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Abstract  
This project incorporates the PubMed API to create a tool that builds networks representing 

research collaborations across life science fields. In each network, a node represents the last author 
on a publication, while an edge represents publications that share one or several authors. Our tool 
shows that most networks demonstrate characteristics of scale-free networks but cannot be 
statistically proven to be scale free. We performed case studies on three networks to describe the 
relationship between bottleneck authors and their collaborators.  
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1 Introduction 
In 2013, it was approximated that biologists around the world produced 15 petabytes of 

data each year (Wired, 2013). This is widely attributed to the cost of DNA sequencing decreasing 
dramatically in 2009 which allowed it to become accessible to more labs than ever before. While 
growth in data is exciting because it means the science community is expanding its depth and 
breadth of knowledge, it also creates a cause for concern. How will we navigate and search such a 
large quantity of information? How can we still make this information useful and accessible to 
other students and researchers? How will researchers who are interested in similar fields share 
their knowledge? The answers to all of these questions lie in data science, and specifically data 
mining tools. 

One area of particular concern regarding data management is within research publications. 
A single paper can take hours for a single person to read manually. There are some text mining 
tools on the market to automate the analysis of papers, but this is a particularly difficult task in 
biology due to the number of synonyms each term has, and the different ways to grammatically 
represent each one. For example, BRCA1 is just one gene that is related to breast cancer, but it 
alone has 17 synonymous terms, including BRCC1, breast cancer type 1 susceptibility protein, and 
BROVCA1 (PubChem 2015). This classification task is made even more difficult by the sheer 
quantity of publications available. At the end of 2018, it was estimated that the PubMed database, 
one of the most popular life science databases, contained over 29 million publications (PubMed 
2018). 

In this project, our goal is to build a tool using the PubMed API to visually represent the 
research that is being done in each life science field. Through this tool, users will be able to see 
where researchers and labs have collaborated, which will allow for a better understanding of the 
spread of knowledge through a field. From a practical standpoint, this will ease the process of 
researching a specific topic. For example, if a user identifies a single paper or author whose work 
was particularly interesting to them, they can plug the name of the paper or author into our tool. 
Using the network that our tool produces, the user can seek out the nearest nodes and edges around 
their input, which will represent papers and authors that were most similar to their input. This will 
ease the research process by weeding out less relevant publications, allowing researchers to focus 
their time and energy on the information that is most important and relevant to them.  



 

2 Background 
One of the most important aspects of successful research is collaboration. Collaboration 

can occur between single researchers or entire labs. Through collaboration, research topics and 
publications rapidly become intertwined through shared collaborators. This can be demonstrated 
by a network. In this section, we discuss networks and their structure, our database PubMed, and 
tools that have been developed in the past that we sought to improve on in our work. 

 
2.1 Types of Networks 
 A network is defined as a set of nodes connected by edges or arcs. Networks are primarily 
used in math and computer science to model real-world problems or situations. Networks can be 
categorized by their characteristics such as connectivity and clustering, and there are many 
different types of networks. For example, one common application of graphs is to  model social 
networks, where nodes represent people and edges represent a relationship. In our research, nodes 
will represent last authors on research papers and edges will represent supporting authors that 
connect last authors via a shared publication. The following sections will discuss a few specific 
types of graphs which are relevant to our research. 
 
2.1.1 Scale-Free Networks 
 Scale-free networks are a specific type of network that are characterized by the presence 
of hubs in the network. Hubs are defined as a few nodes which are highly connected to other nodes 
in the network. The presence of hubs shifts the distribution of node degree - the average number 
of connections that each node has - of the overall graph, causing them to follow a power law 
distribution (Barabási,2016). This distribution is shown in Figure 1. This is the main defining 
feature of scale free networks. Real-world examples that tend to follow a scale free network include 
the transmission of diseases, the internet, and social media interactions. 
 

 
Figure 1: Node Degree Distribution in a Scale-Free Graph 

 
 



 

2.1.2 Random Networks 
 Random networks are much more loosely defined than scale-free. Traditionally, a random 
graph is defined as a network consisting of N nodes where each node is connected by probability 
p (Barabási,2016). These networks do not consistently follow any patterns, like scale free or clique 
graphs. Random networks node degree tend to follow a Poisson distribution, seen below in Figure 
2. There are no common examples of random networks in the real world and they are traditionally 
used only for theoretical work (Barabási,2016). 
 

 
Figure 2: Node Degree Distribution in a Random Graph 

 
2.2 PubMed, a Life Sciences Database 

PubMed is a key information resource in the biological sciences in terms of diversity, 
breadth, and manual curation (Douglas et al., 2005). PubMed is a free search engine which is 
comprised of 28 million citations retrieved from the MEDLINE database. MEDLINE hosts all the 
references and abstracts of life science topics and PubMed allows for users to retrieve the full text 
of these abstracts and interact between the references on the publications. Many tools come with 
PubMed including citation matchers, clinical queries, and topic-specific queries. Many developers 
want to add to their list of tools to enhance the search engine, thus PubMeds API known as E-
Utilities, is available online to developers to allow access to their database.  

 
2.2.1 PubMed API Toolkit 
 In 2008, NCBI released an API search toolkit for PubMed. This toolkit was built with the 
intention of giving researchers the tools they need to be able to build their own PubMed search 
applications efficiently. The kit consists of 9 tools, and our project will implement 5: E-Search, E-
Fetch, E-Summary, ECQuery, and E-Spell. The following sections will discuss these tools in 
detail. 
 
 
 



 

2.2.2 E-Search  
 E-Search is the tool which provides the basic search function. This tool allows the user to 
input a search query and returns UIDs of all articles in the database which contain matching terms. 
This is the basic tool that our program will be based on as it will perform the primary searching 
function. It's only required parameters are the database of interest to search (default value is 
PubMed) and the search term (Sayers, 2010). There are a number of additional optional 
parameters, which allow the user to set the number of results to return, the format to return them 
in, and the method with which to sort the results. One additional optional parameter is History. By 
setting this parameter to ‘Y’, the user can store the search in the NCBI History server, which will 
allow the user to access it later in a subsequent EUtilities call. This is integral to chaining several 
EUtilities calls. An example output from the E-search utility is seen in Figure 3 below, in the 
format of an XML file.  The multiple PubMed IDs are listed within the <IdList>.  
 
<?xml version="1.0" ?> 
<!DOCTYPE eSearchResult PUBLIC "-//NLM//DTD eSearchResult, 11 May 2002//EN" 
"https://www.ncbi.nlm.nih.gov/entrez/query/DTD/eSearch_020511.dtd"> 
<eSearchResult> 
<Count>255147</Count>   # total number of records matching query 
<RetMax>20</RetMax># number of UIDs returned in this XML; default=20 
<RetStart>0</RetStart># index of first record returned; default=0 
<QueryKey>1</QueryKey># QueryKey, only present if &usehistory=y 
<WebEnv>0l93yIkBjmM60UBXuvBvPfBIq8-9nIsldXuMP0hhuMH- 
8GjCz7F_Dz1XL6z@397033B29A81FB01_0038SID</WebEnv>  
                  # WebEnv; only present if &usehistory=y 
      <IdList> 
<Id>229486465</Id>    # list of UIDs returned 
<Id>229486321</Id> 
<Id>229485738</Id> 
<Id>229470359</Id> 
<Id>229463047</Id> 
<Id>229463037</Id> 
<Id>229463022</Id> 
<Id>229463019</Id> 
<Id>229463007</Id> 
<Id>229463002</Id> 
<Id>229463000</Id> 
<Id>229462974</Id> 
<Id>229462961</Id> 
<Id>229462956</Id> 
<Id>229462921</Id> 
<Id>229462905</Id> 
<Id>229462899</Id> 
<Id>229462873</Id> 
<Id>229462863</Id> 
<Id>229462862</Id> 
</IdList> 

Figure 3: An Example of E-Search Output 
 
 
 
 
 



 

2.2.3 E-Fetch  
 The E-Fetch tool returns a list of formatted records for the given inputted list of UIDs. This 
tool can take a list of UIDs directly as fetch parameters, but it also can be chained with requests to 
other EUtilities tools using the NCBI History server. For example, a user can perform an E-Search 
for “stem cells” as shown in the example above, which will return a list of matching UIDs. If this 
query is saved to the History server, the user can then make a subsequent call to E-Fetch through 
the History server which will allow them to get to the list of the full formatted records for each of 
the UIDs returned by the E-Search call (Sayers, 2010). One additional optional parameter for this 
tool is complexity. Within the call to E-Fetch, the user can instruct the tool how much detail to 
return in the full formatted record. The parameter is a scale from 0-4, where 0 returns maximum 
information (e.g., the entire abstract) and 4 returns minimum information (the sentence the query 
appears in). 
 
2.2.4 E-Summary 
 PubMeds API provides a tool that can return document summaries on every publication 
with a list input of unique identifiers (UIDs), this tool is called E-summary. The tool utilizes 
DocSums as their summary tool. The designed function of the tool requires four parameters 
including database, UIDs, query_key, and WebEnv. The database is defaulted to PubMed but can 
be changed to explore genes or proteins. The UID list is required and must be comma-delimited, 
there is no set maximum of number of UIDs for the Esummary tool. Query_key is an output by a 
tool used earlier to find the object to summarize being one of the three: Esearch, EPost or Elink. 
WebEnv is used in conjunction with WebEnv and specifies the web environment that contains the 
UID list to be provided as input (Sayers, 2010). This function is especially helpful within a network 
graph to allow users to have a summary of the publication before further exploring the whole text. 
The output is an XML file with the contents seen below in Figure 4.  



 

 
Figure 4: Sample XML file output from the ESummary tool  

  
As seen in the above figure, the summary included for each publication is extremely 

detailed and includes the pubMed ID, date published, last author, author list, UID, title, source, in 
addition to many other fields. A total of thirty different fields help summarize each publication 
along with the list of the UIDs.  
  
2.2.5 EGQuery 
 The main function of EGQuery is to provide the number of records retrieved in all Entrez 
databases by a single text query. EGQuery pairs well with the Esearch tool. It is a beneficial tool 
due to the size of some searches (e.g., cancer) may exceed capacity limits and are unable to analyze 
or visualize every returned record. Being able to show the proportion of records visualized on the 
screen provides a datapoint for the user (Sayers, 2010).  
 
2.2.6 ESpell 
 ESpell is a tool to be implemented to enhance the user experience on a application. ESpell 
provides spelling suggestions for terms within a single text query. The required parameters for this 
PubMed tools is a database to search along with a term to query. All special characters must be 
URL encoded and any spaces have to be replaced with ‘+’ signs. Espell increases the ease to search 
for any term with the ability to correct the spelling if either by accident or unknown (Sayers, 2010).  



 

2.3 Existing PubMed Search Tools 
 Many developers have already taken advantage of the opportunity to help enhance 
PubMed’s well-used search engine and have created tools with a variety of functions. Some tools 
create models or return summaries or even perform statistics on the results. Most tools use text 
mining and NLP as a base for their application but each focuses on extraction of different 
information. For example some tools use MEDLINE abstracts while others use MeSH terms, 
authors, key terms, genes, or proteins, to assist in enhancing the literature research process or make 
new discoveries. Every tool breaks down the current limitations of PubMed and advances its 
usability along with the creating possibility to extract new information.  
 
2.3.1 Chilibot  
         Chilibot is a natural language processing based text-mining internet application that 
extracts and defines relationships networks from PubMed abstracts based on biological concepts, 
genes, proteins, or drugs (Chen, H. & Sharp, B.M., 2004). Chilibot is different from most text 
mining programs that already exist because it focuses not only on similarities in the text, but also 
characterizes each interaction. For example, the designer of this application included directionality 
in the graph as well as implemented shapes to represent the presence of inhibition versus 
simulation in a relationship. This is accomplished by taking the title and abstract from MEDLINE 
and parsing the abstract into units of one sentence to obtain higher performance levels. 
         A relationship map created by Chilibot is shown below in Figure 5. The PubMed database 
in this example was queried looking to discover relationships amongst a set of genes regulated by 
cocaine. In their graph they have icons on the network lines, which represent the relationship. 
Arrowheads indicate directionality, while the different colored circles show the interactive 
relationships between the two whether it is neutral (gray), stimulatory (green), inhibitory (red), or 
both (yellow) (Chen, H. & Sharp, B.M., 2004). 
  



 

 
Figure 5: An example of the relationship network from the program Chilibot (Chen, H. & Sharp, 

B.M., 2004).  
          

These networks have the power to help discover new trends and hypotheses about the 
queried biological concept, gene, or drug. Performing analyses on this network and discovering 
the hubs and topology class can help discover potential experimental targets. Chilibot only 
performs linguistic analysis on maximum of 30 abstracts per query so the possibility of the network 
falsely representing the queried terms due to small sample size is a possibility (Chen, H. & Sharp, 
B.M., 2004). This also allows for important articles to be absent from the selected data set. In 
Figure 5 above, the term “cocaine” is queried and Chilibot selects and dissects 30 abstracts to 
create the above network. However, there are 40,807 abstracts about “cocaine” in PubMed, 
meaning that this search result only represents 0.07% of the available research. This leads readers 
to question the accuracy and representation the graph provides of the queried term.   
 
2.3.2 MeSH Map  
 Within the MEDLINE abstracts on PubMed, there exists controlled vocabulary that assists 
in indexing subjects on documents called medical subject heading (MeSH). A lot of text mining 
softwares rely on MeSH terms to create and strengthen links between two different entities. MeSH 
terms help represent similarities between two abstracts that may be on two completely different 
topics. MeSHmap is a prototype application that supports searches via PubMed and generates 
maps by “user driven exploration of MeSH terms” (Srinivasan, 2001). This application can also 
mine the metadata of the MEDLINE abstracts to provide a high level summary of the users’ search 
or describe the relationship between two topics, for example a pair of drugs or procedures. 
MeSHmap is written in the language Java and has three major interaction phases: search, 
exploration, and display.   



 

 This application goes beyond just text retrieval with its three user friendly designed phases. 
The search phase consists of using the application user interface to query for a disease  or term. 
The user may choose to string together a variety of terms using high level operators such as “AND” 
and “OR” which allows for the discovery of association between a variety of different topics that 
may trigger new research (Srinivasan, 2001). All results are then downloaded and analyzed using 
the MeSH terms and subheadings provided by the MEDLINE abstract. After analysis, a summary 
is formed in addition to a simple non-interactive generated map which is visualized on screen in 
the application. In addition, two lists are generated: one that contains a list of MeSH terms with 
frequency of occurrence and another list of the subheadings from all resultant abstracts. MeSHmap 
will also list all the titles of the papers which were analyzed in a separate window by user request 
with use of a fetch function.  

Srinivasan remarked, “Given the explosion of information in health care it is very difficult 
for health care professionals, researchers and educators to keep abreast of literature in their 
domain.” (Srinivasan, 2001). This program in addition to Chilibot gives the life sciences field 
critical tools to be able to filter through and obtain desired literature with ease. With these tools, 
we open a door of access to all and the ability to discover new knowledge through graph theory.  
Unfortunately, many programs including MeSHmap are not open to the public. 

 
2.3.3 PubNet  
 The most successful PubMed text mining web based tool, based on usage, is called PubNet. 
PubNet can extract and visualize a variety of relationships between publications using aspects such 
as gene names, protein data bank (PDB) IDs, MeSH terms, vocabulary terms, and authors (Douglas 
et al., 2005). PubNet has a user interface in which a term of interest is queried to bring up the 
search results from PubMed and is displayed in a interactive graphical visualization. The XML 
output from PubMed is parsed to uncover many interesting relationships between the publications 
that are returned from the query.  
 PubNet does everything Chilibot and MeSHmap can do with some additions. PubNet is 
connected to a software known as TopNet. TopNet takes the graph displayed from PubNet as input 
and calculates the average degree, clustering coefficient, characteristic path length, and diameter 
for the network. PubNet is also capable of creating much more complex networks than the other 
two applications because it can accept multiple queries and can select node parameters for each 
network (Douglas et al., 2005). The application is user friendly and interactive, in just one window, 
each node in the graph is hyperlinked to a detailed textual report which organizes all outgoing 
edges and neighboring nodes with respective edges in a list.  
 This application was a new advancement in high throughput techniques and has made it 
possible to conduct biomedical research on a larger scale with ease. PubNet has different search 
types based on exploring a variety of relationships between publications within the database. One 
of the search types which closely relates to our project is their authorship function. Querying a 
specific author or organization would return a network where each node is an author and the edges 
represent co-authorship. A diverse array of graph structures is evident which highlights differences 



 

in size, frequency in publication, and degree cooperation across the consortia. This diverse array 
is seen in Figure 6.  
 

 
Figure 6: Examples of PubNet display network based on authorship query function (Douglas et 
al., 2005). (a) Network with edges representing co authorship on one paper, (b) Network with 
edges representing collaboration between two authors, (c) Network with edges representing 
shared MeSH term between papers, (d) Network with edges representing a shared location 

between two papers, major clustering can be seen here by country or continent. 
  
 Figure 6 illustrates the different types of relationships that can be extracted from a single 
query on PubMed. An example of the authorship search type being used is seen above in panel B 
of Figure 6. The graph represents the authorship for the NESG consortium, which shows a 
confederated but coordinated approach. Each author name is stored within a node of the network 
returned from the search query. Each edge within the network represents co-authorship on at least 
one paper together. A different pattern is seen in this network versus the others in the figure. 
Researchers believe this unique pattern is because investigators from each laboratory tend to form 
central anchor points, from which other members of the laboratory use to branch out (Douglas et 
al., 2005). The NESG consortium consists of two protein sample production centers, six sites for 
3D structure detection via nuclear magnetic resonance or X-ray crystallography, and several other 
groups working on technology development and annotation. This network allows a user to 
understand the connection between authors in this consortium.  
 Although PubNet has broken through a lot of barriers within biomedical research, there 
still is a lot of improvement to come as technology continues to advance. PubNet can only handle 



 

15 combinations of node and edge parameters although the number of different queries is 
unrestricted. Also, in the case of researchers with common names (e.g., “Smith”), the application 
has no way to differentiate between the authors. This opens the possibility of these researchers to 
be grouped into the same node as one author, thus providing an inaccurate network.  
 
2.4 Our Project 

AuthorMap will be designed to incorporate features from each of these preexisting tools 
while also having a novel approach. This application will be used to discover the connections 
between authors based on a topic, which is different from PubNet in which users can only search 
for a consortium. A user would input a string to AuthorMap to query PubMed such as 
“tuberculosis” or “breast cancer”. The user would also set a size to the network, based on the 
amount of publications they would like the search to return. For example, if the set size is 500, 
then 500 papers will be analyzed to create the network. In each network, every node represents a 
last author, who is usually the group leader or PI and each edge shows co-authorship between last 
authors. The tool Chilibot can only perform analysis on 30 publications per network exported, 
whereas AuthorMap’s maximum search size has not been found yet. The tool MeshMap is not 
open to the public although its in-depth analysis of the MeSH terms could offer a great advantage 
which AuthorMap will display for all returned papers but also be available to all users. The 
application AuthorMap has an objective to be open-source, user-friendly, interactive, have a new 
technological capacity, and answer new questions.  

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

3 Methodology  
 This section describes our approach of implementing the various PubMed utilities, 
NetworkX, Cytoscape, and Powerlaw package in Python to obtain and analyze authorship 
networks. Shown in Figure 7 below is our experimental design and the application of the various 
tools and the sequential order in which they are implemented.  
 

 
 

Figure 7: Experimental Design of Program in Python to Obtain and Analyze Authorship 
Networks 

 
3.1 Tools, Environment 

For this project, we worked primarily in Python 3.6, specifically using the Pycharm IDE. 
Significant libraries that we implemented included Entrez, Matplotlib, iPython, NetworkX, 
Py2Cytoscape, and PowerLaw. Py2Cytoscape allowed for a connection between Python and the 
Cytoscape application for visualization of our networks. Entrez served as the connection between 
our application and the PubMed API. Matplotlib, iPython, NetworkX, and PowerLaw mainly 
served in the creation and analysis of our networks. 

 
3.2 Design of AuthorMap 
 In this section of the methodology, the AuthorMap tool is discussed in detail about of how 
it was created in Python 3.6 from the approach, to design, and usage of packages that made the 
tool fully functional.  
 



 

3.2.1 Systematic Approach 
To ensure our tool was systematic, first we needed to ascertain that we were selecting 

search terms in a non-biased method. To do this, we implemented the PubMed Mesh Terms (found 
at: https://www.ncbi.nlm.nih.gov/mesh?term=Biological%20Science%20Disciplines) in a 
systematic method. We created a list of terms at the primary level of the hierarchy to perform our 
preliminary search. In this way, our program automatically iterated through the list, searched each 
term on PubMed, created a Cytoscape graph of each network result, and performed analysis on 
each resultant network for each term. We also followed this exact practice with a Narrow List that 
was the secondary level of the hierarchy. Lastly, we delve into several case studies based on 
analysis of the Narrow List.  

 
3.2.2 Search Engine 
 To build our search engine, we used the E-Utilities tools available through the PubMed 
API called Entrez. With this API, we were able to query searches to the PubMed database without 
having to perform web scraping, which allowed our data management to be more time and space 
efficient.  

To gather the data, we first implemented the E-Utilities Search tool. This is the initial 
function that passes the user’s search query to the database, and returns PubMed IDs of papers that 
match the search term. This function includes several optional parameters built-in. A few that we 
chose to use were ‘retmax’, which sets the maximum number of results to return, and ‘retmode’, 
which sets the return file type, for which we used xml.  

After acquiring the search results, the next step was to gain more information about every 
individual PubMed ID returned. Because the search function only returns IDs of papers matching 
the search query, we wanted to next learn more about the returned papers, such as their title, date 
published, and authors. The E-Fetch function fetches the paper IDs that were returned by the 
ESearch function. Then, the E-Utilities Summary function takes in a list of formatted files from 
the E-Fetch function and returns key information about them in an xml file, including title and 
authors. The E-Summary utility allowed for retrieval of this key information and was implemented 
into our program.  

The final step in handling our results was to parse the returned XML files from the E-
Summary tool to deduce only the information that we needed. Our main interests were the authors 
who contributed to each paper and the paper titles, because this data is integral in building our 
network. After parsing, we stored the authors, last authors and supporting, in a dictionary to make 
the information readily available to convert into a network. 
 
3.2.3 Cytoscape  
 Cytoscape is one of the most popular network visualization libraries used for 
bioinformatics and data science. For this project, we used it for the visualization of our author 
networks. After we assembled our graph in NetworkX, we passed it directly to the Cytoscape 
application through a local host, where it was visualized. Below, in Figure 8, is a sample Cytoscape 



 

output of a search for “anatomy”. Each node is representative of a last author and is labeled with 
the author’s name and each edge signifies collaboration with another last author in the field.  

 
Figure 8: Example Cytoscape Output for query term “chemotherapy” with 500,000 search 

results. At the bottom of the network all binary nodes are seen.  
 
3.2.4 NetworkX  
 The dictionary containing the last authors as the keys, and all supporting last authors as the 
values, were then made into a undirected simple network using NetworkX. In each network, a node 
represents a last author within the queried field. Supporting authors are represented as edges which 
connect last authors to one another. Another way to think about the network construction is that 
each edge represents a shared publication between 2 individuals.  
 NetworkX also has a vast amount of built in functions for network analysis in addition to 
constructing networks. The four important analysis metrics that will be focused on for the 
remainder of the paper are: number of communities, degree centrality, clustering coefficient, and 
betweenness centrality. In addition to these metrics, we programmed our tool to also perform a 
variety of other analysis metrics: graph density, eigenvector centrality, number of cliques and 
largest clique size, node centrality, closeness centrality, checking if the graph is connected and the 
number of connected components.  
 To detect the number of the communities, the community API was implemented (Aynaud, 
2010). This built in analysis tool from networkX computes the partition of the graph nodes 
detecting hubs or communities within a large network using Louvain heuristics. This is a greedy 
optimization method and works in two different steps. First, the methods looks for small 
communities by optimizing modularity, the degree to which a system's components can be 



 

separated and recombined, locally. Second, it builds a new network with nodes that belong to the 
smaller community, these smaller communities are then counted and output an integer (Blondel, 
2008). The integer represents the amount of central hubs within a network and this can be used to 
determine the graph type.  
 The degree centrality built in method was heavily used in this network analysis to measure 
the importance of nodes based on their number of connections (Hagberg, 2008). This function 
takes in a NetworkX graph and returns a dictionary that contains every node as a key and the 
degree centrality as its value. The value represented the fraction of nodes it is connected to. Due 
to the dictionaries being large in size, we abstracted the data to summarize every node by getting 
the average degree centrality for every queried term (Hagberg, 2008). To ensure an accurate degree 
centrality value and knowing a large sum of nodes had a 0 value for degree centrality, we pruned 
the data to exclude all values of 0 before taking the average. Another value extracted from the 
pruned dictionary was the median. Both the average and median allowed for better visualization 
and comparison on a larger scale, comparing network to network instead of node to node within 
one network.  
 The same abstract approach was used when dealing with the clustering coefficient metric. 
This as well, takes in a networkx graph and return a dictionary of each node with its clustering 
coefficient (Hagberg, 2008). The clustering coefficient is the measure of the extent to which one 
author has collaborated with another.  This metric is based on triplets of connected nodes, and the 
fraction of possible triangles through that node that exist (Fairchild 2012).  
 Betweenness centrality, also known as bottleneck measure, was used within the case 
studies to find the most influential authors. In large complex networks, not all nodes are equivalent 
and this metric helps determine the nodes that are most influential in determining the flow of the 
network’s information. Betweenness centrality is defined as the fraction of shortest paths going 
through any given node (Barthélemy, 2004). This measure is not so much based on connectivity, 
as seen below in Figure 9; node v is not very connected, but the effect of its removal would be 
detrimental due to its importance in connecting two parts of the neworks.  
 

 
Figure 9: An example of betweenness centrality(Barthélemy, 2004). Node V represents the 

bottleneck of the example network, node v would have a high betweenness centrality because the 
amount of shortest paths that pass through the node to connect region c1 to region c2.  

  



 

 In networkX, betweenness centrality works identically to that described for degree 
centrality and the clustering coefficient. The function takes in the networkx graph and returns a 
dictionary, with every key being a last author’s name and the value of their betweenness centrality 
(Hagberg, 2008). 
 
3.2.5 Powerlaw  
 The powerlaw package that was imported in Python 3.6 has the ability to determine if our 
graphs distribution fits the power law distribution or another common distribution type. All of this 
is supported through statistical analysis. Previous bioinformatics papers including, “Statistical 
Analyses Support Power Law Distributions Found in Neuronal Avalanches” from the Plenz lab at 
the National Institute of Mental Health use this python package to identify the power law scaling 
within neuronal avalanches (Klaus, 2011).  
 The powerlaw package will support or refute a hypothesis claiming the graph type that 
each PubMed authorship map is displaying. Below in Figure 10, the definition of the power law 
distribution is shown in addition to several other common statistical distributions. This is the 
continuous distribution that the package is comparing with the formed graph data from auth. The 
powerlaw package functionality requires to pick two of the distributions shown in Figure 10 to 
compare with your graphs distribution. The two chosen for this project was power law along with 
log-normal (Clauset, 2009).  

 
Figure 10: Definitions of Common Statistical Distribution used in the Powerlaw Python 

Package (Clauset, 2009). 
 

 The power law model distribution used in the package follows the well known model 
Barabasi and Albert, which represents the graph type known as a scale free graph. The log-normal 
distribution in this package follows not specified model.  
 The Powerlaw package takes in your graph’s distribution that is calculated using another 
Python package called collections. The two values that are outputted are an R value and a P value. 
R is the log-likelihood ratio, where a positive value for R denotes that the data is better fit by the 
first distribution. A negative value denotes that the data is better fitted by the second distribution 
specified. The size of the R value, positive or negative, determines the strength of comparison 
(Shaheen, 2017). The p value signifies the significance of the fitted model. For a model fitting to 



 

be statistically significant this value must be less than or equal to 0.05. An example is shown below 
in Table 1.  
 

Table 1: Example of Powerlaw Package Data Output Analysis  

R (log-likelihood ratio) p-value First Distribution Second Distribution 

-1.398 0.0378 Log-Normal Power Law 

0.339 0.734 Log-Normal Power Law 

 
 The first row of Table 1 has a negative R value meaning the graphs distribution is closest 
fit to the second distribution, power law, and it has a p-value of 0.0378 which is less than 0.05 
meaning the fitting is statistically significant; we can reject the null hypothesis and conclude that 
the data are a good fit to the power law distribution. The second row in the table has a positive R 
value of 0.339 signifying that this graph is fitted closer to log-normal than power law but the p-
value is much higher than 0.05 meaning that the fitting is not statistically significant. A scientist 
would conclude that the graph is probably better fit to another distribution. 
 
3.3 Hypothesis Design & Testing  
 Using the powerlaw package, we were then able to test our hypotheses about the type of 
network acquired from our systematic tool. Through building our networks and analyzing them 
we were searching for answers to two research questions. Each research question is applied to 
every network. The first research question is:  Is the graph generated by our program a scale free 
graph that follows a power-law distribution? As discussed in section 2.1.1, scale-free graphs 
follows a power-law node degree distribution, which is tested with the Python package described 
previously. Graphs that follow a scale-free distribution contain more hubs, or “communities”, 
implying that in a case such as our network of authors, more collaboration is occurring. From this 
research question, our two testable hypotheses were developed. These are seen below.  
 

H0: The graph is not a scale-free graph 
Ha: The graph is a scale-free graph 

 
With the outputted R and p values we can accept one of these hypotheses and reject the 

other. If the p value is statistically significant, less than a value of 0.05, then the H0 is rejected. 
Thus, we tried to support any field that does not have a significant p value with the NetworkX 
analysis metrics that were chosen to support scale-free networks. Looking for fields that 
demonstrate strong scale-free network characteristics (high degree centrality median & average, 
high clustering coefficient, and high number of communities) within the analysis metrics would 
allow us to help claim if a network is truly scale-free.  

The other research question that was posed was about possibility of being a random 
network. This question asks: Is the graph generated by our program a random graph that follows 



 

a log-normal distribution? This node degree distribution type of log-normal was the second 
distribution tested using the Power Law Python package. If the graph is random instead of scale-
free, this implies that there is less collaboration occurring between authors in the network. The two 
hypotheses extracted from this research questions are presented below.  

 
H0: The graph is not a random graph 

Ha: The graph is a random graph 
 

 We followed the same analysis tactic explained for the first research question to accept and 
reject one of the hypotheses above using both the R and p values as well as the NetworkX metrics. 
We are looking for a positive R value with a significant p value to be able to accept our Ha. Unless 
we are able to identify patterns within the computed metrics that demonstrate random networks 
characteristics. This would consist of few communities, low degree centrality, and low clustering 
coefficient. A combination of all of our results will be used to answer both research questions and 
accept a hypothesis that supports the network type exhibited for each field in both the Broad and 
Narrow Lists.   
 
3.4 Usage of Tool  
 For the purpose of this project, the tool was used mainly as a method to carry out hypothesis 
testing using two lists: a Broad List and a Narrow List. Data was collected from each run of the 
program and some network statistics including clustering coefficient, degree distribution, and 
number of communities, were collected in order to compare the resultant networks. 
 
3.4.1 Broad List  
 The “Broad List” of search terms contains the highest-level terms from PubMed’s  
Biological Science Disciplines Mesh Terms (NCBI). For the purpose of this research, the list 
included ten terms: 'anatomy', 'biochemistry', 'biology', 'biophysics', 'biotechnology', 
'chronobiology', 'neurosciences', 'pharmacology', 'physiology', and 'toxicology'. This list allowed 
us to explore author interactions within broad fields of approximately 1-5 million publications 
each.  
 We passed this list as input to the AuthorMap generator and through the systematic tool 
several quantitative metrics were produced based on the network generated from the PubMed 
queried results. To gain access to the PubMed database through our tool, PubMed’s Entrez API 
was implemented. The systematic tools implements three of the Entrez functions: E-Search, E-
Fetch and E-Summary. After all of these are executed in the program, an XML file is exported for 
every paper containing a variety of information including the desired last authors name. Next in 
the program, we built a dictionary to create a link between the last authors in the field (the keys) 
and their respective supporting authors (the values). For example, if the last author on one paper 
was a supporting author on another, this would connect their nodes. By pruning through every 



 

paper’s supporting authors looking for a common last author, we were able to build the network 
representing their relationships. 
 The first step to analyzing each network was discovering what type of network it was. We 
looked at each network in Cytoscape, and realized they didn’t follow normal scale-free or random 
network patterns as expected. This was interesting and called for more research. Using the package 
Powerlaw in Python, we then tested several hypotheses to discover what types of networks we 
were producing. AuthorMap automatically generates and outputs the R and P values of the 
networks, indicating best fit to scale-free or random distributions.  
 We performed more analysis on each network to help justify our results from the Powerlaw 
package and support our stance on the hypothesis being tested. Using NetworkX built-in network 
analysis functions, we collected data that would support scale-free or random network behavior. 
The degree centrality average was calculated for each network, by averaging the value from every 
node but excluding all zero-values to allow for more accuracy. This way, we were able to compare 
each network’s degree centrality value. Our program also calculated the median degree centrality 
as an alternative metric to average. Betweenness centrality was another measure of centrality 
calculated by our tool. We were able to use the betweenness centrality value to compare where 
and how many bottlenecks occurred in each network. 

The clustering coefficient was also calculated for every node, and then we found the 
average clustering for each search query, which allowed us to perform comparisons across 
networks. The last metric calculated was the number of communities each network had. All the 
data collected for each network within the Broad List were exported into a CSV file which allowed 
for easy data analysis and graphing. Using the seaborn package within Python, the csv was read 
and then a multitude of graphs were created to allow for exploration of correlation between any of 
the metrics or any patterns seen within the field.  
 
3.4.2 Narrow List  
 Similar to the Broad List, the “Narrow List” of search terms was also derived from 
PubMed’s Biological Science Disciplines Mesh Terms. The terms in the Narrow List are one level 
lower in the hierarchical structure than those present in the Broad List, making them slightly more 
specific than the Broad List terms. This allowed us to explore slightly smaller fields of 
approximately 500,000-1,000,000 publications each. The Narrow List contained 64 terms, from 
‘anatomy-artistic’, to ‘toxicogenetics’.  
 Using the programmed AuthorMap tools that works systemically, the Narrow List was 
given as input to the tool and the same process as described in section 3.4.1 to the Broad List was 
performed. Data was extracted from PubMed, a network of last authors for all 64 specific fields 
was built, and network analysis was performed all systematically. A CSV file was exported and 
data analysis and graphing was done in Python using the seaborn package.  
 
 
 



 

3.4.3 Case Studies  
To further explore a few of the Narrow List fields and the results acquired previously, we 

selected three different fields based on some criteria. We selected two interesting fields that didn’t 
follow the same trends in the network statistical analysis as the majority of the data: artistic 
anatomy and comparative physiology. The last field we selected did follow the normal trends and 
was picked based on interest in the field and its current popularity at WPI: neurobiology. With 
these three fields, the goal of these case studies are to look at non-metric descriptors (year, model 
organisms, h-index, etc.) to better understand the network structure as a whole. By studying the 
spread of knowledge from one last author to another, we can have a better idea of what forms this 
unique network type/shape.  
 We decided to focus on a variety of non-metric descriptors of particular nodes within each 
network. These descriptors include the year, the publishing journal impact factor, model organism 
worked with, and the authors h-index. The certain nodes were selected based on their betweenness 
centrality (or bottleneck value) that was gathered by using the AuthorMap tool designed earlier in 
the project. Betweenness centrality is a measure of the fraction of shortest paths going through any 
given node (Barthélemy, 2004). This value for each node shows the influence of that last author 
on flow of information through the entire network (more information in section 3.2.4). Four 
research questions were proposed to help guide our investigation on the interaction between all 
these variables: 
 

1. If the author is more influential, has a large h-index, will the node likely have a large 
influence over the flow of information within our network?  

2. In the spread of knowledge from one last author to another, does the bridging author 
influence their first degree connections with the type of model organism used?  

3. Based on the bridging author, are their first degree connections within the network 
publishing in journals with comparable impact factors?  

4. Are collaborations between last authors based on work completed in certain years or rise 
in popularity of the field?  

 
 These research questions will help shine light on the answers we desire of how the network 
gained its unique node distribution and shape. The process to collect all this information to answer 
these questions used a variety of tools including AuthorMap, Cytoscape, the PubMed website, and 
Scopus.  
 The first step was to determine the influential authors within the three fields of interest. By 
running our AuthorMap tool using the NetworkX betweenness centrality function, the tool 
exported a sorted list of dictionaries containing the last author name and their betweenness 
centrality. If the betweenness centrality is larger than zero, that author can be referred to as a 
bottleneck within the network. Their betweenness value reflects how much they are affecting the 
flow of information. A larger betweenness centrality pertains to a node with many shortest paths 
running through it, and a smaller betweenness centrality means the opposite. We picked the top 



 

three authors that had the largest betweenness centrality and also scrolled to the bottom of the 
sorted list and picked the author with the smallest betweenness centrality for comparative 
purposes. Having the smallest bottleneck allowed us to contrast the three largest bottlenecks 
studied.  
 All four bottlenecks were being studied within the three fields of interest and all steps at 
this point are repeated for every bottleneck in each field. All the bottlenecks were located within 
the network using the Cytoscape visualization tool. By searching for the last authors name in the 
search bar, the last author was highlighted along with it’s first degree connections. All of the first 
degree connection names were recorded in a tabular format to keep records organized and allow 
for easy comparison between the bottleneck author and all their connections.  
 With all the authors names of interest, we can now incorporate the PubMed website and 
Scopus. Through these two sources, we can gather the non-metric descriptors for both the 
bottlenecks author and all of their first degree connections. To begin this big data collection, an 
advanced search was performed in PubMed specifying the field and the last authors name. The 
search results returned are organized by the “Best Match” papers (which is the search our tool 
performs using the API). An example of a search query and the result can be seen below in the top 
of Figure 11.  
 



 

 
Figure 11: An example PubMed query and search result. An example of one publication for the 

author in the field (top). An example if the author has more than more publication (bottom). 
  
 If a last author only has one publication within the queried field it will immediately pop 
up. For some authors, they will have multiple papers within the field and a list of papers will be 
returned to you. In this case, the first paper that is sorted by “best match” is extracted for our 
records. For example shown in the bottom of Figure 11 above, notice that “Best Match” is selected 
for the sort by technique and the first paper titled “Glia Maturation factor..” would be the paper in 
which we would extract information from. From PubMed the non-metric descriptors that are 
recorded are the year published and the model organism worked with from the title/abstract. This 
information can be recorded into the table corresponding to the author you are researching. The 
title is copied and then pasted into the document search on the Scopus website, specifying the 
search by article title using the drop down, to finish gathering the information. The paper is most 
likely to be the only search result retrieved unless it has a general title, in this case you would then 
scan the search results looking for the paper with the correct last author.  
 From the search results in Scopus, one can click upon the source hyperlinked to the right 
of the title (Figure 12, top) and this will bring you to another page revealing the journal impact 



 

factor. Record this information in the same table with the year and model organism. Using the 
back arrow to return to the search results, then click on the last author (Figure 12, bottom) and this 
will bring you to the personal authors page in Scopus. On the author's personal page, the h-index 
is shown and can be also be recorded in the table.  
 

 

 
Figure 12: Showing Scopus search results and hyperlinks to click on to retrieve information. 
Accessing the specific journals impact factor (top). Accessing the last authors specific page 

(bottom).  
 
 Every table should represent each identified bottleneck author for all three fields, including 
the bottleneck and their first degree connections and all the information collected. Each field has 
four master tables. With all this information pooled together, we can then compare the data and 
start to answer our research questions.  
 Based on the data collected and some interesting findings, we further looked into the 
correlation between the numerical values of the non-metric descriptors. For example, if there is 
any correlation between h-index and betweenness centrality, journal impact value and betweenness 
centrality, or h-index and betweenness centrality. Since we did not have a large enough sample 
size from the case studies alone, thirty random last authors were picked along the distribution of 
betweenness centralities from the entire network. Each author was then searched in PubMed and 
Scopus retrieving the h-index and journal impact factor. This data was then collected and stored 
within a CSV file and then graphed using the ggplot2 library in R.  
 
 
 
 
 



 

4 Results   
 The data that was extracted from the designed authorMap Python tool will be discussed 
within this section. All results from the Broad List, Narrow List, and the chosen case studies are 
presented and analyzed in detail. Initially, a great amount of curiosity led to testing a variety of 
hypotheses to discover what type of network was being built with every PubMed query. It was 
discovered that all networks: Broad List (10) and Narrow List (64), all had node distributions 
that best fit a power law distribution pertaining to a scale-free network. When performing 
network analysis, some of the metrics including clustering coefficient, degree centrality 
supported this hypothesis and others did not. The three case studies: artistic anatomy, 
neurobiology, and comparative physiology were chosen due to interesting results affecting our 
hypothesis stance. Each case study was investigated to discover more details about the field 
outside of the network type including the most common year & journal name, organisms studied, 
and the bottlenecks within the given field.  
 
4.1 Broad List 
 The Broad List consisting of 10 terms with very large field sizes were queried to gather a 
portion (maximum of 500,000) of the most relevant papers to analyze to construct a social network. 
The network was built using last authors of every paper extracted from the search, and drawing 
connections to other last authors in the field. Many different metrics were tested when analyzing 
the network and these all can be seen below in Figure 13 & 15. The raw data that the graphs reflect 
that were collected from AuthorMap can be seen in Supplemental Figure 1.  
 



 

 
Figure 13: Broad List Results: each dot colored to represent field, and dot sized by total nodes 

within the created network(number of last authors). A. Log R versus log P values B. Total nodes 
versus communities C. Log degree centrality median versus log clustering coefficient D. Log 

degree centrality median versus log communities E. Log clustering coefficient versus log 
communities  

  
In Figure 13 above, a variety of graphs are presented to display all data extracted from the 

10 different networks constructed using our AuthorMap tool. Figure 13A shows the results from 
the power-law package that we used to test our network against model networks demonstrating 
scale-free and random distribution. The X axis is showing R, maximum likelihood values, which 
from the raw data were absolute valued and then calculated logarithm with base 10. The Y axis is 
the p value which shows if the fitting is statistically significant; an acceptable p value is ~0.01. All 
Broad List terms were within a range of negative R values before taking an absolute value, 
suggesting that they are all better fit to the power law distribution. None of the ten graphs had a 
small enough p-value for this fitting to scale-free to be accepted and statistically significant. The 
two outlier dots; anatomy (light blue) and chronobiology (light blue), had the best fit (most 
negative R value) to scale free and had the smallest two p values closest to being statistically 
significant  with values of 0.08 and 0.1 respectively. Toxicology shown as the purple dot had the 



 

least negative R value and had the highest p value, supporting a not well fit to the power-law 
distribution but it was a slightly better fit than log-normal, indicating that it behaved more as a 
scale-free graph than a random graph. No exact pattern can be seen from Figure 13A besides a 
similarity between a majority of the fields with two outliers.  

To better understand how communities are located using the Louvain algorithm in 
NetworkX, we were curious if it has a correlation with the network size. Figure 13B shows a direct 
correlation between the two metrics as predicted. The larger the network size, the more 
communities are possible and are seen. The largest field within the Broad List is anatomy which 
is shown in light blue and is located in the upper right hand corner proving that it has the most 
communities. This pattern stay true throughout the graph; the second largest field is biochemistry 
which has the second highest number of communities as seen in the figure. Lastly, the smallest 
field within this list is chronobiology which is located in the lower left hand corner because it also 
has the smallest amount of communities. This was taken into account when moving forward with 
the Narrow List.  

Figure 13C, shows the pairwise relationship between the two metrics degree centrality and 
clustering coefficient. Within the figure, a lot can be noted about the pattern displayed. Exponential 
growth can be seen as well as clustering of similar fields. Biology and biophysics can be seen 
clustering (light green and green) as well as chronobiology, biotechnology and neuroscience (light 
red, red, and orange). Values that are more to the right of the graph show a lower median degree 
centrality and values that are more to the top show a lower clustering coefficient. For example, 
toxicology is located in the upper right hand corner of the graph portraying the smallest clustering 
coefficient as well as the lowest median for degree centrality out of the ten Broad List terms. This 
makes sense due to this network was the least fit to scale- free distribution, thus would have a low 
values for both metrics because degree centrality and clustering coefficient pertain to a scale-free 
network. In this graph, there is one outlier which is consistent with the others: anatomy shown in 
light blue. Anatomy has the lowest log value for degree centrality and clustering coefficient, which 
means it has the highest true value. Both of these support the R and p values of the artistic anatomy 
network being scale-free. 

The graph within the bottom row located in the middle, Figure 13D, is studying a 
relationship between the degree centrality median and the number of communities. The field with 
the highest median and largest number of communities is the most scale free network by the 
powerlaw package- once again, anatomy. Chronobiology who also was close to being statistically 
significant scale-free network has a lower median and few communities due to the network size. 
We expected for chronobiology to have a similar degree centrality median due to the R values 
being close in value. No other pattern can be induced from this graph, the fields that have a high 
number of communities will be closer to the top of the graph, and the fields with a high median 
will be to the left of graph. Most fields are represented in Figure 13D in the top half and to the 
right half. This shows that most of the terms from the Broad List have a high number of the 
communities, which makes sense because of the size of the field, and a low degree centrality 
median.  



 

Degree centrality and number of communities have no notable relationship, but the number 
of communities with the clustering coefficient does. Understanding that to have a community, 
more clustering would have to occur in the network. Thus having more communities in a network 
would cause for a higher clustering coefficient. There are three outliers, two that strongly follow 
that statement and one that does not. Anatomy and biochemistry demonstrate very high clustering 
coefficients and also are the two fields with the largest number of communities. Chronobiology, 
the smallest field within the broadlist returning the least amount of last authors for the network 
also has a similar clustering coefficient to fields with thousands of more clusters. Other than these 
three, the rest of the seven fields in the list all have similar community sizes and clustering 
coefficients and are grouped in the central area of the graph.  

Scatterplot matrices are helpful to better study pairwise relationship between all metrics, 
and if there is any relationship what is the nature of it. Also, this type of visualization can allow 
identification of outliers and clusters within the raw dataset. Every combination of every metric is 
shown with a scatterplot as well as a histogram on the diagonal of the matrix. For example, in 
Figure 14 below the histogram in the total nodes column, is showing the distribution of total nodes 
values of every field within the Broad List. The diagonal histogram shows the distribution of the 
variable in the corresponding column.  

 
 
 
 



 

 

 
 

Figure 14: Broad List results presented within a scatterplot matrix to look for relationships 
between all computed metrics of each field, each dot represents one of the broad fields seen in 

the legend. Correlation between a variety of metrics is noted: total nodes & communities, R and 
P. The same outliers can be noted in each scatterplot.  



 

Above in Figure 14, a scatterplot matrix was constructed for all metrics on the Broad List 
terms, each graph has different axes with raw values from our original dataset. As detected earlier 
in the individual graphs shown in Figure 13, some pairwise relationships were noted that are also 
detected in this visualization. In the matrix, a relationship between total node and number of 
communities as well as R and P is seen. In almost every dataset, there are two outliers the red dot 
and the light blue dot: chronobiology and anatomy respectfully. Excluding these outliers, the other 
eight data points seem to cluster together in no particular pattern within every graph combination. 
This is seen within the histograms for each metric, in most cases, light blue and red are not stacked 
with others and stand alone whereas the other terms mostly stack together or next to each other. 
The R and P histogram helps support our hypothesis, making it easier to see the data. You can see 
that the most negative R values are anatomy and chronobiology as well as the smallest p values. 
These two fields are stacked within the histogram and outliers when looking at the other fields. 
The scatterplot matrix helps summarize all the Broad List data collection/analysis and allows for 
easy comparison between metrics but does not allow for specificity of numbers as it is hard to 
calculate a scale with so many scatterplots.  

Due to the large size of these fields it is impossible to claim whether these network statistics 
are true for the entire broad field or just the portion that we sampled. We sampled a max of 500,000 
papers extracting from an organized list that sorts all of the millions of papers from most relevant 
to least. To better test our hypothesis of network types we dove into the next hierarchy of the 
PubMed MeSH terms. In the next section of the results chapter, we discuss the same data collection 
and analysis technique but on the 64 fields that are smaller and more specific.  

 
4.2 Narrow List  
 To attempt at sampling a whole field with the AuthorMap tool, we ran the systematic tool 
on the Narrow List. The Narrow List consisted of 64 terms that were more specific and had less 
papers to query on PubMed. Below in Figure 15, all network analysis is shown in the form of  
scatter plots. Each dot represents a Narrow List term but is colored by the Broad List term that sits 
above it in the MeSH term hierarchy. The dots are also sized based on the total nodes within the 
individual network. The colors are shifted in these scatter plots compared to the colors in Figure 
13 above in the Broad List results. The raw data that the graphs reflect below that were collected 
from AuthorMap can be seen in Supplemental Figure 2.  
  



 

 
Figure 15: Narrow List Results: colored by hierarchical structure of term under the broad term 

and dot sized by total nodes within the created network (number of last authors). A. Log R 
versus log P values B. Total nodes versus communities C. Log degree centrality median versus 

log clustering coefficient D. Log degree centrality median versus log communities E. Log 
clustering coefficient versus log communities  

 
 The first graph on the top left shows the log R versus log P values. To create this graph, 
we took the absolute value of the computed R values, and then took the logarithm of those positive 
values. In this panel, fields in the upper left hand corner of the graph have the most negative R 
values and the most statistically significant P value, meaning that they are the most likely to be 
scale free. The two purple data points in this corner are from the physiology field. They are 
comparative physiology which has an R value of -2.169 and a P value of 0.030, and 
psychophysiology which has an R value of -1.924 and a P value = 0.054. This is interesting because 
in the Broad List graphs, physiology did not appear to be scale free, but here, these data points 
definitely do. The other green data point in this top left corner is from anatomy, which is consistent 
with the data we have seen thus far about anatomy consistently being an outlier. On the other end 
of the graph (with a very low R value and very high P value) is a Narrow List item from the 



 

biochemistry field. This implies that this field is closer to a random graph than a scale-free, and is 
consistent with what was observed earlier in the Broad List data for biochemistry. 
 The second graph, on the top right, shows the number of total nodes in a network versus 
the logarithm of the number of communities in that network. There was also an additional aspect 
added to the graph to show additional information - data point diameter is also representative of 
total field size. Through this, it is also clear that the largest field also has the largest number of 
communities, which was expected. The largest field shown in this panel is comparative anatomy, 
which is consistent with the data seen in the analysis of the Broad List. Comparative anatomy also 
has the highest total number of communities. Oppositely, there was one toxicology field and one 
anatomy field that each had very low numbers of communities. 
 The third graph, on the bottom left, shows the logarithm of the node degree clustering 
versus the logarithm of the total number of communities. Here there is a clear trend in the clustering 
coefficient data, where most clustering coefficients fall in the range of 0.4-0.5, but there is one 
clear outlier, which is anatomy artistic at 0.79. This data point can be seen as a small light green 
point extremely close to the y axis - this means that it isn’t a large field, and doesn’t have many 
communities, but it does have a high clustering coefficient, making it an outlier. Larger fields 
shown in this graph, such as narrow terms that fall under biology, have a higher number of 
communities but lower clustering coefficients. Connecting back to a pattern that was observed in 
the previous graph, the toxicology and anatomy fields with low total communities can be seen as 
the two data points closest to the x axis. All other fields that follow the normal trend are seen 
clustered in the upper right hand corner. 
 The graph in the middle of the bottom row shows the logarithm of the median degree 
centrality versus the logarithm of the total number of communities. Again, artistic anatomy can be 
seen as an outlier here, shown as the light green dot next to the y axis with the greatest median 
degree centrality. All of the remaining points are clustered in the upper right hand side of the graph, 
indicating greater average number of communities and lower average degree centrality. To the left 
of this large cluster, there is a small, very densely packed cluster of four data points: two from 
biology, one pharmacology, and one neuroscience. This is interesting because it includes several 
of the biggest fields in the network. 
 Finally, the fifth graph shows the logarithm of the median node degree centrality versus 
the logarithm of the clustering coefficient. Here, there is some clear clustering occurring based on 
groups of broad fields. The biology (blue) is clustered at the highest in the uppermost top right 
corner. Under that cluster are anatomy (light green), biochemistry (dark green), and physiology 
(lilac) which are all also tightly clustered below the biology cluster, which means that they have 
better clustering coefficient. One outlier is present on the lower left hand corner - anatomy artistic 
- with high clustering coefficient and high median degree centrality. This was not surprising as we 
have seen anatomy artistic act continuously as an outlier throughout these results. 
 A scatter plot matrix was then used to summarize all the data collected for the Narrow List 
networks. In Figure 16 below, the scatter plot matrix for the Narrow List terms reveals a lot of 
interesting patterns within the data including the distribution of values for each metric. The same 



 

two pairwise relationships from the Broad List data are noted here as well: total nodes and number 
of communities as well as R and P values. In mostly every scatter plot there is clustering of every 
field with minimal outliers. The consistent outlier throughout the entire matrix is one light green 
dot pertaining to a sub field of anatomy. In some graphs a purple dot, a sub field of physiology, 
serves as an outlier in all graphs with R on the Y axis. This is due to the large negative R value the 
field has but it is fairly consistent with all other values in the other metrics. Lastly, in median and 
average degree centrality versus clustering coefficient a dark orange and blue dot are outliers along 
with the light green dot. The orange and blue dots pertain to the broad fields of neuroscience and 
biology respectfully.  
 

 



 

 
Figure 16: Narrow List results presented within a scatterplot matrix to look for relationships 

between all computed metrics of each field. Each field is colored by their categorized Broad List 
field, the legend is shown above. The same correlation that was seen in the Broad List scatterplot 

matrix is supported here.  
 

 Studying the diagonal histograms, there seems to be uniform and similar distributions for 
all metrics besides total nodes and the number of communities. These two values vary between all 
Narrow List terms grouped under the Broad List. For example, the broad field of anatomy has 10 
narrow fields under the hierarchy. One of these fields is a tiny network with only 1,097 last author 
(anatomy artistic), whereas, another field is one of the largest networks with 8,210 last authors 
(anatomy comparative). This leads for an unequal distribution of values within the anatomy Broad 
List group. Due to this unequal distribution in the total nodes metric, this pattern will be carried to 
the number of communities distribution as these have a pairwise relationship. Overall in the data 
visualization summary, fields of interest from Figure 16 can easily be followed and conclusions 
can be drawn.  
 
4.3 Conclusion  
 In conclusion, these results figures have shown that overall, there are clear trends in each 
plot that most of the fields follow. However, there have been several fields that are consistent 
outliers, such as anatomy artistic. There have also been several other fields that have not performed 
as expected. For example, the graphs that are statistically the most scale free according to R and P 
values are from the physiology field, but none of them were outliers in terms of median degree 
centrality or clustering coefficient. We expected that the graphs that would statistically be the most 
scale free would also have a high degree centrality and high clustering coefficient, as these are 
trademark characteristics of a scale free network. Additionally, the anatomy field was supported  
to be scale free via its degree centrality, number of communities, and clustering coefficient - 
however, it does not have a statistically significant P value for its R value. Because these fields 
performed so unexpectedly, we will be investigating them further in additional case studies below. 
 
 
 
 
 
 



 

4.4 Case Studies  
 This section reflects the deeper findings within particular networks using the AuthorMap 
tool in conjunction with other sources. By involving non-metric descriptors and moving away from 
network analysis, we were able to study the transfer of knowledge from one last author to another 
as well as study any correlation between outside measures about the authors. Our research 
questions demonstrate the curiosity to better understand how the network was formed and if there 
are any patterns that can characterize the collaboration between two authors in a particular field. 
By studying each bottleneck we will answer the four research questions:  
 

1. If the author is more influential, has a large h-index, will the node likely have a large 
influence over the flow of information within our network?  

2. In the spread of knowledge from one last author to another, does the bridging author 
influence their first degree connections with the type of model organism used?  

3. Based on the bridging author, are their first degree connections within the network 
publishing in journals with comparable impact factors?  

4. Are collaborations between last authors based on work completed in certain years or rise 
in popularity of the field?  

 
4.4.1 Case Study 1: Artistic Anatomy 

Artistic anatomy is a small field that focuses on studying anatomy for artistic purposes 
represented by drawing, paintings, or sculptures. Most published papers within this field are atlases 
of an organism's anatomy. This field was interesting and selected as a case study because it 
demonstrates expected scale-free characteristics but is not a statistically signifcant scale-free 
network with a p-value of 0.59. All of the raw network analysis data collected by authorMap can 
be seen below in Table 2. A complete table of raw statistics for all 64 fields to use for comparison 
can be found in Supplemental Figure 2. Artistic Anatomy’s network data when compared to the 
other narrow fields was always an outlier with the highest degree centrality median and clustering 
coefficient which is expected in a scale-free network.  

 
Table 2: Network Analysis Data for Artistic Anatomy Network  

R P 
Total 
Nodes Communities 

Degree Cent. 
Avg.  Clustering Co 

Degree Cent. 
Median 

-0.537 0.591 1097 995 0.001 0.792 0.001 

 
 To further explore this unique network type that better fits a node distribution of scale-free 
although not significant, looking at the most and least influential authors and their connections will 
allow for us to better understand the structure and how the network was formed. Below in Figure 
17 is the full artistic anatomy network, with the three largest bottlenecks highlighted in yellow.  



 

Figure 17: Structure of Artistic Anatomy Full Network with the Three Largest Bottlenecks 
Highlighted in Yellow 

 
This figure is to be used for comparative purposes and zoomed in images of the bottlenecks 

and their connections can be found in the supplemental figures.  The network is small with little 
connectivity, and consists of many authors that have never collaborated with another last author in 
the field, so the bottlenecks that are present seem minor to other bottlenecks in other fields but 
major within this specific network. The four bottlenecks, and their betweenness centrality further 
investigated in artistic anatomy are shown below in Table 3.  
 

Table 3: Betweenness Centrality values for the four bottlenecks studied in this section 

Name of Last Author Betweenness 
Centrality  

Bryan, R. Nick 9.926 

Tomic, Irina 8.272 

Tubbs, Richard Shane 8.272 

Fischl, Bruce R. 0.0001 



 

4.4.1.1 Largest Bottleneck: Bryan, R. Nick  
 The largest bottleneck in the artistic anatomy network is Bryan, RN with a betweenness 
centrality value of 9.93. In Supplemental Figure 3, a zoomed in screenshot of the original artistic 
anatomy network, one can see the last author and all of his first degree connections highlighted in 
Cytoscape. This last author has two first degree connections; Bryan RN has collaborated with 
Miller, GA as well as Davatzikos, C. The table below lists the bottleneck author first in italics and 
then his two connections. Each column represents a different non-metric descriptor: year, h-index, 
journal impact factor, and model organism.  
 
Table 4: AA Bottleneck 1: Bryan, RN. & Connections Non-Metric Descriptors. Preservation of 

organism can be noted from this bottleneck.  

Name Year H-index Journal Impact 
Factor  

Organism  

Bryan, RN 1996 62 1.29 Humans  

Miller, GA 1997 2 0.75 Humans 

Davatzikos, C 2016 72 6.15 Humans 

 
 As we look to answer our research questions for the field of artistic anatomy, there is no 
pattern seen in studying this bottleneck alone. Some observations that are made are: model 
organism stays consistent across all three connections, journal impact factor and h-index vary 
tremendously from last author to last author, and the year stayed consistent with one connection 
but not the other. Another noted observation was although Bryan, RN has such a high h-index he 
did not publish his work in a journal with a high impact factor which contrasts with Davatzikos, 
C. who has a high h-index as well as published in a popular journal. The bottleneck author also 
has a high h-index which may be necessary to have a high betweenness centrality and be 
considered influential enough to affect the flow of the network information.  
 
4.4.1.2 2nd Largest Bottleneck: Tomic, Irina  
 Studying the top three bottlenecks allows us to see if there are any trends that make an 
author influential as well as if there is any spread of knowledge from the bottleneck author to their 
connections in a variety of situations. The second bottleneck author, Irina Tomic from Serbia has 
three first degree connections within the artistic anatomy network. She and her connections can be 
visually seen in Supplemental Figure 4. The table below reflects the names of her connections in 
addition to all the non-metric descriptors.  
 
 
 
 



 

Table 5: AA Bottleneck 2: Tomic, I. & Connections Non-Metric Descriptors. Preservation of 
organisms, journal impact factor, and h-index can be noted. 

Name Year H-index Journal Impact 
Factor  

Organism  

Tomic, I  2017  2 1.947 Humans  

Djordjevic, D 2010 2 1.57 Humans 

Starcevic A 2014 4 1.57 Humans 

Cetkovic, M 2012 6 1.15 Humans  

 
 Irina Tomic having the second largest betweenness centrality with a value of 8.271 lacks a 
large h-index. With an h-index of only 2, it seems that to be considered a bottleneck within a 
network h-index is not always a factor. Within Table 5, we can see a spread of knowledge by use 
of the same model organism as well with consistency demonstrated in year, h-index, and the 
journal impact factor across all the last authors. All authors worked with humans, published in a 
journal with an impact factor from 1.0-2.0 from the year 2012-2017, and have an h-index within a 
range of four. These connection form a cluster within the artistic anatomy network, seen in 
Supplemental Figure 4, which makes sense as they are so similar in a variety of characteristics that 
could cause them to cluster with Tomic, I serving as the central pivot connecting them all.  
 
4.4.1.3 3rd Largest Bottleneck: Tubbs, Richard Shane  
 With a betweenness centrality value identical to the last (8.272), Richard Tubbs is the third 
bottleneck to be investigated in the field of artistic anatomy along with his primary connections. 
He has three connections that can be seen in Supplemental Figure 5 and below in Table 6.  
 

Table 6: AA Bottleneck 3: Tubbs, RS. & Connections Non-Metric Descriptors. Consistency in 
the model organisms can be seen across all four authors. 

Name Year H-index Journal Impact 
Factor  

Organism  

Tubbs, RS 2017 37 1.24 Humans 

Salter, EG 2006 18 1.91 Humans 

Lewis, TL 2014 10 12.41 Humans 

Wartman, C 2007 3 2.40 Humans  

 
 The bottleneck author, Richard Tubbs, has a high h-index value but again doesn’t 
necessarily have a large journal impact factor. One of his connection Lewis, TL who has a lower 



 

h-index published in a better journal with a higher journal impact factor of 12.41. Looking at his 
connections no patterns can truly can extracted besides that all four last-authors worked with the 
same model organism: humans. Consistency lacks looking at the other non-metric descriptors.  
  
4.4.1.4 Smallest Bottleneck: Fischl, Brue R.  
 To contrast any trends seen in the larger bottlenecks looking at the smallest bottleneck was 
important. Bruce Fischl is the author with the smallest bottleneck,  not including authors that have 
no betweenness centrality (not connected to anyone or only one other). Bruce had a betweenness 
centrality of 0.0001. This last author from Harvard Medical School also had three first degree 
connections that can be seen in Supplemental Figure 6 or listed below in Table 7.  
 
Table 7: AA Bottleneck 4: Fischl,BR. & Connections Non-Metric Descriptors. Contrasted with 
the large bottlenecks, the h-indexes in the smallest bottleneck are the largest noted throughout 

the entire case study thus no correlation between betweenness centrality and h-index. 
 

Name Year H-index Journal Impact 
Factor  

Organism  

Fischl, B 2007 89 6.13 Humans 

Lein, ES 2017 1 3.30 Humans  

Boas, DA 2012 88 3.30 Variety  

Miller, MI 2010 70 6.75 Humans  

 
 Fischl being the smallest bottleneck has the largest h-index we have seen thus far in our 
data collection. This example further suggests that the betweenness centrality may not be based on 
the h-index of the author. Two out of his three connections also have very high h-indexes but the 
other only has an h-index of one. Although that author, Lein, has a small h-index, the work was 
still published in a journal with a high impact journal. Fischl, with a large h-index, also published 
in a journal with a high impact factor and so did his connections. The consistency in journal impact 
factors is noted. No similarity in publishing year was found but all three of his connections did 
work with humans and one expanded and worked with a variety of organisms that included 
humans. No large differences other than the h-index value of Fischl were discovered in this attempt 
to contrast the largest and the smallest bottleneck.  
 
 
 
 
 



 

4.4.1.5 Studying Correlation  
 When studying the large and small bottlenecks, several instances suggested a lack of 
correlation between betweenness centrality and other metrics. To determine whether this is a 
significant finding, a larger sample of nodes with different betweenness centralities were chosen 
across the distribution to have a total sample size of 30 bottlenecks. Throughout looking at the top 
three bottlenecks and the smallest, questions about if the h-index measure is directly related to the 
betweenness centrality within the network arose. Below in Figure 18, the graph shows there is no 
correlation seen between the h-index of an author and their effect on the flow of information in a 
network based on the thirty bottlenecks sampled. Each dot represents an author which is sized 
based on journal impact factor and colored based on the percent of work within the given field; 
this parameter was extracted from Scopus.  
 

 
Figure 18: Correlation of H-index and Betweenness Centrality in Artistic Anatomy. No 

correlation can be extracted.  
 

 A reason why there is no correlation between h-index and betweenness centrality, is that 
h-index does not pertain to the importance of the author within that particular field but in general. 
For example, the smallest bottleneck author in the artistic anatomy field, Bruce Fischl, has an h-
index of 89, but has only one paper within the artistic anatomy community; his high h-index is 
largely due to his extensive work within the neuroscience community. This can be seen in Figure 
18 by the coloring of percent within the field and how most dots are at the lower end of the gradient 
showing a smaller percent of their work is done in this community. There are only two more blue 
circles in the bottom left and both have a low h-index and betweenness centrality.  



 

To further see if there was any other correlation among the metrics collected for the thirty 
bottlenecks a Pearson Correlation test was performed in R studio. Below in Figure 19, there is a 
heat map showing if there is negative or positive correlation between all five metrics. The 
correlation value can be read through the color of the box as well as the actual correlation value is 
recorded in each box. The more red the box is the more negative the correlation between the two 
metrics, the more blue the box is the more positive the correlation is. Purple serves as a middle 
color.  

 
Figure 19: Heatmap showing Pearson Correlation between all non-metric descriptors using the 
same data from the thirty bottlenecks. Only positive correlation is between the journal impact 

factor and h-index.  No correlations were statistically significant. 
 

 The Pearson Correlation provided no support that there is a positive correlation between 
the h-index and the bottleneck with a negative correlation value of -0.2. The only two metrics with 
positive correlation was between the journal impact factor and h-index, with a value of 0.14 (very 
small). The p-values for each correlation measure can be seen below in Table 8. There was no 
statistically significant values found (p ≤ 0.01). The one positive correlation found was not 
significant with a p value of 0.509.  
 
 
 
 



 

Table 8: Significance of Pearson Correlation between non-metric descriptor. No significant 
correlations within the non-metric descriptors in the field of artistic anatomy.  

 Bottleneck H-index Journal 
Impact Factor 

Year % in AA 

Bottleneck NA 0.370 0.883 0.661 0.254 

H-index 0.370 NA 0.509 0.324 0.224 

Journal 
Impact Factor  

0.883 0.509 NA 0.235 0.348 

Year 0.661 0.324 0.235 NA 0.322 

% in AA 0.254 0.223 0.348 0.322 NA 
 

Overall, artistic anatomy had no statistically significant correlation found among 
comparing the five different non-metric descriptors. Contrary to previous beliefs, this correlation 
study helped support that there is no correlation between h-index and betweenness centrality. The 
only positive correlation noted, with a very small correlation value of 0.14, was between h-index 
and journal impact factor. Will any patterns be seen across all three case studies in correlation?  

  
4.4.1.6 Summary   
 With a mission to answer the four research questions for the field, a lot of information was 
collected about the bottleneck authors and their first degree connections within the network made 
by the tool AuthorMap. The first research question posed was the studying if there is any 
correlation or consistency between the h-index and the betweenness centrality. Through all four 
authors studied, it was rare to see authors only collaborating with other last authors with a similar 
h-index. In a separate study, there was no correlation found between the two values of h-index and 
betweenness centrality. An author can have a very high h-index but a low betweenness centrality 
or vice versa.  
 The same approach was used to study the journal impact factor. Do connecting authors 
publish in similar journals with comparable impact factors or can this not be characterized by 
collaboration? By looking at our four authors and their connections, in only one case (Tomic, I) 
all four authors published in a journal with an impact factor in the range of 1.0-2.0. This pattern 
was not seen in the other cases to this extent, some had mostly similar impact factors and then an 
outlier. There are  many journals that a scientist can publish in today and this may play a role. In 
the separate study, no correlation between betweenness centrality and the journal impact factor 
could be seen. The bigger the bottleneck is not directly influenced by the journal impact factor or 
the authors h-index.  
 There were some patterns noted with the spread of knowledge pertaining to model 
organisms. Mostly all authors that connected worked with the same model organism but it may 



 

also be that humans makes up the largest model organism population for this field. Below in Table 
9 represents the top 5 model organisms declared by PubMed overall and their showing in artistic 
anatomy. Due to the lack of large populations of other model organisms, this pattern noted for this 
field may have been a fluke.  
 

Table 9: Model Organisms Populations within Artistic Anatomy Field 

C.elegans Zebrafish Mice Drosophila Yeast Humans 

0 2 43 4 0 1084 

  
Lastly, the years of publication were studied within artistic anatomy. Some consistency 

was noted that authors were publishing usually with the same decade of one another. To study if 
this is influenced by a rise in popularity within the field, data was extracted from PubMed to give 
us the total number of publications within the field within each year. Below in Figure 20 you can 
see a bar chart representing the trend of publications from 1960-2019.  

 
Figure 20: Number of Publications per year in Artistic Anatomy  

 
There is a noted rise in popularity of the field from 1997 on but it is not constant from year 

to year. All the publication years within this case study were mostly from 2010 to 2018, which is 
definitely more popular than anything before 1997 but one cannot truly say the bottleneck is 
connected to certain years of popularity. Overall, the case study allowed us to better understand 
the field of artistic anatomy in relation to its interesting network statistics. The collaboration seen 
within the network can only be described from one of non-metric descriptors studied: model 
organism. In the artistic anatomy field, a majority of authors work with humans as the organism 
and this allows for a spread of knowledge from the bottleneck author to his connections.  

 
 



 

4.4.2 Case Study 2: Comparative Physiology  
 Comparative physiology was a field of interest selected due to its contradicting network 
statistics found by the AuthorMap tool. Comparative physiology is studying and exploiting the 
different functional characteristics between organisms; it is a study of diversity across species. All 
network statistics can be found in Table 10 below. A complete table of raw statistics for all 64 
fields to use for comparison can be found in Supplemental Figure 2. This network was the only 
network constructed that was shown to be scale-free based on the node distribution analyzed by 
the powerlaw package.  

The R value is -2.169, negative meaning the best fit is to the first distribution (scale-free) 
and a large value meaning it has a large maximum likelihood that it fits the scale-free node 
distribution example. The p value is 0.03 which would allow for acceptance of the hypothesis that 
this network follows scale-free characteristics. Within a scale-free network we would expect to 
see a high clustering coefficient, high degree centrality average and median, and a large number 
of communities. The only scale-free characteristic that this field matches is a high number of 
communities but not in comparison with some of the other fields. The clustering coefficient and 
degree centrality was also not as high as expected, it mostly matches the other sixty plus fields 
tested. The network analysis data that was expected for a statistically significant scale-free graph 
was not seen in the comparative physiology network.  
 

Table 10: Network Analysis Data for Comparative Physiology 
 

R P Total Nodes Communities 
Degree Cent. 

Avg.  Clustering Co. 
Degree Cent. 

Median 

-2.169 0.030 7361 4451 4.61E-05 0.447 3.48E-05 
 
 To better understand these network statistics and how this network was formed, four 
bottleneck authors were examined to find any patterns that may uncover how each connection 
within the network was built. Below in Figure 21 shows the comparative physiology network with 
the top three bottlenecks highlighted in yellow.  



 

 
Figure 21: Zoomed in structure of the comparative physiology network (6,049 binary nodes not 

shown) with a zoomed-in view at the most dense part of the network and the three largest 
bottlenecks (corresponding to last authors Yu, Yang, and Dong, respectively) highlighted in 

yellow.  
 

This figure is to be used for comparative purposes and zoomed in images of the individual 
bottlenecks and their connections can be found in the supplemental figures.  In the network you 
can see a hairball structure, where a majority of the bottlenecks are found. The four bottlenecks, 
and their betweenness centrality further investigated in comparative physiology are shown below 
in Table 11.  

 
Table 11: Betweenness Centrality values for the four bottlenecks studied in this section 

 
Name of Last Author Betweenness 

Centrality  
Yu, Tao 9.939 

Yang, Bin 9.932 
Dong, Sijun 9.916 
Chen, Feng 0.0001 

 



 

 
4.4.2.1 Largest Bottleneck: Yu, Tao 
 The largest bottleneck within the entire network is Tao Yu, with a betweenness centrality 
of 9.94. Tao is an author from a medical university in China and has six published papers with the 
field of comparative physiology. Within the network he has collaborated with three other last 
authors, the structure of the connections can be seen in Supplemental Figure 7. Below in Table 12, 
the three first degree connections are listed along with their non-metric descriptors.  
 

Table 12: CP Bottleneck 1: Yu, Tao & Connections Non-Metric Descriptors. All papers 
published within last decade- no other consistency among connections.  

Name Year H-index Journal Impact 
Factor  

Organism  

Yu, T 2012 2 3.40 Rabbits  

Puhan, MA 2015 52 1.74 N/A  

Huang, Z 2017  11 3.29 Plant  

Jiang, Y 2016 63 4.12 Fruit  

 
 No spread of knowledge can be extracted from the table above. All three authors worked 
with a variety of different model organisms from rabbits to fruit with no overlap. The h-index also 
shows no consistency across all four authors and the bottleneck author has the lowest h-index with 
a value of 2. This result suggests that h-index doesn’t necessarily correlate with betweenness 
centrality as was also demonstrated in the last case study. The journal impact factors are within a 
small range from one another, but not all within the same 1 point range. The only interesting and 
consistent aspect is that all the papers were published within the same decade and within five years 
of one another. This is similar to what we saw in the last case study and may be is in relation to 
the popularity of the field changing over time.  
 
4.4.2.2 2nd Largest Bottleneck: Yang, Bin 
 The second largest bottleneck within the comparative physiology network is Bin Yang. Bin 
Yang was the last author on 23 publications within the comparative physiology query. The author 
is affiliated with Nankai University in China and has seven first degree connections. This can be 
seen in Supplemental Figure 8 as well as the table below. Table 13 lists all of the connections along 
with the information extracted about them from PubMed and Scopus.  
 
 
 
 
 



 

Table 13: CP Bottleneck 2: Yang, Bin & Connections Non-Metric Descriptors. Most consistent 
non-metric descriptors across all 8 authors: year and journal impact factor.  

Name Year H-index Journal Impact 
Factor  

Organism  

Yang, B 2017 3 2.56 Bacteria  

Liu, L 2018 24 4.48 Bacteria  

Zhao, X 2016 8 2.04  Mice  

Zhao, D 2015 15 2.63 Bacteria  

Wang, J 2016 12 1.73 Zebrafish  

Lei, T 2017 1 2.77 Humans 

Wu, J 2017 9 0.47 Honey Bees 

Perez-Enscio, M 2014 32 6.13 Pig  

 
 Again, the first observation noted is that the bottleneck author Bin Yang has a small h-
index of 3 but is a bottleneck within the network, further supporting that there is no correlation 
between the two measures. The h-index also shows no consistency across all eight last authors 
ranging from 1-32. Another non-metric descriptor that shows no pattern across the eight authors 
is the model organism used. A lot of them are unique but all of the organisms are related to one 
another, as we know from evolution. Three of the eight authors are using a bacteria but the other 
five are using a variety of different organisms from pigs to honey bees. The year and journal impact 
factors are the two descriptors that are staying the most consistent. The journal impact factors are 
mostly consistent with a few outliers, most are within the range from 2.0-3.0. Among all eight of 
the authors, they have published within a few years of one another, with half of them publishing 
in 2017.  
 
4.4.2.3 3rd Largest Bottleneck: Dong, Sijun 
 With a betweenness centrality of 9.92, Sijun Dong is the third largest bottleneck within the 
comparative physiology network. This author among the last two bottlenecks is from China and  
is affiliated with the National Institute of Urban Environment. Dong was the last author on 12 
papers within the comparative physiology field, however only has two first degree connections in 
the network. Those connections can be seen visually in Supplemental Figure 9  or listed below in 
Table 14.  
 
 
 



 

Table 14: CP Bottleneck 3: Dong, Sijun & Connections Non-Metric Descriptors. Preservation of 
the year across the three authors within this bottleneck.  

Name Year H-index Journal Impact 
Factor  

Organism  

Dong, S 2016 18 5.98 Mice  

Wang, F 2017 9 3.15 Mice  

Sun, Y 2017 16 5.81 Bacteria  

 
Among the three authors the most stable measure is the year, all publishing from 2016-

2017. The h-index when comparing all three authors is not identical but when comparing only 
Dong and Sun, they share comparable h-indexes and journal impact factors. Which may mean that 
within the comparative physiology field, h-indexes and journal impact factors are correlated. Dong 
and Sun however do not work with the same model organism but Wang and Dong do. One would 
expect a cluster of last authors who have collaborated to share more than one of these non-metric 
descriptors and in this bottleneck example the other sharing is within the year published.  
  
4.4.2.4 Smallest Bottleneck: Cheng, Feng  
 To again contrast any of our finding within the larger bottlenecks, we looked at the smallest 
bottleneck. Feng Cheng last author who has the smallest impact of the flow of information within 
the network has a betweenness centrality of 0.0001. Cheng is affiliated with Nanjing Medical 
University which is also located in China as were all the other authors in this case study. Cheng 
was the last author on 65 papers within the comparative physiology field as this is his main field 
of study. In the network he has collaborated with five other last authors that can be seen in 
Supplemental Figure 10 or in Table 15 below.  
 

Table 15: CP Bottleneck 4: Cheng, Feng & Connections Non-Metric Descriptors. Contrasted 
with the larger bottleneck, the same patterns are seen within organism and journal impact factor. 

Name Year H-index Journal Impact 
Factor  

Organism  

Chen, F 2017 18 1.89 Humans  

Ren, L 2013 8 1.69 Humans 

Kaufman, DB 2009 48 2.62 Mice  

Kung, HF 2011 55 1.67 Humans 

Berke, JD 2013 28 15.14 Humans 

Chen, DJ 2009 14 1.91 Bacteria  



 

 The journal impact factor and model organism among the six authors stays relatively 
constant with two outliers in both categories. One author is the same outlier in both categories, 
Kaufman. With a slightly higher journal impact factor than the rest and using mice instead of 
humans in his studies labels Kaufman as an outlier. Chen uses bacteria instead of humans and 
Berke published in a journal with an impact factor of 15 while all the other authors published in 
journals with a range from 1.0-2.0. The h-index and the year are spread out and differ from author 
to author, no distinct patterns can explain why all these authors are connected to Chen based on 
the h-index and year. Although Chen was the smallest bottleneck, he has a larger h-index at 18 
than two of the larger bottlenecks previously studied and tied with Dong. No other differences are 
noted between the larger and smaller bottlenecks. The majority of connections can be assumed to 
collaborated with Chen by using humans as the model organism and publishing within similar 
journals.  
 
4.4.2.5 Studying Correlation  
 In order to determine whether there are any differences in the correlation previously studied 
from field to field based of the network characteristics is something we questioned. Following the 
technique stated within the methodology, we picked 30 bottleneck authors with a variety of 
betweenness centralities across the distribution of betweenness centralities. This will allow us to 
study if there are any relationships between h-index, journal impact factor, and betweenness 
centrality.   
  

 

 
Figure 22: Correlation of H-index and Betweenness Centrality in Comparative Physiology. No 

correlation extracted between the four measures.  
 



 

No correlation is seen between h-index and the betweenness centrality. For this field in 
particular, most authors within the field don’t have an h-index above 30; but even authors with 
small h-indexes are just as likely to have large betweenness centrality as authors with large h-
indexes.  even authors with smaller h-indexes have the largest bottlenecks as seen within our case 
study above. Also, dots on the blue end of the spectrum are present in the figure above due to a lot 
of authors within this field work primarily in this field whereas in artistic anatomy many authors 
only had one paper in the field. Another interesting observation is that authors with larger h-
indexes and small betweenness centralities don’t have a large percent of publications in 
comparative physiology versus an author with a lower h-index and a high betweenness centrality. 
A reason for this pattern could be that comparative physiology is more segregated from other 
fields, an author that solely publishes papers about comparative physiology could have a lower h-
index due to the lack of citations the paper is receiving because of the lack of overlap. Overall, 
some trends are noticed that were different from the artistic anatomy study.  

A Pearson Correlation test was run across the five metrics and a heatmap was created to 
reflect these values in Figure 23 below. The figure shows the negative and positive correlation 
between every possible combination of the five metrics. H-index and betweenness centrality had 
a negative correlation value of -0.33. There were three positive correlations that were found in this 
case study versus the one found in artistic anatomy. The one that was found in artistic anatomy, 
between h-index and journal impact factor, was also found in comparative physiology but stronger. 
H-index and journal impact factor had a correlation value of 0.57. The second strongest positive 
correlation was between percent in the field and the betweenness centrality with a value of 0.38. 
Lastly, a small positive correlation of 0.07 was noted between the journal impact factor and the 
bottleneck value.  

 
 



 

 
Figure 23: Heatmap showing the Pearson Correlation between the several non-metric descriptors 
in the comparative physiology field. With three positive correlations shown, the strongest being 
between journal impact factor and h-index; this was the only significant correlation (p= .001).  

 
 To see if any of these correlations, positive or negative, were statistically significant the 
p-values of the Pearson Correlation test were exported and can be found below in Table 16. The 
only statistically significant correlation was between journal impact factor and h-index with a p-
value of 0.0011.  
 

Table 16: P-Values for the Pearson Correlation heatmap. Only one statistically significant  
(p ≤ 0.01) correlation between the h-index and journal impact factor was found.  

 Bottleneck H-index Journal 
Impact Factor 

Year % in CP 

Bottleneck NA 0.076 0.700 0.932 0.037 

H-index 0.763 NA 0.0011 0.256 0.022 

Journal 
Impact Factor 

0.700 0.0011 NA 0.037 0.372 

Year 0.932 0.256 0.037 NA 0.822 

% in CP  0.037 0.022 0.372 0.822 NA 
 
 



 

Overall, comparative physiology had one statistically significant correlation found between 
h-index and journal impact factor. This means that authors with higher h-indexes were publishing 
in journals with high journal impact factors. This case study in addition to the artistic anatomy has 
shown that there is no correlation between h-index and betweenness centrality.  

 
4.3.2.6 Summary  
 In conclusion, this case study varied in different ways from artistic anatomy and this may 
be due to the differences that were seen before in the network statistical analysis. Based on the 
four bottleneck authors studied there is no overarching patterns that were seen consistently among 
all cases. Starting with the non-metric descriptor h-index; there was no seen correlation between 
the h-index and the betweenness centrality. The two biggest bottlenecks within the field have h-
indexes of two and three respectively. It was rare to see any sort of consistency with the h-index 
measure comparing the bottleneck author and his/her primary connections. One observation that 
was noted consistently in the individual bottlenecks examined is although the bottleneck author 
may not always have a large h-index, that author always collaborates with some authors that have 
larger h-indexes. The bottleneck author doesn’t just collaborate with people that share the same 
influential measure.  
 This also stands true for model organisms within this field. An author that works with mice 
isn’t only going to work with other authors that worked with mice. Below in Table 17, the 
distribution of papers working with the top five model organisms is shown. Comparing with artistic 
anatomy, this field uses a much larger range of organisms although humans is still the most 
popular.  This observation is consistent with the name of the field itself; one might expect many 
different types of organisms to be represented. 
 

Table 17: Model Organisms Populations in Comparative Physiology 

C.elegans Zebrafish Mice Drosophila Yeast Humans 

2,335 2,517 113,648 8,497 6,546 661,996 

  
It was seen in a few cases above where a majority of the connections do work with the 

same model organisms but never inclusive of all authors. For three out of four of the cases 
excluding Yu (largest bottleneck), this was true, where 50% of the connections did work with the 
same model organism as the bottleneck author supporting that there could be a potential spread of 
knowledge.  

In most cases within this case study, all of the bottleneck authors and their primary 
connections were publishing in similar journals with comparable impact factors. In some situations 
there was outliers but a majority of the connections were within the same range of impact factors. 
This could potentially be due to the specialist journals within the field; many of the authors are 
publishing in the same journals that are unique to the field of comparative physiology which mostly 
have similar impact factors. For example, a paper about comparative physiology is not going to be 



 

published in a journal about neuroscience but mostly likely in a medical journal about surgery or 
research.  
 The last research question pertains to the pattern of publishing years among each 
bottleneck. With an exception to the smallest bottleneck, Cheng, all the papers were published 
within the same decade similar to what was seen before in artistic anatomy. The third largest 
bottleneck, Dong, and his two connections published all within one year of each other. Below in 
Figure 24, shows the number of publications in each year for the field of comparative physiology.  
 

 
Figure 24: Number of Publications in Comparative Physiology 

 
 In the figure above, there is a clear rise in popularity from 2003-2007. This is not reflected 
within the bottlenecks we studied. The oldest paper found within our searches was 2009. We can 
conclude that the collaboration between last authors and betweenness centrality is not based on 
time or popularity within the field. There is potential that our tool could be bias, and collaborations 
could be based on time. Based on how we extract our information from the PubMed API, gathering 
the papers that are “most relevant”, we also may be getting the most recent papers. This pattern 
can be seen across all three bottlenecks because most of the papers are published within the last 
decade. Since most of the bottleneck authors have multiple papers within the field, we could just 
be getting their most recent paper but they may have published previously within the popularity 
phase from 2003-2007. 

In conclusion, this exploratory analysis of the field of comparative physiology showed that 
the  network connections could be based on the journal impact factor and the model organism. 
There was  no direct relationship to the h-index or the year which was a slightly different finding 
than the artistic anatomy case study. In both fields, organisms seems somewhat similar in a 
bottleneck cluster, but journal impact factor is only similar for comparative physiology. This could 
speak to the different network statistics that the two have and why one is a statistically significant 
scale-free network and the other is not. For example, another driving force for collaborations 



 

between last authors may cause more communities which is seen when comparing artistic anatomy 
and comparative physiology. Each community in the comparative physiology network may be 
made up of authors working with the same model organism and publishing in journals with similar 
impact factors.  
 
4.4.3 Case Study 3: Neurobiology 
 The third and final case study focuses on the field of neurobiology; it was chosen as a case 
study in addition to the other two because it represents the “norm” of all our data collected. 
Neurobiology was never an outlier in any of the network statistics and always followed the bulk 
of our data in any trends or correlations seen. Out of all the data that followed the “norm”, 
neurobiology was selected because of the recent search at WPI for neuroscience faculty. It is a hot 
topic, and we wanted to learn more about it. Below in Table 18, the original raw data from the 
neurobiology network analysis is presented with the network best fitting a scale-free node 
distribution but the fitting was not statistically significant. The other values for clustering 
coefficient, degree centrality, and number of communities was average when compared with all 
the other networks in the Narrow List. A complete table of raw statistics for all 64 fields to use for 
comparison can be found in Supplemental Figure 2.  
 

Table 18: Neurobiology Network Analysis Statistics  

R P 
Total 
Nodes Communities 

Degree Cent. 
Avg.  Clustering Co 

Degree Cent. 
Median 

-0.659 0.510 6,054 3,325 4.64E-05 0.427 3.49E-05 
  

The same methods performed on the last two case studies, artistic anatomy and 
comparative physiology, were done again, looking at the three largest bottlenecks and the smallest 
bottleneck for contrast. In the previous two case studies we found that certain non-metric 
descriptors could explain the collaboration between a bottleneck author and another last author. 
Hopefully, we wish to uncover the same information in this case study to better understand the 
structure of the network and if it can better be described by scale-free or random characteristics. 
Below in Figure 25 is the full neurobiology network for comparison of where the bottlenecks are 
found with relation to the whole. 

 



 

 
 

Figure 25: Zoomed in structure of the neurobiology network (3,000 binary nodes not shown) 
with a zoomed-in view at the most dense part of the network and the three largest bottlenecks 
(corresponding to last authors Marenda, Yang, and Xiao, respectively) highlighted in yellow.  

 
 In the network you can see a hairball structure, where a majority of the bottlenecks are 

found.  The three largest bottlenecks are highlighted in yellow within the network. The four 
bottlenecks, and their betweenness centrality further investigated in neurobiology are shown below 
in Table 19.  

 
Table 19: Betweenness Centrality values for the four bottlenecks studied in this section 

Name of Last Author Betweenness 
Centrality  

Marenda, Daniel R. 9.955 

Yang, Yi 9.793 

Xiao, Hai 9.791 

Bai, Yun 0.0001 

 
 



 

4.4.3.1 Largest Bottleneck: Marenda, Daniel R.  
 With a betweenness centrality of 9.96, Daniel Marenda is the largest bottleneck within the 
neurobiology network outputted by the AuthorMap tool. Marenda is affiliated with the Department 
of Biology at Drexel University. He has been cited 482 times by 332 documents that he was an 
author on. Marenda is a last author on five papers within the neurobiology field. Within the 
network he has seven first degree connections, the connections can be seen in Supplemental Figure 
11 and also listed below in Table 20.  
 

Table 20: NB Bottleneck 1: Marenda, Daniel R. & Connections Non-Metric Descriptors. 
Consistency seen in none of the non-metric descriptors across the eight authors, no reason can be 

deduced why these authors collaborated.  

Name Year H-index Journal Impact 
Factor  

Organism  

Marenda,	DR 2014  14 2.77 Drosophila  

Shen, X 2014 28 1.85 Humans  

Racke, MK 2006 59 1.85 Humans 

Zhang, T 2017 13 12.51 Humans  

Moreno, RA 2015 20 1.41 N/A 

Busatto, GF 2012 42 6.16 Humans 

Zhang, Y 2017 9 5.97 Variety  

Carvalho, AF 2018 5 5.08 Humans  

 
 At the first glance, no immediate conclusions can be drawn from the table above that 
contains the eight authors and all their non-metric descriptors. The bottleneck author does not have 
the highest h-index and is connected to four other last authors that have higher h-indexes. Marenda 
also is the only author to work with Drosophila, this knowledge is not spread to his primary 
connections as a majority of them work with humans. In addition, the journal impact factor and 
year have no consistency between all eight authors. Some of the primary connections share some 
metrics, but none of the connections directly match the bottleneck author. The author with the most 
in common with Marenda is Shen; both of them published in 2014, Shen has double the h-index 
of Marenda; Marenda has a larger journal impact factor by ~1.0 and works with Drosophila while 
Shen works with humans. It can not be stated that there is any reason why these authors 
collaborated with Marenda based on the four non-metric descriptors we studied.  
 
 
 



 

4.4.3.2 2nd Largest Bottleneck: Yang, Yi 
 Yi Yang, a scholar from Hangzhou Key Laboratory of Medical Neurobiology in China, is 
the second largest bottleneck within the neurobiology network with a betweenness centrality of 
9.79. Yang has an h-index of 17 and has been cited 2,330 times by 2,251 papers. In the specific 
field of neurobiology, he is a last author on 15 papers. Within the network outputted by the 
AuthorMap tool, Yang has collaborated with five last authors. These connections can be seen 
within a network screenshot in Supplemental Figure 12 or listed below in Table 21.  
  

Table 21: NB Bottleneck 2:Yang, Yi & Connections Non-Metric Descriptors. Preservation of 
two different model organism across connections within this bottleneck.  

Name Year H-index Journal Impact 
Factor  

Organism  

Yang, Y 2016 17 5.17 Humans 

Racke, MK 2006 59 1.85 Humans 

Qian, Z 2017 21 3.03 Mice 

Miller, LC 2010 22 7.23 Humans 

Ross, TJ 2015 30 4.93 Humans  

Stein, EA 2000 58 3.87 Mice  

  
 Yang published his most cited paper in 2016 using humans as a model organism in a journal 
with an impact factor of 5.17. None of his connections published in 2016 and most published a 
decade or more before. A majority of the collaborators incorporated into their study the same 
model organism that Yang worked with, humans, and the other two worked with mice. All of the 
authors that Yang worked with have large h-indexes, and Yang with the largest betweenness 
centrality actually has the smallest influential factor at 17. Lastly, the journal impact factor was 
studied and it is noticed there isn’t any outliers but very spread out from 1.0-8.0. These authors 
did not connect based on year, h-index, or journal impact factor, it was based on the knowledge of 
neurobiology applied to the organism.  
  
4.4.3.3 3rd Largest Bottleneck: Xiao, Hai 
 The last bottleneck to be studied was Hai Xiao. Xiao is from China and was affiliated with 
First Affiliated Hospital of Gannan Medical University. Xiao has not published many papers in 
neurobiology or in other fields. How can this be if he is a bottleneck? He has only been cited 21 
times by 18 documents. In the network, Xiao is connected with four other last authors. These 
connections can be see in Supplemental Figure 13 or listed below in Table 22.  
 



 

Table 22: NB Bottleneck 3: Xiao, Hai & Connections Non-Metric Descriptors. Interesting 
outliers can be studied within this bottleneck but the outlier in every category is not the same 

author. A majority of authors are working with the same model organism.  

Name Year H-index Journal Impact 
Factor  

Organism  

Xiao, H 2018 3 2.23 Mice  

Jing, J 2017 26 4.01 Aplysia 

Krogan, NJ 2018 79 31.40 Humans 

Qi, Y 2018 10 1.29 Mice  

Li, X 2017 4 3.16 Variety (mice 
included) 

  
 Some observations noted from the table above was that one author served as an outlier to 
the rest, and it was not the bottleneck author. Krogan, with an h-index of 79 and publishing in a 
Cell with a 31.40 impact factor speaks to how influential the author must be. Xiao only has an h-
index of 3 and published in a journal with a 2.23 impact factor and Xiao and Krogan do not work 
with the same model organism. Krogan worked with humans while Xiao and two of his other 
connections worked with mice. The only connection between Xiao and Krogan based on these 
non-metric descriptors is the year published, both in 2018. Qi also published in 2018 and the 
remaining two authors published in 2017, only a few years apart from one another. The closest 
author to match Xiao’s non-metric descriptors is Li; their h-index vary by one point as well as their 
journal impact factor and both worked with mice. Why do only some of the connections show a 
spread of knowledge and why do bottlenecks authors only collaborate with authors similar to 
them? Every field has demonstrated different patterns and trends among their bottleneck authors 
and connections. In this case study it seems to be most similar to comparative physiology.  
  
4.4.3.4 Smallest Bottleneck: Bai, Yan  
 To contrast any trends seen within the larger bottlenecks in the neurobiology field, we look 
to the smallest bottleneck. Yan Bai has a betweenness centrality 0.0001. Bai is affiliated with The 
Third Military Medical University in China. This author has been cited 2,116 by 1,976 documents. 
Within the neurobiology network Bai has collaborated with three other last authors.  
 
 
 
 
 



 

Table 23: NB Bottleneck 4: Last author Yan Bai and Connections Non-Metric Descriptors. 
Contrasting with the larger bottlenecks, the most correlation across all non-metric descriptors is 

seen as well as the smallest bottleneck having the largest h-index across all four studied.   

Name Year H-index Journal Impact 
Factor  

Organism  

Bai, Y 2006 24 3.16 Mice  

Zheng, X 2014 9 1.22 Mice  

Li, X 2017 4 3.16 Variety including 
Mice  

Wang, N 2017 4 2.28 Mice  

  
 This cluster of last authors seems the most similar out of the top three largest bottlenecks. 
All three collaborators worked with mice, so a spread of knowledge is seen there. All four journal 
impact factors are similar with Bai and Li publishing in the same journal, Neuroscience Bulletin, 
thus an identical impact factor. Bai has the largest h-index, and the other authors h-indexes are 
comparable with Li and Wang both having an h-index of four. When comparing with the top three 
bottlenecks, smaller numbers are noticed for h-index and the journal impact factor. All of Bai’s 
connections published recently but he published in 2006. So this collaboration is not based off of 
time but more surely off of model organisms and publishing in similar journals.  
 
4.4.3.5 Studying Correlation  
 Based on the contrast of the h-index in the smallest bottleneck and the larger bottlenecks, 
a correlation study was produced. Thirty bottlenecks with a variety of between centralities based 
on an even spread across the distribution were selected and their h-index, percent in neuroscience, 
and journal impact factors were extracted from various sources. 



 

 
Figure 26: Correlation of H-index and Betweenness Centrality in Neurobiology. No correlation 

can be noted between h-index and betweenness centrality.  
 

In Figure 26 no correlation can be noted between h-index and betweenness centrality within 
the field of neuroscience that was not seen in either of the other two fields. Some of the highest 
betweenness centralities are found in the top left corner, a position meaning they have a low h-
index. The h-indexes in this field were much higher than the average seen in comparative 
physiology or artistic anatomy. The journal impact factor is shown by the size of the dot, and no 
correlation is seen with betweenness centrality or with h-index. Our author that published in the 
most influential journal only had an h-index of 25. Something very interesting about this graph 
that is absent in most of the other is the presence of scientists who publish in this field and it is 
their main field of work. More blue and purple dots are seen in this graph versus red dots. This 
could be because neurobiology is a more established field or a variety of other reasons.  
 To better quantify the correlation seen above in Figure 26, a pearson correlation test was 
run on the raw data in R. A heatmap of the correlation values can be found below in Figure 27. 
The same gradient scale is used from the scatterplot above. The correlation value between h-index 
and betweenness centrality is -0.03, so there is no correlation between these two factors with a 
correlation value of almost 0. Similar to comparative physiology there are three positive 
correlation values found within the heatmap. The strongest positive correlation value is between 
percent in neurobiology and the year the paper was published with a value of 0.48. The other two 
positive correlation values were small between percent in neurobiology and journal impact factor 
as well as h-index and journal impact factor with values of 0.08 and 0.13 respectfully.   
 



 

 
Figure 27: Heatmap showing the Pearson Correlation between the several non-metric descriptors 

in the neurobiology field. With three positive correlations shown, the strongest being between 
the percent in neuroscience and year.  

  
 
 
 

Table 24: P-Values for the Pearson Correlation heatmap. Only one statistically significant  
(p ≤ 0.01) correlation between the percent in neurobiology and year was found.  

 

 Bottleneck  H-index Journal 
Impact Factor 

Year % in NeuroB 

Bottleneck NA 0.857 0.867 0.948 0.251 

H-index 0.857 NA 0.482 0.206 0.275 

Journal 
Impact Factor 

0.867 0.482 NA 0.268 0.684 

Year 0.948 0.206 0.268 NA 0.007 

% in NeuroB 0.251 0.275 0.684 0.007 NA 

  



 

 
 The p-values were extracted for every correlation value. Seen above in Table 24, there is 
only one statistically significant correlation between percent in neurobiology and the year. The p-
value between these two metrics was 0.007.  
 Overall, the neurobiology case study allowed us to determine that every life science field 
is different with correlation between the non-metric descriptors studied. The only patterns that 
could be extracted were that there was a positive correlation between h-index and the journal 
impact factor in all case studies but only in comparative physiology was the correlation statistically 
significant. As well as there is no correlation between h-index and betweenness centrality in all 
three cases which went against our initial hypothesis. Neurobiology was the only field with a 
statistically significant correlation between percent in neurobiology and the year published. More 
correlation studies would need to be completed to see if any consistent patterns arise.  
 
4.4.3.6 Summary 
 During the exploratory analysis of neurobiology, the field that followed the “normal” trend 
in data during network analysis, we collected information about the non-metric descriptors for the 
major bottlenecks within the field to answer our four research questions. The first question focused 
on h-indexes within the network in conjunction with betweenness centrality. Throughout our case 
studies we saw no evidence that any correlation was present, as our three largest bottlenecks had 
an h-index of 14, 17, and 3. Using the smallest bottleneck as contrast with an h-index of 24 helps 
supports the lack of correlation. To better explore more bottlenecks the correlation study was 
completed, and the statistical analysis supports our other two case studies that also showed no 
correlation between the two measures. This case study as well showed that authors don’t always 
collaborate with authors that have similar h-indexes. 
 Looking at the journal impact factors, we studied the correlation in addition to the spread 
of knowledge. For the third time it was shown that an author does not have to have a large 
betweenness centrality or h-index to publish in a high impact journal. To make sense of this 
scenario, new young investigators just starting their labs may publish in high impact factor journals 
but potentially could not have accumulated enough articles to have a high h-index. Within the 
neurobiology field, not all connections publish in comparable journals. There are usually some 
outliers within a cluster but they are usually all within a small range of one another.  
 Although the journal impact factor was not shared from author to author, the model 
organism was. In all three of the largest bottlenecks, a majority if not all authors were working 
with the same model organism. This same pattern was seen within the smallest bottleneck as well. 
Below in Table 25, the top five organisms declared by PubMed are presented along with the 
number of papers in neurobiology using them.  
 
 
 
 



 

Table 25:  Model Organisms Populations within Neurobiology Field 

C.elegans Zebrafish Mice Drosophila Yeast Humans 

596 916 19720 2219 314 34141 

  
 

The most common model organisms are humans and mice within the entire neurobiology 
field and that is reflected within in our cases studies, as the majority is usually working with one 
of the two. Lastly, the years of publications were studied. Less consistency was found in 
neurobiology than in the other two case studies with exception to the second largest bottleneck 
which all articles were published from 2017-2018. In the other two case studies a lot of the 
publications were grouped by the bottleneck and published within a decade of each other. A 
majority of the neurobiology publications studied are from 2014- 2017 but spread out among the 
four studied bottlenecks. Below in Figure 28, one can see that this is expected based on the 
popularity of the field.  
 

 
Figure 28: Number of Publications per year in Neurobiology 

 
 The field of neurobiology became a hot topic in 2014 and that is mirrored by the largest 
bottlenecks within this field. Overall, this case study allowed us to better understand the edges 
within the network and to notice any patterns or trends within the non-metric descriptors to help 
explain the type of network. Neurobiology collaborations are seem to be based on the model 
organisms which is the same seen across all three case studies in large bottlenecks and in small 
bottlenecks. 
 
 



 

4.4.4 Case Study Conclusion 
 In conclusion, the case studies helped better understand the structure of the three networks 
studied and the potential reason(s) for the collaboration between last authors. Through studying 
the three largest bottlenecks and contrasting with the smallest bottleneck, we were able to 
categorize the connections based on non-metric descriptors and study correlation between the 
metrics. All three networks, despite their varying network statistics, the bottlenecks and 
connections were driven through the use of model organisms. The bottleneck author were more 
likely to collaborate with other last authors that experimented with the same organism. In addition 
to model organisms within the only statistically significant scale-free network, comparative 
physiology, the collaborations between last authors can also be categorized by the journal impact 
factor. This may be the reason why the structure of this network varies from the other two and is  
scale-free.  

Through the correlation study, in artistic anatomy and comparative physiology, there was 
no correlation between h-indexes and betweenness centrality as well as between journal impact 
factor and betweenness centrality. One important observation that could be supported with further 
work is the potential discovery that a bottleneck author does not need to be the most “influential” 
within a network, where influence is represented by the h-index. A pattern was noted in each case 
study that a bottleneck connects more important last authors and their hubs together. Usually all 
of their connections had higher h-indexes which originally was not expected. In short, these case 
studies gave us more insight into the structure and characteristics of several of the networks built 
by our tool and gave us better understanding of the nature of scale-free networks. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



 

5 Future Work & Final Conclusions 
 In conclusion, through this project we were able to gain a better understanding of scale-
free networks and how authors in the life sciences interact and collaborate. We built a systematic 
network-building tool in Python using the PubMed API (GitHub: 
https://github.com/hnorthcott/authorMap-). We connected this program to Cytoscape for network 
visualization, and implemented NetworkX for network analysis. In conclusion, we found that a 
majority of our networks demonstrated scale-free characteristics, but not all of them could be 
statistically significant by the PowerLaw package. In addition, we performed several case studies 
on three life science fields of interest based on their characteristics demonstrated by the tool: 
artistic anatomy, comparative physiology, and neurobiology. These case studies helped us 
understand how several of the non-metric descriptors (such as h-index, journal impact factor, and 
experimental organism) can drive whether authors collaborate. We were surprised to discover that 
there was no correlation between h-index and betweenness centrality as well as journal impact 
factor and betweenness centrality. However, these case studies did help us to better understand the 
characteristics of a scale-free network.  
 For other researchers continuing this work, we recommend first and foremost that a UI be 
added to our network analysis tool. This will allow for better interactivity. Additionally, we 
recommend updates to the network visualization in Cytoscape. More dimensions should be added 
to the dictionary so that the network can be color-coded based on other characteristics, such as h-
index or journal impact factor. This would add dimensionality to the network visualizations and 
therefore allow users to get a better understanding of the full picture of the network. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Supplemental Information 

 
 
Figure 1: Screenshots of the final results of raw data collected from our AuthorMap tool from the 
Broad List.  Positive R values suggest a better fit to the log-normal / random distribution, while 
negative R values suggest a better fit to the power law / scale free distribution; however, none of 

these values reached statistical significance.  



 

 
 

Figure 2: Screenshots of the final results of raw data collected from our AuthorMap tool of the 
Narrow List  

 



 

	
	

Figure	3:	Artistic	Anatomy	Bottleneck	1-	Bryan,	RN.	and	Connections		
	

	
	

Figure	4:	Artistic	Anatomy	Bottleneck	2-	Tomic,	I.	and	Connections		
	



 

	
	

Figure	5:	Artistic	Anatomy	Bottleneck	3-	Tubbs,	RS.	and	Connections		
	
	

	
	

Figure	6:	Artistic	Anatomy	Bottleneck	4-	Fischl,	B.		and	Connections		
	



 

 
 

Figure	7:	Comparative	Physiology	Bottleneck	1-	Yu,T.		and	Connections		
	

	
	

Figure	8:	Comparative	Physiology	Bottleneck	2-	Yang,	B.		and	Connections		
	



 

 
 

Figure	9:	Comparative	Physiology	Bottleneck	3-	Dong,	S.	and	Connections		
	
	

	
	

Figure	10:	Comparative	Physiology	Bottleneck	4-	Chen,F.	and	Connections		
	



 

	
	

Figure	11:	Neurobiology	Bottleneck	1-	Marenda,	DR.	and	Connections		
	

	
	

Figure	12:	Neurobiology	Bottleneck	2-	Yang,Y.	and	Connections		



 

	
	

Figure	13:	Neurobiology	Bottleneck	3-	Xiao,	H.	and	Connections		
	

	
	

Figure	14:	Neurobiology	Bottleneck	4-	Bai,	Y.	and	Connections		
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