is, variations that result from the differences 

between 𝛽 and 𝛽̂. Mathematically this is expressed as 

𝜀𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = 𝐸[𝑌; 𝛽] − 𝐸[𝑌; 𝛽̂] 

Recall also from Chapter 4, prediction error is composed of both parameter error and 

process error (assuming there is no model error). Therefore to create pseudo-forecasts 

that reflect prediction error, we need to add noise to the estimated target predictions 

𝑅 (𝑌̂̃(𝑗)
∗ ). We can find the noise, or process error, of 𝑅(𝑌∗) using re-sampling as well. 
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Recall the process error is the difference between the observations and fitted values (or 

future estimates). In this case with future estimates, denote the process error for the i-th 

component of 𝑌∗ as 

𝜀𝑖
∗ = 𝑌𝑖

∗ − 𝐸[𝑌𝑖
∗] 

(5-19) 

Which can be rewritten as 

𝑌𝑖
∗ = 𝐸[𝑌𝑖

∗] + 𝜀𝑖
∗ 

(5-20) 

For the i-th component of 𝑌̃(𝑗)
∗ , we can have 𝐸[𝑌̃𝑖

∗] estimated using parameters 𝛽̂. In order 

to obtain a set of process errors for 𝑌̃(𝑗)
∗  that has the same properties as the set of {𝜀𝑖

∗}, we 

draw a second vector 𝑆̃𝑝𝑟𝑜𝑐 the same way 𝑆̃ was drawn, and form the pseudo-observation 

vector 𝑌̃𝑝𝑟𝑜𝑐  similar to (5-17), i.e., for the i-th component of 𝑆̃𝑝𝑟𝑜𝑐, we have 

𝑌̃𝑝𝑟𝑜𝑐,𝑖 = 𝑆−1(𝑆̃𝑝𝑟𝑜𝑐,𝑖; 𝑌̂) 

We then define the vector of process error as 

𝜀𝑝𝑟𝑜𝑐
∗ = 𝑌̃𝑝𝑟𝑜𝑐 − 𝑌̂ 

(5-21) 

Note this is different from the monograph, which has 𝑌̂𝑝𝑟𝑜𝑐 − 𝑌̂ instead of 𝑌̃𝑝𝑟𝑜𝑐 − 𝑌̂. 

However, relating the context of prior and following discussion, this is a typo in the 

monograph, and (5-21) should have the form described here. 

From (5-21), we can conclude that the components of the vector 𝜀𝑝𝑟𝑜𝑐
∗  have the same 

properties as the collection {𝜀𝑖
∗}. We can repeat the procedure of drawing 𝑆̃𝑝𝑟𝑜𝑐 and (5-

21) to obtain r replicates of 𝜀𝑝𝑟𝑜𝑐
∗ . Note that as 𝜀𝑝𝑟𝑜𝑐

∗  reflect the process error for future 

estimates, the dimension of 𝜀𝑝𝑟𝑜𝑐
∗  should reflect that of the future estimates 𝑌∗, not 

necessarily the past data vectors 𝑌. 

When we work with Pearson residuals, recall from (5-18), for the i-th component of 𝑌̃, 

𝑌̃𝑖 = 𝑆−1(𝑆̃𝑖; 𝑌̂) = 𝑌̂𝑖 + 𝜎𝑖𝑆̃𝑖 

Therefore after drawing r samples of residual vectors, 𝑆̃𝑝𝑟𝑜𝑐, we obtain r samples of 

pseudo data sets of 𝑌̃𝑝𝑟𝑜𝑐 , where the i-th component of each 𝑌̃𝑝𝑟𝑜𝑐  is defined as 

𝑌̃𝑝𝑟𝑜𝑐,𝑖 = 𝑌̂𝑖 − 𝜎𝑖𝑆̃𝑝𝑟𝑜𝑐,𝑖 
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So using (5-21), the i-th component of 𝜀𝑝𝑟𝑜𝑐
∗  becomes 

𝜀𝑝𝑟𝑜𝑐,𝑖
∗ = 𝑌̃𝑝𝑟𝑜𝑐,𝑖 − 𝑌̂𝑖 = (𝑌̂𝑖 + 𝜎𝑖𝑆̃𝑖) − 𝑌̂𝑖 = 𝜎𝑖𝑆̃𝑖 

Now we can add noise to the future estimates for the pseudo data sets, which are simply 

the addition of our original estimates and the process errors: 

(𝑌̂̃(𝑗)
∗ )

+
= 𝑌̂̃(𝑗)

∗ + 𝜀𝑝𝑟𝑜𝑐(𝑗)
∗  

(5-23) 

Where (𝑌̂̃(𝑗)
∗ )

+
 is a pseudo-forecast that contains both process and parameter errors as 

prediction error. We can then obtain the target prediction 𝑅 ((𝑌̂̃(𝑗)
∗ )

+
) that include 

process error. 

 

These 𝑅 ((𝑌̂̃(𝑗)
∗ )

+
), 𝑗 = 1,… , 𝑟 are iid, with the same distribution as 𝑅(𝑌∗). Thus the r 

replicates form an empirical distribution of 𝑅(𝑌∗), and we can achieve PoA or find other 

stochastic properties such as MSEP from the distribution. 

Figure 5-1 from the monograph (shown below) also summarizes procedures discussed 

above. Like the semi-parametric bootstrap, parametric bootstrapping also involves re-

sampling, but using a different approach, with assumptions of not only the underlying 

model for observations, but known distributions of observations and parameter estimates 

as well. 



95 

 

 

5.2.2. Parametric Bootstrap 

While semi-parametric bootstrapping is based on empirical residuals and resamples via 

inverse transform of the residuals, parametric bootstrapping is based on the assumption of 

parameter estimates with an underlying distribution with appropriate variance and known 

distribution of the dataset.  

Parametric Estimates 

Because the parameter estimates 𝛽̂ for GLMs are usually MLEs, for parametric 

bootstrapping we assume the original 𝛽̂ to be MLEs. Also, it is known that an MLE is an 

asymptotically normal unbiased estimator for indefinitely increasing sample size. In other 

words, when the number of parameter estimates generated approaches infinity, the 

distribution of all parameter estimates 𝛽̂ becomes closer to normal. i.e., 

𝛽̂~𝑁(𝛽, 𝑉𝑎𝑟[𝛽̂]), asymptotically 

(5-24) 
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Assume the asymptotic relation above holds for finite data sample, then we can assume 𝛽̂ 

approximately normal, which means 

𝛽̂~𝑁(𝛽, 𝐶̂) 

(5-25) 

where 𝐶 denotes the variance of the parameter estimates, 𝑉𝑎𝑟[𝛽̂]. Recall 𝛽̂ is a vector of 

all parameter estimates, and thus the variance estimate 𝐶̂ is a 𝑝 × 𝑝 matrix that contains 

all the estimated correlations between each pair of parameter estimates 𝛽̂𝑖 and 𝛽̂𝑗, for 

𝑖, 𝑗 = 1, …𝑝. Therefore 𝐶̂ has diagonal entries of 1 (correlations between 𝛽̂𝑖 and 𝛽̂𝑖 are 

always 1), and the rest elements being the correlations. An example is the correlation 

matrix for ODP CC model of Table 5-2, section 5.1. with the assumed distribution of 𝛽̂, 

we can sample the parameter estimate replicates 𝛽̂(𝑗) directly.  

The sampling process follows 3 steps:  

• apply a linear transformation 𝑀 to 𝛽̂ such that the components of 𝑀𝛽̂ are 

uncorrelated; in other words, we obtain a variance matrix for the linear 

transformation of 𝛽̂, 𝑉𝑎𝑟[𝑀𝛽̂], such that the correlations between each pair of 

(𝑀𝛽̂)
𝑖
 and (𝑀𝛽̂)

𝑗
 for 𝑖 ≠ 𝑗 are 0. 

• sample each of these components from a univariate normal distribution to obtain a 

random vector 𝛾; 

• apply the inversion of linear transform 𝑀 to the sampled vector 𝛾 to obtain the 

required sampling from 𝑁(𝛽̂, 𝐶̂), i.e. the re-sampled 𝛽̂(𝑗). 

Mathematically, for step 1 we need to find the linear transformation matrix 𝑀 such that 

𝑉𝑎𝑟[𝑀𝛽̂] = Λ, where Λ is a diagonal matrix: 

𝑀𝐶̂𝑀𝑇 = Λ = 𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑝) 

(5-26) 

After step 1, the multivariate normal distribution of vector 𝛽̂ is transformed to the normal 

distributions for each element of the linear transformation 𝑀𝛽̂. Thus in step 2 we can 

make random drawings of 𝛾𝑖 , which satisfy 

𝛾𝑖~𝑁 ((𝑀𝛽̂)
𝑖
 , 𝜆𝑖) , 𝑖 = 1, 2,… , 𝑝 

(5-27) 
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After the step, we have a vector of 𝛾 = (𝛾1, … , 𝛾𝑝)𝑇.  

Now we apply step 3, which uses the inverse transform to obtain parameter estimate 

replicates 𝛽̂(𝑗): 

𝛽̂(𝑗) = 𝑀−1𝛾 

(5-28) 

We can verify that 𝛽̂(𝑗)~𝑁(𝛽̂, 𝐶̂) using the (5-27) and (5-28), where we derive the mean 

and variance as 

𝐸[𝛽̂(𝑗)] = 𝐸[𝑀−1𝛾] = 𝑀−1𝐸[𝛾] = 𝑀−1𝑀𝛽̂ = 𝛽̂ 

(5-29) 

and  

𝑉𝑎𝑟[𝛽̂(𝑗)] = 𝑉𝑎𝑟[𝑀−1𝛾] = 𝑀−1𝑉𝑎𝑟[𝛾](𝑀−1)𝑇 = 𝑀−1[𝑀𝐶̂𝑀𝑇](𝑀−1)𝑇 = 𝐶̂ 

(5-30) 

Note here the operation for variance is 𝑉𝑎𝑟[𝑀𝐴] = 𝑀𝐴𝑀𝑇, where 𝐴 is a matrix, and 𝑀 is 

a linear transformation applied to 𝐴.  

The process of identifying 𝑀 can be done by conventional statistical software by 

decomposition of 𝐶̂. Namely 2 tools are Cholesky decomposition and spectral 

decomposition.  

Cholesky decomposition of 𝐶̂: 

𝐶̂ = 𝐿𝐿𝑇 

(5-31) 

where 𝐿 is the lower triangular matrix, this is equivalent to (5-26) with 𝑀 = 𝐿−1 and Λ =

𝐼.  

Spectral decomposition of 𝐶̂: 

𝐶̂ =  𝑃Λ𝑃𝑇 

(5-32) 
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where 𝑃 is an orthogonal matrix and 𝛾1, … , 𝛾𝑝 are the eigenvalues of 𝐶̂, this is equivalent 

to (5-26) with 𝑀 = 𝑃−1 = 𝑃𝑇. 

Process Error 

In the parametric bootstrap method, the pseudo-data sets for process errors 𝑌̃𝑝𝑟𝑜𝑐  can be 

obtained by random drawings from the distribution that the original dataset 𝑌 assumes. 

For example, if we assume 𝑌𝑖 follow ODP distribution, then we can obtain each 

component of 𝑌̃𝑝𝑟𝑜𝑐  by random drawings from an ODP distribution with known mean 𝑌̃i 

and scale 𝜙̂/𝑤𝑖  . and process error can be obtained similar to semi-parametric 

bootstrapping using 𝜀𝑝𝑟𝑜𝑐
∗ = 𝑌̃𝑝𝑟𝑜𝑐 − 𝑌̂. 

Discussion 

The parametric bootstrapping is simpler to implement than semi-parametric 

bootstrapping due to shorter computational times. However, with the underlying 

distributional assumptions, the validity of parametric bootstrapping can decrease when:  

• the sample size is so small that (5-24) is not asymptotic; and/or 

• the error structure assumed within the GLM becomes a poor representation of 

data.  
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Appendix A. 3.3.1. Design matrix X of ODP Mack GLM for K=10 and 

J=10 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 0 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

 

47 rows in total 

Columns 1-9 represents the x variates corresponding to variables 𝑓1 to 𝑓9  
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Appendix B. 3.3.2. Design matrix X of ODP CC GLM when K=10 and 

J=10 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

X= 

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

55 rows in total 

Columns 1-10 represents the x variates corresponding to variables from ln (𝛼1) to ln (𝛼10)  

Columns 11-20 represents the x variates corresponding to variables from ln (𝛽1) to ln (𝛽10) 
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Appendix C 3.3.3. ODP Mack Model GENMOD codes 

First Method: 

Codes: 

data ODPMackModelOneZero; 
input Y f1 f2 f3 f4 f5 f6 f7 f8 f9; 
datalines; 
1.830420124 1 0 0 0 0 0 0 0 0 
1.263187459 0 1 0 0 0 0 0 0 0 
1.165103364 0 0 1 0 0 0 0 0 0 
1.100166871 0 0 0 1 0 0 0 0 0 
1.047794622 0 0 0 0 1 0 0 0 0 
1.036767254 0 0 0 0 0 1 0 0 0 
1.027791394 0 0 0 0 0 0 1 0 0 
1.024821516 0 0 0 0 0 0 0 1 0 
1.020856984 0 0 0 0 0 0 0 0 1 
1.819959723 1 0 0 0 0 0 0 0 0 
1.278843741 0 1 0 0 0 0 0 0 0 
1.162150108 0 0 1 0 0 0 0 0 0 
1.083202849 0 0 0 1 0 0 0 0 0 
1.05228735 0 0 0 0 1 0 0 0 0 
1.038268587 0 0 0 0 0 1 0 0 0 
1.030858833 0 0 0 0 0 0 1 0 0 
1.024908144 0 0 0 0 0 0 0 1 0 
1.91165623 1 0 0 0 0 0 0 0 0 
1.274917853 0 1 0 0 0 0 0 0 0 
1.141208739 0 0 1 0 0 0 0 0 0 
1.079065142 0 0 0 1 0 0 0 0 0 
1.056618024 0 0 0 0 1 0 0 0 0 
1.035551167 0 0 0 0 0 1 0 0 0 
1.031534614 0 0 0 0 0 0 1 0 0 
1.864788388 1 0 0 0 0 0 0 0 0 
1.253238542 0 1 0 0 0 0 0 0 0 
1.155990045 0 0 1 0 0 0 0 0 0 
1.092481961 0 0 0 1 0 0 0 0 0 
1.062448216 0 0 0 0 1 0 0 0 0 
1.043125153 0 0 0 0 0 1 0 0 0 
1.914140476 1 0 0 0 0 0 0 0 0 
1.260856523 0 1 0 0 0 0 0 0 0 
1.15733199 0 0 1 0 0 0 0 0 0 
1.085336655 0 0 0 1 0 0 0 0 0 
1.055708444 0 0 0 0 1 0 0 0 0 
1.875594788 1 0 0 0 0 0 0 0 0 
1.240571577 0 1 0 0 0 0 0 0 0 
1.161373539 0 0 1 0 0 0 0 0 0 
1.091812418 0 0 0 1 0 0 0 0 0 
1.680537138 1 0 0 0 0 0 0 0 0 
1.245449186 0 1 0 0 0 0 0 0 0 
1.164983214 0 0 1 0 0 0 0 0 0 
1.692799746 1 0 0 0 0 0 0 0 0 
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1.278442272 0 1 0 0 0 0 0 0 0 
1.766681989 1 0 0 0 0 0 0 0 0 
; 
run; 
proc genmod data=ODPMackModelOneZero; 
model Y = f1 f2 f3 f4 f5 f6 f7 f8 f9 / NOINT SCALE = PEARSON; 
run; 

[Codes End] 
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Second Method: 

Codes: 

data ODPMackModelxy; 
input Y f1 f2 f3 f4 f5 f6 f7 f8 f9; 
datalines; 
76550  41821 0 0 0 0 0 0 0 0 
96697  0 76550 0 0 0 0 0 0 0 
112662  0 0 96697 0 0 0 0 0 0 
123947  0 0 0 112662 0 0 0 0 0 
129871  0 0 0 0 123947 0 0 0 0 
134646  0 0 0 0 0 129871 0 0 0 
138388  0 0 0 0 0 0 134646 0 0 
141823  0 0 0 0 0 0 0 138388 0 
144781  0 0 0 0 0 0 0 0 141823 
87662  48167 0 0 0 0 0 0 0 0 
112106  0 87662 0 0 0 0 0 0 0 
130284  0 0 112106 0 0 0 0 0 0 
141124  0 0 0 130284 0 0 0 0 0 
148503  0 0 0 0 148503 0 0 0 0 
154186  0 0 0 0 0 148503 0 0 0 
158944  0 0 0 0 0 0 154186 0 0 
162903  0 0 0 0 0 0 0 158944 0 
99517  52058 0 0 0 0 0 0 0 0 
126876  0 99517 0 0 0 0 0 0 0 
144792  0 0 126876 0 0 0 0 0 0 
156240  0 0 0 144792 0 0 0 0 0 
165086  0 0 0 0 156240 0 0 0 0 
170955  0 0 0 0 0 165086 0 0 0 
176346  0 0 0 0 0 0 170955 0 0 
106761  57251 0 0 0 0 0 0 0 0 
133797  0 106761 0 0 0 0 0 0 0 
154668  0 0 133797 0 0 0 0 0 0 
168972  0 0 0 154668 0 0 0 0 0 
179524  0 0 0 0 168972 0 0 0 0 
187266  0 0 0 0 0 179524 0 0 0 
113342  59213 0 0 0 0 0 0 0 0 
142908  0 113342 0 0 0 0 0 0 0 
165392  0 0 142908 0 0 0 0 0 0 
179506  0 0 0 165392 0 0 0 0 0 
189506  0 0 0 0 179506 0 0 0 0 
111551  59475 0 0 0 0 0 0 0 0 
138387  0 111551 0 0 0 0 0 0 0 
160719  0 0 138387 0 0 0 0 0 0 
175475  0 0 0 160719 0 0 0 0 0 
110255  65607 0 0 0 0 0 0 0 0 
137317  0 110255 0 0 0 0 0 0 0 
159972  0 0 137317 0 0 0 0 0 0 
96063  56748 0 0 0 0 0 0 0 0 
122811  0 96063 0 0 0 0 0 0 0 
92242  52212 0 0 0 0 0 0 0 0 
; 
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run; 
proc genmod data=ODPMackModelxy; 
model Y = f1 f2 f3 f4 f5 f6 f7 f8 f9 / NOINT SCALE = PEARSON; 
run; 

[Codes End] 
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Appendix D. 3.3.3. ODP CC Model GENMOD codes 

Code: 

data ODPCCModel; 

input Y a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10; 

datalines; 

41821 1 0 0 0 0 0 0 0 0 0 1

 0 0 0 0 0 0 0 0 0 

34729 1 0 0 0 0 0 0 0 0 0 0

 1 0 0 0 0 0 0 0 0 

20147 1 0 0 0 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0 0 

15965 1 0 0 0 0 0 0 0 0 0 0

 0 0 1 0 0 0 0 0 0 

11285 1 0 0 0 0 0 0 0 0 0 0

 0 0 0 1 0 0 0 0 0 

5924 1 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 1 0 0 0 0 

4775 1 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 1 0 0 0 

3742 1 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 1 0 0 

3435 1 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 1 0 

2958 1 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 1 

48167 0 1 0 0 0 0 0 0 0 0 1

 0 0 0 0 0 0 0 0 0 

39495 0 1 0 0 0 0 0 0 0 0 0

 1 0 0 0 0 0 0 0 0 

24444 0 1 0 0 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0 0 

18178 0 1 0 0 0 0 0 0 0 0 0

 0 0 1 0 0 0 0 0 0 

10840 0 1 0 0 0 0 0 0 0 0 0

 0 0 0 1 0 0 0 0 0 

7379 0 1 0 0 0 0 0 0 0 0 0

 0 0 0 0 1 0 0 0 0 

5683 0 1 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 1 0 0 0 

4758 0 1 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 1 0 0 

3959 0 1 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 1 0 

52058 0 0 1 0 0 0 0 0 0 0 1

 0 0 0 0 0 0 0 0 0 

47459 0 0 1 0 0 0 0 0 0 0 0

 1 0 0 0 0 0 0 0 0 

27359 0 0 1 0 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0 0 

17916 0 0 1 0 0 0 0 0 0 0 0

 0 0 1 0 0 0 0 0 0 

11448 0 0 1 0 0 0 0 0 0 0 0

 0 0 0 1 0 0 0 0 0 
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8846 0 0 1 0 0 0 0 0 0 0 0

 0 0 0 0 1 0 0 0 0 

5869 0 0 1 0 0 0 0 0 0 0 0

 0 0 0 0 0 1 0 0 0 

5391 0 0 1 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 1 0 0 

57251 0 0 0 1 0 0 0 0 0 0 1

 0 0 0 0 0 0 0 0 0 

49510 0 0 0 1 0 0 0 0 0 0 0

 1 0 0 0 0 0 0 0 0 

27036 0 0 0 1 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0 0 

20871 0 0 0 1 0 0 0 0 0 0 0

 0 0 1 0 0 0 0 0 0 

14304 0 0 0 1 0 0 0 0 0 0 0

 0 0 0 1 0 0 0 0 0 

10552 0 0 0 1 0 0 0 0 0 0 0

 0 0 0 0 1 0 0 0 0 

7742 0 0 0 1 0 0 0 0 0 0 0

 0 0 0 0 0 1 0 0 0 

59213 0 0 0 0 1 0 0 0 0 0 1

 0 0 0 0 0 0 0 0 0 

54129 0 0 0 0 1 0 0 0 0 0 0

 1 0 0 0 0 0 0 0 0 

29566 0 0 0 0 1 0 0 0 0 0 0

 0 1 0 0 0 0 0 0 0 

22484 0 0 0 0 1 0 0 0 0 0 0

 0 0 1 0 0 0 0 0 0 

14114 0 0 0 0 1 0 0 0 0 0 0

 0 0 0 1 0 0 0 0 0 

10000 0 0 0 0 1 0 0 0 0 0 0

 0 0 0 0 1 0 0 0 0 

59475 0 0 0 0 0 1 0 0 0 0 1

 0 0 0 0 0 0 0 0 0 

52076 0 0 0 0 0 1 0 0 0 0 0

 1 0 0 0 0 0 0 0 0 

26836 0 0 0 0 0 1 0 0 0 0 0

 0 1 0 0 0 0 0 0 0 

22332 0 0 0 0 0 1 0 0 0 0 0

 0 0 1 0 0 0 0 0 0 

14756 0 0 0 0 0 1 0 0 0 0 0

 0 0 0 1 0 0 0 0 0 

65607 0 0 0 0 0 0 1 0 0 0 1

 0 0 0 0 0 0 0 0 0 

44648 0 0 0 0 0 0 1 0 0 0 0

 1 0 0 0 0 0 0 0 0 

27062 0 0 0 0 0 0 1 0 0 0 0

 0 1 0 0 0 0 0 0 0 

22655 0 0 0 0 0 0 1 0 0 0 0

 0 0 1 0 0 0 0 0 0 

56748 0 0 0 0 0 0 0 1 0 0 1

 0 0 0 0 0 0 0 0 0 

39315 0 0 0 0 0 0 0 1 0 0 0

 1 0 0 0 0 0 0 0 0 

26748 0 0 0 0 0 0 0 1 0 0 0

 0 1 0 0 0 0 0 0 0 
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52212 0 0 0 0 0 0 0 0 1 0 1

 0 0 0 0 0 0 0 0 0 

40030 0 0 0 0 0 0 0 0 1 0 0

 1 0 0 0 0 0 0 0 0 

43962 0 0 0 0 0 0 0 0 0 1 1

 0 0 0 0 0 0 0 0 0 

; 

run; 

proc genmod data=ODPCCModel; 

model y = a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 b2 b3 b4 b5 b6 b7 b8 b9 b10 /  

NOINT 

link = log 

dist = poisson 

SCALE = PEARSON 

CORRB 

;  

[Codes End] 
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