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Abstract

The Casualty Actuarial Society (CAS) has a series of monograph publications related to
the work of property-casualty insurance. This project is based on the monograph
Stochastic Loss Reserving Using Generalized Linear Models by Greg Taylor and Grainne
McGuire, which discusses the application of generalized linear models (GLMs) to loss
reserving, with an emphasis on the chain ladder algorithm. For this project, the team
reviewed and explained the concepts presented in the monograph, supported the
explanations with additional examples, and recreated the numerical examples in the
monograph using the provided dataset and SAS software. Due to time constraints and
considering the relevance of topics, the project concentrates on the first four chapters and
part of Chapter 5 of the monograph, which include topics on the chain ladder algorithm,
over-dispersed Poisson distributions, GLMs, the Mack and cross-classified models for
loss reserving, prediction errors, and the bootstrap method for estimating outstanding
losses.

During the project, we contacted the authors of the monograph, Greg Taylor and Grainne
McGuire. They graciously clarified some points of confusion for us and offered advice in
SAS coding to enable us to reproduce some tables from their paper. In addition, we were
able to alert them to some errors we found in the paper for which they were appreciative.
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Introduction

The Casualty Actuarial Society (CAS) is a professional organization of actuaries
specializing in property-casualty insurance. The CAS has published a series of
monographs on related topics, and the basis of this project is the monograph Stochastic
Loss Reserving Using Generalized Linear Models by Greg Taylor and Grainne McGuire.
The team reviewed and explained the monograph in an accessible approach to assist
readers with less background knowledge on loss reserving or generalized linear models in
understanding the original monograph. To improve accessibility, the team explained the
notations and definitions from the monograph, clarified derivations of formulas, and
provided additional examples. To supplement the theoretical content, the team also
reproduced data analysis of numerical examples in the monograph using SAS and Excel,
and provided SAS code for readers to experiment with.

The monograph starts by introducing the chain ladder algorithm for loss reserving. While
the chain ladder method itself is non-stochastic, a stochastic version of the model with
distribution and error prediction also exists. The original monograph concentrates on the
two families of stochastic models that generate the chain ladder algorithm, the Mack
model and the cross-classified model. The monograph introduces these stochastic models
and their respective GLM formulations, with an emphasis on using statistical software to
implement the formulations. Our project specifically concentrates on interpreting the
content of the first four chapters and the bootstrapping portion from Chapter 5 of the
monograph with supplement numerical examples. The topics are as follows.

In Chapter 1, aligning with the monograph, our paper introduces the chain ladder
algorithm for loss reserving and the associated notations of the paper, with numerical
examples of how to apply the chain ladder method to estimate future loss development.
The dataset of this chapter will be used and frequently referenced in following chapters.

In Chapter 2, the monograph provides the theoretical background of the exponential
dispersion family (EDF) of distributions, and the generalized linear model (GLM). In our
paper, referencing the monograph, we first introduce the EDF distributions and its two
sub-families, the Tweedie sub-family (sub-family of EDF) and the over-dispersed
Poisson (ODP) sub-family (sub-family of the Tweedie Sub-family). The ODP
distribution is a crucial assumption for the incremental loss dataset, and will be used in
application of GLMs to loss reserving in later chapters. The chapter then defines GLM,
and discusses the two types of covariates, categorical and continuous, and certain aspects
of goodness-of-fit of a GLM, which will be discussed in more detail in Chapter 4.

In Chapter 3, our paper defines and explains the two types of stochastic model for the
chain ladder algorithm, the ODP Mack Model and ODP cross-classified Model. These
two models produce the same maximum likelihood estimates as the chain ladder



algorithm, with additional estimation for distributions of each estimate. Moreover, the
estimators also possess certain minimum variance properties, which are summarized in
three theorems. We first introduce the theoretical background of algorithms, with
numerical examples showing the procedures of how to manually apply the algorithm to
derive the parameters. Then the chapter explains the concept of data input and output in
SAS to apply the algorithms, with numerical examples and associated coding provided
for illustration.

In Chapter 4, our paper introduces the concept of prediction error, which can be
decomposed into three components: parameter error, process error and model error. The
chapter discusses these types of error and provides examples to explain the definitions.
The first example is independent of the chain ladder algorithm to lead into the definitions,
and later examples involve the chain ladder algorithm to explain the definitions within
the context of the topic. This chapter also introduces mean square error of prediction and
information criterion that measure the reliability of models, as well as cross validation of
model fitness, which involves using a training and test set from the observations.

In Chapter 5, the original monograph introduces two types of estimation methods of
prediction errors for the chain ladder algorithm and associated forecasts. The two
methods are the delta method and the bootstrap method. Our paper focuses solely on the
bootstrap method. The chapter explains the procedures of resampling the residuals to
eventually obtain a distribution of outstanding losses, and illustrates the concept with
diagrams. Bootstrapping in the context of SAS application is also discussed with a
numerical example to demonstrate the idea.

After reading this paper, the readers should have a clear understanding of the chain ladder
algorithm, and loss reserving using GLMs. Also, with the additional explanations of
numerical examples, readers can further assess their understanding of the models by
reproducing the examples with the given algorithms and data. Finally, based on the
understanding of the stochastic models gained from this paper and the original
monograph, readers can further research and modify the models introduced to improve
accuracy and efficiency for their own purposes.



1. The Chain Ladder Algorithm

1.1. Introduction

The chain ladder algorithm (or the development method) is a technique to estimate future
claims (also known as outstanding claims or outstanding losses) according to the selected
age-to-age factors. This chapter explains the steps in the chain ladder algorithm using a
numerical example. The data and notations introduced in this chapter will also be used
throughout the paper.

In later chapters, we will also show how to use GLMs (generalized linear models) to
apply the chain ladder method.

1.2. Framework and Notation

Consider the incremental claim observations. There are two indices that determine the
position of an observation: the accident period and the development period. The periods
can be weeks, months, years, etc. Accident periods are time periods in which accidents
occurred, and development periods are periods in which incurred losses develop. Denote
the incremental claim observations as Y, ;. If we arrange all past and future observations

into a table, we obtain a K X J rectangle of data, where k represents the accident periods
k=1,2,....K

For example, in Table 1.1 we have incremental losses for different accident years k:

Incremental Paid Losses in Development Year 1 ($000)
Accident
Year K (accident periods) Losses (j=1)
1988 1 $41,821
1989 2 $48,167
1990 3 $52,058
1991 4 $57,251
1992 5 $59,213
1993 6 $59,475
1994 7 $65,607
1995 8 $56,748
1996 9 $52,212
1997 10 $43,962
Table 1.1



j represents development periods of losses, where
i=12,...,]

And j denotes the columns in paid losses matrices.

Incremental Paid Losses in Development Year ($000)

Accident Year =1 =2 =3
1988 k=1 $41,821 $34,729 $20,147
1989 k=2 $48,167 $39,495 $24,444
1990 k=3 $52,058 $47,459 $27,359

Table 1.2

For example, in Table 1.2, Y3, is the incremental paid loss for the second development
period of accident year 1990. Note the data is incremental, meaning this is the amount of
claim paid in during the year of 1992 only.

Claim observations consist of past and future observations. The past observations form a
development trapezoid, which can be written as a subset

Dk ={Yyj:1 <k <Kand1 <j <min (J,K -k + 1)}

This is illustrated in Table 1.3, where Dy is highlighted by yellow below

Incremental Paid Losses in Development Year ($000)
Accident Year 1 2 3
1988 1 41,821 34,729 20,147
1989 2 48,167 39,495
1990 3 52,058
Table 1.3

Notice that the development trapezoid becomes a triangle when K = J. When K # ], the
development matrix will look more like a trapezoid:

(K=3, J=4, Current time is 1992)

Incremental Paid Losses in Development Year ($000)

Accident Year K\J 1 2 3 4
1988 1 41,821 34,729 20,147 15,965
1989 2 48,167 39,495 24,444
1990 3 52,058 47,459




(K=4, J=3, Current time is 1992)

Incremental Paid Losses in Development Year ($000)
Accident Year K\J 1 2 3

1988 1 41,821 34,729 20,147

1989 2 48,167 39,495 24,444

1990 3 52,058 47,459

1991 4 57,251

Similarly, for future losses trapezoid, which also becomes a triangle when K = J)

Note the past observations Yy ; can be of accident period from 1 to K, but of development

period only from 1 to the main diagonal of the rectangle. This is because the diagonals
refer to the calendar years, and the main diagonal represents the current calendar year,
where the latest losses we observed are (see Table 1.4)

(Losses occur in 1990)

Incremental Paid Losses in Development Year ($000)
Accident Year K\J 1 2 3
1988 1 41,821 34,729 20,147
1989 2 48,167 39,495
1990 3 52,058
Table 1.4

The future observations, which are unknown and to be estimated, form the complement
of the above set, and can be written as:

D ={Vyj:1 <k <Kandmin (JJK—k+1)<j <J}
={Yy;K—-J+1<k <KandK-k+1<j <]}

Where Df is highlighted below:

Incremental Paid Losses in Development Year ($000)
Accident Year K\J 1 2 3
1988 1 41,821 34,729 20,147
1989 2 48,167 39,495
1990 3 52,058
Table 1.5



The future observations Y, ; can be of accident period from the 1 to K, and of
development period from the diagonal to J.

The set of both past and future claim observations is thus denoted

Which is illustrated in Table 1.6:

Incremental Paid Losses in Development Year ($000)
Accident Year K\J 1 2 3
1988 1 41,821 34,729 20,147
1989 2 48,167 39,495
1990 3 52,058
Table 1.6

By adding the incremental observations of the same accident period from 1 to the
development period j, we can obtain the cumulative row sums up to development period
j, i.e.,

Xyij = 2 Yii

i=1

(1-1)
For example, X; ; = $41,821 + $34,729 + $20,147 = $96,697
This is also known as the cumulative claim observation, denoted Xy ;.

Table 1.7 below shows the cumulative observations computed from the incremental paid
loss table above:

Cumulative Paid Losses in Development Year ($000)
Accident Year 1 2 3
1988 1 41,821 76,550 96,697
1989 2 48,167 87,662
1990 3 52,058

Table 1.7



The same notations for incremental losses and cumulative losses will be used throughout
the paper, where

Y:Incremental Loss
X: Cumulative loss

For a fixed accident year, Year k, we can calculate the summation of the entire k-th row
in Dy (all past observations) as ¥ *) where

Zgz(k) — Zmin(],K—k+ 1)

j=1
Incremental Paid Losses in Development Year ($000)

Accident Year K\J 1 2 3 R(k)
1988 1 41,821 34,729 20,147 96,697
1989 2 48,167 39,495 87,662
1990 3 52,058 52,058

Table 1.8

Similarly, for a fixed j, we can calculate the column sum as

Ze(k) — II:’;{+1

Incremental Paid Losses in Development Year ($000)

Accident Year K\J 1 2 3
1988 1 41,821 34,729 20,147
1989 2 48,167 39,495
1990 3 52,058

Column Sum C(j) 142,046 74,224 20,147

Table 1.9

For Year k, denote the amount of outstanding losses as R, which is the summation of all

future claim observations in row k , or equivalently, the ultimate loss subtracting the last
known cumulative observation:

J
Ry = z ij = Xk] - Xk,K—k+1

j=K—k+2

(1-2)

10



For example, suppose we know the future observations Y, ; = 18,000,Y;3, =
35,000,Y3 3 = 15,000 (highlighted in green), then, Ry, the total outstanding losses of

Year k can be found (highlighted in blue)

Incremental Paid Losses in Development Year ($000)

Accident Year K\J 1 2 3
1988 1 41,821 34,729 20,147
1989 2 48,167 39,495 18,000
1990 3 52,058 35,000 15,000

Table 1.10

By summing the outstanding losses of all accident years, we obtain the sum of all future

observations, i.e. the total outstanding losses, in D§ as

fork=K—-J]+2,..

K.

R =
(

K

k=

1-3

Ry
2
)

Note that k starts from 2 because Year 1 has completed development.

Using the previous example, we get R = R, + R; = 18,000 + 50,000 = 68,000

1.3. Data for Numerical Examples

Incremental Paid Losses in Development Year ($000)

Accident Year K\J 1 2 3 4 5 6 7 8 9 10
1988 1 41,821 34,729 20,147 15,965 11,285 5,924 4,775 3,742 3,435 2,958
1989 2 48,167 39,495 24,444 18,178 10,840 7,379 5,683 4,758 3,959
1990 3 52,058 47,459 27,359 17,916 11,448 8,846 5,869 5,391
1991 4 57,251 49,510 27,036 20,871 14,304 10,552 7,742
1992 5 59,213 54,129 29,566 22,484 14,114 10,000
1993 6 59,475 52,076 26,836 22,332 14,756
1994 7 65,607 44,648 27,062 22,655
1995 8 56,748 39,315 26,748
1996 9 52,212 40,030
1997 10 43,962

Table 1.11

Table 1.11 presents the example data set used throughout the paper. It references the
database from the Meyers and Shi (2011), of the worker compensations of the New

Jersey Manufacturers Group. The data set is an incremental paid loss triangle

consisting of past incremental claim observations Yy ;, with accident periods of Year 1 to

Year 10, and development periods of 1 year to 10 years.

11




However, the chain ladder algorithm uses cumulative losses instead of incremental
losses. Thus we need to first transform the table into cumulative paid loss table by

calculating the row sums using equation (1-1), X ; = {=1 Y,;,» and obtain Table 1.12
from the data in Table 1.11:

Cumulative Paid Losses in Development Year ($5000)

Accident Year J 1 2 3 4 5 6 7 8 9 10
1988 1 41,821 76,550 96,697 112,662 123,947 129,871 134,646 138,388 141,823 144,781
1989 2 48,167 87,662 112,106 130,284 141,124 148,503 154,186 158,944 162,903
1990 3 52,058 99 517 126,876 144,792 156,240 165,086 170,955 176,346
1991 4 57,251 106,761 133,797 154,668 168,972 179,524 187,266
1992 5 59,213 113,342 142,908 165,392 179,506 189,506
1993 6 59,475 111,551 138,387 160,719 175,475
1994 7 65,607 110,255 137,317 159,972
1995 8 56,748 96,063 122,811
1996 9 52,212 92,242
1997 10 43,962

Table 1.12

This is known as the cumulative loss triangle, which consists of cumulative paid claim
observations Xy ;.

Beside incremental or cumulative paid loss triangles, we could also have incurred loss
triangles, or claim counts triangles. These datasets differ from paid loss triangles by using
reported claims and numbers of claims instead of paid claims. However, these datasets
are not used in this paper.

1.4. The Chain Ladder Algorithm

The chain ladder algorithm or development method is a technique to estimate future
losses according to selected age-to-age factors. In the chain ladder algorithm, for each
development periods from 1 to J — 1, an age-to-age factor is selected to estimate the
growth in the cumulative loss.

Example of Chain Ladder Algorithm

We use a subset of Table 1.12 as an example (see Table 1.13).

Cumulative Paid Losses in Development Year ($000)
Accident Year 1 2 3
1988 1 41,821 76,550 96,697
1989 2 48,167 87,662
1990 3 52,058
Table 1.13

12




We can calculate the age-to-age factors by dividing the cumulative loss of the next
development period by the cumulative loss of the current development period, which
generates table 1.14.

Age-to-age Factors in Development Year
Accident Year 1 2
1988 1| f;; =76550/41,821~1.83 | f;, =96,697/76,550 = 1.26

1989 | 2| f,; = 87,662/48,167 ~ 1.82
Table 1.14

The main purpose to calculate the age-to-age factors is to select or estimate one age-to-
age factor for each development period. With age-to-age factors corresponding to each
development period, we can then use the known losses to estimate future claim losses.

From the data in table 1.14, we can use f, = f,, = 1.26 to be the age-to-age factor for
the second development period, and select a number between 1.82 and 1.83 to be our f;.
Or we could use the weighted average of the two as f;, with the claim amount being the
weight, i.e.,

» 1.83+41,821 +1.82 % 48,167

1= 41821 + 48,167 ~ 1.825

Notice that this method can be simplified by working out the equivalent calculation

» 76,550 + 87,662
17 41,821 + 48,167

~ 1.825

Then, we can estimate future losses with our selected age-to-age factors by multiplying
the cumulative paid loss and corresponding age-to-age factors (results shown in table
1.15)

Cumulative Paid Losses in Development Year ($000)

Accident Year 1 2 3
1988 1 41,821 76,550 96,697
1989 2 48,167 87,662 87,662 % 1.26 ~ 110,454
1990 3 52,058 52,058 = 1.825 = 95,006 | 95,006« 1.26 = 119,707
Table 1.15

To summarize, the first step in the chain ladder method is to calculate the age-to-age
factors, which is done by dividing the next cumulative observation by the targeting
cumulative observation of the same accident year.

13




In general, this is represented as

» Xij

k=12,....,K—1;j=1,2,....min(J —1,K — k)
(1-4)
We use formula (1-4) to calculate age-to-age factors between two development periods.

To calculate the weighted average age-to-age factors between two consecutive
development periods, we use the following formula

The weights, wy;, are usually calculated using the size of corresponding cumulative
losses. Note that the sum of all weights for one age-to-age factor should be 1, i.e.

K-j
k=1

(1-6)

To choose weights, we use

K-j
a)kj = Xk]/z Xk]
k=1
(1-7)

where we divide the cumulative loss at position k, j by the total known cumulative losses
for the development period. Combining equations (1-4), (1-5) and (1-7), we obtain the
following:

K-j
]3 = :E:‘”%j.fkj
k=1
Xk] <Xk,j+1>
Xk] Xk]

Mf

=1

14



K—j

_ Z Xkjr1
- K-
Zk ]XkJ

k=1

21(—1ij+1
Z Xk]

Note from the procedure that the calculations of weighted average age-to-age factors can
be simplified into

K-j
Ao Zk=1Xk,j+1
i~ K—j ’
Lje=1Xkj

(1-8)

j=1..]-1

Intuitively, this means

A Sum of all cumulative losses for development period j + 1

fi=

Sum of cumulative losses for development period j except the latest one

So, when we compute fj with weighted average method, we take out the latest
observation of development period j, and use the remaining rectangle to generate the
weighted average age-to-age factor.

After calculating and selecting the age-to-age factors, we can estimate the outstanding
losses. Define the estimated cumulative value as the last known cumulative losses
multiplied by corresponding age-to-age factors:

XAkj = Xk,K—k+1fK—k+1 ---fj—l
(1-9)

In equation (1-9), we use the latest known observation of the accident year k to predict
the cumulative losses for each of the next development period by multiplying the latest
observed cumulative loss with the age-to-age factors corresponding to those steps.

Using the estimated cumulative losses, we can estimate the incremental losses:

17kj = Xk,K—k+1f1<—k+1 ---fj—z(fj—l - 1)

(1-10)

15



The derivation is shown in the following procedures:

Yeji = Xij — Xk j-1

= Xk,K—k+1fK—k+1 ---fj—zfj—1 - Xk,K—k+1fK—k+1 ---fj—z

= Xk,K—k+1fK—k+1 ---fj—z (fAj—1 -1

The sum of these incremental future losses are the outstanding loses, R, which can also
be calculated as

R\k = XAk] - Xk,K—k+1 = Xk,K—k+1(fK—k+1 ---f]—1 -1
(1-11)

Because outstanding losses is the sum of all losses that have not occurred for the accident
year, we can use the predicted ultimate loss X, ; minus the latest observed 10Ss X, x_j+1
to get the estimated outstanding loss.

The total outstanding losses across all accident years can be calculated by summing up
the outstanding losses for each accident year, i.e.

K-1
R= Z B,
k=1

(1-12)

16



1.5. Numerical Example

With the necessary background illustrated earlier in the chapter, we can use the chain
ladder method with weighted average age-to-age factors to predict future cumulative
losses based on given data.

The results are as follows:

Cumulative Paid Losses in Development Year ($000)

Accident Year K\J 1 2 3 4 5 6 7 8 9 10
1988 1 41,821 76,550 96,697 112,662 123,947 129,871 134,646 138,388 141,823 144,781
1989 2 48,167 87,662 112,106 | 130,284 | 141,124 | 148,503 | 154,186 | 158,944 | 162,903 | 166,301
1990 3 52,058 99,517 126,876 144,792 156,240 165,086 170,955 176,346 180,731 184,501
1991 4 57,251 106,761 133,797 154,668 168,972 179,524 187,266 192,924 197,721 201,845
1992 5 59,213 113,342 142,908 165,392 179,506 189,506 196,828 202,774 207,817 212,151
1993 6 59,475 111,551 138,387 | 160,719 | 175475 | 185,209 | 192,364 | 198,176 | 203,104 | 207,340
1994 7 65,607 110,255 137,317 | 159,972 | 174,108 | 183,766 | 190,866 | 196,632 | 201,522 | 205,725
1995 8 56,748 96,063 122,811 142,227 154,795 163,381 169,693 174,820 179,168 182,904
1996 9 52,212 92,242 116,312 | 134,700 | 146,603 | 154,735 | 160,713 | 165569 | 169,686 | 173,225
1997 10 43,962 79,788 100,608 116,513 126,809 133,843 139,014 143,214 146,775 149,836

Age to age factors f1 2 3 f4 5 6 f7 8 f9

values

Table 1.16

Try to work out the triangle and see if your answer matches table 1.16.

17



2. Stochastic Models

This chapter provides the background for Generalized Linear Models (GLMSs). In GLMs,
the response variables are expressed as a linear combination of the predictors. GLMs
generalize linear regression, allowing for error distributions other than a normal
distribution. Response variables for GLMs can have any distribution from the
Exponential Dispersion Family (EDF), which include the normal distribution.

GLMs will be discussed in more detail in the next chapter. After introducing EDF, the
later parts of this chapter focus instead on the family of distributions for the response
variables of GLMs. Other aspects of GLMs, such as covariates and goodness-of-fit, are
also discussed in this chapter.

2.1. Exponential Dispersion Family

The response variables of a GLM can take on a distribution that belong to the family of
distributions called the exponential dispersion family (EDF). In this section, we discuss
the definition of distributions of EDF, and sub-families of EDF that relate to the topic of
this paper.

2.1.1. The Exponential Dispersion Family in General

Introduced by Nelder and Wedderburn (1972), the distributions that belong to EDF must
have the probability density function (pdf) of the following form:

¥6 — b(6)
a($)

(2-1)

Inn(y;6,¢) = +c(y, ¢)

where
7(.) = the actual probability density function
y = an observation/predictor
6 = location parameter; also called canonical parameter
¢ = dispersion parameter/scale parameter

b(.) = cumulant function that determines the shape of the distribution

exp(c(y, ¢)) = normalizing factor, which make 2 f(v;0,9) =1

18



For the distribution of an EDF, we need to make the following assumptions:

1. Functions a(.), b(.) and c(.) are continuous.
2. b(.) is one-to-one and twice differentiable, with the first derivative also one-to-

one.

There are many well-known distributions that are from the EDF. By selecting specific
functions of a(.), b(.) and c(.) dependent on the observations and parameters 6 and ¢,
we can obtain a distribution of this family, denoted EDF (6, ¢; a, b, ¢).

Table 2-1 below (also found in Table 2-1 of the monograph) contains examples of the
distributions from the EDF

Distribution b(0) a(p) c(y, o)
Normal 1 o) 1[y?
— 02 — =
5 > Iq‘b + ln(Zmb)l
Poisson exp 6 1 —Iny!
Binomial In(1+ e? n-1 n
( ) In (ny)
Gamma —In(-0) vt vin(vy) —Iny — In(I'v)
Inverse - o) 1 1
w | o ey
Gaussian ( ) 2 [ln npy” + ¢y
Table 2-1
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Proof for the normal distribution as a member of EDF

Recall that the normal distribution has the following pdf

f(x; U, 0'2) = e_E(T)Z

Using the notations for EDF, for the normal distribution we select the following functions
ofa(.),b(.)and c(.)

a(p) = ¢

1
)
b(@)—ZG

0.8 = 2%+ in2ng)
c(y,p) = AL n(2n¢
If we write the pdf in EDF form (2-1) with the above functions, we obtain

1.,
y@—ie

Inn(y; 0,¢) = 5

1[y?
3 la + ln(ZTL’d))l

B 1(—2y9+92+y2

1
s > — Eln(Zmp)

2
<ﬂ> _ %ln(chp)

which is equivalent to

1 2
ﬂ(y;0,¢>)=me Ve

Note that if we let (.) = f(.), 8 = u, ¢ = 02, and y = x, this is the same as the first
pdf we have for the normal distribution. m
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Proof for Poisson distribution as a member of EDF

Recall 2-1:

6 —b(0
Inn(y; 6,¢) = qub)()-{_ c(y, ¢)

For Poisson distribution, use (see table 2-1)

a(p) =1,b(0) =exp0,c(y,p) =—Iny!
Substitute function a, b, and ¢ in (2-1), we have:

y6 — ef

Inn(y; 0,¢9) = —Iny!

eyee‘ee

=> n(y;0,$) =—,

_ (ee)ye_(ee)

which is the same as

when e? =l,y=x.m
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Proof for binomial distribution as a member of EDF

Recall 2-1:

6 —b(0
Inn(y; 6,¢) = qub)()-{_ c(y, ¢)

For Binomial distribution, use (see table 2-1)

a() =n%,b(6) = In(1 +¢?),c(y,¢) = In )

Substitute function a, b, and ¢ in 2-1:

_ _y9—1n(1+ee) n
Inn(y;0,¢) = = +In (ny)
= nyf — nln(l + eg) + In (;;)

=> n(y;0,¢) =e™?(1+e%) " (T:;)

)n+ny—ny n

1+ e? "y)

= (e (1 -}-199>ny (1 -}-199> (7:1)’)

e \" 1 \"""Y,n
=<1+e9> (1+e9) (ny)

_ (ee)ny<

n-ny

which is the same as

flkin,p) = p*1—p)"* (})

[’}
fork=ny,p=1i7,andn=nl
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Proof for Gamma distribution as a member of EDF

Recall 2-1:

6 —b(0
Inn(y; 6,¢) = qub)()-{_ c(y, ¢)

For Gamma distribution, use (see table 2-1)
a(¢p) =v1,b(0) = —In(—-0),c(y,¢p) = vin(vy) —Iny — In(I'v)
Substitute function a, b, and c in 2-1:

6 + In(—6
Inn(y; 0,¢) = yv—_nl() +vin(vy) —Iny — In(I'v)

= vy0 + vin(—0) + vin(vy) —Iny — In(I'v)

e’ (=6)" (vy)”
vyl

=> n(y;6,¢) =

e?? (—0vy)Y

which is same as

whenx =vy,I'(a) =T,0' = —%,a

Il
<
[ |
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For a random variable Y that follows an EDF distribution, it can be shown that
E[Y]=b'(6)
(2-2)

Take the normal distribution as an example. We know that b(8) = %92 for a normal
distribution. Thus its derivative is

b'(6) =6

Recall that we had 6 = u for the normal distribution, so the normal distribution satisfies
(2-2).

The variance of the same variable Y should also satisfy
Var[Y] = a(¢)b"(6)
(2-3)

Using the normal distribution again, we know that Var(Y) = ¢2. Because a(¢) = ¢ =
o?and b"(0) =1,

Var[Y] =0%-1=a(¢)b"(9)

Moreover, because b(.) is one-to-one by definition, we can take the inverse of E[Y] =
b'(0) and isolate 6 in equation (2-2) as

6 = (b)) EY]D
Denote E[Y] as u, we obtain
0= ()"
(2-4)

This explains the description of 6 being a location parameter, as it is a function of the
center, u, of the distribution.

For the variance of Y, we can rewrite (2-3) using the variance function derived from (2-
4)

V() =b"((b") ()

(2-6)
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Equation (2-3) becomes
Var[Y] = a(¢)V(w)
(2-5)

In this form, we can express the variance of Y on p and ¢. This means that we have
variance in a form that depends on the mean and the scale parameter.

In addition, for practical purposes, we make the following restriction to a(.) in this paper

ap)=2

(2-7)

where we usually assume w = 1, 50 a(¢) = ¢.

2.1.2. The Tweedie Sub-Family

Introduced by Tweedie (1984), the Tweedie sub-family belongs to the EDF with the
following restriction to the variance function

VW) =wuP ,p<0orp=>1
(2-8)
Using the relations in (2-5) and (2-7) (where we assume w = 1), we have that

VarlY] = a@V ) = 2v () = v = oy

Thus we can see in the Tweedie Sub-Family, the variance of Y is proportional to the
power of the mean.

Using the relation between , 6, and V' (u), we can further show that

N
i

b(®) = (2-p) A —-p)o]*P

(2-9)
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Note that using (2-9) and the relation of u = b’(8), we can derive p as

p=Db'(6)

= @-pia-ps (C2) 67

[N
I
=

2-p 1

= (1-p)7'(1 - p)iPoT

11
= (1-p)TP6T

and

b"(0) = (1 - P)ﬁ(l - P)‘lQﬁ_l =(1- P)lz;p@l‘”
From (2-6) we know V(u) = b"((b")"*(w)) = b"(8), therefore

D p
1_

P 11
V() = b"(0) = (1 - p)TP0T7 = (1 = p)T76T7) = pu?
which is consistent with (2-8).

From the above derivations, we also showed that

1

pu=[1A-p)o]-?
(2-10)

And from here, we obtain that for distributions of Tweedie Sub-Family,

BRI
= — 1-p =
0=(ka-pT7) =i .

Using the above relations, we can rewrite the pdf of Tweedie Sub-Family distributions as

yult™?  urP
1-p 2-p
¢

(2-11)

Inn(y;u, ) = +c(y, )

denoted Tw(u, ¢; p).
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This is derived from the definition of EDF general formula (2-1), where for

0 — b6
In(y: 6, ) =VT¢)()+c<y,¢)

1_
we know that 8 = ’iT: and

R e
‘u pll—p ‘u p

1-p _2—p

N

b(8) = 2 —p) (1 — p)O] TP = (2 — 1) [(1 —p)

In addition, because we restrained a(¢) = ¢, by substituting ’%: for 6, ZZT_: for b(0),
and ¢ for a(¢), we can thus obtain (2-11).

Example distribution from Tweedie sub-family — normal distribution

In addition to being a distribution from the EDF, the normal distribution also belongs to
the Tweedie sub-family. As we know of the normal distribution, for Y~Normal(u, o2),

Var[Y] = 0% = ¢ = a(¢) - 1= a($)V (1)
And because we also know that for a normal distribution, 8 = p.
Thus b(8) =562 = - 2, which satisfies (2-9), and

17 _dz 1 2 _d — —
b (@—E(EH)—@(M)—l—V(ﬂ)

where we have p = 0, which satisfies (2-10).
Using w, ¢, c(y, ) = _%[y?f + ln(an))], with p = 0, we obtain from (2-11)

yult™?  urr
1-p 2-p

Inn(y;u, @) = % +c(y,d)
[yul‘p 2‘p]
_ 1—p‘2—p__1Ff l
5 A + In(2n¢)
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So for m(.), we obtain

1 CAR v
ﬂ(y:u.qb):\/z_e 2e

Beside the normal distribution, Table 2-2 below contains more examples of the Tweedie
sub-family with different p values:

Distribution p b(6) U Inm(y; u, d)
Over-dispersed 1 exp 6 exp(6) lylnu—ul
Poisson ¢
Gamma 2 In(—6 1 _Y_
(—6) = [ m n ‘u]
¢
Inverse 3 1 -1 y 5\, 1
—(—26)2 —260)72 —(Zu?)+=
Gaussian (=26) (=26) [ (2 i ) '“]
¢
Table 2-2

2.1.3. The Over-Dispersed Poisson Sub-Family

The Over-Dispersed Poisson (ODP) distribution was introduced in Table 2-2 at the end
of the previous section. This distribution plays a central role in the rest of the paper,
particularly in the stochastic models that support the chain ladder algorithms. Thus we
introduce ODP distribution in more details here.

As noted in the table, the ODP distribution is part of the Tweedie sub-family with p = 1.
We will thus denote it as ODP (u, ¢), because p is fixed.
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The pdf of ODP (Table 2-2) is as follows:

y U
wsi ) = el 670

(2-14)
fory=0,¢,2¢,..and u = e°.

We can rewrite (2-14) in the general form of distribution from EDF

l —
Inn(y; u, @) = % +c(y, ¢)

where inthiscase, 8 = Inu o u=e? ,b(0) =u = €.

The unit total probability mass, exp c(y, ¢) is obtained if

oo )]

(2-15)

If we substitute (2-15) into the pdf of ODP (2-14), we can obtain

Feh
n(y; u, @) = e
)
)
(2-16)

fory =0,¢,29¢, ...

the monograph claims from here that from this pdf, we can actually observe that the
Poisson distribution can be represented by ODP as

%~Poiss (%)
(2-17)

However, this is not true, as the form does not match exactly the distribution of the
Poisson distribution.



Recall the Poisson distribution as the following form:

e

x!

fx (e 4) =

However, from (2-17), we obtain

which does not match the form in (2-16).

On the other hand, if we let ¢ = 1 in (2-16), the obtained pdf is
‘u'ye_ﬂ

y!

rwl) =

Which does reduce to simple Poisson distribution denoted
Y~Poiss(u)

(2-20)

2.2. Generalized Linear Models (GLMs)
2.2.1. Definition

Let #(.; u, ¢) denote a distribution of the EDF, and denote Y;, i = 1,2, ..., n as a sample
of observation.

Suppose that each Y; has a known g-vector of predictors (or covariates, which is an
independent variable of a model), x;;, x;5, ..., X;4. Denote its transpose as x; =

(X1, Xiz) o) xiq)T. Then a model is called a generalized linear model (GLM) if it
satisfies the following 3 conditions:

1. Y, ~n(.; w, ;) where u; are unknown parameters.

2. h(u;) = x'p,where h(.) it is a one-to-one link function in (—oo, +0); B is a g-
vector of unknown parameters, where g = (B4, B, ...,Bq)T.

3. Observations Y; are stochastically independent.
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In the GLM, the variate Y; is called the response, and the x7 5 is called the linear
response.

Denote the dispersion parameter ¢;, where
bi = d/w;
(2-21)

The ¢ is the overall dispersion parameter, and w; are the weights associated with each ¢;
that corresponds to the variates Y;. Usually it is assumed that the overall ¢ unknown but
w; are known.

While GLM is more generalized than a linear regression, the GLM is a regression model.
Its relation with linear regression can be seen in the following example:

if we let the density function (.; w;, ;) be the normal density, n(.; u;, ¢;), and let the
link function h = identity, then we can rewrite condition (1) and (2) as

Y, = xIB + €; with & ~ N(0, ¢;)
(2-22)
which is a weighted linear regression model.

For simplicity, we can also express condition (2) in vector and matrix form, which will be
used frequently in the following chapters. The matrix X is called the design matrix of
regression. Let

Y —the n x 1 vector with i-th component Y;
u —the n x 1 vector with i-th component y;

X —the n X g matrix with i-th row x; :

[xll xlq]
xnl an
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Then we can rewrite condition (2) as
p=h"tXB)
(2-23)
where p isan n x 1 vector like Y, and § isa g x 1 vector.

In GLM, each variate will have one canonical parameter (or location parameter). Thus
combining all canonical parameters, we obtain an n-vector (64, ..., 8,,) for the GLM.
Denote this vector from now on as 6, then recall from (2-2), which states that

E[Y] = u = b'(68), and combine with (2-23), we obtain the following

b'(6) = E[Y] = = k' (x{B)

(2-24)

2.2.2. Categorical and Continuous Covariates

Covariates can be divided into two types: categorical and continuous covariates.
Categorical covariates are covariates that are discrete, such as possible numerical values
from rolling a dice, or non-numerical values such as genders. Continuous covariates are,
as the name suggests, numerical within a continuous range, such as age and height.

Categorical Variates

Suppose a categorical variate has m possible values, where m is usually referred to as the
levels of the variate. Denote these possible values as &;, ..., &,,,. In the GLM, we can
represent this as 0-1 variates for a total of m variates, denoted xj,,1, Xx42, «-» Xk 41, With
other regression covariates denoted as X, X, ..., X, Xx+m+1, - 10e 0-1 variates are
defined as follows:

1, if the categorical variate assumes the value &,
Xktr = P
0, otherwise

(2-25)

For example, if we have gender as our categorical variates in a model, we obtain a level
of variate of 2, where

. {1, if the person selected is a male
Xhetr = 0, if the person selected is a female
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Note that for r = 1,2, ..., m,

m

X+r = 1
r=1

(2-26)
which means that only one category can be selected at a time.

Applying this concept to loss reserve, for example, if we want to include development
years as a covariate in our model, we need to treat the development years as categorical
variates & with J levels. Specifically, we have the following 0-1 variates

I, if$=j

Xpai = ;
ket {0, otherwise

Continuous Variates

Because continuous variates take numerical values, they simply represent themselves in a
regression model. For example,

Ly (x) = min[M — m,max (0,x —m)] withm < M
(2-27)

has unit gradient between m and M and constant outside this range. Visually this has the
following graph from the monograph

Figure 2-1. lllustration of the Function L,,u(x)

N
LmM(x)
M-m

v

x
m M
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A specific form of L,y (x), Ly, m,,, (%), are basis functions, which are usually used to
construct piecewise linear functions, called linear splines. An example of linear splines is
as follows:

i

(2-28)

which is constructed as a linear combination of the basis functions, and has knots of x =
my, ..., Mg, and gradient g;.

2.2.3. Goodness-of-Fit and Deviance

If we fit a model with parameters (arranged in a vector) g to a set of observations (also
arranged in a vector) Y, and the parameter estimates 8 are maximum likelihood
estimates (MLESs) of S, then the vector of fitted values ¥ is the MLE of u, written as

Y =nh"Xp)
(2-29)

To measure how well the MLE parameter estimates 2 model the observations means, we
need to test the goodness-of-fit of the model and MLEs. A common measure of
goodness-of-fit of a GLM is by calculating its scaled deviance, which is defined as

D(Y,7)=2[nn(Y; §9,¢)—Inn(Y; 8,9)]

= ZZ[ln n(Yi; ), cl)) —In n(Yl-; 0, cl))]
i=1
(2-30)
where @ is the location parameter vector and 8 is the MLE of 8, 8 is the estimate of 6

in the saturated model (which means that each observation of the model has a
corresponding parameter so that ¥ = Y).
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For simplicity, refer to the unscaled deviance as simply deviance. For a deviance
calculation, the scale parameter ¢ is ignored (equivalently, set to 1) and the equation is
defined as follows

n
D(V,9) =2 ) [tnn(¥; 69,1) - lnm(¥;; 6,1)]

i=1
(2-31)

The MLE minimizes D*(Y,Y) with respect to 8.

2.2.4. Residuals
Pearson Residuals
The standardized Pearson residuals for associated observations Y; are defined as
R = (Y, — 1)/
(2-33)

with &; being the estimate of o; and 6 = Var[Y;]. We will also use this in Chapter 5 for
Bootstrapping residuals for re-sampling.

Assuming that Y, is approximately unbiased as an estimator of y;, and
Var[¥, — Y] = Var[¥]
then we have the following properties for the standardized Pearson residuals:
E[RF]1=0
Var[RF]1=1
(2-34)

Visually, this means if we plot the residuals, they should scatter evenly about the liney =
0, as shown in the following figure from the monograph
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Figure 2-2. Example of Unbiased Approximately Homoscedastic Residual Plot

sidrespearson

Beside the unbiasedness, note that the scatterplot also has a uniform dispersion from left
to right. This feature is called homoscedasticity, and together with unbiasedness, these
are crucial parts for model validation.

Deviance Residuals

The standardized deviance residual is defined as

1

D LAY
RP = sgn(r; - %) (3

(2-35)

Where sgn is the sign function defined as

-1, x <0
sgn(x) ={ 0, x=0
1, x>0

and d; is the i-th observation of deviance D*(Y, Y).

The deviance residual is useful because it is not affected by non-normality in the
observations as the Pearson residuals are, and thus are more applicable when handling
non-normal distributions. Figure 2-4 and 2-5 from the monograph show an example of
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plotting the standardized Pearson residuals and deviance residuals for the same dataset
and model. The figures show that while the histogram of the standardized Pearson
residuals is heavily skewed toward the right, the deviance residuals greatly reduce the
skewness and are more normally distributed.

Figure 2-4. Histogram of Standardized Pearson Residuals
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Figure 2-5. Histogram of Standardized Deviance Residuals
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2.2.5 Outliers and the Use of Weights
Use of weights in the case of heteroscedasticity
Suppose a GLM has the property of homoscedasticity, specifically
Varly;] = ¢V ()
(2-36)

This means the variance of an observation Y; depends on both the dispersion parameter
and the variance of its mean.

Then, suppose the standardized Pearson residual we observed shows heteroscedasticity.
For example, that the residuals above age 55 has standard deviation twice as large as
those below age 55.

If we express the standardized Pearson residual using equations (2-5), (2-7), (2-33),
which are

Var[Y] = a(¢)V(w)
(2-5)
a(p) = ¢p/w

(2-7)

Y;-%; ~
R{ =~—* where 67 = Var|[Y]]
12

(2-33)

Then the standardized Pearson residual can be expressed as
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The observed heteroscedasticity suggests that ¢ takes different values for those with age
above 55 and those with age below 55. Specifically, because the standard deviation is
twice as large, the value of ¢ for above 55 is 4 times as large as for ¢ below 55.

Therefore, if we want to remove the heteroscedasticity in this model, we can use weights
to reflect the variation in ¢ over age. Specifically, for the formula of

a(p) = d/w

which is for the ¢ that apply to all age, we can adjust it to

a(¢;) = ¢/w;

with ¢ being a constant, and ¢; and w; are for the corresponding it observation.

Then, let
w; =1 ,age <55
1
w; =7 ,age > 55
such that

a(¢p;) = ¢p,age <55
a(p;) = 4¢,age > 55

In this way, the model reflects the differences in ¢ for age below and above 55, where the
value of ¢ is now 4 times as large for age above 55 as that below age 55. Thus we can
eventually achieve homoscedasticity.

From the above example we can conclude the following: in the default setting with no
specific introduction of weights, all observations are equally weighted for the purpose of
parameter estimation. However, if certain groups of observations have variance larger
than others, they should be weighted less.

Also, estimation efficiency will be optimized when each observation is weighted
inversely proportional to its ¢. In the above example, where the value of ¢ is 4 times
larger, the assigned weight of w; = 1/4 is the inverse of the coefficient for a(¢;).

Therefore, when we see patterns of heteroscedasticity in the residual plot, we should
adjust the weights of observations so that the weights are inversely proportional to the
variance of their residuals.
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Outliers

In residual plots, we may identify observations with very large residuals, called outliers.
These observations influence the accuracy of our regression analysis because they can
move our fitted model away from its main body.

When we observe an outlier, we can exclude it from our analysis. However, we should be
careful because outliers could be the representation of a major change in the environment
of the population. In this case, the exclusion of outlier would be inappropriate.

Figure 2-6. lllustration of Distortion of Regression by Outlier
18
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2.2.6 Forecasts
Recall that
E[Y]=p =h(x{B)
(2-38)
In this model, covariates x; includes factors that can influence the values of losses.

When we estimate the losses for future, the difference in covariates x; is that it includes
time variates related to the future.

To distinguish the difference, for future observations, we use notation * to suggest its
purpose of forecast, or more commonly referred to in this paper as future estimation. For
example, (2-38) should be then written as

E[Y;1=ui =h(x;"B)
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or using vector form
pw=h"t(X"p)

(2-39)

where X* is the matrix with rows being x;" and called the forecast design matrix.

Then, the future estimates of Y™ can be expressed as
Y*=p"=h(X"B)

(2-40)

This notation will be used for the rest of the paper to identify future observations.

41



3. Stochastic Models Supporting the Chain Ladder Method

3.1. Mack Models

The Mack model is a stochastic chain ladder model introduced by Mack (1993). Section
3.1. provides the theoretical support, and distributional characteristics for the chain ladder
that Chapter 1 has explained.

3.1.1. Non-Parametric Mack Model
There are 3 conditions for the Mack model:

(M1) For different accident years, i.e. k; # k,, the incremental losses such as Yy, ;; and
Y2 j» are stochastically independent.

(M2) Foreach k = 1,2,..., K (i.e. for each row), the X, ; (j varying) form a Markov
chain. A Markov chain is a chain of observations in which the probability and size of the
j-th observations is only affected by the previous, (j — 1)-th observations, i.e.

P(Xj|X1 = x1, ., Xjo1 = xj_1) = P(X;|Xj-1 = xj4).
(M3) Foreachk =1,2,..,Kandj =1,2,...,] — 1,

(@) E[Xy,j+1] Xij] = fjXi; for some parameter f; > 0
(b) Var[Xy ji1| Xkl = ajZij for some parameter g; > 0

Recall here that f is the age-to-age factor, and the expectation of X for the next
development period is calculated by multiplying the current observation with the f for
the current development period.

o; is the standard deviation and the variance of X of next development period is
calculated by multiplying the current observation by the ajz of the current column.

The Mack model is stochastic because it considers both expected values and the
variances of the observations. But it is non-parametric as it does not consider the
distribution of observations.
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Mack derived the following result for this model:

Result 1: The conventional chain ladder estimators f] of the age-to-age factors f;
according to (1-8) are:

() unbiased
(b) minimum variance among estimators that are unbiased linear combinations of

the f,; defined by (1-4)
Recall (1-4)

~ Xij

k=1,2,...K-1,j=1,2,....min(J —1,K — k)

where the f; ; are the age-to-age factors for each cumulative observation X ; to the next
Xy j+1, Where as in (1-8)

K-j
Fo_ Zk=1 Xk,j+1

f}' - K—j
Zk=iij

where the f] are the weighted age-to-age factors for the development period j, and can
also be calculated by summing the weighted fkj.

Result 2: The conventional chain ladder estimators R, for the total outstanding loss R, of
accident year k from (1-11) is unbiased

(Recall (1-11):
ﬁk = ij - Xk,K—k+1 = Xk,K—k+1(fK—k+1 ---fj—1 -1

where the total outstanding loss is obtained by subtracting the last known observation
from the estimated ultimate loss.)
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3.1.2. Parametric Mack Models

EDF Mack model a parametric version of the Mack model, which means the model
assumes the observations follow a distribution. Parametric versions of the Mack model
were studied by Taylor (2011). Thus for EDF Mack model, the last condition of the
model needs to be changed, and are as follows:

(EDFML1) For different accident years, i.e. k; # k5, the incremental losses such as Yy, j;
and Yy, are stochastically independent.

(EDFM2) For each k = 1, 2, ..., K (i.e. for each row), the X, ; (j varying) form a Markov

chain. A Markov chain is a chain of observations that the probability and size of the j-th
observations is only affected by the previous, (j — 1)-th observations, i.e.

P(Xj|X1 = x1, ., Xjioq = xj-1) = P(X;|Xj-1 = xj4).
(EDFM3) Foreachk =1,2,..,Kandj =1,2,...,] — 1,

(@) Y jr+1| Xxj~EDF (6kj, drj; a,b, )
(b) E[Xy,j+1] Xkj] = fjXi; for some parameter f; > 0

Here, (EDFM3a) provides the distributional assumptions for the observations to some
specific member of the EDF.

(EDFM3Db) retains the assumption for expected values in (M3a).

Note that for the parametric form of Mack model, there is no specific condition for the
form of variance, which allows for a more general form of variance for the model than
the non-parametric model. However, there is the additional restriction of observations
following a distribution from the EDF.

Recall from Chapter 2 that Tweedie and ODP are 2 sub-families of EDF, so the
parametric Mack models for these families of distributions satisfy the same conditions as
EDF Mack model, but with the replacement of (EDFM3a) by:

Tweedie Mack model:
Replace (EDFM3a) With Y ;1| Xy j~Tw (i, Prji P)
ODP Mack model:

Replace (EDFM3a) with Yy ;1| Xi;~ODP (i, P )
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Taylor derived the following result for the EDF Mack model:
Theorem 3.1.

Suppose the dataset of past observations, Dy, is a triangle, i.e. K = J, which has
observations that satisfy the conditions (EDFM1-3) for the EDF Mack model.

(a) If a specific assumption of variance for the non-parametric version of the Mack
model, (M3b), also stands in addition to (EDFM1-3), then the model’s MLEs of
fj and the conventional chain ladder estimators f] from (1-8) are the same, and are
both unbiased estimators of f;. Thus Result 1 from Section 3.1.1 holds.

(b) If the model assumption is restricted to an ODP Mack model and the dispersion
parameters ¢, ; are only column dependent, i.e. ¢ ; = ¢; (note that the condition
(M3b) holds in this case), then the f] from (1-8) are minimum variance unbiased
estimators (MVUE) of the f;.

(c) If the assumptions in (b) hold, then the estimators )?kj and R, for cumulative
outstanding losses and total outstanding losses X ; and R, from (1-9) and (1-11)
are also MVVUEs.

These results and theorems also extend to some cases when Y, ; follows a binomial
distribution or negative binomial distribution.

Numerical Example:

In this section, we use the data set in Table 1-1 to illustrate the manual process of the
Mack model.

Recall that the parameters for the Mack are f;, where by condition (M3a) and (EDF3b),

E[Xije1|Xij] = fiXe;

Note that this is the identical to the chain ladder algorithm. For known age-to-age factors
fj and past observation X ;, the expected value of observation of the next development
period Xy ;.1, should be the product of f; and X, ;. Also recall part (a) of Theorem 3.1:
for an EDF Mack model with additional assumption (M3b) for variance, the estimated
parameters f] are the same for Mack model and conventional chain ladder algorithm.

Thus, to manually calculate the parameters, we simply apply the conventional chain
ladder algorithm.
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Recall from Chapter 1, for the conventional chain ladder algorithm, estimates of future
cumulative losses are obtained by means of (1-9), where

ij = Xk,K—k+1fK—k+1 ---fj—1
And we can use the cumulative estimates to obtain the incremental future losses, where
Yeji = Xij — Xy j—1

The age-to-age factors (calculated by taking the weighted average) by conventional chain

ladder algorithm, f] were defined in Chapter 1, (1-8) as
- Yecd Xy 1 =1 1

= ok, =1l

Zk:lxkj

Using the dataset of Table 1-1 (adjusted to cumulative observations, which is Table 1-2),
we can obtain the following age-to-age factors

Average age-to-age factor for development year

1 2 3 4 5 6 7 8 9

1815 1261 1158 1.088 1055 1.039 1.080 1025 1.021

Table 3-1

And the cumulative outstanding losses in Table 3-2 from the monograph
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Example of obtaining the age-to-age factor £,, the cumulative and incremental
observations X;q94 3 and ¥;06 5

For this example, because the observations used for the age-to-age factors are cumulative,
we need to refer not to the original incremental dataset, but the cumulative dataset shown
in Table 1-2, derived from Table 1-1, shown partially below

Cumulative Paid Losses ($000)

k\j 1 2 3 4 5 6 7 8 9 10

1 41,821 76,550 96,697 112,662 123,947 129,871 134,646 138,388 141,823 144,781
2 48,167 87,662 112,106 130,284 141,124 148,503 154,186 @ 158,944 162,903
3 52,058 99,517 126,876 144,792 156,240 165,086 170,955 176,346

The age-to-age factor for development year 8 in the table is obtained using the equation
(1-8) shown above as follows:

Y2 ;1 Xpo 141,823+ 162,903
Y2_ X.g 138,388+ 158944

1.025 =

The estimated cumulative observation X5 , can thus be calculated using (1-9) as
X350 = X35 X fg = 176,346 x 1.025 = 180,731

and the estimated incremental observation ¥ 4 is
V50 = X309 — X35 = 180,731 — 176,346 = 4,385

3.2. Cross-Classified Models

Unlike the Mack Model which uses the cumulative observations Xy ;, the cross-classified
(CC) model uses incremental observations Yy ; for estimating parameters and future

losses. The EDF CC model of the past and future observations in Df = Dy U Dg satisfy
the following condition:

(EDFCC1) The random variables Y, ; € D¢ are stochastically independent.
(EDFCC2)Fork =1,2,...,Kandj =1,2,...,],

a) Yk}"‘EDF(Hk}, ¢kj; a, b, C),
b) E[Y,] = axp; for some parameters ay, ; > 0; and

C) 25=IIBJ = 1
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Note that because CC models are subject to (EDFCC1) and (EDFCC2b), they are non-
recursive, which is different from the Mack model. Intuitively this aligns with the dataset
assumptions of Mack and CC models, because Mack models uses cumulative data, where
data of each development period is dependent on the data of the previous, while the CC
model uses incremental data, which is independent both by accident year and
development year. The EDF CC model also consists of parameters for both the rows k
(accident periods), and columns j (development periods), whereas the parameters of the
Mack model f; only concerns with the columns j, because the condition (M2) of X ;

varying j form a Markov chain already plays the role of parametrizing the observations in
each row. The last condition, (EDFCC2c) is placed to remove the excessive parameters

that can occur, by scaling all the a; and ; with the standard Zle B; = 1. This restriction

will ensure the uniqueness of the model parameters, and that the parameter estimates &,
are the estimated ultimate losses.

As with the Mack model, there exist the Tweedie and ODP sub-families of the EDF CC
family, which are called the Tweedie CC family and ODP CC family respectively. For
the Tweedie CC model and ODP CC model, there would only be change to the condition
(EDFCC2a), which would become:

Tweedie CC model — replace (EDFCC2a) by ij~Tw(ukj, bk p).
ODP CC model - replace (EDFCC2a) by Y, ;~ODP(uy;, dy;)-

Denote the MLEs of the parameters a; and ; as @ and ,(?]-, and denote the fitted values
of Y,; € D¢ as ?kj = &kﬁj. Then the following theorem by England & Verrall (2002)
hold true for the ODP CC model:

Theorem 3.2. Suppose that the data array Dy is a triangle, i.e. K = J, with observations
subject to the ODP CC model defined by:

(EDFCC1-2)
(EDFCC3a) restrict the Yy ; in (EDFCC2a) to ODP distribution, i.e., ij~0DP(ukj,¢kj);
(EDFCC3b) the dispersion parameters ¢ ; are identical for all cells in D¢, i.e., ¢; = ¢.

Then the MLE fitted values and estimates ¥, ; are the same as those given by the
conventional chain ladder from (1-10).

[recall (1-10): Y = Xpx—ks1fx—r+1 - fj—2(fi—1 — 1), where f; are the age-to-age
factors by the conventional chain ladder method]

49



However, the same result does not hold for more general distributions, such as the
Tweedie sub-family and EDF distributions.

The MLEs ?kj is not unbiased in most cases for ODP CC model. But bias can be
corrected, and according to Taylor (2011) the following result holds true for the bias
corrected situations:

Theorem 3.3. Suppose that the data array Dy is subject to the same conditions as in
Theorem 3.2., and that the current and future fitted values Y, j and R, are corrected for
bias. Then they are MVUEs of Y, ; and R, respectively.

Recall that in Theorem 3.1 for the ODP Mack model, there was a similar statement of
the X, ; and R, being MVUEs of X, ; and R;, with some additional restrictions. Thus

Theorems 3.1 and 3.2 conclude that the future estimates obtained from the ODP Mack
and ODP CC models are both identical to the conventional chain ladder, despite the
models having different formulations.

Numerical example

In this section, we use the data set in Table 1-1 to illustrate manual process of the CC
model.

Because the ODP CC model uses the incremental dataset Y, ;, the parameters involve both
the accident periods and development periods. The parameters of ODP CC model are a;,
and B;, which represent the ultimate losses for accident period k, and incremental
observations as a proportion of ultimate losses for each development period j,
respectively. They are estimated using the marginal sum estimation equations (Schmidt
and Wunsche, 1998), which calculate the row sum observations and column sum
observations and use these values to find the MLEs for the parameters, &; and Bj by
equating the values with the corresponding sum of MLEs. Mathematically, this is
expressed as

R(K) R(K) R(K) J—k+1 J
Zij=Z@kBj=&k23j=@kz,éj=07k 1- z B;
= j=T"k+2
(3-1)
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Similarly, for column sums we have
cy) c(y ci)
Zykj =2&k:éj =l§jz&k
(3-2)

The following data come from Table 1-1

Incremental Paid Losses ($000)

K\j 1 2 3 4 5 6 7 8 9 10

1 41821 34,729 20,147 15965 11,285 5924 4,775 3,742 3,435 2,958
2 48,167 39,495 24,444 18,178 10,840 7,379 5683 4,758 3,959
3 52,058 47,459 27,359 17916 11,448 8846 5869 5391

The procedure to compute @, and [?j is using formula (3-1) and (3-2) alternately.

To apply the formulas, we first calculate the value for &; using (3-1)

R(1) R(1)
z Y, =41,821+ 34,729 + --- + 2958 = 144,781 = &, Z ,[?J- =a,

Incremental Paid Losses ($000)

k\j 1 2 3 4 5 6 7 8 9 10

1 41,821 34,729 20,147 15965 11,285 5924 4,775 3,742 3,435 2,958
2 48,167 39,495 24,444 18,178 10,840 7,379 5683 4,758 3,959
3 52,058 47,459 27,359 17916 11,448 8846 5869 5391

And thus we get @; = 144,781. Note that in the above calculation we have YW g; = 1
by the condition (EDFCC2c) of the CC model.

With value of &,, we can proceed to the second step to compute 3;, by applying (3-2):

c(10) c(10)

Z Yk,10 = 2,958 = 310 Z C’fk = &15)10

Incremental Paid Losses ($000)

k\j 1 2 3 4 5 6 7 8 9 10

1 41,821 34,729 20,147 15965 11,285 5924 4,775 3,742 3,435 2,958
2 48,167 39,495 24,444 18,178 10,840 7,379 5683 4,758 3,959
3 52,058 47,459 27,359 17,916 11,448 8,846 5869 5391
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Note that we just found @&, = 144,781, and thus we can find 3, as

A 2,958

10 = 122781 V20

Starting from the third step, we have more than one incremental observation to consider
for the row and column sums. For the third step, we apply (3-1) again as the following:

R(2) R(2)
Z Y,; = 48,167 + 39,495 + --- 4+ 3,959 = 162,903 = @, Z BJ-

= &2(.531 +Bz +-t /?9)

=a,(1— .[?10)

Incremental Paid Losses ($000)

k\j 1 2 3 4 5 6 7 8 9 10
1 41,821 34,729 20,147 15,965 11,285 5924 4,775 3,742 3,435 2,958
2 48,167 39,495 24444 18,178 10,840 7,379 5,683 4,758 3,959
3 52,058 47459 27,359 17,916 11,448 8,846 5869 5,391

Because we have found ;, from the second step, for &, we obtain

YR@y,; 162,903

2 - = 166,301
(1—-p,) 1-0.020

&2 =
For the following fourth step, we will need to use both @; and &,. For this step, we apply

(3-2) again for the following relation of column sum:

c(9) c(9)

Z Yio = 3,435 + 3,959 = 3, Z ar = Bo(@y + @,)

Incremental Paid Losses ($000)

k\j 1 2 3 4 5 6 7 8 9 10
1 41,821 34,729 20,147 15,965 11,285 5,924 4,775 3,742 3,435 2,958
2 48,167 39,495 24,444 18,178 10,840 7,379 5,683 4,758 3,959
3 52,058 47,459 27,359 17,916 11,448 8,846 5,869 5,391

And thus for S, we obtain

s XOV  3,435+3,959

= = = 0.024
7 (@, + @&, 144,781+ 166,301

52



To obtain @5, we apply (3-1) for the sum of row 3, and get

R(3) R(3)
Z Ys; = 52,058 4+ 47,459 + -+ + 5,391 = 176,346 = @5 Z B;

=3By + Py + -+ PBg) = @(1 — fo — B1o)

Incremental Paid Losses ($000)

K\j 1 2 3 4 5 6 7 8 9 10
1 41,821 34,729 20,147 15965 11,285 5924 4,775 3,742 3,435 2958
2 48,167 39,495 24,444 18178 10,840 7,379 5683 4,758 3,959
3 52,058 47,459 27,359 17,916 11,448 8,846 5869 5,391
and
. YR®y, 176,346 184501
XAr = — = = = ,
3T (A =By —fio) 1-0.024-0.020
And to obtain Sg, we apply (3-2) once again:
c(8) c(®
Z Yig = 3,742 + 4,758 + 5,391 = Z @y = Pg(@y + @, + @3)
Incremental Paid Losses ($000)
K\j 1 2 3 4 5 6 7 8 9 10
1 41,821 34,729 20,147 15965 11,285 5924 4,775 3,742 3,435 2958
2 48,167 39,495 24,444 18178 10,840 7,379 5683 4,758 3,959
3 52,058 47,459 27,359 17,916 11,448 8,846 5869 5,391
and
Y@y, 3,742 + 4,758 + 5,391

= 0.028

Po= G @, +ay) 144781+ 166301 + 184,501

Repeating the steps, we will get the results in Table 3-3 on the following page:
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Parameter Estimates for ODP CC Model

ilk Q. b
1 144,781 0.293
2 166,301 0.239
3 184,501 0.139
4 201,845 0.106
5 212,151 0.069
6 207,340 0.047
7 205,725 0.035
8 182,904 0.028
9 173,225 0.024

10 149,836 0.020

Table 3-3

After obtaining the estimated parameters, one can find the future estimates using these
parameters. For example, for the same future loss we calculated in the previous example,
Y4 5, using ODP CC model this would simply be

Vy0 = @30, = 184,501 x 0.024 = 4,385

Incremental Paid Losses ($000)

k\j 1 2 3 4 5 6 7 8 9 10
1 41,821 34,729 20,147 15,965 11,285 5,924 4,775 3,742 3,435 2,958
2 48,167 39,495 24,444 18,178 10,840 7,379 5,683 4,758 3,959
3 52,058 47,459 27,359 17,916 11,448 8,846 5,869 5,391

which is consistent with the result from the conventional chain ladder algorithm and the
ODP Mack model. Similarly, we can also check other future estimates of Y ; and find
them all in agreement with the results from chain ladder algorithm and ODP Mack
model, which reinstates that ODP Mack and ODP CC models yield the same estimates
for outstanding losses.

By comparing the parameters in ODP Mack and ODP CC models, we can identify the
special one-to-one relation between the two models (Verrall 2000), which is

j+1 5
f‘]: i=1FM1

Y_B

(3-3)
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or equivalently,
] 1

ni 1fr

'8]+1 (f] - 1)

(3-4)
For example, for f; = 1.158, we would get the following equation from (3-3):

, YtiB 0293 +0.239+0.139+0.106 _ 1158
f3 = 3 B 0293+0239+0.139

For $, = 0.106, we would get the following from (3-4):

1.815 x 1.261
)Hr 1fr_(1 158 — 1) =0.106

Po=(fs- 1815 x 1.261 X .. x 1.021

r=1Jr

Where the portion (f3 - 1) [12-, f, can be understood as the proportion corresponding to
Y, and [I7=, £ as the proportion corresponding to X, ,, or the ultimate cumulative loss.

3.3 GLM Representation of Chain Ladder Models

3.3.1 ODP Mack Model

In section 3.1.2, we mentioned that the ODP Mack Model is a specific case of Parametric
Mack Models with the condition Yy ;| Xy j~EDF (6, ¢, a, b, c) replaced by

Yij+1|Xkj~ODP (U, br;)
Consider the following ODP Mack model:
Yej+11Xiei~ODP ((f; = 1)Xi, b )
(3-5)

Note that in this model E[Yy ;1] = me; = (f; — 1)Xy;. This is derived from the
following:

Yij = Xijr1 — Xij = fiXij — Xij = (ff B 1)ij
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(Note: Recall from Chapter 2 that the distribution of ODP model is (2-14):

+C(y’¢)],for y=0,¢,2¢,..and u = ef

y [_ﬁ
n(y; 1, ¢) = utel ¢
And the Over-Dispersed Poisson Sub-Family is in the Tweedie Sub-Family with p=1.)
On top of (3-5), we add the following condition
dxj = ¢j, independent of k
(3-6)

so that the dispersion parameter ¢ doesn’t depend on k, which was a pre-requisite to
ensure that the MLEs of fj in this ODP Mack Model are chain ladder estimates.

With (3-5) and (3-6), we obtain

Yeje1lXij~ ODP ((f; = 1)Xuj. ¢5)
3-7)
Where we replaced ¢y ; in (3-5) with ¢;.
From formula (1-4) in Chapter 1, we know that
E[Yiej+1lXi] = (ff = D)Xy,

If we replace Y j.; with f;; — 1 to be the variable, with the relation fi; — 1 = Y j41/
Xk, then we obtain

Elfij — UXi] = f; — 1
(3-8)

(This is true because the expected value equation still holds for dividing both sides by
Xkj)

Also,

. Var|Yi i1 Xl _ ;Ui — DXy _ ¢5(fj =1
Var[fkj—1|ij]: [I;(j’gll k]]: J(]X’%,) kJ: ]()ékj )
Jj ]

(3-9)
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Where ¢; is the dispersion parameter. Note that this suggests fr i — 11Xy follows an

ODP distribution with u = f; —1and ¢ = % because the variance of a ODP model is
kj

Var[Y] = ¢u. (This is from Chapter 2 when we discussed the Tweedie sub-family and

Var[Y] = ¢uP, while in ODP situation, p = 1.)

Because ODP family is known to be closed under scaling, which means an ODP variate
is still an ODP variate after it’s divided by some constant, therefore,

$

Xij

(3-10)

For the purpose of developing the GLM, the expected values of estimated fkj — 1]Xy; are
sometimes expressed in the following form:

E[fiy = 11%] = ) (i - Dy
i=1

(3-11)

This expression is usually used for GLM software calculation, where §;; is called the
Kronecker delta which has the value of 1 when i = j, and equals 0 otherwise.

(In words, 3-11 is the summation of multiple Os, and an f; — 1. The purpose of this

complex model is to get all the f; involved in the GLM formula, and the regression can
thus estimate all the parameters at once. An example will be shown in section 3.3.3)

Note that with the setting of (3-10), the model includes ¢; with unknown values. The
following argument will show that the values of ¢; are not required for the purpose of
estimating f;_

To obtain the MLE of f;, we start with the log-likelihood of the claims trapezoid D

6@ = D ey =D

Dk, j*1

(log-likelihood of the trapezoid equals the sum of the log-likelihood for all entries)
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Recall for ODP,
Yy (K
w(y;u, ) = ,u¢e[ ¢’+C(y'¢)],for y=0,¢,2¢,..and u = e®

where e€O®) = [(X) !]_1

¢
here in this example, f; ;_; — 1~ ODP(fj_; — 1’X¢j—1)
k,j—1
1=k
also, frj—1—1= e

Thus, for variable (f ;—; — 1)

(D) = Z {)(fk,j—1 - 1)

DK,j;ﬁl

-1

frj-1-1 fi-1—1 fo

— Z P (fj_1_1)¢j—1/Xk,j—16. ¢j—1/Xk,j—1x[ fk;;;l !l
j—1

Dk, j#1 |- Xk,j_l J

(Pluginy = fria—Lpu=fi1—1L,¢d =dj_1/Xxj-1)

|

Yij/ Xk j-1 fj-1—1 [/ ) )
/(fj—l _ 1)¢j—1/Xk,j—1e bj-1/Xkj-1 I %
j—1

= f !
i) \ l\ X /|

(Replaced fy ;1 — 1 with Yy;/Xy,j-1)

Ykj fj-1—1 v\ Tt
= z ? ((f}—l — 1)¢f—1 * e Pj-1/Xk, j-1 % l( kj >|l )
Dg,j#1 ¢j—1

_ Yei in(r . —qyfimzt_ KijH
Z ¢j_1ln(f]_1 1) - In ¢j_1!

Dk, j#1

]—1
I
I

Xy j-1
Y. -1 Y.
3 (- )
D ¢j—1 j—1 ¢]—1
wIz Xk j-1
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-3 (B )

Dk, j#1

Then, to find MLE of f;, we take the partial derivative of f;_,, replace j with i:

ln(ﬁ - D-(fici— D .
P L e
' Ki-1
Yii

_ P Xei1 In(fio, —-D—-(fi-1 — 1
B af[—l Z d)i—l

DK,i¢1 Xk,i—l

= i1 Z aﬁ (YeIn(fiiy = 1) = X1 (fig — 1))

Dk, iyec(i)

— Xi,i-1)
TD(k l)EC(l)

( y is moved out because it doesn’t change with respect to f;_;, use C(i) instead of Dy
-1

to use only the column that depends on f;_,, drop In [(;"" ) !] because it doesn’t depend

i1
on fi_4)

set=0

Then,

sy ] =0

(k,)eC(i)

Which is true because Yy;/f;_1 — 1 = X, ;_4, for all (k,i)eC(i).
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Then, separate the summation into 2 parts

<fz:ki— 1) - Z (Xiio1) =0

(k,0)€eC(i) (k.D)ec()

Yii
fi-1—1

(k,i)eC(i) (k,i)eC(i)

(Xi-1)

For a specific column i and changing k, f;_; — 1 can be taken out from the summation:

1
fi-i—1

()= D (Kuimn)
(k,0)€eC (i) (k,)eC(i)

More specifically

k—i+1
fi =1 = ke Vi
-1 - Zk_i+1X .
k=1 k,l_l

k—i+1
» k=1 Y 41
fi—lMLE_ k—i+1 y

Which makes sense because these are the weighted average f;_, we get from the chain
ladder method. Also, this argument shows that the dispersion function ¢ doesn’t affect
the estimation of f;_;

GLM of ODP Mack Model:

With the help of SAS, we can easily obtain parameter estimates for the Mack model and
CC model. We use the same dataset as analytical computation for SAS algorithm. For
ODP Mack model, let

i = the vector of Yy

Here, u is not a matrix, because we are using each Yy ; as observations of the dependent
variable Y for the purpose of GLM, such that

T
u=1Y12 .Y Y1 Yo g, Yis)

And the vector of f; to f,, denoted by 3, is what we want to estimate through the GLM

B = (fpfz» ---rf9)T
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Then, for the purpose to include all f; to f; in the regression equation, while only
utilizing one of them in each observation, we use the design matrix X to satisfy this
purpose.

Appendix A shows a completed design matrix X of ODP Mack GLM when K=10 and
J=10.

With all the setup, we can write the regression function and run the GLM:
p=h"'(xp)
(3-14)

Here, please note that there are two methods to bring about the regression. The first one
uses calculated f} ; as i, and design matrix X with only 1s and Os. The second one uses

Xy as u, and design matrix X with values of X, ;_; in place of the 1s. They produce
slightly different results but the idea is very similar.

The idea behind the first method is, with the setup, we have 45 observations, or 45
equations, which are:

f1’2=f1><0+f2><1+"'+f9><0

fio=fiX0+fox0+ -+ fox1

f8‘2=f1><0+f2><1+"'+f9><0
f9’1=f1><1+f2><0+"'+f9><0

Such that the GLM will generate its best estimate of f; to f; for us. (In this case, the
numerical average of f; ; Vj that applies, to be the estimate of f;)
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The idea behind the second method is, with the setup, we have 45 observations, or 45
equations, which are:

X1'2=f1 XX1'1+f2XO+"'+f9X0

X1'3 =f1><0+f2 XX1,2+"'+f9X0

X110=1 X0+, X0+ 4+ fo X X9

X8,2=f1 XX8'1+f2XO+"'+f9X0
X8,3=f1><0+f2 XX8’2+"'+f9XO
X9'2=f1 XX9,1+f2X0+"'+f9XO

And the GLM will generate its best estimate of f; to f, for us (In this case, an estimate

from —L = fij—1 for j = 2 and all ieC(j), to be the estimate of f;_,).

ij—1

3.3.2 ODP Cross-Classified Model
Recall that a Cross-Classified Model has the condition of Yy ;~EDF (8, ¢x;; a, b, ¢)

Here, we modify it to its ODP form, with u, ; = a;f5; being the expected value, and
trjPrj = arbjdy; being the variance, such that

Y j~ODP(ayB;, b))
(3-15)
If we add the further condition to set the dispersion function to be a constant
brj = ¢

(3-16)
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Then,

Yi;j~ODP(ayBj, ) = ODP(uyj, )
(3-17)
where
Uj = B = exp(Inay + In B;)
(3-18)

The exponential function and In function are used to convert multiplication to summation
for the purpose of GLM estimation, because GLM uses the summation of
coef ficient X variable, not multiplications.

Somewhat similar to the ODP Mack Model, we use a design matrix X for a GLM
estimation of CC model.

The idea behind this design matrix is to

1. Include all a; and p; in the regression
2. Use only one a,and one g; for each observation

A completed design matrix X of ODP CC GLM when K=10 and J=10 is shown in
Appendix B.

The idea behind this GLM is that, with the setup, we have 55 observations, or 55
equations, they are:

Yi1= exp(Ina; +Inp;) = a; 4

Y1, =exp(na; +1npB;) = oy,

Y110 = exp(Ina; +1InpBi) = o1 B40

Y1 = exp(Ina, +Ing;) = a,f;

Yior = exp(Ina;o +1InpB;) = a;0f;

Such that the GLM will generate its best estimate of all a;, and g; for us.
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Note that 5; are essentially the proportions of ultimate losses that occur in each
development period. However, because most software does not automatically normalize
B; to make Zleﬁj =1, we will firstuse #; = 1, or In($;) = 0 as a standard to generate
the other §;, and then normalize them. The normalizing can be done by replacing each ﬁj
with [?j/2§=i[§i . After normalizing, &, becomes the expected values of ultimate losses
for year k.

With our estimates for @, and [?j, we can then estimate future incremental losses using

J A
. A B;
ij = &kZﬁi [ﬁ
i=1 Zj:iﬁi

The middle step is what we can get directly from the GLM software, which returns the ,[?j
without normalizing, and those ratios are multiplied to @.

= &kﬁj

After the GLM estimation, we can estimate any future incremental losses with our
estimated & and ;.

3.3.3 Numerical Example

To align with the monograph Stochastic Loss Reserving Using Generalized Linear
Models, we use the GLM procedure GENMOD in SAS to generate our estimation.

ODP Mack Model:
For ODP Mack Model, we use two different ways to generate f;:
The first one use f}; as dependent observations, and 0-1 design matrix (see Appendix C).

The second one use Yy, ; as dependent observations, and in the design matrix, we use the
corresponding previous cumulative losses X; ;_;, instead of 1, to be the values of the x
variates (see Appendix C).
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For the first method, note that among the inputs, only the 3 lines
proc genmod data=ODPMackModelOneZero;

model Y = f1 f2 f3 f4 f5 f6 f7 f8 f9/ NOINT SCALE = PEARSON;

run;

are calculation of f; to fq, the previous parts are all inputs for data and the design matrix.

Notice that we use the options NOINT to remove intercept from our regression equation,
as our model does not include an intercept.

Also, be careful that the f1 to f9 used in the regression formula are actually the x variates
that correspond to f; to fy, and f; to f, are actually the coefficients going with these x
variates. We use f1 to f9 here to make our result easier to read.

With the above input, we obtain the following result:

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate Stanl?:::jr Wald 95% Confidence Limits Wald Chi-Square Pr = ChiSq
Intercept 0 0.0000 0.0000 0.0000 0.0000

f1 1 1.8174 0.0140 1.7900 1.8448 16912 .4 <0001
f2 1 1.2619 0.0148 1.2329 1.2910 724817 <.0001
3 1 1.1583 0.0158 1.1272 1.1894 £343.26 <0001
f4 1 1.0887 0.0171 1.0551 1.1222 404587 <0001
5 1 1.0550 0.0187 1.0182 1.0917 3166.02 <0001
f6 1 1.0384 0.0210 0.9973 1.0795 2454 00 <0001
fi 1 1.0301 0.0242 0.9826 1.0775 1810.96 <0001
f8 1 1.0249 0.0296 0.9668 1.0830 119516 <0001
f9 1 1.0209 0.0419 0.9387 1.1030 592 91 <0001
Scale 0 00419 0.0000 0.0419 0.0419

This result corresponds to Table 3-4 in the monograph. Notice that the results are slightly
different from the results in the monograph. The reason is that our code uses the
numerical average of f; in column j to be our estimated f] while the monograph uses
weighted average. Therefore, the difference comes from different weighting methods for
each observation in column j, but the idea is the same.
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For the second method, the idea behind this method is similar to the first method. The
major difference is we use X, ; instead of f;, and use X, ;_, to replace the 1s in the

design matrix.

Result is as follows:

Analysis Of Maximum Likelihood Parameter Estimates

Parameter | DF | Estimate StanI‘Ejrarzzudr Wald 95% Confidence Limits Wald Chi-5quare Pr > ChiSq
Intercept 0 0.0000 0.0000 0.0000 0.0000

f1 1 1.8121 0.0175 1.7778 1.8465 10702.2 = 0001
f2 1 1.2600 0.0101 1.2401 1.2798 15420.6 =.0001
3 1 1.1580 0.0086 1.1412 1.1747 18269.7 = 0001
f4 1 1.0881 0.0081 1.0723 1.1040 18022.7 =.0001
5 1 1.0464 0.0083 1.0302 1.0627 16997 .5 = 0001
f 1 1.0388 0.0092 1.0207 1.0569 12654 1 = 0001
7 1 1.0304 0.0109 1.0091 1.0516 8997.88 < 0001
fa 1 1.0249 0.0137 0.9979 1.0518 555885 = 0001
9 1 1.0209 0.0204 0.9808 1.0609 249773 =.0001
Scale 0 2896933 0.0000 2896.933 2896.933

This result also corresponds to Table 3-4 in the monograph. Again, the f] estimated here
are slightly different from what the monograph has, because of different weights used for
the entries in column j.

ODP Cross-Classified Model:
The SAS coding for ODP CC model is shown in Appendix D.

Here, the options dist = poisson, and SCALE = PEARSON are all options to give the
model the properties of ODP.

The option link = log is to use In y instead of y such that the underlying equation is

InY; =Inay + Inp;
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Also, notice that in the following line of the codes

model y = al a2 a3 a4 a5 a6 a7 a8 a9 a10 b2 b3 b4 b5 b6 b7 b8 b9 b10 /

b1 is not used in the regression formula. The reason behind is to make In 3, equals 0 such
that 8; = 1. Be careful that the bl in our code has values 1 or 0, but that’s not actually

B, but the x variate corresponds to S;.

Again, we use the option NOINT to remove the intercept from our regression equation

because ODP CC model doesn’t include an intercept.

The result is as follows:

Parameter DF

Intercept

al
a2
al
ad
ad
ab
al
ad
a9
a1l
b2
b3
b4
b5
b6
b7
b8
b9
b10

Scale

0
1
1

1
1
0

Estimate
0.0000
10.6454
10.7931
10.8875
11.0165
11.0387
11.0166
10.9999
10.8906
10.8337
10.6911
-0.2069
-0.7450
-1.0156
-1.4512
-1.8452
-2.1486
-2.3462
-2.5065
-2.6532
1.0000

Standard

Error Wald 95% Confidence Limits | Wald Chi-Square | Pr = ChiSq

0.0000
0.4830
0.4830
0.4901
0.5021
0.5196
0.5446
0.5816
0.6401
0.7454
1.0000
0.4714
0.4930
0.5166
0.5446
0.5802
0.6285
0.7001
0.8232
1.1105
0.0000

0.0000
9.6988
9.8465
9.9269
10.0324
10.0203
9.9492
9.8599
9.6360
9.3728
8.7311
-1.1309
-1.7112
-2.0281
-2.5187
-2.9823
-3.3803
-3.7184
-4.1200
-4.8297
1.0000

0.0000
11.5920
11.7397
11.8481
12.0006
12.0570
12.0841
12.1399
12.1452
12.2946
12.6510

0.7170

0.2213
-0.0032
-0.3838
-0.7080
-0.9168
-0.9739
-0.8930
-0.4766

1.0000

48584
499 41
493.50
48140
45137
409.15
357.67
28948
211.26
11430
0.19
228
387
710
1011
11.69
11.23
9.27
5.1

<.0001
<0001
<.0001
=.0001
<0001
<0001
<0001
<0001
<0001
<0001
0.6607
0.1308
0.0493
0.0077
0.0015
0.0006
0.0008
0.0023
0.0169

The result generated matches the result in Table 3-5 of the monograph. Try it out and see

if you can reproduce these 3 GLMs.
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3.4 Minor Variations of Chain Ladder

The chain ladder algorithm we used contains no flexibility. In this section, we will
discuss some variation of the chain ladder method.

3.4.1 Reliance on Only Recent Experience Years

Because recent observations can represent the current situation better than observations
from many years ago, we can adjust our model to put more weights on more recent
observations, or in this example, only give weights to observations in the recent m years.

If we only use observations in the recent m years, the observations we use are

~

frj — 11Xy
With k and j that satisfies:
k<K, keN
j<l], jeN

and

K+1-m<k+j<K

The first part of the third inequality K + 1 — m < k + j ensures that only those data after
the calendar year K + 1 — m are used in our model.

We can also write it as the following:
(3-20)

where I(.) is an indicator function which equals 1 when the condition is satisfied, and 0
otherwise:

I(c) = {1, if the logical condition c is true
o, otherwise

(3-21)
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With the indicator function, while also omitting the c(y, ¢) member because it vanishes
when partial derivative is taken with respect to f;_; — 1, the log-likelihood function of

Dy becomes:

/Xk In(fj-1 — 1) = (fj1 \
2(Dy) = Z IK+1-m<k+j<K) 5
D #1 ﬁ /
(3-22)
(recall in 3-12:
2 n(fyoy — 1) - (s
- 3 (B )]
£(Dg) = —In !
D;il )?[z)cjj_—l1 -1

The member —In [( Ykj

j-1

) ] comes from the c(y, ¢) function of the ODP model.)

3.4.2 Outlier Observations

Similar to giving weights of 0 to observations from many years ago, we can also give a
weight of 0 to any outlier observations we don’t want to include for our purpose of
GLM estimation. By giving a weight of O to outlier observations, they are excluded from
the model fitting process.

69



4. Prediction Error

Estimations with GLMs usually contain errors. The errors can be broken down into three
components: parameter errors, process errors, and model errors.

In this chapter, we introduce these three types of error, with a focus on parameter error
and process error, which are usually more tractable than model error.

Mean square error of prediction, goodness-of-fit of a model, and information criteria are
also discussed in this chapter. A key takeaway from this section of the chapter is that an
increase in goodness-of-fit does not imply reduced forecast error, and penalties are
applied for an increase in the number of parameters.

The introduction to prediction error in this chapter is related to, but not limited to loss
reserve application. In the next chapter, we will introduce methods related to estimating
prediction error for outstanding loss.

4.1. Parameter Error and Process Error

In order to demonstrate the concepts for the different components of a prediction error,
we will start with the following example, unrelated to loss reserve:

Example: Suppose we want to predict the probability of getting heads when flipping a
fair coin, and assume the true probability, %2, is unknown. We can achieve this by
flipping the coin multiple times for multiple trials and compute the average. Suppose we
flip the coin 1000 times for each trial, for a total of 6 trials, and we get the following
result:

Trial # 1 2 3 4 5 6
# of heads | 496 533 521 499 498 513

Which returns an average probability of 0.51.

Process error: For the 6 trials of flipping a coin, denote the observations, the number of
heads, as Y, which is a function of the total number of flips, dependent on the true
probability of getting a head for each flip. Denote our parameter, the true probability of
getting a head when flipping a fair coin as 8, which we know intuitively is %2. Our model
can thus be written as

Y=nx6
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However, note that in actual trials the number is usually not exactly as expected. For trial
1, for example, the actual number of heads is 496, whereas using the model, we should

expect Y = 1000 x % = 500. The difference between the actual number of heads and
expected number of heads, (496 — 500), is our process error, or noise.

Parameter estimation: Suppose we do not know the true probability of getting a head
for a flip. We can estimate it using the trials, by dividing the number of heads by the total
number of flips for each trial, and obtain the following result:

Trial # 1 2 3 4 5 6
Prob. of head 496 .533 521 499 498 513

By taking the average, we estimate that the probability is

9 =.51

The 8 is thus our parameter estimate. Using this estimated probability, suppose we
want to estimate the number of heads if we flip 500 times. Then the estimated value
would be

Y =.51 x 500 = 255

Parameter error and prediction error: Now we have the estimated parameter § = .51.
Using this parameter and trial 1 as an example, we should get 1000 x 0.51 = 510 heads
in trial 1. Instead, we have 496 heads for trial one. The difference between the actual
number of heads and the number of heads we would get in theory using 8 is called the
prediction error associated with trial 1, which can be written as

e=Y—Y¥ =496—510 = (500 — 510) + (496 — 500)

The first part prediction error,(500 — 510), is the difference between the number of
heads we should get using the true value of parameter, 1/2, and the parameter estimate of
0.51. Thus, it is called the parameter error.
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4.1.1. Individual Observations
We now introduce the concept for the prediction error and each component.
Suppose the model used for estimating future claims is loosely defined as follows:
Yij = ulk,j; 0) + &, forYy,; € Dg
(4-1)

where u is some function of accident period k and development period j, dependent on a
parameter vector 8 = [, 6, ...]7, with stochastic error or noise, & ; for each observation
Y. The expected value or center of the noise should be 0, i.e.,

E[Skj] =0
(@2

Recall in the example, for trial 1 the actual number of heads is 496, where we should
expect 500. In this case the difference of (496 — 500) is our noise.

Suppose that the model has been calibrated against the data set D, by some method, and
a vector of parameter estimate 8 is returned. Then we can define our fitted values and
future estimates as

Yej = u(k.j; 0), forY,; € D¢
(4-3)

where observations in past dataset, Y, ;i € Dy, are the fitted values, and estimated

observations associated with future dataset, ¥, j € Dy, are the estimated outstanding
losses.

Recall in the example, we estimated the parameter to be 8 = .51. Using this
approximated probability our fitted value for each trial of 1000 flips should be 510 heads.
When we also want to estimate the number of heads if we flip 500 times, our ¥ becomes
Y =.51 x 500 = 255.

Prediction error is the difference between the actual observation and the associated fitted
value, i.e.

exj = Yij — Yy = [ulk,j; 0) — u(k, j; 0)] + &
(4-4)
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Note that from (4-1) and (4-2), we obtain the following result
E[Yy;] = E[u(k,j; 0) + &;] = E[u(k, j; 0)] + E[e;] = E[ulk, j; )] + 0 = u(k, j; 6)

which summarizes to
(4-5)
Thus we can derive (4-4) into the following form
exj = [mj — Vi) + e,
(4-6)
where wy; = E[Y;].

In this format we are representing the prediction error as the sum of parameter error and
process error, i.e.,

prediction error = parameter error + process error

The parameter error associated with forecast Y, ; Is the first term [llk i Y, j], and the
remaining term g, ; is the associated process error, or noise.

In our example, the prediction error associated with trial 1 using (4-6) is written as
e=Y—Y =496—-510 = (500 — 510) + (496 — 500)
where the first part of (500 — 510) is the parameter error, and (496 — 500) is the noise.

Usually parameter error and process error are stochastically independent, because
parameter errors depend on past data, while process error are components of the future
data. Intuitively, this is because our parameter errors are caused by the parameter

estimates 8 that we obtain using the past data Y; j € Dy, whereas process errors & ; are
caused by the stochastic nature of future observations.

Note that in our definition and example demos, we are assuming that the precise form for
the model function u(.) is known. However, in practice this is not always true, and an
incorrect model may be used to make future estimates. Denoting this function incorrectly
selected as v(.), the difference between the expected outcome of the selected model,
E[Yy;] = v(k,j;6),and the expected outcome of the true model, E[Yy;| = u(k, j; 6), is
referred to as the model error, which will be discussed in detail in later sections.
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4.1.2. Loss Reserves

With the example demonstrations, we have an understanding of prediction errors,
parameter errors and process errors for GLMs. To understand it in terms of loss reserves,
we need an example in that context. In the following example, we will explain prediction
error in the context of loss reserve using the chain ladder algorithm.

Example loss reserve: suppose we have the following data for cumulative past
observations of paid loss:

Cumulative Paid Loss ($000)
K\J 1 2 3 4 5
1 200 380 470 500 510
2 210 375 482 503
3 195 363 486
4 190 376
5 204
Using the weighted averages, we can calculate the age-to-age factors as follows:
Age-to-age factors for development year j
Development year j 1 2 3 4

fi

The weighted averages calculated are thus our estimated parameters for the cumulative
observations

Xij~ulk,J; ;)

Using the weighted averages, we can estimate future paid losses and the ultimate losses
for accident years 2 to 5 as

Cumulative Paid Loss ($000)
K\j 1 2 3 4 5
1 200 380 470 500 510
2 210 375 482 503 513.06
3 195 363 486 512.04 522.28
4 190 376 483.62 509.53 519.72
5 204 383.37 493.10 519.51 529.90




Suppose that the true age-to-age factors are 1.9, 1.3, 1.05, 1.01, with tail factor 1
(meaning there is no more claim development after the 5 year).

Consider accident year 2 as an example, using the cumulative paid loss at development
year 4 and our estimated age-to-age factor at year 4, we get the expected ultimate loss as

X,5 = X,4 X f, =503 x 1.020 = 513.06

However, assuming a true age-to-age factor of the development year at 1.01, the expected
ultimate loss should have been

E[X,5] = X4 X fo = 503 X 1.01 = 508.03
Thus the parameter error caused by parameter estimation is
parameter error = 508.03 — 513.06 = —5.03

Suppose that another year pass and our ultimate loss for accident year 2 is actually 510.
The difference between the expected value and this actual value is the process error
caused by the stochastic nature of future observations. Thus our process error is

process error = 510 — 508.03 = 1.97
And our prediction error for the cell is
€5 = Xp5 — )?2,5 =510 — 513.06 = —3.06 = parameter error + process error

For simplicity, we can present the prediction errors in vector form. Without concerning
about the order of the components, denote

Y — vector formed by the past observations Y, ; € Dk

Y™ —vector formed by the future observations Y, ; € Dg

u* — vector formed by the expected future observations E[Yk j], for Yy; € Dg
e” — vector formed by the prediction errors associated with Y, ; € Dg

" — vector formed by the process errors associated with Y, ; € Dg

Recall the star symbol denotes any elements of the future dataset. Then (4-6) becomes
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We can also consider linear combinations of the components of vector Y* for future
observations. Denote some vector r as a vector of constants that has the same dimension
as Y* and the other vectors. Then we can represent the linear combination of Y* as r7Y*,
which would return a scalar that is the linear combinations of the components of Y*. For
example, to calculate the total outstanding claims, we need to let r = [1 1 ... 1], so we
can have

Yk1]1]
Y,
rTy*=[11.. 1]| k12 i = Z Yy; = total outstanding loss
" I k,j for D
|_Ykn]nJ a j for Di

Or, let r be a vector with 1 in positions for Y;; of some row k and 0 everywhere else, we
can get the outstanding loss for accident year by computing rY*

_ * -
Yk1f1
*
Yo

k*ih
rTY*=100..11..00]| ¥, | = Z "

: all j for Yy ;€Dg
Ve

iJn

Y
n/n
= total outstanding loss for accident year k;

Denote the prediction error associated with the linear combination r7Y* as e(r, then by
(4-7) we obtain

ey =rTe" = [rTu =TV +7Te
(4-8)
where

e( — a scalar which is the prediction error associated with riy*
rTu* —ascalar that represent the expected outstanding losses

rTY* —a scalar that represent the estimated outstanding losses
rTe* —ascalar of associated noise
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In (4-8) note that we can also express the prediction error as the sum of parameter error
and process error, where the term [rTu* - rT?*] represents the parameter error and r7 e
represents the process error.

4.2. Mean Square Error of Prediction
4.2.1. Definition

The mean square error of prediction (MSEP) for prediction error, denoted
MSEP]e(,,], measures the magnitude of prediction error e,. It is defined as

* * 2
MSEPley] = E {[efn]”)
(4-9)
which is the expected value (or mean) of the sum of squares of prediction errors.

When parameter error and process error are stochastically independent, we can substitute
(4-8) into (4-9) to calculate the MSEP of prediction error in terms of parameter and

process errors. This means, for MSEP|e(,,| = E {[e{r)]z}, we can rewrite it as
MSEP[@E;)] - {([T :u —r’ ] + rTg*)Z} =E {[e&kr)param + e?r)proc]z}
=F {[eikr)param]z + zeikr)param ) e(*r)proc + [egr)proc]z}

=E {[eér)param]z} + ZE{eér)param} ) E{ea)proc} +E {[eekr)proc]z}

From (4-2) we know the expected value of process error is zero, thus E{eg‘r)pm} =0, so
the term 2E{e{,y,aram} * E{€{rproc} 1S Z€ro, and we obtain

MSEP|e(y| = E {[ea‘)param]z} +E {[e(*r)proc]z}
(4-10)
where
=rTu* —+TY* = parameter error

*
e(r)param

(4-11)

77



and
* _ T % __
e(r)proc =T & = process error

(4-12)

4.2.2. Goodness-of-Fit and Prediction Error

As stated in the previous section, the MSEP measures the magnitude of prediction error.

In other words, it measures the tightness of future estimates around the target. Thus

usually the smaller a model’s MSEP is, the more preferred the model is. However, MSEP

is not equivalent to goodness-of-fit of a model, so improving a model’s goodness-of fit
does not necessarily mean improving the MSEP.

The goodness-of-fit of a model can be increased by including excessive parameters, but

this inclusion can destabilize model’s estimations, and thus amounts to over-fitting and
thus increase the value of MSEP. Therefore, an effective model needs to take into
account both the goodness-of-fit and the complexity of the model. Figure 4-1 from the
monograph summarizes the relationship between model error and model complexity.

Figure 4-1. Goodness-of-Fit and Prediction Error
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Suppose we divide the available data set has 2 subsets, a training set and a test (or
holdout) set.
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First the model is fitted to the training set. We can use this to select a form of error, such
as squared error and deviance, and plot the error against model complexity. Plotting this

in the graph we can see that the fit of the model is improving (model error decreasing) as
model complexity increases (Figure 4-1).

However, as we use the model on the test set to generate the fitted values, we can see the
fit of the model as an estimator of the test data does not improve monotonically as for the
training set. When the parameter number is small, the model produces a poor fit in both
cases, and as model complexity is increased, the model fits both sets better. However,
after a certain point, the increase of complexity results in over-fitting, where we observe a
still increasing fit on the training set, but a decrease in fit on estimating the test set, as
excessive parameters start to destabilize the estimation.

Thus we can conclude, as model complexity increases, both the fit and estimation of the
training set and test set can be improved to a certain point, but afterwards, detraction
appears. Intuitively, we can think of model complexity at the extreme case. If we have a
model that fit the data perfectly, then this model has as many parameters as the data
points in the training set, and can produce zero error. But at this point the model is not a
model in the usual sense anymore. It is only a list of outcome and input with no formulaic
meaning behind the values, and has lost its predictive value.

Therefore, it is obvious that the point where model error is at minimum for both the
training and test sets is the optimal model complexity. Visually, this is the minimum
point on the test curve in Figure 4-1, which produces the model that has the best
predictive value.

4.3. Information Criteria

The information criteria are the statistics for measuring model fit error relative to a test
data set. It is defined as

information criterion
= measure of model fit error (relative to training data set)
+ penalty for number of parameters

(4-13)

The information criteria behave similarly to the model fit error relative to a test data set,
as shown in Figure 4-1. Recall that while initially the model error relative to a test set
decreases as model complexity increases, after a certain point the model error starts to
increase again as the model loses predictive value. Similar for information criterion,
when the model complexity increases, the model fit error for the training set decreases
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monotonically, but the penalty for number of parameters increases. Thus there will also
be a point of model complexity where the increase of penalty starts to overwhelm the
decrease of model fit error.

For a GLM, (4-13) can be written as following, with ¥ being the fitted value of
observation Y

16(v,7) = (v,7) + ()
(4-14)
where

1C(Y,Y) is the information criterion;
D(Y,Y) is the scaled deviance from (2-30);

p is the number of the model parameters;
f(.) is a monotonically increasing function.

Recall from (2-30), the scaled deviance has the following formula:

D(Y,7)=2[tnn(Y; 89,¢) - Inn(Y; 8,9)]

n

=2 [t n(¥; 69,¢) - nn(¥; 0,9)]

i=1

Table 4-1 from the monograph shows 2 of the most common information criteria, the

Akaike Information Criterion (AIC) and the Bayes Information Criterion (BIC). Note in

BIC, n is the number of observations Y used in the model, so in both cases the penalty
functions are linear functions of p.

Table 4-1. Information Criteria

Information Criterion Function f(p)
Akaike Information Criterion (AIC) 2p
Bayes Information Criterion (BIC) pinn

AIC is independent of the number of observations n used in the model, but there is a

modified version, AlICc, which has a correction for finite sample size n. The last ¢ stands

for correlation.
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AICc has the form
_ p+1 ]
F@)=2p |1+

So that as n/p increases to infinity, f(p) approaches 2p:

142

f(p)=2p[1 +nPiTTi1] =2p 1+E_ﬁ - 2p
p p
The information criteria are used to compare the loss of information from different
models of the same data set. For example, if the AIC indicates a smaller number for
model 1 than for model 2, then model 1 has minimized information loss better, and model
1 would be favored.

4.4 Generalized Cross-Validation

Cross-Validation is a method commonly used in regression and non-regression models to
estimate prediction error. An example of cross-validation would be to divide the data into
K parts, so that the fitted model can be generated by the first K-1 parts, and tested by the
Kth part. This is also called the leave-one-out cross-validation.

Generate Test

Part 1 to K-1 |:> Fitted Model |:|'>

For linear models, the fitted value can be expressed as y = Hy, where H is called the hat
matrix (because it gives a “hat” to y after the multiplication). An approximation to leave-
one-out validation is the generalized cross-validation (GCV) measure, with formula

(Y —1)?

GCV = -
n [1 _ trac:lz(H)]

(4-15)
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where:

Y; is the i*" observed value (Not referred to incremental losses)

Y; is the i*" fitted value
n is the number of observations

In the numerator of the GCV formula, we have the sum of the squared error for fitted
values, which is divided by the number of observations n in the denominator. We want
this value to be as small as possible for a good-fitting model. However, we also need to

2
take over-fitting into consideration. Thus we have the term [1 - tr%e(m] in the

denominator. Here the hat matrix H is an n X n diagonal matrix that maps the n x 1
vector of observations Y to the n x 1 vector of fitted values Y. The trace of the hat
matrix, trace(H), is the sum of the diagonal calculated as

n

trace(A) = Z a;;

i=1

and defined as the effective number of parameters in a model. Because the hat matrix
maps y to ¥, we want trace(H) close to n for a good-fitting model. However, as this
. trace(H)

2
could also result in over-fitting of the model, we have [1 ] as a penalty, which

decreases in value as trace(H) gets closer to n, and thus increase the value of GCV.

Therefore, from the overall formula of GCV, we can tell that a smaller GCV suggests a
better model for the observations not only in terms of the goodness-of-fit of the model,
but also considering the number of parameters used in the model.
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4.5 Model Error

Model Error is the error associated with using an inaccurate model to fit the data. Model

Error is common when the accurate function to estimate the data is unknown or

unknowable. In previous sections of this chapter, we only discuss the parameter error and

process error with the assumption that the function u(k, j; 6) underlying the data is

correctly identified. In this section, we will recognize that the selected modeling function

can also have errors and affect its fit to the data.

We assume u(k, j; 8) is still the correct function for the data. Suppose we incorrectly
choose function v(k, j; &) as our modeling function, with some parameter &:

Yij = v(k,j; &) + & for Yy;eDf
(4-16)
Then, the fitted values for this model would be:
Yej = v(k,j; €) for Y, ;eDf
(4-17)

In this case, the prediction error e, ; would be:

e = Yij = Yy = [v(k,j;§) = v(k j; )] + e + [ 1k, j;0) = (k,j; )]
1 Y ||
Parameter Error  Process Error  Model Error

This decomposition of prediction error includes parameter error and process error as in
(4-4), but now it also includes the term for model error. This term measures the error
incur by selecting an incorrect modeling function to fit the data.
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5. The Bootstrap

In future estimation, we often have limited number of data sets to generate future
estimations. The purpose of bootstrap is to generate synthetic data sets with the same
stochastic properties as the original one, and produce estimates of outstanding losses
from each dataset. With large number of future estimates, we can have a clearer picture
for the full distribution of our target prediction such that we can set loss reserves with

certain confidence levels. This chapter focuses on the two ways of bootstrapping for loss

reserving purpose: semi-parametric bootstrap and parametric bootstrap.

5.1. Background

In Chapter 3, we used GLMs to generate the parameter estimates for both ODP Mack
Model and ODP Cross-Classified Model. Although we showed only the parameter
estimates in Chapter 3, the associated standard errors for parameter estimates and the
estimated correlations between each pair of them are also reported by SAS.

We are interested in these standard errors of parameter estimates and their correlations,
because with knowledge of the distribution for parameter estimates, we can randomly
draw pseudo-parameter estimates to form pseudo-data sets. Because we often have
limited number of data sets to generate future estimates, we cannot determine the
distribution for our target prediction, which in loss reserving is the total outstanding
losses. To resolve this problem, we use pseudo-data sets with the same stochastic
properties as the original one to generate a large number of future estimates so that we
can estimate the distribution of our target prediction.
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Table 5-1 from the monograph shows the parameter estimates and their standard errors

for ODP Cross-Classified Model:

Table 5-1. GLM Parameter Estimates and Standard
Errors for ODP Cross-Classified Model
In o, InB;

jor k Estimate Standard Error Estimate Standard Error

1 10.657 0.0316 0.000

2 10.795 0.0299 -0.205 0.0228

3 10.899 0.0289 -0.747 0.0282

4 10.989 0.0281 -1.017 0.0328

5 11.039 0.0278 -1.452 0.0421

6 11.016 0.0285 -1.833 0.0547

7 11.008 0.0295 -2.140 0.0715

8 10.891 0.0327 -2.348 0.0931

9 10.836 0.0367 -2.513 0.1267

10 10.691 0.0510 -2.664 0.1993

Table 5-1

Note that standard error of In(3,) is not included in the table because we set §,=1 as the

scale.

Table 5-2 from the table shows the correlation between the parameter estimates:

Table 5-2. Estimated Correlation Matrix of GLM Parameter Estimates

for ODP Cross-Classified Model

Parameter
Parameter In o, Ina, Ind; Inow Inds Inag  Ino; Inag  Inds  Indy
In ¢, 1.00
In @, 0.20 1.00
In @4 0.20 0.21 1.00
Ind, 0.20 0.21 0.22 1.00
In dis 0.19 0.20 0.21 0.22 1.00
In G 0.18 0.19 0.20 0.20 0.20 1.00
In & 0.16 0.17 0.18 0.18 0.18 0.18 1.00
In Gig 0.13 0.14 0.14 0.15 0.15 0.14 0.14 1.00
In Qg 0.09 0.10 0.10 0.10 0.10 0.10 0.10 0.09 1.00
In Gy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100
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Parameter

Parameter Ing, Inda, Indz; Ind, Indas Indg Ind; Inds  InGy  Inday
In B 032 -034 -0.35 -036 -0.37 -0.36 -035 -0.31 -0.28 0.00
In B, -0.28 -0.29 -0.30 -0.31 -0.32 -0.31 -030 -0.27 -0.10 0.00
InBa 025 -0.27 -0.28 -0.29 -0.29 -0.28 -027 -0.12 -0.09 0.00
In Bs -0.21 -0.22 -0.23 -0.24 -0.24 -0.24 -0.12 -0.10 -0.07 0.00
In Be -0.18  -0.19 -0.20 -020 -0.20 -0.10 -0.09 -0.07 -0.05 0.00
In B, -0.16 -0.17 -0.17 -0.18 -0.09 -0.08 -0.07 -0.06 -0.04 0.00
In B -0.14 -0.15 -0.16 -0.07 -0.07 -0.06 -0.06 -0.04 -0.03 0.00
In Be -0.14 -0.15 -0.06 -0.05 -0.05 -0.04 -0.04 -0.03 -0.02 0.00
In 1o -0.16 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.02 -0.01 0.00
Parameter

Parameter In Bz In [A33 In ﬁ., In [AL—, In fiﬁ In |37 In [ASS In ﬁg In ['319

In B, 1.00

In B 036 100

In s 031 027 100

In Bs 024 021 019 100

In s 019 016 015 012 100

In B; 014 012 011 009 008 100

In Be 0.11 009 009 007 006 005 100

In B, 008 007 006 005 004 004 004 100

In B 005 0.04 004 003 003 002 002 002 100

With the information in these table, we are able to implement a parametric bootstrap to

estimate the full distribution for outstanding losses. Detail steps for parametric bootstrap
will be discussed later in section 5.3.2, followed by numerical example in 5.4.

The SAS codes to reproduce table 5-1 and table 5-2 is included in Appendix D.
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Reproduced result is shown below:

Parameter | DF

Intercept 0
al 1
a2 1
aj 1
ad 1
ad 1
ab 1
al 1
a8 1
a9 1
all 1
b2 1
b3 1
b4 1
b5 1
b6 1
b7 1
b8 1
b9 1
b10 1
1.0000
0.2043
0.2017
0.1991
0.1932
0.1797
0.1626
0.1296
0.0899
0.0000

Standard

Estimate Error Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
0.0000 0.0000 0.0000 0.0000
10.6568 0.0316 10.5947 10.7188 113431 <0001
10.7953 0.0299 10.7366 10.8540 129966 <.0001
10.8992 0.0289 10.8426 10.9558 142481 <.0001
10.9890 0.0281 10.9340 11.0441 153137 <.0001
11.0388 0.0278 10.9843 11.0934 157335 <.0001
11.0159 0.0285 10.9599 11.0719 148895 <0001
11.0081 0.0295 10.9504 11.0658 139678 <0001
10.8905 0.0327 10.8265 10.9545 111198 «.0001
10.8361 0.0367 10.7642 10.9080 872312 <.0001
10.6911 0.0510 10.5910 10.7911 43871.3 <0001
-0.2047 0.0228 -0.2493 -0.1601 80.88 <.0001
-0.7474 0.0282 -0.8027 -0.6922 702.87 <.0001
-1.0167 0.0328 -1.0810 -0.9523 958.18 <.0001
-1.4516 0.0421 -1.5342 -1.3690 1186.56 <.0001
-1.8325 0.0547 -1.9398 -1.7253 1121.89 <0001
-2.1403 0.0715 -2.2804 -2.0001 895.96 <.0001
-2.3483 0.0931 -2.5308 -2.1658 635.93 <.0001
-25132 0.1267 -2.7615 -2.2648 393.28 <.0001
-2.6645 0.1993 -3.0651 -2.2739 176.73 «.0001

0.2043
1.0000
0.2131
0.2104
0.2041
0.1898
0.1719
0.1370
0.0950
0.0000

(Reproduction of table 5-1)

0.2017 1 0.1991 0.1932 01797 0.1626 0.1296 0.0899 0.0000
0.2131| 02104 | 02041 01898 0.1719 0.1370 0.0950 0.0000
1.0000 02182 02117 01969 01782 01421 0.0986 0.0000
0.2182 | 1.0000 02177 02024 01833 0.1461 0.1013 0.0000
0.2117 | 0.2177 | 1.0000 02043 0.1849 0.1474 0.1023 0.0000
0.1969 0.2024 02043 1.0000 0.1803 0.1437 0.0997 0.0000
0.1782 | 0.1833  0.1849 0.1803 1.0000 0.1393 0.0966 0.0000
0.1421 | 01461 0.1474 01437 01393 1.0000 0.0871 0.0000
0.0986 01013 0.1023 0.0997 0.0966 0.0871 1.0000 0.0000
0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

(Reproduction of table 5-2: correlations between In(«;))
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-0.3229
-0.2772
-0.2530
-0.2126
-0.1797
-0.1564
-0.1446
-0.1420
-0.1588

-0.3412
-0.2929
-0.2674
-0.2246
-0.1899
-0.1653
-0.1528
-0.1501
-0.0324

-0.3539
-0.3038
0.2773
-0.2330
-0.1969
-0.1714
-0.1585
-0.0504
-0.0320

-0.3639
0.3124
-0.2851
-0.2395
-0.2025
-0.1763
-0.0677
-0.0497
-0.0316

-0.3672 -0.3579 -0.3469
-0.3152 -0.3072 -0.2978
-0.2877 -0.2804 -0.2718
-0.2417 -0.2356 -0.1221
-0.2043 -0.1039 -0.0941
-0.0855 -0.0795 -0.0720
-0.0656 -0.0610 -0.0553
-0.0482 -0.0449 -0.0406
-0.0307 -0.0285 -0.0258

-0.3129
-0.2686
-0.1249
-0.0973
-0.0750
-0.0574
-0.0441
-0.0324
-0.0206

-0.2785  0.0000
-0.1009 0.0000
-0.0866  0.0000
-0.0675  0.0000
-0.0520 0.0000
-0.0398 0.0000
-0.0306  0.0000
-0.0225  0.0000
-0.0143  0.0000

(Reproduction of table 5-2: correlations between In(«;) and In(8)))

1.0000
0.3625
0.3111
0.2425
0.18686
0.1429
0.1097
0.0806
0.0513

Check out Appendix D and try to reproduce table 5-1 and table 5-2 with your code.

0.3625 03111
1.0000
0.2671
0.2081
0.1603
0.1227
0.0942
0.0692
0.0440

0.2671
1.0000
0.1900
0.1463
0.1120
0.0860
0.0632
0.0402

0.2425 0.1868
0.2081 0.1603
0.1900 0.1463
1.0000 0.1229
0.1229 1.0000
0.0941 0.0795
0.0722 0.0611
0.0531 0.0449
0.0337 0.0285

0.1429 0.1097
01227 0.0942
0.1120 0.0860
0.0941 0.0722
0.0795 0.0611
1.0000 0.0532
0.0532 1.0000
0.0391  0.0361
0.0248 0.0230

0.0806 0.0513
0.0692 0.0440
0.0632 0.0402
0.0531 00337
0.0449 0.0285
0.0391 0.0248
0.0361 0.0230
1.0000  0.0225
0.0225 1.0000

(Reproduction of table 5-2: correlations between In(f;))

5.2. The Bootstrap

The bootstrap method provides a distribution of target estimates, instead of a point

estimate. In loss reserving, for example, when insurance companies estimate future losses

and set up loss reserves, it is usually necessary to set up loss reserves with some

confidence level of covering for the potential loss. This requires for calculating

probability of adequacy (PoA) of the reserve, and adjust loss reserve based on the
probability. Mathematically, this means we want the true total outstanding loss R to be

less than an estimated outstanding loss R,, for some given probability p, i.e.

ProblR <R,|=p

(5-14)
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And once we have R,,, we can set our loss reserve to meet the requirement. Note that in
order to calculate the probability, we need the distribution of the total outstanding loss,
which requires the use of bootstrap method.

There are many approaches to the bootstrap method, which are categorized into “non-
parametric”, “semi-parametric”, and “parametric” bootstrap methods by Shibata (1997).
This classification involves the level of reliance of prediction error on model and
distributional assumptions. The sub-sections below will discuss “semi-parametric” and

“parametric” bootstrap methods in details.

5.2.1. Semi-Parametric Bootstrap

The original form of the bootstrap by Efron (1979) falls within the general family of re-
sampling, which involves repeated sampling of available data and constructing pseudo
datasets and fitted values.

Let Y be an n-dimensional data vector. Suppose we fit a model to Y, and obtain an n-
dimensional vector of estimations Y* of future observations Y* with parameter estimates

B.

Let R(Y™) be the target prediction, where R(.) is some function of Y™ that produces the
target estimation. In the case of loss reserve, where Y™ are the future incremental losses,
the function R(.) is simply a summation function, as our target prediction is the total
outstanding loss, computed by summing all future losses. Because Y* are unknown, we
can estimate R(Y™*) using estimated future observations ¥*, which gives R(Y*).

apply model future
for para. est.’s n estimates

»

n
»

To find the PoA described by (5-14), we need the distribution of the estimated R(Y*),
which is the objective of the Bootstrap method and re-sampling procedure.

We can use the known observations for the purpose. Let ¥ denote the n-dimensional
vector of the fitted values of Y using the model and estimated parameters #, and let
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S(Y; Y) denote the vector of associated standardized residuals where the inverse
S7(.;Y) exists.

Recall from Chapter 2 we introduced Pearson residuals, which has the following formula
from equation (2-33):

Assuming we use the Pearson residuals, then the i-th component of the residual vector
corresponding to the data vector Y, denoted S(Y; Y), i = 1, ...,n, can be written as
v -¥

A~

l

Si(Yv;Y) =

(5-15)

where 67 is the estimator of the variance Var[Y;]. We can then derive (5-15) to and
represent the i-th component of Y as the inverse of the residual function, i.e.,

Yi = S_l(Sl';?) = )’}l + 6iSi
(5-16)

Suppose S; are approximately independent and identically distributed (iid). We can then
perform data re-sampling of the residuals. We can draw a random n-sample from

S(Y,- ?) with or without replacement. Denote the sample residual components as S;, i =
1,...,n, and denote the corresponding vector as S.

Using (5-16), we can form a sample of observations ¥, where the i-th component is
defined as

7, =571(5,;7)
(5-17)

Note that the index i in (5-17) corresponds to the index in S instead of the original
residual set S. Thus the i-th component of ¥ uses the same ¥; but a usually different S;
because orders of the residuals are changed during the random drawing process. So, ¥
doesn’t usually have the same value as the i-th component of the original data vector Y,
ie.,

Yi * Yi, fOT' '§i * Si
Because S; are approximately iid, S and S have the same stochastic properties, and thus Y

and ¥ have the same stochastic properties by (5-16) and (5-17). Thus through re-
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sampling we have obtained an alternative data set of observations ¥ that has the same
stochastic properties as the original one, which is also known as a pseudo-data set. In
our case with Pearson residuals, the components of the pseudo-data set ¥ are defined as

(5-18)

Which is obtained by combining substituting S; with S; in (5-16).

apply model

for para. est.’s

future
estimates

»

Fit

resample
residuals

find
residuals

S™1 to find
pseudo-data

We can draw in total of n! pseudo-data sets if we sample without replacement and n™ for
sampling with replacement. Suppose we draw r pseudo-data sets, where r is sufficiently
large. Denote these sets as vectors Y'(l), Y(z),. - Y(r), and model each of these sets with the
same model applied to Y originally. That is, the model applied to each 17(]-),j =1,..,r
has the same algebraic structure as the model applied to Y. However, because }7( j) do not

contain exactly the same components as the original Y, the parameters of the model will
change as the data inputs have changed, and will be different for each of the pseudo-data

set Y(j).
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For these 170-), we can find the corresponding estimated parameters, called pseudo-
estimates. Arrange the parameter estimates into a vector denoted as B( j for the
associated 17( j)- We can then apply the model with ﬁ( ;) for the corresponding j-th dataset
and find the estimated future observations 17(”}), and the estimated target prediction

R (17(])) for the corresponding R(Y(])) Because we had total of r pseudo-data sets, we

now have r R (?(1)) for the pseudo-data sets.

S to find apply same future target

resampling pseudo-data underlying model estimates predictions

S Yo Ba) 1 R(Y(yy)

apply model find
for para. est.’s residuals

S Y R(Y()

St ¥ b Vo) e R (Vo)

Similar to S and ¥, the pseudo-forecast denoted R(¥(}) have the same stochastic

properties as R(Y™*). Note that because the algebraic structure of the underlying model is
always the same as the model applied to the original dataset Y, and the only differences
are the parameter estimates, the variation between the R(Y*) and R(¥(})) thus reflect

parameter error introduced in Chapter 4. Recall that parameter errors are errors caused by
inaccurate model parameter estimates, that is, variations that result from the differences

between B and 3. Mathematically this is expressed as

Eparameter = E [Y; B] - E[Y; .é]

Recall also from Chapter 4, prediction error is composed of both parameter error and
process error (assuming there is no model error). Therefore to create pseudo-forecasts
that reflect prediction error, we need to add noise to the estimated target predictions

R (17(’;)) We can find the noise, or process error, of R(Y™*) using re-sampling as well.
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Recall the process error is the difference between the observations and fitted values (or
future estimates). In this case with future estimates, denote the process error for the i-th
component of Y* as

& = Y — E[Y/]
(5-19)
Which can be rewritten as
Vi = E[Y]1+é
(5-20)

For the i-th component of 17(]) we can have E[Y;*] estimated using parameters ﬁ In order

to obtain a set of process errors for 17(*}) that has the same properties as the set of {&;}, we

draw a second vector S’pmc the same way S was drawn, and form the pseudo-observation

vector Ypmc similar to (5-17), i.e., for the i-th component of Sproc, we have

Yproc,i = S_l(gproc,i; ?)

We then define the vector of process error as

E;roc = Yproc -7
(5-21)

Note this is different from the monograph, which has ¥,,,,. — ¥ instead of ¥,,,.,. — Y.

However, relating the context of prior and following discussion, this is a typo in the
monograph, and (5-21) should have the form described here.

From (5-21), we can conclude that the components of the vector &;,.,. have the same
properties as the collection {&;}. We can repeat the procedure of drawing S},mc and (5-
21) to obtain r replicates of &,,.,.. Note that as &, reflect the process error for future
estimates, the dimension of &,,.,. should reflect that of the future estimates Y™, not
necessarily the past data vectors Y.

When we work with Pearson residuals, recall from (5-18), for the i-th component of ¥,
Y-i == S_l(gl'; Y) = ?l + 6i§i

Therefore after drawing r samples of residual vectors, Spmc, we obtain r samples of
pseudo data sets of ?proc, where the i-th component of each Ypmc is defined as

Yproc,i

o

- UiSproc,i
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So using (5-21), the i-th component of ¢;,.,. becomes
g;roc,i = Yproc,i - ?l = (?l + 6i§i) - le = 6-\1'5'1'

Now we can add noise to the future estimates for the pseudo data sets, which are simply
the addition of our original estimates and the process errors:

=, + =,
(Y(j)) = Y0y + €proc()

A\t :

Where (Y("]‘-)) Is a pseudo-forecast that contains both process and parameter errors as
2 + .

prediction error. We can then obtain the target prediction R ((Y(])) ) that include

process error.

apply model find resampling S to find apply same future
for para. est.’s residuals 1 times pseudo-data underlying model  estimates

add noise

resampling
1 times
for noise

S to find find noise
pseudo-data using ¥

R((Y;)h)

gproc,(j)

~ N\t
These R ((Y(J)) ),j = 1,...,r are iid, with the same distribution as R(Y*). Thus the r

replicates form an empirical distribution of R(Y™), and we can achieve PoA or find other
stochastic properties such as MSEP from the distribution.

Figure 5-1 from the monograph (shown below) also summarizes procedures discussed
above. Like the semi-parametric bootstrap, parametric bootstrapping also involves re-
sampling, but using a different approach, with assumptions of not only the underlying
model for observations, but known distributions of observations and parameter estimates
as well.
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Figure 5-1. Diagrammatic Representation of the Semi-Parametric Bootstrap

Data
i Model
Parameter
estimates ! Forecast
Modelling < i
Fitted
values
\ Residuals
Re-sample
( m—y=— =
I Re-sampled I
residuals
Replications N Pseudo- I
simulate < s
- - | I
parameter error | i Mndrll
Pseudo- S 1
| parameter I Pseudo- I Add noise to |
estimates forecast “ X . -
| . | | simulate process I
e o o — I error l
Replicate

5.2.2. Parametric Bootstrap

While semi-parametric bootstrapping is based on empirical residuals and resamples via
inverse transform of the residuals, parametric bootstrapping is based on the assumption of
parameter estimates with an underlying distribution with appropriate variance and known
distribution of the dataset.

Parametric Estimates

Because the parameter estimates £ for GLM:s are usually MLEs, for parametric
bootstrapping we assume the original  to be MLEs. Also, it is known that an MLE is an
asymptotically normal unbiased estimator for indefinitely increasing sample size. In other
words, when the number of parameter estimates generated approaches infinity, the
distribution of all parameter estimates 3 becomes closer to normal. i.e.,

B~N(B,Var[f]),  asymptotically
(5-24)
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Assume the asymptotic relation above holds for finite data sample, then we can assume /3
approximately normal, which means

B~N(B,C)
(5-25)
where C denotes the variance of the parameter estimates, Var [ﬁ] Recall g is a vector of

all parameter estimates, and thus the variance estimate C is a p X p matrix that contains
all the estimated correlations between each pair of parameter estimates /3; and [?j, for

i,j =1,..p. Therefore C has diagonal entries of 1 (correlations between 3; and 3; are
always 1), and the rest elements being the correlations. An example is the correlation
matrix for ODP CC model of Table 5-2, section 5.1. with the assumed distribution of £,
we can sample the parameter estimate replicates ,[?( j) directly.

The sampling process follows 3 steps:

e apply a linear transformation M to 8 such that the components of Mg are
uncorrelated; in other words, we obtain a variance matrix for the linear

transformation of 8, Var [M B] such that the correlations between each pair of
(Mp), and (MB) . for i # j are 0.

e sample each of these components from a univariate normal distribution to obtain a
random vector y;

e apply the inversion of linear transform M to the sampled vector y to obtain the
required sampling from N (3, €), i.e. the re-sampled /?(j).

Mathematically, for step 1 we need to find the linear transformation matrix M such that
Var[MB] = A, where A is a diagonal matrix:

MCM" = A = diag(A4, ..., )
(5-26)

After step 1, the multivariate normal distribution of vector f is transformed to the normal
distributions for each element of the linear transformation M. Thus in step 2 we can
make random drawings of y;, which satisfy

vi~N ((MB), . 2.),i=1,2,...p

(5-27)
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After the step, we have a vector of y = (¥4, ..., ¥)".

Now we apply step 3, which uses the inverse transform to obtain parameter estimate
replicates f;y:

By =My
(5-28)

We can verify that 3 ;,~N(f, C) using the (5-27) and (5-28), where we derive the mean
and variance as

E[By] = EIM™'y] = MT'Elyl = M—'MB = j
(5-29)
and
Var[fp] = Var[M=ly] = M~ Warly] (M) = M~ MCMTI(M~ YT = ¢
(5-30)

Note here the operation for variance is Var[MA] = MAMT, where A is a matrix, and M is
a linear transformation applied to A.

The process of identifying M can be done by conventional statistical software by
decomposition of €. Namely 2 tools are Cholesky decomposition and spectral
decomposition.

Cholesky decomposition of C:
C=LLT
(5-31)

where L is the lower triangular matrix, this is equivalent to (5-26) with M = L™ and A =
I.

Spectral decomposition of C:
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where P is an orthogonal matrix and yy, ..., y,, are the eigenvalues of C, this is equivalent
to (5-26) with M = p~1 = pPT,

Process Error

In the parametric bootstrap method, the pseudo-data sets for process errors 17pmc can be

obtained by random drawings from the distribution that the original dataset Y assumes.
For example, if we assume Y; follow ODP distribution, then we can obtain each
component of Ypmc by random drawings from an ODP distribution with known mean ¥,
and scale ¢ /w; . and process error can be obtained similar to semi-parametric

~

bootstrapping using &0 = Ypmc -Y.
Discussion

The parametric bootstrapping is simpler to implement than semi-parametric
bootstrapping due to shorter computational times. However, with the underlying
distributional assumptions, the validity of parametric bootstrapping can decrease when:

e the sample size is so small that (5-24) is not asymptotic; and/or

e the error structure assumed within the GLM becomes a poor representation of
data.
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Appendix A. 3.3.1. Design matrix X of ODP Mack GLM for K=

J=10

47 rows in total

Columns 1-9 represents the x variates corresponding to variables f; to f;
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10 and

Appendix B. 3.3.2. Design matrix X of ODP CC GLM when K=

J=10

0
0
0

0
0
0

0

0
0

0
0
0

0
0
0

0
0
0
0

0|0
0|0
0|0

0|0
0|0
0|0

0[]0

0|0
0|0

0|0
0|0

0|0

0[]0
0|0
0|0

0[]0
0|0
0|0
00

0
0
0

0
0
0

0

0
0

0
0

0

0
0
0

0
0
0
0

55 rows in total

Columns 1-10 represents the x variates corresponding to variables from In(a; ) to In(a,q)
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Appendix C 3.3.3. ODP Mack Model GENMOD codes

First Method:

Codes:

data ODPMackModelOneZero;
input Y f1 2 f3 f4 5 f6 f7 {8 f9;

datalines;
1.830420124
1.263187459
1.165103364
1.100166871
1.047794622
1.036767254
1.027791394
1.024821516
1.020856984
1.819959723
1.278843741
1.162150108
1.083202849
1.05228735
1.038268587
1.030858833
1.024908144
1.91165623
1.274917853
1.141208739
1.079065142
1.056618024
1.035551167
1.031534614
1.864788388
1.253238542
1.155990045
1.092481961
1.062448216
1.043125153
1.914140476
1.260856523
1.15733199
1.085336655
1.055708444
1.875594788
1.240571577
1.161373539
1.091812418
1.680537138
1.245449186
1.164983214
1.692799746

P OORFRPROO0OORFROO0OO0OORFROOOOORFROOO0ODO0ODOOFROOODODODODORFROOOO0ODO0OOOO R

OO R OO0OO0OFROOOORFRPROO0OO0ODO0ODOFROOODOO0OORFROOODODODOOORrRrROOODODOOOoOOoOUROo

OFrRPO0OO0OO0OFROO0OO0OORFROO0OO0ODO0ODO0ORFROO0OO0ODO0ODO0OO0ORrROO0OO0ODO0ODO0OO0OORRrROOOODODOO O OO0

OO0 O0OPFrRPROO0OO0OO0OFRPROO0OO0ODO0OO0OFRPRFOO0OO0ODO0ODO0ODO0OPFRPROO0ODO0ODO0ODO0ODO0ODOFRPROOOODOODOO R, OOoOo

OO0 00000 O0ORrRPROO0OO0ODO0ODORFRPROODO0ODODODOOFRPROO0OO0ODO0ODO0ODO0ODORFrROOOOODOOORr OoOOoOOoOo

O OO0 0000000000 FrROO0OO0ODO0ODO0ODORFRPROO0ODO0ODODODO0ODO0ODO0OFRPROOO0OOOODOORrOOOOoOOo

O OO0 0000000000000 O0DO0ODO0ORFRPROO0ODO0ODO0ODO0DO0OO0OFRPROO0OO0ODO0OO0ODO0OO0ODORFRrOOOOOoOOoO

O OO0 0000000000000 O0DO0DO0DO0DO0DO0DO0DO0ODO0ODO0ORFRPROO0ODO0ODO0ODO0O0ODO0OO0OFROOODOOOOoO

O OO0 0000000000000 O0DO0DO0DO0D0DO0DO0DO0DO0DO0DO0DO0DO0DO0DO0ODO0ODO0ODO0OFRrROO0OO0OO0ODOOOOoO
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1.278442272 0 1 0 0 0 0 0 0 0
1.766681989 1 0 0 0 0 0 0 0 0
run;

proc genmod data=ODPMackModelOneZero;

model Y = f1 f2 f3 f4 f5 f6 f7 f8 f9 / NOINT SCALE = PEARSON;

run;

[Codes End]
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Second Method:

Codes:

data ODPMackModelxy;

input Y f1 f2 f3 f4 f5 f6 {7 f8 f9;

datalines;
76550
96697
112662
123947
129871
134646
138388
141823
144781
87662
112106
130284
141124
148503
154186
158944
162903
99517
126876
144792
156240
165086
170955
176346
106761
133797
154668
168972
179524
187266
113342
142908
165392
179506
189506
111551
138387
160719
175475
110255
137317
159972
96063
122811
92242

’

41821

O O OO0 O0oOOoOOo

0 0
76550 O
0 96697
0 0
0 0
0 0
0 0
0 0
0 0
0 0
87662 0
0 112106
0 0
0 0
0 0
0 0
0 0
0 0
99517 O
0 126876
0 0
0 0
0 0
0 0
0 0
106761 0O
0 133797
0 0
0 0
0 0
0 0
113342 0
0 142908
0 0
0 0
0 0
111551 0
0 138387
0 0
0 0
110255 0
0 137317
0 0
96063 O
0 0

112662

O OO O0OO0OO0oOOoOOo

130284

O OO OO0 OoOOo

144792

O OO OoOOoOo

OO O0OO0O0O0O0OO0OO0OOoOOo

O OO0 O0OO0DO0ODO0DO0O0O0O0OO0OO0OO0oOOoOOo

[elelNelelNelNelolelNolNolNeolNelNololNolNolNolNolNolNoRNo)

[eNeNelNelNeNelNoleolNoloelNolNeolNololNeoloNolNeolNolNolNolNeolNolNolNolNolNolNo]

[eNelNelelNelNelNeolNeolNeolNeoNeolNeolNoleolNeololNolNelNolNelNeolNelNeolNeolNolNeolNololNololNololNolNoNolNol
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run;
proc genmod data=ODPMackModelxy;

model Y = f1 f2 f3 f4 f5 6 f7 f8 f9 / NOINT SCALE = PEARSON;
run;

[Codes End]
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Appendix D. 3.3.3. ODP CC Model GENMOD codes

Code:

input Y al a2 a3 a4 a5 a6 a7 a8 a9 a10 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10;

data ODPCCModel;
datalines;

41821 1

34729 1

1

20147 1

15965 1

0

11285 1

0
1

5924

1
0
1

4775

3742

1

3435

o

—

o

o

o

o

o

o

1
0

2958
48167 O

39495 0

1

24444 0

0

18178 0

10840 O

0

7379

0

5683

4758

o

0

3959

52058 0

47459 0

27359 0

17916 O

11448 0
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0

8846

0

5869

0
0

5391
57251 0

49510 O

27036 O

20871 O

14304 0

10552 0

0

7742

0

59213 0

54129 0

29566 O

22484 0

14114 0O

10000 O

0

59475 0

0

52076 O

1

26836 0

22332 0

0

14756 O

65607 O

0

44648 0

27062 0

0

22655 0

56748 0

39315 0

26748 O
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52212 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0

40030 O 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0

43962 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0

run;

proc genmod data=ODPCCModel,

model y = al a2 a3 a4 a5 a6 a7 a8 a9 a10 b2 b3 b4 b5 b6 b7 b8 b9 b10 /
NOINT

link = log

dist = poisson

SCALE = PEARSON

CORRB

tCodes End]
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