

Reconfigurable Software Defined Radio Platform
 A Major Qualifying Project Report:

Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the Degree of Bachelor of Science by

Francesco Bivona

Alexander Camilo

Date: March 25, 2009

Approved:

Professor Xinming Huang, Major Advisor

Professor Alexander Wyglinski, Co-Advisor

 1

Abstract

The goal of this Major Qualifying Project is to provide the framework for integration of a Virtex

series field programmable gate array (FPGA) into GNU Radio, allowing GNU Radio to have

control over both FPGA and non-FPGA components of the pipeline. In this report, we address

the following: our research into the which FPGA series would be most beneficial to our project,

an outline of the evolution of our design over the course of the past 21 weeks, and a summary of

the final outcomes in various subsets of project development.

 2

Executive Summary

The concept of modular reconfigurable radio has spanned decades, beginning humbly with

hardware-based reconfigurable radio such as the Joint Tactical Radio System and the Speakeasy

Project, and progressing to software-defined radio application programming interfaces (APIs)

such as GNU Radio [1][2]. Our project seeks to take this a step further, and integrate

reconfigurable hardware (a field programmable gate array) into a software-defined radio

pipeline.

To this end, we conducted significant research and development with regard to FPGA

architecture for SDR applications. This consisted of attempts at implementing a bidirectional

peripheral component interconnect express (PCIe) interface and basic dynamic reconfiguration

using the internal configuration and access port (ICAP) interface. Eventually, the decision was

made to streamline the architecture using the XILINX Embedded Design Kit (EDK)

[22]. At this stage, we have a functional bidirectional PCIe interface (with the driver still being a

work-in-progress), and dynamic reconfiguration via ICAP functioning in a test bench

environment.

Additionally, we have conducted experimentation into the application of GNU Radio to specific

tasks. This began with simple frequency modulation (FM) radio transmission, and then moved

on to more complex digital waveforms and information transfer between two computers. This

experimentation also accommodated for the presence of an FPGA (in tandem with simultaneous

FPGA architecture development), either in the form of passing a data through unhindered or

 3

being used as a signal generator. Additionally, an investigation into the inner workings of GNU

Radio signal processing blocks was carried out.

Finally, our focus was directed toward FPGA integration with GNU Radio. This involves

finalizing filter architecture for the FPGA using DSP48e slices, final debugging of the FPGA’s

hardware device driver, and writing up a GNU Radio pipeline to wrap FPGA and PC signal

processing components together to complete a task.

The end product of this project consisted of a functional GNU Radio pipeline, implementing the

FPGA to carry out filtering. We were able to synthesize a lowpass filter on the FPGA, followed

by a raised cosine filter when the hardware driver was debugged with the lowpass filter example.

File I/O still remains slightly buggy, and the destination file for the output did not store

information. However, GNU Radio was capable of controlling and making use of the FPGA in

all other respects, and functionality was confirmed by displaying filter output in the terminal.

While integrating an FPGA (independent of the front-end’s FPGA) has been accomplished

before, this is the first seen of it within a widely-used environment such as GNU Radio. The

current platform sets the framework for future research into implementing dynamic

reconfiguration of the radio pipeline.

 4

Table of Contents
ABSTRACT ...1
EXECUTIVE SUMMARY ..2
1. INTRODUCTION...6
2. LITERATURE SURVEY ..7

2.1 ORIGINS OF RECONFIGURABLE RADIO ..7
2.2 THE INTRODUCTION OF SOFTWARE DEFINED RADIO ...8
2.3 SPECTRUMWARE AND GNU RADIO [6] [7] ...9
2.4 FPGAS AND DYNAMIC RECONFIGURATION..10
2.5 FPGAS AND SOFTWARE DEFINED RADIO ..10
2.6 PLATFORM APPLICATIONS ..13
CHAPTER SUMMARY...14

3. INITIAL DESIGN CONCEPT ...15
3.1 CHOICE OF FPGA ...15
3.2 POSSIBLE CHOICE OF BOARD ...16
3.3 BUS INTERFACES ..17

3.3.1 Option 1: USB...17
3.3.2 Option 2: PCIe...18

3.4 DYNAMIC RECONFIGURATION ...19
3.4.1 Hardware ...19
3.4.2 Software..20

3.5 PROPOSED METHODS OF DYNAMIC RECONFIGURATION ..20
3.5.1 Single Module Dymanic Reconfiguration ..21
3.5.2 Multiple Difference Bitmaps ...22
3.5.3 Independent Application ...23

CHAPTER SUMMARY...23
4. PROJECT DEVELOPMENT: GNU RADIO ..25

4.1 INTEGRATING THE FPGA AND A HOST APPLICATION (GNU RADIO) ..25
4.2 AN EXERCISE – FM TRANSMISSION WITH GNU RADIO ..29
4.3 PREPARING FM TRANSMISSION APPLICATIONS FOR FPGA INTEGRATION ...32
4.4 THE GNU RADIO SIGNAL PROCESSING BLOCK..34
4.5 DIGITAL COMMUNICATIONS – IMPLEMENTING DBPSK ..37

4.5.1 A Demo – DBPSK Modulation over TCP/IP ...37
4.5.2 Initial Attempts at a Lower-Level Approach..39

4.6 THE CURRENT CONCEPT – A PACKET-BASED APPROACH...41
4.6.1 Unidirectional Communication ..41
4.6.2 Bidirectional Communication...42

CHAPTER SUMMARY...43
5. FPGA ARCHITECTURE AND GNU RADIO INTEGRATION ...45

5.1 DRIVER DEVELOPMENT..45
5.1.1 PCI Initialization ..47
5.1.2 Character Device Initialization...50
5.1.3 Character Device Data Functions ..51
5.1.4 Driver Debugging...52

5.2 PCIE INTERFACE DEVELOPMENT INITIAL ATTEMPT ..52
5.2.1 Hardware and Environment Testing Using Reference Bitmap ..53
5.2.2 Compiling the Provided Example Code in ISE..54
5.2.3 Generating a Bitmap with Only the PCIe MAC/PHY ...55
5.2.4 Addressing Throughput Issues in the Project ..56

 5

5.2.5 The ICAP Interface..60
5.3 PCI RE-IMPLEMENTATION USING EDK ..60

5.3.1 The PCIe to PLB Bridge and Its Role in the System ...60
5.3.2 The FSL Link and Interfacing to the Pipline. ..61
5.3.3 Test Environments ...63

5.4 PLATFORM EFFICIENCY..66
5.4.1 Driver Efficiency..66
5.4.2 PCIe Transfer Efficiency...66

5.5 DEMO FILTER IMPLEMENTATION ..67
5.5.1 FIR Filters ..67
5.5.2 FIR Filter Implementation...68

CHAPTER SUMMARY...69
6. FPGA/GNU RADIO INTEGRATION ..70

6.1 LOOPBACK ..70
6.2 LOWPASS AND RAISED COSINE FILTERS ...71
6.2.1 SYSTEM DESIGN ..71
6.2.2 COMPARISON TO GNU RADIO ONLY..73
6.2.3 FPGA FILTER TESTING...82
CHAPTER SUMMARY...91

7. FUTURE WORK ..92
8. CONCLUSION..94
9. REFERENCES..96
10. APPENDICES ...99

 6

1. Introduction
Software-defined radio (SDR) is a very active field in the world of digital signal processing. It is

used in a variety of scenarios, where either mobile or easily adaptable systems are required.

Thus, we have chosen this field, since it is a useful subject to be knowledgeable about and to

contribute data toward. For the purposes of this project, we intended to integrate a field

programmable gate array into an otherwise strictly software-composed pipeline. This would

delegate hardware resources away from the host computer, without losing the reconfigurable

nature of software. To prepare for this, we implemented FPGA loopback in a variety of GNU

Radio applications, and ultimately implemented filtering of signals on the FPGA. In future work,

it would be possible to adapt the FPGA component of the pipeline such that it can be

dynamically reconfigured, which is less complicated to implement on reconfigurable hardware

than in software.The primary motivation for this project was to accelerate the development of

software defined radio, integrating hardware that is just as easily reconfigurable as the software

components in the pipeline. Currently, FPGAs have been integrated into software defined radio

platforms, but it has been limited in terms of which radio frequency (RF) front-end is used, and

which API controls the hardware. While tested only with DD [21] a program intended for

copying and pasting data, which we used for debugging) and GNU Radio, our design can be

controlled by any existing SDR API that supports UNIX file I/O, and can interact with any RF

front-end the current API supports, since it runs independent of the front end and the API draws

the connections between the two. We have established a framework with which future

researchers could implement further functions, such as dynamic reconfiguration.

 7

2. Literature Survey
There has been prior research and development put behind the concept of reconfigurable radio.

This extends back as far as the mid-‘90s with military investment in modular radio components

[1] [2]. It was revolutionized with the concept of software-defined radio, which minimized

proprietary hardware and implemented most signal processing within a computer. This was

brought into the mainstream with the Spectrumware project, later to become GNU Radio [5] [6].

Since then, some have investigated the possibility of a combination of the two methods,

implementing an FPGA in collaboration with a PC for digital signal processing. It maintains the

reconfigurable nature of software while still having more resources at its disposal than a non-

dedicated personal computer. There are even dynamic reconfiguration possibilities which surpass

those of software-only pipelines.

2.1 Origins of Reconfigurable Radio

Prior to the advent of today’s FPGAs and software-defined radio, the concept of radio that one

can configure to be compatible with multiple mediums was still considered. However, it was

more intricate. With the lack of ability to alter the data pipeline with some lines of code, data

processing modules for different tasks were just that – physical “modules” that had to be stored,

installed, and swapped out as the application saw fit. Such was the concept behind the Joint

Tactical Radio System (JTRS) and the Speakeasy project [1][2]. They are multiprocessor

systems (JTRS using Pentium cores, and Speakeasy using four TMS320C40 processors) that

require extensive custom hardware to perform many of the signal processing tasks presented by

the varying military communication conventions available [1] [2].

 8

2.2 The Introduction of Software Defined Radio

Software defined radio is the replacement of analog components in a radio pipeline, at the very

least starting at the IF stage and continuing from that point onward [3]. However, ideally all

hardware should be replaced with software from the antenna onward [3]. RF still cannot yet

practically be processed with general-purpose processors. Furthermore, software radio is overall

slower than implementing it in hardware for certain applications (such as modulation), so

implementing configurable hardware such as an FPGA at certain points would improve

performance without limiting the configurability and multimode operation that are the most

significant benefit of software-defined radio [3]. Application-specific integrated circuit (ASIC)

designs would be able to accomplish similar tasks, but reconfigurability is at a minimum since

ASICs are not readily reconfigurable after manufacture. There is one area where ASIC outshines

an FPGA – power consumption. As a general rule, state-of-the-art ASIC designs are more

power-efficient than equivalents implemented on an FPGA. An illustration of this is the

measurement of power consumption during the implementation of numerous counters, in one

case on an Altera FPGA, and in another with an ASIC. See Table 1 for the results.

Number of active counter blocks 1 16
ASIC power (mW) 0.9 9.9
FPGA power (mW) 53.6 112.4

Table 1: Power consumption on different numbers of both ASIC and FPGA counter blocks. The FPGA
exceeds the ASIC in power consumption by orders of magnitude [4].

This primarily limits FPGA use to stationary tasks rather than mobile ones. ASIC is still superior

in mobile applications. However, the benefits of applying an FPGA when increased power

consumption is tolerable are not to be ignored: Ease of design and manufacture, fewer discrete

components – these are attained with the implementation of FPGAs [5]. With significant

 9

streamlining and development, cost can be reduced and standardized APIs for SDR components

can be developed.

2.3 Spectrumware and GNU Radio [6] [7]

The Spectrumware project is the predecessor of modern software defined radio. Spectrumware

later proceeded to branch off into two directions: Vanu Radio – the commercialized version of

the Spectrumware architecture – and GNU Radio – the open-source standard for any research

application involving the Universal Software Radio Peripheral (USRP). Spectrumware and its

descendants are actually far more economical than hardware module-based designs. Using GNU

Radio as an example, the software is open-source and can be used with most modern personal

computers (if they are running Linux). The only additional hardware required is a front-end,

usually satisfied by the USRP. This hardware costs $700 [8]. This is an insignificant amount

when compared to hardware that required a budget from the United States military to produce.

With the advent of more powerful microprocessors, more and more of the system could be

simulated by software. Thus, the pipeline is reduced to minimum transmitter/receiver hardware

(a small FPGA is used for initial signal processing in the USRP in the case of GNU Radio, and

similar proprietary hardware with Vanu radio) and an extensive API for simulating signal

processing modules that once required dedicated hardware. The system still has its drawbacks. It

is very CPU-intensive, while an FPGA-assisted platform would take much of the burden off of

the microprocessor. Additionally, under normal circumstances, a GNU Radio pipeline must be

stopped for some time, however short, in order to be modified. An FPGA implementing dynamic

reconfiguration would provide the ability to modify the pipeline mid-operation. This will prove

useful in tandem with existing GNU Radio applications.

 10

2.4 FPGAs and Dynamic Reconfiguration

FPGAs have been implemented in a software-radio environment to some extent for a significant

amount of time – the FPGA integrated into the USRP is a good example of this. The USRP

includes an Altera Cyclone, which is significantly smaller and less powerful than the Virtex-5 we

intend to implement [9]. Furthermore, it is incapable of dynamic reconfiguration. However, this

is acceptable since it is only meant to handle high sample-rate processing involved in

transmission and reception [9]. Additional hardware is included in the form of daughterboards,

which contain dedicated transmitter/receiver/transceiver hardware [9]. They are small and easily

transferable depending on the desired application, ranging from DC-30Hz transmitters/ receivers

to 2.4 GHz/5 GHz dual band transceivers [9].

There are even instances where dynamic reconfiguration of the pipeline with an FPGA is

proposed. FPGAs have generally been applied to the SDR pipeline in different ways, or applied

to a different task entirely. For instance, the 7142 Virtex-4 software radio PMC/XMC Mezzanine

takes the place of both the radio frequency (RF) front-end and the modulation segment of the

pipeline [10]. This makes it more limited, since its RF front-end cannot be as easily replaced if a

certain task calls for it. Our design uses the USRP as an RF front-end, but this can be later

swapped with minor modification, without rendering a portion of the FPGA peripheral outdated.

2.5 FPGAs and Software Defined Radio

In 2005, a plan was proposed (but not implemented) to use an FPGA in a similar manner to our

platform, using partial reconfiguration to modify the pipeline as needed. Research into the

subject was extensive, assigning different levels of reconfiguration desirable within an active

 11

pipeline: standard (GSM, 802.11g, etc.), mode (DSSS, FHSS, etc.), and service (bandwidth, etc.)

switching. The pipeline's actions were also broken down into categories based on hardware

requirements - Modulation (FPGA, Digital Signal Processor), Data Handling (microprocessor,

RAM), and Coding (DSP) [11]. These tasks should be divided into three hierarchical layers – the

overall communication class, functions within this class (which could be modified for specific

applications of a certain communication class), and the most internal layer, including the

contents of a particular function [12]. Depending on the changes that need to be made from one

pipeline to another, modifying a certain hierarchical layer would make the reconfiguration more

efficient than modifying the pipeline on the most intricate level [12]. Modular design simplifies

the implementation and modification of a pipeline. A collection of pre-designed modules capable

of being swapped out is easier than having to rewrite a segment of one large piece of code, both

in terms of the user’s understanding and the complexity of reconfiguration. Reconfiguring on this

scale is a known as reconfiguring on the functional level, and is in general what we have chosen

to implement [13].

There are a few concerns that must be taken into account when implementing a design on a

dynamically reconfigurable FPGA. First, one must take into account the reconfiguration time.

Reconfiguring the FPGA directly, it would be split into slices of the same pipeline, and any

modification to slices would interrupt the flow of data until the new slices were written [14].

This can be alleviated by making a copy of the entire pipeline and modifying that [14]. Copying

the pipeline allows the reconfiguration to take whatever time is necessary to overwrite specified

portions, and the data stream is only interrupted while switching from the original pipeline to the

modified pipeline [14]. This form of reconfiguration is something referred to as “merge

 12

configuration” [15]. This also allows for slices that do not span the entire length of the FPGA,

given a properly configured communication link between them [15]. However, it requires more

resources than direct reconfiguration, since at any reconfiguration time there must be two

instances of the pipeline on the FPGA [15].

The communication link, or the means by which the blocks will communicate with each other, is

another issue which must be addressed. On the surface, the solution appears simple: we must

implement a bus macro – a set of inputs and outputs that are held constant between all slices

regardless of configuration, and an arbiter directing IO to/from each slice. However, we must be

cautious, because the implementation of a bus macro is platform dependent. Work must be done

somewhat from scratch, which is a significant effort. One idea for an adaptive bus macro design

is as follows: HIBI (Heterogeneous IP Block interconnection) links together blocks with a

variety of different interfaces (open core protocol (OCP), first-in-first-out (FIFO), direct memory

access (DMA)) [16]. This is a very adaptive design, even though it is not developed for the

Virtex-5 [17]. It would be useful in that there are likely many modulation task blocks already

created, and this allows for a variety of IO interfaces to be interconnected [16]. A platform-

specific bus macro would not be nearly as versatile, and rely on blocks created specifically to

function with that macro [16]. This is worth looking into, should we find our initial bus macro

inadequate [16]. What makes our design significantly different is that the “arbiter” will likely be

the host PC’s microprocessor itself (along with any other data management, etc.), rather than an

FPGA block. In all of Delahaye’s work, there is no mention of using device-nodes as a means of

hardware interface with preexisting SDR APIs such as GNU Radio. This work comes closest to

 13

matching our own (at times), and evidence to the contrary has not yet been unveiled, device-node

IO implemented in this manner is new to the concept of linear SDR pipelines.

The final significant decision that needs to be made is whether to use internal or external

configuration [17]. “External” configuration involves a CPLD or microprocessor directly

overwriting the FPGA’s contents, with no internal intervention [17]. However, the Virtex-5’s

ICAP interface allows for what is called “internal” configuration, or auto-configuration [17].

Issuing commands and data to the ICAP allows for the FPGA to largely rewrite itself, with less

equipment involved (only the host PC to issue commands/information) [17]. For our application,

it is far more effective to implement internal reconfiguration, since the resources are already

there. The ICAP does limit us to partial reconfiguration, but that is acceptable. We’re not

changing the structure of the entire FPGA (size/number of slices) with reconfiguration, only the

contents of the slices. FPGA structure remains constant unless a different chip is used.

Furthermore, partial reconfiguration requires less overhead than a complete re-flash of the FPGA

[17].

2.6 Platform Applications

There are numerous applications for SDR in a mobile environment – cellular phones, mobile

wireless, and so on. The distinction should be made here that our design is not meant for such

tasks. The design method taken is simply not well-suited. It is critical to keep power

consumption to a bare minimum in a mobile environment, and FPGAs are renowned for their

power consumption, the Virtex-5 being no exception. This is in addition to the USRP requiring

its own power supply, and, of course, the host PC’s power. A. Dejonghe defines the acceptable

rate of power consumption for a digital baseband platform to be 100 million operations per

 14

second (MOPS)/mW [18]. This is nowhere near the current level of power efficiency for modern

FPGA technology at all, let alone an FPGA implementation. Referring back to Table 1, even

implementing 16 counters, each of which only use a few components, exceeds desired power

consumption. Given the components, effective mobile use of SDR as a reconfigurable platform

would be infeasible at this time. It is worth mentioning, however, that “mobile” in this case does

not include being inside vehicles, or connected to some other power source which gives our

platform access to surplus power while still technically being capable of changing location. In

such an environment is where our platform would thrive, particularly in military applications. Of

course, it would also work in a stationary, desktop environment, for research or other purposes.

Chapter Summary

Some of the branches of software defined radio mentioned here, namely FPGA integration and

dynamic reconfiguration, are within the realm of this project or in the near future work of the

project. However, some such as cognitive radio are a bit far off in terms of development with

respect to our project. Still, having knowledge of the possibilities does lend itself to accelerating

progress on the path toward said possibilities, and was thus worth investigating. This project

does not comprise the entirety of software-defined radio development. Due to limited time and

resources, this project is mainly focused on integrating an FPGA into an SDR environment.

 15

3. Initial Design Concept

Our design is an attempt at integrating an FPGA peripheral of our choosing into a software-

defined radio pipeline. Time permitting, we also intended to implement some means of dynamic

reconfiguration, and have plotted out strategies for such an endeavor. These remain

unimplemented, and are a recommended continuation for anyone who sees fit to pursue similar

goals. At the very beginning of our project, some key decisions had to be made. Most significant

among these were the choice of the FPGA we were to use, and the choice of interface between

PC and FPGA peripheral.

3.1 Choice of FPGA

The Virtex 5 series of FPGAs can be broken into 4 different classes of device each targeting a

specific type of design challenge. The 4 families are the LX, LXT, SXT, FXT. The T means that

the FPGA has hardware for high speed transceivers which are required to implement protocols

such as SATA and PCIe. The family is additionally broken up into the LX, SX, and FX, groups.

The LX and LXT FPGAs contain a large amount of generic CLBs and little dedicated hardware.

The FXT family contains embedded hard-cores for SOC type designs. The DSP variant of the

family is the SXT with 6 colums of 49 DSP48e slices. We believe that these DSP blocks which

consist of a 25x18 bit multiplier and 48 bit accumulate register would be extremely beneficial for

our application, because they wouls allow us to make high-speed implementations of common

signal processing blocks.

 16

3.2 Possible Choice of board

Figure 1: ML506 FPGA development board featuring a VIRTEX 5 SXT FPGA and a 1x PCIe connector.

The ML506 development board from Xilinx would be well suited to our project for several

reasons. The FPGA on this board is a XC5VSX50TFFG1136 which is a Virtex 5 SXT series

FPGA. This FPGA provides us with 288 DSP blocks which would simplify the design of

pipeline modules by replacing commonly synthesized hardware with real hardware blocks. In

addition to the DSP slices the FPGA supports multi gigabit transceivers giving it the capability to

use PCIe. The development board includes interfaces for all of the feasible methods of

interfacing the device with the host computer. These interfaces include PCIe, USB, and gigE. As

well as having the proper interfaces and resources, this board's price point is low when compared

to other development boards we have found.

 17

3.3 Bus Interfaces

Ultimately, the exact interface does not matter if we structure the code correctly and view the

interface as a pipe on a higher level.

3.3.1 Option 1: USB

Universal Serial Bus (USB) is one option we could have pursued for interfacing our FPGA with

a PC and RF frontend. While more ideal for external hardware than a peripheral card that is

meant to be integrated into the PC, it is sufficient. USB bandwidth peaks at 60 Mbps, of which

only 10% depending on transmission method would be used. The ideal way to go about the

interface with USB is to make use of bulk transfers. The performance is heavily dependent on

other traffic present on the bus.

If there is no other traffic, the bulk transfers can make use of up to 90% of the bandwidth. With

traffic, however, bulk transfers receive the lowest priority and thus suffer from severe latency

problems. There are alternative methods of data transfer with USB (i.e. isochronous transfer)

which have higher priority, but always have a lower maximum bandwidth percentage. What a

USB interface would require is an entire bus dedicated to the SDR platform, using bulk transfers

to handle data. Additionally, the USRP only supports a gigE interface, not USB. So using a USB

interface for our peripheral card for the sake of uniformity becomes a moot point if the user

decides to use the USRP2 rather than the USRP.

 18

3.3.2 Option 2: PCIe

The PCIe interface option provides several advantages. Latency becomes less pronounced, with

PCIe generally closer to the system memory and CPU on the PC. With a PCIe interface, we can

also take advantage of the conventions of PCIe, which allow for DMA and bus mastering to

communicate between peripherals independent of the PC. Another significant benefit is the

greater bandwidth which, for PCIe, is 2.5 Gbps or higher minus overhead. On the other hand,

USB provides 60 Mbps minus overhead. While the USB bandwidth is acceptable, PCIe proves to

be more promising. Additionally, PCIe leaves us with a platform that is more expandable. The

device can be compatible with a wider array of RF front-ends than the USRP due to increased

theoretical bandwith. Front-ends are already easily interchangeable, since the ultimate purpose of

our peripheral card is to be reconfigurable, and information accepted and given by front-ends is

already similar from front-end to front-end. With the USRP's USB interface, the latency and

bandwidth advantages of PCIe are only seen between peripheral card and PC. However, if an RF

front-end that also uses PCIe (or a faster interface such as gigE) was introduced in place of it, the

bus mastering and DMA allow for more efficient transfer of data, so front-end and peripheral

would be able to communicate with each other with out the overhead of the CPU.

Admittedly, PCIe adds a certain complexity to the interface compared to USB. While USB uses

periodic frames with packets for control, the PCIe interface operates with streams of packets

with a layered protocol stack. However, the length of time developing the software side of the

interface is greatly reduced by the presence of pre-existing code and IP modules. XILINX

software tools contain the code required, and even have a wizard for setting up the Virtex-5

 19

FPGA as PCIe block RAM, in addition to having a PCIe-processor local bus (PLB) bridge,

which simplifies DMA access. This overcomes any difficulties the added complexity present.

3.4 Dynamic Reconfiguration

3.4.1 Hardware

XILINX’s Virtex series and the Spartan-6 support partial reconfiguration, where a portion of the

FPGA can be reprogrammed while the other portion of the FPGA is still operational. The Virtex-

2, 4, and 5 series FPGAs support dynamic reconfiguration through several interfaces, Joint test

action group (JTAG), Serial Perepheral Interface (SPI), and SelectMap (accessable through the

internal configuration and access port) interfaces. SPI and SelectMap are external interfaces that

can be used, which means that a bitmap can be applied from iMPACT (Xilinx’s programming

utility) or by an external controller.

The ICAP configuration interface allows for self-reconfiguration. Synthesized hardware may

interface to the ICAP interface, which appears as a bidirectional synchronous parallel bus of

varying with depending on the family, and issue the sequence of commands present in a bit

stream to change routing, configurable logic block (CLB) configuration, and block RAM

(BRAM) contents. The more recent series of FPGAs such as the Virtex-4 and Virtex-5 series

support wider bus widths allowing for faster reconfiguration.

 20

3.4.2 Software

The way dynamic reconfiguration is accomplished is through partial bitmaps. Instead of

containing configuration information for a whole design these partial bitmaps contain

configuration information for only a few CLBs allowing for a large portion of the FPGA to

remain unmodified while reconfiguration takes place.

Communication between the hardware included in these partial bitmaps is accomplished through

a bus macro. The bus macro defines an interface between the existing static logic and the newly

configured logic, much such as a connector or socket. XILINX provides tools to facilitate

dynamic reconfiguration by allowing low level changes to be made to bitmaps. This tool is called

Plan-Ahead.

3.5 Proposed Methods of Dynamic Reconfiguration

After doing some research as to how dynamic reconfiguration functions on XILINX based

FPGAs, we have come up with several possible designs that would achieve dynamic

reconfiguration. These designs vary in complexity and cost and are organized starting with the

easiest to implement and ending with the hardest yet most interesting design. While dynamic

reconfiguration was not implemented, we still devoted time to the background study, which may

prove useful to future researchers. Thus, these sections remain for future reference.

 21

3.5.1 Single Module Dymanic Reconfiguration

In this design we use a single module with a parallel bus macro for incoming and outgoing

samples connected to some mechanisim designed facilitate the transfer of data to and from the

host over our chosen interface. In addition to this mechanisim the bitmap would contain enough

hardware to grab a configuration file from the host system via an interface such as USB, gigabit

Ethernet (gigE), or PCIe and change the configuration of this one “module” shown in figure 2

via its internal ICAP interface.

Using this method of configuring the FPGA we could have a bitmap for various different

pipelines and we would have the capability to change our current pipeline. The downside of this

approach is the pipelines themselves would be fairly static. We would not be able to alter the

structure of individual blocks dynamically.

Figure 2: Dymanic reconfiguration where a module is an entire pipline.

 22

Since this design does not vary very far from XILINX's documentation and the beaten path and it

should be fairly easy to implement. The complex part would be generating a few sample bitmaps

and writing a loader that would apply these bitmaps. The benefit of this is that the computer can

change the pipeline directly from within their signal processing environment.

3.5.2 Multiple Difference Bitmaps

Another approach that would give us more control over the actual structure of the SDR pipeline

while still remaining low in complexity would be to set aside a certain amount of slices for

blocks and generate difference bitmaps for a given module in these different slots as seen in

figure 3.

Figure 3: A diagram outlining the process of dynamic reconfiguration using bitmaps.

Communication between modules would be handled by bus macros on the boundaries between

slices. The benefits of this approach are increased control over the structure of the SDR pipeline.

We could switch between BPSK and QPSK depending on the quality of the channel for example.

The downside of this approach would be that if our pipeline had 10 "slots" we would need 10

 23

bitstreams for each module where each bitstream would be that module in that portion of the

FPGA. A QPSK module would have a “in slot 1” bitmap and an “in slot 2” bitmap. This is due

to limitations in XILINX’s synthesis and PAR (place and route) tools and in the hardware of the

virtex 5 itself. An Analogy in terms of software would be machine code with absolute jumps (as

opposed to relative jumps). Such code could only be located at an initiall address in system

specified at compile time and different compiled versions would be needed if different starting

vectors where desired.

3.5.3 Independent Application

The final approach would be to gain a better understanding of the structure of the configuration

bitmap such that we could have an application keep and modify this bitmap representation of the

FPGA’s structure and generate a dynamic bitmap that would be used to reconfigure the device

on a very fine level. For example, a program could take a generic template of a module and make

a modification on the routing and configuration of the internal structure of the FPGA to

incorporate it into the SDR pipeline. This approach could potentially be dangerous and lead to

damaged hardware because it would involve reverse-engeneering XILINX’s proprietary bitmap

format.

Chapter Summary

In this section, we have outlined the various possible ways that we could have approached the

hardware design and software interface problems. A desired bus interface to develop around,

method to implement dynamic reconfiguration, and a way of integrating our FPGA peripheral

into GNU Radio are all required at first. Through the evaluation of hardware, we have settled on

 24

PCIe for the bus interface, single module dynamic reconfiguration, and the device node interface

to tie the FPGA and GNU Radio together.

 25

4. Project Development: GNU Radio

GNU Radio is a multifaceted, complex tool which we have used throughout the majority of this

project. We performed initial test runs of tasks such as FM transmission with GNU Radio on its

own, and later integrated our FPGA into the pipeline. We also investigated the lower-level

functionality of GNU Radio, and made an attempt at creating a signal processing block. Toward

the end of the three-term project, we attempted more complex tasks such as differential binary

phase-shift keying (DBPSK) modulated digital transfer of data via TCP/IP tunnel and direct

transfer. We integrated the FPGA into the latter with a loopback configuration to show our

progress on hardware integration within GNU Radio up to that point.

4.1 Integrating the FPGA and a Host Application (GNU Radio)

GNU Radio is a Python- and C-based API that is used for a wide variety of software-defined

radio applications, such as amplitude modulation (AM) transmission, frequency modulation

(FM) transmission, packet handling, filtering, et cetera. In particular, portions of the API are

dedicated to the operation of the USRP. Since we are using the USRP as our analog front-end,

this provides an important glimpse into how software-defined radio tasks are carried out in terms

of the host PC. On a general level, the API functions by having component classes (filters, etc.)

and functions coded in C, with Python code segments connecting the blocks. Most Python

segments literally contain only configuration for the blocks required, then several instances of

calling a 'connect' function on itself to construct the order of the pipeline. The FPGA peripheral

will ultimately do the intensive work for our platform; much of the pipeline will not be

implemented in GNU Radio. However, the basic structure that it provides for its pipelines can

give us a framework for our own.

 26

An example is the file am_rcv.py included with the GNU Radio API. This file, as its title

suggests, sends and receives amplitude modulation (AM) frequencies. The first block is a digital

down converter (DDC), used to select a narrower band of frequencies to receive from the wide

array of AM frequencies available. Then the magnitude of the DDC output is taken (MAG) to

have a strictly real input, and the volume is scaled down (VOL). This is followed by deemphasis

(IIR) and an audio filter (FIR) to reduce noise, and the data finally gets output to the audio sink

(in other words, it is played on the computer's speakers). The same process could, theoretically,

be followed in reverse to transmit on AM frequencies. A visual representation of the AM

pipeline can be found in figure 4.

Figure 4: An AM radio pipeline from GNU Radio. This highlights the top-level structure of a typical GNU

Radio pipeline.

In addition to introducing template ideas, GNU Radio also provides infrastructure for the

management of data source and sink in our design. GNU Radio already contains functions for

creating a file as a data sink and for using a file as a source. With this format, the FPGA can

send/receive data with general UNIX file IO. Even though it appears to be the case on the

software level, the data is not actually stored in a file. The "files" in question are actually calls to

 27

functions that work in kernel space, directing anything written to them to addresses representing

the desired peripheral IO and pulling anything read from them from the same addresses. File IO

is notorious for being slow under normal circumstances, but this is due to the medium used. If

located on the PC's hard disk (as per usual), file IO is slow. However, the file IO API itself is

not.

GNU Radio's top-level applications are implemented in Python, while our FPGA is configured

using a bitmap synthesized from Very High Speed Integrated Circuits Hardware Development

Language (VHDL) or Verilog. Both are expected to perform within the same pipeline. This

distinction in languages begs the question: how do the two languages interact with one another?

Within GNU Radio exists wrappers which convert the C objects in the library into Python-

friendly code. While we have no such wrapper to integrate the FPGA into code manageable by

Python, there is an elegant option. The concept of device-nodes exists in UNIX, and transcends

both programming languages. The FPGA will be configured using an API that is set up apart

from GNU Radio. This will consist of blocks created within the XILINX ISE that are combined

by the API and applied to the card. Our drivers will establish device-nodes for the FPGA card's

IO and configuration, requiring a request to the kernel for information regarding where the

FPGA expects to receive configuration data, receive input, and deliver output. Input, output, and

configuration streams will be functions that are expressed in UNIX as files that actually store

information in a buffer before moving it to its specified location. With this established, the

FPGA (and therefore all of the pipeline elements within) will be treated as a file by the rest of the

computer.

 28

The end result (once drivers have been written) is that configuration of the pipeline occurs in two

phases. First is the configuration of the FPGA. As long as components loaded to the FPGA are

contained within the API, no use of XILINX ISE would be necessary. It would only be a matter

of appending preexisting files to the configuration "file", with specification of which portion of

the FPGA it should be written to. The driver will then load the file to the expected location on

the FPGA. This will be where all blocks expected to be implemented by the FPGA will be

configured, primarily modulation tasks (encoding, filtering, mapping, etc. - this will vary from

standard to standard). This will be followed by configuration of the data management portion of

the pipeline (multiplexing, etc.), which is best dealt with by the microprocessor [21]. Any tasks

the microprocessor is expected to accomplish will be managed by manipulating GNU Radio

conventionally.

The USRP is connected via the PCs USB and not through the FPGA, so the microprocessor can

still access the USRP and manage configuration, card selection, and initialization. The FPGA's

and microprocessor's tasks in the pipeline are distinctive enough that they can be kept separate in

most situations. In the overall pipeline arrangement, the FPGA is generally "closest" to the RF

front-end, being the first to affect receptions. It reads in and writes out to the USRP and PC as

needed, using the device nodes that the drivers have established. The GNU Radio portion takes

in the data stream from the output device-node of the FPGA, and interprets it as a file source.

From here GNU Radio can instruct the microprocessor to do any data management required, and

then output the received data in whatever medium is desirable (sound, video, another file, etc.).

For transmissions, the reverse of this process is true. GNU Radio will manage data from the

 29

source device (microphone, camera, etc.) in preparation for transmission, and deliver it to the

FPGA as though the FPGA were a sink. The FPGA will do its modulation tasks, and stream the

modulated signal to the USRP (using GNU Radio, MATLAB, etc.) for transmission.

The FPGA really shines at implementing specific tasks in hardware. The computer is ideal at

moving data around and manipulating it. Our scheme uses each component for its ideal task. In

addition to providing an interface, device nodes allow for GNU Radio to be replaced by any

software that can stream to/from a file, such as MATLAB. The reason GNU Radio is mentioned

by default is that it is beneficial for the RF front-end we are working with (the USRP). Since the

RF front-end itself is variable with respect to our FPGA, this platform is not limited to GNU

Radio's standard API.

4.2 An Exercise – FM Transmission with GNU Radio

In initial attempts at FM radio manipulation, there were some technical difficulties. Investigation

into the problems entailed rereading the GNU Radio tutorials by Dawei Shen, as well as

consulting with grad students in the lab [19] [20]. The tutorials helped to narrow the problem

down to being one regarding the configuration of the daughterboards on the two USRPs. With

the provided programs usrp_siggen.py and usrp_oscope.py, a signal could be generated and

transmitted from one of the USRPs, and a graphical oscilloscope could be used to verify that the

signal was being received. After a couple of earlier failed attempts at simply running the

transmission and reception with file storage (resulting in static as before), using this graphical

diagnostic swiftly and conveniently verified which motherboard configuration functioned

properly. This entailed connecting RX_A of one USRP’s Basic_RX daughterboard and TX_A of

 30

another’s Basic_TX daughterboard with a copper wire. As is visible in figure 5, the configuration

described functions properly, delivering the signal to the receiving computer.

Figure 5: Daughterboard Testing Signal. As can be seen, the signal output is a sinusoid, with amplitude at

approximately 2000. The center frequency upon which the signal is received is 100 MHz.

With that obstacle set aside, the efforts that were taking significant time now moved swiftly.

However, there were still some slight modifications made, which made the receiving end easier

to configure, as well as confirm to be functioning. Namely, this involved modifying

usrp_wfm_rcv.py instead of usrp_wfm_rcv_no_gui.py for receiving the transmission and

writing it to a file. Initially the non-GUI version was used as a base since the code was less

complex, but the GUI version bore a greater resemblance to the code in the tutorial. It also

displayed the current frequency and volume settings, as well as pre- and post-modulation signals

(see figure 6). With this information, it was possible to adjust the gain and volume settings, and

 31

observe the effect. Ultimately, a gain of 50 dB, a volume setting of 100, and a center frequency

of 100 MHz were used to provide a file with a suitable tone. Some of the volume was still lost

from the receiving end, but this could have been resolved by increasing the gain further, or

simply using a tone with greater amplitude such that the loss was less noticeable. However, it

was sufficient to conclude that the tone file was indeed being transmitted from PC to PC. The

tone was noticeable when played using audio_play.py.

Figure 6: Frequency response of FM Signal Reception. Prior to demodulation, there is a distinct peak at 100

MHz, with smaller peaks and noise trailing off. Post-demodulation, the frequency response is what figure 3

indicates: a sinusoid at rather low frequency (approx. 500 Hz).

 32

4.3 Preparing FM Transmission applications for FPGA Integration

The integration of the FPGA into the receiving computer, with GNU Radio in a pipeline took

priority. Whether the FPGA was integrated into transmission or reception was an arbitrary

decision, though it does determine which direction program implementation initially progresses

in.

To this end, most of the PC-side resources were already available or almost available at that

point. The components required were as follows:

• An FM transmission program that takes data as audio from any specified file

• An FM receiving program that receives from a file (ultimately the device-node

for FPGA output), demodulates, and plays back or stores as another file

• Programs to generate/play back audio files (audio_to_file and audio_play,

already provided in gnuradio-examples).

The FM transmission program was hard-coded to accept files with specific names (audio-

N.dat, where N is a number from 0-7) in the same directory as the program. With some

modification to this, the program was made such that the name and location of the file to be

transmitted could be specified in the command line. To confirm functionality, the same test that

was implemented with the hard-coded file source was run again, but giving the program a file

with a different name and location. The results were the same as before – the tone was received

on the other computer, with volume slightly reduced. This program will prove useful in a wider

 33

array of situations, going beyond testing – ultimately the user would want to transmit files that

were not necessarily in the same directory as the program.

The FM reception program receives data from a specified file (i.e. the device-node), demodulates

it as though it was FM signal from a USRP, and stores it away in another file. Given prior

experience modifying sources and sinks, and testing the reception code with a USRP source, the

program is somewhat reliable. However, the program needed FPGA loopback implemented

before we could be certain it was functional. When the FPGA was ready and set up on a

computer with a USRP and GNU Radio, all that needed to be done to the program in addition

was specifying the device-node directory when executing the reception program in the command

line.

To prepare for the successful integration of the FPGA, one question still remained to be

answered at that point – does GNU Radio treat device-nodes as ordinary files? To ensure that the

device-node concept functioned properly with GNU Radio, a quick test of the functionality of a

preexisting device node, /dev/urandom, was executed using audio_play. As expected for being

supplied random integers, the program output consisted of distinct, loud white noise. So, it can

be said with that in cases requiring a file to be specified, a device-node can be specified in its

place.

Either way, the pipeline can be implemented in its simplest form on the software end at this

stage. With FPGA drivers that are up to speed, all that needs to be known in addition is the

 34

directory and name of the FPGA output device-node. The primary GNU Radio milestone for the

first term was achieved with the completion of this pipeline.

4.4 The GNU Radio Signal Processing Block

At the beginning of B term, the development of the signal processing block has hit a couple of

obstacles. First, there were many errors that needed to be worked out in the automake

configuration of the block. These were largely due to the abstract nature of the automake system,

and the fact that the tutorial was outdated and vague in that section. The only really way to

ensure the automake functioned properly was to attempt compiling and see all the errors that

came up. There were many such errors, most of which lay in the files configure.ac (Error 1)

and randsig.i (Error 2, Error 4). These were relatively minor syntax errors in retrospect, but

were difficult to spot because they were either small or did not appear as issues in the tutorial

(which was written using an older version of configure.ac. The two most time-consuming

errors to deal with were errors 1 and 2.

/usr/bin/m4 failed with exit status: 1
' is already registered with AC_CONFIG_FILES.
../../lib/autoconf/status.m4:300: AC_CONFIG_FILES is expanded from...
configure.ac:126: the top level
autom4te-2.61: /usr/bin/m4 failed with exit status: 1
autoheader-2.61: '/usr/bin/autom4te-2.61' failed with exit status: 1
' is already registered with AC_CONFIG_FILES.
../../lib/autoconf/status.m4:300: AC_CONFIG_FILES is expanded from...
configure.ac:126: the top level
autom4te-2.61: /usr/bin/m4 failed with exit status: 1
automake-1.10: autoconf failed with exit status: 1

Error 1: This was an issue with the configure.ac file. It was difficult to identify, since the latest version of the
file differs from the one showcased in the tutorial on how to write a signal processing block. It was addressed
by swapping out the more recent version for the older version, and then pulling a fresh copy of configure.ac
from howto-write-a-block and modifying it again.

 35

randsig_source_ff.h: In function 'PyObject* _wrap_source_ff(PyObject*,
PyObject*)':
randsig_source_ff.h:74: error: too few arguments to function
'randsig_source_ff_sptr randsig_make_source_ff(double)'
randsig.cc:4335: error: at this point in file

Error 2: This error appeared at first to be an issue with the header file. However, it was actually a matter
involving the file randsig.i, in which there was a parameter mismatch with respect to the rest of the code.

Ultimately, the processing block compiled and tested successfully.

Another technical problem had presented itself with the implementation of the processing block,

and this is one that has yet to resolve itself. While the module can be imported in the test *.py

file by using the line import randsig, using this line did not work properly in a *.py file

placed in the GNU Radio example directory. Instead, error 3 was displayed.

Traceback (most recent call last):
 File "./usrp_randsiggen.py", line 4, in <module>
 import randsig
ImportError: No module named randsig

Error 3: “Missing” randsig module. The program could not find our new library, and did not function as a

result.

This implies that the module cannot be found. Probable causes for this were investigated –

changing the *.py file’s directory such that it is the same as the one where the working *.py is

located, changing the import line to from gnuradio import randsig, checking the directory

where all modules should be stored (/usr/local/lib/python2.5/site-packages) to ensure

that it is in fact located there – all of these possibilities checked out fine. The issue was resolved

within a few days. It was a matter of the pythonpath being unspecified. This still seemed

unusual, since other GNU Radio applications functioned properly, but specifying the path got rid

of the error. However, this only revealed another error (Error 4)

 36

Traceback (most recent call last):
 File "./usrp_randsiggen.py", line 122, in <module>
 main ()
 File "./usrp_randsiggen.py", line 96, in main
 fg.set_interpolator (options.interp)
 File "./usrp_randsiggen.py", line 29, in set_interpolator
 self.siggen.set_sampling_freq (self.usb_freq ())
 File "/usr/lib/python2.5/site-packages/gnuradio/randsig.py", line 100, in
set_sampling_freq
 return _randsig.randsig_source_ff_sptr_set_sampling_freq(*args)
AttributeError: 'module' object has no attribute
'randsig_source_ff_sptr_set_sampling_freq'

Error 4: Missing randsig_source_ff_sptr_set_sampling_freq attribute. It is a variable not defined in randsig.i

that is used in the *.py implementing the processing block, which causes the program to terminate.

This immediately raised red flags about either the header file or the *.i file not containing

information about set_sampling_freq(). Sure enough, the *.i file had no accessors or

manipulators declared, and this was changed to attempt to remedy the error. randsig was

rebuilt, though, and the error remained. Even with deleting all files generated by the last make

and running make again, it still remained. This error message was dealt with by changing the *.i

file as mentioned above, and deleting the copy of the randsig module installed in

/usr/lib/python2.5/site-packages/gnuradio as opposed to /usr/loca/lib/python2.5

/site-packages/gnuradio. At this point, after editing out a couple of syntax errors that did not

get detected in usrp_randsiggen.py, the python file executed without errors. The waveform

would either change erratically, or always remain the same. However, it was producing improper

waveforms on the receiving oscilloscope. Modifying the code to integrate srand() and ensure

that the waveform object was only initialized once, proved ineffective. At this point, it was

thought best to turn to establishing a working secure shell (SSH) tunnel now that one of our lab

computers does not seem to be functioning properly.

 37

4.5 Digital Communications – Implementing DBPSK

4.5.1 A Demo – DBPSK Modulation over TCP/IP

The differential binary phase-shift keying (DBPSK) tunnel is a fairly straightforward process,

implemented on two computers: our workbench computer (containing the FPGA), and our

primary lab computer out of two lab computers that were accessable. The primary lab computer

worked as expected on the first try. However, our secondary lab computer and the workbench

computer both had technical difficulties. The former seemed to have something malfunctioning

within the boost C++ library that was installed, and the latter was missing the Universal

tunnel/network tap (TUN/TAP) Driver. With brief collaboration to properly configure our

workbench computer, we had two computers which supported tunnel.py (included in the GNU

Radio trunk for implementing TCP/IP tunnels). DBPSK modulation can now be set up on both

terminals (workbench computer’s example shown below), but lack of privileges on the primary

lab computer made scheduling a test for simultaneous operation take longer than expected. It was

a trivial matter from there, once the proper privileges were available.

There were some minor technical difficulties while implementing tunnel. The RFX

daughterboards were transmitting, but not receiving packets. This was at first resolved by

switching to basic TX/RX, but that operated on lower frequencies (in the MHz range rather than

GHz), and as such gave less ideal performance in terms of speed, but more importantly range.

Ultimately, we realized that the fact that all other wireless on campus was operating at 2.4 GHz

resulted in interference with our tunnel. With that, we attempted to operate the tunnel on RFX

boards at slightly a slightly different frequency, and it functioned properly. Another way of

improving the speed of throughput was to reduce the maximum transmission unit. This way, if

 38

errors occurred in packets, smaller amounts of data would be lost and require transmitting again.

The ideal number found for this application was around 300 bytes. This was determined through

trial and error. 300 bytes was the highest packet size that did not result in packet loss, and

anything less than this would increase transfer times unnecessarily. This may vary from situation

to situation, but it can be trivially changed with ifconfig.

We have investigated the inner workings of tunnel.py, and realized that poor documentation of

where certain signal processing blocks are and how they work is a tremendous drawback. This

resulted in consulting the mailing list, and attempting a temporary solution while waiting for a

response. That is, to write code to manipulate the simulated Ethernet connection between the two

USRPs on the OS level. Initial attempts at this were highly cumbersome – first generating a

signal and storing it to a file (similar to what has been done before), then using system calls to

execute SCP in the shell, requiring python executables to be manually run on both ends.

Working with Alex, another solution was designed. This involved compressing a file and moving

it through an SSH pipe. The SSH pipe called an executable file on the receiving computer, which

established a pipe in the opposite direction and sent the file back to a different directory on the

transmitting computer. This could be done with manual execution of only one file

(file_transmitter.py), and was far more effective than calling SCP.

This is still not the ideal case. It works on the OS level, exploiting SSH to accomplish the

required goals, and as such is somewhat slow. It is at least a good exercise in implementing GNU

Radio applications for other tasks. It would be much more efficient to redirect transmitted data

with GNU Radio directly. The most significant question is how to supply the digital

 39

transmission/reception applications (benchmark_tx.py, benchmark_rx.py, or processing blocks

that are subsets are these) packets or streams of data directly.

4.5.2 Initial Attempts at a Lower-Level Approach

A data streaming design works in theory, but not in practice. This is due to a hardware limitation

preventing daughterboards from transmitting and receiving simultaneously, which is a

requirement for data streaming. The tone transmitted was not received, and the approach had to

be discarded in favor of packet-based data transfer. However, this took a significant enough

portion of time to warrant mentioning here, as a path not to go down for future researchers or as

a starting point to work off of if the hardware flaw prohibiting simultaneous transmission and

reception of streams is no longer an issue in the future.

Much of the time investment for this design was directed toward seeking a reference for what

signal processing blocks were available to us, as well as how the benchmark_tx and

benchmark_rx applications work. Ultimately, we boiled it down to the use of lower-level blocks

than benchmark_*, and avoided using them in this case entirely. This is because they inherently

include modulation blocks, and we will want to insert already modulated data into the pipeline

from the FPGA at some point. As a result, we replace the benchmark transmission/ reception

with a series of less complicated blocks, including file_source(), file_sink(),

dbpsk_demod(), usrp_source_c(), and usrp_sink_c(). The arrangement of these blocks is

expressed graphically in figure 7, with figures 8 and 9 showing lower-level contents of the GNU

Radio flowcharts.

 40

PC 1

FPGA
GNU Radio

Flowchart

(Figure 8)
USRP 1 USRP 2

PC 2
GNU Radio

Flowchart

(Figure 9)

Figure 7: A top-level diagram of the pipeline. The FPGA on PC 1 supplies data to the flow graph, which
relays across the USRPs to the PC 2. The flow graph of PC 2 redirects anything received back to USRP 2.
The The two GNU Radio flow graphs are quite different and vary in complexity, as is show in figures 2 and 3.

FPGA

Signal

Generator

DBPSK

Modulation

file _source ():

Store FPGA

output as a file

usrp _sink():
Send stored

signal to USRP

USRP

usrp _source ():
On the receiving

computer , use

USRP as data

source

DBPSK _Demod :
Recover original data

from modulated

signal

file _sink ():
Store

demodulated

data in a file

Figure 8: The planned GNU Radio flow graph for PC 1, along with the tasks allotted to the FPGA. This
includes all signal processing blocks that should be needed, presuming DBPSK modulation was implemented
on the FPGA. The FPGA is represented by a character device node, and treated as a file source. Anything
received by the USRP from PC 2 is interpreted as a USRP source, demodulated as DBPSK, and stored as a
file. In the initial development process, prior to writing a DBPSK modulation block for the FPGA, the signal
processing blocks sig_source_c() and dbpsk_mod() can be used as a replacement. For this to function
properly with only the blocks in the diagram, the FPGA must output the generated signal as complex
numbers. This design was not completed, as streaming data transfer only works unidirectionally with GNU
Radio.

 41

Figure 9: The GNU Radio flow graph for PC 2. Quite simply, it interprets the USRP as a source, and
immediately directs any input back to the USRP as a sink. This is a loopback, so the receiver is a “dummy”,
for the moment only determining the functionality of the transmitter.

4.6 The Current Concept – A Packet-Based Approach

4.6.1 Unidirectional Communication

To resolve the problems present in stream-based data transfer, we further examined the

benchmark_tx.py and benchmark_rx.py applications. They could be adjusted to transmit

to/from files by implementing file I/O, having payload be read from a file using read() and the

received payload (with the exception of the two least significant bits) using write(). It was a

matter of knowing how to implement file I/O in python, and knowing where to place the

read/write functions. We had come to this realization after stumbling upon similar modifications

 42

for benchmark_tx, and developed the benchmark_rx modifications completely independently,

using the newfound knowledge that we could use file I/O to modify and read the payload string.

With these modifications, we now have unidirectional file transfer done properly – in a way that

can later be altered for new modulation options (the module where the benchmark files select

their modulation type, mod_pkts, has been identified), and is far more favorable to integrating

the FPGA. For instance, the function generator we used at the end of A term for FM transmission

could be implemented as a file source again. And if a DBPSK block is written for the FPGA, that

can be used and GNU Radio modulation can be removed.

4.6.2 Bidirectional Communication

The initial attempt at a relay for bidirectional communication (stream-based) also had to be

abandoned for a packet-based application, as the RFX2400 boards inherently cannot transmit and

receive at the same time. The initial relay consisted of a USRP source and sink receiving and

transmitting constantly (in theory). This does not work, because transmitting takes priority and

the application never receives.

To remedy this, we shifted away from creating a stream and tried instead to implement packet

exchange, as we had done in the alterations of his plan for unidirectional file transfer the prior.

This requires taking timing constraints into consideration, since one computer must be receiving

when the other is transmitting. The transmitter has a discontinuous mode, which sends a certain

number of packets before waiting for some period of time. This proved ideal for synchronization,

since the relay side could be made to know to receive a certain number of packets and then

 43

transmit, and the originating side could wait long enough after packet bursts to receive a series of

packets the same as it had just transmitted.

This application runs, but is unreliable. The RX callback function in the relay application (used

for both transmitting and receiving) is called whenever packets are received. Therefore, for the

last packet in a burst the relay USRP is attempting to transmit and receive at the same time, so

the packet is never sent back. If the number of packets in a burst is significantly large and the file

is a sine wave stored as a series of floats, this causes only minimal distortion to the final file, and

it is still usable. The greater problem is that many packets transmitted by the relay are not

properly received, and are dropped. Effectively implementing bidirectional communication had

to begin on a smaller scale, transmitting individual packets of known contents rather than large

files.

Implementing transmission of single packets with known packet contents in two directions

proved to be a far more straightforward and less error-prone task. Over the first weekend of C

term, we wrote programs for transmitting a user-specified string in a packet, relaying the packet

back to the transmitting computer, and displaying the original string contents/storing them in a

file. All of these tasks are now performed reliably. This was bought together with the FPGA in

loopback once the driver (see Chapter 5) was functional. For more on the loopback integration

results in this example, see Section 6.1.

Chapter Summary

Over the course of this project we applied GNU Radio to a variety of tasks, and checked FPGA

functionality (at least ostensibly, in the form of a loopback) at every stage. Ultimately, the FPGA

 44

integration was intended to be used to replace certain tasks within the GNU Radio pipeline. In

the following chapter, we will establish the architecture within the FPGA, and the means by

which it interacts with the pipeline.

 45

5. FPGA Architecture and GNU Radio Integration

5.1 Driver Development

The goal of the driver in this project was to integrate GNU radio and other applications such as

MATLAB with the hardware running on the FPGA. Even though many environments can be

extended to add new functionality using mechanisms such as MATLAB’s MEX modules and

GNU radio signal blocks we decided against using a specific solution similar to the solutions

mentioned above due to accessibility reasons. We did not want to create a solution that tailored

specifically to one data manipulation suite. Instead, we chose to implement the interface to our

hardware as a UNIX device-node.

If we look at the way file-IO is implemented in a modern operating system we find a buffered

bidirectional stream of data. This is why in UNIX derivitive operating systems the file metaphor

is used to access a wide variety of hardware. A device driver would create and associate itself

with a special virtual file called a device-node using device file system (devFS) or UNIX File

System (UFS) and then read and write from the other end of the buffer. On a modern Linux

system the following command:

cat /dev/urandom >> /dev/dsp

will result in static being played out of a user's speakers. The command reads the file

“/dev/urandom” which is a device node created by the random number generator. This file

provides random data every time it is read from. Then the output is redirected to the file

 46

/dev/dsp which is the device node for the computer’s sound card. Any writes to this file will

cause the written value to be fed into the DAC in the computer’s sound card. This forms a very

rudimentary data pipline as depicted in figure 10. This example shows how the "device as a file"

metaphor can be used to access hardware. A more controlled form of the above example could

be implemented using the ‘dd’ command:

dd if=/dev/urandom of=/dev/dsp bs=4 count=10

This command would copy 10 units of four bytes of data from the random number generator to

the sound card.

Figure 10: Visual Representation of cat /dev/urandom >> /dev/dsp forming a pipline.

For our platform, we will represent the configuration interface and both ends of each synthesized

pipeline as device-nodes. Figure 11 shows how our driver would interact with the hardware on

one end and the host application on the other end.

 47

Figure 11: A flowchart of the driver we use to push data to and from the FPGA

This method of design in addition to providing a easy to use interface abstracts the hardware

specific details and leaves them in the domain of the driver. As long as the same interface is

provided to the software portion of this problem the hardware and driver can be modified

without adversely affecting the software and breaking compatibility.

5.1.1 PCI Initialization

PCI express is an extension of the original PCI bus that replaces the physical parallel bus with a

much faster multi-serial packet based PHY. From a software level, however, it was designed to

look and behave similar to a PCI bus so much so that a system that is unaware of PCI express

can treat it as a plain old PCI bus and function properly.

 48

PCI was designed to replace industry standard arhitecture (ISA) which was an extension of the

80286’s processor bus. In addition to increasing performance, PCI included features such as

architecture independence, plug & play, auto configuration, and hot plug support. Both buses

allow the host system to communicate with hardware using memory mapped IO. This means that

once our card is configured we can access it as if it was memory. However, some of these

advanced features make setting up the card complicated.

When a PCI card powers up initially, it only responds to configuration requests. On a PCI bus

there are three memory spaces: Memory, IO, and configuration. Memory and IO address spaces

behave as they do on ISA, cards get mapped to specific address ranges and can be accessed by

using IO and memory transactions. However, the configuration address space exploits

geographic addressing. This means that no two cards will have conflicting configuration

addresses. Using this configuration space the host can then configure specifically what addresses

the card can respond to and achieve plug and play support without having the IO and memory be

geographically addressed.

When the system boots, the BIOS (or the OS) crawls through the bus and makes sure that no two

cards are conflicting with each other and have their memory regions (specified in the

configuration registers) mapped into system memory. Our driver has to associate itself with the

card and perform some configuration. The card type can be identified by the vendor and device

pair. XILINX has a vendor ID of 0x10EE and we assigned the device ID of 5050 to our card. We

then register two callback functions with the kernel telling it what it should do if our card

 49

(specified by the tuple) is added or removed from the system using the pci_register_driver()

function.

static struct pci_device_id pci_device_id_DevicePCI[] =
{
 {VENDOR_ID, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
 {}
}; // PCI identification struct. Associate with any xilinx products.

struct pci_driver pci_driver_DevicePCI =
{
 name: "MQP_TEST_VIRTEX5",
 id_table: pci_device_id_DevicePCI,
 probe: device_probe, // pointer to “card added” function
 remove: device_remove // pointer to “card removed” function
}; // describe our driver to the kernel.

res = pci_register_driver(&pci_driver_DevicePCI); // register functions
 if (res==0){ // driver sucsesfully loaded
 printk("PCIe driver loaded!\n");
 } else { // failure. Return an error.
 printk("something went wrong!\n");
 return res;
 }

Using the callback “probe” mechanism, we now have a way of finding and working with our

card. The “Add” function has to do three things. Initialize the card, Find out what base address

has been assigned to the desired BAR (memory block) and configure the system’s memory

management hardware to set up a mapping between our virtual memory and the system’s

physical memory for that specific range. The equivalent “virtual base address” is stored in a

struct for later use.

// enable card
ret = pci_enable_device(dev);
 if (ret < 0) return ret;
printk("Device enabled sucsesfully\n");

// configure translation for BAR0
mem_start = pci_resource_start(dev,0); // reigon zero. BAR0
mem_len = pci_resource_len(dev,0);
map=request_mem_region(mem_start,mem_len,"driver");
ml506.vmemadd=ioremap(mem_start,mem_len); // save the virtual address
ml506.memadd=pci_resource_start(dev,0);
ml506.memlen=pci_resource_len(dev,0); // We now know where our card is in
memory and can access it using memory transactions.

 50

 The “remove” function removes this mapping and disables the card, cleaning up after the “add”

function. Once the “add” callback function is called by the kernel our card can now be accessed

by simply writing into the memory range specified by the “virtual” base address and the length

of the memory block.

5.1.2 Character Device Initialization

A character device from the user’s point of view is a file. One can read and write to this file as

well as seek to an arbitrary position in the file much as you do with any other file. In this case,

however, all file operations are handled by our own functions that read and write to registers on

the peripheral card.

There are two numbers that represent our character device when combined. These are the major

number assigned to the driver and a minor number that the driver assigns to the character device.

In our driver since we only have one device we chose a minor number of zero. To register a

character device we first need to create a structure with pointers to our handler functions. We

then pass this pointer to the kernel along with a minor number using the register_chrdev()

function. This function returns our major number. To create the device node we use the

command mknod this way:

mknod /dev/device 253 0

 51

This makes a character device and connects it to driver 253 char device 0. Any interactions with

this file will cause our callbacks to be called.

5.1.3 Character Device Data Functions

The four required character device functions are device_read, device_write, device_open, and

device_release. These functions get called when our device node is read from, written to, opened,

or closed. These are the function prototypes for the four character device functions:

static int device_open(struct inode *, struct file *);
static int device_release(struct inode *, struct file *);
static ssize_t device_read(struct file *, char *, size_t, loff_t *);
static ssize_t device_write(struct file *, const char *, size_t, loff_t *);

In our situation the two important functions that contain the bulk of our code are the

“device_read” and “device_write” functions. These functions contain a pointer to a user

space buffer, the length of bytes to be written, and the offset into the file. For our application we

ignore the offset because our file has infinite length and seeking is irrelevant in that context. The

function’s return argument is how many bytes where written.

The FIFO on the FPGA can only handle 32 bit integers so we need to have four or more bytes in

the buffer. Our code checks the length and returns zero bytes if it is less than four. The user

space library should check this return value and keep trying until it was able to write all the data.

In a stream this is acceptable because data would be coming in four byte chunks. Once we have

enough data in the user space buffer we need to copy it into a kernel space buffer because kernel

space code and user space code have different virtual address spaces. This can be achieved with

the “copy_to_user(src,dest,count)” function.

 52

In our driver we copy the four bytes into an integer, change the ordering to little endian, and then

write it to the FIFO input register on the card. For reads the process is identical but reversed. We

wait until four bytes have been requested, read four bytes, change endianness, and copy to the

user space buffer.

Our driver implements a form of flow control. Since the FIFO on the card can only hold 1024

samples we keep a counter that gets incremented on a write and decremented on a read. If a read

occurs when the buffer is full we employ blocking IO where instead of returning “0 bytes read”

we put the process to sleep and wake it up when data has been written to the card. The same

thing happens when a write to a full buffer occurs. The downside of this method is that the read

and write pipelines have to be in separate threads.

5.1.4 Driver Debugging

One of the main problems we ran into when developing tie driver was figuring out how to

configure the mapping between physical and system memory. The card’s virtual address is

different from its physical address because it has been mapped into the processes memory space.

Initially we where not performing this translation and where trying to access the registers

returned from “pci_resource_start()“ when we should have been getting them from the pointer

returned by ioremap().

5.2 PCIe Interface Development Initial Attempt

We initially set 6 milestones for the development of the interface leading up to dynamic

reconfiguration. These milestones are as follows.

1. Hardware test using XILINX’s getting PCIe started guide.

 53

2. Synthesis of the provided Verilog code in an ISE project

3. Syntheses of a PCIe core without any application logic but with valid configuration

information.

4. Implementation of a read only memory with a predefined pattern.

5. Implementation of some sort of stream based data transport mechanisim

6. Extension of the step 5 state machine to write to the ICAP port and to a pipline.

5.2.1 Hardware and Environment Testing Using Reference Bitmap

When we initially began development in A term the first problem we ran into was intellectual

property issues. This was initially mostly due to being unaware that the trial version of the

XILINX ISE software did not have all of the side applications and privileges we needed -

namely, COREgen and root access. Upon realizing this, we attempted synthesize the desired core

on a network PC, after acquiring and installing the proper intellectual property permissions.

However, this proved unsuccessful due to the lack of administrator privileges on ECENET,

combined with XILINX having difficulties reading information from the network drive. Initially,

an attempt at synthesizing the core resulted in an error message in a window as follows:

XST has returned an error: ERROR:Xst:2367 - Unable to create .lso file
"endpint_blk_plus_v1_7_pcie_blk_plus_gen_1.lso"

The licencing error returned by COREGEN when we tried to install a trial licence for the PCIe Primative.
Our later solution used components that required no licences.

We assumed that this was some sort of permissions error being thrown by xilinx because the

software was designed to run with administrator privalages.

 54

We attempted saving our project on the Desktop rather than the M:/ drive. This got rid of that

error message during synthesis. However, error messages regarding the IP certificate ("Parsing

of check licence val <> failed.", etc.) appeared, and synthesis was unsuccessful. This is

likely due to the fact that the IP certificate had to be stored on the same drive as XILINX in order

to work properly, and XILINX is unable to read it off of the network drive (the only drive we

have access to on an ECE Department PC). We believe the solution to this is to be provided the

full version of XILINX ISE, to install on one of our own computers. This gives us administrator

privileges on the hard drive of the PC used, rather than relying on the problematic network drive.

We were reluctant to use our provided workstation for syntheses as well as testing because whe

where worried about bad hardware crashing the computer so we used a personal machine to

synthesize and transferred the bit streams to our workbench computer for testing. This proved to

be beneficial because initially the workbench computer would lock up as we debugged the

hardware. The example provided by XILINX was an implementation of a “memory card” which

would allow the host system to read and write to block-ram through the PCIe interface.

5.2.2 Compiling the Provided Example Code in ISE

Since the tutorial started from a partially generated bitmap and used batch scripts to synthesize

and implement the bitmap it was never intended to be more then an a example. In order to work

on the project further we would need to synthesize, from scratch, a valid bit stream from the

provided UCF and Verilog files in an ISE project. Since we know the hardware development

language (HDL) and UCF files provided with the example are correct and the board works the

only variable in test 2 would be the development environment. We ran into problems in this

stage. The first problem was with compile time directives not working properly. After reading

 55

through the code and determining the function of the compile time directives we modified some

of the Verilog such that they where not required. After this, we got the HDL to properly

synthesize and implement. Even though the synthesis process was successful, the generated core

would not work. Initially we thought it was a problem with IAR and proceeded to try and debug

the problem but could not find out what was wrong. After searching through the XILINX

community forums we finally found a person with a similar problem. In that case, the UCF file

was wrong and the wrong transceiver was selected in the UCF file. After consulting the

documentation the selected transceiver “GTP_DUAL_X0Y3” was connected to one of the

SATA connectors. The correct transceiver was “GTP_DUAL_X0Y1”

In addition to this the pins for the differential clock where set to F3 and F4 when they where

really connected to AF3 and AF4. After these changes where complete the generated bitmap

worked properly.

5.2.3 Generating a Bitmap with Only the PCIe MAC/PHY

In the PCI spec the card implements 3 address spaces: Configuration, Memory, and IO. The only

memory space the system itself writes to during the enumeration process is the configuration

space. The system uses a specified driver, if available, to further access the Memory and IO

spaces of the card because the details on how to access these is device specific and is the domain

of the driver. Since no driver was loaded by default for the vendor and device ID that where

programmed into the PCIe physical layer (PHY) the device should still be properly enumerated.

The purpose of this test was to find the boundary between the HDL needed to properly set up the

device and the application logic. Since there is no need to reinvent the wheel and write a top

block from scratch when it would be identical to the one provided in the example (only with

 56

more debugging) we decided to find the application specific VHDL and remove it in order to

find this boundary.

The top block contained two instantiated modules. One was the IP core and the other was the

module containing all of the application code. The top block contained a net for every one of the

approximately 200 inputs and outputs of the PCIe core and tied them to approx. 200

corresponding inputs on the application logic. After digging into the application logic block we

found a large portion of thoes signals, mostly configuration signals tied to hard coded values.

The rest of them went into a block labeled PIO. After digging deeper the PIO module whose

inputs where the two 64 bit busses and other bus control signals used to send and receive packets

we determined that this was the module to remove.

After removing this module and synthesizing and implementing the project we generated another

bitmap. After copying this to the FPGA and rebooting the computer we saw that the card had

successfully been enumerated.

5.2.4 Addressing Throughput Issues in the Project

Due to the type of bus interface we are using some sort of buffer in hardware is a must. Both

PCIe and GIGe are packet based protocols with rather large payloads and the efficiency drops

below 10% when single words of data are being sent. In addition to this it is hard to guarantee

arrival of the data periodically. However, the bandwidth of the bus is much higher then the

bandwidth we are likely to require so having a buffer of sufficient size would allow us to ensure

that there would be a constant stream of data available to the pipeline.

 57

Initially, Alex was planning a half-FIFO (see figure 12) rather than full FIFO arrangement for the

FPGA. The reasoning behind the half FIFO consisted of two main parts. The first part was an

interface to the PHY that had the highest probability of working and would be the easiest to

debug. The second part is to provide an interface with higher throughput and less overhead.

This design is called the half-FIFO because unlike a normal FIFO, which has a state machine for

both the read and write pointers, the half FIFO only has a state machine for the portion facing the

pipeline. The portion of the FIFO facing the PCIe PHY and the system is a standard memory

interface. This means that the entire buffer is mapped into the host systems memory.

The previous design idea had the output of a FIFO mapped into the system’s memory as a single

register and subsequent reads and writes to this register would push and pull elements out of the

FIFO. This is inefficient because each PCIe packet carries approximately 16-24 bytes in

overhead with 4 bytes of data. A more ideal solution would be to use bulk reads and writes,

which can carry up to 4k bytes of data. Managing half of the buffer in the driver allows for the

use of bulk data transfer which increases the throughput by decreasing the overhead.

The driver would keep a write pointer in a register that can be accessed from the FPGA. The

driver would write chunks of data at a time into the buffer and then add the amount to the write

pointer. Since the write pointer would essentially be in shared memory. The state machine would

be able to access this pointer and then assert control signals telling the pipeline that the buffer

has filled or emptied. In addition to being a more optimal solution it is also easier to implement

because blocks of memory are easy to interface with the core.

 58

A problem encountered while implementing the FIFO was that XILINX was not generating a

proper bit stream by using old files to generate a bitstream instead of newly synthesized files,

even after “clean project directory” was run and all IP cores where re-synthed, and replaced

several times. It would still generate an incorrect bitstream. The solution (after debugging the

code, then debugging the project.) was to start a new project and import all the source files and

re-generate the IP cores.

Figure 12: Half-FIFO Diagram showing our initial implementation of hardwate to pass data to and from the

host computer.

 59

The half-fifo was intended to allow the PCIe PHY to map the fifo pointers and memory into the

system’s address space so the driver could use a bulk memory write to update the FIFO

increasing efficienty. It behaved similar to a regular fifo but the read and write flags where set

by the host. Using these flags the driver running on the host could control the flow of samples

through the pipline

Even though we got the FIFO hardware working in a loopback mode with the outgoing and

incoming channels connected we ended up rethinking the way the buffer would be handled.

Initially, the reason we picked a memory-like interface for a portion of the fifo was to facilitate

bulk memory reads and writes provided that the PCIe paket decoding was updated as well. When

we switched to an EDK project we decided to use the fast simplex link to PLB bus interface in

conjunction with a MicroBlaze (or DMA controller). The data would arrive in bulk over the

PCIe interface and be stored in a SRAM buffer (the driver writes chunk of data to card’s

address), then the micro blaze or a DMA controller would copy the data out of SRAM and out

over the FSL interface. A FSL link itself is a FIFO of up to 1KB length. The FIFO in the FSL

link in conjunction with the SRAM is sufficiently pipelined to provide a continuous stream of

data.

Interfacing to the ICAP will be handled in a similar manner except the MicroBlaze will handle

copying configuration information out of SRAM and into the ICAP interface while handling

synchronization and other minutiae of downloading a bitmap over the ICAP interface. This ends

up being a more efficient then having the driver handle all aspects of configuration due to the

advantages of sending data in bulk over PCIe.

 60

5.2.5 The ICAP Interface

The group decided to implement a more complex method of dynamic reconfiguration involving a

microcontroller. The reasoning behind having a microcontroller in the system would make ICAP

easier to troubleshoot because we could have easier access to the ICAP primitive as well as allow

us to make the programming process more efficient and intelligent. The microcontroller and the

EDK where utilized to implement this programming interface. This portion of the project was

not completed tue to time restrictions.

5.3 PCI Re-implementation Using EDK

The embedded design kit (EDK) had additional modules that made it more worthwhile to replace

the work we had currently done with the EDK IP then to debug it. This proved to be a quicker

way of implementing PCIe due to available components such as the PCIe bridge and the PLB to

FSL bridge.

5.3.1 The PCIe to PLB Bridge and Its Role in the System

The most important component of the EDK project is the PCIe to PLB bridge. This bridge,

which uses the primitive as one of its subcomponents, translates memory reads and writes made

to the card’s BAR (Base Address Register) memory space and generates equivalent bus

transactions on the EDK SOC’s PLB. This bridge supports the reception of bulk packets

increasing efficiency.

The role of this component in our system is to facilitate the transfer of information from the

realm of the computer with the help of a device driver to the relm of the EDK project. The EDK

 61

SOC’s bus serves as an intermediary as shown in figure 13 allowing us to then manipulate this

information and route it. For example, ICAP configuration information may be pushed to the

ICAP interface initially or cached in SRAM while the micro blaze handles synchronization and

transfer of information. The same applies to samples. Sending samples in bulk, caching them in

SRAM and then having a DMA controller or the micro blaze copy them into the FSL link is

more efficient then accessing the FSL hardware using the bridge alone.

Figure 13: The operation of the PCIe to PLB bridge.

5.3.2 The FSL Link and Interfacing to the Pipline.

Getting information out of an EDK system is awkward, The only real options are to write your

own PLB peripheral and associate it with the proper metadata to get the EDK to recognize it and

allow you to use it or use a pre-existing component that implements an interface that would be

appropriate for your module and pull that interface out of the EDK project.

 62

For our design there were two types of external access we wanted to perform: Module

configuration and data flow. For module configuration we chose to use a LMB Memory

controller which connects devices that implement the same interface as a block ram to the PLB

bus. We intended to use geographical addressing for each of the modules splitting up the four

kbit memory space into 1000 kbit chunks by having the upper 2 address lines control enable

signals to the memory interface of each module. This would give the modules 1k of memory that

could be accessed by the computer through the PCIe Bridge. This memory space could be used

to set coefficients and module behavior.

For the data flow, we decided that modules would implement a fast simplex link protocol. The

FSL protocol is a point to point uni-directional link between a master device and a slave device.

It is a 32 bit synchronous bus with flow control signals. Each module would implement a slave

(input) and a master (output) interface. The PLB to FSL controller would also implement a

master interface for outputting samples and a slave interface for the return data. Modules could

be chained together end to end with the final link returning the data to the controller. The clock

speed of the interface is the clock speed at which the PLB bus runs. An example of this

configuration is shown in figure 14. In this case, clock speed is 125 MHz.

 63

Figure 14: A full pipeline of 4 modules connected end to end using FSL links and configured using a LMB
bus.

The implementation for our final demo only consists of one module and lacks a LMB interface

this is mostly due to time restrictions. In the demo the group used fixed coefficients, however, a

more refined version would have allowed for coefficients to be re-written using registers

accessed through the LMB interface. This would have shown how we pass module configuration

information to each module in addition to passing data through the pipline.

Figure 15: A simplified pipline with only one modual and a configuration interface. Our final demo used fixed
co-eficients and did not use a configuration interface although future revisions of the FIR filter would allow

the user to set these coefficients himself.

5.3.3 Test Environments

Initially, we would test the bitmap with XMD shown in figure 16 a XILINX debugging tool.

This debugger could generate bus transactions that where identical to the transactions generated

 64

by the PCIe bridge. It can be used immedietly after a reflash without a reboot so it was used

when initially debugging the module.

Figure 16: Verifying the functionality of the loopback interface via XMD by writing samples into one end of
the FIFO and reading them from the other. The FIFO addresses for input and output in this figure are
0x85a00000 and 0x85a00008. Functionality was verified by comparing the information coming out of the link
to what was sent in.

 65

The next tool that was used was PCI tree shown in figure 17. This program allows one to bring

up a card and read and write to its BAR regions without a driver. This was used to test the PCIe

interface after initial testing with XDB had prooben that the filter was functional.

Figure 17: PCItree doing a test on the FPGA's sram via the bus bridge. This software was used to verify the
functionality of the PCIe bridge.

 66

5.4 Platform Efficiency

5.4.1 Driver Efficiency

There is currently a significant amount of overhead incurred by the implementation of the driver.

Every time a sample is read or written to the card results in one syscall and a transition into

kernel space during streaming this overhead doubles. In addition to this performance is also lost

during the context switch from the reading and writing processes being swapped out. Ideally,

Sending code to the driver in bulk and then copying it to the card sample by sample from kernel

space would increase efficiency. Restructuring the writing (and reading) to more resemble the

pseudo code would accomplish this goal. The inefficient method was chosen for ease of

implementation:

While(counter>=4){
 Write32(address,*(buffer++));

Counter = counter-4;
}
 return counter;

5.4.2 PCIe Transfer Efficiency

Due to the way we transfer data over the PCIe bus we incur a 83% performance hit. This is due

to the ratio of data to header information in the packet. Every packet requires 5DW (32 bit Data

Words) of header. Since we are only sending one 32 bit sample at a time the stream of

information is 5/6 header and 1/6 data. The bus was designed to transfer data in bulk and if the

maximum TLP payload size of 4096 bytes or 1024DW is used the efficiency becomes 1024/1029

 67

which is 99.5%. Figure 18 contains a graph of throughput as a function of TLP size given by the

equation (P/P+5) where P is the payload in data words.

Figure 18: Graph of efficiency vs payload size

5.5 Demo Filter Implementation

5.5.1 FIR Filters

We chose to implement a finite impulse response (FIR) filter. This is a filter where delay line

taps are multiplied by foxed constants and then fed to the output. We chose a FIR finter instead

of an IIR (infinite impulse response), which employs loopback, because a FIR is more well

behaved when its coefficients are quantized.

 68

5.5.2 FIR Filter Implementation

For the demo we decided to implement a 4 and a 42 tap FIR filter on the FPGA using dsp48e

slices. The dsp48e slice is a multiplier paired with a multi-function ALU and routing. They are

stacked in columns with inter-column interconnections allowing them to run in chains at

500mhz. For a graphical representation, see figure 19.

Figure 19: A diagram showing the architecture of a DSP48e slice [Xilinx ug193 p.16].

Initially, when developing the filter we opted for the transposed FIR design for efficiency

reasons because the transposed design shifted the delay blocks into the adder chain, pipelining it

and allowing for a higher operating frequency. However we learned that the alternate solution of

tapping a delay line (figure 20) was also feasible, because a delay line could have been

implemented using the ACOUT (A input Carry OUT) cascade lines. Our solution utilised the

PCIN (Product Carry IN) and PCOUT (Product Carry OUT) inter-module connections with the

ALU configured to sum the PCIN input with the result of the multiplication.

 69

Figure 20: A data flow diagram of two cascading FIR blocks in the filter

For the initial filter we only used a small fraction of the column but for the RRC filter we used

42 out of 49 DSP48e slices.

Chapter Summary

Most of our time was spend on trying to get the FPGA board to communicate with the computer

and to get an example working. We succeeded in writing a driver, assembling a bitmap, and

creating a demo to show out project processing data that originated in the host. As part of future

work, we need to optimize the components to increase performance and implementing dynamic

reconfiguration.

 70

6. FPGA/GNU Radio Integration
We attempted two levels of FPGA integration into GNU Radio. The first was loopback, with the

FPGA simply taking data from one point in the pipeline and being read from in another point in

the pipeline to retrieve the same data. The second consisted of two filter applications being

executed on the FPGA: a lowpass filter, and a raised cosine filter.

6.1 Loopback

Some alterations to the original design had to be made in order to accommodate for how the

driver was designed. The input and output device nodes expected in the code had to be specified

as being the same node, and packet construction had to be changed from taking a string from

user input to reading from a file with a previously saved string within it. Text transmission with

FPGA loopback was considered theoretically functional, with slight defects. All of the

characters in the desired string, “hello world” (stored as text in a file), were received in the end.

However, the characters appeared out of proper order, starting in the middle and continuing

through the entire string from there. Resulting outputs included “orldhello w”, “ worldhello” and

“o worldhell”. The GNU Radio code for relaying text back and forth between computers is

somewhat similar to previous data transfer code, and has already been somewhat thoroughly

tested as working on its own. Furthermore, debugging by printing the string to terminal from the

transmitting computer has shown that the string that is originally transmitted matches the

received string. Thus, the problem lies in reading from or writing to the FPGA, either in the

driver or in the GNU Radio handling of the device node. This was a problem resulting from the

 71

last word entered being the first word read, even when it was part of a previous packet. Word

carry-over can be disabled, and has been, resulting in functional text transfer.

6.2 Lowpass and Raised Cosine Filters

Implementing a Viterbi decoding and convolutional encoding demo as well as a filtering demo,

as initially planned, proved to be too time-consuming. Dividing our efforts between multiple

demonstrations during the final two weeks available to us would result in a lack of time allotted

to debugging and benchmark testing. Furthermore, the concept of filter is more familiar overall,

and the results are more easily quantifiable when FPGA integration is compared to GNU Radio-

only implementation.

6.2.1 System Design

The filter structure itself consists of an arrangement of DSP48e slices. It is designed to handle

16-bit integers. The GNU Radio environment passes the filter floats, so proper float-to-int

conversion is required. Rather than conventional floating point numbers, we implemented binary

scaling. This involves some degree of rounding, scaling both the floats and filter coefficients by

65535 (16 bits). This, at first, resulted in an alteration in filter behaviour, shown in figure 21.

 72

Figure 21: 4th Order Low-Pass Filter, with MATLAB-calculated coefficients (left, B =1.0e003 *[0.0379 0.1138
0.1138 0.0379], A = [1.0000 -2.8626 2.7344 -0.8716]) and scaled/rounded coefficients (right, B = [2 7 7 2], A =

[1 0 0 0])

 73

The phase differs, as shown, but given that none of our signal processing is phase-dependent at

the moment, this is tolerable. There is an issue with this approximation, namely that the

attenuation remains at a near-constant -60dB until cutting off, whereas the MATLAB designed

filter begins at 0dB and gradually decreases. The consistent attenuation may be compensated for

by scaling the signal that passes through the filter, but performance still needs to be evaluated.

6.2.2 Comparison to GNU Radio only

Unlike the FPGA-integrated FM transmission with output filtering, the GNU Radio-only

implementation has different processing blocks than file sinks and sources for the handling of the

filter. The first generates the proper filter coefficients (optfir.lowpass()) and the next implements

the filter itself (gr.fir_filter_fff()). The FIR filter is integrated into the receiving pipeline, and the

results of the FM demodulation are filtered. With a transmitter configured to transmit three sine

waves on the same FM frequency, the low-pass filter (given the proper coefficients) will isolate

just one of them.

The GNU-Radio exclusive code is sound in theory, and transmitter and receiver each run without

errors, but confirmation of complete functionality reached a brief obstacle that held things back

approximately two days. The receiving program for FM filtering requires a sound card to have

observable results. The hardware is built into our workbench computer, but requires recompiling

the kernel to be supported. Reception is required to be on that computer, since it is the computer

with the FPGA installed. Theoretically we could swap the transmitting and receiving computers

for GNU Radio-only implementation, but YunLing also does not readily support the GUI. This

was resolved by replacing the audio sink with a file sink in the receiver program, and running the

transmitter on Wachusett.

 74

As a workaround for FPGA testing while rearranging GNU Radio FM transmission, we have

created a loopback pipeline which generates three sine waves, sums them, passes them through a

GNU Radio filter (later the FPGA) and stores them in a file. This file can be used as proof of

concept for FPGA integration, FPGA-integrated FM transmission with filtering could be

implemented in future works, once FPGA filtering is confirmed functional. Since full FPGA

integration functionality was not assured until the end of the project, this would ideally be an

initial demo in any future work.

When transmitting three summed sine waves of different frequencies and filtering above the

lowest frequency but below the second lowest with a lowpass filter, we expected to receive

exclusively the lowest frequency sine wave. This was not the result, however. When played back

on speakers, it was a series of periodic clicking noises we received, not a tone. We also stored

the results in a file, so we could reproduce and plot the output. The waveform in the time domain

is shown in figure 22.

 75

Figure 22: Output of our filter after being supplied a sum of sine waves. It appears to be noise.

This coincides with the sound we were hearing. It still looks roughly periodic (in that there are

primary and secondary spikes at similar locations). To get a better idea of how the filter was

behaving, we looked at the output in the frequency domain. The results can be found in figure

23.

 76

Figure 23: Frequency response of ineffective filter test. As expected from the time domain output, all but
low-frequency noise is attenuated.

It can be presumed from here, and was confirmed by getting a closer look, that the filter cuts off

at a very low frequency (as it turned out, 100 Hz). This was less than the 350 Hz cutoff

frequency by a fair margin.

To get a comparison, and to confirm that the filter was not simply skewing everything, we left

the post-modulation filter out and ran the summed signals over FM. The result was, again, not as

expected (figure 24).

 77

Figure 24: The unfiltered output of the sum of three sine waves varying in frequency. It appears to be high-

amplitude noise.

Rather than the sum of three sine waves of varying frequency, we get noise. We do not know

what would cause this result. Excessive noise, perhaps, but it was transmitted over copper wire

and it should not be this severe.

 78

Figure 25: Frequency response of unfiltered signal. Again, appears to be low-frequency noise. The noise still

appears confined to the frequencies of the sine waves used as the input signal, but there are no distinct peaks

present.

Frequency response (figure 25) portrays the same. There should be three distinct spikes of

equivalent amplitude, but there is instead low-frequency noise where the signals should be. As

this presents the possibility that the signal frequencies chosen were too close together, a final

attempt was made, using a wider range of frequencies (spaced apart at approximately 1000 Hz

intervals.

 79

Figure 26: Another summed signal, consisting of three sine waves with a wide range of frequencies rather
than similar frequencies. In the time-domain, there is no noticeable difference.

The time-domain output (figure 26) is effectively identical to frequencies that are close together.

To distinguish the difference, we need to look at the frequency domain.

 80

Figure 27: Frequency response of widespread frequency signal. Still seems like noise, but it is spread over

more frequencies.

Figure 27 shows that there is still noise spanning the range of the sine wave frequencies, and

there are no distinct peaks at the three sine wave frequencies.

Later we realized that the filter was functioning properly, but none of the signals were within the

range of the filter’s passband. Knowing this, we moved on to alternate testing signals, such as

impulse and white noise (figures 28 and 29 respectively). Also, for the sake of reliability, we

implemented the filter entirely on one computer rather than over USRP, using a single GNU

 81

Radio pipeline to send input values, implement the filter, and store output values. These had

noticeable results within the passband of the filter.

Figure 28: The impulse response for the lowpass filter we implemented entirely within GNU Radio. GNU
Radio designs filter coefficients for optimum performance with the optfir processing block, and in this case
specified 133 coefficients (a 132nd order filter). It has the following characteristics: Sampling frequency 32000
Hz, passband cutoff 340 Hz, stopband cutoff 1000 Hz. This was the filter expected to isolate one of the sine
waves in the sum of signals from the prior attempt, but it failed to do so. This is likely because the frequency
response of the signals lies unexpectedly beyond the non-attenuated range of the filter.

 82

Figure 29: The frequency response of the GNU Radio lowpass filter, given whit e noise. The attenuation
pattern matches the impulse response, but the amplitude is higher in magnitude. This is because the output
here is the product of the input (white noise), and the impulse response of the filter. It is attenuated relative to
the impulse response, but its amplitude is proportional to the amplitude of the white noise supplied to the
filter. Overall, it functions as expected.

6.2.3 FPGA Filter Testing

Prior to testing the FPGA filter, we decided to make alterations to the filter we were using, since

we were having trouble initially determining coefficients. We opted for a higher frequency cutoff

for the filter we chose, since its effect would be more readily observable. The passband cutoff

was moved up from 340 Hz to 8000 Hz, as will be apparent in the later plots.

Over the course of the last full week of C-term, the first attempt at an FPGA filter demo was

made. During debugging of the filter hardware, a program called DD was used for supplying

 83

input to the filter and reading its output; but for the purposes of the demo, we used GNU Radio

to perform these tasks. This provided the bare minimum for a demo. The filter being

implemented used only four taps. Furthermore, the FPGA could not both read and write

simultaneously with the existing drivers. The demo implemented two GNU Radio pipelines: one

for writing floats to the FPGA (an impulse, or white noise), and one for reading from the FPGA

and storing the results in a file. To plot the results and not have raw hexadecimal output, a

conversion script was required to make the floats acceptable for MATLAB’s textread function.

From there, standard MATLAB conventions can be used for plotting filter output. Furthermore,

to prove that the output was approximately correct, we implemented a filter with the same

coefficients in MATLAB outright and plotted the results. The frequency response for a delta

function is shown in figure 30, and figure 31 shows the frequency response to white noise.

Figure 30: Frequency response of the 4th-order lowpass filter to a delta function. The following plots reflect
the form of this impulse response.

 84

Figure 31: Frequency response from our FPGA filter. It appears less dense than the MATLAB-implemented
filter due to the acquisition of fewer data points, and the amplitude is different because it depends on the
amplitude of white noise passed through the filter at the time. It is the form of attenuation change that is
important.

For the sake of comparison to more dependable values, we implemented a filter with the same

coefficients in MATLAB. We chose MATLAB because it provides greater control over filter

qualities than GNU Radio does. GNU Radio has a processing block called optfir, which

calculates the optimal filter it can handle. There is no parameter for the order of the filter, which

is critical for a reliable comparison. In higher-order filters this would not make much of a

difference, but in low-order filters the form the filter takes varies very significantly between

orders. Given the coefficients we produced, MATLAB provided a plot with a similar form to our

filter. The MATLAB plot is shown in figure 32.

 85

Figure 32: Frequency response of a filter with similar coefficients in MATLAB.

Some technical difficulties while getting this far included the lack of decimal point in a

parameter for the GNU radio multiply block, which caused skewed the output to consist entirely

of the word FFFF repeating. This much was quickly remedied, but there was another technical

issue which left its mark on the entire demo – the FPGA was incapable of being written to and

read from simultaneously with the existing driver. This was a timing issue which was worked

around temporarily by manually swapping between reading and writing (kept in separate

applications). This works to test basic functionality of the filter, but to actually be practical, the

timing issue needed to be remedied. Alex investigated the driver to resolve the issue in the

coming days. Refer back to chapter five for a full description of driver development.

 86

6.2.4 GNU Radio and FPGA Bidirectional Communication

Below is a short GNU Radio pipeline implementing the new driver. Its purpose is to write an

impulse response to a character device node representing an FPGA (which contains a 4-

coefficient lowpass filter), read the FPGA's output, and store said output in a file.

When run, the program appears to make the proper function calls to the FPGA, and relays the

proper data. This is made evident by the output of the debug comments from within the driver,

shown in /var/log/messages. Table 2 shows the non-zero results of sending a delta function

through the fourth-order filter. The filter coefficients seem correct, so the pipeline appeared to be

operational.

Filter coefficients * 65535^2
(Hex)

Filter Coefficients
(Dec.)

0x4678F800 0.275291738
0x46838000 0.275452437
0x46838000 0.275452437
0x4678F800 0.275291738

Table 2: The four terms resulting from the impulse response of the filter (retrieved from the debugger). They
must be divided by 65535 to accommodate for the output being offset, and then again to get the original
coefficients. The second division is needed because the coefficients in the filter are scaled up since all input
signals are multiplied by 65535 for float-to-fixed conversion. The divisions take place in a GNU Radio
multiply_const_ff block, but the divided numbers are not shown in the debugger.

However, the pipeline at this stage just creates a destination file and does not write to it, leaving

a file of 0 bytes. The output of the debugger indicates that the proper values are being requested

and retrieved. The data is just not getting from the FPGA to its final destination properly. File IO

functioned properly with an earlier version of the driver (which did not support simultaneous

read/write). Still, this driver can read and write simultaneously. At first the fork() function in

Python’s OS module was thought the key to this, but it was later recommended by Eric Blossom

that we seek alternate means. Another function in the OS module, popen(), would be a suitable

 87

replacement that functions properly, but this could not be verified functional until the file IO

issue is resolved. Given the time constraints of the project, this was an issue that could not be

remedied. Possible causes of this are explained further in the Future Work chapter.

Another, more complicated filter design was implemented on the FPGA to show flexibility in the

filter implementation architecture. Adding more filter coefficients is a matter of adding filter taps

(each being a line of code in VHDL). As was the case with the 4th order filter in the section prior,

the filter coefficients for more complex filters can be calculated elsewhere (such as MATLAB)

and added in the VHDL filter, mimicking the behaviour of the designed filter. For our more

complicated example, we implement a 40th order raised-cosine filter, with sampling frequency at

32000 Hz and passband cutoff at 8000 Hz.

The raised-cosine filter proved to be more drastically affected by quantization than the lower

order filter appeared to be, due to conversion from float to fixed-point used integer

multiplications and divisions rather than floating-point operations, dropping off more decimal

places than would be lost otherwise. The error becomes apparent with the impulse response of

the filter, which dissipates in a similar manner to what is expected, but the rebounds afterward

that should be smooth curves are jagged. The imprecision due to quantization could be remedied

by our float-to-fixed conversion using more decimal places. But for that would require hardware

architecture restructuring, so for the sake of this demonstration, we will accept the margin of

error. The impulse response of our FPGA filter is shown in the figure 33.

 88

Figure 33: Frequency response of FPGA filter to a delta function. Notice jagged response at higher

frequencies, most notably at 10000 Hz and higher. This is stopband ripple, but the curves do not appear as
smooth as they should be. The jagged nature of the output is attributed to quantization error.

The frequency response of white noise follows the impulse response provided above relatively

well, as is seen in figure 34. For the sake of comparison, we will also show the output of a filter

of similar coefficients in MATLAB if supplied the same sample of white noise (figure 35).

 89

Figure 34: Frequency response of white noise after being passed through our raised-cosine filter. It is
apparent that this waveform follows the same pattern as the impulse response, dropping off after 8000 Hz.

 90

Figure 35: Frequency response as determined by MATLAB. As was the case before, there seems a higher
density of data points. Also, the difference between pre- and post-quantization is readily noticeable after
seeing both frequency response plots.

With this filter, we executed some performance testing. By timing the execution of passing a

known number of zeroes through the filter, then writing from the filter to /dev/null, we were able

calculate the bitrate for the filter given the current hardware driver. This manner of testing

indicated that the current driver is a severe bottleneck, producing only 63.3 kB/s when reading

and writing simultaneously, and 2 MB/s when not streaming constantly. This is sub-par for

typical filter hardware, and could be remedied with driver modifications. It explains the

appearance of fewer samples in our FPGA plot than in our MATLAB filter plot. The driver we

are currently using is the bare minimum for functionality, and should be modified in future work.

However, the basic concept is sound and can serve as a basis for other objectives.

 91

Chapter Summary

In summary, current status of GNU Radio integration is that it can write to FPGA and read from

FPGA. However, the file sink for the final destination data does not function properly. It

generates a destination file, but does not write to it. It is likely that this problem could be

remedied with changes either to the driver or to the GNU Radio file sink processing block. For

continuing work, we recommend that this bug be addressed first. Additional suggestions for

continuing work are provided in the next chapter.

 92

7. Future Work
There are a couple of key points that were once objectives of the project, which were dropped

due to time constraints. The first issue that should be addressed is the output aspect of file I/O in

the GNU Radio/FPGA filter pipeline. Since the implementation of bidirectional reading and

writing with the filter architecture, the file sink has not functioned as expected. The destination

file specified is created, but no data is written to it. As described in Section 6.2.4, the hardware

has been verified functional according to the debugger. There is likely a small bug within the

driver’s write function that does not affect operation, but does affect its interaction with GNU

Radio’s file_sink block. So the I/O problem could be resolved with either driver modification or

a workaround in GNU Radio to avoid using the file_sink block. However, we were not able to

deal with this problem due to lack of time. This should be the first matter to be dealt with should

anyone choose to continue the work of this project.

Aside from the I/O problem, streamlining the driver is very strongly recommended. Rewriting

the driver to accept data in bulk rather than individual words per packet would drastically

increase efficiency. The current driver, while functional, has a ratio of applicable data to header

data in its packets which is not viable in a practical application, and it shows in the noticeably

less dense collection of data points in our filter output plots. The hardware driver should be the

focus of any further work at first.

On the side of FPGA hardware architecture, the float to fixed-point conversion could be

improved, to increase the decimal point accuracy of quantized filter coefficients and more

accurately generate filters. It is still accurate enough as-is to get the general proof of concept, but

 93

for practical applications, using floating point numbers in the multiplications and divisions for

float-to-fixed conversion rather than integers is recommended. .

Another possibility that could stem from the outcome of our project would be to pursue

implementation of dynamic reconfiguration within the FPGA. This was one of the initial desires

of the project. But dynamic reconfiguration got put on hold, once again due to time constraints

and a need to get the hardware architecture of the FPGA functional to an acceptable level.

 94

8. Conclusion

Overall, some of our initial goals were accomplished over the course of this three-term project.

While we did not meet our initial goal of dynamic reconfiguration of our FPGA within GNU

Radio, we did provide mostly functional integration of an FPGA into GNU Radio pipelines with

both loopback and filtering applications. We have set up a foundation for future research into

dynamic reconfiguration for SDR. The process will be made far easier by already having an

FPGA integrated into an SDR pipeline and performing signal processing tasks in place of the

host PC.

This project has been an exercise in the use of GNU Radio, signal processing, and hardware

driver design. It would be advisable to have some background knowledge in these areas, prior to

continuing the work of this project, or to be prepared to research these subjects early on. A fair

portion of project work this term was trial and error while learning how to proceed in these

fields. For future work, we recommend addressing the file I/O bug, streamlining the device

driver, improving decimal point precision within the FPGA-implemented filter, and

implementing dynamic reconfiguration on the FPGA.

 95

 96

9. References

[1] R. I. Lackey and D. W. Upmat. “Speakeasy: The Military Software Radio.” IEEE

Communications Magazine, Vol. 33, No. 5, Pgs. 56-61, 1995.

[2] P. A. Eyermann. “Joint Tactical Radio Systems-A Solution to Avionics Modernization.”

Proceedings of 18th Digital Avionics Systems Conference (St. Louis, MO, USA), Vol. 2, Pgs.

9.A.5-1 - 9.A.5-8, 1999.

[3] W. Lehr, F. Merino, and S.E. Gillett. Software Radio: Implications for Wireless Services,

Industry Structure, and Public Policy. Massachusetts Institute of Technology Program on

Internet and Telecoms Convergence, 2002.

[4] Amara Amara, Fre´de´ric Amiel, Thomas Ea. “FPGA vs. ASIC for low power applications.”

Elsevier Microelectronics Journal, Vol. 37, Pg. 675, 2006.

 [5] J. H. Reed. Software Radio: A Modern Approach to Radio Engineering. Prentice Hall, Upper

Saddle River, New Jersey, 2002.

[6] V. Bose, M. Ismert, M. Welborn, and J. Guttag. “Virtual Radios.” IEEE Journal on Selected

Areas in Communications, Special Issue on Software Radios, Vol. 17, No. 4, Pgs. 591-602,

1999.

 [7] J. Chapin, V. Bose, “The Vanu Software Radio System”, Proceedings of the Software

Defined Radio Technical Conference (San Diego, CA, USA), November 2002.

 [8] Ettus Research LLC, “The Universal Software Radio Peripheral”, URL:

http://www.ettus.com/index.html

[9] Ettus Research LLC, “The Universal Software Radio Peripheral”, URL:

http://www.ettus.com/downloads/er_ds_usrp_v5b.pdf

 97

[10] R. Hosking, “Designing Software Radio Systems with FPGAs,” Embedded Technology, pp.

13-15, Sep. 2008.

[11] J. P. Delahaye, C. Moy, P. Leray, J. Palicot, "Managing Dynamic Partial Recon_guration on

Heterogeneous SDR Platforms", SDR Forum, November, 2005.

[12] J.-P. Delahaye, J. Palicot, P. Leray, "A hierarchical modeling approach in software defined

radio system design," IEEE Workshop on Signal Processing Systems Design and

Implementation, vol., no., pp. 42-47, 2-4 Nov. 2005.

 [13] F. Berthelot, F. Nouvel, "Partial and Dynamic Reconfiguration of FPGAs: a top down

design methodology for an automatic implementation," ISVLSI , pp. 436-437, 2006.

[14] J. P. Delahaye, J. Palicot, C. Moy, P. Leray, "Partial Recon_guration of FPGAs for

Dynamical Reconfiguration of a Software Radio Platform," 16th IST Mobile and Wireless

Communications Summit, vol., no., pp.1-5, 1-5 July 2007.

[15] P. Sedcole, B. Blodget, T. Becker, J. Anderson, P. Lysaght, "Modular dynamic

reconfiguration in Virtex FPGAs," IEEE Proceedings - Computers and Digital Techniques,

vol.153, no.3, pp. 157-164, 2 May 2006.

[16] E. Salminen, A. Kulmala, T. D. Hamalainen, "HIBI-based multiprocessor SoC on FPGA,"

IEEE International Symposium on Circuits and Systems (ISCAS 2005), vol., no., pp. 3351-3354

Vol. 4, 23-26 May 2005.

[17] J. P. Delahaye, G. Gogniat, C. Roland, P. Bomel, “Software Radio and Dynamic

Reconfiguration on a DSP/FPGA Platform”Software Defined Radio of Frequenz, May-June, No.

58, pp.152–159.

 98

[18] A. Dejonghe, J. Declerck, F. Naessens, M. Glassee, A. Dusa, E. Umans, A. Ng, B. Bougard,

G. Lenoir, J, Craninckx, L. Van der Perre, "Low-power SDRs through cross-layer control:

concepts at work," IST Mobile and Wireless Communications Summit, vol., no., pp.1-6, 1-5

July 2007.

[19] Dawei Shen. Tutorial 7: Exploring the FM receiver. 2005. http://www.snowymtn.ca/

GNURadio/ GNURAdioDoc-7.pdf

[20] Dawei Shen. Tutorial 8: Getting Prepared for Python in GNU Radio by

Reading the FM Receiver Code Line by Line – Part II. 2005. http://www.snowymtn.ca/

GNURadio/GNURAdioDoc-8.pdf

[21] DD invocation manual - http://www.gnu.org/software/coreutils/manual/html_node/dd-invocation.html

[22] Platform Studio and EDK documentation -

http://www.xilinx.com/ise/embedded/edk_docs.htm

 99

10. Appendices

FM Radio:

fm_tx.py:

#!/usr/bin/env python
from gnuradio import gr, eng_notation
from gnuradio import usrp
from gnuradio import audio
from gnuradio import blks
from gnuradio.eng_option import eng_option
from optparse import OptionParser
import usrp_dbid
import math
import sys

from gnuradio.wxgui import stdgui, fftsink
from gnuradio import tx_debug_gui
import wx

instantiate one transmit chain for each call

class pipeline(gr.hier_block):
 def __init__(self, fg, filename, lo_freq, audio_rate, if_rate):

 src = gr.file_source (gr.sizeof_float, filename, True)
 fmtx = blks.nbfm_tx (fg, audio_rate, if_rate,
 max_dev=5e3, tau=75e-6)

 # Local oscillator
 lo = gr.sig_source_c (if_rate, # sample rate
 gr.GR_SIN_WAVE, # waveform type
 lo_freq, #frequency
 1.0, # amplitude
 0) # DC Offset
 mixer = gr.multiply_cc ()

 fg.connect (src, fmtx, (mixer, 0))
 fg.connect (lo, (mixer, 1))

 gr.hier_block.__init__(self, fg, src, mixer)

class fm_tx_graph (stdgui.gui_flow_graph):
 def __init__(self, frame, panel, vbox, argv):
 stdgui.gui_flow_graph.__init__ (self, frame, panel, vbox, argv)

 100

 parser = OptionParser (option_class=eng_option)
 parser.add_option("-F", "--filename", type="string",
default="audio.dat",
 help="read input from FILE")
 parser.add_option("-T", "--tx-subdev-spec", type="subdev",
default=None,
 help="select USRP Tx side A or B")
 parser.add_option("-f", "--freq", type="eng_float", default=None,
 help="set Tx frequency to FREQ [required]",
metavar="FREQ")
 parser.add_option("","--debug", action="store_true", default=False,
 help="Launch Tx debugger")
 (options, args) = parser.parse_args ()

 if len(args) != 0:
 parser.print_help()
 sys.exit(1)

 if options.freq is None:
 sys.stderr.write("fm_tx4: must specify frequency with -f FREQ\n")
 parser.print_help()
 sys.exit(1)

 # --
 # Set up constants and parameters

 self.u = usrp.sink_c () # the USRP sink (consumes samples)

 self.dac_rate = self.u.dac_rate() # 128 MS/s
 self.usrp_interp = 400
 self.u.set_interp_rate(self.usrp_interp)
 self.usrp_rate = self.dac_rate / self.usrp_interp # 320 kS/s
 self.sw_interp = 10
 self.audio_rate = self.usrp_rate / self.sw_interp # 32 kS/s

 # determine the daughterboard subdevice we're using
 if options.tx_subdev_spec is None:
 options.tx_subdev_spec = usrp.pick_tx_subdevice(self.u)

 m = usrp.determine_tx_mux_value(self.u, options.tx_subdev_spec)
 #print "mux = %#04x" % (m,)
 self.u.set_mux(m)
 self.subdev = usrp.selected_subdev(self.u, options.tx_subdev_spec)
 print "Using TX d'board %s" % (self.subdev.side_and_name(),)

 self.subdev.set_gain(self.subdev.gain_range()[1]) # set max Tx
gain
 self.set_freq(options.freq)
 self.subdev.set_enable(True) # enable
transmitter

 sum = gr.add_cc ()

 # Instantiate channel
 t = pipeline (self, options.filename, 0, self.audio_rate,
self.usrp_rate)
 self.connect (t, (sum, 0))

 101

 gain = gr.multiply_const_cc (4000.0)

 # connect it all
 self.connect (sum, gain)
 self.connect (gain, self.u)

 # plot an FFT to verify we are sending what we want
 if 1:
 post_mod = fftsink.fft_sink_c(self, panel, title="Post
Modulation",
 fft_size=512,
sample_rate=self.usrp_rate,
 y_per_div=20, ref_level=40)
 self.connect (sum, post_mod)
 vbox.Add (post_mod.win, 1, wx.EXPAND)

 if options.debug:
 self.debugger = tx_debug_gui.tx_debug_gui(self.subdev)
 self.debugger.Show(True)

 def set_freq(self, target_freq):
 """
 Set the center frequency we're interested in.

 @param target_freq: frequency in Hz
 @rypte: bool

 Tuning is a two step process. First we ask the front-end to
 tune as close to the desired frequency as it can. Then we use
 the result of that operation and our target_frequency to
 determine the value for the digital up converter. Finally, we feed
 any residual_freq to the s/w freq translater.
 """

 r = self.u.tune(self.subdev._which, self.subdev, target_freq)
 if r:
 print "r.baseband_freq =",
eng_notation.num_to_str(r.baseband_freq)
 print "r.dxc_freq =", eng_notation.num_to_str(r.dxc_freq)
 print "r.residual_freq =",
eng_notation.num_to_str(r.residual_freq)
 print "r.inverted =", r.inverted

 # Could use residual_freq in s/w freq translator
 return True

 return False

def main ():
 app = stdgui.stdapp (fm_tx_graph, "Single-channel FM Tx")
 app.MainLoop ()

if __name__ == '__main__':
 main ()

 102

fm_rx.py:

#!/usr/bin/env python

from gnuradio import gr, gru, eng_notation, optfir
from gnuradio import audio
from gnuradio import usrp
from gnuradio import blks
from gnuradio.eng_option import eng_option
from gnuradio.wxgui import slider, powermate
from gnuradio.wxgui import stdgui, fftsink, form
from optparse import OptionParser
import usrp_dbid
import sys
import math
import wx

def pick_subdevice(u):
 """
 The user didn't specify a subdevice on the command line.
 Try for one of these, in order: TV_RX, BASIC_RX, whatever is on side A.

 @return a subdev_spec
 """
 return usrp.pick_subdev(u, (usrp_dbid.TV_RX,
 usrp_dbid.TV_RX_REV_2,
 usrp_dbid.BASIC_RX))

class wfm_rx_graph (stdgui.gui_flow_graph):
 def __init__(self,frame,panel,vbox,argv):
 stdgui.gui_flow_graph.__init__ (self,frame,panel,vbox,argv)

 usage="%prog: [options] output_filename"
 parser=OptionParser(option_class=eng_option)
 parser.add_option("-F", "--filename", type="string", default="USRP",
 help="read input from FILE")
 parser.add_option("-R", "--rx-subdev-spec", type="subdev",
default=None,
 help="select USRP Rx side A or B (default=A)")
 parser.add_option("-f", "--freq", type="eng_float", default=100.1e6,
 help="set frequency to FREQ", metavar="FREQ")
 parser.add_option("-g", "--gain", type="eng_float", default=40,
 help="set gain in dB (default is midpoint)")
 parser.add_option("-V", "--volume", type="eng_float", default=None,
 help="set volume (default is midpoint)")
 parser.add_option("-R", "--repeat", action="store_true", default=False)
 parser.add_option("-O", "--audio-output", type="string", default="",
 help="pcm device name. E.g., hw:0,0 or surround51
or /dev/dsp")

 (options, args) = parser.parse_args()
 if len(args) != 1:
 parser.print_help()

 103

 sys.exit(1)

 self.frame = frame
 self.panel = panel

 self.vol = 0
 self.state = "FREQ"
 self.freq = 0

 # build graph

 if options.filename is USRP:
 self.u = usrp.source_c() # usrp is data source
 else:
 self.u = gr.file_source (gr.sizeof_float, options.filename,
options.repeat)

 adc_rate = self.u.adc_rate() # 64 MS/s
 usrp_decim = 200
 self.u.set_decim_rate(usrp_decim)
 usrp_rate = adc_rate / usrp_decim # 320 kS/s
 chanfilt_decim = 1
 demod_rate = usrp_rate / chanfilt_decim
 audio_decimation = 10
 audio_rate = demod_rate / audio_decimation # 32 kHz

 if options.rx_subdev_spec is None:
 options.rx_subdev_spec = pick_subdevice(self.u)

 self.u.set_mux(usrp.determine_rx_mux_value(self.u,
options.rx_subdev_spec))
 self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec)
 print "Using RX d'board %s" % (self.subdev.side_and_name(),)

 chan_filt_coeffs = optfir.low_pass (1, # gain
 usrp_rate, # sampling rate
 80e3, # passband cutoff
 115e3, # stopband cutoff
 0.1, # passband ripple
 60) # stopband
attenuation
 #print len(chan_filt_coeffs)
 chan_filt = gr.fir_filter_ccf (chanfilt_decim, chan_filt_coeffs)

 self.guts = blks.wfm_rcv (self, demod_rate, audio_decimation)

 self.volume_control = gr.multiply_const_ff(self.vol)

 # file as final sink
 filename = args[0]
 file_sink = gr.file_sink (gr.sizeof_float, filename)

 # now wire it all together
 self.connect (self.u, chan_filt, self.guts, self.volume_control,
file_sink)

 104

 self._build_gui(vbox, usrp_rate, demod_rate, audio_rate)

 if options.gain is None:
 # if no gain was specified, use the mid-point in dB
 g = self.subdev.gain_range()
 options.gain = float(g[0]+g[1])/2

 if options.volume is None:
 g = self.volume_range()
 options.volume = float(g[0]+g[1])/2

 if abs(options.freq) < 1e6:
 options.freq *= 1e6

 # set initial values

 self.set_gain(options.gain)
 self.set_vol(options.volume)
 if not(self.set_freq(options.freq)):
 self._set_status_msg("Failed to set initial frequency")

 def _set_status_msg(self, msg, which=0):
 self.frame.GetStatusBar().SetStatusText(msg, which)

 def _build_gui(self, vbox, usrp_rate, demod_rate, audio_rate):

 def _form_set_freq(kv):
 return self.set_freq(kv['freq'])

 if 1:
 self.src_fft = fftsink.fft_sink_c (self, self.panel, title="Data
from USRP",
 fft_size=512,
sample_rate=usrp_rate)
 self.connect (self.u, self.src_fft)
 vbox.Add (self.src_fft.win, 4, wx.EXPAND)

 if 1:
 post_filt_fft = fftsink.fft_sink_f (self, self.panel, title="Post
Demod",
 fft_size=1024,
sample_rate=usrp_rate,
 y_per_div=10, ref_level=0)
 self.connect (self.guts.fm_demod, post_filt_fft)
 vbox.Add (post_filt_fft.win, 4, wx.EXPAND)

 if 0:
 post_deemph_fft = fftsink.fft_sink_f (self, self.panel,
title="Post Deemph",
 fft_size=512,
sample_rate=audio_rate,
 y_per_div=10, ref_level=-
20)
 self.connect (self.guts.deemph, post_deemph_fft)

 105

 vbox.Add (post_deemph_fft.win, 4, wx.EXPAND)

 # control area form at bottom
 self.myform = myform = form.form()

 hbox = wx.BoxSizer(wx.HORIZONTAL)
 hbox.Add((5,0), 0)
 myform['freq'] = form.float_field(
 parent=self.panel, sizer=hbox, label="Freq", weight=1,
 callback=myform.check_input_and_call(_form_set_freq,
self._set_status_msg))

 hbox.Add((5,0), 0)
 myform['freq_slider'] = \
 form.quantized_slider_field(parent=self.panel, sizer=hbox,
weight=3,
 range=(87.9e6, 108.1e6, 0.1e6),
 callback=self.set_freq)
 hbox.Add((5,0), 0)
 vbox.Add(hbox, 0, wx.EXPAND)

 hbox = wx.BoxSizer(wx.HORIZONTAL)
 hbox.Add((5,0), 0)

 myform['volume'] = \
 form.quantized_slider_field(parent=self.panel, sizer=hbox,
label="Volume",
 weight=3, range=self.volume_range(),
 callback=self.set_vol)
 hbox.Add((5,0), 1)

 myform['gain'] = \
 form.quantized_slider_field(parent=self.panel, sizer=hbox,
label="Gain",
 weight=3,
range=self.subdev.gain_range(),
 callback=self.set_gain)
 hbox.Add((5,0), 0)
 vbox.Add(hbox, 0, wx.EXPAND)

 try:
 self.knob = powermate.powermate(self.frame)
 self.rot = 0
 powermate.EVT_POWERMATE_ROTATE (self.frame, self.on_rotate)
 powermate.EVT_POWERMATE_BUTTON (self.frame, self.on_button)
 except:
 print "FYI: No Powermate or Contour Knob found"

 def on_rotate (self, event):
 self.rot += event.delta
 if (self.state == "FREQ"):
 if self.rot >= 3:
 self.set_freq(self.freq + .1e6)
 self.rot -= 3
 elif self.rot <=-3:

 106

 self.set_freq(self.freq - .1e6)
 self.rot += 3
 else:
 step = self.volume_range()[2]
 if self.rot >= 3:
 self.set_vol(self.vol + step)
 self.rot -= 3
 elif self.rot <=-3:
 self.set_vol(self.vol - step)
 self.rot += 3

 def on_button (self, event):
 if event.value == 0: # button up
 return
 self.rot = 0
 if self.state == "FREQ":
 self.state = "VOL"
 else:
 self.state = "FREQ"
 self.update_status_bar ()

 def set_vol (self, vol):
 g = self.volume_range()
 self.vol = max(g[0], min(g[1], vol))
 self.volume_control.set_k(10**(self.vol/10))
 self.myform['volume'].set_value(self.vol)
 self.update_status_bar ()

 def set_freq(self, target_freq):
 """
 Set the center frequency we're interested in.

 @param target_freq: frequency in Hz
 @rypte: bool

 Tuning is a two step process. First we ask the front-end to
 tune as close to the desired frequency as it can. Then we use
 the result of that operation and our target_frequency to
 determine the value for the digital down converter.
 """
 r = usrp.tune(self.u, 0, self.subdev, target_freq)

 if r:
 self.freq = target_freq
 self.myform['freq'].set_value(target_freq) # update
displayed value
 self.myform['freq_slider'].set_value(target_freq) # update
displayed value
 self.update_status_bar()
 self._set_status_msg("OK", 0)
 return True

 self._set_status_msg("Failed", 0)
 return False

 def set_gain(self, gain):

 107

 self.myform['gain'].set_value(gain) # update displayed value
 self.subdev.set_gain(gain)

 def update_status_bar (self):
 msg = "Volume:%r Setting:%s" % (self.vol, self.state)
 self._set_status_msg(msg, 1)
 self.src_fft.set_baseband_freq(self.freq)

 def volume_range(self):
 return (-20.0, 0.0, 0.5)

if __name__ == '__main__':
 app = stdgui.stdapp (wfm_rx_graph, "USRP WFM RX")
 app.MainLoop ()

Packet-based File transmission attempt:

file_reciever.py:

#!/usr/bin/env python

Copyright 2005,2006 Free Software Foundation, Inc.

This file is part of GNU Radio

GNU Radio is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Radio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Radio; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street,
Boston, MA 02110-1301, USA.

from gnuradio import gr, gru, modulation_utils
from gnuradio import usrp
from gnuradio import eng_notation
from gnuradio.eng_option import eng_option
from optparse import OptionParser

import random
import struct
import sys

from current dir
from receive_path import receive_path

 108

import fusb_options

#import os
#print os.getpid()
#raw_input('Attach and press enter: ')

class my_graph(gr.flow_graph):

 def __init__(self, demod_class, rx_callback, options):
 gr.flow_graph.__init__(self)
 self.rxpath = receive_path(self, demod_class, rx_callback, options)
 self.rxpath.subdev.select_rx_antenna('RX2')

///
main

///

global n_rcvd, n_right

def main():
 global n_rcvd, n_right

 n_rcvd = 0
 n_right = 0

 sink_file = open("./received_file.dat", 'a')

 def rx_callback(ok, payload):
 global n_rcvd, n_right
 (pktno,) = struct.unpack('!H', payload[0:2])
 n_rcvd += 1
 if ok:
 sink_file.write(payload[2:])
 n_right += 1

 print "ok = %5s pktno = %4d n_rcvd = %4d n_right = %4d" % (
 ok, pktno, n_rcvd, n_right)

 demods = modulation_utils.type_1_demods()

 # Create Options Parser:
 parser = OptionParser (option_class=eng_option,
conflict_handler="resolve")
 expert_grp = parser.add_option_group("Expert")

 parser.add_option("-m", "--modulation", type="choice",
choices=demods.keys(),
 default='gmsk',
 help="Select modulation from: %s [default=%%default]"
 % (', '.join(demods.keys()),))

 receive_path.add_options(parser, expert_grp)

 109

 for mod in demods.values():
 mod.add_options(expert_grp)

 fusb_options.add_options(expert_grp)
 (options, args) = parser.parse_args ()

 if len(args) != 0:
 parser.print_help(sys.stderr)
 sys.exit(1)

 if options.rx_freq is None:
 sys.stderr.write("You must specify -f FREQ or --freq FREQ\n")
 parser.print_help(sys.stderr)
 sys.exit(1)

 # build the graph
 fg = my_graph(demods[options.modulation], rx_callback, options)

 r = gr.enable_realtime_scheduling()
 if r != gr.RT_OK:
 print "Warning: Failed to enable realtime scheduling."

 fg.start() # start flow graph
 fg.wait() # wait for it to finish

if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 pass

file_transmitter.py:

#!/usr/bin/env python

Copyright 2005,2006 Free Software Foundation, Inc.

This file is part of GNU Radio

GNU Radio is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Radio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Radio; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street,

 110

Boston, MA 02110-1301, USA.

from gnuradio import gr, gru, modulation_utils
from gnuradio import usrp
from gnuradio import eng_notation
from gnuradio.eng_option import eng_option
from optparse import OptionParser

import random
import struct
import sys
import os
import time

from current dir
from receive_path import receive_path
from transmit_path import transmit_path
import fusb_options

#import os
#print os.getpid()
#raw_input('Attach and press enter: ')

class my_graph(gr.flow_graph):

 def __init__(self, demod_class, modulator_class, rx_callback, options):
 gr.flow_graph.__init__(self)
 self.rxpath = receive_path(self, demod_class, rx_callback, options)
 self.rxpath.subdev.select_rx_antenna('RX2')
 self.txpath = transmit_path(self, modulator_class, options)

///
main

///

global n_rcvd, n_right, pktnot

def main():
 global n_rcvd, n_right, pktnot

 n_rcvd = 0
 n_right = 0

 pktnot = 0

 def send_pkt(payload='', eof=False):
 return fg.txpath.send_pkt(payload, eof)

 def rx_callback(ok, payload):
 global n_rcvd, n_right, pktnot
 sink_file = open("./received_file.dat", 'a')
 (pktno,) = struct.unpack('!H', payload[0:2])

 111

 n_rcvd += 1
 if ok:
 if n_right % 5 is not 0:
 sink_file.write(payload[2:])
 #n_right += 1
 if n_right % 5 == 0:
 # generate and send packets
 time.sleep(1)
 source_file = open("./received_file.dat", 'r')
 nbytes = int(1e6 * 2.5)
 n = 0

 pkt_size = int(options.size)

 while n < nbytes:

 data = source_file.read(pkt_size - 2)

 if data == '':
 break;

 payload = struct.pack('!H', pktnot) + data

 send_pkt(payload)

 n += len(payload)

 sys.stderr.write('.')

 pktnot += 1

 os.remove("./received_file.dat")
 n_right += 1

 print "ok = %5s pktno = %4d n_rcvd = %4d n_right = %4d" % (
 ok, pktno, n_rcvd, n_right)

 demods = modulation_utils.type_1_demods()
 mods = modulation_utils.type_1_mods()

 # Create Options Parser:
 parser = OptionParser (option_class=eng_option,
conflict_handler="resolve")
 expert_grp = parser.add_option_group("Expert")

 parser.add_option("-q", "--demodulation", type="choice",
choices=demods.keys(),
 default='gmsk',
 help="Select demodulation from: %s [default=%%default]"
 % (', '.join(demods.keys()),))
 parser.add_option("-m", "--modulation", type="choice",
choices=mods.keys(),
 default='gmsk',

 112

 help="Select modulation from: %s [default=%%default]"
 % (', '.join(mods.keys()),))
 parser.add_option("-s", "--size", type="eng_float", default=1500,
 help="set packet size [default=%default]")
 parser.add_option("-T", "--tx-subdev-spec", type="subdev", default=None,
 help="select USRP Tx side A or B")
 parser.add_option("", "--tx-freq", type="eng_float", default=None,
 help="set transmit frequency to FREQ
[default=%default]", metavar="FREQ")
 parser.add_option("-i", "--interp", type="intx", default=None,
 help="set fpga interpolation rate to INTERP
[default=%default]")

 parser.add_option("", "--tx-amplitude", type="eng_float", default=12000,
metavar="AMPL",
 help="set transmitter digital amplitude: 0 <= AMPL
< 32768 [default=%default]")

 receive_path.add_options(parser, expert_grp)

 for mod in demods.values():
 mod.add_options(expert_grp)

 fusb_options.add_options(expert_grp)
 (options, args) = parser.parse_args ()

 if len(args) != 0:
 parser.print_help(sys.stderr)
 sys.exit(1)

 if options.rx_freq is None:
 sys.stderr.write("You must specify -f FREQ or --freq FREQ\n")
 parser.print_help(sys.stderr)
 sys.exit(1)

 # build the graph
 fg = my_graph(demods[options.modulation], mods[options.modulation],
rx_callback, options)

 r = gr.enable_realtime_scheduling()
 if r != gr.RT_OK:
 print "Warning: Failed to enable realtime scheduling."

 fg.start() # start flow graph
 fg.wait() # wait for it to finish

if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 pass

 113

fpga_file_transmitter.py:

#!/usr/bin/env python

Copyright 2005, 2006 Free Software Foundation, Inc.

This file is part of GNU Radio

GNU Radio is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GNU Radio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Radio; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street,
Boston, MA 02110-1301, USA.

from gnuradio import gr, gru, modulation_utils
from gnuradio import usrp
from gnuradio import eng_notation
from gnuradio.eng_option import eng_option
from optparse import OptionParser

import random, time, struct, sys

from current dir
from transmit_path import transmit_path
import fusb_options

#import os
#print os.getpid()
#raw_input('Attach and press enter')

class my_graph(gr.flow_graph):
 def __init__(self, modulator_class, options):
 gr.flow_graph.__init__(self)
 sample_rate = 32000
 ampl = 0.1

 src = gr.sig_source_f (sample_rate, gr.GR_SIN_WAVE, 350, ampl)

 filename = "/dev/FPGA_in"
 dst = gr.file_sink (gr.sizeof_float, filename)
 head = gr.head(gr.sizeof_float, 250000)
 self.connect((src, 0), head, dst)
 self.txpath = transmit_path(self, modulator_class, options)

 114

///
main

///

def main():

 def send_pkt(payload='', eof=False):
 return fg.txpath.send_pkt(payload, eof)

 def rx_callback(ok, payload):
 print "ok = %r, payload = '%s'" % (ok, payload)

 mods = modulation_utils.type_1_mods()

 parser = OptionParser(option_class=eng_option,
conflict_handler="resolve")
 expert_grp = parser.add_option_group("Expert")

 parser.add_option("-m", "--modulation", type="choice",
choices=mods.keys(),
 default='gmsk',
 help="Select modulation from: %s [default=%%default]"
 % (', '.join(mods.keys()),))

 parser.add_option("-s", "--size", type="eng_float", default=500,
 help="set packet size [default=%default]")
 parser.add_option("-b", "--burst-size", type="eng_float", default=500,
 help="set packet burst size [default=%default]")
 parser.add_option("-M", "--megabytes", type="eng_float", default=3.0,
 help="set megabytes to transmit [default=%default]")
 parser.add_option("","--discontinuous", action="store_true",
default=False,
 help="enable discontinous transmission (bursts of
packets determined by burst size)")

 transmit_path.add_options(parser, expert_grp)

 for mod in mods.values():
 mod.add_options(expert_grp)

 fusb_options.add_options(expert_grp)
 (options, args) = parser.parse_args ()

 if len(args) != 0:
 parser.print_help()
 sys.exit(1)

 if options.tx_freq is None:
 sys.stderr.write("You must specify -f FREQ or --freq FREQ\n")
 parser.print_help(sys.stderr)
 sys.exit(1)

 115

 source_file = open("/dev/FPGA_out", 'r')

 # build the graph

 fg = my_graph(mods[options.modulation], options)

 r = gr.enable_realtime_scheduling()
 if r != gr.RT_OK:
 print "Warning: failed to enable realtime scheduling"

 fg.start() # start flow graph

 # generate and send packets
 nbytes = int(1e6 * options.megabytes)
 n = 0
 pktno = 0
 pkt_size = int(options.size)

 while n < nbytes:
 if options.file_source is None:
 data = (pkt_size - 2) * chr(pktno & 0xff)

 else:
 data = source_file.read(pkt_size - 2)
 if data == '':
 break;

 payload = struct.pack('!H', pktno) + data

 send_pkt(payload)

 n += len(payload)

 sys.stderr.write('.')

 if options.discontinuous and pktno % options.burst_size ==
(options.burst_size - 1):
 time.sleep(5)
 pktno += 1

 print 'pktno = ', pktno, 'n = ', n
 raw_input('Press any key to continue.')
 send_pkt(eof=True)
 fg.wait() # wait for it to finish

if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 pass

loopback_demo.py:

 116

#!/usr/bin/env python

Copyright 2005,2006 Free Software Foundation, Inc.

This file is part of GNU Radio

GNU Radio is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Radio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Radio; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street,
Boston, MA 02110-1301, USA.

from gnuradio import gr, gru, modulation_utils
from gnuradio import usrp
from gnuradio import eng_notation
from gnuradio.eng_option import eng_option
from optparse import OptionParser

import random
import struct
import sys
import os
import time

from current dir
from receive_path import receive_path
from transmit_path import transmit_path
import fusb_options

#import os
#print os.getpid()
#raw_input('Attach and press enter: ')

class my_graph(gr.flow_graph):

 def __init__(self, demod_class, modulator_class, rx_callback, options):
 gr.flow_graph.__init__(self)
 self.rxpath = receive_path(self, demod_class, rx_callback, options)
 self.rxpath.subdev.select_rx_antenna('RX2')
 self.txpath = transmit_path(self, modulator_class, options)

///
main

 117

///

global n_rcvd, n_right, pktnot

def main():
 global n_rcvd, n_right, pktnot

 n_rcvd = 0
 n_right = 0

 pktnot = 0

 def send_pkt(payload='', eof=False):
 return fg.txpath.send_pkt(payload, eof)

 def rx_callback(ok, payload):
 global n_rcvd, n_right, pktnot
 sink_file = open("./received_file.dat", 'a')
 (pktno,) = struct.unpack('!H', payload[0:2])
 n_rcvd += 1
 if ok:
 if n_right % 5 is not 0:
 sink_file.write(payload[2:])
 #n_right += 1
 if n_right % 5 == 0:
 # generate and send packets
 time.sleep(1)
 source_file = open("./received_file.dat", 'r')
 nbytes = int(1e6 * 2.5)
 n = 0

 pkt_size = int(options.size)

 while n < nbytes:

 data = source_file.read(pkt_size - 2)

 if data == '':
 break;

 payload = struct.pack('!H', pktnot) + data

 send_pkt(payload)

 n += len(payload)

 sys.stderr.write('.')

 pktnot += 1

 os.remove("./received_file.dat")
 n_right += 1

 print "ok = %5s pktno = %4d n_rcvd = %4d n_right = %4d" % (

 118

 ok, pktno, n_rcvd, n_right)

 demods = modulation_utils.type_1_demods()
 mods = modulation_utils.type_1_mods()

 # Create Options Parser:
 parser = OptionParser (option_class=eng_option,
conflict_handler="resolve")
 expert_grp = parser.add_option_group("Expert")

 parser.add_option("-q", "--demodulation", type="choice",
choices=demods.keys(),
 default='gmsk',
 help="Select demodulation from: %s [default=%%default]"
 % (', '.join(demods.keys()),))
 parser.add_option("-m", "--modulation", type="choice",
choices=mods.keys(),
 default='gmsk',
 help="Select modulation from: %s [default=%%default]"
 % (', '.join(mods.keys()),))
 parser.add_option("-s", "--size", type="eng_float", default=1500,
 help="set packet size [default=%default]")
 parser.add_option("-T", "--tx-subdev-spec", type="subdev", default=None,
 help="select USRP Tx side A or B")
 parser.add_option("", "--tx-freq", type="eng_float", default=None,
 help="set transmit frequency to FREQ
[default=%default]", metavar="FREQ")
 parser.add_option("-i", "--interp", type="intx", default=None,
 help="set fpga interpolation rate to INTERP
[default=%default]")

 parser.add_option("", "--tx-amplitude", type="eng_float", default=12000,
metavar="AMPL",
 help="set transmitter digital amplitude: 0 <= AMPL
< 32768 [default=%default]")

 receive_path.add_options(parser, expert_grp)

 for mod in demods.values():
 mod.add_options(expert_grp)

 fusb_options.add_options(expert_grp)
 (options, args) = parser.parse_args ()

 if len(args) != 0:
 parser.print_help(sys.stderr)
 sys.exit(1)

 if options.rx_freq is None:
 sys.stderr.write("You must specify -f FREQ or --freq FREQ\n")
 parser.print_help(sys.stderr)
 sys.exit(1)

 119

 # build the graph
 fg = my_graph(demods[options.modulation], mods[options.modulation],
rx_callback, options)

 r = gr.enable_realtime_scheduling()
 if r != gr.RT_OK:
 print "Warning: Failed to enable realtime scheduling."

 fg.start() # start flow graph
 fg.wait() # wait for it to finish

if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 pass

Packet-based message transmission:

nofpga_message_transmitter.py:

#!/usr/bin/env python

Copyright 2005, 2006 Free Software Foundation, Inc.

This file is part of GNU Radio

GNU Radio is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GNU Radio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Radio; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street,
Boston, MA 02110-1301, USA.

from gnuradio import gr, gru, modulation_utils
from gnuradio import usrp
from gnuradio import eng_notation
from gnuradio.eng_option import eng_option
from optparse import OptionParser

import random, time, struct, sys

from current dir
from transmit_path import transmit_path
import fusb_options

 120

#import os
#print os.getpid()
#raw_input('Attach and press enter')

class my_graph(gr.flow_graph):
 def __init__(self, modulator_class, options):
 gr.flow_graph.__init__(self)
 self.txpath = transmit_path(self, modulator_class, options)

///
main

///

def main():

 def send_pkt(payload='', eof=False):
 return fg.txpath.send_pkt(payload, eof)

 def rx_callback(ok, payload):
 print "ok = %r, payload = '%s'" % (ok, payload)

 mods = modulation_utils.type_1_mods()

 parser = OptionParser(option_class=eng_option,
conflict_handler="resolve")
 expert_grp = parser.add_option_group("Expert")

 parser.add_option("-m", "--modulation", type="choice",
choices=mods.keys(),
 default='gmsk',
 help="Select modulation from: %s [default=%%default]"
 % (', '.join(mods.keys()),))

 transmit_path.add_options(parser, expert_grp)

 for mod in mods.values():
 mod.add_options(expert_grp)

 fusb_options.add_options(expert_grp)
 (options, args) = parser.parse_args ()

 if len(args) != 0:
 parser.print_help()
 sys.exit(1)

 if options.tx_freq is None:
 sys.stderr.write("You must specify -f FREQ or --freq FREQ\n")
 parser.print_help(sys.stderr)
 sys.exit(1)

 121

 # build the graph

 fg = my_graph(mods[options.modulation], options)

 r = gr.enable_realtime_scheduling()
 if r != gr.RT_OK:
 print "Warning: failed to enable realtime scheduling"

 fg.start() # start flow graph

 # generate and send packets
 pktno = 0
 data = raw_input("Enter your message here: ")

 payload = struct.pack('!H', pktno) + data

 send_pkt(payload)

 sys.stderr.write('Message Transmission Complete. ')

 raw_input('Press any key to continue.')
 send_pkt(eof=True)
 fg.wait() # wait for it to finish

if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 pass

fpga_message_transmitter.py;

#!/usr/bin/env python

Copyright 2005, 2006 Free Software Foundation, Inc.

This file is part of GNU Radio

GNU Radio is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GNU Radio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Radio; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street,
Boston, MA 02110-1301, USA.

 122

from gnuradio import gr, gru, modulation_utils
from gnuradio import usrp
from gnuradio import eng_notation
from gnuradio.eng_option import eng_option
from optparse import OptionParser

import random, time, struct, sys

from current dir
from transmit_path import transmit_path
import fusb_options

#import os
#print os.getpid()
#raw_input('Attach and press enter')

class my_graph(gr.flow_graph):
 def __init__(self, modulator_class, options):
 gr.flow_graph.__init__(self)

 src = gr.file_source (gr.sizeof_char, "./message.dat")

 filename = "/dev/FPGA_in"
 dst = gr.file_sink (gr.sizeof_float, filename)
 self.connect((src, 0), dst)
 self.txpath = transmit_path(self, modulator_class, options)

///
main

///

def main():

 def send_pkt(payload='', eof=False):
 return fg.txpath.send_pkt(payload, eof)

 def rx_callback(ok, payload):
 print "ok = %r, payload = '%s'" % (ok, payload)

 mods = modulation_utils.type_1_mods()

 parser = OptionParser(option_class=eng_option,
conflict_handler="resolve")
 expert_grp = parser.add_option_group("Expert")

 parser.add_option("-m", "--modulation", type="choice",
choices=mods.keys(),
 default='gmsk',
 help="Select modulation from: %s [default=%%default]"

 123

 % (', '.join(mods.keys()),))

 transmit_path.add_options(parser, expert_grp)

 for mod in mods.values():
 mod.add_options(expert_grp)

 fusb_options.add_options(expert_grp)
 (options, args) = parser.parse_args ()

 if len(args) != 0:
 parser.print_help()
 sys.exit(1)

 if options.tx_freq is None:
 sys.stderr.write("You must specify -f FREQ or --freq FREQ\n")
 parser.print_help(sys.stderr)
 sys.exit(1)

 source_file = open("/dev/FPGA_out", 'r')

 # build the graph

 fg = my_graph(mods[options.modulation], options)

 r = gr.enable_realtime_scheduling()
 if r != gr.RT_OK:
 print "Warning: failed to enable realtime scheduling"

 fg.start() # start flow graph

 # generate and send packets

 pktno = 0
 pkt_size = int(options.size)
 message = "hello world" # need to find a better way to determine file
length eventually
 data = source_file.read(len(message))

 payload = struct.pack('!H', pktno) + data

 send_pkt(payload)

 sys.stderr.write('Message Transmitted.')

 pktno += 1

 print 'pktno = ', pktno
 raw_input('Press any key to continue.')
 send_pkt(eof=True)
 fg.wait() # wait for it to finish

if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:

 124

 pass

relay_small.py:

#!/usr/bin/env python

Copyright 2005,2006 Free Software Foundation, Inc.

This file is part of GNU Radio

GNU Radio is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Radio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Radio; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street,
Boston, MA 02110-1301, USA.

from gnuradio import gr, gru, modulation_utils
from gnuradio import usrp
from gnuradio import eng_notation
from gnuradio.eng_option import eng_option
from optparse import OptionParser

import random
import struct
import sys
import os
import time

from current dir
from receive_path import receive_path
from transmit_path import transmit_path
import fusb_options

#import os
#print os.getpid()
#raw_input('Attach and press enter: ')

class my_graph(gr.flow_graph):

 def __init__(self, demod_class, modulator_class, rx_callback, options):
 gr.flow_graph.__init__(self)
 self.rxpath = receive_path(self, demod_class, rx_callback, options)
 self.rxpath.subdev.select_rx_antenna('RX2')
 self.txpath = transmit_path(self, modulator_class, options)

///
main
///

 125

global n_rcvd, n_right, pktnot

def main():
 global n_rcvd, n_right, pktnot
 n_rcvd = 0
 n_right = 0
 pktnot = 0
 def send_pkt(payload='', eof=False):
 return fg.txpath.send_pkt(payload, eof)
 def rx_callback(ok, payload):
 global n_rcvd, n_right, pktnot

 (pktno,) = struct.unpack('!H', payload[0:2])
 n_rcvd += 1
 if ok:

 print payload[2:]

 # generate and send packets
 time.sleep(1)

 pkt_size = len(payload)

 data = payload[2:]

 payload2 = struct.pack('!H', pktnot) + data

 send_pkt(payload2)

 sys.stderr.write('Message Received and Relayed.')

 pktnot += 1
 n_right += 1
 if not ok:
 print "Packet not received."

 print "ok = %5s pktno = %4d n_rcvd = %4d n_right = %4d" % (ok, pktno,
n_rcvd, n_right)

 demods = modulation_utils.type_1_demods()
 mods = modulation_utils.type_1_mods()

 # Create Options Parser:
 parser = OptionParser (option_class=eng_option, conflict_handler="resolve")
 expert_grp = parser.add_option_group("Expert")

 parser.add_option("-q", "--demodulation", type="choice", choices=demods.keys(),
 default='gmsk',
 help="Select demodulation from: %s [default=%%default]"
 % (', '.join(demods.keys()),))
 parser.add_option("-m", "--modulation", type="choice", choices=mods.keys(),
 default='gmsk',
 help="Select modulation from: %s [default=%%default]"
 % (', '.join(mods.keys()),))
 parser.add_option("-s", "--size", type="eng_float", default=1500,
 help="set packet size [default=%default]")
 parser.add_option("-b", "--burst-size", type="eng_float", default=500,
 help="set packet burst size [default=%default]")
 parser.add_option("-T", "--tx-subdev-spec", type="subdev", default=None,

 126

 help="select USRP Tx side A or B")
 parser.add_option("", "--tx-freq", type="eng_float", default=None,
 help="set transmit frequency to FREQ [default=%default]",
metavar="FREQ")
 parser.add_option("-i", "--interp", type="intx", default=None,
 help="set fpga interpolation rate to INTERP
[default=%default]")

 parser.add_option("", "--tx-amplitude", type="eng_float", default=12000,
metavar="AMPL",
 help="set transmitter digital amplitude: 0 <= AMPL < 32768
[default=%default]")

 receive_path.add_options(parser, expert_grp)

 for mod in demods.values():
 mod.add_options(expert_grp)

 fusb_options.add_options(expert_grp)
 (options, args) = parser.parse_args ()

 if len(args) != 0:
 parser.print_help(sys.stderr)
 sys.exit(1)

 if options.rx_freq is None:
 sys.stderr.write("You must specify -f FREQ or --freq FREQ\n")
 parser.print_help(sys.stderr)
 sys.exit(1)

 # build the graph
 fg = my_graph(demods[options.modulation], mods[options.modulation], rx_callback,
options)

 r = gr.enable_realtime_scheduling()
 if r != gr.RT_OK:
 print "Warning: Failed to enable realtime scheduling."

 fg.start() # start flow graph
 fg.wait() # wait for it to finish

if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 pass

message_receiver.py:

#!/usr/bin/env python

Copyright 2005,2006 Free Software Foundation, Inc.

This file is part of GNU Radio

GNU Radio is free software; you can redistribute it and/or modify

 127

it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Radio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Radio; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street,
Boston, MA 02110-1301, USA.

from gnuradio import gr, gru, modulation_utils
from gnuradio import usrp
from gnuradio import eng_notation
from gnuradio.eng_option import eng_option
from optparse import OptionParser

import random
import struct
import sys

from current dir
from receive_path import receive_path
import fusb_options

#import os
#print os.getpid()
#raw_input('Attach and press enter: ')

class my_graph(gr.flow_graph):

 def __init__(self, demod_class, rx_callback, options):
 gr.flow_graph.__init__(self)
 self.rxpath = receive_path(self, demod_class, rx_callback, options)
 self.rxpath.subdev.select_rx_antenna('RX2')

///
main

///

global n_rcvd, n_right

def main():
 global n_rcvd, n_right

 n_rcvd = 0
 n_right = 0

 128

 def rx_callback(ok, payload):
 global n_rcvd, n_right
 sink_file = open("./received_file.dat", 'a')
 (pktno,) = struct.unpack('!H', payload[0:2])
 n_rcvd += 1
 if ok:
 sink_file.write(payload[2:])
 print "Incoming message: ", payload[2:]
 n_right += 1
 sink_file.close()

 #print "ok = %5s pktno = %4d n_rcvd = %4d n_right = %4d" % (
 #ok, pktno, n_rcvd, n_right)

 demods = modulation_utils.type_1_demods()

 # Create Options Parser:
 parser = OptionParser (option_class=eng_option,
conflict_handler="resolve")
 expert_grp = parser.add_option_group("Expert")

 parser.add_option("-m", "--modulation", type="choice",
choices=demods.keys(),
 default='gmsk',
 help="Select modulation from: %s [default=%%default]"
 % (', '.join(demods.keys()),))

 receive_path.add_options(parser, expert_grp)

 for mod in demods.values():
 mod.add_options(expert_grp)

 fusb_options.add_options(expert_grp)
 (options, args) = parser.parse_args ()

 if len(args) != 0:
 parser.print_help(sys.stderr)
 sys.exit(1)

 if options.rx_freq is None:
 sys.stderr.write("You must specify -f FREQ or --freq FREQ\n")
 parser.print_help(sys.stderr)
 sys.exit(1)

 # build the graph
 fg = my_graph(demods[options.modulation], rx_callback, options)

 r = gr.enable_realtime_scheduling()
 if r != gr.RT_OK:
 print "Warning: Failed to enable realtime scheduling."

 fg.start() # start flow graph
 fg.wait() # wait for it to finish

 129

if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 pass

Stream-based File Transmission:

streaming_loopback.py:

GNU Radio is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GNU Radio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Radio; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street,
Boston, MA 02110-1301, USA.

from gnuradio import gr, gru
from gnuradio import usrp
from gnuradio import audio
from gnuradio import blks
from gnuradio.eng_option import eng_option
from optparse import OptionParser
import sys
import math
import wx

class my_graph(gr.flow_graph):

 def __init__(self):
 gr.flow_graph.__init__(self)

 self.source = usrp.source_c(0, 250)
 self.sink = usrp.sink_c (0, 250)
 self.connect(self.source, self.sink)

 def set_freq(self, target_freq):
 """
 Set the center frequency we're interested in.

 @param target_freq: frequency in Hz
 @rypte: bool

 Tuning is a two step process. First we ask the front-end to

 130

 tune as close to the desired frequency as it can. Then we use
 the result of that operation and our target_frequency to
 determine the value for the digital up converter.
 """
 r = self.sink.tune(self.subdev._which, self.subdev, target_freq)
 if r:
 #print "r.baseband_freq =",
eng_notation.num_to_str(r.baseband_freq)
 #print "r.dxc_freq =",
eng_notation.num_to_str(r.dxc_freq)
 #print "r.residual_freq =",
eng_notation.num_to_str(r.residual_freq)
 #print "r.inverted =", r.inverted
 return True

 return False

def main ():
 parser = OptionParser (option_class=eng_option)
 parser.add_option ("-T", "--tx-subdev-spec", type="subdev", default=(0,
0),
 help="select USRP Tx side A or B")
 parser.add_option ("-f", "--rf-freq", type="eng_float", default=None,
 help="set RF center frequency to FREQ")
 (options, args) = parser.parse_args ()

 if len(args) != 0:
 parser.print_help()
 raise SystemExit

 if options.rf_freq is None:
 sys.stderr.write("usrp: must specify RF center frequency with -f
RF_FREQ\n")
 parser.print_help()
 raise SystemExit

 fg = my_graph()

 # determine the daughterboard subdevice we're using
 if options.tx_subdev_spec is None:
 options.tx_subdev_spec = usrp.pick_tx_subdevice(fg.u)

 m = usrp.determine_tx_mux_value(fg.sink, options.tx_subdev_spec)
 #print "mux = %#04x" % (m,)
 fg.sink.set_mux(m)
 fg.subdev = usrp.selected_subdev(fg.sink, options.tx_subdev_spec)
 print "Using TX d'board %s" % (fg.subdev.side_and_name(),)

 fg.subdev.set_gain(fg.subdev.gain_range()[1]) # set max Tx gain

 if not fg.set_freq(options.rf_freq):
 sys.stderr.write('Failed to set RF frequency\n')
 raise SystemExit

 fg.subdev.set_enable(True) # enable transmitter

 try:

 131

 fg.run()
 except KeyboardInterrupt:
 pass

if __name__ == '__main__':
 main()

streaming_loopback_receiver.py:

#!/usr/bin/env python

from gnuradio import gr, gru, eng_notation, optfir
from gnuradio import audio
from gnuradio import usrp
from gnuradio import blks
from gnuradio.eng_option import eng_option
from optparse import OptionParser
import usrp_dbid
import sys
import math

def pick_subdevice(u):
 """
 The user didn't specify a subdevice on the command line.
 Try for one of these, in order: TV_RX, BASIC_RX, whatever is on side A.

 @return a subdev_spec
 """
 return usrp.pick_subdev(u, (usrp_dbid.TV_RX,
 usrp_dbid.TV_RX_REV_2,
 usrp_dbid.BASIC_RX))

class my_graph (gr.flow_graph):

 def __init__(self):
 gr.flow_graph.__init__(self)

 parser=OptionParser(option_class=eng_option)
 parser.add_option("-R", "--rx-subdev-spec", type="subdev",
default=None,
 help="select USRP Rx side A or B (default=A)")
 parser.add_option("-f", "--freq", type="eng_float", default=100.1e6,
 help="set frequency to FREQ", metavar="FREQ")
 parser.add_option("-g", "--gain", type="eng_float", default=None,
 help="set gain in dB (default is midpoint)")
 parser.add_option ("-T", "--tx-subdev-spec", type="subdev", default=(0,
0),
 help="select USRP Tx side A or B")

 (options, args) = parser.parse_args()
 if len(args) != 0:
 parser.print_help()
 sys.exit(1)

 132

 self.vol = .1
 self.state = "FREQ"
 self.freq = 0

 # build graph

 self.u = usrp.source_c(0, 250) # usrp is data
source

 adc_rate = self.u.adc_rate() # 64 MS/s
 usrp_decim = 250
 self.u.set_decim_rate(usrp_decim)
 usrp_rate = adc_rate / usrp_decim # 320 kS/s
 chanfilt_decim = 1

 if options.rx_subdev_spec is None:
 options.rx_subdev_spec = pick_subdevice(self.u)

 self.u.set_mux(usrp.determine_rx_mux_value(self.u,
options.rx_subdev_spec))
 self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec)
 print "Using RX d'board %s" % (self.subdev.side_and_name(),)

 chan_filt_coeffs = optfir.low_pass (1, # gain
 usrp_rate, # sampling rate
 80e3, # passband cutoff
 115e3, # stopband cutoff
 0.1, # passband ripple
 60) # stopband
attenuation
 #print len(chan_filt_coeffs)
 chan_filt = gr.fir_filter_ccf (chanfilt_decim, chan_filt_coeffs)

 self.demod = blks.dbpsk_demod(self,
 2, #samples per symbol
 .35, #excess bandwidth
 .1, #alpha
 None, #gain
 0.5, #mu
 .005, #omega relative limit
 True, #gray code
 False, #verbose mode
 False) #logging

 self.volume_control = gr.multiply_const_ff(self.vol)

 # file sinks and soruces
 dst = gr.file_sink (1, "received_file.dat")

 src = gr.file_source (gr.sizeof_float, "received_file.dat")

 ampdst = gr.file_sink (gr.sizeof_float, "amplified_received_file.dat")
 # now wire it all together
 self.connect (self.u, chan_filt)
 self.connect (chan_filt, self.demod)

 133

 self.connect (self.demod, dst)
 self.connect (src, self.volume_control, ampdst)

 if options.gain is None:
 # if no gain was specified, use the mid-point in dB
 g = self.subdev.gain_range()
 options.gain = float(g[0]+g[1])/2

 if abs(options.freq) < 1e6:
 options.freq *= 1e6

 # set initial values

 self.set_gain(options.gain)

 if not(self.set_freq(options.freq)):
 self._set_status_msg("Failed to set initial frequency")

 def set_vol (self, vol):
 self.vol = vol
 self.volume_control.set_k(self.vol)
 self.update_status_bar ()

 def set_freq(self, target_freq):
 """
 Set the center frequency we're interested in.

 @param target_freq: frequency in Hz
 @rypte: bool

 Tuning is a two step process. First we ask the front-end to
 tune as close to the desired frequency as it can. Then we use
 the result of that operation and our target_frequency to
 determine the value for the digital down converter.
 """
 r = self.u.tune(0, self.subdev, target_freq)

 if r:
 self.freq = target_freq
 self.update_status_bar()
 self._set_status_msg("OK", 0)
 return True

 self._set_status_msg("Failed", 0)
 return False

 def set_gain(self, gain):
 self.subdev.set_gain(gain)

 def update_status_bar (self):
 msg = "Freq: %s Volume:%f Setting:%s" % (
 eng_notation.num_to_str(self.freq), self.vol, self.state)
 self._set_status_msg(msg, 1)

 def _set_status_msg(self, msg, which=0):
 print msg

 134

if __name__ == '__main__':
 fg = my_graph()
 try:
 fg.run()
 except KeyboardInterrupt:
 pass

streaming_loopback_transmitter.py:

#!/usr/bin/env python

Copyright 2004 Free Software Foundation, Inc.

This file is part of GNU Radio

GNU Radio is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GNU Radio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Radio; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street,
Boston, MA 02110-1301, USA.

from gnuradio import gr, gru
from gnuradio import usrp
from gnuradio import audio
from gnuradio import blks
from gnuradio.eng_option import eng_option
from optparse import OptionParser
import sys
import math
import wx

class my_graph(gr.flow_graph):

 def __init__(self):
 gr.flow_graph.__init__(self)

 sample_rate = int(32000)
 ampl = 0.1

 self.signal = gr.sig_source_f (sample_rate, gr.GR_SIN_WAVE, 350, ampl)
 self.modulation = blks.dbpsk_mod(self,
 2, #samples per symbol
 .35, #excess bandwidth
 True, #gray code?

 135

 False, #verbose?
 False) #logging?
 self.fsink = gr.file_sink (gr.sizeof_float, "transmitted_file.dat")
 self.fsource = gr.file_source (gr.sizeof_char, "transmitted_file.dat")
 self.head = gr.head(gr.sizeof_float, int(50000))
 self.sink = usrp.sink_c (0, 200)
 self.connect((self.signal, 0), self.head, self.fsink)
 self.connect(self.fsource, self.modulation, self.sink)

 def set_freq(self, target_freq):
 """
 Set the center frequency we're interested in.

 @param target_freq: frequency in Hz
 @rypte: bool

 Tuning is a two step process. First we ask the front-end to
 tune as close to the desired frequency as it can. Then we use
 the result of that operation and our target_frequency to
 determine the value for the digital up converter.
 """
 r = self.sink.tune(self.subdev._which, self.subdev, target_freq)
 if r:
 #print "r.baseband_freq =",
eng_notation.num_to_str(r.baseband_freq)
 #print "r.dxc_freq =",
eng_notation.num_to_str(r.dxc_freq)
 #print "r.residual_freq =",
eng_notation.num_to_str(r.residual_freq)
 #print "r.inverted =", r.inverted
 return True

 return False

def main ():

 parser = OptionParser (option_class=eng_option)
 parser.add_option ("-T", "--tx-subdev-spec", type="subdev", default=(0,
0),
 help="select USRP Tx side A or B")
 parser.add_option ("-f", "--rf-freq", type="eng_float", default=None,
 help="set RF center frequency to FREQ")
 (options, args) = parser.parse_args ()

 if len(args) != 0:
 parser.print_help()
 raise SystemExit

 if options.rf_freq is None:
 sys.stderr.write("usrp: must specify RF center frequency with -f
RF_FREQ\n")
 parser.print_help()
 raise SystemExit

 fg = my_graph()

 136

 # determine the daughterboard subdevice we're using
 if options.tx_subdev_spec is None:
 options.tx_subdev_spec = usrp.pick_tx_subdevice(fg.u)

 m = usrp.determine_tx_mux_value(fg.sink, options.tx_subdev_spec)
 #print "mux = %#04x" % (m,)
 fg.sink.set_mux(m)
 fg.subdev = usrp.selected_subdev(fg.sink, options.tx_subdev_spec)
 print "Using TX d'board %s" % (fg.subdev.side_and_name(),)

 fg.subdev.set_gain(fg.subdev.gain_range()[1]) # set max Tx gain

 if not fg.set_freq(options.rf_freq):
 sys.stderr.write('Failed to set RF frequency\n')
 raise SystemExit

 fg.subdev.set_enable(True) # enable transmitter

 try:
 fg.run()
 except KeyboardInterrupt:
 pass

if __name__ == '__main__':
 main()

TCP/IP File Transmission:

TCPIP_file_transmitter.py:

#!/usr/bin/env python

Copyright 2004 Free Software Foundation, Inc.

This file is part of GNU Radio

GNU Radio is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GNU Radio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Radio; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street,
Boston, MA 02110-1301, USA.

from gnuradio import gr
from gnuradio import audio
from gnuradio.eng_option import eng_option

 137

from optparse import OptionParser

import sys
import os

def send_A_file():

 os.system("tar cf - ./transmitted_signal.dat | ssh frank@192.168.200.1
'/home/frank/tunnelback.sh'")

class my_graph(gr.flow_graph):

 def __init__(self):
 gr.flow_graph.__init__(self)

 usage="%prog: [options]"
 parser = OptionParser(option_class=eng_option, usage=usage)
 parser.add_option("-r", "--sample-rate", type="eng_float",
default=48000,
 help="set sample rate to RATE (48000)")
 parser.add_option("-N", "--nsamples", type="eng_float", default=None,
 help="number of samples to collect [default=+inf]")

 (options, args) = parser.parse_args ()
 if len(args) != 0:
 parser.print_help()
 raise SystemExit, 1

 sample_rate = int(options.sample_rate)
 ampl = 0.1

 src = gr.sig_source_f (sample_rate, gr.GR_SIN_WAVE, 350, ampl)

 dst = gr.file_sink (gr.sizeof_float, "./transmitted_signal.dat")

 if options.nsamples is None:
 self.connect((src, 0), dst)
 else:
 head = gr.head(gr.sizeof_float, int(options.nsamples))
 self.connect((src, 0), head, dst)

if __name__ == '__main__':
 try:
 my_graph().run()
 send_A_file()
 except KeyboardInterrupt:
 pass

tunnelback.sh:

#!/bin/sh

ssh fbivona@192.168.200.2 'cd ~/received_files && tar xpvf -'

Signal Processing Block:

 138

usrp_randsiggen.py:

#!/usr/bin/env python

from gnuradio import gr, gru
from gnuradio import randsig
from gnuradio import usrp
from gnuradio.eng_option import eng_option
from gnuradio import eng_notation
from optparse import OptionParser
import sys

class my_graph(gr.flow_graph):
 def __init__ (self):
 gr.flow_graph.__init__(self)

 # controllable values
 self.interp = 64
 self._instantiate_blocks ()

 def usb_freq (self):
 return self.u.dac_freq() / self.interp

 def usb_throughput (self):
 return self.usb_freq () * 4

 def set_interpolator (self, interp):
 self.interp = interp
 self.siggen.set_sampling_freq (self.usb_freq ())
 self.u.set_interp_rate (interp)

 def _instantiate_blocks (self):
 self.src = None
 self.u = usrp.sink_c (0, self.interp)

 self.siggen = randsig.source_ff (self.usb_freq ())

 # self.file_sink = gr.file_sink (gr.sizeof_gr_complex, "siggen.dat")

 def _configure_graph (self, type):
 was_running = self.is_running ()
 if was_running:
 self.stop ()
 self.disconnect_all ()
 self.connect (self.siggen, self.u)
 # self.connect (self.siggen, self.file_sink)
 self.src = self.siggen
 if was_running:
 self.start ()

 def set_freq(self, target_freq):
 """
 Set the center frequency we're interested in.

 139

 @param target_freq: frequency in Hz
 @rypte: bool

 Tuning is a two step process. First we ask the front-end to
 tune as close to the desired frequency as it can. Then we use
 the result of that operation and our target_frequency to
 determine the value for the digital up converter.
 """
 r = self.u.tune(self.subdev._which, self.subdev, target_freq)
 if r:
 #print "r.baseband_freq =",
eng_notation.num_to_str(r.baseband_freq)
 #print "r.dxc_freq =", eng_notation.num_to_str(r.dxc_freq)
 #print "r.residual_freq =",
eng_notation.num_to_str(r.residual_freq)
 #print "r.inverted =", r.inverted
 return True

 return False

def main ():
 parser = OptionParser (option_class=eng_option)
 parser.add_option ("-T", "--tx-subdev-spec", type="subdev", default=(0,
0),
 help="select USRP Tx side A or B")
 parser.add_option ("-f", "--rf-freq", type="eng_float", default=None,
 help="set RF center frequency to FREQ")
 parser.add_option ("-i", "--interp", type="int", default=64,
 help="set fgpa interpolation rate to INTERP
[default=%default]")

 (options, args) = parser.parse_args ()

 if len(args) != 0:
 parser.print_help()
 raise SystemExit

 if options.rf_freq is None:
 sys.stderr.write("usrp_siggen: must specify RF center frequency with
-f RF_FREQ\n")
 parser.print_help()
 raise SystemExit

 fg = my_graph()
 fg.set_interpolator (options.interp)

 # determine the daughterboard subdevice we're using
 if options.tx_subdev_spec is None:
 options.tx_subdev_spec = usrp.pick_tx_subdevice(fg.u)

 m = usrp.determine_tx_mux_value(fg.u, options.tx_subdev_spec)
 #print "mux = %#04x" % (m,)
 fg.u.set_mux(m)
 fg.subdev = usrp.selected_subdev(fg.u, options.tx_subdev_spec)

 140

 print "Using TX d'board %s" % (fg.subdev.side_and_name(),)

 fg.subdev.set_gain(fg.subdev.gain_range()[1]) # set max Tx gain

 if not fg.set_freq(options.rf_freq):
 sys.stderr.write('Failed to set RF frequency\n')
 raise SystemExit

 fg.subdev.set_enable(True) # enable transmitter

 try:
 fg.run()
 except KeyboardInterrupt:
 pass

if __name__ == '__main__':
 main ()

randsig_source_ff.h:

/* -*- c++ -*- */
/*
 * Copyright 2004 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * GNU Radio is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * GNU Radio is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with GNU Radio; see the file COPYING. If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

// @WARNING@

#ifndef INCLUDED_RANDSIG_SOURCE_FF_H
#define INCLUDED_RANDSIG_SOURCE_FF_H

#include <gr_sync_block.h>
#include <gr_fxpt_nco.h>

class randsig_source_ff;
typedef boost::shared_ptr<randsig_source_ff> randsig_source_ff_sptr;

/*!
 * \brief signal generator with float output.

 141

 * \ingroup source
 */

class randsig_source_ff : public gr_sync_block {
 friend randsig_source_ff_sptr
 randsig_make_source_ff (double sampling_freq);

 double d_sampling_freq; // parameter
 int d_waveform; // determined psuedo-randomly
 long d_frequency; // determined psuedo-randomly
 long d_ampl; // determined psuedo-randomly
 float d_offset; // determined psuedo-randomly
 gr_fxpt_nco d_nco; // determined psuedo-randomly

 randsig_source_ff (double sampling_freq);

 public:
 virtual int work (int noutput_items,
 gr_vector_const_void_star &input_items,
 gr_vector_void_star &output_items);

 // ACCESSORS
 double sampling_freq () const { return d_sampling_freq; }
 int waveform () const { return d_waveform; }
 long frequency () const { return d_frequency; }
 long amplitude () const { return d_ampl; }
 float offset () const { return d_offset; }

 // MANIPULATORS
 void set_sampling_freq (double sampling_freq);
 void set_waveform (void);
 void set_frequency (void);
 void set_amplitude (void);
 void set_offset (float offset);
};

randsig_source_ff_sptr
randsig_make_source_ff (double sampling_freq);

#endif

randsig.i:

/* -*- c++ -*- */

%feature("autodoc", "1"); // generate python docstrings

%include "exception.i"
%import "gnuradio.i" // the common stuff

%{
#include "gnuradio_swig_bug_workaround.h" // mandatory bug fix
#include "randsig_source_ff.h"
#include "randsig_source_ff.h"

 142

#include <stdexcept>
%}

// --

/*
 * First arg is the package prefix.
 * Second arg is the name of the class minus the prefix.
 *
 * This does some behind-the-scenes magic so we can
 * access howto_square_ff from python as howto.square_ff
 */
GR_SWIG_BLOCK_MAGIC(randsig,source_ff);

randsig_source_ff_sptr
randsig_make_source_ff (double sampling_freq);

class randsig_source_ff : public gr_sync_block {
 private:
 randsig_source_ff (double sampling_freq);

 public:

 // ACCESSORS
 double sampling_freq () const { return d_sampling_freq; }
 int waveform () const { return d_waveform; }
 long frequency () const { return d_frequency; }
 long amplitude () const { return d_ampl; }
 float offset () const { return d_offset; }

 // MANIPULATORS
 void set_sampling_freq (double sampling_freq);
 void set_waveform (void);
 void set_frequency (void);
 void set_amplitude (void);
 void set_offset (float offset);
};

randsig_source_ff.cc:

/* -*- c++ -*- */
/*
 * Copyright 2004 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * GNU Radio is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * GNU Radio is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.

 143

 *
 * You should have received a copy of the GNU General Public License
 * along with GNU Radio; see the file COPYING. If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

// @WARNING@

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <randsig_source_ff.h>
#include <algorithm>
#include <gr_io_signature.h>
#include <stdexcept>
#include <gr_complex.h>

randsig_source_ff::randsig_source_ff (double sampling_freq)
 : gr_sync_block ("source_ff",
 gr_make_io_signature (0, 0, 0),
 gr_make_io_signature (1, 1, sizeof (float))),
 d_sampling_freq (sampling_freq), d_waveform (rand() % 6), d_frequency
(((rand() % 1000) + 100)*1000000),
 d_ampl ((rand() % 101) + 10), d_offset (0)
{
 d_nco.set_freq (2 * M_PI * d_frequency / d_sampling_freq);
}

randsig_source_ff_sptr
randsig_make_source_ff (double sampling_freq)
{
 return randsig_source_ff_sptr (new randsig_source_ff (sampling_freq));
}

int
randsig_source_ff::work (int noutput_items,
 gr_vector_const_void_star &input_items,
 gr_vector_void_star &output_items)
{
 float *optr = (float *) output_items[0];
 float t;

 switch (d_waveform){

 case 0: // Constant wave
 t = (float) d_ampl + d_offset;
 for (int i = 0; i < noutput_items; i++) // FIXME unroll
 optr[i] = t;
 break;

 case 1: // Sine wave
 d_nco.sin (optr, noutput_items, d_ampl);
 if (d_offset == 0)
 break;

 144

 for (int i = 0; i < noutput_items; i++){
 optr[i] += d_offset;
 }
 break;

 case 2: // Cosine wave
 d_nco.cos (optr, noutput_items, d_ampl);
 if (d_offset == 0)
 break;

 for (int i = 0; i < noutput_items; i++){
 optr[i] += d_offset;
 }
 break;

 /* The square wave is high from -PI to 0. */
 case 3:
 t = (float) d_ampl + d_offset;
 for (int i = 0; i < noutput_items; i++){
 if (d_nco.get_phase() < 0)
 optr[i] = t;
 else
 optr[i] = d_offset;
 d_nco.step();
 }
 break;

 /* The triangle wave rises from -PI to 0 and falls from 0 to PI. */
 case 4:
 for (int i = 0; i < noutput_items; i++){
 double t = d_ampl*d_nco.get_phase()/M_PI;
 if (d_nco.get_phase() < 0)
 optr[i] = static_cast<float>(t + d_ampl + d_offset);
 else
 optr[i] = static_cast<float>(-1*t + d_ampl + d_offset);
 d_nco.step();
 }
 break;

 /* The saw tooth wave rises from -PI to PI. */
 case 5:
 for (int i = 0; i < noutput_items; i++){
 t = static_cast<float>(d_ampl*d_nco.get_phase()/(2*M_PI) + d_ampl/2 +
d_offset);
 optr[i] = t;
 d_nco.step();
 }
 break;

 default:
 throw std::runtime_error ("rand_sig_source: invalid waveform");
 }

 return noutput_items;
}

void

 145

randsig_source_ff::set_sampling_freq (double sampling_freq)
{
 d_sampling_freq = sampling_freq;
 d_nco.set_freq (2 * M_PI * d_frequency / d_sampling_freq);
}

void
randsig_source_ff::set_waveform (void)
{
 d_waveform = rand() % 6;
}

void
randsig_source_ff::set_frequency (void)
{
 d_frequency = ((rand() % 1000) + 100)*1000000; // random number ranging
from 100M to 1G
 d_nco.set_freq (2 * M_PI * d_frequency / d_sampling_freq);
}

void
randsig_source_ff::set_amplitude (void)
{
 d_ampl = (rand() % 101) + 10;
}

void
randsig_source_ff::set_offset (float offset)
{
 d_offset = offset;
}

Filters:

filter_impulse_test.py:

#!/usr/bin/env python

from gnuradio import gr, gru, eng_notation, optfir
from gnuradio import blks
from gnuradio.eng_option import eng_option
#import sys
#import math

class filter_impulse_test (gr.flow_graph):

 def __init__(self):
 gr.flow_graph.__init__(self)

 # build graph

 146

 zeroes = [0 for i in range(999)]
 impulse = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
 impulse.extend(zeroes)

 src = gr.vector_source_f(impulse, 0)

 filter_coeffs = optfir.low_pass (1, # gain
 32000, # sampling rate
 340, # passband cutoff
 1000, # stopband cutoff
 0.1, # passband ripple
 60) # stopband
attenuation

 filter = gr.fir_filter_fff (1, filter_coeffs)

 # file as final sink
 file_sink = gr.file_sink(gr.sizeof_float, "./impulse_test.dat")

 # now wire it all together
 self.connect (src, filter, file_sink)

if __name__ == '__main__':
 fg = filter_impulse_test()
 try:
 fg.run()
 except KeyboardInterrupt:
 pass

filter_response_test.py:

#!/usr/bin/env python

from gnuradio import gr, gru, eng_notation, optfir
from gnuradio import blks
from gnuradio.eng_option import eng_option
#import sys
#import math

class filter_response_test (gr.flow_graph):

 def __init__(self):
 gr.flow_graph.__init__(self)

 # build graph

 src = gr.noise_source_f(gr.GR_GAUSSIAN, 10, 10)

 filter_coeffs = optfir.low_pass (1, # gain
 32000, # sampling rate
 340, # passband cutoff

 147

 1000, # stopband cutoff
 0.1, # passband ripple
 60) # stopband
attenuation

 filter = gr.fir_filter_fff (1, filter_coeffs)

 # file as final sink
 file_sink = gr.file_sink(gr.sizeof_float, "./response_test.dat")

 # now wire it all together
 self.connect (src, filter, file_sink)

if __name__ == '__main__':
 fg = filter_response_test()
 try:
 fg.run()
 except KeyboardInterrupt:
 pass

fpgatest_failed.py:

#!/usr/bin/env python

Copyright 2004,2005 Free Software Foundation, Inc.

This file is part of GNU Radio

GNU Radio is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GNU Radio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Radio; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street,
Boston, MA 02110-1301, USA.

from gnuradio import gr
from gnuradio import audio
from gnuradio.eng_option import eng_option
from optparse import OptionParser

class my_graph(gr.flow_graph):

 def __init__(self):
 gr.flow_graph.__init__(self)

 148

 parser = OptionParser(option_class=eng_option)
 parser.add_option("-O", "--audio-output", type="string", default="",
 help="pcm output device name. E.g., hw:0,0 or
/dev/dsp")
 parser.add_option("-r", "--sample-rate", type="eng_float",
default=32000,
 help="set sample rate to RATE (32000)")
 (options, args) = parser.parse_args ()
 if len(args) != 0:
 parser.print_help()
 raise SystemExit, 1

 sample_rate = int(options.sample_rate)
 ampl = 1

 src1 = gr.sig_source_f (sample_rate,gr.GR_SIN_WAVE,440,ampl,0)
 src2 = gr.sig_source_f (sample_rate,gr.GR_SIN_WAVE,320,ampl,0)
 src3 = gr.sig_source_f (sample_rate,gr.GR_SIN_WAVE,650,ampl,0)
 sum = gr.add_ff()
 src = gr.add_const_ff(1)
 self.connect (src1, (sum, 0))
 self.connect (src2, (sum, 1))
 self.connect (src3, (sum, 2))
 self.connect (sum, src)

 expanding = gr.multiply_const_ff(65535)

 FPGA_IN = gr.file_sink(gr.sizeof_float, "/dev/MQP_Pipe")

 FPGA_OUT = gr.file_source(gr.sizeof_float, "/dev/MQP_Pipe")

 unexpanding = gr.multiply_const_ff(1/65535)

 file_sink = gr.file_sink(gr.sizeof_float, "./filter_results.dat")

 self.connect (src, expanding, FPGA_IN)
 self.connect (FPGA_OUT, unexpanding, file_sink)

if __name__ == '__main__':
 try:
 my_graph().run()
 except KeyboardInterrupt:
 pass

FPGA_frequency_response.py:

#!/usr/bin/env python

from gnuradio import gr, gru, eng_notation, optfir
from gnuradio import blks
from gnuradio.eng_option import eng_option
#import sys
#import math

 149

class filter_response_test (gr.flow_graph):

 def __init__(self):
 gr.flow_graph.__init__(self)

 # build graph

 src = gr.noise_source_f(gr.GR_GAUSSIAN, 10, 10)

 FPGA_OUT = gr.file_source(gr.sizeof_float, "/dev/MQP_Pipe")

 FPGA_IN = gr.file_sink (gr.sizeof_float, "/dev/MQP_Pipe")

 scale = gr.multiply_const_ff(1.0/65535.0)

 # file as final sink
 file_sink = gr.file_sink(gr.sizeof_float, "./FPGA_response_test.dat")

 # now wire it all together
 self.connect (src, FPGA_IN)
 self.connect (FPGA_OUT, scale, file_sink)

if __name__ == '__main__':
 fg = filter_response_test()
 try:
 fg.run()
 except KeyboardInterrupt:
 pass

FPGA_impulse_test.py:

#!/usr/bin/env python

from gnuradio import gr, gru, eng_notation, optfir
from gnuradio import blks
from gnuradio.eng_option import eng_option
#import sys
#import math

class filter_response_test (gr.flow_graph):

 def __init__(self):
 gr.flow_graph.__init__(self)

 # build graph

 zeroes = [0 for i in range(500)]
 impulse = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0]
 impulse.extend(zeroes)

 src = gr.vector_source_f(impulse, 0)

 150

 FPGA_OUT = gr.file_source(gr.sizeof_float, "/dev/MQP_Pipe")

 FPGA_IN = gr.file_sink (gr.sizeof_float, "/dev/MQP_Pipe")

 scale = gr.multiply_const_ff(1.0/65535.0)

 # file as final sink
 file_sink = gr.file_sink(gr.sizeof_float, "./FPGA_response_test.dat")

 # now wire it all together
 self.connect (src, FPGA_IN)
 self.connect (FPGA_OUT, scale, file_sink)

if __name__ == '__main__':
 fg = filter_response_test()
 try:
 fg.run()
 except KeyboardInterrupt:
 pass

usrp_wfm_rcv_filt_nogui.py:

#!/usr/bin/env python

from gnuradio import gr, gru, eng_notation, optfir
from gnuradio import audio
from gnuradio import usrp
from gnuradio import blks
from gnuradio.eng_option import eng_option
from optparse import OptionParser
#import usrp_dbid disabled because YunLing complains
import sys
import math

#def pick_subdevice(u):
 """
 The user didn't specify a subdevice on the command line.
 Try for one of these, in order: TV_RX, BASIC_RX, whatever is on side A.

 @return a subdev_spec
 """
return usrp.pick_subdev(u, (usrp_dbid.TV_RX,
usrp_dbid.TV_RX_REV_2,
usrp_dbid.BASIC_RX))

class wfm_rx_graph (gr.flow_graph):

 def __init__(self):
 gr.flow_graph.__init__(self)

 parser=OptionParser(option_class=eng_option)
 parser.add_option("-R", "--rx-subdev-spec", type="subdev",
default=None,
 help="select USRP Rx side A or B (default=A)")
 parser.add_option("-f", "--freq", type="eng_float", default=100.1e6,

 151

 help="set frequency to FREQ", metavar="FREQ")
 parser.add_option("-g", "--gain", type="eng_float", default=None,
 help="set gain in dB (default is midpoint)")
 parser.add_option("-O", "--audio-output", type="string", default="",
 help="pcm device name. E.g., hw:0,0 or surround51
or /dev/dsp")

 (options, args) = parser.parse_args()
 if len(args) != 0:
 parser.print_help()
 sys.exit(1)

 self.vol = 10
 self.state = "FREQ"
 self.freq = 0

 # build graph

 self.u = usrp.source_c() # usrp is data source

 adc_rate = self.u.adc_rate() # 64 MS/s
 usrp_decim = 200
 self.u.set_decim_rate(usrp_decim)
 usrp_rate = adc_rate / usrp_decim # 320 kS/s
 chanfilt_decim = 1
 cleanup_decim = 1
 demod_rate = usrp_rate / chanfilt_decim
 audio_decimation = 10
 audio_rate = demod_rate / audio_decimation # 32 kHz

 #if options.rx_subdev_spec is None:
 # options.rx_subdev_spec = pick_subdevice(self.u)

 self.u.set_mux(usrp.determine_rx_mux_value(self.u,
options.rx_subdev_spec))
 self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec)
 print "Using RX d'board %s" % (self.subdev.side_and_name(),)

 chan_filt_coeffs = optfir.low_pass (1, # gain
 usrp_rate, # sampling rate
 80e3, # passband cutoff
 115e3, # stopband cutoff
 0.1, # passband ripple
 60) # stopband
attenuation
 #print len(chan_filt_coeffs)
 chan_filt = gr.fir_filter_ccf (chanfilt_decim, chan_filt_coeffs)

 self.guts = blks.wfm_rcv (self, demod_rate, audio_decimation)

 cleanup_coeffs = optfir.low_pass (1, # gain
 usrp_rate, # sampling rate
 340, # passband cutoff
 800, # stopband cutoff
 0.1, # passband ripple

 152

 60) # stopband
attenuation

 cleanup = gr.fir_filter_fff (cleanup_decim, cleanup_coeffs)

 self.volume_control = gr.multiply_const_ff(self.vol)

 # sound card as final sink
 #audio_sink = audio.sink(int(audio_rate),
 # options.audio_output,
 # False) # ok_to_block

 # file as final sink
 file_sink = gr.file_sink(gr.sizeof_float, "./filtered_reception.dat")

 # now wire it all together
 self.connect (self.u, chan_filt, self.guts, cleanup,
self.volume_control, file_sink)

 if options.gain is None:
 # if no gain was specified, use the mid-point in dB
 g = self.subdev.gain_range()
 options.gain = float(g[0]+g[1])/2

 if abs(options.freq) < 1e6:
 options.freq *= 1e6

 # set initial values

 self.set_gain(options.gain)

 if not(self.set_freq(options.freq)):
 self._set_status_msg("Failed to set initial frequency")

 def set_vol (self, vol):
 self.vol = vol
 self.volume_control.set_k(self.vol)
 self.update_status_bar ()

 def set_freq(self, target_freq):
 """
 Set the center frequency we're interested in.

 @param target_freq: frequency in Hz
 @rypte: bool

 Tuning is a two step process. First we ask the front-end to
 tune as close to the desired frequency as it can. Then we use
 the result of that operation and our target_frequency to
 determine the value for the digital down converter.
 """
 r = self.u.tune(0, self.subdev, target_freq)

 if r:
 self.freq = target_freq
 self.update_status_bar()

 153

 self._set_status_msg("OK", 0)
 return True

 self._set_status_msg("Failed", 0)
 return False

 def set_gain(self, gain):
 self.subdev.set_gain(gain)

 def update_status_bar (self):
 msg = "Freq: %s Volume:%f Setting:%s" % (
 eng_notation.num_to_str(self.freq), self.vol, self.state)
 self._set_status_msg(msg, 1)

 def _set_status_msg(self, msg, which=0):
 print msg

if __name__ == '__main__':
 fg = wfm_rx_graph()
 try:
 fg.run()
 except KeyboardInterrupt:
 pass

wfm_tx_multisignal.py:

#!/usr/bin/env python

"""
Transmit N simultaneous narrow band FM signals.

They will be centered at the frequency specified on the command line,
and will spaced at 25kHz steps from there.

The program opens N files with names audio-N.dat where N is in [0,7].
These files should contain floating point audio samples in the range [-1,1]
sampled at 32kS/sec. You can create files like this using
audio_to_file.py
"""

from gnuradio import gr, eng_notation
from gnuradio import usrp
from gnuradio import audio
from gnuradio import blks
from gnuradio.eng_option import eng_option
from optparse import OptionParser
import usrp_dbid
import math
import sys

from gnuradio.wxgui import stdgui, fftsink
from gnuradio import tx_debug_gui
import wx

 154

instantiate one transmit chain for each call

class pipeline(gr.hier_block):
 def __init__(self, fg, lo_freq, audio_rate, if_rate):

 src1 = gr.sig_source_f (if_rate,gr.GR_SIN_WAVE,1440,100,0)
 src2 = gr.sig_source_f (if_rate,gr.GR_SIN_WAVE,320,100,0)
 src3 = gr.sig_source_f (if_rate,gr.GR_SIN_WAVE,2650,100,0)
 sum = gr.add_ff()
 src = gr.add_const_ff(1)
 fg.connect (src1, (sum, 0))
 fg.connect (src2, (sum, 1))
 fg.connect (src3, (sum, 2))
 fg.connect (sum, src)

 fmtx = blks.nbfm_tx (fg, audio_rate, if_rate,
 max_dev=5e3, tau=75e-6)

 # Local oscillator
 lo = gr.sig_source_c (if_rate, # sample rate
 gr.GR_SIN_WAVE, # waveform type
 lo_freq, #frequency
 1.0, # amplitude
 0) # DC Offset
 mixer = gr.multiply_cc ()

 fg.connect (src, fmtx, (mixer, 0))
 fg.connect (lo, (mixer, 1))

 gr.hier_block.__init__(self, fg, src, mixer)

class fm_tx_graph (stdgui.gui_flow_graph):
 def __init__(self, frame, panel, vbox, argv):
 stdgui.gui_flow_graph.__init__ (self, frame, panel, vbox, argv)

 parser = OptionParser (option_class=eng_option)
 parser.add_option("-T", "--tx-subdev-spec", type="subdev",
default=None,
 help="select USRP Tx side A or B")
 parser.add_option("-f", "--freq", type="eng_float", default=None,
 help="set Tx frequency to FREQ [required]",
metavar="FREQ")
 parser.add_option("","--debug", action="store_true", default=False,
 help="Launch Tx debugger")
 (options, args) = parser.parse_args ()

 if len(args) != 0:
 parser.print_help()
 sys.exit(1)

 if options.freq is None:
 sys.stderr.write("fm_tx4: must specify frequency with -f FREQ\n")
 parser.print_help()
 sys.exit(1)

 155

 # --
 # Set up constants and parameters

 self.u = usrp.sink_c () # the USRP sink (consumes samples)

 self.dac_rate = self.u.dac_rate() # 128 MS/s
 self.usrp_interp = 400
 self.u.set_interp_rate(self.usrp_interp)
 self.usrp_rate = self.dac_rate / self.usrp_interp # 320 kS/s
 self.sw_interp = 10
 self.audio_rate = self.usrp_rate / self.sw_interp # 32 kS/s

 # determine the daughterboard subdevice we're using
 if options.tx_subdev_spec is None:
 options.tx_subdev_spec = usrp.pick_tx_subdevice(self.u)

 m = usrp.determine_tx_mux_value(self.u, options.tx_subdev_spec)
 #print "mux = %#04x" % (m,)
 self.u.set_mux(m)
 self.subdev = usrp.selected_subdev(self.u, options.tx_subdev_spec)
 print "Using TX d'board %s" % (self.subdev.side_and_name(),)

 self.subdev.set_gain(self.subdev.gain_range()[1]) # set max Tx
gain
 self.set_freq(options.freq)
 self.subdev.set_enable(True) # enable
transmitter

 sum = gr.add_cc ()

 # Instantiate channel
 t = pipeline (self, 0, self.audio_rate, self.usrp_rate)
 self.connect (t, (sum, 0))

 gain = gr.multiply_const_cc (4000.0)

 # connect it all
 self.connect (sum, gain)
 self.connect (gain, self.u)

 # plot an FFT to verify we are sending what we want
 if 1:
 post_mod = fftsink.fft_sink_c(self, panel, title="Post
Modulation",
 fft_size=512,
sample_rate=self.usrp_rate,
 y_per_div=20, ref_level=40)
 self.connect (sum, post_mod)
 vbox.Add (post_mod.win, 1, wx.EXPAND)

 if options.debug:
 self.debugger = tx_debug_gui.tx_debug_gui(self.subdev)
 self.debugger.Show(True)

 156

 def set_freq(self, target_freq):
 """
 Set the center frequency we're interested in.

 @param target_freq: frequency in Hz
 @rypte: bool

 Tuning is a two step process. First we ask the front-end to
 tune as close to the desired frequency as it can. Then we use
 the result of that operation and our target_frequency to
 determine the value for the digital up converter. Finally, we feed
 any residual_freq to the s/w freq translater.
 """

 r = self.u.tune(self.subdev._which, self.subdev, target_freq)
 if r:
 print "r.baseband_freq =",
eng_notation.num_to_str(r.baseband_freq)
 print "r.dxc_freq =", eng_notation.num_to_str(r.dxc_freq)
 print "r.residual_freq =",
eng_notation.num_to_str(r.residual_freq)
 print "r.inverted =", r.inverted

 # Could use residual_freq in s/w freq translator
 return True

 return False

def main ():
 app = stdgui.stdapp (fm_tx_graph, "Single-channel FM Tx")
 app.MainLoop ()

if __name__ == '__main__':
 main ()

Other useful programs:

float_to_ascii.py:

import sys, struct, os

if len(sys.argv) < 2 and len(sys.argv) > 3:
 print "Usage: %s <input file> <optional output file>" % sys.argv[0]

data_file = open(sys.argv[1], #sys.argv[1] = first thing on the command line
 mode='rb') #rb = Read Binary file
out_file = None

try:
 if len(sys.argv) == 3:
 out_file = open(sys.argv[2], 'w') #Open a file for writing

 157

 while True:
 raw = data_file.read(4) #Read 4 bytes
 if len(raw) < 4:
 break #We've reached the end of the file
 f = struct.unpack('f', raw)[0] #Convert bytes to a float
 if out_file is None:
 print f #Print the new value
 else:
 out_file.write("%s\n" % (f)) #Print f as a string to the file
finally:
 if data_file is not None:
 data_file.close()
 if out_file is not None:
 out_file.close()

whitenoise_gen.py:

#!/usr/bin/env python

from gnuradio import gr, gru, eng_notation, optfir
from gnuradio import blks
from gnuradio.eng_option import eng_option
#import sys
#import math

class whitenoise_gen (gr.flow_graph):

 def __init__(self):
 gr.flow_graph.__init__(self)

 # build graph

 src = gr.noise_source_f(gr.GR_GAUSSIAN, 10, 10)

 # file as final sink
 file_sink = gr.file_sink(gr.sizeof_float, "./white_noise.dat")

 # now wire it all together
 self.connect (src, file_sink)

if __name__ == '__main__':
 fg = whitenoise_gen()
 try:
 fg.run()
 except KeyboardInterrupt:
 pass

HDL and project files will be included as an e-appendicie via the E-submission system.

