

 Project Number: LDH-PW10

Discrimination in the

Documentation of Open Source Software

A Major Qualifying Project Report

Submitted to the Faculty of the

Worcester Polytechnic Institute

In partial fulfillment of the requirements for the

Degree of Bachelor of Science, Professional Writing

Submitted By:

Rebecca Baron

Advised By:

Professor Lorraine Higgins

Professor Jennifer deWinter

Submission Date:

October 27, 2010

Email:

Rebecca.C.Baron@gmail.com

1

Abstract

Open Source Initiative (OSI), the licensing organization of open source software, requires

that the software ―not discriminate against any person or group of people‖; that is, open

source software must be accessible to the average intelligent computer user. Some

researchers, however, have suggested that access can be limited due to poorly written

software documentation.

This professional writing study analyzed how accessibility might be influenced by the

software‘s written documentation. The study defined access as whether an average user

might find, open, understand and use documentation for the software.

Four users coded the documentation for 18 pieces of software on SourceForge.net to

determine whether it existed and how easy it was to locate. Additionally, they determined

whether it was static or dynamic and whether it employed technical writing practices noted

for increasing user comprehension. Finally, coders shared their perceptions of the

documentation that might affect usability.

This research indicated that documentation may be a key component in accessibility of open

source software. A significant number of sites had no documentation whatsoever; moreover,

while existing documentation employed many best practices for technical writing, they were

not always implemented well. Two key problems may render the documentation

discriminatory: 1) excessive undefined jargon in the documentation targets only specialized

audiences, and 2) documentation itself is static--not controlled or modifiable by users,

potentially constraining understanding and use of the software by larger audiences. More

direct usability studies were recommended, and a list of recommendations was provided for

writers of future documentation to ensure their writing does not limit accessibility. Finally, it

was recommended that the OSI require some form of documentation and establish resources

for creating dynamic and effective documents.

2

Table of Contents

Table of Figures ... 3

Table of Tables ... 3

Preface .. 4

1: Introduction ... 6

2: Background .. 9

2.1: Open Source ... 9
2.1.1: History ... 9
2.1.2: Richard Stallman and the Free Software Foundation ...11
2.1.3: Eric Raymond and the Open Source Initiative ...12
2.1.4: Comparing the FSF and the OSI ..13
2.1.5: The OSI Open Source Definition ...14
2.1.6: Open Source in the Scope of This Project ..16

2.2: Documentation ... 16
2.2.1: Engineering Approach vs. Humanist Approach ...17
2.2.2: Technical Writers ...18
2.2.3: Technical Writing in Engineering ..20

2.3: Discrimination .. 21

2.4: Is Open Source Documentation Discriminatory? ... 22

3: Methodology .. 24

3.1: The Study.. 24

3.2: Selection of Programs ... 25

3.3: Features that were coded .. 26
Finding and Opening Documentation ..27
Formats and Genres of Documentation ..29
Understanding Documentation ...30
Perceiving Documentation as Usable ...35
Modifying Documentation ...36

4: Results and Discussion .. 38

4.1: Finding Documentation .. 38

4.1.1: Many Sites Had No Documentation ...38
4.1.2: Documentation That Existed Was Not Hard To Find, but Additional Web Tools Would Have

Made Finding Documentation Easier ...39

4.2: Opening Documentation ... 40

4.3: Documentation Formats and Genres .. 40
4.3.1: Open Source Documentation Is Static in a Dynamic Field ..43
4.3.2: Traditional Websites as a Common Middle Ground of Accessibility44

4.4: Understanding Documentation ... 44
4.4.1: Writers of Documentation Relied Heavily on Jargon...45
4.4.2: Sample Documentation Followed the Best Practices for Documenting Proprietary Software,

but these Procedures Were Not Always Executed Effectively ...46
4.4.3: Images Are Used but Not Used Effectively ...48

4.5: Using Documentation ... 50
4.5.1: Overall, Readers Find Most Documentation Is Readable, Logical, and Organized50
4.5.2: Users Found Documentation Frustrating Over Half the Time ...52

4.6: Modifying Documentation ... 52

3

5: Conclusion .. 53

References .. 57

Appendix .. 60

Appendix A: Software Used .. 60

Appendix B: Final Coding Sheet ... 62

Table of Figures

Figure 1: Open Source versus Proprietary Software Diagram .. 7

Figure 2: The Two Branches of Open Source Software ... 9

Figure 3: Graph of Documentation Formats ... 42

Figure 4: Graph of Documentation Genres ... 43

Figure 5: A Poorly Implemented Visual--OFF System, 2008 .. 49

Figure 6: Readers‘ Perceptions of Documentation. .. 51

Table of Tables

Table 1: Comparing FSF and OSI .. 13

Table 2: Components of Software User Documentation--IEEE Standard 1063 20

Table 3: Examples of Static versus Dynamic Formats and Genres .. 41

Table 4: Documentation Formats and Genres of Studied Websites 41

Table 5: Websites Following Best Practices in Writing .. 47

Acknowledgements

To my advisors, Dr. Jennifer DeWinter and Dr. Lorraine Higgins, for their endless support

and for never giving up on me.

To Dr. Ross Micheals, my inspiration for this project, and to his new son, Zachary.

4

Preface

Dr. Ross Micheals, who works for The National Institute of Standards and

Technology (NIST) discussed with me a project he had been working on—a new piece of

software for biometrics. Biometrics is the science of the measurements of the body. It

includes topics such as fingerprints and facial recognition. The software was to be open-

source and to include new standards for fingerprint recognition. As a technical and

professional writing major, I was interested in learning about the various types of

documentation that go into a new piece of software, but when I asked about what was written

for this piece of software, the answers he gave me were incredibly vague. He said, ―There is

some documentation, but it is not finalized,‖ and ―We have some notes,‖ and other half-

hearted responses indicating that the documentation for this new software was not a high

priority for this project.

After doing some research, I found that other than a few release notes and paperwork

internal to NIST such as proposals and whitepapers, very little documentation existed to

accompany this new software. Further, what did exist did little to explain why the software

exists and how it should be used. The first few sentences on the website read, ―The NIST

Image Group is announcing the availability of the NIST Biometric Image Software (NBIS),

replacing the NIST Fingerprint Image Software (NFIS2) software package. The NBIS

software is organized in two categries [sic]: Non-Export Control and Export Control‖ (NIST,

2006). These sentences, which seemed to introduce the software, meant absolutely nothing to

me, and seemed hastily constructed and intended for a very advanced audience. Additionally,

the obvious spelling error, while perhaps simply an oversight, suggested that NIST has

designated neither sufficient time nor effort for documentation.

Based on my observations, it seemed that NIST assumed its target audience included

companies and government agencies that already had a very thorough knowledge of

biometrics. The documentation, especially the promotional and informative writing, was very

limited and difficult to read. It was filled with jargon that might or might not be clear to

someone who is already familiar with the field of biometrics. The opening page
1
 was the first

link listed when using Google to search for ―NIST Biometrics Software.‖ In spite of being

centrally located and easy to find, it was difficult to understand. It was crudely formatted and

filled with acronyms and technical jargon. The entire page contained almost forty sentences,

only six of which had no acronyms in them. The text was small and required an existing

understanding of the terminology being used and a high reading and comprehension level.

NIST has made its website inaccessible to people who do not already meet these criteria.

 NIST‘s target audience for their software, as made clear by its documentation, is a

very technical group that is already very familiar with jargon relating to biometrics. The

software is probably missing some potential users by being aimed at this specific target

group. This might be a deliberate choice on the part of NIST or it might be an oversight

caused by the programmers writing the documentation. Regardless of the cause, the lack of

1
 http://fingerprint.nist.gov/NFIS/index.html

5

clearly written documentation for a general audience seems to discriminate against many

potential users. Since all open source software is required by the Open Source Initiative to be

completely nondiscriminatory, this conundrum seemed perplexing to me and became the

focus of the following project.

6

1: Introduction

 The very definition of open source requires that software with that license be non-

discriminatory. Yet, NIST‘s documentation does discriminate. Organizations that might

choose to have biometrics in the future would probably find it difficult to use this software

with its current documentation. As a result, these organizations probably would not use the

software even if it could help them.

 The problem of having documentation for open source software that discriminates

against certain groups of potential users is not isolated to NIST. Many examples of open

source software lack sufficient documentation, so NIST‘s biometrics software may not be

unusual.

To understand the shortcomings of open source documentation, one first has to know

about the goals of the open source movement. The stated goal of open source software is to

offer software with flexibility, freedom, and availability, among other ideals. The intention is

for users to be able to customize it via open source code—users having access to the code,

which controls the program‘s actions. According to the Open Source Initiative (OSI), the

governing body of all things involving open source licensing, ―Open source is a development

method for software that harnesses the power of distributed peer review and transparency of

process. The promise of open source is better quality, higher reliability, more flexibility,

lower cost, and an end to predatory vendor lock-in‖ (n.d.). On the other hand, proprietary

software, the ―traditional‖ form of making software in which the user cannot access the

source code, has a different set of ideals. By not allowing the users to access and modify the

source code, the software‘s stability increases and the developers are able to make and sell

modifications.

The documentation for proprietary software is often better developed than the

documentation for open source software. This statement is incredibly broad and in no way

applicable to all software, but it is a starting point for understanding how open source

software might be discriminatory. Without adequate documentation, some potential users of

open source software may be unable to find, use, or fully take advantage of the software. The

discrimination in the documentation of open source software undermines the very ideals that

open source software purports to hold.

In the traditional model for software documentation, as developed for proprietary

software, the documents are created for a timely release with the software—a one-time

occurrence. Documentation is only updated when the company updates the software and a

new version is formally released. The company carefully orchestrates the entire process to

ensure that all parts of the software package, including the documentation, are ready at the

same time. When software patches
2
 are released, the documentation usually stays the same.

With open source, however, the software is constantly undergoing changes by users.

The documentation (when it exists) tends to be released by the software developers with a

program‘s initial release. However, users can make modifications to the software and

2
 Patches are minor updates to the software that do not require a new version.

7

redistribute it without the initial developer‘s involvement. Problems arise if new

documentation is made that does not reflect these updates. No single entity is responsible for

maintaining or updating the documentation. Additionally, open source software has no

formal quality control as opposed to proprietary software, which frequently does. As a result,

there are often gaps in the documentation where changes have been made to the software

more recently than changes to the documentation. An individual programmer might make a

change to the software, but unless she also makes the necessary change to the documentation,

the gaps become wider and more frequent. Therefore, because open source software cannot

have a single person or group of people monitoring all changes, the users who make changes

to the software must ensure that they keep the documentation up to date.

Figure 1 below simplifies the difference between proprietary and open source

software. The diagram on the left represents open source software. By allowing the users to

modify the software, the developers act more as moderators overseeing the users‘ changes

and helping the technical writers to stay updated. If, however, the developer does not oversee

the users‘ changes, or if there is no technical writer, then the changes made by the users are

not documented. Compare this to the proprietary software diagram on the right, where the

users have no impact on what the developers develop or the writers write. They simply use

what is given to them. This leads to more stable software with up-to-date documentation

because only one group of people is ever changing the software and its documentation.

Open Source Software Diagram Proprietary Software Diagram

Figure 1: Open Source versus Proprietary Software Diagram

The purpose of this project was to explore the extent to which the documentation that

is used in open source software is discriminatory against potential users in its form, style, and

presence or absence. I researched the differences between open source and proprietary

software, invoked the research of scholars and software developers who have studied open

source software and documentation, and performed my own direct research through an

investigation of a sampling of open source software and their documentation.

Chapter Two contains detailed background information as well as a literature review

of existing writings relating to open source documentation. I looked at the definition and

history of open source software, a brief explanation of software documentation, and the

reasons why open source documentation may be less than ideal.

Users

Developers

Writers

Developers

Writers

Users

8

Chapter Three describes my methodology for analyzing the documentation of

eighteen different pieces of open source software.

Chapter Four reports the results of this investigation providing quantitative and

qualitative information about open source software documentation and the extent to which it

discriminates against potential users of limited technical ability.

 Chapter Five summarizes my conclusions from the study and offers direction for

other possible studies in the future related to the documentation of open source software.

9

2: Background

2.1: Open Source

Traditionally, software has been proprietary, and proprietary software does not have the

source code—the code that is written so that the computer knows how the program works—

available for the user of the software to view or edit. Most proprietary software does not let

users change the code, and they must work within the limitations of the software as set by the

developers. Open source software, on the other hand, allows users to make modifications to

the source code in order to change the program to better fit their needs. This specific type of

software has a bifurcated history contrasting social ideals with economic viability. Studying

this history has allowed me to understand how open source developed and set the framework

for my study of its documentation.

2.1.1: History

 Open source software—software that has source code that a user can access and

modify—has, in fact, existed for decades, although the term ―open source‖ is relatively

recent. Through the 1970s into the mid 1980s when software was ―written‖ by punching

holes in cards and feeding them into the computer, computer programs can be said to have

been open source because a user could modify the program by adding or subtracting cards

from the stack.

The modern open source software has two branches as shown Figure 2 below: the

Free Software Foundation (FSF founded by Richard Stallman and the Open Source Initiative

(OSI) founded by Eric Raymond.

Figure 2: The Two Branches of Open Source Software

Free Software

Richard Stallman

GNU

Free Software

Foundation

Eric Raymond

Open Source

Initiative

10

The two men agreed that the standard, proprietary method of creating and distributing

software was suboptimal, but they each created a different solution. Stallman began his work

on free software years before Raymond. As a programmer at MIT in the 1970s, Stallman is

seen as the father of the open source movement as he was the first to draw attention to it.

Stallman started the FSF in 1984 and influenced Raymond, a programmer previously of

proprietary software, who later founded the OSI in 1998.

 The split occurred due to differences in goals. Stallman wanted software to be free

of restrictions so all people could use it. Raymond, on the other hand, saw open source

software as an opportunity for financial gain. He wanted to remove restrictions so that

anyone was free to earn money from this software. In short, Stallman wanted software to

have had social freedom while Raymond wanted financial freedom.

 The website for the OSI (n.d.) seems to indicate social goals, but careful reading

shows that financial opportunity drives Raymond's desire for social reform. The opening

page reads:

Open source is a development method for software that harnesses the power of distributed peer

review and transparency of process. The promise of open source is better quality, higher reliability,

more flexibility, lower cost, and an end to predatory vendor lock-in.

The Open Source Initiative (OSI) is a non-profit corporation formed to educate about and advocate

for the benefits of open source and to build bridges among different constituencies in the open-

source community.

One of our most important activities is as a standards body, maintaining the Open Source Definition

for the good of the community. The Open Source Initiative Approved License trademark and

program creates a nexus of trust around which developers, users, corporations and governments can

organize open-source cooperation. The OSI also describes itself as, ―actively involved in Open

Source community-building, education, and public advocacy to promote awareness and the

importance of non-proprietary software.

 The word "access" is notable in its absence in the statements of both organizations,

but the words that are used by each shows that they value ―accessibility‖ in spite of the fact

that they have defined it differently. For example, the FSF uses phrases like ―defend the

rights of all users,‖ and ―the danger of not having software freedom." For the OSI, terms like

"nexus of trust" and "build bridges" appeal to followers of Richard Stallman in their desire

for social freedom, but Raymond focuses more on phrases like "lower cost, and an end to

predatory vendor lock-in." In the case of the OSI, software ―accessibility‖ seems to mean

that any user may obtain the software and redistribute it, either with or without cost. The OSI

is particularly concerned about distribution and circulation of software. For the FSF,

however, ―accessibility‖ seems to mean that users may use and modify the software without

restriction. The OSI is most concerned with not limiting its community so that as many

people as possible can access the software and redistribute it.

 It is important at this point to discuss the issue of audience. Both the FSF and OSI

want access for all people. Even though their definitions of access differ somewhat, their

11

goals create common ground. Is it reasonable, however, to expect access for all people,

regardless of who they are? Should they be limiting their audience at all? For example, by

saying ―all people‖ both organizations include people who are not computer literate in their

audience. People speaking every language, with every possible disability and of every age

are included in the group of people who should have equal access to the software. This goal,

as it is, seems unreasonable, so I assumed for this project that the target audience was all

people who would want to use the software and that language and disability barriers can be

handled within the software.

2.1.2: Richard Stallman and the Free Software Foundation

 For a long time, everyone used Stallman's term "free software." The phrase "open

source" did not appear until 1998 (Stallman, 2001). Stallman strongly believed that all

software should be free of copyright and available to everyone. He wrote, ―In the lab where I

worked, the entire operating system was software developed by the people in our community,

and we'd share any of it with anybody. Anybody was welcome to come and take a look, and

take away a copy, and do whatever he wanted to do. There were no copyright notices on

these programs‖ (2001). He was one of the first people to be vocal about software being

available to everyone and modifiable by anyone. Stallman was used to working in an

environment where anyone who wished to was able to find, open, understand, and use his

software without restriction. The main obstacle for the FSF was that it was not publicized

enough for people who were not already in the know to be aware that free software was an

option. He did not apply any restrictions, but he did not seem to go out of his way to

eliminate the restrictions in audience that existed already. Regardless, he was proud to offer

open access to anyone and ended up devoting the rest of his life to promoting the

accessibility of software.

 Stallman began advocating for free software after an incident with a Xerox printer.

The printer was a gift to his lab and, unlike the previous one Stallman had worked with, this

printer used proprietary software. Stallman and his group had modified the code of the

previous printer in order to include functions they found useful such as notifying the person

who printed a job when it was complete. The new printer did not include that function and,

since the software was proprietary, there was no way for Stallman to add it. After several

conversations with Xerox, Stallman became discouraged and gave up on the printer. This

incident prompted Stallman to fight for free software so that others would not also be

discouraged by similar situations (2001). Shortly after this incident, Stallman founded an

open source operating system that was humorously named GNU, standing for ―GNU's Not

Unix‖. The inaccessibility of Xerox's software annoyed Stallman. In spite of how Stallman

was able to find, open, understand, and use the software as it was, he wanted access to the

source code as well, and that, Xerox would not grant. For Stallman, accessibility requires that

anyone be able to use software for any purpose including ones not yet written into the

software. If there were functions that a user wants, he or she should be able to add them.

After his frustration with Xerox, Stallman dedicated his life to advocating for free software.

12

 In 1984, Richard Stallman quit his job at MIT to devote his time to working on the GNU

project, a Linux-like operating system designed to be entirely free software. Stallman

emphasizes that ―free software‖ refers to it being without restrictions and not without cost.

He explains, ―‗Free software‘ is a matter of liberty, not price. To understand the concept, you

should think of 'free' as in 'free speech,' not as in 'free beer'" (January 2010). In 1985,

Stallman founded the Free Software Foundation (FSF) to oversee the GNU project as well as

other, similar projects. As of 2009, Stallman was in charge of both the GNU project and the

FSF as president.

 Stallman
3
 defines ―free software‖ using four tenets, each representing a freedom that

all users are granted. In his paper, ―The GNU Operating System and the Free Software

Movement‖, he explains:

Free software possesses four essential freedoms:

 You have the freedom to run the program, for any purpose.

 You have the freedom to modify the program to suit your needs. (To make this freedom effective

in practice, you must have access to the source code, since making changes in a program without

having the source code is exceedingly difficult.)

 You have the freedom to redistribute copies, either gratis or for a fee.

 You have the freedom to distribute modified versions of the program, so that the community can

benefit from your improvements. (January, 2010)

These four freedoms show how Stallman feels about each of the four aspects of accessibility.

From these four freedoms, Stallman advocates that users be able to find the software through

redistribution, open, and run the software, as well as modify and redistribute it. Stallman

mentions nothing about users having the freedom to understand the software. Stallman wants

software to be free and accessible to everyone, but by advocating freedom of finding,

opening, and using without mention of understanding, he limits who may use the software to

only those people who already understand.

2.1.3: Eric Raymond and the Open Source Initiative

Richard Stallman single-handedly led the free software movement until the late 1990s

when the web browser Netscape chose to make its source code available to the public.

Netscape brought programmer Eric Raymond in as a consultant. From his observations while

working with Netscape, in 1998 Raymond wrote The Cathedral and the Bazaar, a

groundbreaking look at the difference between open source and proprietary software and the

processes for the development of each. In The Cathedral and the Bazaar, Raymond writes

about the differences in development style and ideology between open source and proprietary

3
 As a side note to further understand Richard Stallman, a look at his personal website will show that he is quite

the social idealist even outside of software. He has drawn cartoons criticizing the government for being

oppressive, he has articles encouraging boycotts of products whose ethics he disagrees with, and he has other,

similar activist musings. In fact, he describes himself as a "lifelong progressive activist" (n.d.). His work on the

open source movement is simply one example of Stallman‘s desire for universal freedom.

13

software. He compares proprietary software to a cathedral where one person is telling you

what to think and what to buy. On the other hand, open source software is likened to a bazaar

with many voices shouting over each other trying to pull you in their direction, and you could

choose to buy from them or sell your own wares (2001, p. 6). Raymond is very much in favor

of the bazaar model for software as in it all people are free to sell their own goods as well as

to buy from whomever they wish. There are no restrictions on who can make money on

software. Within a year of publishing this paper, Raymond coined the term ―open source‖

and founded the OSI to promote and advocate open source software. This was the beginning

of a schism in open source/free software between Stallman and Raymond‘s interpretations

and ideas.

2.1.4: Comparing the FSF and the OSI

Both the FSF and the OSI advocate and oversee the development of free and open

source software. The two organizations, however, differ in many aspects. Most significantly,

the two organizations have different goals for open source software. The FSF has primarily

socially-oriented goals based on Stallman‘s definition of free software whereas the OSI

strives for better software as a result of many people working on it. This is often referred to

as the ―many eyeballs‖ theory as it assumes that many eyeballs on a single project will result

in a better product (Raymond, 2001). In spite of these differences, both organizations have

advanced open source software and are important for its further development. Table 1 below

is a chart showing the primary differences between the FSF and the OSI.

 Free Software Foundation Open Source Initiative

Year Founded 1985 1999

Founder Richard Stallman Eric Raymond

Current Leader Richard Stallman Michael Tiemann

Goal Freedom Financial Viability

Terminology Free Software Open Source Software

Organization Described As: Charity Corporation

View on Documentation Open Documentation License Sell it to make money

Table 1: Comparing FSF and OSI

The simplest way to distinguish between the OSI and the FSF is to look at their

ideals. The OSI wants open source software to be commercially viable while the FSF wants

open source software to be free of restrictions. It is challenging to understand exactly what

the FSF wants because it rarely uses a word other than ―free‖ or ―freedom‖ to describe its

goals. The FSF seems to want as few restrictions as possible on software while the OSI wants

to remove some restrictions while still have the software be financially viable. While both

goals can be seen as championing access, the OSI is more concerned with people obtaining

and redistributing the software while the FSF focuses more on the software's use.

14

The people who develop software do so for different reasons based on which

organization they are affiliated with. The FSF appeals to people who want to work on free

software for the political idealism, for hatred of Microsoft, and for the enjoyment of the

process. The OSI, on the other hand, is more likely to want to create cheap, effective

software to make an industry run more efficiently. They may also sell their software or the

documentation for their software to make a profit.

Views on documentation are a very important distinction between the OSI and the

FSF. The FSF states that the documentation is a part of the software so should be free just as

the software is (FSF). They created the Open Documentation License to be able to apply the

same freedoms to the documentation that are applied to the software, although

documentation is in no way required for software. The OSI, on the other hand, suggests

selling documentation as a way to make money (OSI, n.d.). Documentation is not included in

the license and is not required to follow the same rules as the software. Not including

documentation yet expecting software to be accessible is ignoring the ―understand‖ portion

of the access definition. If anyone may use the software but there is no documentation to help

them to understand it, then access is limited. In particular, it means that people without the

technical knowledge to be able to use the software without a manual are excluded and

discriminated against.

2.1.5: The OSI Open Source Definition

Open source software is, by definition, free to obtain, modify, and redistribute by any

user or potential user of the software. The Open Source Initiative (OSI) is the organization

responsible for creating the definition and legal terms that determine if a piece of software is,

in fact, open source. The OSI is a non-profit organization made up of programmers, legal

experts, and other individuals who collectively monitor and maintain the open source license.

According to the OSI‘s website, open source software is ―software for which the original

source code is made freely available and may be redistributed with or without modification‖

(OSI, n.d.). These three concepts, freely obtainable, modifiable, and redistributable, when

implemented together, create the foundation of the open source movement. All three are

critical for open source software, which identifies itself as being accessible and customizable

for everyone.

Users can add, remove, and make changes to segments of the code so the program

performs the functions specific to their needs. They can then choose to distribute their

changes to other people. Many people choose to modify and redistribute software in the

hopes that more minds working on a piece of software will result in a better product.

The vast majority of users do not modify the software, although most of them use

versions of software that others have modified. It is difficult to determine whether users do

not modify the software due to lack of knowledge of how to do so, or because the software

already meets their needs. Regardless of the reasons why these users choose not to modify

the source code, open source software still needs to have modifiable source code for all users.

15

The full definition of open source, as given by the OSI, has ten individual

components, and all of them exist to require open source software to be equal for everyone.

First and foremost, the software must be royalty-free to redistribute. The OSI‘s Open Source

Definition states, ―The license shall not restrict any party from selling or giving away the

software as a component of an aggregate software distribution containing programs from

several different sources. The license shall not require a royalty or other fee for such sale‖

(OSI, n.d.). Since the OSI governs the open source license, that license cannot require

royalties from anyone selling the software, although it does not restrict charging for the

service of developing or installing said software. In his book, The Success of Open Source,

Steve Weber (2004) defines ―free‖ in terms of open source very effectively:

The essence of open source software is that source code is free. That is, the source code for open

source software is released along with the software to anyone and everyone who chooses to use it.

'Free' in this context means freedom (not necessarily zero price). Free source code is open, public,

and not proprietary. (p. 62)

Developers can charge for software, but they must not require royalties for others seeking to

modify the software‘s source code to redistribute it as their own.

 Second, when distributing software that is open source, the developers of the

software are required to make the source code for the program available. The Open Source

Definition states:

The program must include source code, and must allow distribution in source code as well as

compiled form. Where some form of a product is not distributed with source code, there must be a

well-publicized means of obtaining the source code for no more than a reasonable reproduction cost

preferably, downloading via the Internet without charge. Deliberately obfuscated source code is not

allowed.

The source code being easily and freely available allows the user to modify the source code

for personal use. In order for software to be open source, the user must be able to obtain and

modify the source code without having to pay. David A. Wheeler (2007) writes in his paper

"Why open source software / free software (OSS/FS, FOSS, or FLOSS)? Look at the

numbers!", ―[Open Source Software] users can tailor the product as necessary to meet their

needs in ways not possible without source code. Users can tailor the product themselves, or

hire whoever they think can solve the problem (including the original developer)‖ (p.

62). This aspect of open source is what differentiates it most from traditional proprietary

software. Proprietary software does not allow users to modify the source code whereas open

source software does.

The remaining rules in the definition of open source are intended to close loopholes

that might be exploited. The licenses may not discriminate against any people, groups, fields,

or endeavors. It also may not be limited to a specific set of technology (such as only work on

a specific brand of computer), restrict other software (such as corrupting or blocking another

16

program), or be specific to a product (meaning that the license needs to be in effect

regardless of how and in what package the software is distributed.) The license also restricts

software from being distributed with a non-disclosure or other limiting clauses (OSI, n.d.).

These rules, the ones that specify that the software may not discriminate, are most important

to this project as they are the ones that allow all people to use the software. In particular, by

using the word ―discriminate,‖ in spite of the fact that it is only used to refer to the license, an

assumption is created that the software is supposed to be accessible to all people. It is this

issue of accessibility that this project focused on, particularly in terms of whether the

documentation allows less technical people to use the software.

2.1.6: Open Source in the Scope of This Project

SourceForge.net, the website that I used to find software to analyze, flags software as

having "approved licenses" which are the licenses approved by the OSI. Second, the OSI is a

more economically viable organization so is likely to outlive the FSF. Finally, the OSI uses

the word ―discrimination‖ in their definition, and while the definition does not apply to the

documentation, if the OSI wants their products to be ―nondiscriminatory‖ then they should be

concerned with both the software and its documentation.

2.2: Documentation

Documentation is a necessary part of the software development process. In this

section, I limited my discussion to software documentation. Software documentation as a

category includes anything that is written down and describes the software. According to Ian

Sommerville (2001), documentation can be broken down into two categories: process

documentation and product documentation. Process documentation is anything written down

about the way the software was made. This includes development schedules, proposals,

reports, memos, comments within the code, and standard operating procedures. Product

documentation is anything written about the product in its final form. This includes

marketing materials, maintenance documents and documentation written for the end user (p.

2). I focused on product documentation targeted to the end user of the software.

According to Gerald J. Alred, Charles Birusaw, and Walter E. Oliu‘s book Handbook

of Technical Writing (2006), end user documentation is the product information that whoever

uses the product receives and includes several types of documentation. For software, end user

documentation can include installation manuals, tutorials, user manuals, frequently asked

questions (FAQs), help files, troubleshooting guides, and numerous other (p. 312). The

overall purpose of these pieces of documentation is to assist the end user in performing

certain sets of actions within the software. Installation guides help the user to install the

program; troubleshooting guides help the user when the program is not working, and so on.

Every piece of documentation makes it easier for the user to properly and effectively use the

software.

17

Even before software was ubiquitous enough to require documentation, writers have

been writing documents to teach another how to use equipment. As a result, many people

have written about what makes good documentation.

2.2.1: Engineering Approach vs. Humanist Approach

Some say that having only basic information makes good documentation. According

to Carel Jansen and Michaël Steehouder (1994) in their book, Quality of Technical

Documentation, readers want, ―an orderly, clean, clutter-free appearance, an obvious

indication of what is being shown and what should be done with it, expected information

located where it should be, and a clear indication of what relates to what‖ (8). Following

Jansen and Steehouder‘s design leads to concise documentation that is easy to read. In her

essay, ―The triumph of users: Achieving cultural usability goals with user localization‖

Huatong Sun (2006) defines this method of documenting the ―engineering approach‖ (460).

The engineering approach is more product-based and has information limited so that the

documentation is easy to read and very clean.

The problem with the engineering approach is that information is omitted. In order to

write only the important information, someone needs to decide what is less important in

order to select what is included. Another approach is to include all information related to the

product and have the user search for the information that he would find useful. This is called

the ―humanist approach‖ (Sun, 461). This method of documentation makes it more

challenging for the user to find what he is looking for, but ensures that everything is

documented completely. The humanist approach does not give the documenters the power to

decide what is most important. Instead, it gives the user access to all of the information and

has him choose what he wants to read.

Most existing software documentation is written using the engineering approach

because it is more efficient to write only what the developers think the users would want to

know. Unfortunately, since the engineering approach causes information to be omitted, the

users will sometimes be unable to find what they want to know, especially if they find

themselves with an obscure question or problem.

The question of whether to use the humanist or engineering approach in writing

technical documentation is an oft-debated topic with several ethical questions built in. Is it

better to give the reader/user what they want or make them find it? If information is not

included, who should decide what is omitted? Is efficiency more or less important than

completeness? These are questions that Steven Katz (1992) addresses in his paper, ―Ethic of

Expediency.‖ Many software developers answer this question for their own software not

based on the ethics but based on the finances. It is less expensive to document only the

―important‖ parts of the software. Were efficiency not an issue, technology allows software

to be documented with all information being included, and allows the user to quickly and

easily find the information she is looking for through use of a search bar or index (255).

Wikis, when fully filled in, are fairly humanistic. The user can find exactly what she

wants and read that without worrying about the rest. Unfortunately, Wikis are very time

18

consuming to create and to populate with the complete information about the software. So,

wikis are humanist when done well, but have the same problems mentioned earlier that they

are time consuming and difficult to write without having the writers judge what is important.

2.2.2: Technical Writers

Some companies employ professional technical writers to write their manuals and

other documentation. People can become technical writers many different ways including

going to school, attending training courses, or starting from a writing or technical

background and switching into the field. Regardless of how the technical writer reaches that

position, she is trained in how to write the documentation for that company.

 The documentation for open source software, like any other documentation, benefits

from these suggestions, but often meets challenges not encountered by other types of

documentation, particularly for other software. The biggest difference is that individuals or

small groups develop the software as opposed to companies that develop commercial

software. As a result, professional technical writers do not write the documentation. Instead,

the software developers do most of the documenting of the software. One problem that arises

from this is that developers assume that all readers have the same level of knowledge as a

software developer and write accordingly. This is one of the roots of the issue of

discrimination in open source documentation. The developers use the engineering approach

for writing the documentation, but filter out information that non-developers would find

necessary.

 In general, good documentation, commercial or open source, has the following

properties:

 Is written for an intelligent but uninformed audience

 Is well organized

 Has a neat appearance

 Is task-oriented

 Uses strong verbs

 Uses numbered and bulleted lists

 Use images and diagrams

Written for an Intelligent but Uninformed Audience

 The problem mentioned before of software developers writing documentation at too

technical a level for users to understand is the result of them writing for an audience that they

assume to be informed. It is important, however, to write documentation with the assumption

that the reader is intelligent but has no prior knowledge of the topic that the documentation is

written on. Matt Young (2002) explains in his book, The Technical Writer’s Handbook, the

importance of recognizing the audience as having less experience and specific knowledge than

the writer. He writes, ―Write for the uninformed reader. Speak to an intelligent and

sophisticated but relatively uninformed audience‖ (p. 63). If technical writing for open source

19

software as a whole were to follow Young‘s advice with regard to audience, the genre would

be closer to being universally comprehensible.

Well Organized

 On a stylistic level, there are some traits that are commonly used to define good

documentation versus bad documentation. In his article ―How to Improve User Guides,‖ Ivan

Walsh (n.d.) lists the important aspects of documentation. He says, ―Well-written

documentation should be easy to: Read, Understand, [and] Access.‖ Without any one of

these, the usefulness of documentation diminishes. If the users cannot access, read, or

understand it, they cannot be expected to learn from it. Many different people have

suggestions for how best to organize or write user manuals, but most directly relate to

Walsh‘s three ideals for documentation.

Is Task-Oriented

 Since the primary function of user manuals is to teach users to perform tasks with that

which is being documented, the writing style should reflect that. As David A. McMurrey

(2001) explains in his book, Power Tools for Technical Communication, manuals should be

organized by the tasks they are instructing. McMurrey advocates the use of numbered lists.

He writes, ―Instructions in user guides should generally be task-oriented—that is, written for

specific tasks that users must perform. Instructions should generally use vertical numbered

lists for actions that must be performed in a required sequence. Similar or closely related

instructions in user guides should be grouped into chapters‖ (128).

Uses Strong Verbs, Lists/Bullet Points, and Images and Diagrams

Writing handbooks such as the Gerald J. Alred, Charles Birusaw, and Walter E.

Oliu‘s book Handbook of Technical Writing (2006) have very specific suggestions for

writing good documentation. This book suggests using lists of numbered steps or bullet

points instead of paragraphs of prose to make it easy for a reader to follow instructions.

Additionally, the copious use of images as a replacement for lengthy explanations makes

documentation easier for a user to follow (pp. 525-526). Numbered lists, bullets, and images

make documentation easier to read and understand by simplifying the information from long

blocks of text. The assumption is, however, that the images and lists contain useful, relevant

information and, that they add to the documentation instead of distracting from it.

Images are most useful when they are clear, straightforward, and well labeled. An

image (such as a chart, diagram, screenshot, flowchart, etc) is not useful if the reason for its

presence is unclear. Also, the image should be close to the text that it is intended to clarify.

As important as images are, language is also very important. Good documentation uses

straight-forward language with imperative, simple verbs in order to make the language as

clean as possible. When using lists of steps or instructions, each instruction should start with

an imperative verb. The verb should be of as simple a vocabulary as possible.

20

2.2.3: Technical Writing in Engineering

Even when using the engineering approach, certain components should be included.

In order to try to ensure that software documentation maintains some consistency, the

Institute of Electrical and Electronics Engineers (IEEE) has defined a set of standards that,

when followed, ensures that the documentation is readable. The standards are completely

optional, but following them allows a software company to have guidelines to know if their

documentation is sufficient. Below is a sample table showing requirements provided by the

IEEE standard.

 Each component listed in the Table 2 below is important. The identification data lets

the user know what is being documented. The table of contents, list of illustrations,

navigational features, index, and search capability make it easier for readers to find the

information he is looking for. The introduction, information for use of the documentation,

and concept of operations provide meta-knowledge that helps the user to best apply the

documentation. The procedures, information on software commands, and error messages and

problem resolution sections are where most of the information that the user needs would be.

Finally, the glossary and related information sources teach the user more about the subject of

the software if he is interested and could not find a certain piece of information within the

documentation itself.

Component Required?

Identification data (package label/title page) Yes

Table of contents
Yes, in documents of more than eight pages after

the identification data

List of illustrations Optional

Introduction Yes

Information for use of the documentation Yes

Concept of operations Yes

Procedures Yes (instructional mode)

Information on software commands Yes (reference mode)

Error messages and problem resolution Yes

Glossary Yes, if documentation contains unfamiliar terms

Related information sources Optional

Navigational features Yes

Index Yes, in documents of more than 40 pages

Search capability Yes, in electronic documents

Table 2: Components of Software User Documentation--IEEE Standard 1063

Software developers are not trained in technical writing so are unlikely to follow

standards such as the IEEE standard. This can cause pieces to be missing or of poor quality.

 Open source software is required to be nondiscriminatory. Since not everyone has the

same amount of technical knowledge, good documentation can allow someone of limited

computer experience to use the software that would otherwise be too complicated. Poor

21

documentation, however, does not make complex software any easier to understand so does

not reduce discrimination.

 Much of the IEEE standard is a good example of information mapping, a style of

organizing information for ease of understanding. Robert E. Horn (n.d.), an expert in

information mapping, provides an overview of the process:

Information mapping is a method of bringing together current learning research and instructional

technology into a comprehensive materials development and presentation technology to improve

technical communication.

 A system of principles and procedures for

• identifying

• categorizing

• interrelating and sequencing, and

• presenting graphically information required for learning and reference.

One main concept in information mapping is ―chunking.‖ Chunking is a technical

term meaning grouping similar ideas and concepts together so readers can easily find what

they want to read. It sounds somewhat intuitive, yet effective organization of similar topics

can make a big difference between effective, easy to read documentation and difficult,

discriminatory documentation.

2.3: Discrimination

A recent trend in products including software and the documentation thereof has been

universal design, designing a product for use by anyone. According to Gregg C.

Vanderheiden (1996) of the Trace R&D Center at the University of Wisconsin-Madison,

Universal Design is defined as, ―the process of creating products (devices, environments,

systems, and processes) which are usable by people with the widest possible range of

abilities, operating within the widest possible range of situations (environments, conditions,

and circumstances).‖ The idea is that, with universal design, anyone can use a given product

regardless of circumstances or ability.

 Universal design is typically used to design products that people with vision, hearing,

cognitive, or physical disabilities can use as easily as those without. For example, websites

that have an option of having text being read, manuals with pictures as well as writing,

oversized buttons on remote controls, and voice commands on a cellular phone are all ways

that people design products to be as universally accessible as possible.

 The reason to include universally accessible features in a product is to demonstrate

commitment to the user. Even if features are included for only a small percentage of users,

they can also recommend the product as easily as those who do not need the universal design

features. Additionally, universally designed features may make it possible for one group of

people to use the product but may also make it easier for members of other groups as well.

22

For example, voice activation for cellular phones is necessary for people who are visually

impaired but also used for people when driving.

 Even if specific features are not implemented for universal design, considering the

concept when designing a product can make a huge difference. For open source software

where accessibility is a requirement, having a universally designed manual or other

documentation allows a piece of software that would otherwise be inaccessible to people who

are less technical to be used regardless of technical knowledge. Supplemental manuals that

are universally designed are currently available for a variety of products (the Idiot’s Guide

To… Series and the …For Dummies Series are two examples), but information that anyone

can understand should be available with the product itself.

2.4: Is Open Source Documentation Discriminatory?

Both commercial and open source software need documentation in order to be

efficiently developed, distributed to, and usable by interested users. Unfortunately, a large

percentage of open source software does not have enough documentation of good enough

quality to allow the software to maximize its effectiveness.

Jack Herrington (2003), staff writer for DevX.com, conducted an informal study of

the documentation provided for open source software. He looked at the top twenty projects

on sourceforge.com—a popular database of open source software—and compared the

documentation available. He saw that all of the software he looked at had a statement

describing the software but only two percent had a statement of what problem the software

solved. Half of the software he looked at had an FAQ, half had a tutorial and fifteen percent

provided system specifications. Herrington asks in his analysis, ―Is [the documentation] only

intended for engineers already using the tool?‖ These percentages each represent the number

out of the total that included a given type of documentation, although the report did not

discuss the extent to which the software that includes or lacks given types of documentation

overlaps.

Why does open source software lack sufficient documentation? Many factors

contribute to the discrepancy between the documentations of open source and commercial

software. The first is that open source software changes much faster than commercial

software and the documentation frequently cannot keep up. This is particularly true for the

larger open source programs. Robert Nagle (n.d) explains in his online article, Does Open

Source Documentation Suck, ―The problem is that most open source software is updated

fairly quickly, and that web documentation may not be relevant to the version installed on

your system‖. Open source is designed to be able to be changed and redistributed, but

without a central group of people overseeing the changes, the documentation is not always

updated for every version. In particular, changes made and redistributed by users frequently

are left under-documented or undocumented.

 These are only the most common problems with open source documentation, yet it is

not hard to see that the way things currently work is less than ideal. In fact, current open

source documentation causes many pieces of software to border on discriminatory. In spite of

23

the fact that rule number five of the definition of open source states, ―No Discrimination

against Persons or Groups,‖ large numbers of people find themselves unable to use the

software to its full potential (OSI, n.d.).

The fact that users are making modifications to the software and redistributing it

causes other problems in documentation in addition to a slow update rate. With commercial

software, people who are trained in technical writing write the documentation. When open

source software is written or updated by programmers with no technical writing training, the

idea of documentation might slip their mind or the documentation that is written is less likely

to be complete or understandable by a general audience. Elena Blanco, writer for Oss-

Watch.ac.uk (2008) explains, ―Writing documentation requires a specific set of skills that are

not commonly found within open source development communities.‖ Not all open source

programs have this problem, but it is more prevalent in open source than in commercial

software.

Another common issue is that the people who write technical documentation for open

source software underestimate the breadth of their audience. They might assume only a

specific, small group of people will be interested in their product, yet they post it on the

Internet. Since open source software is modifiable, someone outside of the perceived

audience might stumble upon the software and want to use it for a slightly different purpose

than its intension, but the documentation is so limited that he is unable to do so.

 Furthermore, the very nature of open source software presents some problems with

documentation. Writing may be available for how to use the software but there frequently is

nothing written about how to modify the software. This effectively divides the user base for a

piece of software into three groups: those who would never want to make modifications,

those who can and do make changes to the source code, and those who would make

modifications if they knew how.

 The rationale for rule five posted on OSI‘s annotated list of rules reads, ―In order to

get the maximum benefit from the process, the maximum diversity of persons and groups

should be equally eligible to contribute to open sources. Therefore we forbid any open-source

license from locking anybody out of the process‖ (OSI, n.d.). While discrimination on the

basis of technological capability is rarely as big of an issue as other forms of discrimination,

the lack of proper documentation for open source software causes people who are less

familiar with computers to be unable to use the programs or make modifications to the code.

In short, they are locked out of the process.

 To summarize, challenges to open source documentation include:

 Written by amateurs

 Low frequency of updates

 Lack of communication between developers

 Lack of centralized development team

 No clear line between developer and user

 Underestimation of breadth of audience

 Overestimation of technical level of audience

24

3: Methodology

3.1: The Study

 My study investigated if and how open source software discriminates through its

documentation. I wanted to answer the following questions: To what extent is the

documentation of open source software discriminatory? In what ways might it be

discriminatory? Could it be discriminatory in ways identified by prior research?

In order to address these questions, I selected eighteen different open source

programs from the collection of software referenced on SourceForge.net, a leading database

of open source software. I asked 4 volunteers
4
 to code each piece of software noting whether

documentation existed, indicating the ease of accessing and opening it, and marking whether

the documentation adhered to a list of best practices for writing documentation. I also asked

them to rate the extent to which they perceived the documentation as being logical, well

organized, easy to read, and frustrating. A copy of the coding sheet as it was distributed to

my coders can be found in Appendix B.

 Before coding began, I talked the coders through the coding sheet and answered their

questions. I was also nearby to answer questions as they arose while they were coding. I was

careful to keep the answers as neutral as possible and not bias their responses when

answering questions. . They primarily asked for clarification as to what the coding categories

were.

 Each website was evaluated by one coder and me. Each coder looked at 2-5 websites,

depending on how long each website took. Websites that had no documentation took very

little time while those with extensive documentation took longer. I then compared the coder‘s

completed sheets with my own for each website to evaluate for consistency of results. Only 3

sites out of 18 (17%) had discrepancies. I resolved these discrepancies by interviewing the

coder to verify that she had coded as she intended to and to learn more about the rationale for

her response. I chose to defer to the coder for discrepancies because my background

knowledge of the topic of software documentation could have caused bias in the results. In

all three cases of discrepancy, the interview provided the clarification necessary to determine

the result to be recorded; two provided insight to their responses, and one pointed out an

error in her coding. If the discrepancies could not be resolved through interview, I was

prepared to ask a third coder to look at the website and resolve the dispute based on the most

frequent response, but that was not necessary

4
 My coders all have basic computer literacy and are ―intelligent but uninformed.‖ Susan and Fred Baron, my

parents, both are graduates of the University of Pennsylvania. My sister Jacqueline and her roommate Stephanie

Greenlaw are second-year students at Smith College.

25

3.2: Selection of Programs

 Given the huge number of open source programs available on SourceForge.net, I

developed very specific criteria for selecting the software I studied. First, all the software in

the study have released files. Some software projects use SourceForge.net to store projects in

progress that have not yet created a released program. All of the projects I selected, however,

have at least released a complete draft of the program so that any documentation that exists

can be used to understand an actual program and not just a concept.

The second requirement was that all of the projects use open source licenses that have

been approved by the Open Source Initiative (OSI) (the governing organization for software

using the open source licenses). The reason for this requirement was that the software had

been approved by OSI and, therefore, must have met the requirements of the open source

definition, including the nondiscrimination clause. There is no doubt that these programs can

be considered open source software as defined by the OSI. They are all held to the same

standard of nondiscrimination.

 Programs were also selected with diversity in mind. The purpose of selecting very

diverse programs was to be able to look at a variety of open source software and to

generalize across differences. Using the genres of software as defined by SourceForge.net
5
, I

chose my eighteen programs by selecting two pieces of software from each of nine different

genres. Genres define the category of purpose of the software. For example, genres include

games, text editors, office/business, etc. SourceForge.net uses 20 genres, but many genres did

not have enough software meeting my other criteria to include in the study. This limitation

made my sample size somewhat small and not necessarily representative of all open source

software, but provided some diversity.

My goal was to choose software with which potential users would be unfamiliar. In

doing so, I tried to choose software for which the documentation would be particularly

critical. All of the programs selected are self contained or web-based as opposed to additions

to applications users might already be familiar with. I chose programs that meet this criterion

to minimize the expected prior knowledge from potential users. If the programs were add-ons

for other applications, then a certain amount of understanding of the original program would

be expected. Additionally, some information might be omitted from the documentation

because it was in the documents for the original software.

SourceForge.net‘s ranking for software was an important factor in my selection of

programs. SourceForge.net ranks software by assigning each program a consecutive number

based on the number of times the program‘s site has been visited, the number of times the

software has been downloaded, and the frequency with which the software is modified. The

software that is ranked ―1‖ is most actively used and modified whereas programs with higher

5
The software fit into the following genres: Communications, Games/Entertainment, Internet, Multimedia,

Office/Business, Scientific/Engineering, Software Development, System, Text Editors. There were two pieces

of software from each genre in this study.

26

numbered rankings are active. There are almost 400,000 projects listed and ranked on

SourceForge.net.

I also specifically selected programs that are not widely known, so my coders would

not have preexisting knowledge that might have influenced their views about the

documentation for the software. I did this by rejecting any program ranked in the top 1,000

on SourceForge.net. This meant the survey answers given were based solely on the

participants‘ observations from the documentation.

 Additionally. I did not want to study software that had been abandoned or that

otherwise was unfit to study. To prevent this, I chose software ranked better than 25,000. By

limiting myself to the better-ranked software, I had a greater likelihood of studying currently

active programs instead of ones that had failed in the past or had been abandoned.

Given the small sampling size, my conclusions are tentative and exploratory.

In summary, I chose the eighteen programs for my study using the following criteria:

 All programs are found on SourceForge.net

 All programs have OSI approved open source licenses.

 All programs are ranked higher than 1,000 and lower than 25,000

 There are two programs from each of nine genres

For the complete list of software used in this study, see Appendix A.

3.3: Features that were coded

According to the Open Source Initiative (OSI), open source software is required to

―not discriminate against any person or group of people.‖ Unfortunately, in many cases, open

source software may have documentation that seems to discriminate against users of limited

technical knowledge. It may discriminate by being written at too technical a level, by not

being up to date with the software and, in some cases, by not existing at all. The study

answered whether and how the documentation for eighteen different open source programs

might discriminate against a general audience. It tested the documentation‘s accessibility

based on whether my coders could find the documentation, open it, understand it, and

perceive it as usable. The study assumed ―an intelligent and sophisticated but relatively

uninformed audience‖ as described by Matt Young (2002) on his website. This means that

the target audience of the documentation was assumed to have sufficient understanding of

computers to be able to use the Internet to find the software, download and install the

software, navigate menus, and follow written directions as all of my coders did.

In what follows I have listed the questions used on the coding sheets and explained

how they measure access in the documentation for the software. The actual coding sheets are

in Appendix B.

27

Finding and Opening Documentation

Is There User Documentation?

Yes/No

User documentation, for this question was any sort of documentation for the user

of the software (as opposed to the developers, marketers, etc.). If the answer to

this question was ―No‖ then coding terminated, as the rest of the questions asked

about details of the documentation.

In most cases, a piece of software that does not have documentation discriminates

against people without the knowledge or confidence to use the software without

written guidance. Software developers may claim that the software is intuitive and

does not require documentation. Even in these cases, though, documentation is

beneficial, especially since content that a developer considers to be intuitive may

be challenging for a user.

How Easy Is the Documentation to Find?

This section refers to how easy it is to find the documentation on the software‘s

website. Documentation that is easy to find is more accessible than documentation

that is deeply buried on the website. Users become frustrated when they must

spend too much time digging around a website for the information they seek.

How many clicks does it take to navigate from the home page to the

documentation?

Easy (0-3 Clicks) Moderate (4-6 Clicks) Difficult (7+ Clicks)

The first metric for quantifying how easy the documentation is to find is number

of clicks from the opening webpage. Number of clicks quantifies how deeply

buried the documentation is in the website. More accessible documentation can be

reached in fewer clicks. If the documentation is on the opening page, it can be

accessed in zero clicks. If it is linked to from the opening page, it can be accessed

in one click. If it is linked to from a page that is linked to the opening page, it

requires two clicks, and so on. This is frequently referred to as ―click depth‖.

Thomas Powell (2000), a web designer who has written books on creating

effective web pages, cautions in his book, Web Design: The Complete Reference

not to have a click depth of greater than six. ―Aim for a site-click depth of three.

The three-click suggestion makes sense when considering the limited number of

locations for different navigation bars on pages, traditional GUI conventions, etc.‖

(p. 111). The reason for this is to keep users from having to navigate many pages

28

of menus. Web designers Sarah Horton and Patrick J. Lynch (2009), add in Web

Style Guide, ―Users should never be forced into page after page of menus if direct

access is possible‖ (p. 79). If the webpage had a click depth of three or less, it was

considered ―easy‖ to navigate while more than six was ―difficult.‖ If the click

depth was four or five, it was ―moderate.‖

Coders were instructed to disregard use of the ―back‖ button in the web browser

and to start all counts from the opening page. If there were multiple routes to the

documentation from the opening page, the coder recorded the lowest number of

clicks.

Can documentation be found using a search bar?

 Yes/No

Can documentation be found using a site map?

 Yes/No

Search bars and site maps are two specific ways that websites allow users to

access content that otherwise may be hard to find. Including these two features

and allowing users to find documentation using them makes the documentation

more accessible. Search bars are particularly important when a website becomes

expansive. Horton and Lynch (2009) write, ―If your site has more than a few

dozen pages, your users will expect web search options to find content in the site‖

(p. 79). The inclusion of a search bar or site map are independent of click depth

but are also important features that improve accessibility.

Location of Documentation Link on the Page:

Place an X in the box where the link to documentation is located.

This question addressed the issue of how easy it was to find the link to the

documentation once on the correct page of the website. A link located in a menu

of other links is easier to find than a link in the middle of a block of text. Also, by

looking at many possible locations for the links to the documentation, I saw if

there was a common location on the website where people can expect to find this

information. ―Users have developed clear expectations about where common

content and interface elements are likely to appear‖ (Horton and Lynch, 2009,

92). For example, users expect internal navigation on the top and left of the page,

while they expect external links to be on the right and bottom of the page. A

―help‖ button, which often links to documentation, is usually expected to be near

the top right corner of the webpage.

29

Formats and Genres of Documentation

What Format(s) Is/Are Used for the Documentation?

 Select all that apply:

 Web page

 Web 2.0 (e.g. Wiki, Blog, Forums, etc.)

 PDF

 Word document/.doc

 Other___________

What Genre(s) Is/Are Used for the Documentation?

 Select all that apply:

Unlinked Document (Document without links to other parts of the document

or outside resources)

Linked Document/Hypertext (Document with links to other parts of the

document or outside resources)

 FAQ (Document formatted as questions with answers)

Forum (Online community where people post questions and responses for

general use)

Wizard (A dynamic, computerized guide to completing tasks which prompts

the user to select relevant information)

Searchable Database (Computerized system requiring the user to use a search

bar to obtain information)

 Video tutorial (A video showing how to complete tasks)

 Wiki

 Blog

 Other _________

The format and genre for the documentation is incredibly relevant as it determines

how the document is read. A PDF is static and cannot be modified while a web

2.0 format is dynamic, allowing the reader to also write to it and make changes.

Additionally, documents such as Wikis are more likely to be written using the

humanist approach than static documents which usually use the engineering

approach (Sun, 2006, 460). With dynamic documentation, people can ask for the

information they need (in documents such as forums) and find specific pieces of

information to suit their needs. For static documentation, however, the user relies

on the information provided by the initial writer but cannot influence what

information is provided. In a dynamic field such as open source software, static

documentation limits users‘ access by making it hard for people to change the

documentation as the software is modified. Static documentation decreases the

likelihood that the documentation will be up-to-date with the current version of

the software.

30

Understanding Documentation

Technical writing experts have identified a number of best practices that help ensure

readers will understand the material being covered in the documentation. In this section of

the coding, I looked at the websites with documentation to see which ones applied the

recommended best practices to be more understandable and, therefore, more accessible.

Who Is the Target Audience of This Documentation

 Computer industry/community (i.e. software developers, IT, etc.)

 Other industry/community (i.e. hotel owners, dog owners, etc.)

 Other specific audience: Write in.

 Mass Use (no specific audience)

Technical writers must have a good understanding of their audience when they

write documentation. On his website, Robert Bly (n.d.) implores writers, ―Know

your reader—Are you writing for engineers? managers? technicians? lay people?

Make the technical depth of your writing compatible with the background of your

reader.‖ Bly, however, was writing about traditional documentation instead of

open source. The dynamic nature of open source software changes the traditional

view of audience. The software‘s target audience may include people who have

no interest in using the software as it is, but want to modify the software into

something different. As a result, documentation that is not targeted to a mass

audience discriminates against potential users of the software.

Is there Jargon?

 Yes/No

Select one page. On that page, how many jargon words/terms are there?

Jargon words are: (Select one)

Industry/Community related? Software related? Both?

Is there a glossary?

 Yes/No

Is jargon defined using parenthetical definitions?

 Always Usually Sometimes Rarely Never

Is jargon defined in the margins or in footnotes?

 Always Usually Sometimes Rarely Never

31

Is jargon defined using hyperlinks?

 Always Usually Sometimes Rarely Never

To count instances of jargon, each coder selected a different page in the

documentation. The jargon counts were then averaged for each website. As the

base unit of documentation is the word, if the reader does not understand the

words used, she will not understand the documentation. Unfortunately,

complicated language and jargon are very common in technical documentation.

Robert Bly explains, ―Technical writers sometimes prefer to use big, important-

sounding words instead of short, simple words. Technical terms are helpful

shorthand when you're communicating within the profession, but they may

confuse readers who do not have your special background.‖ If the software is

targeted at a specific industry, then industry jargon will likely be included as it

will be understood by the readers. Technical or software jargon can also detract

from the ease of understanding Gerald J. Alred, Charles Birusaw, and Walter E.

Oliu‘s (2006) book Handbook of Technical Writing says, ―If all your readers are

members of a particular group, jargon may provide an efficient means of

communications. However, if you have any doubt that your entire audience is part

of such a group, avoid using jargon‖ (p. 288). The jargon used helped the coders

in the previous question determine if the documentation was only intended for the

target audience of the software. If jargon was not used frequently or was always

defined, then the documentation‘s target audience extended beyond that of the

software.

Sometimes technical jargon is inevitable. In these cases, though, the jargon should

be defined, either in the text or in a glossary. Desmond D'Souza and Alan Wills

(1998) write in Objects, Components, and Frameworks with UML: The Catalysis

Approach ―In addition to a narrative, it is useful to have an index of the

vocabulary. The glossary‘s purpose is to link the formal terms back to the real

world‖ (p. 190).

Is the documentation written in the 2
nd

 person? (Imperative or ―you‖)

 Always Usually Sometimes Rarely Never

 Does the documentation use culture- and gender-neutral language?

 Always Usually Sometimes Rarely Never

 Does the documentation use correct grammar, punctuation, and spelling?

 Always Usually Sometimes Rarely Never

 Does the documentation use the active voice?

 Always Usually Sometimes Rarely Never

32

 Does the documentation use the present tense?

 Always Usually Sometimes Rarely Never

 Does the documentation begin instructions in the imperative mode by starting

sentences with an action verb?

 Always Usually Sometimes Rarely Never

A great deal of research has been conducted on how to write clear, understandable

instructional materials. The literature identifies many ―best practices‖ involving

the use of jargon
6
, proper English, images, and organization. I based the above list

on ―accepted style standards‖ written by JoAnn Hackos and Dawn Stephens

(1997) in Standards for Online Communication (pp. 268-273). These questions all

addressed the language of the document based on established guidelines for

writing documentation. These guidelines are not specific to software

documentation, but documentation that follows them is generally easier to read

and understand than that which does not. Clear documentation is easier for all

readers to understand and, therefore, is more accessible.

Are images used?

Yes/No

 How many images are in the document?

 Are drawings used?

 Are they used to show objects and spatial relationships?

 Did you identify an area where there should be a drawing?

 If yes, where?

 Are maps used?

 Are they used to display geographic information?

 Did you identify an area where there should be a map?

 If yes, where?

 Are tables used?

 Are they used to show numerical and other relationships?

 Did you identify an area where there should be a table?

 If yes, where?

6
 As a reminder, using jargon means using words, phrases, or terms that are understood within specific

communities but not necessarily understood by someone outside those communities.

33

 Are flowcharts used?

 Are they used to show steps in a process?

 Are they used to show relationships in a system?

 Did you identify an area where there should be a flowchart?

Are organization charts used?

 Are they used to show relationships in a hierarchy?

 Did you identify an area where there should be an organizational chart?

 If yes, where?

 Are symbols/icons used?

 Are they used to supplement or replace words?

 Did you identify an area where there should be a symbol or icon?

 If yes, where?

 Are screenshots used?

 Are they used to show actual physical images of a computer program?

 Did you identify an area where there should be a screenshot?

 If yes, where?

 Are other images used?

 What kind?

 What is it used for?

Above is the list of common image types as discussed in Gerald J. Alred, Charles

Birusaw, and Walter E. Oliu‘s (2006) book Handbook of Technical Writing (pp.

234-245). The descriptions used are from the book, but they are very accurate in

describing when various images should be used. When images are used well, they

help make a piece of documentation easier to understand. When used poorly,

though, they can further complicate the writing.

 Are images labeled?

 Always Usually Sometimes Rarely Never

 Are images relevant to document?

 Always Usually Sometimes Rarely Never

 Are images explained in the text?

 Always Usually Sometimes Rarely Never

 Are images near what they explain (Within two paragraphs)?

34

 Always Usually Sometimes Rarely Never

 Are images readable (Font, size, colors, etc)?

 Always Usually Sometimes Rarely Never

 Are images appropriate to the information?

 Always Usually Sometimes Rarely Never

Many experts in technical writing have said that images make documentation

clearer. If that is the case, then, in theory, documentation that employs visual aids

such as pictures, graphs, diagrams, flowcharts, or screenshots will be easier to

understand than those that do not. On the other hand, it is possible to use images

incorrectly. This question addressed if images, when used, were in appropriate

locations near relevant text, were labeled, and were explained. Images can make

documentation more accessible because frequently they can replace large

amounts of text. However, if the images are inappropriate or used

inappropriately, they can hinder accessibility. For example, Desmond D'Souza

and Alan Wills (1998) in Objects, Components, and Frameworks with UML: The

Catalysis Approach clearly say, ―Diagrams should be used as part of a narrative

explanation and not just on their own‖ (p. 188).

Is similar information grouped together (is information ―chunked‖)?

 Always Usually Sometimes Rarely Never

 How? (circle all that apply)

Consistent but distinct use of font or color to group info

Bulleted lists

Numbered lists

Headings and subheading

Chapter divisions

Boxed information or sections

Are bulleted lists used?

 Yes/No

 To group lists of similar items?

 Always Usually Sometimes Rarely Never

 Were there places where a bulleted list should have been used but wasn‘t?

 Yes/No

35

Are numbered lists used?

 Yes/No

To list sequential of steps/instructions?

 Always Usually Sometimes Rarely Never

 To rank the importance of items?

 Always Usually Sometimes Rarely Never

Were there places where a numbered list should have been used but wasn‘t?

 Yes/No

Are Concepts Mentioned Before Details?

 Always Usually Sometimes Rarely Never

Are Warnings Clearly Identifiable?

 Always Usually Sometimes Rarely Never

Do Warnings Appear Before Related Instructions?

 Always Usually Sometimes Rarely Never

This question area had several smaller aspects to it. First, it looked at whether the

information within the documentation is in a logical order with similar

information grouped together (chunking). Additionally, technical writing experts

suggest using bulleted lists for non-ordered information and numbered lists for

ordered steps. Each item of these lists should begin with a strong action verb (i.e.

click, select, type, etc.).

Perceiving Documentation as Usable

Were the sentences of this documentation easy to read?

 Always Usually Sometimes Rarely Never

Did the logic of this documentation make sense?

Always Usually Sometimes Rarely Never

Did the organization of this documentation make sense?

 Always Usually Sometimes Rarely Never

Were you frustrated by this document?

 Yes/No

While I was unable to conduct a usability study given the scope of this project, the

usability of documentation is the fourth aspect of access, so is important to touch

on. I did so using the above four subjective questions, as each one explored a

36

user‘s perceptions that could influence the usability. Research by Aaron Allen,

Jinjuan Feng, and Jonathan Lazar (2006) tells us that users are likely to abandon

reading documentation they find frustrating and less likely to use the product

(p. 150). Their perceptions of ease of reading, sensibility and logic, also affect

their frustration level and willingness to stick with the documentation and attempt

to use the product. While these are by no means direct measures of usability, they

could play a role and results will simply be approached as suggestive.

Readability, logic, and organization are large topics that include many of the best

practices mentioned in the ―Understanding Documentation‖ section.

Modifying Documentation

Does the Documentation Discuss Modification?

Yes/No

Because open source software is intended to be modifiable by users, the

documentation should include information to assist uninformed users in making

modifications. Open source software documentation that does not mention

modification is not allowing users of less technical knowledge the same access to

the software as those who already know or can figure out how to modify it

without documentation.

This is not to imply that the software documentation should teach the users how to

program. This question asked if source code modification is mentioned in the

documentation.

With more resources, I would look more deeply into modification documentation

as well as user documentation. Due to time limitations, however, I focused mainly

on user documentation. I asked about modification documentation to gather basic

information that can be elaborated on in the future.

3.4: Limitations

 There were several other questions that would have been advantageous to ask but

were beyond the scope of this study. One issue that was mentioned by critics to open source

software documentation is that the documentation is not up-to-date with the current version

of the software. Unfortunately, it is frequently very difficult to determine whether the

software and the documentation are current with each other. Therefore, this issue was not

included in this study.

Additionally, the best way to determine the quality of documentation is to conduct

usability tests. Unfortunately, usability tests for documentation and software are very time-

37

and personnel-intensive and beyond my capability within this study. I did ask my coders‘

opinions on the readability, logic, organization, and frustration of the documentation. These

were factors that are related to perception of usability, but I did not conduct any usability

studies.

38

4: Results and Discussion

4.1: Finding Documentation

 Earlier I argued that open source software might discriminate against users if it makes

it difficult for the users to find, open, understand or use the documentation. The first question

that I attempted to answer was ―Can the user find the documentation for these open source

sites?‖

4.1.1: Many Sites Had No Documentation

In my sample of open source websites, I found that many lacked any documentation

whatsoever. Although 12 of the 18 sites (67%) had documentation, I could only access the

documentation for 11 of the sites (61%) since one had a broken link. Thus, 7 sites (39%) did

not provide any documentation. One can only speculate as to why the sites were missing

documentation, but one possibility is that the Open Source Initiative (OSI) does not require

documentation, and therefore the developers assumed it was unimportant.

 OSI does not have standards for documentation as they do for software

 OSI only mentions documentation when suggesting developers sell it

 OSI does not require the inclusion of documentation

 OSI does not offer any support for creating documentation as they do for

software.

As a result, developers may not have reason to develop documentation.

A second possibility is that developers assume a very narrow, expert audience which

understands the software and only intends to use it for purposes identified by the developers.

This assumption about audience would be quite problematic since the intention of open

source is to be available to a wide group of users who are free to take the software and adapt

it to their own purposes.

A third possibility is that the software developers do not think that documentation is

necessary because they believe their software is intuitive. Edmund Weiss (1995), professor of

communications at Fordham University, describes in his article, ―The Retreat from Usability:

User Documentation in the Post-Usability Era,‖ a recent trend to make software more

intuitive and user-friendly. He explains, however, that ―a friendly interface is really a

stubborn interface: a short, inflexible menu of choices, often leading to another and another.

From this perspective, menus do not give choices; they limit them. Pull-down menus do not

just give the few available options; they ‗gray-out‘ the options that are invalid or

inappropriate‖ (p. 6). Since intuitive software simply means software with limited choices,

even intuitive software requires documentation for the features that are included. To omit

documentation because of an assumption that the software is intuitive enough to be usable

39

without written guidance, the software is discriminating against people who rely on that

written help.

While scholars such as Jack Herrington and Richard Stallman talk about the poor

quality of documentation for open source software, few researchers have explored the extent

to which open source software provides any documentation at all.

Since my study focused on documentation specifically, I could conduct no further

analysis on those 7 sites that had no documentation; thus, my sampling for the remaining

coding was reduced to 11 sites.

4.1.2: Documentation That Existed Was Not Hard To Find, but Additional Web Tools

Would Have Made Finding Documentation Easier

With 11 sites remaining, I was able to determine if users could find the

documentation within the website. First, I looked at ―click depth‖ which is the count of how

many clicks it takes to go from the homepage to the documentation. Web designer Thomas

Powell (2000), as mentioned in chapter 2, recommends a click depth of three or fewer (p.

111). The number of clicks for the websites included in my investigation were favorable. All

11 sites had a click depth of 3 or less. 2 of the 11 sites (18%) had a click depth of zero,

meaning the documentation was written on the homepage of the website. For all of the

websites, the documentation was easily accessible by being within three clicks of the

homepage.

 Armed with the knowledge that the documentation exists and was not buried too deeply

in the website to find, I looked at where on the web pages the documentation was located. 6

of the 11 (55%) had links on the left of the page. 3 of the 11 (27%) had links on the top of the

page. 1 of the 11 (9%) had the link in center of the page. 2 of the 11 (18%) did not have links

because the documentation was written on the first page. Over half of the websites followed

traditional web design practices in link placement as described by human-computer

interaction professors, John D. McCarthy, Jens Riegelsberger, and M. Angela Sasse (2005),

―Most users expected the navigation menu to be found on the left of the screen‖ (p. 2). Also,

psychologist Michael Bernhard (n.d.) writes, ―Internal web links were expected to be located

on the upper left side of the browser window.‖ By following standard practices, the

developers make the documentation more accessible by allowing users to find it more

effectively.

Finally, I looked to see if the people who assembled the web pages had included

additional tools such as search bars or site maps to assist users in finding the documentation.

I found that 2 of the 11 (18%) had site maps, 4 of the 11 (36%) had search bars, and 1 of the

11 (9%) had both a site map and search bar. In total, 5 of the 11 sites (45%) used at least one

additional tool to make the documentation more accessible.

There is good web design, with click depth fitting with the standard of 0-3 clicks and

link location fitting with the standard by having links on the left. The organization of the

website, however, could be improved if developers included tools such as site maps or search

bars. These tools are not mandatory but make the documentation more accessible.

40

4.2: Opening Documentation

 The second aspect of access is opening documentation. This aspect usually refers to

technological issues limiting access, for example, whether the documentation was in a format

that only some computers could access. Fortunately, all 11 sites with documentation could be

opened from any computer with internet access and a PDF reader. The possible exception

was that one site used Flash for their documentation. Flash is an external program that must

be installed on a computer, but is freely available on the internet for all computers.

4.3: Documentation Formats and Genres

A discussion of the formats and genres of documentation does not fit directly into the

four aspects of access (finding, opening, understanding, and using), but is still very important

for fully understanding the documentation for open source software. This section determines

if the documentation used formats and genres that are static or dynamic. If documentation is

dynamic, a reader can contribute to or modify it. Open source software is dynamic in that it is

intended for users to be able to access and change the source code, so the documentation

should be just as dynamic. If not, then the software is not fully documented, making it is

harder for users to access the documentation for modified and rereleased versions.

This section requires a few definitions before moving forward:

 Format: the form in which the documentation is stored and opened by the

computer

 Genre: the type of text in which the documentation is written and read by the

user

 Static documentation: users can read but not modify the documentation

 Dynamic documentation: users can read and modify the documentation

Static documentation is the documentation that most people are accustomed to;

examples include instruction books and how-to guides that a user can read to try to find out

how to use something or to answer questions. In most cases historically, static documentation

has been perfectly sufficient as the products being documented were not dynamic. The

development team created a product, the writing team wrote the documentation, and they

were released together. With the advent of open source, however, the line between developer

and user has been blurred in allowing users to modify the product, so the line between writer

and reader should be similarly blurred and allow the readers to modify the documentation.

Below, Table 3 shows examples of formats and genres that are static and dynamic.

41

 Static (non-modifiable) Dynamic (modifiable)

Format Traditional website, PDF, .doc, etc Web 2.0, live chat, helpline, etc

Genre Manual, FAQ, video Wiki, forum, blog

Table 3: Examples of Static versus Dynamic Formats and Genres

In short, the goal of this section was to determine whether open source software and

its documentation shared the same goals of dynamism or if open source documentation was

discriminatory by barring people who modify the software from modifying the

documentation. Open source software is designed with a feedback loop giving users the

opportunities and tools to modify and redistribute the software. This section examines

whether the documentation includes the same feedback loop allowing for modification or if it

relies on the writer-driven techniques of traditional proprietary software.

The coding here indicated that both the format and genre documentation for open

source software tended to be static and did not usually comply with the ideals of the dynamic

field of open source. Table 4 below offers a summary of the formats and genres of the

documentation used.

Table 4: Documentation Formats and Genres of Studied Websites

Name
OFF

System
netrek

more.

groupware

Logz

podcast

CMS

GlobeCom

Jukebox

the Noble

Ape

Simulation

CLOCC -

Common

Lisp

Open

Code

Collection

GExperts

JXplorer

- A Java

Ldap

Browser

Hebrew

LaTeX

Docutils:

Documentation

Utilities

Target

Audience

Computer

Industry

Specialized

Community

(gamers)

Computer

Industry

Specialized

Community

(Podcast

Producers)

Mass

Specialized

Community

(Zoologists)

Computer

Industry

Computer

Industry

Computer

Industry

Computer

Industry

Computer

Industry

Percent

Used:

Static

Format

Web 1.0 ● ● ● ● ● ● ● ● ● ●
90%

PDF ●
10%

Flash Guide ●
10%

Dynamic

Format

Web 2.0 ● ● ●
30%

Static

Genre

Manual/How

To
● ● ● ● ● ● ● ● ●

80%

FAQ ● ● ● ● ●
50%

Dynamic

Genre

Forum ● ●
20%

Wiki Broken
10%

42

Figures 3 and 4 are graphs comparing the different formats and genres used. In both,

static documentation is in blue and dynamic documentation is in orange. Static

documentation was much more common than dynamic documentation, which seems to be in

opposition to the goals of open source software, a very dynamic field. The formats of the

documentation were very strongly static. 9 of the 11 sites
7
 (82%) used traditional websites

for their documentation, 1 of the 11 sites (9%) had a downloadable .pdf, and 1 of the 11 sites

(9%) had an interactive flash guide. A flash guide gives a sense of user involvement, but

since users do not get to modify the documentation, it is still static. For dynamic

documentation, 2 of the 11 sites (18%) used web 2.0 (websites that users can write

information on as well as read it). In total, less than 20% of websites used dynamic formats.

Figure 3: Graph of Documentation Formats

The data for the genre of the documentation showed similar results with much more

static documentation than dynamic. 9 of the 11 sites (82%) used a traditional ―how-to

manual‖ for their documentation. 5 of the 11 (45%) used an FAQ. FAQs, like the Flash

guides, give the impression that they answer users‘ questions and are dynamic, but the users

cannot add questions to the list. In fact, sometimes the FAQ lists are not based on user

questions at all and are instead based only on the writers‘ opinions of what users might ask

(Noeldner, 2007). There were three instances of dynamic genres of documentation. 2 of the

11 (18%) used a forum where users could ask and answer questions. Of those 2, 1 was

converted to a wiki between my coding of the websites in November 2009 and writing the

results in October 2010, and 1 forum is still in use; the last question was asked in July 2010,

7
 An important note: some sites had more than one type of documentation, so the number of

documentation types is greater than the total number of sites. Figure 6 above shows the breakdown of which

sites used which formats and genres of documentation and, in particular, which formats and genres that are used

are static versus dynamic.

9

1 1

2

Web Page PDF Flash Guide Web 2.0

Documentation Formats

43

although the last answer to a question was posted in January 2010. This long gap in

answering questions indicates that whoever is responsible for answering questions, be it

moderator or community, is not keeping up to date with helping other users to access the

software. Also, as of when coding was done, 1 of the 11 sites (9%) used a wiki, but the wiki

contained mostly broken links. In total, only 3 of the 11 sites (27%) used a dynamic genre for

documenting software.

Figure 4: Graph of Documentation Genres

4.3.1: Open Source Documentation Is Static in a Dynamic Field

My research shows that open source documentation is usually static in a dynamic

field. This discrepancy could cause serious problems for open source software. For example,

if someone modifies a piece of software and redistributes it but cannot modify the

documentation, the new developer must choose whether to rewrite all of the documentation

or to use the existing, but no longer accurate, documentation. Richard Stallman (2010) of the

FSF identifies this as a problem:

There is a particular reason why the freedom to modify is crucial for documentation for free

software. When people exercise their right to modify the software, and add or change its features, if

they are conscientious they will change the manual too of— so they can provide accurate and usable

documentation with the modified program.

Here, Stallman spells out the importance of having documentation that is as dynamic as the

software it is documenting. When the software is changed but the documentation is not, the

discrepancy makes it more challenging for users to understand the software and further limits

access.

The OSI, however, makes virtually no reference to documentation at all. One of the

few places that the OSI website mentions documentation is in its FAQ where it suggests that

users sell their documentation as a way to earn money (OSI, n.d.). As I mentioned at length

in chapters two and three, the FSF and the OSI have very different goals; the FSF wants open

9

5

2

1

Manual FAQ Forum Wiki

Documentation Genres

44

source software to be idyllic and democratic while the OSI wants it to be an effective

financial tool. OSI, however, includes ―non-discrimination‖ in its definition, but does not

address the fact that dynamic software without dynamic documentation limits access when

the software has been modified. My research supports Stallman‘s assertions of the

importance of dynamic documentation yet reflects how the OSI does not value such

documentation.

4.3.2: Traditional Websites as a Common Middle Ground of Accessibility

Another observation from this data is that the common use of static websites indicates

that the websites were designed with a mass audience in mind instead of the technical

audience that many scholars assume writers of technical documentation consider. 9 of the 11

sites (82%) use traditional static websites as the format for providing documentation to users.

If the developer was interested only in simplicity of development, then word documents or

PDFs would have been the simplest. If the developers were offering the best way for users to

interact with the data, they would have used Web 2.0. Static websites were a middle ground

between ease of writing and ease of using. Since the OSI and FSF both mention that open

source is primarily an online community, using online documentation was the logical choice.

This data seems to run counter to Jack Herrington (2003)‘s assertion that only

developers can use OS documentation. He asks, ―Is [the documentation] only intended for

engineers already using the tool?‖ The answer: no, because if it was, it would be in a format

that only engineers could read. Anyone can open a website. Websites allow universal access.

The people who write open source documentation are accused of not considering audience

when writing, but this act shows that there is some consideration of audience.

The frequent use of traditional web pages improves access and lessens discrimination

by allowing anyone who can access the internet to see the documentation. Websites written

in HTML, the standard programming language for websites, can also be read by accessibility

tools such as translators and text readers that further expand the audience. The use of static

instead of dynamic documentation, however, limits access by requiring that modified

software has entirely new documentation in order to be up to date. This involves a lot of

work that some developers may choose not to put in, resulting in incomplete or obsolete

documentation that is difficult to read and understand, especially by people who most need

the documentation.

4.4: Understanding Documentation

A great deal of research has been conducted on how to write clear, understandable

instructional materials. The literature identifies many ―best practices‖ involving the use of

jargon
8
, proper English, images, and organization. In this part of my analysis I looked at

8
 As a reminder, using jargon means using words, phrases, or terms that are understood within specific

communities but not necessarily understood by someone outside those communities.

45

these issues as the ones most people think of when talking about the shortcomings of open

source software documentation. These shortcomings make it difficult for people who do not

already understand the software to use it.

4.4.1: Writers of Documentation Relied Heavily on Jargon

Analysis of the frequent use of jargon on these websites indicated that the people

writing the documentation usually assume narrow rather than mass audiences. They assume

their audience is already very computer-literate and able to understand complicated computer

terms. In addition, they may be addressing a special-interest group related to the content of

the software by using jargon that was likely to only be known by that specific group.

To create context for the jargon, my coders determined the target audience of the

software based on descriptions on the website. The results showed that the computer

community and industry was the most common audience while software targeted for a ―mass

audience‖ was extremely uncommon. Only 1 of the 11 sites with documentation (9%)

targeted a mass audience. 3 of the 11 websites (27%) targeted a specialized community not

within the computer industry. Specifically, the sites in this study targeted video gamers,

podcast producers, and zoologists. 7 of the 11 sites viewed (64%) targeted an audience in the

computer industry.

 Knowing the audience the software targets allowed my coders and me to look at the

jargon used in the documentation and to see if the writers attempted to expand the audience

by defining jargon or reducing it. Unfortunately, I was forced to omit one of the sites from

the study of jargon as it was written entirely in Hebrew with no translation. This is an

accessibility issue in itself, but not one covered by the scope of this project. Of the sites

written in English, 9 of the 10 (90%) used terms that my coders and I determined to be

jargon, while 1 of the 10 sites (10%) did not use jargon. Interestingly, the one site that did not

use jargon was not the site targeting a mass audience.

 Jargon is only discriminatory against people unfamiliar with it if it is undefined.

Jargon with definitions educates the users instead of excluding them. There are many ways of

defining jargon such as using a glossary, parenthetical definitions, footnotes, and hyperlinks.

Of the 9 sites which used jargon, however, 5 (56%) failed to define it.

 Of the remaining 4 sites that did define their jargon, 3 of them (75% of defined, 33%

of total with jargon) used parenthetical definitions, although 1 did only rarely. The other two

used parenthetical definitions frequently but not for all instances of jargon. 2 sites sometimes

used hyperlinks to define jargon, but 1 of those had broken hyperlinks impeding definition. 1

website had a glossary. Footnotes, margins, and in-text definitions were never used. Coders

determined that only 1 of the 9 websites (11%) used definitions that made the terms easier to

understand. There is no correct way to define jargon, as long as it is defined. These statistics,

however indicate the typical ways that the jargon is defined

 The sites used jargon equally for software-related concepts and industry ideas. The

sites were divided into thirds with regard to whether the jargon used referred to the software,

the community or industry, or both. The jargon was identified as software-specific in 3 of

46

the 9 sites (33%), as industry or community-specific in 3 of the 9 sites (33%), and as both

community and software specific in 3 of the 9 sites (33%). There seemed to be a reliance on

jargon for both community-specific and software technical terms. Both types of jargon are

discriminatory if undefined, but they give some insight into the assumed audience of the

people writing the documentation. This study suggested that the assumed reader was a

member of the targeted community as well as very familiar with computers.

 The 9 sites using jargon generally used it very frequently per page. Sample pages

from 5 of the websites (56%) had over 21 words or terms that were considered to be jargon

while 4 sites (44%) had fewer than 20 terms. Very frequent use of jargon is particularly

important when jargon is undefined. Perhaps the frequency of jargon explains why jargon

was so rarely defined; the people writing the documentation underestimated how much of

their language was, in fact, jargon and used it more frequently than they were defining it. The

writers may not have realized that they were using more than 20 technical terms on over half

of the websites.

 A possible explanation for the ubiquity of jargon is that the writers of the

documentation assumed the audience already understood what the jargon meant and that it, in

fact, was not jargon. Robert Bly (n.d.) a scholar of technical writing, explains on his website,

―Technical writers sometimes prefer to use big, important-sounding words instead of short,

simple words. Technical terms are helpful shorthand when you're communicating within the

profession, but they may confuse readers who do not have your special background.‖ The

writers were a part of their own target audience so assumed that readers had the same

knowledge that they did. With open source software, though, this simply is not the case.

Users do not fit neatly into the presumed audiences of the writers because some of the users

want to modify the software to use for a different purpose. Software whose documentation

employs jargon discriminates against people who are not within the assumed audience.

4.4.2: Sample Documentation Followed the Best Practices for Documenting Proprietary

Software, but these Procedures Were Not Always Executed Effectively

Another observation from the questions about ―understanding documentation‖ was

that documentation tended to include the features of the technical documentation genre as

defined for proprietary software, but they did not implement them effectively or consistently.

This was true with use of proper English, images, and organization. There is no defined genre

yet for open source software documentation, but by looking at the protocols for proprietary

software documentation I was able to get a general idea of the quality of the documentation.

It seems that open source documentation is written in the genre of other technical

writing that takes an engineering approach to software documentation and does not exist in

its own genre. While people writing the documentation for the open source software appear

to be familiar with most of the protocols for technical writing, the finer nuances tend to get

lost.

In a time when many professional technical writing positions are being outsourced

offshore to cut costs, it is reassuring to find that the people writing the documentation for the

47

open source software I examined have a firm grasp of how to write in proper English. The

exception to this was the site that was written in Hebrew, but since it was clearly targeting

other Hebrew-speakers and as I do not read Hebrew, I could not judge if it used proper

grammar or spelling.

Proper English is a very simple metric to determine how easy or hard it is to

understand a document. Frequent spelling and grammar errors, the document is harder to

read. Additionally, technical writing is a specific genre of writing and, therefore, has its own

protocols and expectations. Table 5 below outlines the best practices that the websites

followed.

 Percentage of Websites Usually or

Always Following Best Practice

Used Culture and Gender Neutral Language 100%

Written in the 2
nd

 Person 90%

Written in the Present Tense 80%

Used Proper English Grammar and Spelling 70%

Began Sentences with Command Verbs 20%

Table 5: Websites Following Best Practices in Writing

The simplest and most obvious practices were followed very frequently. Writers, in

general, know that documentation should be in the present tense, second person, and not use

language that obviously alienates anyone. The finer details, however, such as beginning

sentences with command verbs (i.e. click the button, enter your name, etc.) are less intuitive.

 I drew a similar conclusion when I examined the documentation for organization.

Coders reported that most of the documents were at least somewhat organized using

―chunking,‖ grouping information with similar information to make it easier to find. Of the

10 sites written in English, 6 (60%) were always ―chunked,‖ 3 (30%) were usually chunked,

and 1 (10%) was sometimes chunked. None of the websites were rarely or never chunked

indicating that the people writing the documentation knew to put like information together.

 There are several different ways to indicate that information is grouped together. The

most common was headings, with coders reporting that 7 (70%) of website used this method.

5 (50%) of websites used chapter divisions according to the coders it. Additionally, they

reported 2 (20%) of websites used visual cues (font, color, lines, whitespace, etc) and 1

(10%) used sections that do not have headings. All of these are acceptable ways of telling the

readers that they have left one ‗chunk‘ of information and have moved on to another.

 Another important aspect of proper organization is writing the general concepts

before explaining the details. To explain the details first would be equivalent to giving

someone an untranslated copy of Homer‘s Iliad before teaching him Greek. It is ineffectual

and frustrating to the reader. This may seem intuitive, but the results show that ―general

concepts first‖ was not implemented as frequently as it should have been. Only 1 site out of

10 (10%) consistently had large concepts before details, according to the coders. They

48

reported that 3 sites (30%) usually did, 4 sites (40%) sometimes did, 1 (10%) did rarely, and

1 site (10%) never had concepts before details.

 Parallel structure, using the same organization in all sections across the paper, is also

useful for readability and to increase understanding. None of the websites always used

parallel structure, but 6 (60%) usually did, 1 (10%) sometimes did, and 3 (30%) rarely used

parallel structure.

 These factors of writing and organization show that the people writing the technical

documentation for the open source software had some understanding of the best practices

used in technical writing. The documentation fit with the protocols of the genre of technical

documentation for software and, therefore, did not decrease access in confusing the readers

in what they are looking at. The implementation of these best practices could be improved to

make documentation easier to read and understand, thus increasing access. Documentation

should be better organized by implementing ―chunking‖ and parallel structure more

consistently, as well as making sure that details are not covered until after concepts. These

small changes make documentation easier for all readers to access by removing some of the

confusion that had been blocking understanding.

4.4.3: Images Are Used but Not Used Effectively

 Most technical writing manuals recommend using images to supplement writing. 9 of

the 11 sites examined by coders (82%) used at least one image in the document. Screenshots

were the most common, utilized by 7 of the 9 sites with images (77%). Of those 7 sites, 6

(86%) used screenshots properly to show actual images of the computer software.

Additionally, 4 of the 9 sites with images (44%) used tables, 2 of the 9 sites (22%) used

symbols or icons, and 1 of the sites (11%) used a flow chart. Drawings, maps, and

organizational charts were never used on the websites examined.

 But simply using images is not sufficient; websites need to use images effectively.

My coders judged the effectiveness of the use of images in the documentation. Irrelevant

images are one possible problem that makes use of visuals in documentation less effective.

Fortunately, relevance was rarely a problem. Of the 9 sites, 8 (89%) were deemed to always

use relevant images while only 1 (11%) did not. Additionally 7 of the 9 sites (78%) always

placed their images near relevant text while 1 (11%) did only sometimes and 1 (11%) never

did.

 Another concern with using images is that they need to be properly labeled in order to

explain how they are related to the text. An image without labels may be visually appealing,

but it is unlikely to be informative and to make the documentation more accessible. Of the 9

sites that my coders and I looked at, 4 (44%) always used labeled images, 2 (22%) usually

did, 1 (11%) sometimes did, and 2 (22%) never labeled their visuals.

 Finally, like text, images need to be displayed in such a way that it is easy to read. If

an image is too small, blurry, or too crowded, it is not of value. For these 9 sites, 2 (22%)

always had readable images, 4 (44%) usually did, 2 (22%) sometimes did, and 1 (11%) never

had images that were easy to read.

49

 Figure 5 below gives an example of an image that my coders and I agreed did not do

anything correctly. The image appeared to be a diagram showing the software‘s relationship

to other items in a network. There was minimal information, however, to clarify or explain

this image. It had a webpage to itself with no text except for a title, ―The Vision‖, and the

jargon-filled, barely-intelligible caption, ―DMCA Compliant Attornet [sic] Resistant

Redundant Distributed Storage with Anonymous Universal Access In The Cloud.‖ The page
9

was linked from the toolbar at the side of every page, so there was no linking webpage to

provide context. As for the image itself, the text in the image was not always large enough to

be readable, and there were many parts not labeled at all, yet were vague enough that they

need labels in order to be understood. This was considered the worst image that was found,

but several other images shared at least one trait with it.

Figure 5: A Poorly Implemented Visual--OFF System, 2008

Images are supposed to be used in documentation to supplement the text by providing

a point of reference. As the old adage states, ―a picture is worth a thousand words,‖ so by

using images in documentation, the writer or developer is able to make complex concepts

much simpler to understand without having to verbally describe them. This is only true,

however, for images that are used effectively. There is no benefit to access or understanding

if the user cannot read a visual or understand why the visual was used.

Screenshots are the most common type of visual, and there are several explanations

for this. One is that screenshots are very effective as a point of reference when telling

someone how to use a piece of software. Instead of having to describe a menu or toolbar, a

screenshot shows it and helps the user understand the context of instructions.

9
 http://offsystem.sourceforge.net/why-off/, 2008

50

Another explanation is that screenshots are very fast, cheap, and easy images to

provide. They do not require a professional artist or special software. All current computers

have a key or set of keys to press in order to take a screenshot and automatically save it in an

easy-to-use format. It takes no more time or effort, and, in fact, often less, to create a

screenshot than it does to write about it.

In spite of the benefits of screenshots, there are places and times that other types of

visual are more appropriate. For example, computer software usually requires or creates a

process, and some do both. In spite of this, only 1 website used a flowchart which is the

correct type of visual for showing a process. Similarly, icons, such as those found on buttons

and in menus, are growing to have universal meanings that could help a user better

understand a document, yet only 2 of the 9 (22%) chose to use these.

While the people writing the documentation for this sampling of open source software

used images, they were not used effectively nor often enough to benefit the users by

increasing access. My coders were required to read or search large amounts of text without

the benefit of helpful images as references.

4.5: Using Documentation

After determining whether users could find, open, modify, and understand the

documentation for open source software, the only remaining question was whether or not

they could use it. I did not study usability per se but asked my coders whether they perceived

the documentation as sensible and easy to read, factors that may play a role in usability. I

asked my coders four questions soliciting their opinions of the documentation overall:

 Were the sentences of this documentation easy to read?

 Did the logic of this documentation make sense?

 Did the organization of this documentation make sense?

 Were you frustrated by this document?

Up to this point, the assumption was that following the best practices of technical

writing creates the most accessible documentation for open source software. While scholars

may deem that to be the case, the true test is if users find the documentation easy enough to

understand that they can use it to increase their access to the software. I analyzed my coders‘

responses to the four questions noted above to ascertain if a relationship existed between

professionally-defined best practices and reader-determined usability.

4.5.1: Overall, Readers Find Most Documentation Is Readable, Logical, and Organized

While I did not conduct any usability tests on the documentation, the readers‘

opinions on the readability, logic, and organization represented their perceptions influencing

51

usability. The results in Figure 6 below show that, for these three factors, more than half of

the documents were usually or always perceived positively by my coders.

Figure 6: Readers‘ Perceptions of Documentation.

When asked about the ease of reading the documentation, raters said that 3 of the 10

documents (30%) were rarely easy to read, 1 (10%) was sometimes easy to read, 3 (30%)

were usually easy to read, and 3 (30%) were always easy to read. In summary, 60% were

generally readable while 40% were not. Fortunately, none of the sites were judged by readers

as being never readable.

The results for the question, ―Did the logic of this documentation make sense?‖ were

very similar to the previous question about readability. Raters said that 1 of the 10 documents

(10%) was rarely logical, 3 (30%) was sometimes logical, 4 (40%) were usually logical, and

2 (20%) were always logical. In summary, once again, 60% generally were logical while

40% were not. None of the sites were judged by readers as being never logical.

The third question, ―Did the organization of this document make sense?‖ had very

similar responses as well. Coders said that 1 of the 10 documents (10%) was rarely well

organized, 2 (20%) were sometimes well organized, 5 (50%) were usually well organized,

and 2 (20%) were always well organized. In general, 70% of the documents were well

organized and 30% were not. The increase from 60% in the past two questions to 70% in this

question is not statistically significant as a difference of 10% accounts for only one site.

Across the 10 websites, 9 (90%) were rated either rated positively for all questions or

negatively for all questions. Only one site was ranked positively for one question and

negatively for the other two. This accounts for the difference between 60% positive response

for the first two questions and 70% positive response for the last question.

30

10 10

10

30
20

30
40

50

30
20 20

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Documentation
was easy to read

Documentation
was logical

Documentation
was well

organized

P
e

rc
e

n
ta

ge

Question

Readers' Perceptions of Documentation

Always

Usually

60 60% 70 %Always or

52

4.5.2: Users Found Documentation Frustrating Over Half the Time

The fourth and final question I asked in the usability section was, ―did you find the

documentation frustrating?‖ This question may seem vague, but to me it is the most

indicative of the usability of the documentation. The results showed that of the 10 documents

written in English, my coders found 6 (60%) to be frustrating and 4 (40%) not frustrating.

Aaron Allen, Jinjuan Feng, and Jonathan Lazar (2006), computer science and human-

computer interaction researchers, have studied user frustration extensively. They have

concluded that when users are frustrated by technology, they are less productive and

efficient. They write in their article for the journal Interacting with Computers that in

extreme cases, frustration can lessen productivity by as much as 50% (p. 150). The

documentation may follow all of the rules, protocols, and expectations of technical writing,

but if a user finds it frustrating, it will be less effective. More importantly, if some users find

it frustrating while others do not, the documentation is less accessible by the users who are

frustrated as they have a harder time using it.

That might be a bit of an overstatement as documentation that follows all existing

protocols for technical writing is unlikely to be frustrating, but there were 2 of the 10

websites in this study that were considered ―always‖ usable for readability, logic, and

organization, but were still seen as frustrating to the users. I clarified these two responses

with the coder who said that one was frustrating because of a lack of information and the

other was frustrating because of a glut of information which made it challenging to find any

one specific piece. Both were well written, organized, and logical, yet still frustrating due to

the inability of the reader to use the documentation to answer specific questions.

4.6: Modifying Documentation

 I asked one more question that does not seem to fit into any of the above categories,

but is very important when examining anything relating to open source software. I asked

whether the documentation made any mention of modifying the software. This mention could

take many forms, from detailed instructions for how to modify the software to simply a

mention of how to find the source code. Any mention would show that the writers of the

documentation are aware that open source software is designed for modification, but that

some of the users may not inherently have the necessary knowledge or skills. This is an extra

level of accessibility that could be added. Of the 10 sites written in English, 4 of them (40%)

mentioned modification. Fewer than half chose to add this information to help people modify

the software regardless of their technical knowledge or previous experience.

53

5: Conclusion

 I conducted this study to examine how and to what extent open source software is

discriminatory. The open source definition requires all software using an open source license

to ―not discriminate against any person or group of people‖ (OSI, n.d.), and in this study I

sought to discover how that applied to the documentation of the software, both theoretically

and practically. The particular group that I hypothesized was being discriminated against was

people of limited technical or industry specific knowledge and experience.

 I chose eighteen pieces of open source software on sourceforge.net that 4 co-coders

and I analyzed both quantitatively and qualitatively for features that might limit access in

four aspects: finding the documentation, opening it, understanding it, perceiving it as being

usable, and being able to modify it.

 My first discovery was that a large number of the websites I examined - more than

one third - had no documentation. These websites clearly limited access to documentation

and, therefore, to the software, by failing to include documentation for a general audience

unfamiliar with the software. This is discrimination because people who have technical or

specific community knowledge may be able to use the software without explanation, but

there is no documentation to assist those without that knowledge

There are several possible explanations for why so much documentation did not exist.

It is possible that the software developers think their software is intuitive enough that it does

not need documentation. It is also possible that, since the OSI does not require

documentation for open source software, developers are simply choosing not to include it. A

third possibility is that the software developers assume their target audience already knows

enough about the software, and that people without that existing knowledge would not be

likely to use the program.

Other findings from this study suggest the last might be true. 90% of the

documentation written in English used words or phrases that only the specialized target

audience would understand, indicating the writers of this documentation were not concerned

about reaching general audiences.

Not all of my findings showed that the documentation was discriminatory. People

writing this documentation understand some of the best practices of the technical writing

genre and attempt to include them (e.g., writing in the second person, using the present tense,

etc.). Most also made the documentation easy to find, using acceptable website navigation

principles. In nearly all cases in my study, the documentation was written using standard

English spelling and grammar. A few of the finer nuances of web design and some of the best

practices were missing but, on the whole, most of the writers had a firm grasp of the genre

and were ability to apply the practices in an accessible way.

A common shortcoming was the use of images. Nearly all of the websites employed

images, but such usage was far from ideal. Images were sporadic and frequently unlabeled,

illegible, or otherwise distracting instead of helpful.

54

As seen in images and writing, documentation writers seemed familiar with the use of

best practices, but often fell short with their implementation. The documentation did not

always use command verbs and rarely included effective use of images. There are a few

possible explanations for this. First, the developers or writers may not be trained in how to

write documentation. Some of these people may be amateurs creating software in their free

time, while others might be developers at small companies without a trained technical writer.

Another possible reason is that creating proper documentation takes a large amount of

resources: time, labor, or money. Startup companies and amateurs do not have the resources

to spend on careful documentation.

The aspect of the documentation examined in this study that, in my opinion, may

cause the most discrimination was the continued use of traditional, static documentation in a

field as dynamic as open source software. As a field, open source software has blurred the

line between user and developer so that anyone who wants to change a piece of existing open

source software is not only allowed but encouraged to do so. It seems counterproductive,

then, for most open software documentation to be written in a way that cannot be modified

along with the software. Additionally, static documentation is one directional. It assumes and

constrains a narrow audience. The biggest issue that this causes is that modified or

redistributed versions of the software are unlikely to have up-to-date documentation because

of the effort required to create it.

There are a few possible reasons why the documentation for open source software

remains static even in a dynamic field. First, static documentation is the most familiar and the

has the most writing about how to effectively create it. Only recently have developers started

using dynamic media and formats for user documentation. People write what they know, and

instruction manuals written on static web pages are known by most people. Another possible

explanation is that dynamic documentation requires more resources to develop and maintain.

It is easy to write text and put it on a website or in a PDF. It takes effort to find or create a

dynamic form and seed it with information. It takes even more effort to moderate the website

constantly to make sure questions are being answered and that everyone is using the website

for appropriate, relevant purposes. With static documentation, the developer only needs to

put time in once.

This study was a cursory overview of the flaws with the documentation of open

source software. It opens the door for several future potential studies. The first would be to

do this or a similar study on a larger scale. While I selected the eighteen websites for this

study based on very specific and well-thought out criteria, the study was still very limited in

scope. A survey of more websites using similar criteria would gather data that is more

statistically robust due to a larger base size.

A second potential study would be to look at documentation of open source software

with respect to time to determine if there is a trend related to the effectiveness or

discrimination in design of the documentation. My study only looked at a single point in

time, but it would be useful to learn if the documentation on a set of sites improves over time

or if the documentation shifts and improves overall as open source software becomes more

55

common. This could be done by looking at the documentation of several specific pieces of

software and noting if they change over time.

The third is a usability test for open source documentation. I made assumptions about

usability, but only based on the opinions of a small number of people and on the best

practices for technical writing as defined by professionals. Whether someone believes

documentation to be easy to read and follow and whether it is actually usable are two

different issues. Proper usability tests would greatly benefit the field in order to determine the

effectiveness of the documentation.

The fourth is a study to see if the documentation makes it easier for someone to

modify the software. I briefly touched on this by counting how many of the websites

mentioned modification, but I did not go into any detail in my research. The documentation

should not need to teach the user how to program, but it should offer advice and have well

documented, non-obfuscated code that a potential modifier could easily navigate. In addition

to research to determine if the documentation improves access for using the software,

usability tests for the documentation with regards to modification would truly be a test to see

if the documentation is keeping up with open source software.

The fifth potential study is to investigate the relationship between user-reported

frustration and a piece of documentation‘s use of professionally-determined best practices.

This project did not include enough websites to be able to statistically determine if using the

best practices for technical writing is correlated with user frustration, but a larger study could

provide this valuable data.

In summary, my study suggests that open source software may, in fact, limit access

and discriminate by omitting documentation, by not applying the best practices of technical

writing, by using static documentation to represent dynamic software, and by failing to

provide even basic assistance with modifying the software. First, people who require

documentation are often discriminated against by there not being any documentation for

software. Documentation that does not exist cannot be accessed. Second, people outside of

the narrow audience that the developers assume are using the software cannot understand the

documentation because of the heavy reliance on jargon, thus limiting their access. Third, by

using static documentation in a dynamic field, people who modify the software are less able

to change the documentation, leading to obsolete documentation for revised versions of the

software. Finally, for many reasons including some outside the scope of this project, readers‘

access is limited by their frustration with the documentation.

These conclusions lead to several suggestions. Listed below is advice for open source

documentation writers based on my research:

 Include documentation for your software. Failing to have documentation

discriminates against people who need instruction to use the software, even if

it is only to answer a question.

56

 Do not assume your user knows about your software or the community

the software is intended for. It is safe to assume the audience is intelligent

and interested, but avoid jargon when possible. If it is not possible to avoid

jargon, define it so users who are not informed can look up the meanings of

the technical terms.

 Create a dynamic document. Open source is a dynamic field that invites

people to modify the software. Allow them to modify the documentation, too.

I recommend a wiki, although a forum can also be effective by allowing users

to ask and answer questions. The format and genre do not matter as long as

they allow the documentation to be revised.

 Include Modification Information. The documentation is not expected to

teach users how to program, but it should make it easier for those inclined to

modify the software to do so. Mention in the documentation the language used

to write the software as well as any advice that would be helpful in

modification. Also, make sure the source code for the software is commented

well and not obfuscated.

 Research and use the best practices for technical writing. Follow their

recommendations, because these are the protocols that have been proven to be

effective.

 When writing documentation, consider using info mapping techniques or

technical writing guides. Reference these on your website to help users

modify and rewrite the documentation.

An additional piece of advice is for the OSI: If OSI insists that the software be

nondiscriminatory, license should require software to include accessible documentation

written for non-specialist users, and not just the specialized audience assumed to be most

likely to use the software. Then and only then will open source software be truly accessible

to everyone.

57

References

Allen, A., Feng, J., & Lazar, J. (2006). Determining the impact of computer frustration on

the mood of blind users browsing the web. Assets 2006. The Eighth International

ACM Sigaccess Conference on Computers & Accessibility, Oct 23-25, 2006,

Portland, Oregon, USA (pp. 149-156). Portland, Oregon: ACM

Alred, G. J., Brusaw, C. T., & Oliu, W. E. (2006). Handbook of technical writing, Eighth

edition. New York: St. Martin's Press.

Bernhard, M. L., & Larson, L. (n.d.). What is the best layout for multiple-column web pages?

Usability News 3.2. Retrieved September 15, 2010, from

http://wsupsy.psy.twsu.edu/surl/usabilitynews/3S/layout.htm

Blanco, E. (2008, June 9). Documentation issues - OSS Watch Wiki. OSS Watch Wiki.

Retrieved from http://wiki.oss-watch.ac.uk/DocumentationIssues

Bly, R. W. (n.d.) Improving your technical writing skills. Bob Bly - Copywriting Services.

Retrieved March 22, 2010, from http://www.bly.com/Pages/documents/File146.htm

D'Souza, D. F., & Wills, A. C. (1998). Objects, components, and frameworks with UML: The

Catalysis approach (Addison-Wesley Object Technology Series). New York:

Addison-Wesley Professional.

Feng, D. J., Hochheiser, D. H., & Lazar, D. J. (2010). Diaries. Research Methods in Human-

Computer Interaction (p. 127). New York, NY: Wiley.

Hackos, J. T., & Stevens, D. M. (1997). Standards for Online Communication. New York,

NY: Wiley.

Hartley, J., & O'Sullivan, T. (1993). Genre. Key concepts in communication and cultural

studies (Studies in Culture and Communication) (2 ed., p. 128). New York:

Routledge.

Herrington, J. (2003, April 15). Is documentation holding open source back?. DevX.

Retrieved October 13, 2010, from http://www.devx.com/opensource/Article/11839

Horn, R. E. (n.d.) Information Mapping - 40 years of information mapping. Information

Mapping - About Us. Retrieved September 15, 2009, from

http://www.infomap.com/index.cfm/AboutUs/40_Years_of_Information_Mapping

Horton, S., & Lynch, P. J. (2009). Web style guide: Basic design principles for creating web

sites, 3rd edition. New Haven: Yale University Press.

IEEE (2001). IEEE 1063: IEEE standard for software user documentation. Institute of

Electrical & Electronics Engineers.

Jansen, C., & Steehouder, M. (1994). Quality Of technical documentation.(Utrecht Studies in

Language and Communication 3). Atlanta, GA: Editions Rodopi.

58

Katz, S. B. (1992). The Ethic of expediency: Classical rhetoric, technology, and the

Holocaust. College English, 54(3), 255-270.

McCarthy, J. D., Riegelsberger, J., & Sasse, M. A. (2005). Commercial uses of eyetracking.

Human-Computer Interactions, 8, 1-2.

McMurrey, D. A. (2001). Power tools for technical communication --2001 publication.

Boston, MA: Heinle, 2001.

NIST Biometric Image Software (NBIS). (2006, November 30). National Institute of

Standards and Technology. Retrieved from http://fingerprint.nist.gov/NFIS/

Nagle, R. (n.d.) Idiotprogrammer Article: Does open source documentation suck?

Idiotprogrammer. Retrieved March 2, 2009, from

http://www.idiotprogrammer.com/computers/linuxdoc.php

Noeldner, C. (2007, June 9). WinWriters - FAQs on the web. WritersUA - Home page.

Retrieved from http://www.writersua.com/0011cn.htm

Open Source Initiative (n.d.). Open Source Initiative. Retrieved March 25, 2008, from

http://opensource.org/

Powell, T. A. (2000). Web design: The complete reference (1st ed.). New York: Mcgraw-Hill

Companies.

Raymond, E. S. (2001). The cathedral & the bazaar: Musings on Linux and open source by

an accidental revolutionary. Sebastopol: O'Reilly Media, Inc.

Sommerville, I. (2001, July 1). Software documentation. Literate programming. Retrieved

from www.literateprogramming.com/documentation.pdf

SourceForge.net: Download and Develop Open Source Software for Free (n.d.).

SourceForge. Retrieved October 10, 2009, from http://www.sourceforge.net

Stallman, R. (n.d.). The Lifelong Activist. Richard Stallman's Personal Page. Retrieved

October 23, 2010, from http://stallman.org

Stallman, R. (2001, May 29). Free software: Freedom and cooperation. Speech presented

from New York University, New York.

Stallman, R. (2010, January 21). The free software definition. The GNU operating system.

Retrieved, from http://www.gnu.org/philosophy/free-sw.html

Stallman, R. (2010, July 1). Why free software needs free documentation - GNU Project -

Free Software Foundation (FSF). The GNU Operating System. Retrieved from

http://www.gnu.org/philosophy/free-doc.html

Sun, H. (2006). The triumph of users: Achieving cultural usability goals with user

localization. Technical Communication Quarterly, 15(4), 457-481.

59

The OFF System --The Vision. (2008, August 25). The OFF System -- OFF System

Introduction. Retrieved from http://offsystem.sourceforge.net/why-off/

Vanderheiden, G. C. (1996, May 6). Universal design. What it is and what it isn't. Trace

Research and Development Center - Trace Center. Retrieved from

http://trace.wisc.edu/docs/whats_ud/whats_ud.htm

Walsh, I. (n.d.). User Guides Tips: Making difficult subjects easy to understand. Business,

proposal, technical writings tips and templates - Klariti Business tips for smart

people. Retrieved March 3, 2009, from http://www.klariti.com/technical-

writing/How-to-Improve-User-Guides.shtml

Weber, S. (2004). The success of open source. Cambridge: Harvard University Press.

Weiss, E. (1995). The retreat from usability: User documentation in the post-usability era.

SIGDOC Asterisk Journal of Computer Documentation, 1337, 3-18.

Wheeler, D. A. (2007, April 16). Why open source software / free software (OSS/FS, FOSS,

or FLOSS)? Look at the numbers!. David A. Wheeler's personal home page.

Retrieved, from http://www.dwheeler.com/oss_fs_why.html

Young, M. (2002). Technical writer's handbook: Writing with style and clarity (New Edition

ed.). Sausalito, CA: University Science Books.

60

Appendix

Appendix A: Software Used

 Below is a chart indicating the name, genre, ranking, and a short description of the eighteen

programs I selected to study, sorted by genre. The descriptions are provided by the software to

sourceforge.net for use on the site

Genre Name Rank Website Description

Communications OFF System 1276 offsystem.sourceforge.net The OFF System for content storage and retrieval,

lets you store all digital content and allows only the

people authorized to use it to do so. It is the proof

of concept for 'bright nets' and will allow anyone to

securely share digital data legally.

Communications customer

Connect

22105 customerconnect.org customerConnect is a customer service software

support solution comprising live interactive

customer chat (interAct), ERMS (Email Response

Management System) (emailGateway), and an

online help center (knowledgeBase).

Games/

Entertainment

Labyrinth of

Worlds

10869 low.sourceforge.net LoW is a rewrite of the first-person role-playing

game Ultima Underworld II: Labyrinth of Worlds

that came out in the early 1990s. One of the most

celebrated game of its genre, this rewrite attemps to

recapture the minutiae and spirit of the original.

Games/

Entertainment

netrek 24666 netrek.org Netrek is a multiplayer battle simulation game with

a Star Trek theme. Up to 16 players are divided into

two teams that fight each other for dominion over

the galaxy.

Internet more. groupware 2361 moregroupware.de Web-based groupware written in PHP. Including

modules like webmail, notes, todo, contacts, project

management, calendar and others.

Internet Logz podcast

CMS

8152 logz.org The purpose of the "Logz" (podcast) is to offer a

whole freedom using (multimedia / sound /

animation) while taking advantage of dynamic

management of the data (CMS) and gives you a full

ablility to do flash, ascii or html layouts.

Multimedia Guitar Scales 15063 guitarscales.sourceforge.net Welcome,This project is all about the guitar! It's a

Java based program that shows you all kind of

scales on a guitar arm. It's really usefull for

learning, developing your skills or writing solo's.

Multimedia GlobeCom

Jukebox

23269 gjukebox.sourceforge.net/ Powerful and reliable mp3 jukebox with web based

interface. Key featuresinclude sophisticated random

song selection, web based interface,

integratedripper, streaming, multi-user capable,

album cover art.

61

Office/Business Market Analysis

System

14980 eiffel-mas.

sourceforge.net

System for analysis of financial markets using

technical analysis. Includes facilities for stock

charting and futures charting, as well as automated

generation of trading signals based on user-selected

criteria. Operates on both daily and intraday data.

Office/Business Versatile

Maintenance

Tracker

8947 vmt.sourceforge.net VMT (formerly Vehicle Maintenance Tracker)

tracks the maintenance of multiple properties.

Property can include vehicles, boats, planes,

buildings, etc. This project is comparible to Auto-

Do-It. Since this program uses Java, it is cross-

platform.

Scientific/

Engineering

Discontinuous

Deformation

Analysis

24270 dda.sourceforge.net Discontinuous Deformation Analysis is discrete

element method useful for simulating the motion of

large numbers of individual bodies in independent

motion,subject to contact constraints.

Scientific/

Engineering

the Noble Ape

Simulation

13038 nobleape.com/sim/ Simulates a biologically diverse tropical island, and

the ape inhabitants cognitive processes. For MacOS

Classic and X, with Java, Windows and

Linux(Motif) versions in beta. Features a non-

polygonal graphics engine (Ocelot) and a

command-line version.

Software

Development

CLOCC -

Common Lisp

Open Code

Collection

4619 clocc.sourceforge.net Our aim is to create a collection of useful and free

Common Lisp - Applications that are easily

portable among the various CL - Implementations.

Software

Development

GExperts 3421 gexperts.org

GExperts is a free set of tools built to increase the

productivity of Delphi and C++Builder

programmers by adding several features to the IDE.

GExperts is developed as Open Source software

and encourages user contributions to the project.

System JXplorer - A

Java Ldap

Browser

5681 jxplorer.org A free java ldap client with LDIF support, security

(inc SSL, SASL & GSSAPI), translated into many

languages (inc. Chinese), online help, user forms

and many other features.

System SNEeSe 18015 sneese.sourceforge.net SNEeSe is an emulator for the Nintendo SNES

console for x86 PCs. SNEeSe is written in 32-bit C,

C++, and NASM x86 assembly. Project goal is to

make as accurate, functional, and usable an

emulation core as is reasonably possible.

Text Editors Hebrew LaTeX 22306 ivritex.sourceforge.net IvriTeX is a project spunned off heblatex and it's

purpose is to maintain the Hebrew LaTeX support,

and provide a meeting point for Hebrew TeXers for

the coordination of improving the Hebrew support.

Text Editors Docutils:

Documentation

Utilities

1604 docutils.sourceforge.net Utilities for general- and special-purpose

documentation, including autodocumentation of

Python modules. Includes reStructuredText, the

easy to read, easy to use, what-you-see-is-what-

you-get plaintext markup language.

62

Appendix B: Final Coding Sheet

Is there user documentation?

No Yes

How many clicks does it take to navigate from

the home webpage to the documentation?

0-3 ---------4-6 ---------7+

Can documentation be found using a search bar?

No Yes

Can documentation be found using a site map?

No Yes

Where on the page are links to the

documentation?

Place an X in the box where the links are located

on the webpage:

What medium/media is/are used for the

documentation?

Circle all that apply:

 Web page

 Web 2.0 (Wiki, Forums, etc.)

 PDF

 Word document/.doc

 Other ____________________

What genre(s) is/are used for the

documentation?

Circle all that apply:

 Manual/How-To

 FAQ

 Forum

 Wizard

 Searchable database

 Video tutorial

 Wiki

 Blog

 Other _________________

Does the documentation discuss modification?

No Yes

Finding and Opening Documentation

63

Who do you think is the target audience of this

documentation?

Computer industry

Other professional industry

Coding communities

Specialized non-industry community

Mass use

Other specific audience:

Is there jargon (technical terms that might be

unfamiliar to some people)?

No Yes

On one page, how many undefined jargon

words/terms are there?

0-10 11-20 21+

Jargon (defined and undefined) is:

Circle all that apply:

Industry/Community related?

Software related?

Other?

Is jargon defined using parenthetical definitions?

 Never Always

 1 2 3 4 5

Is jargon defined in a ―definitions‖ section at the

beginning of the document?

Never Always

 1 2 3 4 5

Is jargon defined in the margins or in footnotes?

 Never Always

 1 2 3 4 5

Is jargon defined using hyperlinks

Never Always

 1 2 3 4 5

Is jargon defined using the format of

―term – definition‖?

 Never Always

 1 2 3 4 5

Do the definitions for jargon make the terms

easier to understand?

 Never Always

 1 2 3 4 5

Is the documentation written in the 2
nd

 person?

(command form or ―you‖)

No Sometimes Yes

Does the documentation use culture-and-gender-

neutral language?

No Sometimes Yes

Does the documentation use correct grammar,

punctuation, and spelling?

No Sometimes Yes

Does the documentation use the present tense?

No Sometimes Yes

Does the documentation begin instructions in the

command form by starting sentences with an

action verb (click, start, listen, etc)?

No Sometimes Yes

Is there a glossary (chapter at the end of the

document for definitions)?

No Yes

Understanding Documentation

64

Are images used?

No Yes

How many images are on the page?

Are screenshots used?

No Yes

Are they used to show actual physical

images of a computer program?

No Yes

Did you identify an area where there

should be a screenshot and isn‘t?

No Yes

If yes, where? __________________

Are flowcharts used?

No Yes

Are they used to show steps in a process?

No Yes

Did you identify an area where there

should be a flowchart and isn‘t?

No Yes

If yes, where? __________________

Are symbols/icons used?

No Yes

Are they used to supplement or replace

words?

No Yes

Did you identify an area where there

should be a symbol or icon and isn‘t?

No Yes

If yes, where? __________________

Are drawings used?

No Yes

Are they used to show objects and spatial

relationships?

No Yes

Did you identify an area where there

should be a drawing and isn‘t?

No Yes

If yes, where? __________________

Are maps used?

No Yes

Are they used to display geographic

information?

No Yes

Did you identify an area where there

should be a map and isn‘t?

No Yes

If yes, where? __________________

Are tables used?

No Yes

Are they used to show numerical and

other relationships?

No Yes

Did you identify an area where there

should be a table and isn‘t?

No Yes

If yes, where? __________________

Understanding Documentation Cont.

65

Are organization charts used?

No Yes

Are they used to show relationships in a

hierarchy?

No Yes

Did you identify an area where there

should be an organizational chart and

isn‘t?

No Yes

If yes, where? ____________________

Are other image types used?

No Yes

What kinds? ______________________

What are they used for? _____________

Are images labeled?

Never Always

 1 2 3 4 5

Are images relevant to document?

Never Always

 1 2 3 4 5

Are images near relevant text? (Within two

paragraphs)

Never Always

 1 2 3 4 5

Are images easily readable? (Font, size, colors,

etc)

 Never Always

 1 2 3 4 5

Understanding Documentation Cont.

66

Is similar information grouped together (is

information ―chunked‖)?

 Never Always

 1 2 3 4 5

How?

Circle all that apply:

Consistent but distinct use of font, color,

 lines, or white space

Headings and subheading

Chapter divisions

Boxed information or sections

Other:

Are concepts mentioned before details?

Never Always

 1 2 3 4 5

Are warnings used?

No Yes

Are warnings clearly identifiable?

Never Always

 1 2 3 4 5

Do warnings appear before related instructions?

Never Always

 1 2 3 4 5

Is parallel structure used? (are grammar and

form the same in similar items?)

Never Always

 1 2 3 4 5

Are bulleted lists used?

No Yes

Are they used to group lists of similar items?

No Yes

Are they used to list sequential

steps/instructions?

No Yes

Are they used to rank the importance of items?

No Yes

Did you identify an area where there should be a

bulleted list and isn‘t?

No Yes

If yes, where? _______________________

Are numbered lists used?

No Yes

Are they used to group lists of similar items?

No Yes

Are they used to list sequential

steps/instructions?

No Yes

Are they used to rank the importance of items?

No Yes

Did you identify an area where there should be a

numbered list and isn‘t?

No Yes

If yes, where? _______________________

Understanding Documentation

67

Were the sentences easy to read?

Never Always

 1 2 3 4 5

Did the logic make sense?

Never Always

 1 2 3 4 5

Did the organization make sense?

 Never Always

 1 2 3 4 5

Were you frustrated by this document?

No Yes

Is there anything else you wish to say about the

documentation?

User Perceptions Influencing Using Documentation

Thank You

