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Abstract 

Salvador Dail (1904-1989) was one of the most famous artists of the twentieth 

century and one of the most well known artists of the Surrealist movement. He was an 

experimental artist whose works were influenced by mathematics, physics, and 

psychology. In this project, we explore the ideas in geometry, topology, differential 

equations, and optics that evoked and are evoked by Dali's art. 
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Introduction 

Salvador Dali (1904-1989) was one of the most famous artists of the twentieth 

century and one of the most well known artists of the Surrealist movement. He was an 

experimental artist who worked, not only as a painter, but also as a jewelry designer, set 

designer, sculptor, cinematographer, and author. Dali's work was sustained by his 

curiosity in: pop culture, the psychology of Sigmund Freud, the natural world, past 

artists, and contemporary science (including genetics, physics, and mathematics, among 

other things). The science and mathematics that inspired Dali and his art inspired me to 

seek out the extent in which ideas behind math and science appear in his work. After 

studying many paintings, four areas of mathematics appeared to show influence on his 

works. Those areas were topology, geometry, optics, and differential equations, and 

these four areas will be discussed over the next five chapters. 

Chapter 1 is dedicated to topology inspired by Dali's Topological Contortion of a 

Female Figure. We seek to determine whether or not the painted female is a topological 

equivalence to a human female. Topics that will be discussed in this section include 

topological properties of objects and their genus, which will then be applied to the human 

body, showing that it is topologically equivalent to a three-holed donut. 

In Chapter 2, I explore the role of geometry as it relates to perspective. In his 

paintings, Dali constructs an image that appears to have depth, even though it was painted 

on a flat, 2-dimensional canvas. By the use of parallel lines, varying the sizes of objects, 

and overlapping different subjects, Dali is able to add a feeling of depth to such paintings 

as The Path of Enigmas, The Invisible Man, The Angelus of Gala, and Suburbs of a 

Paranoiac-Critical Town. 
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While perspective simulates depth, stereoscopy actually achieves it. Chapter 3 

investigates Dail's use of stereoscopy by explaining what stereoscopy is, why two images 

are necessary to create depth, and different ways stereoscopic images are formed. It 

concludes with an explanation of how a stereo painting such as Gala's Christ is set up in 

a museum exhibit to see 3D, and then we describe how to create stereoscopic pictures by 

using 35mm cameras. 

Optics and anamorphic art are the subjects of Chapter 4. Anamorphic art is the 

name given to distorted images that, when viewed at an angle or in the reflection of a 

special viewer, reforms into a more natural image. Dail's anamorphic pieces were erotic 

pictures requiring a reflective cylinder to view the picture. We discus the optics behind 

seeing a viewable image and creating the distorted image, and in Appendix 4, we include 

a Maple V code with which we can experiment with anamorphic images. 

Finally, in Chapter 5, differential equations are used to mathematically explain the 

workings of Dail's Gala Contemplating the Mediterranean Sea Which at Twenty Meters 

Becomes the Portrait of Abraham Lincoln — Homage to Rothko. When viewed at a close 

distance, the painting is of Gala looking out a window and at a body of water. However, 

if we step away from the painting, the image of Gala fades out to a portrait of Abraham 

Lincoln. To mathematically describe the double-imagery of this painting, I pose a simple 

partial differential equation problem and use homogenization, a scaling-up method, to 

determine the macroscopic properties of the material from the microscopic properties of 

its makeup. 
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Background on the Project 

This IQP was initially started with one question: depending on where we stand, 

why do we see two images in Dali's Gala Contemplating the Mediterranean Sea Which 

at Twenty Meters Becomes the Portrait of Abraham Lincoln — Homage to Rothko ? For 

the next twenty-one plus weeks, many of Dali's paintings that we found in both books 

and at the museum, were studied and analyzed to see whether there was a perceptible 

mathematical influence. The primary source for paintings was a book by Robert 

Descharnes and Gilles Neret titled Dail. It was chosen over many other Dali books 

because of its large quantity of reproductions, and proved to be invaluable, since most of 

its reproductions were not available in other books or local museums. 

The Wadsworth Atheneum Museum of Art in Hartford, Connecticut, also served 

as a source for studying Dali's paintings. The museum was the first in the world to 

purchase a painting by Dali, so it housed his paintings on a general basis. However, from 

January 21 — March 26, 2000, the Atheneum hosted an exhibition entitled Salvador Dali's 

Optical Illusions. The traveling exhibition traces the evolution of Dali's interest in modes 

of perception and various aspects of illusionism from his time with the Surrealists in 

1920s to the late 1970s, at which time he began to experiment with holography and 

stereoscopy. Paintings that were on exhibit included Topological Contortion of a Female 

Figure, The Invisible Man, Gala's Christ, Disappearing Bust of Voltaire, and the 

sculpture Venus de Milo With Drawers. However, perhaps the most fascinating part of 

the exhibit were the two tables that housed books owned by Dali. Traite de Perspective a 

L'usage des Artistes (Treatise on Perspective for the Use of Artists), 1750 by E.S. Jeaurat 

was one of several classical treatises on perspective Dali used. Other books that were on 
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display were: Geometry of Art and Life (Matila Ghyka, 1946), Paraboles et Catastrophes  

(Rene Thom) and Anamorphes ou Perspectives Curiures (J. Baltrusaitis, 1952). These 

books were the most fascinating part of the exhibit because they provided concrete 

evidence that Dail read and familiarized himself with mathematics. 

To research the various aspects of mathematics found in Dali's work, I used a 

combination of books, the Internet, and interviews with various professors on campus at 

WPI. The books used in research hailed from the Gordon Library, Worcester Public 

Library, Holyoke Community College Library, or from the personal libraries of Professor 

Suzanne Weekes and Professor Bogdan Vernescu. The books ranged from college and 

graduate-level texts to mathematics written for common people to books with lots of 

pictures and illustrations, designed for enjoyment. In addition, the Internet was used to 

research such topics as topology and stereoscopy, with careful attention paid to the 

information's source. Interviews with various professors at WPI played a crucial role in 

the completion of this IQP. By speaking with professors in physics, mathematics, and 

biology, I was able to work through areas of question and gain a commanding grasp of 

the material at hand faster than if I worked solely out of a book or web page. 

Because of time and group constraints, not every painting could be analyzed for 

traces of mathematics. Furthermore, not every mathematical influence could be 

discussed. The areas of math that were researched and written about were areas that I 

happened to find interesting. During research, I found other aspects of mathematics that 

appear in Dali's work: Rene Thom's catastrophe theory, geometry, linear and nonlinear 

equations, the fourth dimension, logarithms, Golden Ratio, and hyper cubes. If one 

expresses an interest in paintings that have some sort of mathematical inspiration to them 
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that I did not cover, I would suggest referring to Dail' s The Swallow's Tail, The Last 

Supper, Young Virgin Auto-Sodomized by her Own Chastity, Corpus Hypercubus, 

Galatea of the Spheres, or Nuclear Cross as a starting point. 

Background on Dali 

Salvador Dali y Domenech was born in Figueras, Spain on May 11, 1904, the son 

of a prosperous notary. Dali received formal training from the Madrid School of Fine 

Arts in the early 1920s. It was in Madrid where Dali began to break away from the norm 

and experiment with an avant-garde style. In 1929 tyli Dali officially became a 

Surrealist — a group of artists centered around Andre Breton whose style was a 

combination of styles that fused together the every day world with the world of fantasy 

and dream — only to be "expelled" by 1948. To this day, Dali is the best-known artist of 

the Surrealist movement. 

Dail's career spanned several decades, during which time he not only painted but 

worked in other mediums as well. Dali attempted to make rational the irrational and 

opened himself to the science and art of the past as well as that of his time. He succeeded 

in shocking and delighting the public of his time, and, though no longer with us, will 

continue to shock and delight people of the future thanks to museums, video, books, and 

prints. 

Acknowledgments 
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1 - Topology 

Fig 1.1 Topological Contortion of a Female Figure, 1983 Salvador Dali [3] 

Topological Contortion of a Female Figure, Fig 1.1, was painted in 1983 during 

Dali's final period. This painting is one of several that are influenced by ideas in 

topology. Nevertheless, how true did Dali stay to those ideas? Is the female figure in the 

painting a true topological contortion, or did Dali use his artistic license and simply 

incorporate principles of topology in his work? 

1.1 Topology - What is it? 

Topology is a branch of geometry that deals with the properties of an object's 

points in relation to each other. It does not deal with rigid properties, such as length or 

angles, but rather the properties that no amount of twisting, bending, stretching, or 

shrinking can change. For this reason, it has been known as the "rubber-sheet 

geometry". 

Topology is a creation of approximately the last 100 years of work. Even so, 

there were some discoveries prior to the nineteenth century that helped lay the 
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groundwork for topology. Around 1640, the French mathematician Rene Descartes first 

noted a relationship between the number of vertices, faces, and edges of a simple 

polyhedron, i.e. a polyhedron without any holes through it. In 1752, Leonard Euler 

rediscovered this relationship and proved that the number of vertices minus the number 

of edges plus the number of faces equals 2, or V-E+F=2 [2]. Euler's proof works under 

the assumption that the polyhedron has no holes; the more general formula, V-

E+F+2N=2, takes into account the number of holes N the polyhedron may have. "Euler's 

formula", as it came to be known, and its generalizations are one of the central theorems 

of topology[2]. 

1.2 Topological Properties 

1.2.1 Transformations, Deformations, and Equivalence 

A topological transformation is the result of morphing one geometric object A 

into another object A'. There must be a correspondence p<-->p' between all points p of A 

and all points p' of A', and they must comply with the following properties: 

1. Each point p of A corresponds to only one point p' of A', and each point p' 

of A' corresponds to only one point p of A. 

2. If any two points p, q of A are chosen, and p is moved so the distance 

between p and q approaches zero, then the distance between the 

corresponding points p', q' of A' also approach zero. The converse is also 

true [2]. 

A topological deformation is the act of deforming or morphing one object A into 

another object A'. Consider the object that is called a "torus" in topology, or doughnut in 

everyday terms, in Fig. 1.2. Twisting, bending, and stretching are valid forms of 
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deformation, but tearing and joining points are not. See Fig 1.3. Tearing or cutting any 

portion of the object violates transformation condition 2. Joining points, as illustrated in 

Fig. 1.4, violates condition 1 because the newly joined point can be represented on the 

original surface by two points. 

Fig 1.2 A torus. 

Fig 1.3 Twisting and bending the torus are valid acts of deformation. 

Fig 1.4 A figure-8 violating condition 1. The joint in the center is one point on the figure-8 that now 
corresponds to two points on the torus. 

Figures 1.5a and 1.5b illustrate how making a cut violates condition 2. Figure 

1.5a illustrates a torus with 2 points, P and Q, which are very close to each other. Starting 
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with point P, if we move clockwise through points 1-4, we will end up at Q. The distance 

between P and Q is almost zero. If the torus were cut between points P and Q, the 

resulting object would resemble Figure 1.5b. Again, by starting at P and passing through 

points 1-4, we'll end up at Q. However, the distance between P and Q does not approach 

zero, but approaches a fixed distance L. Thus the objects in Figure 1.5a and 1.5b are not 

equivalent. 

Fig 1.5a 
	 Fig 1.5b 

Fig 1.5 How a cut violates property 2. 

Objects that comply with the rules of transformation and deformation are said to 

be equivalent and share topological properties with one another. Figure 1.6 illustrates the 

fact that a circle is topologically equivalent to a triangle. Three points on the circle can be 

stretched out to form the vertices of the triangle, and the curves between them flattened to 

form the legs. In addition, a sphere is topologically equivalent to a bowl. See Fig 1.7. To 

create a bowl, an indentation is created on the sphere, and because indenting an object 

does not violate conditions 1 or 2, they are equivalent. Protrusions, too, are a valid form 

of deformation. They stretch a portion of the surface out away from the object, but don't 

detach from the object in any way, as shown in Fig 1.8. 
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Fig 1.6 A circle is topologically equivalent to a triangle. The black points on the circle correspond to the 
vertices of the triangle. 

Fig 1.7 On the left, a sphere. On the right, a bowl-shaped object formed by indenting the sphere. These 
two objects are topologically equivalent to the other. 

Fig 1.8 A cylinder is topologically equivalent to a cylinder with a protrusion. 

A torus and a coffee mug are also equivalent. Consider Figure 1.9. If an 

indentation is made on one piece of the torus, the already present hole resembles the 

handle of a coffee mug, and the indentation starts to form the container holding the 

coffee, like Fig 1.9.2. Making the indentation wider, as in Fig 1.9.3, and then deeper, as 

in Fig 1.9.4, will manipulate the torus such that it resembles a coffee mug. Since the 

handle is now horizontal, we can slide one end towards the bottom, making the handle 

vertical and easier to grip. See Fig 1.9.5. Now, our torus has completed its 
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4, 

3. 

transformation into a coffee mug. With some minor cosmetic touching up, our torus will 

look like Fig 1.9.6. 

Fig 1.9 A torus transforming into a coffee mug. 

However, a circle and a line segment are not equivalent, as aren't a sphere and a 

torus, because their topological properties are not the same [2]. The circle and sphere 

require a cut and a puncture, respectively, to make the transformation into a line segment 

or torus. Since cutting or tearing any part of an object during transformation violates 

condition 2, the transformation is not possible and the two objects are not topologically 

equivalent. 

1.2.2 Genus 

A way of classifying objects as topologically similar to or different from one 

another is by comparing their genus. The genus is the maximum number of closed curves 

that can possibly be drawn on a surface that does not separate one region from another. 

The number of such closed curves an object can have is a topological property distinct to 

its genus. All topologically equivalent objects have the same genus, and all objects of the 
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same genus are topologically equivalent. For example, any number of closed curves can 

be drawn on a sphere, as seen in Fig 1.10, but each curve separates the sphere into two 

independent surfaces. Points on one surface cannot be connected to points on the other 

surface unless the closed curve is crossed. Because there are no closed curves that do not 

separate its surface into two, the genus of a sphere is zero. 

Fig 1.10 A sphere with a randomly placed closed curve. 

On a torus, we can find one closed curve that does not divide the surface into two 

parts, as seen in Fig 1.1 la and Fig 1.1 lb. Any point on the surface can be connected to 

another point by a curve that does not cross the closed curve. However, implementing a 

second closed curve will separate the surface into two pieces. Refer to Fig 1.11c and Fig 

1.11d below to see this. "This difference between the sphere and the torus marks the two 

types of surfaces as topologically distinct... it is impossible to deform one into the other 

in a continuous way."[2] 

Fig 1.11a A torus with one closed curve. 
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Fig 1.11b A torus cut along the closed curve. Cutting helps visualize how the closed curve sections off the 
torus. 

Fig 1.11c A torus with a second closed curve. 

Fig 1.11d A torus cut along the two closed curves. Note the division of the surface into two pieces, 
stressing that the two points on either side of the original closed curve cannot be joined together. 

For an object with two holes, as in Fig 1.12a, there can be at most two closed 

curves so that points on the surface can be connected by a curve that does not cross the 

closed curves. Three closed curves will separate the surface into two parts. Figures 

1.12b-1.12d illustrate obtaining the genus by way of the closed curve method. In general, 

a surface with n-holes can have n-closed curves and still be connected. So for a sphere, 

torus, and a 2-holed donut, the genus would be 0, 1, and 2, respectively. 
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Fig 1.12a A 2-holed donut. 

Fig 1.12b One closed curve was found, represented by the black line. The 2-holed donut is cut along the 
first closed curve. 

Fig 1.12c A second closed curve was found, shown by the black line. A cut was made along the second 
closed curve, and a third closed curve was found. 

Fig 1.12d Cutting along the third closed curve separates the surface into two parts. Therefore, it has a 
genus of two. 
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1.3 The Human Body - a 3-Holed Donut? 

Topologically speaking, the human body is a cylinder with three holes at one end, 

one hole at the other end, and all connected by a common passageway. Our digestive 

system is like a long tube, starting at the mouth and becoming the esophagus, stomach, 

small intestine, large intestine, and terminating at the anus. [1] Because they are 

protrusions, the liver, gall bladder, bile duct, and pancreas are considered part of the 

digestive "tube" and do not change its topology. See Figure 1.8. The mouth is one of the 

holes at the top of the cylinder, and the anus is the cylinder's bottom hole. The other two 

holes are the nostrils. Our digestive and respiratory systems are connected at the throat, 

for the esophagus and the trachea share a common tube. Thus, we have a continuous 

passageway from the mouth and nostrils to the anus. Appendages such as arms, legs, 

head, eyes, hair, nose, neck and penis are protrusions of the body and can be removed by 

pushing them back into the body. The reproductive, transport, nervous, and skeletal 

systems in humans are closed systems and do not effect the transformation of a human 

body to a cylinder. Cavities, like the vagina and ears, are "indentations", similar to the 

bowl in Fig 1.7, and can be pushed out to form a smooth surface. Once all the 

appendages and cavities are taken care of, the body resembles a cylinder with three holes 

at the top and one at the bottom. By topologically deforming it into a three-holed donut 

and finding the genus of the latter, we see that the human body has a genus of three. 

Alternatively, by applying the transitive property to the human body, multi-holed 

cylinder, and 3-holed doughnut, we conclude that the human body is topologically 

equivalent to a three-holed doughnut. 
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1.4 A Possible Rendering of a Human Transforming into a 3-Holed Donut 

As stated in the previous section, the human body is topologically equivalent to a 

three-holed donut. Since it is not physically possible for a human to transform into the 

donut, we follow steps 1-9', as shown in Fig 1.12-1.20, and attempt to illustrate what 

would happen if the transformation could take place. 

Fig 1.12 Step 1: Start with a human. Our subject here is male. 

Steps 1-9 by Luke Goljan 
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Fig 1.13 Step 2: Arms compress into body. 

e 

Fig 1.14 Step 3: Legs compress into body. 
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Fig 1.15 Step 4: Genitalia compress. The only indication that this was the man's bottom is the presence of 
the anus. 

Fig 1.16 Step 5: Neck compresses into body. 
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Fig 1.17 Step 6: Head rotates up from loss of neck. 

Fig 1.18 Step 7: Ears and nose compress into head. Nostrils remain. 

Fig 1.19 Step 8: Eyes and hair disappear. 
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Fig 1.20 Step 9: Body stretches and takes on tubular shape. 

At Step 9 in our transformation, the man's body is a cylinder with one hole (the 

anus) at one end and three holes (nostrils and mouth) at the other end. All the intestines 

have been topologically transformed into a tube that connects the ends of the cylinder 

together. Topologically speaking, this is equivalent to a 3-holed donut. To demonstrate 

the validity of this statement, the following illustrations, Fig 1.21-1.25, will show how to 

take a 3-holed donut and transform it into a cylinder with three holes at one end all 

connected to one hole at the other end. 
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Fig 1.21 We start with a 3-holed cylinder. It is of genus 3. 

Fig 1.22 The section between two of the holes is pushed upwards. 

Next, the section between two of the holes is pushed upwards (#1 in Fig 1.22). 

This causes the bottoms of the two leftmost holes to fuse together, creating a large fused 

hole (#2 in Fig 1.22). Imagine the result to look like an upside down pair of jeans, where 

the waist of the pants is the fused hole, the legs of the jeans are the two holes, and the 

crotch of the pants to be the section pushed up. 
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Fig 1.23 Push the section between the new fused hole and the rightmost hole upwards. The result is one 
big hole at the bottom that forks into three smaller holes. 

Fig 1.24 Continue to push up on the sections that were between the holes. 

Fig 1.25 Compress the elongated cylinder into a shorter tube. 
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Finally, we compress the elongated cylinder, forming the left picture in Fig 1.25. 

The picture to the right illustrates the three separate holes meeting together and forming 

one shared exit hole. The three holes at the top of the cylinder correspond to the two 

nostrils and mouth of the man. The three openings are connected via the digestive 

system, where the opening at the end is the anus. We have thus shown that a human is 

topologically equivalent to a three-holed donut, thereby having a genus of three. 

1.5 Thoughts on Dali's Painting 

Is the woman in Dali's Topological Contortion of a Female Figure (Fig 1.1) 

really topologically equivalent to a woman? Truthfully, it cannot be known because we 

only have one view of the woman. If this were a three-dimensional piece, we could 

thoroughly examine all around the woman and make a decision. However, based on the 

painting, I do not believe it is truly topologically equivalent to a woman but instead 

borrows topological concepts. 

Fig 1.26 Identifying four of the 5 observances found after studying Topological Contortion of a Female 
Figure. 
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On studying this painting, there are five features that I have noted. The first two 

features are the presence of a hand and arm (1) and a foot and leg (2). If the painting is 

turned upside down, what was the foot and leg also resembles a muscular arm and a hand 

making a pointing gesture. Third, there is also the presence of a small bump near the top 

of the female figure (3). If the foot and leg is indeed another arm, I believe the bump is 

the nipple of a breast. Towards the bottom of the painting (4), it appears as if the foot 

touches, but does not connect, another part of the figure, creating a circle-like opening in 

the figure. Refer to Fig 1.26 to see the first four observances. Finally, the female is 

contorted in such a way as to resemble a Roman Surface, one of three surfaces that can be 

formed by sewing a Mobius strip to the edge of a disk [15]. The result is an image of the 

real projective plane formed when a function transforms the projective plane, abbreviated 

91132, into 913  [6]. Dail was known to have been interested in the fourth-dimension and 

incorporate a purely geometric representation of it in several paintings, such as Search of 

the 4th  Dimension and Pentagonal Sardana. 

Fig 1.27 A Roman Surface [6]. 
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Fig 1.28 Dali's Search of the 41h  Dimension (1979) [3] 

Fig 1.29 Pentagonal Sardana (1979, Stereoscopic work, left and right component) [3] 
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2 — Perspective 

2.1 What is It? 

The Merriam-Webster dictionary defines perspective as "the technique or process 

of representing on a plane or curved surface the spatial relation of objects as they might 

appear to the eye; specifically: representation in a drawing or painting of parallel lines as 

converging in order to give the illusion of depth and distance [11]." While today we may 

take linear perspective, or simply perspective, for granted, it was not until 600 years ago 

that man was able to illustrate a sense of depth and distance on a flat canvas. It was 

during the Renaissance that painters began to develop and use this technique. Three 

mathematical ideas play a role in the use of perspective: parallel lines, diminution, and 

overlapping. 

2.2 Parallel Lines 

The representation of parallel lines in a drawing or painting is used to convey a 

sense of distance. Parallel lines will never intersect each other, regardless of how long 

the lines are, but they appear to converge as we look at them into the distance. As an 

example of this phenomena, consider railroad tracks. The rails upon which the trains ride 

are parallel to one another. However, if you stand between the rails and look into the 

distance, the rails appear to meet at a point in the distance. In painting, the illusion of 

distance or infinity is indicated by "lines that are moving away from the viewer at an 

angle parallel to the direction that the viewer is looking [9]." 

Figure 2.1a, The Path of Enigmas (second version), is a good example of how 

Dali used converging lines to indicate distance. The objects assemble to form lines 
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which seem to converge somewhere in the horizon, thus giving the sense that the path 

goes on forever. Figure 2.1b shows the lines the objects form. 

Fig 2.1a Dali's The Path of Enigmas (second 
version, 1981)[3]. 

Fig 2.1b Dali's The Path of Enigmas (second 
version, 1981). The red lines illustrate the 
converging lines the objects form. Each pair of 
lines, 1 &2, 3&4, 5&6, 7&8, are parallel to each 
other and converge in the distance. Line 9 is 
parallel to 3&4 and 1&2. 

The converging lines discussed above are called orthagonals. The orthagonals 

converge to a point in the distance called the vanishing point, located on the horizon line. 

The horizon line is a horizontal line that runs across the canvas at eye level. It is where 

the sky appears to meet the ground. Usually, but not always, the vanishing point is 

located in the center of the horizon line. 
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Dali's The Invisible Man, Fig 2.2a, is a prime piece to illustrate the use of 

orthagonals, horizon lines, and vanishing points. The orthagonal lines are not as obvious 

here as in The Path of Enigmas. Instead, the architecture filling the painting contains the 

orthagonal lines, helping to draw the eye's attention to the upper left-center of the 

painting. The architecture along the right, notably the arcades and molding along the 

wall, form converging lines. Likewise, on the left, we see a horse standing on an elevated 

platform. The edges of the platform, along with its shadow and edges of the wall just left 

of the horse, form another set of orthagonal lines. To the left of the invisible man's head, 

behind the broken wall, lie rows of pillars, which are an extension of the lines starting in 

the wall on the right. The horizon line is easy to locate, and the vanishing point is 

situated on the left half of the horizon line. Illustrated in Fig 2.2b are the orthagonal 

lines, horizon line, and vanishing point. Figure 2.2c is a study for The Invisible Man. 

Here, we get to see first hand Dali using converging lines, a vanishing point, and a 

horizon line while planning his painting. 
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Fig 2.2a Dali's The Invisible Man (1929) [3]. Fig 2.2b Dali's The Invisible Man (1929), with 
orthagonal lines (pink), horizon line (blue), and 
vanishing point (box) illustrated. 

Fig 2.2c Study for The Invisible Man (1929) [3]. 
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2.3 Diminution 

Another technique for adding depth to a painting is by diminution, or making 

objects that are in the distance smaller than those closer to the foreground. In The Path of 

Enigmas, Fig 2.1a, as the objects recede into the distance, they are drawn slightly smaller 

than the previous object. The larger object appears to be closer to the viewer, while the 

smaller object appears to be further out. Another example can be seen in Fig 2.3, The 

Angelus of Gala. Here, the Gala with her back facing the viewer is larger in size than the 

Gala facing the viewer. Thus, we get the impression that the Gala with her back to us is 

closer than the Gala that is facing us. 

Fig 2.3 The Angelus of Gala (1935) [3]. 
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2.4 Overlapping 

A third method of obtaining perspective on a canvas is by overlapping one or 

more objects over another object. The object that is partially covered appears to be in the 

distance, while the object on top seems closer to the viewer. For example, Fig 2.4's 

Suburbs of a Paranoiac-Critical Town: Afternoon on the Outskirts of European History 

(1936) has several layers of overlapping that brilliantly portray depth. There is a 

Spanish-style church in the background, which is partially covered by a large black 

structure. When seen through the archway of the black structure, the church appears to 

be at quite a distant from the structure. The smallness of the church compared to the 

large structure could account for its appearance in the distance, but size doesn't always 

indicate distance. Overlapping the black structure is Gala holding up a grape bunch. 

Gala, even though smaller than the black structure, comes across as being closer to the 

viewer because she is painted over the structure. The combined effect is Gala in the 

foreground, a large black structure perhaps several yards behind her, and a church further 

in the distance. 

Fig 2.4 Suburbs of a Paranoiac-Critical Town: Afternoon on the Outskirts of European History (1936) [3]. 
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3 - Stereoscopy 

3.1 What Is Stereoscopy? 

"[We live] in a three-dimensional, spatial, environment. Without a feeling for space, we 

cannot move within it. Our perception of space is created almost exclusively by our eyes. There 

are many ways to orient oneself in space, e.g., by perspective, gradation of color, contrast and 

movement [14]." Perspective is often confused with 3D. As we discussed in Chapter 2, 

perspective only simulates the third dimension, depth. Stereoscopic imaging, or "real 3D", 

however, requires a minimum of two pictures, simulating our two eyes, to achieve the third 

dimension. 

3.2 Do You See What I See? 

The most popular example of stereoscopic images are the Magic Eye pictures. These are 

the pictures usually found at mall kiosks and in the back of the Sunday comics at which one stares 

until an image appears. Other sources of stereoscopy include the children's toy Viewmaster (Fig 

3.1a), magazines (Fig 3.1b), and Dali's painting Gala's Christ. 

Fig 3.1a The Viewmaster toy. 
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Fig 3.16 The cover of the August, 1998 National Geographic magazine, highlighting the Mars expedition 
and containing 3D pictures of the Martian landscape [12]. 

Left 	 Right 

Fig 3.2 Gala's Christ, 1978, left and right components [3]. 

3.3 Stereo Pairs 

Stereo pairs are "...image[s] portrayed from different angles, simulating what each eye 

would see alone [4]." The two images that are drawn or painted can be illustrated by the 

following example. Take your hand and place it one foot from your nose, with the index finger 

pointed straight up. Close your left eye and remember your finger's position and the amount of 

your fingernail you can see. Switch eyes (open your left eye and close your right). Your finger 

should have shifted its position slightly and you will now see a different amount of your 

fingernail. The two different positions your fingernails were in are exactly like the two images in 

a stereo pair. 
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3.4 Why Two Different Pictures? 

Human beings have two eyes that sit side-by-side in the front of their head. This results 

in viewing a single object from two points of view. Each eye gathers an image from its own view 

and sends it to the brain. When the two images arrive simultaneously in the back of the brain, 

they are united into one picture. The brain does more than simply overlay the two images, as in 

Fig 3.3. Our brain has been trained over time to fuse the two images together, matching up the 

similarities and adding in the small differences. The resulting image is a combination of what 

each eye sees. 

Under normal viewing conditions, the world appears to us as seen from a virtual eye 

placed midway between the left and right eye positions. This virtual eye is called the cyclopean 

eye, and its geometry is depicted in Fig 3.4. "This simple geometrical arrangement has an 

important consequence: since the world appears different from any of these viewpoints, the image 

we perceive of the world is never recorded directly by any sensory array, but constructed by our 

neural hardware! [8] " 

3.5 How To See 3D 

3.5.1 Anaglyphic Method 

We can attempt to make a 3D reconstruction of the original object in one of two ways: 

either the anaglyphic or stereo method. The anaglyphic method produces an anaglyph, a 

composite image in which the right component, usually red in color, is superposed on the left 

component in a contrasting color, usually blue. When viewed through correspondingly colored 

filters, such as the glasses in Fig 3.5, the red filter will make the red ink "disappear" and turn the 

blue into black. The opposite is true for the blue filter. This will allow your eyes to see only one 

image each and your brain then takes over to process them into 3D. Examples of anaglyphic 

images today include the Sports Illustrated Swimsuit Edition 2000 and the 8/98 issue of National 

Geographic, which contains several pictures of Mars. 
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Overlay 
Fig 3.3 What happens if left and right eye images were overlaid. "The fixation marks in the stereo images 

above indicate the current fixation point; the simple overlay of the two images shows [a blurry double 
image] in most image areas  -  except for the current fixation point [8] ." 

Left 
eye 

Fig 3.4 The geometry of the cyclopean eye [8]. 

dB  - 
Fig 3.5 A pair of 3D glasses commonly found in comic books and magazines. 
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Fig 3.6 A 3D view of the Martian Landscape, from 8/98 issue of National Geographic [12] 

3.5.2 Stereo Method 

The second way to see stereo pairs in 3D is by the stereo method. Viewing the 3D image 

can be done by one of several methods, but each requires that the left and right components be 

placed side by side. One way to see the 3D image is by using a special viewer. One such viewer 

is a Holmes viewer. It is a handheld device with a stereo card (a card with left and right 

components of an image) on one end and a viewpiece, with small angled mirrors and a divider so 

each eye sees only one image, at the other. See Fig 3.7. Devised during the early 1800s, Oliver 

Wendell Holmes and Joseph Bates designed the viewer, which allowed for the viewing of 

inexpensive, mass-produced paper prints. A modern descendant of the Holmes Viewer is the 

Berezin Stereo Photography Products' Viewmaster viewer, as seen in Fig 3.1a. Like the Holmes 

Viewer, the Viewmaster has an eyepiece that allows the user to see only one image with each eye, 

but instead of having one image per card, the Viewmaster uses multiple pictures presented on 

circular reels that are inserted into the viewer. 

Fig 3.7 A Holmes viewer. 
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Cross-viewing or The Cross-eyed Method 

Free viewing is an alternative way to see the stereo pictures in 3D. Free viewing is just 

seeing the 3D combination of the stereo pictures without any outside help, i.e. no Holmes viewer 

or mirror. There are two ways to free view: parallel method or cross-eyed method. In the parallel 

method, lines of sight of your eyes move outward toward parallel and meet in the distance at a 

point behind and beyond the image. To parallel-view, look deep beyond the canvas as if you were 

looking at something way in the distance. As you look further into the distance, the two images 

will converge to form a third, 3D image. See Fig 3.8. If the image is hard to see, try taking a 

piece of cardboard and place one edge between the two pictures and the other to the bridge of 

your nose, forcing each eye to see an independent image. Then, just stare straight at the images 

until a third combined image is formed [13]. 

Parallel-viewing or The Parallel Method 
1111 

The Stuff You Want to See 
Fig 3.8 What happens in parallel viewing [7]. 

Another method for 3D viewing is called the cross-eyed method. In this method, you aim 

your eyes so that the lines of sight of your eyes cross in front of the image. Cross your eyes so 

that either the left or right component converges onto the other. See Fig 3.9. Holding your focus 

on this third image should make the image appear 3D. If not, hold a finger between the pictures 

and your eyes. Focus on the finger tip, and move it toward and away from the screen, staying 

focused on the fingertip until the two images merge into a third image that is 3D [13]. 

Fig 3.9 What happens when cross-viewing [7]. 
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Here is a practice exercise in free viewing. Below, there is an 0 next to an X. By using 

either the parallel or cross-eyed method, try to combine the 0 and X so that the X is inside the 0. 

The combined image should look like Fig 3.10. 

Fig 3.10 The desired image, after using the parallel or cross-eyed method to combine X and 0. 

3.6 Dali In 3D 

Dali painted several stereoscopic paintings during his career. One of those paintings is 

Gala's Christ, seen in Fig 3.2. How the pieces were painted is irrelevant; it is the way that the 

pictures are viewed that is important. Painted in 1978, the two stereoscopic sections are 100cm 

long x 100cm high and are now part of a private collection. From mid January to late March of 

2000, the Wadsworth Atheneum, located in Hartford, Connecticut, hosted a traveling exhibit on 

the optical illusions of Salvador Dali. Among the paintings present at the exhibit was Gala's 

Christ. Situated in a corner of a room, the two pieces were hung on either side of the walls, with 

angled mirrors located between them. To see the combined picture, patrons had to gaze into the 

mirrors and shift back and forth until a combined image was seen in front of them. Appendix Al 

illustrates the setup of Gala's Christ. 

Here is how the illusion is done. When a patron steps up to the mirror, he or she places 

their nose to where the two mirrors meet. In doing so, the left and right eyes of the patron are 

focused only on the left and right mirrors, respectfully. The mirrors reflect the painting's image, 
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and the patron sees the left and right components reflected in the mirror. After fine-tuning the 

position of the head, the patron should see a combined image directly in front of them. The 

image, which seems to be behind the two mirrors, appears in 3D, with the top of the cross and 

Christ's head popping out towards the viewer. 

3.7 How To Make Your Own 3D Pictures 

Three-dimensional stereo pair pictures can be made with the use of a special 3D camera, 

but these cameras cost a lot of money. One way of taking stereo pictures is by using a 

conventional camera, be it the film-loading or disposable kind. First, place your legs about 18 

inches apart, keeping your weight evenly distributed. Next, frame your subject in the camera, 

lightly bend your left knee, and take a picture. Straighten up, lightly bend your right knee this 

time, and take another picture. This creates two stereo pairs, optically separated by about 3 

inches (roughly the same distance between your eyes pupil-to-pupil). 

Another way to make 3D pictures is to tape side-by-side two disposable cameras. To 

take the picture, frame the subject and snap the two shutters at the same time. 

There are a few things to keep in mind when making homemade stereo pairs. First, 

choose a subject with lots of layers (foreground, middle, and background), leading lines (similar 

to the orthagonal lines discussed in Chapter 2), or more importantly, objects at an angle. The 

second thing to keep in mind is to remember which photo is the left or right component of the 

subject. Mixing up the components can lead to an inability to see the combined image. Finally, 

remember that the pictures cannot combine by themselves into a 3D image; they have to be 

viewed either by parallel or cross-eyed method. Please refer to A2 for samples of photos using 

this method. 
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4 - Anamorphic Art 

4.1 What is Anamorphic Art? 

Anamorphic art is the art of distorting images. From the Greek words ana (again) 

and morphe (form), it refers to art distorted from a projective transformation. The 

distorted image can be reformed into viewable form by viewing it on a slant or in the 

reflection of a special mirror. Little information exists on any of Dali's anamorphic 

pieces, except that he made a set of erotic paintings that were sold in Switzerland. 

Because we could not find a reprint of Dali's set, similar paintings by other artists will be 

used as examples of the various styles of anamorphic art. 

4.2 Two Kinds of Anamorphic Art 

4.2.1 Slant Art 

The simplest kind of anamorphic art are stretched pictures that, when viewed at an 

angle, appear correct. Figures 4.1 and 4.2a show examples of slant art. This technique 

was first used during the early part of the Renaissance, approximately 1590, when artists 

started to master perspective. "When the Renaissance painters discovered how to 

transform flat shapes to give a depth illusion to the canvas, they discovered 

simultaneously how to do it in reverse. A picture stretched according to the same rules of 

perspective becomes a distorted form [5]." For example, a typical college textbook, 

rectangle in shape, resembles a trapezoid when viewed from a certain angle and is 

painted as a trapezoid. However, because of experience, our brain perceives the textbook 

as a slanted rectangle [5]. 
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Fig 4.1 The Ambassador, by Hans Holbein [5]. 

Fig 2.2a A slant picture when viewed at an angle. 
Notice how things are in proportion [10]. 

Fig 2.2b How Fig 2.2a looks when viewed straight on 
— distorted [10]. 

4.2.2 Cylindrical/Conical Art 

The other types of anamorphic art are those that require a cylindrical or conical 

mirror for viewing the drawing. The viewers, called anamorphoscopes, were made of a 
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reflective substance and usually sold together with the anamorphic pictures. When placed 

in a certain spot on the art piece, a viewable image appears in the anamorphoscope's 

reflection. Figure 4.3 shows an anamorphoscope and anamorphic drawing set up for 

viewing. These pictures were popular during seventeenth and eighteenth century in 

Europe and the Orient, where they were used as toys and occasionally as means of 

carrying messages of political protest. 

Fig 4.3 Two anamorphic drawings set up for viewing with an anamorphoscope [10]. 

4.3 Anamorphic Art Today 

Anamorphic art is not a common art form anymore, but it does live on in museum 

collections and books. When purchasing a book that contains examples of cylindrical or 

conical anamorphic art, from now on referred to as cylindrical or conical pictures 

respectfully, an anamorphoscope is not always provided. If this is the case, it is possible 

to fashion our own anamorphoscope To view Fig 4.4 and Fig 4.5, a cylindrical 

anamorphoscope is needed. Build your own anamorphoscope by following one of the 
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subsequent descriptions for a homemade viewer in Appendix A3. Figures 4.4 and 4.5 are 

examples of cylindrical and conical pictures reproduced from Fred Leeman's book 

Hidden Images. 

4.4 How'd He Do That? 

When Dali made a set of cylindrical paintings, he looked into the mirror while 

painting on the surface under it [5]. In order to see how an anamorphic image may have 

been painted, we conducted several simple experiments involving aluminum foil, a can of 

shaving cream, paper and a pencil. The aluminum foil was smoothed out and taped 

around a cylindrical can of shaving cream, and then placed on top of a piece of paper. 

The first experiment consisted of drawing different objects, such as lines, circles, and 

triangles, on the paper and observing their reflections. It was noted that, in general, the 

reflected images were curved and distorted. The amount of curve and distortion varied, 

depending on the viewing angle, or where the eye is relative to the drawing. The second 

experiment dealt with drawing straight lines in the reflection. The results showed that, to 

draw a straight line in the reflection of the cylinder, the line had to be curved, with the 

amount of curvature depending on the viewing angle. When drawing lines normal to the 

cylinder, little to no curving of the line was necessary. From these results, subsequent 

experiments were conducted where circles, triangles, and other geometric shapes were 

drawn in the reflection, which reinforced the findings in the original experiments on 

straight lines. 
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Fig 4.4 Dominoes 

Fig 4.5 Crucifixion 
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4.4.1 Physics Behind the Art 

To understand how a viewable image is formed from a distorted picture, we will 

show how to locate the reflection of a point, and then work backwards. To do this, we 

first assume two things: 1) the eye is located in a fixed position, and 2) the reflection rays 

and their normal are in the same plane. A cylindrical anamorphoscope is placed on a 

sheet of paper. On that paper, a point P1 is drawn. There are infinitely many rays 

emanating from P 1  that are reflected off of the cylinder. However, there is only one 

unique ray that starts from Pi, is reflected off the cylinder at point P, and terminates at the 

eye, P2. Figure 4.6 illustrates this phenomenon. We know the location of Pt and P2 and 

need to find P. To find P, we apply Fermat's Theorem, which states that P is the point on 

the cylinder such that the sum of the length of P 1 P and PP2 is the minimum. If we take the 

ray P2P, and extend it until it intersects the paper, we will find the location of Q1, the 

reflected image of P i . 

We can work backwards from these steps to find what the distorted picture would 

be if we have the viewable reflection. We start with a cylinder on a sheet of paper, with a 

point Q 1  located within the cylinder and will find P 1 , the location of the original object. 

Assuming the eye is stationary, the first step is to find the ray that passes through Qi and 

P2, the eye. The intersection of ray Q, P 2  and the cylinder is at point P. Next, find the 

vector normal to the cylinder at point P. The angle between the normal at P and the ray 

PP-, is the same as the angle between ray P I P, because the angle of incidence is equal to 

the angle of reflection. The points that satisfy this condition lie on a cone. By applying 

the assumption that P 1 P and PP2 are in the same plane, we select the ray on the cone on 

which P1 lies. The intersection of this ray with the paper is the location of P i . By 
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repeating these steps for all the points on the reflected image, we can create an 

anamorphic picture like Dail. 

Fig 4.6 Many rays emminate from P 1  and reflect off the cylinder, but only one ray starts at P 1 , reflects off 
P, and terminates at P2, the eye. 

Fig 4.7 Extending the ray P 2P until it intersects with the paper will give us the location of Q. 

To show that it is possible to find the distorted image from a cylinder and an 

image within the cylinder, we wrote a Maple V worksheet that creates the distorted image 

when given a drawing located within a cylinder. The worksheet and test image can be 

found in Appendix A4. 
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5 - Homogenization 

5.1 Dali's Double Painting 

Dail's Gala Contemplating the Mediterranean Sea which at Twenty Meters 

Becomes the Portrait of Abraham Lincoln-Homage to Rothko (Fig 5.1) is an example of 

his double image painting. Upon viewing the painting from a close distance, we notice a 

nude Gala looking out a window into the Mediterranean Sea, all surrounded by a ring of 

dark color. A striking feature of Gala Contemplating the Mediterranean Sea... is that it 

appears to be painted mostly in cubes of color, similar to a patchwork quilt or a tile floor. 

If we view the painting twenty meters back, as it states in its title, the painting now 

resembles a portrait of Abraham Lincoln. 

Each cube that makes up this painting has a specific property: the color or colors 

it contains. On the small scale, that is, when the painting is viewed from a close distance, 

the individual cubes are set up such that we see an image of Gala overlooking the sea. As 

we move away from the painting, the difference between any two cubes seems to be less 

distinguishable, and the painting begins to be blurry. When we view the painting on a 

large scale, that is, when viewed from afar, the individual cubes of color are 

undistinguishable from one another; now, the cubes appear to form one single color, 

leading to a new image. 
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Fig 5.1 Gala Contemplating the Mediterranean Sea which at Twenty Meters Becomes the Portrait of 
Abraham Lincoln-Homage to Rothko (1974-75). 

5.2 Explaining the Painting Mathematically 

The portrait of Abraham Lincoln is a result of the painting of Gala being 

"homogenized." Homogenization is a scaling-up process that determines the 

macroscopic properties of a material from the microscopic properties of its makeup. It is 

commonly used in describing properties of composite materials. For example, the 

material to create a pair of skis is actually a composite of two different materials. 

Separately, neither material would be good in making skis. When their properties are 

combined they form a new material, which is desirable to make skis. 
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5.2.1 Heat Conductivity Example 

Homogenization can help determine the heat conductivity of a composite 

material. By blending together the properties of each material, the temperature at a point 

in the material can be calculated by using differential equations. For example, the 

equation 

d
(k(x)

dT
) = f (x) 

dx 	 dx 

describes a heat equation for a material made up of two distinct heterogeneous 

materials, M, and M.„ that, when combined in the manufacturing process, have heat 

conductivities of both k1 and k2. The large-scale temperature is dependent on the 

temperature conductivities of the individual materials that make up the composite on the 

small scale. To calculate the temperature of a point on the combined, or homogenized, 

material, the heat properties of M I  and M 2  need to be taken into account. A length L of 

the homogenized material consists of alternating strips of M and M 2  which form a 

repeating pattern with period E unit throughout L. Each period contains a strip of 

M, and M 2  whose lengths are £ e and £ e. = (1 — 01 ) E , respectively. See Fig 5.2 

for an illustration. 

Fig 5.2 Breakdown of the composite on the small scale. 
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Because of periodicity, the temperature of a point is almost the same in each 

succeeding E as long as the location of a point within E is the same. So assume that a 

period is on the interval [0,1] and test the temperature of point y within those bounds. 

The temperature of a point is directly related to which strip of material it is located in, 

and the strip's conductivity. The conductivity of heat for each strip is determined by the 

: 0 < y < 0, 
material's coefficient of conductivity, or k, where k(y) = 	 . If we 

k • 0 < v <1 2 " 	 I 	 - 

multiply the period by E , where E <<1, we now get a material that, on the small scale, 

resembles Fig 5.3. 

Fig 5.3 same length L, same period interval [0,1], but now illustrate the effects of E «1 

The conductivity coefficient of a point x on the macro scale is determined by its 

position on the macro scale, n E , and its location within the period, E y. Thus, the 

equation looks like: X = nE + Ey . Next, divide both sides by E and isolate y. Because 

of periodicity, we can ignore n, resulting in y = —
x 

. Through substitution, we now have k 
E 

in terms of x and E . So, now the original heat equation can be written as 
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d 	 x dT E 
(k 	 = f x) dx e dx 

E 
where T = temperature, and f(x) represents heat sources. Now we will work towards 

solving for the temperature at a random point. 

5.2.1.1 Solving for Temperature 

Step 1: We will first expand Ts by the multiples scale method. T s  describes the 

temperature at a point. The temperature depends on the point's location on the macro 

scale (represented in EnT,, (x, y) by x) and also on the micro scale (represented by y). 

Because y is periodic, Tn  is periodic in y = —
x 

, having a period of length 1 . We consider a 

two-scale expansion of Ts : 

Step 2: Next, take the total derivative of T s  (x), noting that y = —x 
E 

d 	 o aT al '1 	 ar a T1 	 aT  dl 1 	 ar aT 

	

r(x)=E(  0 	 )+,(  2  +2 _)±.. 	 n 	 )+.. 

dx 	 k 	 E 	 E 	 av ay E 	 av ay E 

Step 3: Multiply the total derivative obtained in Step 2 by k, the conductivity 

k(y). The result is equal to the inner parenthesis of the heat conductivity equation. 

dTE 1 aT aT aT 	 aT2  k( 	 )=k[— 	 ' k[ 	 ° + ° + 	 +E( 	 + 	 +...)+...1 
dx 	 E 	 ax 	 ax ayy 	 ax 

Step 4: Now take the total derivative of Step 3. 
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d 	 dT E 	 aTo 	 a aTo 	 a 	 aTo  aTi  
f  Yx (k(  dx )) = E ax ay )  + £2  ay (k  ay )  ± ax (k(  ax ± W "±  
1 a 	 aTn  aT, 	 a 	 aT, aT„ 	 a 	 aT, aT, (k( 	 .))±  E 	 (k(  	 ))± 	 (k( 	 ))± 
e ay ax 	 ax ax 	 ay ax y 

Step 5: From the expanded equation obtained in Step 4, group together powers of 

E . The first three equations are: 

1.(k 	 ) = 0 

Equation (1) is of power 1z  andequation (2) is of power —
1

. Both have partial 

derivatives zero. Equation (3) is of power 1, and is equal to f From these three equations 

we can obtain three results that help solve the heat conductivity problem: 

1.7'0  = To  (x) 
21; 

(x, y) = w(y)
aTo(x)  

3. (
k  aTo  )= f ax ax 

We'll now solve Equations (1), (2), and (3) and prove results 1,2, and 3. 

5.2.1.2 Solving Equation 1 

Step 1: Because —(k aT  ° ) = 0 , k aT° is only dependent on values of x, so 
ay ay 	 ay 

k
aT° 

	 = s(x) 
ay 

ay  ay  
a aT 2.— (k 	 + a — (k ax ay ay 
a 	 aTo  aT,  3.(k( 	 + 	 )) ax ax ay 

aTo ± aT, 
 ax ay  

a + (k(aT  ay ax 

=0 
aT, z  )) _ f  
ay  

ax 
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Step 2: After integrating both sides of Step 1 with respect to y (to remove the 

derivative), both sides are divided by k, so that only the temperature equation is on the 

left. 

To  (x, y) = 
1 

—

k 

ys(x) + c 

Si 	 S2 • 	 ►  • 	 ►  

k l 	 k2  

0 	 gl 	 02  =1 - 0 1 	 1 

Fig 5.4 A Micro scale model of the material in question. 

Here is a micro scale model of the material in question. Material 1, with 

conductivity k1 , is on the interval [0, O f  ]. Material 2, with conductivity k2, is on the 

interval [ 0 1  ,1]. S i  and S2 represent To  in material M i  and M2 respectively. They are 

equal to each other at P because, when approaching from the left, the temperature must 

equal the temperature as approached from the right. 

Step 3: We find To for S 1  and S2 by applying the equation in Step 3 to each 

material. 

S i  = -1 (YS(X) +1) , S2 =
1
2

(ys(x) + c 2 ) k 1 	 k 

Next, substitute y = 0 1  into the respected equations above, and because S i  and S2 are 

equal, we get the following: 
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el  s(x) 	
= 

CO 2 S(X) C2  

k i 	 k 2 	 k 2 

Step 4: Now we take To at the extreme points: 

To(0) _ — —k, 

T0(1) — 

s(x) + c2  

k2  

And because of periodicity, ci  = 
s(x) + c2 

 
k i 	 k 2 

Step 5: Subtract the equation in Step 4 from the final equation in Step 3 to obtain: 

s(x) e ' + 1 '32 1=0 
k, 	 k 2  

Because Co, , 0, 0 and ki,k2# 0, s(x) must equal zero. 

Step 6: Finally, substitute s(x)=0 into Step 4 to get 
c, c, 

= 	 . Do the same for Step 5 and 
k, 	 k 2  

you will also get 
c, 

= 
c2

. Therefore, To = T o(x). 
k 1 	 k 2 

5.2.1.3 Solving Equation 2 

	

Step 1: We start with 
a 

—(k 
aTo
—)+ 

a —(k  aTo  + aT, 	 ). 0 . Because of Equation 2, 
ax ay  ay  ax ay  

, 

we simplify down to 
a —(k  aTo + aT, . 0  — ) 

ax ay  

Step 2: T 	 aT(x,y) = 	 w(y), where w, a periodic function, can be solved for in 
ax 

a —iko+ awY)(  ay 	 ay  ))=() 
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5.2.1.4 Solving Equation 3 

Step 1: Begin with — a -(k(aT o  aT, 	 a + 	 ))+ (k(aTI + aT2 	 )) = f . First, integrate, 

	

ax 	 ax ay 	 ay  ax ay  

	

' 	 ( 

 from 0 to 1, with respect to y: 	  k( 	
aT„ 

 + 
aT1 ) dy = f 

ax 	 ax 0 

Step 2: Since we integrate with respect to y, 
a— can be moved outside the ax 

integral. 	 Substitute for T (from Equation 1) and factor out a —
aT

°  to get ax 

a 4'041 
 k(1+ 

 aw  )dy ji=0. 
ax ax f 	 ay 

Step 3: Denote fk(1+ aw )dy = k . We obtain k = 01 
1 
 02  by solving the 

+ 	  
k2  

problem for w. Substitute back into Step 2 so that 
a —(1(  aTo  — = f . 
ax ax 

5.3 From Equations to Painting 

It is doubtful that Dail was familiar with differential equations and 

homogenization at the time of him painting Fig 5.1. However, we were inspired by the 

painting to find a mathematical reason why there appear two different images at different 

distances. In doing so, we were led to a problem involving finding the temperature of a 

point in a composite material. On the microscopic level, the temperature of a point is 

dependent on the conductivity of the material that the point resides in. However, 

the composite material comes together and forms a homogenized material on the 

macroscopic level. This homogeneous material has a conductivity k, whose value is a 
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function of the conductivity values of the material that make up the homogenized 

material. 

Why we see two images at different distances can be explained in a similar 

fashion. On the microscopic level, the different colored cubes are like the conductivities 

for the different materials. The heterogeneous image at this level is Gala overlooking the 

sea. As we step further away from the painting, the painting takes on a new form. The 

image of Abraham Lincoln comes together because Lincoln's colors, like k, are 

dependent on the colors on the microscopic level. At twenty meters, the painting now 

takes on new properties, like the homogenized material, and an image of Lincoln can be 

seen. 
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Conclusion 

Dali created new designs from his artistic ideas. From 1945, with the drop of the 

atomic bomb, to 1985, when his last painting was painted, Salvador Dali was known to 

have been interested in contemporary math and science. Principles in geometry and 

optics allowed Dali to both simulate and achieve a third-dimension in such paintings as 

Gala's Christ and The Invisible Man. Optics, mainly properties of reflection, also 

explains the workings of anamorphic art. Even though the female figure in Topological 

Contortion of a Female Figure is not truly topologically equivalent to a human female, 

Dali borrowed the deformation ideas of topology, a branch of geometry. It is highly 

unlikely that Dali was familiar with differential equations and homogenization, but they 

help explain why two different images are visible at different distances in Gala 

Contemplating the Mediterranean Sea Which at Twenty Meters Becomes the Portrait of 

Abraham Lincoln — Homage to Rothko. While it may not be apparent at first glance, the 

influence of mathematics is present in the art of Dali. 
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Al - Setup of Gala's Christ at the Wadsworth Atheneum 

Fig A1.1 Gala's Christ from a front view. Mw  and ML  are measurements for the width and length of the 
mirror. 

Fig A1.2 Gala's Christ setup, top view. PL  and PR are the left and right components of the painting. M = 
mirror, and M e  is the angle the two mirrors form. d mp is the distance from the edge of the mirror to the 

painting, while dMNose  is the distance from the painting to the corner of the two mirrors, where one places 
their nose to see the illusion. 
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PL 100cm 
PR 100cm 

ML 89cm 
Mw 107cm 
Me 45° 
SL 152cm 

SW 
dMp 20cm 

dm nose 152cm 

Table Al.! Dimensions for the setup of Gala's Painting. All measurements are approximate. 
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A3 — Homemade Stereoscopic Photos 

Fig A3.1 Jeep situated in the woods (left & right components). 

Fig A3.2 Alden Hall, WPI (left & right components). 



Fig A3.3 The Duque family van and garage (left & right components). 
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A3 - How to Make a Homemade Anamorphoscope 

The homemade viewer should have a base that fits within the circle in the picture, 

but one with a larger or smaller base will still work. A soup can with the label and glue 

removed is one possible viewer. Other viable viewers include chromium-plated tubing 

and Mylar paper taped around a cylinder. Mylar paper is a good choice to make a conical 

viewer. To do this, cut out a circular piece of Mylar paper and then cut into it a radius. 

Overlap the cut edges until desired base size is achieved, and then tape or glue the edges. 

The viewable image for a conical anamorphic picture is seen from above with one eye. 
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A4 — Anamorphic Maple Code 

63 



E> with(plots): 
(a,b,0) is the reflected image location 
Given: (xI,yI,zI) the location of the eye 
Goal: 	 Find the location of the object (x0,y0,0) 

> a:='af: b:='b': R:=1; xI:=-1: yI:=1:zI:=15: 
image:=[(a,b,0)]; eye:=[(xI,yI,zI)];curvature:=1/R; 

Must have (a^2 + 171^2)<RA2 and b<0 
> p1:=implicitplot3d(x^2+(y+R)^2=R^2,x=-R..R, 

y=-2*R. . 0, z=0 . . zt+0 . 5, axes=none, color=blue, 

scaling=constrained, thickness=1) :Draw the 
curved mirror 

> tt:=(a,b)->max(fsolve((a+t*(xI-a))A2 + (b+t*(yI-b) + 
R) ^2 = RA2,t)); 

tt:= (a, b) 	 max(fsolve((a + t (xI — a)) 2  + (b + t (yI — b) + R) 2  = R2, t)) 
> xT:=(a,b)->a+tt(a,b)*(xI-a); 
yT:=(a,b)->b+tt(a,b)*(yI-b);zT:=(a,b)->0+tt(a,b)*(zI 
- 0 ) ; yTT:= (a, b) - >yT (a, b) +R; Point of incidence with the mirror 
(x^2 +( y+R)^2)=RA2 is the point (xT,yT,zT) 

> C:=(a,b)->(xT(a,b)*(xI-xT(a,b)) + 
yTT(a,b)*(yI-yT(a,b)))/sqrt((xI-xT(a,b))A2 + 
(yI-yT(a,b))A2 + (zI-zT(a,b))A2); 

> #cond1:=(a,b)->C(a,b)*(X0A2 + YOA2 + zT(a,b)A2) = 
(xT ( a , b) *X0 + yT ( a , b) *Y0) A2 ; (Condition 1) The angle between 

TI and N is the same as the angle between TO and N 
> X00:=(a,b)->(yTT(a,b)*(xI-xT(a,b)) - 
xT(a,b)*(yI-yT(a,b)) - 
xT(a,b)*(zI-zT(a,b))*Y0/zT(a,b))/(-yTT(a,b)*(zI-zT(a 
, b) ) / zT ( a , b) ) ; (Condition 2) Vectors TI, N and TO are in the same 
plane. 

> cond0:=(a,b)->C(a,b)*sqrt(X00(a,b)A2 + YOA2 + 
zT(a,b)A2) = (xT(a,b)*X00(a,b) + yTT(a,b)*Y0); Solve 
conditions (1) and (2) = cond0 to find YO=yo-yT ---- TO=(XO,YO,-zT) = 
(xo-xT,yo-yT,0-zT) ) # X0= (x0-xT) ; YO=(y0-yT); 
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I> rp:=(a,b)->fsolve(cond0(a,b),Y0);rp(-0.5,-0.2); 
> y0 : = ( a , b) - >rp ( a , b) ; Pick y0 > 0, i.e. yo>yT 
> #x0:=(a,b)-> (-xT(a,b)*(zI-yT(a,b))*y0(a,b) + 

zT(a,b)*(xI*yT(a,b)-xT(a,b)*yI))/(-yT(a,b)*(zI-zT(a, 
b))); 

> x0:=(a,b)->(yTT(a,b)*(xI-xT(a,b)) - 
xT(a,b)*(yI-yT(a,b)) - 
xT(a,b)*(zI-zT(a,b))*y0(a,b)/zT(a,b))/(-yTT 
(a,b)*(zI-zT(a,b))/zT(a,b)); 

-> yo:=(a,b)->y0(a,b)+yT(a,b);xo:=(a,b)->x0(a,b)+xT(a,b 
) ; 

> c:=-0.5; d:=-0.2; (cA2 + (d+R)A2);RA2;NRIst 

have (c^2 + (d+R)^2)<RA2 and must have d<0 and must have c 
between -R/2 and R/2 

> xt:=xT(c,d);yt:=yT(c,d);zt:=zT(c,d);xx:=xo( 
_ 	 c,d);yy:=yo(c,d);(xxA2 + (yy+R)A2); 

> p2:=spacecurve([c+t*(xt-c),d+t*(yt-d),t*zt, 

t=0 . .1] , color=green, thickness=1) :Draw the ray 
_ connecting Image to lens 

> p3:=spacecurve([xI+t*(xt-xI),yI+t*(yt-yI),z 
I+t*(zt-zI),t=0..1],color=green,thickness=1 

_ 	 ) : Draw the ray connecting Lens to Eye = TI 
> p4:=spacecurve([xx+t*(xt-xx),yy+t*(yt-yy),t 

*zt,t=0..1],thickness=1,color=red,axes=norm 

_ al ) : Draw the ray connecting Lens to Object = TO 
> pn:=spacecurve([xt+t*xt,yt+t*(yt+R),zt,t=0. 

.0.2],thickness=1,color=black): 
r 
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> #di splay (p1, p2 , p3 , pn, p4 ) ; Draw lens and rays 

> (xt*(xI-xt)+(yt+R)*(yI-yt))/sqrt((xI-xt)^2+ 
(yI-yt)^2+(zI-zt)^2); 

> (xt*(xx-xt)+(yt+R)*(yy-yt))/sqrt((xx-xt)^2+ 
(yy-yt)^2+(0-zt)^2); 

> c1:=0; d1:=-0.85; (c1^2+(d1+R)^2); 
c2:=-.20; d2:=-1.05;(c2^2+(d2+R)^2); 
c3:=0.20; d3:=-1.05;(c3^2+(d3+R)^2); 

> m:=25; for j from 0 to m do 

reflectFaceX[j]:=0.75*R*cos(2*Pi*j/m): 
reflectFaceY[j]:=0.75*R*sin(2*Pi*j/m)-R: 
origFaceX[j]:=xo(reflectFaceX[j],reflectFac 
eY[j]): 
origFaceY[j]:=yo(reflectFaceX[j],reflectFac 
eY[j]): 

reflectLeftEyeX[j]:=(1/8)*R*cos(2*Pi*j/m)-( 
1/3): 
reflectLeftEyeY[j]:=(1/8)*R*sin(2*Pi*j/m)-( 
R-(1/3)): 
origLeftEyeX[j]:=xo(reflectLeftEyeX[j],refl 
ectLeftEyeY[j]): 
origLeftEyeY[j]:=yo(reflectLeftEyeX[j],refl 
ectLeftEyeY[j]): 

reflectRightEyeX[j]:=(1/8)*R*cos(Pi*j/m)+(1 
/3) • 
reflectRightEyeY[j]:=(1/8)*R*sin(Pi*j/m)-(R 
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-(1/4)): 
origRightEyeX[j]:=xo(reflectRightEyeX[j],re 
flectRightEyeY[j]): 
origRightEyeY[j]:=yo(reflectRightEyeX[j],re 
flectRightEyeY[j]): 

XR1[j]:=c1+(j/m)*(c2-c1): 
YR1[j]:=d1+(j/m)*(d2 -d1): 
XJ1[j]:=xo(XR1[j],YR1[j]): 
YJ-1[j]:=yo(XR1[j],YR1[i]): 

XR2[j]:=c1+(j/m)*(c3 - c1): 
YR2[j]:=d1+(i/m)*(d3 -d1): 
XJ2[j]:=xo(XR2[j],YR2[j]): 
YJ2[j]:=yo(XR2[j],YR2[j]): 

XR3[j]:=c2+(i/m)*(c3 - c2): 
YR3[j]:=d2+(i/m)*(d3 -d2): 
XJ3[j]:=xo(XR3[j],YR3[j]): 
YJ3[j]:=yo(XR3Lii,YR3[j]): 

od• 
> faceOrig:=plot([[ origFaceX[q], 

origFaceY[q]]$q=0..m],style=line, 
_ color=red,thickness=2): # actual object 
> faceRef:=plot([[ reflectFaceX[q], 

reflectFaceY[q]]$q=0..m],style=line, 
_ color=black): # mirror image 
> leftEyeOrig:=plot([[ origLeftEyeX[q], 

origLeftEyeY[q]]$q=0..m],style=line, 
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color=red,thickness=2): 
> leftEyeRef:=plot([[ reflectLeftEyeX[q], 

reflectLeftEyeY[q]]$q=0..m],style=line, 
color=black): 

> rightEyeOrig:=plot([[ origRightEyeX[q], 
origRightEyeY[q]]$q=0..m],style=line, 
color=red,thickness=2): 

> rightEyeRef:=plot([[ reflectRightEyeX[q], 
reflectRightEyeY[q]]$q=0..m],style=line, 
color=black): 

> smileOrig:=plot([[ origSmileX[q], 
-origSmileY[q]-2.2]$q=0..m],style=line, 
color=red,thickness=2): 

> smileRef:=plot([[ reflectSmileX[q], 
-reflectSmileY[q]-2.2]$q=0..m],style=line, 
color=black): 

> 
> v1:=plot([[ XJ1[q], 
YJ1[q]]$q=0..m],style=line, color=red): # 

_ actual object 
> v1r:=plot([[ XR1[q], 
YR1[q]]$q=0..m],style=point, color=black): 
# mirror image 

> v2:=plot([[ XJ2[q], 
YJ2[q]]$q=0..m],style=line, color=red) : # 
actual object 

> v2r:=plot([[ XR2[q], 
YR2[q]]$q=0..m],style=point, color=black): 
# mirror image 

> v3:=plot([[ XJ3[q], 
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YJ3[q]]$q=0..m],style=line, color=red) : # 
actual object 

> v3r:=plot([[ XR3[q], 
YR3[q]]$q=0..m],style=point, color=black): 
# mirror image 

> 
> 
> lens2d:=implicitplot(x^2+(y+R)^2=R^2,x=-R.. 
R,y=-2*R..0,axes=normal,color=blue,scaling= 
constrained,thickness=1): #Draw the curved 
mirror 

> display(faceOrig,faceRef,leftEyeOrig,leftEy 
eRef,rightEyeOrig,rightEyeRef,v1r,v1,v2r,v2 
,v3r,v3, lens2d); #eye at (-1,1,15) 

[ 

[ 

> 
> 
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Fig A4.1 Anamorphic Maple Face. Place the viewer 
on the circle centered at (0,1) to view the image. 
> 
' 
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