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Abstract

In March 2016, AlphaGo, a computer Go program developed by Google

DeepMind, won a 5-game match against Lee Sedol, one of the best Go play-

ers in the world. Its victory marks a major advance in the field of computer

Go. However, much remains to be done. There is a gap between the com-

putational power AlphaGo used in the match, and the computational power

available to the majority of computer users today. Further, the communica-

tion between two of the techniques used by AlphaGo, neural networks and

Monte Carlo Tree Search, can be improved. We investigate four different

approaches towards accomplishing this end, with a focus on methods that

require minimal computational power. Each method shows promise and

can be developed further.
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1

Introduction

1.1 A New Era in Go Knowledge

The game of Go has existed for centuries. In fact, it is probably the oldest known

strategy game in the world. As a result, Go theory has had an exceptionally long time

to grow and develop. Over time, people have noticed patterns and techniques and

given them colorful descriptions, for example: “two headed dragon”, “tiger’s mouth”,

“throwing star shape”, etc.

Figure 1.1: A Two-Headed Dragon - taken from [1]
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1. INTRODUCTION

Entire sequences of moves have become customary in certain situations as an agreed-

upon “fair trade” (these are termed “joseki”). For instance, from a particular joseki,

one player might gain a more secure territory in the corner, while the other obtains

better central influence. The idea is that these advantages balance each other out. A

new Go player can study these techniques, learn when to apply them in games through

practice, and very quickly become a much better player.

Until recently, Go knowledge has always been added to by the top players and

theoreticians. Computer Go programs did not have much to teach us, consistently

playing at a level far below that of the best humans. All of this changed in March

2016. A program developed by Google DeepMind, called AlphaGo, challenged Lee

Sedol to a 5-game match, one of the strongest Go players, if not the strongest, in the

world. The outcome of this match marked the beginning of a new era for Go, one in

which we can learn from computers as well as humans.

1.2 AlphaGo vs. Lee Sedol

The match itself was widely publicized. It was televised throughout South Korea. It

had 60 million viewers in China. There was an international array of commentators

analyzing each game live [2]. Most of the viewers were rooting for Lee to win. He

himself was quite confident he would win, at first.

Lee apparently underestimated AlphaGo in the first game. In their paper [3], the

AlphaGo team had provided the games of AlphaGo’s recent 5-game match with Eu-

ropean champion Fan Hui. AlphaGo had defeated Fan Hui in a landslide 5-0 victory,

but Fan Hui was ranked much lower than Lee Sedol. Lee looked at the games and

suspected that AlphaGo’s playing style was too defensive, and he shouldn’t have too

much trouble winning. However, AlphaGo had been training itself in the 5 months
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1.2 AlphaGo vs. Lee Sedol

since that match. It exhibited a dramatic improvement in playing strength in their

first game.

In the end, Lee Sedol lost the match 4 games to 1. This was an incredible vic-

tory for AlphaGo. It had conquered what is often termed the “holy grail of artificial

intelligence,” a feat that was thought to be more than a decade away.

However, AlphaGo did not come away unscathed. It did lose the fourth game of

the match. Interestingly, it was playing as Black in that game. The only other game

that Lee Sedol came close to winning was the second game, in which AlphaGo was also

playing as Black. In Go, Black moves first, which gives that player an advantage. To

compensate for this, White is given extra points at the start of the game, called komi.

Some speculate that AlphaGo was more comfortable (whatever that can mean for a

computer program) when playing White, because then equality on the board would be

enough to secure a win [4]. As Black, AlphaGo would need an 8-point advantage or

more on the board for a win (the komi was 7.5 points to avoid ties). Apparently it

preferred the komi to the first-move advantage.

The game that Lee Sedol did win was an exciting one. He played a very tactical style

that turned the game into an all-or-nothing fight, instead of a slow-moving incremental

buildup of advantages for both sides that played into AlphaGo’s superior calculation

abilities [5]. On move 78, he played a brilliant move, a close-range tactical move that

put him back in the game just as it seemed he might be losing. Gu Li, one of the

commentators for game 4 (and a top professional player himself), referred to this move

as the “hand of God.” The “hand of God,” or “divine move,” is something many

professional Go players aspire to achieve at least once in their lives. Essentially, it is

a move so startlingly original and powerful that it is as if it were divinely inspired.

Certainly Lee’s move 78 was not foreseen by commentators, and apparently not even
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1. INTRODUCTION

Figure 1.2: The Hand of God - Lee Sedol’s “hand of God” move is marked with a

triangle.

by AlphaGo. It is a move he can be proud of for years to come, and in a way, it makes

up for the losses he had in the other games of the match.

The reader is strongly encouraged to watch the game at [8].

1.3 Two Powerful Techniques

Go is a very hard game for computers to play. The traditional approach in similar

games, such as chess, is to construct a tree and look at all the possible move sequences

of a certain length. Even in chess the full tree of all complete games is much too big,

so the tree is cut off at a certain point, and the positions are evaluated using some

evaluation function. In chess, the material count (i.e. 9 points for a Queen, 5 points

for a Rook, etc.) serves as a useful and practical evaluation function. It can be made

more subtle by introducing positional attributes, such as -0.2 for each pair of doubled
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1.3 Two Powerful Techniques

pawns.

One problem for Go is that the search tree has to be much bigger in both width

and depth: Go games last about 5 times longer than chess games, and each turn,

there are roughly 5 times as many possible moves in Go compared to chess. Another,

perhaps more serious problem, is that there is no good simple evaluation function for

Go positions (see Section 2.1.3 for a good example of why the “territory function”

fails). All of this makes AlphaGo’s recent victory all the more surprising. AlphaGo’s

use in particular of two groundbreaking techniques allowed it to face these difficulties

and win.

The first is an ingenious trick to replace the evaluation function by simula-

tions. In its simplest form, this is called Monte Carlo Tree Search. The essential

idea is this: instead of evaluating positions by a function when the tree gets too deep,

play an (intelligently) random game from that position, and record the result. Positions

with more wins are considered better, and those parts of the tree can be explored fur-

ther. This results in a somewhat unbalanced tree, but one that is hopefully unbalanced

towards the good moves.

AlphaGo actually uses a variant of MCTS that includes an exploration bias. This is

to encourage looking at moves that haven’t been explored as much, to help balance the

tree and make sure a good move is not overlooked. Many theorems have been proven

about this technique, called Upper Confidence Bounds on Trees; we give some of

them in Section 2.2.2.

The second is a radical departure from the idea of simple, hard-coded heuristic

functions designed explicitly by programmers. The key is that a good evaluation func-

tion can be approximated by an automated procedure that learns over time how to

recognize good moves. This approximation is stored in a structure of layers, weights
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1. INTRODUCTION

and connections, called a neural network, so named because it was originally inspired

from the study of neuron structures in the human brain.

Neural networks are trained over time by sending positions to them, evaluating

their output, and changing them slightly in different ways depending on whether the

output was correct or not. At the end of training, the neural network often provides

a good approximation for what it was designed to measure; however its developers do

not have the same insight into it that they would have for a heuristic function they

coded by hand.

The output of neural networks can be evaluated in several ways during training.

One is by starting with an existing data set (for instance, the set of all Go games

played on KGS Go Server [6]), and sending positions to the neural network. If it

predicts the move that was actually played, it is correct. If not, it is wrong. This is

called supervised learning. Another possibility is reinforcement learning. In this

case, the neural network plays games against an opponent (possibly a previous iteration

of the same network). If it loses, it is altered in one way. If it wins, it is altered in a

different way. AlphaGo made use of both of these types of training.

AlphaGo also took advantage of a recent innovation in neural network structure (and

also inspired by biology, this time by the study of the visual cortex). This innovation

led to the development of convolutional neural networks. Convolutional neural

networks take advantage of the near translation-invariance present in Go (that is, if all

the stones in a position are shifted by one row, the best move will also shift by one

row). These are discussed further in Section 2.2.3.

1.4 Next Steps for Computer Go

This is an exciting time for computer Go.
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1.4 Next Steps for Computer Go

Let us return to the AlphaGo vs. Lee Sedol match for a moment. In game 2 of that

match, AlphaGo played a surprising unconventional move 37.

Figure 1.3: AlphaGo’s “computer-style” move - AlphaGo’s unconventional shoulder

hit at move 37 of game 2, marked with a triangle

At first, the commentators thought it was a mistake in the move relay - perhaps

someone’s mouse had slipped while transferring the move. Lee Sedol himself left the

room for a few minutes to regain focus. Fan Hui called it “a beautiful move that no

human would play.” [9].

It turned out that AlphaGo had deliberately gone against the traditional human

styles of play it had originally learned from. According to David Silver, (at the start

of [7]), AlphaGo believed that the probability of a human playing that move in that

situation was 1 in 10,000. However, the prior probability of a human playing that move

is only a heuristic, a guide - it biased the search tree against the move at first, but as

AlphaGo analyzed further, it found this strange move 37 performing better than the
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1. INTRODUCTION

more human-style moves it considered first.

This means AlphaGo could have much to teach us in the Go world. It could be,

as Silver remarks, that if they were to train neural networks without using human

games as data at first (that is, only by reinforcement learning through self-play), the

computers would play in a completely unrecognizable style, one uniquely their own.

Yet somehow, this style would be more correct.

Thus, there is a lot of progress still to be made. Training neural networks by rein-

forcement learning alone could result in a new computer-style of play. Communication

between the two techniques AlphaGo used can also be improved, allowing the neural

network to better communicate with the Monte Carlo Tree Search, and vice versa.

Finally, there is the issue of computing power.

In the analogous situation for chess, there was a gap between when Kasparov lost

to Deep Blue, and when grandmaster-level chess engines started becoming widely avail-

able. The version of AlphaGo that played against Lee Sedol was a huge distributed

system running on 1920 CPUs and 280 GPUs [10]. This kind of computational power

is not available to the majority of computer users today.

Our project focuses on alternatives, using faster neural networks, with the ideal of

running Go programs on a normal personal computer. We explore different ways of

combining neural networks with Monte Carlo Tree Search.

The rest of this paper is structured as follows. First we give some important back-

ground information that goes into more detail than our overview here. Next we explain

our methods in detail. Then we give the results of our testing, and we conclude with

future work.

8



2

Background

2.1 The Game of Go

The game of Go is one of the oldest and most popular strategy board games in the

world. The rules are simple; in fact, they can be described in just a few pages. But the

strategies involved in expert play are subtle and complex, and the game takes years of

study to master.

2.1.1 Rules

Go is normally played on a 19× 19 board, though beginners often find it easier to play

on the smaller 9× 9 or 13× 13 boards at first.

Two players, Black and White, take turns placing a stone of their own color on an

empty intersection of the board. The goal of the game is to surround as much territory

(empty intersections) with one’s stones as possible, while keeping one’s stones safe from

capture.

Stones are captured when they run out of liberties. In the upper left corner of

Figure 2.1, Black has a stone with 4 empty spots marked a. These are liberties, free

spaces that keep the stone alive (spaces diagonally next to a stone do not count as

9



2. BACKGROUND

liberties). If all 4 spaces were to be taken up by White stones, the Black stone would

be captured, at which point it would be removed from the board.

Figure 2.1: Rules of Go - Liberties at a, suicide move (illegal) for White at c, Ko at d,

White territory at w, Black territory at b, neither side’s territory at n

In the middle left of Figure 2.1, Black has two stones which are connected. Stones

can only be connected orthogonally, not diagonally (as with liberties). We call con-

nected stones a group. Liberties are shared among stones in a group, thus this group

has 6 liberties at the points marked a.

In the lower left corner of Figure 2.1, though Black has a group of three stones,

most of its liberties are already filled up by White stones. Black only has one liberty

left, at a. This pattern is actually the start of a ladder, a common pattern in Go. It

turns out, even if it is Black’s move, he cannot avoid capture in the end.

In the upper middle of Figure 2.1, Black has completely surrounded the point c.

10



2.1 The Game of Go

It is actually not permitted for White to play here, since White’s stone would be

immediately captured.

In the lower middle, we see a similar situation. White has surrounded the point d.

But in this case Black is allowed to play at d, because this will capture the white stone

marked with a triangle, freeing that space up for Black. Then Black’s stone at d will

have one liberty and survive.

It might seem that White can then immediately capture Black’s stone in response,

but this would lead to the same position repeated. The “Ko” rule in Go prevents

this from happening. Players are not allowed to make a move that repeats a previous

position. This forces them to play somewhere else first. Then on the move after that,

they may recapture the stone, since the resulting position has then changed.

The game ends when both players pass their turn. The territory surrounded by each

player is then counted. As mentioned in the Introduction, White receives an additional

amount of points to compensate for the fact that Black moves first. These points are

called komi and are normally something like 6.5 or 7.5 points, to avoid draws. For

instance, if komi is 6.5, and Black has 100 points of territory to White’s 95, White

would still win because White’s total score would be 95 + 6.5 = 101.5. Depending

on the specific ruleset used, captured stones may be added to one’s score, or stones

currently on the board. The player with the higher score is then declared the winner.

To be counted as one player’s territory, the space must be completely surrounded

by that player’s stones. In Figure 2.1, spaces marked w are White’s territory, spaces

marked b are Black’s territory, and spaces marked n belong to neither side.

11



2. BACKGROUND

2.1.2 Ranking System

Go players are traditionally ranked in the following way. A beginner starts out at 30

kyu, progressing through decreasing levels of kyu to eventually arrive at 1 kyu, roughly

corresponding to intermediate strength. After 1 kyu, the next strongest rank is 1 dan

amateur, continuing up to 7 dan amateur. Dan ranks can be thought of as expert

ranks.

There is also a higher level of rankings beyond 7 dan amateur, the dan professional

ranks. These range from 1 dan professional to 9 dan professional. To be eligible for

these ranks one must have professional status, by fulfilling a set of strict requirements

set by the professional Go association in one’s country.

Figure 2.2: Go Ranks - Go ranks in increasing order of strength from left to right [11]

Among the amateur ranks, the difference in rank corresponds roughly to the number

of handicap stones needed to give both players an equal chance of winning. For example,

if one player is ranked 2 kyu and the other is ranked 5 kyu, the weaker player will start

with 3 stones already on the board.

This does not apply to professional ranks, however. A 7 dan professional player and

a 2 dan professional player are in general much closer in strength than a 7 dan amateur

and a 2 dan amateur. In the latter case, 5 handicap stones are needed. In the former,

most likely only about 2 handicap stones are needed.
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2.1 The Game of Go

2.1.3 The Role of Go in Artificial Intelligence

As discussed in [11], Go has long been thought of as a grand challenge for artificial

intelligence. Recall from the Introduction that compared to chess, Go is much more

difficult for a computer program to play well. In fact, there are on average 200 possible

moves per turn in Go, compared to about 37 in chess. An average Go game takes 300

turns, compared to 57 turns in chess. Additionally, the combinatorial complexity of Go

is not the only difficulty.

Figure 2.3: The Problem with a Territory Heuristic - White has a significant

advantage in this position, but 0 confirmed points of territory. Black has 27 points of

territory, but no influence in other areas of the board. (adapted from [12]

Because stones are not moved once they are placed on the board, Go moves often

have very long-term effects. A stone placed on move 2 can have influence on the game

during move 200, for instance. The only comparable long-term moves in chess are those

which affect pawn structure, but in Go many more moves are likely to have long-term

13



2. BACKGROUND

influence. This makes it much more difficult to evaluate a move’s effectiveness, if some

of its effects can only be witnessed after looking more than 100 moves ahead.

Related to this issue, Go positions are much harder to evaluate without look-ahead,

say, by a heuristic function of some kind. In chess, counting the material for both sides

gives a reasonable rough estimate, but in Go one side can have a significant positional

advantage but less territory or fewer stones captured.

For example, in Figure 2.3 above, a simple heuristic that counts territory is seen to

be far less effective than the corresponding simple material-counting heuristic for chess.

In this case, Black is at a signficant disadvantage, but in terms of confirmed territory

Black is 27 points ahead at the moment.

These difficulties (long-term effects of decisions, combinatorial complexity, lack of

good heuristic functions) are common to many real-world problems besides computer

Go. For example, in healthcare, the amount of information doctors must take into

account is rapidly increasing to the point where it is impossible to understand all of

it thoroughly. However, intelligent decisions must be made quickly, and every case is

different. These techniques can also be applied in online marketing. Making recom-

mendations to users based on products they have expressed interest in in the past is a

quite difficult problem well suited to deep learning. Progress in computer Go may be

able to translate to tangible gains in these other areas as well.

In fact, as mentioned in the Introduction, a significant milestone has just been

achieved in Go AI. Google DeepMind’s program AlphaGo won a 5 game match against

9 dan professional Lee Sedol, one of the strongest Go players in the world. This came

as a surprise to many experts, who thought that such a victory would only be possible

in 10 years or more. The techniques successfully used by AlphaGo will be described in

the next section.
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2.2 Computer Go Techniques

2.2 Computer Go Techniques

We now explain the techniques AlphaGo uses in more detail. Recall from the Intro-

duction that AlphaGo uses a combination of techniques to select its moves. The first is

Monte Carlo Tree Search (MCTS). The second is convolutional neural networks. The

way AlphaGo combines these techniques will be discussed in Section 2.2.4.

2.2.1 Monte Carlo Tree Search

The first computer Go technique, MCTS, combines two fundamental ideas in AI. The

first is Minimax tree search and the second is Monte Carlo simulations. We first explain

both of these topics in detail, then we discuss MCTS and explain the benefits of this

method compared to others in computer Go.

Figure 2.4: Minimax Search - from [11]

The Minimax game tree is a method used for deterministic, perfect information

games. Figure 2.4 is an example of a Minimax search tree. Each node in the tree

represents a game state, and the leaves of the tree are terminal states. Each node is

connected by an action, and for each layer of the tree, each action alternates between

the two different players. Each terminal state has a reward value associated with it,

15



2. BACKGROUND

and each node has an optimal value associated with it. The optimal values for the

nodes are calculated by going down the tree where each player selects the move that

will give them a maximum reward (or make their opponent receive the lowest possible

reward). This method is impractical for most games. As the branching factor becomes

larger, creating a tree that takes into account all possible actions and calculates all

of the optimal values for each of the nodes becomes too computationally expensive.

Because of this, a faster method is needed. In fact, in practice, Minimax search trees

often do not go all the way to the terminal states, and instead a heuristic function

is used to evaluate the leaves. However, creating a good heuristic function is a very

difficult problem for the game of Go, because it is very difficult to determine who is

winning based on deterministic things such as confirmed territory and stones captured.

There are many other factors in play that are difficult to quantify.

A Monte Carlo simulation is a system where the probability of a certain event is

calculated by running multiple trial runs. With this, it is possible to generate a “best

move” policy instead of a heuristic function. A policy is a mapping from states to

actions. This best move policy would find the move that has the highest probability

of succeeding for each state. Using a Monte Carlo simulation could replace the need

for a heuristic function in a Minimax tree and reduce the time necessary to arrive at a

good evaluation of the best move, even for a game as combinatorially complex as Go.

The random element of this policy would also be better than a fixed policy. This is

because fixed policies introduce systematic errors, which can be exploited by opponents.

However, with a randomized policy, these kinds of errors are prevented.

Monte Carlo tree search is the combination of Minimax game trees and Monte Carlo

simulations. Monte Carlo Tree search starts with a root and expands the tree using a

randomized policy. This process can be seen in Figure 2.5.
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2.2 Computer Go Techniques

Figure 2.5: MCTS Phases - from [11]

The first phase is selection. It chooses a path on the Minimax tree, reaches a game

state and decides to evaluate it. After evaluation of the state, it decides to expand the

tree with another action. In the simulation phase, it decides on which action to use by

finding the “best action” according to a default policy. Then, the tree back propagates

to the root and repeats this process. After MCTS reaches a satisfactory number of

states, the randomized policy from a Monte Carlo simulation is used to calculate the

rewards of the terminal states. This Minimax tree is then used to determine the best

action.

2.2.2 Upper Confidence Bounds on Trees

Before moving on to convolutional neural networks, it is beneficial to examine in more

detail an important approach Monte Carlo Tree Search can use to select a path from

the search tree during the selection phase.

Prior to the work done in [13], actions were sampled uniformly or using a heuristic

bias on their probability of selection that had no theoretical guarantees. The problem

with uniform sampling is that it is slow. The problem with heuristic biases is that

the estimated values of leaves in the tree will not necessarily converge to the true
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optimal values (that is, the values that would be obtained from a full minimax search),

even after many many iterations. However, using the Upper Confidence Bounds

applied to Trees (UCT) method in the selection phase, this convergence can be

achieved under certain conditions. It also converges significantly faster than uniform

sampling, and even if the method is stopped beforehand, the probability that it biases

towards suboptimal actions is low.

Intuitively, UCT achieves these things by addressing the exploration-exploitation

dilemma. On one hand, actions that appear optimal already should be explored more,

to find the best action more quickly. This is the exploitation side of the dilemma. On

the other hand, if an optimal action is mistakenly estimated as suboptimal at first,

there should always be some incentive to explore it again, or it will be overlooked.

This is the exploration side. To balance these competing goals, UCT uses an algorithm

originally developed for bandit problems with K arms.

A bandit with K arms is analogous to a casino with K slot machines. Each arm (slot

machine) has its own probability distribution of rewards, and at each time t exactly

one machine can be selected to play. The problem is to determine an allocation policy

that maximizes one’s total reward.

The allocation policy that UCT adapts to MCTS is called UCB1, and it works as

follows. Let X̄i be the average reward obtained so far from machine i. Let si be the

number of times machine i has been played so far. Let t be the current time. Then to

select the machine to play at time t+ 1, UCB1 picks the machine j that maximizes:

X̄j +

√
2 ln t

sj

Note the second term in this expression. It is an exploration bias term. If machine

i is visited more often relative to the other machines, it will be explored less. UCT
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actually uses a constant multiple of this bias term instead, to account for drift in the

rewards over time.

The rewards can drift in time in UCT because of the way UCT differs from UCB1.

In UCT, the actions available at a given node of the tree are the “arms” of the bandit,

but the key difference is that below any given node, UCT is again being used to select

the actions to try. Thus the average reward of the node above could gradually increase,

for instance, if the nodes below it took some time to converge to their own optimal

values (if, say, they were initially underestimated).

The main theorem in [13] establishes that UCT converges to the optimal values,

given enough time (here MDP refers to a “Markovian Decision Problem”):

Theorem 1 Consider a finite-horizon MDP with rewards scaled to lie in the [0, 1]

interval. Let the horizon of the MDP be D, and the number of actions per state be

K. Consider algorithm UCT such that the bias terms of UCB1 are multiplied by D.

Then the bias of the estimated expected payoff, X̄n, is O (log(n)/n). Further, the failure

probability at the root converges to zero at a polynomial rate as the number of episodes

grows to infinity.

UCT has also performed considerably better than alternatives in practice. See [14]

for some examples. There is also some theoretical analysis that is worth mentioning.

This analysis shows the consistency for the whole procedure. The first result provides

an upper bound for the number of plays of a suboptimal arm. The theorem goes as

follows.

Theorem 2 Consider UCB1 applied to a non-stationary problem. Let Ti(n) denote

the number of plays of arm i. Then if i is the index of a suboptimal arm, n > K, then

E[Ti(n)] ≤ 16C2
p ln(n)

(∆i/2)2
+ 2N0 + π2

3

Here, ∆i is a measure of the suboptimality of action i, Cp is equal to the constant

by which the expression
√

2 ln t
sj

is multiplied, mentioned above, N0 is a term that
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measures how close the estimate is to the true value, n is equal to the number of plays,

and K is the number of possible actions. The next result provides a bound on the bias.

The theorem goes as follows.

Theorem 3 Let X̄n =
∑K

i=1
Ti(n)
n X̄i,Ti(n). Then |E[X̄n]−u∗| ≤ |δ∗n|+O(

K(C2
p ln(n)+N0)

n )

Here, X̄i is equal to the average number of rewards, δ∗n is a measure of how subop-

timal the rewards are, and µ∗ is the reward for the most optimal action. Also, K, Cp,

n, N0, and Ti(n) are all defined as before.

2.2.3 Deep Convolutional Neural Networks

In order to better make decisions in the game of Go, professional players need to look

for patterns. This helps a player learn crucial information during a game such as who

owns which territories. Neither MCTS nor UCT are capable of finding patterns in Go.

If a Go program were capable of recognizing patterns and reporting useful information

about them, then this would allow MCTS to cut down on the moves it considers when

expanding. This would save MCTS time and allow it to explore better moves more

frequently. Fortunately, Deep Convolutional Neural Networks are capable of analyzing

such patterns.

Figure 2.6: Simple Neural Network - This network consists of just one neuron. (from

[15])
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A Neural Network is a tool that is used to classify objects based on its features.

It does this by analyzing known data and forming an activation function based on it.

This function is then used to classify unknown data based on its features. An example

of a simple neural network can be seen in Figure 2.6. This neural network is composed

of a single neuron, which contains a single instance of an activation function. It accepts

inputs xi and assigns to each xi a weight wi. It then computes
∑n

i=1 xiwi + b, where n

is the total number of features the object has, and b is a bias used to help determine

how to classify the object. In order to determine if an object belongs to a certain group

or not, we simply check whether the activation function exceeds a certain threshold. A

fully connected Neural Network is many neurons stringed together, where the output

of one neuron can serve as the input for another. This is demonstrated in Figure 2.7.

Figure 2.7: Fully Connected Neural Network - This network consists of layers of

neurons such that all neurons in one layer are all connected to all neurons in the next layer.

(from [15])

There are different activation functions which could be used inside of a neural

network. Another type of activation function is a logistic, or sigmoid, function. A

sigmoid function is a bounded differentiable real function that is defined for all real
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input values and has a positive derivative at each point. An example of such a function

is

σ(x) =
1

1 + e−βX

Here, β is the vector of weights used to weigh the value of each input xi. The

threshold for this activation function is 0.5. This sigmoid function is particularly nice,

because it gives a value between 0 and 1 and it is odd about the point (0, 0.5). Also, it is

an easy function to differentiate which is necessary when training the Neural Network.

Figure 2.8: Convolutional Neural Network (CNN) - the extra steps involved in a

Deep CNN (from [15])

A Convolutional Neural Network is a specific type of Neural Network. When the

number of features becomes too large, the neural network begins to become slow. Also,

a more important issue is that it becomes difficult, and in some cases even impossible,

to even train the neural network in the first place. A Convolutional Neural Network

attempts to solve this problem. It does this by creating a few more steps. These steps

can be seen in Figure 2.8. The first step is to take the input and to divide it into

distinct overlapping sections. Then, these are taken and put through filters to obtain
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convolved maps. These maps are then split up into disjoint sections and these sections

are pooled together to obtain a statistic (usually mean or max) of the group of maps.

These statistics are then put into a traditional fully connected neural network.

2.2.4 How AlphaGo Combines MCTS with Neural Networks

Here we briefly summarize the way AlphaGo uses neural networks to inform MCTS that

is relevant to our project. For a full description of the techniques behind AlphaGo, see

[3].

Note that AlphaGo used more than simply a convolutional neural network trained

by supervised learning of expert games as described above. In fact, AlphaGo also

trained a reinforcement learning neural network through self-play, and then used this

network to train a value network to be used as a kind of heuristic function to aid in

position evaluation. We ignore these details in the following.

The two differences AlphaGo introduces to standard MCTS are in the selection

phase and the expansion phase. Briefly, the neural network is queried and its output is

stored in the expansion phase, and the output is used in subsequent selection phases.

More precisely, when a leaf node is expanded, its position is sent to the neural

network trained by supervised learning. The output is a probability distribution over

the legal moves from that position for the current color. This is associated with that

leaf node as prior probabilities for those actions.

In the next selection phase, suppose this (former) leaf node has been selected. To

choose an action from the leaf node, the prior probabilities are taken into account. If

s is the state of this node, a is the action being examined, Q is the value estimate

function from MCTS, N(s, a) is the number of times this action has been taken before

from this state (in this case, 0), and P (s, a) is the prior probability for action a, then
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action a’s bias, u(s, a) is a constant multiple of:

P (s, a)

1 +N(s, a)

The action that will ultimately be selected is the one that maximizes:

Q(s, a) + u(s, a)

AlphaGo introduces some other variations in the value function that are not dis-

cussed here. In particular, it uses a weighted average of the standard MCTS value

function combined with the output of its own value network. For details, see [3].

Our project considers alternative ways of combining convolutional neural networks

with Monte Carlo tree search, focusing on methods that do not require a lot of compu-

tational power. Our methods for achieving this goal are given in the next chapter.
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Methods

Our work focused on modifying Pachi, which is one of the strongest open-source Go

programs [16]. Pachi’s default move selection algorithm is actually a variant of MCTS

called RAVE, though Pachi can also be set to use vanilla MCTS. Pachi’s move selection

is discussed in more detail in the following section.

We also made use of a neural network implementation taken from last year’s MQP

project [17]. Their neural network implementation had the following specifications [17]:

• 1 hidden layer

• 10 kernels

• 5 × 5 hidden layer filter size

• no pooling layer

• rectified linear function as the activation function for the hidden layer

• softmax function as the activation function for the output layer
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3.1 Move Selection in Pachi

In order to determine which move it will play, Pachi uses MCTS with a specific set of

heuristics and policies [18]. In our project, we made use of Pachi’s RAVE engine in

particular. Pachi’s RAVE engine has a way of carrying out the four phase process of

MCTS that makes it unique.

The first phase in MCTS is selection of the node it wishes to expand. The way this

is done is by considering all of the child nodes, and descending to the node which is

found to be the most urgent.

Once it finds a suitable node to expand, it first creates child nodes for all of the

possible follow-up moves. Each node is then assigned a value based on several virtual

simulations and heuristics. These heuristics contribute ε fixed-result virtual simula-

tions, (where ε = 20 for a 19 × 19 board). There are six different kinds of heuristics

which prevent the program from making poor move choices during the expansion phase.

The first heuristic is the “eye” heuristic. This heuristic makes sure that a move

does not play into one’s own eyes. Generally, such a move is poor, and should not be

considered by the program. However, there are rare circumstances where the move is

actually important. For this reason, the program cannot simply disregard the possibil-

ity; it can only strongly discourage it. The next heuristic encourages ko fights. It does

this by adding virtual wins to moves that retake a ko that is no more than 10 moves

old. The third heuristic is a simple one which takes effect in the very early game. It

awards wins if the move in consideration is not on the edge of the board in addition

to being far enough away from other stones. It also gives losses if the move is on the

edge of the board. The fourth heuristic is the Common Fate Graph or CFG heuristic.

This heuristic has two purposes. The first is to motivate it to focus on each individ-
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ual sequence properly. This is important, because the tree should not be randomly

jumping back and forth between interesting sequences. The second is to be consistent

with the Go concept of “sente”. The idea of “sente” is that local play is required in

certain situations, so moves outside of a certain area should not be considered. The

fifth heuristic focuses on playing joseki dictionary moves. These are move sequences

that are guaranteed to give each player a fair outcome. These moves are given twice

the default ε virtual wins in order to encourage joseki moves. The final heuristic comes

from suggestions from the playout policy. If the program saw a particular move as good

in the playouts, it would encourage exploration of that move with this heuristic.

In the playout phase, the moves made in the simulations are selected semi-randomly.

The moves should be selected randomly to maintain the spirit of MCTS; however choos-

ing moves based on realistic play proves to be highly beneficial for program performance.

The way that it does this is by using a set of heuristics, and each heuristic has an op-

portunity to be used with a certain probability p. For a 19 × 19 board, which is the

board size we used for our project, the default probability is p = 0.8. If a heuristic is

chosen, it returns a set of moves. If the set is non-empty, then a move from the set is

randomly selected and played. However, if the set is empty then the next heuristic is

tried with probability p. In the event that none of the used heuristics matches, then a

move is randomly chosen (excluding moves which fill an eye or moves that put oneself

in atari). The first heuristic is one that checks if it can recapture ko. If the opposite

side played a ko in the last 4 turns, then the program recaptures with probability p

= 0.2. The next heuristic checks, with p = 0.2, if the liberties of the last move group

form a nakade shape. If they do, then the program kills the group by playing in the

middle of the eyespace. If the opposite side’s last move put one of its own groups in

atari, then the program captures the group with p = 0.9. Also, if the opposite side’s
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last move put us in atari, then the program tries to escape or counter-capture other

neighboring groups with p = 0.9. The fourth heuristic puts an opponent’s group into

atari if their group has only two liberties. It does this aiming to give greater proba-

bility to the situations where the opposite side has low chances of escaping. Also, the

heuristic notices if the current player has a group with only two liberties. If this is the

case, it tries to gain more in order to avoid being put into atari. The next heuristic

tries to do the same as the previous one, but with more groups of 3 or 4 liberties. It

does this with p = 0.2 probability. For the final heuristic, any options that neighbor

the last two moves and also match with 3x3 board patterns that are stored in their

pattern dictionary, are played with p = 1. As mentioned before, some of the heuristics

used here are used to influence one of the heuristics used in expansion. However, bad

self-atari moves are pruned and not taken into consideration.

3.2 Our Approaches

We modified Pachi’s move selection algorithm in four main ways. First, we added

output from the neural network to Pachi’s prior heuristics-based knowledge. Next, we

optimized the algorithm by taking into account the depth of the current node in the

search tree. If the depth was large, we used a faster, less accurate neural network.

The last two approaches we used involved improving communication between the

neural network and Pachi’s MCTS. This communication can go both ways, and we

worked on improving both directions. To obtain better communication from the neural

network to MCTS, we trained a neural network (based on the original neural networks

from [17]) with the explicit goal of informing the search, rather than simply predicting

expert moves on its own. To obtain better communication from MCTS to the neural

network, we added a search-based feature to one of the neural networks, specifically:
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the fraction of the playouts in which the color to move owned the given point at the

end of the game.

Details of each of these approaches follow.

3.2.1 Adding the Neural Network to Pachi’s Prior Knowledge

The first approach formed the basis for our other approaches. As mentioned above,

Pachi’s move selection incorporates prior heuristic knowledge, which is calculated for

all possible moves from a node whenever that node is expanded. This heuristic knowl-

edge includes encouragement to explore local sequences of moves, encouragement to

evaluate ko fights, and discouragement from playing in one’s own eyes (which, though

almost always a bad idea, can only be strongly discouraged, not prohibited, because of

exceptions).

All of this prior knowledge is stored as a set of virtual playouts, using the notion of

equivalent experience from [19]. This is similar to the notion of virtual experience

mentioned in [11], with the experience weighted differently depending on the size of the

board. In our case, we are only interested in a 19 × 19 board; thus we used weights

based on the weights for a board of that size.

Our implementation added the neural network’s output to this prior knowledge.

We attempted to do this in as unobtrusive a way as possible. First, we determined

that the variation of weights was low, taken over the set of all weights used for various

nodes that were about to be expanded. In other words, the most weight given to prior

experience for a particular move was very similar to the least weight given to prior

experience for a particular move. This allowed us to simply add the neural network’s

own evaluation of the position to this prior knowledge, giving it equal weight to the

current weight of the prior knowledge. Thus, the neural network’s output was given
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the same weight as the entire heuristics-based knowledge already present in Pachi.

Another way we tried to reduce any unwanted effects of this modification was by

maintaining the same total weight at the end. In this case, that meant dividing the

total weight by 2 after incorporating the neural network information. This prevented

the weight of the prior experience from being too high, reducing the impact that MCTS

playouts would have on its value.

3.2.2 Optimizing for Current Depth

This implementation was based on the first. Like the first, it uses neural networks

to help MCTS determine which moves it should explore during its exploration phase.

However, this implementation used more than one neural network. During the explo-

ration phase, it decides which neural network to use based on its depth in the tree.

If the current node is relatively close to the root of the tree, then a slower but more

accurate neural network is used. However, when the current node is deeper in the tree,

then a faster, but less accurate neural network is used.

This arrangement was chosen since there are fewer nodes closer to the root. Ad-

ditionally, the way in which nodes close to the root of the tree are expanded is more

important, because they have an influence on all of the subsequent nodes. For these

reasons, it is appropriate to use a slower, but more accurate neural network for these

nodes. Conversely, the nodes that are deeper in the tree are in overwhelmingly greater

numbers, and they are also slightly less important than the nodes closer to the root.

For these reasons it is appropriate to use a faster, but less accurate neural network for

these nodes.

In order to determine the best transition point (that is, the minimum depth at which

the faster neural network would be used), we collected information on the amount
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of times MCTS expanded nodes of each depth. This resulted in a distribution that

contained the number of expansions that MCTS performed on nodes at each depth. We

used this distribution to help us determine where to use the expensive neural network

without using it an unreasonable amount of times.

3.2.3 Training the Neural Network to Inform the Search

The next approach addressed communication potential between the neural network and

MCTS that we believe has not been investigated before. In particular, neural networks

used in Go in the past were generally trained to predict moves played by experts. One

exceptional case was in AlphaGo, in which a reinforcement learning neural network

was trained to optimize its winrate rather than its predictive power. But even in this

latter case, the neural network was trained to optimize its winrate when the neural

network was used alone. In our approach (and the approach taken by AlphaGo), the

neural network is ultimately used in conjunction with MCTS. Therefore, it is natural

to consider training the neural network in a way that is consistent with its role as part

of a bigger algorithm involving MCTS. This is the key idea of our third approach.

Specifically, we trained a neural network based on the output of Pachi with the

neural network (call this Pachinn) rather than the output of the neural network alone.

Ideally, we would train it based on the winrate of Pachinn against some reference

opponent. However, due to time constraints, we decided to train it based on the

predictive power of Pachinn instead. This is still preferable to the original method

of training, in which the neural network was used alone, since the prediction rate of

Pachinn is more relevant to the strength of Pachinn than the prediction rate of the

neural network by itself.

We used simultaneous perturbation stochastic approximation (SPSA) to train the
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neural network in this way. The method of training used in [17] (and in our other

approaches) does not suffice here, because the Pachinn system is noisy. This requires

some explanation.

3.2.3.1 Why SPSA is Necessary

A neural network can be thought of as a function that maps, in our case, a set of

features of a Go board to an output probability distribution. Adopting notation from

[15], the function itself can be represented as follows:

a
(l)
i = fl


 ∑
j∈A(l)

i

W
(l)
ji a

(l−1)
j

+ b
(l−1)
i

 (3.1)

Here,

a
(l)
i = the value of the neural network at unit i in layer l (3.2)

A
(l)
i = {j s.t. there is a connection from unit j, layer l − 1 to unit i, layer l} (3.3)

W
(l)
ji = the weight of the connection from unit j, layer l − 1 to unit i, layer l (3.4)

Also, b
(l−1)
i is a bias term (that can be equal to zero), and fl is the activation function

for layer l.

Since we used convolutional neural networks rather than fully connected neural

networks, not all connections are present, hence our use of A
(l)
i in the above. For the

first layer, a
(1)
i is simply the input value to that unit of the neural network. In our case,

there were 361 inputs to the neural network, each corresponding to a point on the Go

board. Finally, we note that in the neural networks we used, the activation function

for layers 1 and 2 is the rectified linear function,

fl (x) = max (0, x) (3.5)
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and the activation function for the last layer is the softmax function:

fl (x)i =
exi∑K
k=1 e

xk
for i = 1, ..., k (3.6)

Note the softmax function has the effect of normalizing the output so that all output

is in the range (0, 1), as we should expect from a probability distribution.

All of this is just as in last year’s project [17]. As described there, training a neural

network is just modifying the weights Wi in each layer, so that the overall function

better approximates the desired output for each input in the training data. How well

it currently approximates the desired function can be measured with a cost function:

J(W, b;x, y) =
1

2
‖hW,b(x)− y‖2 (3.7)

Here, hW,b(x) is the output of the neural network for vector x (which in our case is

itself a vector), and the pair (x, y) is one example from the training data set, where x

is the input and y is its desired output. In general for training data of size m, we have

the following cost function (from [15]):

J(W, b) =

[
1

m

m∑
i=1

J
(
W, b;x(i), y(i)

)]
+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ji

)2
(3.8)

This cost function is a function of the set of weights W and biases b for the neural

network, given a fixed training set. To minimize it, and thus approximate the desired

behavior for the training set, gradient descent is a quite useful approach. However,

this requires calculating the gradient of the cost function.

This function is complicated (and the second term is a weight decay term that has

no bearing on our discussion here), but it nevertheless has a certain structure that

makes its gradient possible to calculate efficiently. This is accomplished through the

backpropagation algorithm, which is possible to apply due to the way in which the
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function J depends upon the output of the neural network internally and the way in

which the neural network itself has a certain structure.

Once the gradient has been calculated, the weights and biases can be updated in

the following way:

W
(l)
ij = W

(l)
ij − α

δ

δW
(l)
ij

J(W, b) (3.9)

b
(l)
i = b

(l)
i − α

δ

δb
(l)
i

J(W, b) (3.10)

Here, α is the learning rate.

Now we come to the difference between this approach and the other approaches.

Because the output depends on the Pachinn system as a whole, rather than just the

neural network itself, the cost function J(W, b) loses the simple structure it had before.

Now instead of depending only upon the weights and biases of the neural network in a

simple way, J(W, b) also depends on Pachi’s playout policy, for one, and several other

factors. In fact it is even misleading to write J(W, b) in this case, as there are other

parameters involved. As a result, the backpropagation method does not apply. Instead,

we turn to SPSA.

3.2.3.2 How SPSA Works

SPSA was introduced in a paper in 1992 by Spall [20] as an alternative to finite-

difference methods of stochastic approximation. Both of these rely on approximating

the gradient of the cost function in situations where it is too complicated or impossible

to determine precisely.

The general situation is as follows. Suppose we have a cost function f and a vector

θ of weights. We wish to minimize f , but we do not have an explicit formula for f . At

each iteration, we perturb our current θ by a random vector ∆ of the same dimension,

34



3.2 Our Approaches

where each element of ∆ is ±c (c is some perturbation constant). In finite-difference

methods, each iteration evaluates, for each i:

∆θi(t) =
f(θ(t− 1) + cei)− f(θ(t− 1)− cei)

2c
(3.11)

Here, ei is the vector with 1 in position i and 0 elsewhere. In SPSA, each iteration

evaluates:

∆θi(t) =
f(θ(t− 1) + ∆(t− 1))− f(θ(t− 1)−∆(t− 1))

∆i(t− 1)
(3.12)

The difference is that in SPSA, only 2 evaluations of f are required regardless of the

dimension of θ. It may seem surprising that this process converges, but [20] provides

conditions under which θ(t) converges almost surely to θ∗, the true optimal θ. The

conditions are fairly technical, however taken together they are not very restrictive and

are often satisfied in practice [20].

We apply SPSA to our training in the following way. For simplicity, we take θ to

be only the weights in the last layer of the neural network. We define our function f

to be 1 if the move predicted by Pachinn under θ is correct, 0 otherwise. In addition to

adding α∆θ(t) to θ(t) at each iteration, (where again α is the learning rate), we also

keep track of the most recent nonzero ∆θ(k), and we add µ∆θ(k) as well, where µ is a

momentum constant. This is especially useful for our chosen function, which is prone

to have many iterations occur with a zero change in θ.

3.2.4 Search-Based Features

The other side of the communication was addressed by our fourth approach. We de-

veloped a search-based feature that gave the neural network information about the

search, rather than just the position as in the case of the neural networks in the pre-

vious approaches. This information was in the form of point ownership. At the end
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of a game of Go, both sides have certain points on the board considered part of their

territory. MCTS playouts are complete games; thus, at the end of an MCTS playout,

certain points will be owned by Black, certain points by White, and certain points will

be owned by neither side. This information is not possible to obtain from the position

alone - one must have a search algorithm with playouts of some kind to arrive at final

board positions from an ongoing game.

We first trained the neural network to respond to this feature. To do this we

generated training data as follows. We sent move data to Pachi from over 100,000

games played on the KGS Go Server (KGS) [6]. KGS is one of the largest online Go

servers, and games between strong players are a common occurrence. This makes KGS

a good choice for move data with which to train a neural network, and in fact this

data was originally harvested in [17]. Upon receiving each move, Pachi generated a

random number of playouts between 1 and 10. It then played that number of playouts,

recording in each case the owner of each point of the board. This data was then written

to pattern files, and these files were used for the training.

We then sent this data to the neural network in a slightly different way. In an

actual game, MCTS will already have playout data for some moves, so there is no need

to explicitly call the playout function as was necessary for training data generation.

Instead, we sent the actual playout data as input to the neural network. Though in

some cases this could be the result of a much greater amount of playouts per move

than what the neural network was trained on, we focused on using the neural network’s

output early on after a node expansion, when the number of playouts was likely to be

less. Even in the case where the number of actual playouts is greater, we suspect this

can only improve the accuracy of the neural network’s output.
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3.3 Testing

In order to evaluate each of these implementations, we tested each of them against

Fuego. Fuego is a fairly strong, open source Go program [21], and we found it to be a

good match for Pachi.

Fuego was running using 180,000 iterations (playouts in MCTS) per move, while

each implementation of Pachi was using 27,000 iterations per move. When vanilla Pachi

was run against Fuego using these settings, they were about even. They played 100

games against each other. Fuego won 38 games as black and 19 games as white, where

Pachi won 31 game as black and 12 games as white. This shows that Fuego running at

180,000 iterations against Pachi is a fair match up, and it could be used to determine

how much each of our implementations improved or diminished the capability of the

Pachi program. Each test was run using 100 games where Fuego and Pachi alternated

colors. Both sides were given 60 min of play time. However, since Fuego and Pachi

were using 27,000 and 180,000 number of iterations, respectively, this was more than

enough time for them to play a game, and as such each side wouldn’t have to worry

about losing on time.

In order to help us evaluate each of the Pachi programs we developed a visualization

tool. This tool allowed us to see how the neural network evaluated each possible move

in its current position in the middle of a game. It would assign each legal move on the

board a color based on how good it was. Figure 3.1 is a screenshot of how the neural

network evaluated each move.

In this figure, the intensity of the color determines how good the move is. In this

case, the light grey squares are considered to be better moves than the dark grey

squares. In addition to the number of wins each implementation had against Fuego, we
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Figure 3.1: Neural Network Visualization - similar to [22]

also measured how the speed of the Pachi program was affected by each implementation.

This gave us insight on how the neural network was affecting Pachi’s performance. This

information was crucial, because even if one of the implementations was significantly

better than all of the other implementations, it would be impractical to use if it failed

to perform fast enough.
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Results & Evaluation

Here, we give the results obtained from the implementations we described in the

methodology. For each implementation we devised a test which would show what

kind of an impact it had on MCTS, and we measured the improvement it made. For

each test, Pachi [16] was tested against Fuego [21]. In all of the tests, Fuego ran using

180,000 iterations.

For the first implementation we ran tests for the different levels of influence that the

neural network had. In each of these tests, Pachi ran with 27,000 iterations. Also, in

each test we gave each neural network a weight w for which it would contribute to the

selection of the action the tree would be expanded with. Here, w is a number between

0 and 1, representing the influence the neural network had. The amount of influence

that Pachi’s heuristics had was thus 1 − w. Below is a table of the win rates for each

w we used.

In these games Pachi and Fuego alternated between White and Black, and they

played 100 times. Hence, Pachi plays 50 games as White and 50 games as Black. When

w = 0.1, Pachi won 15 games as Black and 31 games as White. When w = 0.25, Pachi

won 13 games as Black and 31 games as White. When w = 0.5, Pachi won 46 games
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w Win Rate

0.1 46

0.25 44

0.5 50

0.75 50

0.9 50

1 50

Table 4.1: Pachi’s Win Rate at Varying Neural Network Influence Levels

as Black and 4 games as White. When w = 0.75, Pachi won 0 games as Black and 50

games as White. When w = .9, Pachi won 0 games as Black and 50 games as White.

When w = 1, Pachi won 0 games as Black and 50 games as White.

The ideal neural network influence appears to be 0.5. The 0.5 influence is the lowest

influence with a 50% win-rate. Selecting 0.5 rather than 1 or 0.75 preserves a balance

between prior heuristics used in Pachi and the neural network’s output.

For the second implementation, we decided to test the win rate of the program

using different boundaries for which layers the neural networks would be operating in.

In order to get an idea of which layers would best serve as cutoffs, we measured the

frequency with which MCTS visited each layer. Below is a graph of the results.

We decided to use two different neural networks for this implementation, both of

which were provided by Levente Kocsis. We will call the two neural networks we

decided to use ht19 and t18. The ht19 network used an additional feature related to

the past 2-move history of the current position, while the t18 network did not. More

importantly, the ht19 network was more accurate than the t18 network; however, it

was also slower. In our tests, ht19 operated on nodes in the first n layers, while t18

operated on the nodes in the rest of the layers. In all situations, the neural network

being used was weighted at w = 0.5 influence. We also ran two sets of tests, one set
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Figure 4.1: Frequency That MCTS Expanded a Node at Each Depth -

with timed games and another set with a fixed number of iterations, where Pachi ran

at 27,000 iterations. For the timed games, each side had 30 minutes to play. Below is

a table of the results.

Cutoff Layer Timed Fixed Number of Iterations

4 47 50

6 54 -

8 44 49

10 47 -

12 51 62

14 43 53

Table 4.2: Win Rate of Pachi with Different Neural Networks at Different

Layers

For this implementation, we again had Pachi play Fuego 100 times, where they

alternated colors. For layer n = 4, Pachi won 43 times as Black and 4 times as White

when running with a fixed number of iterations per move, and won 45 times as Black

and 5 times as White when it was timed. For layer n = 6, Pachi won 41 times as Black
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and 13 times as White with fixed iterations. For layer n = 8, Pachi won 33 times as

Black and 11 times as White with fixed iterations, and won 37 times as Black and 12

times as White when timed. For layer n = 10, Pachi won 31 times as Black and 16

times as White with fixed iterations. For layer n = 12, Pachi won 30 times as Black

and 21 times as White with fixed iterations, and won 39 times as Black and 23 times

as White when it was timed. For layer n = 14, Pachi won 25 times as Black and 18

times as White with fixed iterations, and won 31 times as Black and 22 times as White

when it was timed.

It appears that there are two local maxima for timed games, and for games with a

fixed number of iterations, the maximum win-rate is achieved at a cutoff of 12. The

first phenomenon can be explained as follows. If the cutoff layer is early in the tree,

then most nodes will be expanded with the help of the faster neural network. This

allows more iterations to occur. If the cutoff layer is late in the tree, then most nodes

are expanded with the help of the slower neural network. This allows each iteration to

be more effective. However, if the cutoff is in the middle, the number of iterations is

not maximized and neither is the effectiveness of each iteration. Thus it appears that

it is best to either have an early cutoff or a late cutoff, or simply use only one neural

network.

The second phenomenon could be due to the rarity of any node at depth 14 or

greater being reached. This would reduce the program to a performance worse than a

single neural network, since it almost always uses the slower neural network but it has

to load an extra one that is almost never used.

For our third implementation, our testing setup was as follows. We varied the

perturbation constant c, and then kept track of the current best accuracy in each case.

The results are given in the following table.
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Value of c First Best Accuracy Current Best Accuracy

0.001 0.082 0.1

0.002 0.067 0.099

0.004 0.076 0.094

0.005 0.069 0.103

0.006 0.066 0.105

0.008 0.07 0.08

0.01 0.058 0.092

Table 4.3: Accuracy of SPSA-trained Neural Network

Our third approach is quite slow. The progress appears promising, but it would be

better if measured by win-rate rather than by predictive accuracy.

For our fourth implementation, we trained the neural network for 12,000,000 itera-

tions on generated pattern files. The following table gives our results.

Top N Moves Considered With Search-Based Feature Without Search-Based Feature

1 0.2147 0.2057

2 0.3207 0.3125

3 0.3962 0.3863

4 0.4476 0.4402

5 0.4892 0.4842

6 0.5248 0.5171

7 0.5551 0.5475

8 0.5804 0.5714

9 0.6029 0.5925

10 0.6227 0.6146

Table 4.4: Accuracy of Neural Network with Search-Based Feature - as compared

with the accuracy of the neural network with the same structure but without the search-

based feature, after 12,000,000 iterations of training each

Our search-based feature appears to only marginally improve accuracy. This was

not true in [17], but since the neural networks have been trained further and adjusted,
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it now seems to make only a 1% difference in accuracy.
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5

Conclusion & Future Work

5.1 Summary

AlphaGo’s victory against Lee Sedol is a huge step forward in computer Go. We looked

at four alternatives and extensions to AlphaGo’s use of neural networks in informing

the Monte Carlo Tree Search algorithm.

First, we varied the influence given to the neural network in the expansion phase

of MCTS. We found that 0.5 appeared to be the best ratio of neural network influence

to prior knowledge heuristics already found in Pachi.

Second, we experimented with using two neural networks of different strengths at

different depths of the tree. We found that there are competing interests in number

of iterations per move (more with the faster neural network) and effectiveness of each

iteration (greater with the slower neural network). It appears that the best implemen-

tations focus on one or the other.

Third, we trained the neural network as part of Pachi through simultaneous per-

turbation stochastic approximation. The goal was to make the neural network better

at recommending moves to explore to MCTS rather than better at predicting moves of

human players on its own. There appears to be some progress; however the training is
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quite slow and more work needs to be done in this area.

Fourth, we added a search-based feature of point ownership as in last year’s project.

This resulted in improvement last year, but after subsequent training of the neural

networks this year, we saw little to no improvement when adding the search-based

feature.

5.2 Future Work

There are several directions that can be pursued from here. One possibility is to train

a neural network to be used with Pachi, using SPSA with improving win-rate as the

goal rather than predictive accuracy. The weights of the entire neural network could

be updated as well, rather than just the last layer as we did in our project.

Also, other search-based features could be explored. Though our particular search-

based feature did not improve the accuracy of the neural network we used by a signifi-

cant amount, other search-based features could potentially be quite useful to the neural

network. Specifically, one could focus on features that in some way communicate the

“state” of MCTS to the neural network, allowing it to suggest moves to explore that

would benefit MCTS (this could be combined with training the neural network and

MCTS as a system through SPSA as above).

Another equally interesting direction is to train a neural network initially only by

reinforcement learning through self-play. As mentioned in the Introduction, this could

lead to unique styles of play, unbiased by prior data.
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