
RSQ-PH

LISTENING TO LIGHT
MAJOR QUALIFYING PROJECT

MAY 2016

AMANDA VARRICHIONE
Physics

RYAN LANG
Physics

Advised by

Richard Quimby
Professor of Physics

This report represents the work of WPI undergraduate students submitted to the faculty as evidence of completion of a degree requirement.

WPI routinely publishes these reports on its website without editorial or peer review. For more information about the projects program at

WPI, please see http://www.wpi.edu/academics/ugradstudies/project-learning.html

Abstract

A color detecting device was designed and implemented by two students at Worcester Poly-

technic Institute to satisfy their Major Qualifying Project requirement for obtaining a Bachelor

of Science in Physics. This device could distinguish ten different colors, and could correct for

background lighting intensity and distribution changes. Based on the detected color, the device

would play a unique three-note sequence, audially indicating the detected color. The device

could accurately detect the color of a sheet of 8.5” by 11” card-stock from a distance of 35 cm

for all colors and background sources.

1

Acknowledgments

We would like to thank our project advisor, Professor Richard Quimby for the help and

guidance in making this project. Additionally, we would like to thank Russell Lang for his

advice and help in designing and implementing the prototype.

We would like to thank the Physics and Civil Engineering departments at WPI for allowing us

to use their facilities, workshops, and laboratories.

Finally, we would like to thank Tony DiCola, whose open source Python library for the

Adafruit TCS34725 color sensor was vital to the implementation and completion of this project.

2

Contents

1 Introduction 5

2 Background 6

2.1 Color Theory . 6

2.1.1 The Visible Spectrum . 6

2.1.2 Human Color Perception . 6

2.1.3 Combinations of Color . 8

2.1.4 Spectral Distribution of Common Lighting Sources 8

2.2 Optics . 9

2.2.1 Optical Fibers . 9

2.2.2 Filters . 10

2.2.3 Photodetectors . 11

2.2.4 Apertures . 12

2.3 Audio . 13

2.3.1 The Science of Sound . 13

2.3.2 Human Sound Perception . 13

3 Methods 15

3.1 Approach . 15

3.1.1 Raspberry Pi . 15

3.1.2 TCS34725 Color Sensor . 16

3.2 Fiber . 22

3.2.1 Selecting a Fiber and Numerical Aperture . 22

3.2.2 Core-Cladding Structure of the Fiber . 24

3.2.3 Sensor to Fiber Alignment . 27

3.3 Aperture . 30

3.4 Device . 32

3.4.1 Device Components . 32

3.4.2 Device Layout . 33

3.5 Python Program . 34

3.5.1 Obtaining and Manipulating RGBC Values . 35

3.5.2 Account for Background Lighting Distributions 36

3.5.3 Learn Colors and Backgrounds . 36

3.5.4 Identify a Color . 37

3.6 Audio Output . 38

3

4 Results and Conclusions 40

4.1 Accuracy . 40

4.2 Limitations . 41

4.3 Conclusions and Future Work . 41

5 Appendices 43

5.1 Python Code . 43

5.2 Device Operation . 54

References 56

4

1 Introduction

Color is all around us. Every day, we experience color from the moment we open our eyes to the

moment we close them. It is a vital part of human vision, and we use and rely on it in many facets of

our lives. The color of road signs and stoplights gives a driver immediate information in a universal

medium. One can drive safely in foreign lands relying only on color cues for instructions. It also

plays a huge part in aesthetic applications, where artists and designers use the millions of discernible

colors to appeal to our eyes. The idea of colors as we experience them is truly something unique to

the human experience.

Colors, however, only exist in the human mind. They are a construct of the brain, which creates

colors in our conscious mind as a representation of what started as different light wavelengths. Those

without the ability to experience colors are unfortunately denied a unique part of the human experi-

ence. There have naturally been many attempts to design and implement devices that could discern

the colors of objects, usually reporting them in some kind of audio format. Some recent examples are

the Adafruit PianoGlove and the different versions of the Eyeborg. This kind of device is naturally

limited by the bandwidths of the human visual and audial sensory systems. The visual system typ-

ically transmits data at a much greater rate than the audial system. Therefore, transmitting visual

information using sound waves is fundamentally limited. Still, devices that detect color and use sound

to communicate those colors have been successfully implemented and are worth pursuing.

The previous implementations have had some significant shortcomings, however. The first is the

issue of background lighting distributions. The lighting sources in our everyday lives have wildly

different spectral distributions, which can wreak havoc for a color detector. The human eye naturally

adapts to different intensities and changes in spectral distributions. Objects look the same color in

differing sources because of this, but to an artificial sensor these differences will completely change

the data obtained. Secondly, previous iterations have used single notes to represent different colors.

While it is easy to assign many different note-color combinations this way, the human ear is usually

very poor at distinguishing absolute pitch (unless one has ’perfect pitch’). This makes these previous

systems unintuitive and difficult to use, especially for a colorblind or blind person with no other way

to distinguish colors.

The overall mission of this project was to improve upon similar devices by attempting to remedy

their weaknesses. The group aimed to design and implement a similar device that would be able to

adapt to changes in background distribution, and in doing so create a more eye-like version of these

devices. The group also wanted to output audial information in a format that was more intuitive and

utilized the natural strengths of the human audial sensory system. In doing so, the group hoped to

create a prototype to demonstrate the feasibility of these improvements for a device that could assist

the visually impaired.

5

2 Background

The background is intended to give the reader the necessary information to understand the meth-

ods used to carry out this project. This section details research about color theory and how the

eye sees color, the study of optics and optical devices, and the theory of sound and human audio

perception. This research led to significant design implications for the implementation discussed in

the next section.

2.1 Color Theory

2.1.1 The Visible Spectrum

Color, as humans see it, is comprised of a range of wavelengths in the electromagnetic spectrum.

This range of wavelengths is known as the visible spectrum as it is visible to the human eye. The

visible spectrum ranges from about 380 nm to 780 nm.[28] Figure 1 below shows the visible spectrum

as a part of the whole electromagnetic spectrum.

Figure 1: The visible light spectrum [9]

Figure 1 illustrates that as the wavelength decreases from 700 nm to 400 nm, the corresponding

color at each wavelength progresses from red to violet. Wavelength ranges are assigned to different

colors to represent how light of a certain wavelength is perceived by the human eye.[28] The frequency

of a light wave is inversely proportional to the wavelength by the following relation:

ν = c/λ (1)

This relation allows us to determine the color of a light wave with its given frequency.[30]1

2.1.2 Human Color Perception

Humans perceive color with special cells in the eye that have different spectral sensitivities. These

are known as cone cells. Humans have three types of cone cells giving us trichromatic color vision.

1c = the speed of light in a vacuum

6

This means every color that we can perceive is determined by measuring the energy levels in three

spectral bands and processing that information. The three types of cone cells, known as S, M and L,

respectively correspond to a 420-440 nm band, a 534-550 nm band, and a 564–580 nm band.[29] Each

type of cone cell has a variation of the protein photopsin, which determines the cone cell’s spectral

responsivity. It can be helpful to think of these cones types as blue (S), green (M) and red (L) bands,

although they don’t exactly match these colors. The exact spectral responsivities of the S, M and L

cones can be seen in Figure 2. In addition to the cone cells, the eye uses the help of rod cells to detect

blue-green light, while the M and L cones can detect subtle differences in green, yellow, orange and

red hues because their response bands are very close together.

Figure 2: The spectral sensitivity of S, M and L cone cells

The prevailing theory about color processing in the brain is the trichromatic theory, or the

Young–Helmholtz theory. According to this theory, the three cones being preferentially sensitive

to red, green and blue light allows the brain to distinguish between millions of hues.[31] For example,

we ‘see’ cyan when our S and M cones are partially excited, while the L is less excited, even though

there is no cone tuned in to directly measure the cyan wavelength. By knowing the excitation levels

for each cone, the brain is able to distinguish around 10 million different colors.

7

2.1.3 Combinations of Color

As stated previously, the human eye only detects wavelengths in three bandwidths which lie

approximately in the red, green, and blue ranges. However, humans still sense all colors in the visible

spectrum because the brain processes combinations of red, green and blue into new colors. The

secondary layer of color past red, green and blue consists of magenta, yellow, and cyan. Figure 3

shows the secondary colors created from combinations of the primary colors.

Figure 3: Primary color combinations [16]

From Figure 3 it can also seen that the combination of red, green, and blue altogether creates

white while absence of any color creates black.

The colors red, green, and blue are known as the primary colors of the eye. Primary colors, are

any set of three colors that, when combined in different proportions, can create any color in the visible

spectrum. Another example of a set of primary colors is the combination of cyan, magenta, and yellow

which is commonly used as the three ink colors in printers.[16]

2.1.4 Spectral Distribution of Common Lighting Sources

One of the main differences between commonly found lighting sources is the spectral power distri-

bution (SPD) that each bulb emits. A spectral power distribution is a representation of the intensities

8

of light at each wavelength over the visible spectrum. The SPD of some bulbs, like natural sunlight,

is relatively continuous meaning it contains a nearly equal amount of light for every wavelength in

the spectrum. Other light sources, like a compact fluorescent lamp (CFL), are not continuous.[25] A

CFL bulb only contains spikes of intensity around three wavelengths: one in the red range, one in the

green range, and one in the blue range. The spectral power distribution of sunlight, a CFL bulb, and

a tungsten lamp is shown in Figure 4.

Figure 4: A spectral power distribution of Sunlight, a CFL, and a Tungsten Lamp [6]

The figure illustrates that tungsten lamp has a relatively continuous spectra like sunlight, while

the CFL bulb is discontinuous. Although the SPD of these light sources are different, they both

output what appears to be white light. Therefore, in order to determine the color of an object, one

must first consider the spectrum of the background lighting source before considering the spectrum

of the illuminated object.

2.2 Optics

2.2.1 Optical Fibers

Optical fibers are used as a means to transmit light as information along the fiber strand. Optical

fibers are generally made of thin strands of silica glass but can also be made of plastic. Fibers can be

used for many applications, however in this project we are only concerned with fibers being used to

transmit visible light.[19]

Light travels in a fiber by total internal reflection as seen in Figure 5 below. Light in a fiber

is reflected at the interface between the core and the cladding of the fiber. Light incident on the

9

fiber may escape through the cladding depending on the angle at which the light beam hits the core-

cladding interface. Ideally, light travels through the entire fiber without escaping until it reaches the

end of the fiber.

Figure 5: Inside an optical fiber [19]

The core and cladding of the fiber are made from different indices of refraction with the cladding

index lower than the core’s. The critical angle that determines whether or not light inside the core

will be reflected or transmitted at the core-cladding interface is given by the equation:

sin(θc) = n2/n1 (2)

If the light beam hits the core-cladding at an angle greater than the critical angle (with respect to

the normal line between the interface), than the beam will be transmitted through the core-cladding

interface instead of being reflected.

The numerical aperture of a fiber is an inherent characteristic that gives the maximum acceptance

angle for light to enter that fiber. The numerical aperture (NA) is given by the following relations:

NA = nosin(θmax) (3)

NA =
√
n2
1 − n2

2 (4)

Here, no is the refractive index of the medium outside the fiber, n1 is the index inside the fiber

core, and n2 is the index inside the cladding. The numerical aperture of a fiber is typically given

by the fiber manufacturer. As seen in equation 3, a larger NA will give a larger angle of acceptance

which could be beneficial depending on the fiber’s function.[21]

2.2.2 Filters

An optical filter is device used to limit light transmitted through the filter area to a selected

range of wavelengths. Filters come in two types: interference filters (also called dichroic filters) and

absorptive filters. Absorptive filters absorb the wavelengths of light that do not pass through the

filter while interference filters reflect these wavelengths.

10

Bandpass filters are a certain type of optical filter that allows transmission only for a band or

range of wavelengths and blocks all other light. These filters are often categorized by which color

range of the visible spectrum the transmitted wavelengths fall in.[26] Figure 6 gives the transmission

curve for a green dichroic filter from Thor Labs.

Figure 6: Transmission graph for a green dichroic filter [8]

Figure 6 illustrates that the green dichroic filter only allows wavelengths from about 475 nm to

575 nm to pass through the filter. Additionally, we can see that some infrared light is allowed to be

transmitted through this filter. In order to block IR light from being transmitted, some optical filters

are coated with an IR blocking film.[8]

Interference filters, or dichroic filters, work by the principle of interference. Wavelengths that do

not pass through the filter interfere destructively to cancel each other or are reflected in the medium

when the waves overlap.[26]

2.2.3 Photodetectors

A photodetector is a device which can effectively measure the intensity of light incident on an

active area. Most photodetectors today are silicon based, and translate the amount of incident

photons on an active area into a voltage. Therefore, by observing the voltage, one can effectively

measure the intensity of light, assuming a linear relationship between light intensity and voltage

levels produced.[21]

Photodetectors have a spectral sensitivity that describes how sensitive the detector is to different

11

wavelengths of light. This sensitivity can be altered by placing a filter in front of the detector. In this

way, a detector can be made to only be sensitive to a prescribed range of wavelengths. Photodetectors

can be made to be very flexible; for example, the sensitivity (to all light) can be tuned by adjusting

the bias voltage, which also changes the response time [21]. The dynamic range of a photodetector

is a term that describes the ratio between the lowest and highest intensities of light that can be

distinguished, and this number can be quite large. A large dynamic range implies that a photodetector

could be used under a variety of lighting conditions and under vastly differing intensities.

2.2.4 Apertures

An aperture is a rather simple device that is used to constrict the width of a beam of light. If one

looks down the end of the cardboard tube from a paper towel tube, one has created a version of an

aperture. When used in front of some kind of photodetector, an aperture tends to limit the angular

acceptance of light incident of the photodetector. Typically, detectors could accept nearly any angled

beam, but an aperture narrows that to allow greater precision at the cost of intensity (and perhaps

signal to noise ratio). An aperture can also be used to limit the acceptance angle of an optical fiber.

With an aperture in front of it, a fiber will only accept light from a further limited range of angles. As

long as the modified acceptance angle created by the geometry and placement of the fiber is less than

the acceptance angle for the fiber itself, all light that can pass through the aperture will be coupled

into the fiber. Figure 7 shows the geometry of a typical aperture limiting the acceptance angle for a

point (perhaps a photodetector or a fiber) on the left.

Figure 7: Geometry of an aperture

12

The relationship between the half angle of acceptance θ and the determining factors: the distance

from the aperture to the fiber opening (d), the aperture diameter (w), the distance from the aperture

to the object (L) and the spot diameter that the fiber will see (D) is

tan(θ) =
w

2d
=

D

2(d+ L)
≈ D

2L
(5)

The approximation in equation 5 is true when L � d

2.3 Audio

2.3.1 The Science of Sound

Sound is a form of vibration that propagates through a medium. In air, it’s a mechanical wave

that is formed by local compressions and rarefactions of air molecules, as shown in Figure 8. These

travel through the air at a nearly constant speed known as the speed of sound, about 343 m/s.[12] Due

to the nature of the waves, the speed of sound is affected by the local air pressure and temperature.

Sound waves have a characteristic frequency and amplitude. The frequency determines what we think

of as the pitch. Higher frequency means that a higher pitch is perceived. Amplitude translates to

loudness. A sound wave with a larger amplitude has more energy and is perceived as louder.

Figure 8: Variations in air pressure and corresponding waveform [14]

2.3.2 Human Sound Perception

The human ear can sense pitches from 20 Hz to nearly 20,000 Hz.[12] However, the ear’s ability

to determine absolute pitch is usually rather poor. It is considerably better at determining relative

pitches, or how two pitches compare to each other. Specifically, our ear is adept at determining the

ratio between two frequencies. It can identify the difference of 200 Hz to 400 Hz and 600 Hz to

1200 Hz as the same musical interval with remarkable accuracy. This relationship of a 1:2 ratio in

13

frequencies is called an octave in western music.[18] There are 12 intervals in western music, which

correspond to the 12 possible distances between different piano notes within an octave. The ear can

also easily distinguish relationships of notes when they are played sequentially, creating the notion of

a melody. By relying on the strengths of the human ear, music can be used to convey information

effectively and universally to any listener.

14

3 Methods

The methods section deals with the details of the actual implementation of our project. We discuss

the components used in the final design, and the extensive tests and experiments done to discover

their attributes. This section displays how our design choices were motivated by experimental results,

and how the final device was designed to meet our objectives; to design, create, and demonstrate a

universal and adaptable device to assist the visually impaired in distinguishing colors.

3.1 Approach

The methods section of our project is structured by analyzing the answers to two main questions:

how can we detect colors in the form of light waves, and how can we output colors as sound? To

detect colors, we decided to model our device after the inherent color perception system in the human

body. As discussed earlier, human color perception is centered around the eye as a receptor of light

and the brain as an information processor. The brain of our project is the Raspberry Pi, a portable

microcomputer. The Raspberry Pi’s function is to collect information from the ‘eye’ of our device,

the TCS34725 color sensor. The TCS34725 color sensor works very similarly to the human eye as

will be discussed in the upcoming sections. To output colors as sounds, we referred to human sound

perception, paying special attention to the idea that melodies and chords are far more recognizable

than single notes.

3.1.1 Raspberry Pi

The Raspberry Pi 2 Model B, shown in Figure 9 has all the usual components of a desktop

computer. With a 900 MHz quad-core ARM Cortex-A7 CPU and 1 GB of RAM, it is powerful

enough for functions like web browsing and word processing. Powered by a 5 Volt micro-USB plugin,

it has 4 USB ports for external devices, an HDMI port for a monitor, a headphone jack for audio, an

Ethernet port, and 40 General Purpose Input Output (GPIO) pins.[22]

Figure 9: The Raspberry Pi 2 Model B [22]

15

We used the Raspberry Pi’s GPIO pins to connect to a color sensor that measures the intensity of

light. As shown in in Figure 10, there are 26 available GPIO pins that can measure voltage change,

shown as green pins. The Pi also has several ground pins and some voltage supply pins. Since the

Raspberry Pi has a Linux-based operating system, we run a program from the root directory to have

permission to access these pins.

Figure 10: Schematic Diagram of the Raspberry Pi’s GPIO

We used the GPIO pins configured for i2c communication. These are pins 3 and 5; as seen in

Figure 10, these purple labeled pins are accessed through the addresses GPIO2 and GPIO3. GPIO2

is described as SDA1 I2C and GPIO3 is described as SCL1 I2C. These correspond to the SDA and

SCL connections in Figure 13.2

Although the Raspberry Pi can run most operating systems, a Debian based Linux distribution

called Raspbian was written to provide an optimized operating system for general use. Raspbian is

set up to be conducive to programming; it comes with Python, Scratch and other languages already

installed as well as giving easy access to all of the Pi’s GPIO pins and other connections as long as

programs are run with root permissions.

3.1.2 TCS34725 Color Sensor

The TCS34275 color sensor, shown in Figure 11 contains a 3x4 array composed of red, green,

blue and clear filtered photodiodes that produce a voltage related to incident light intensity. All

photodiodes are coated with an IR-blocking filter, and are designed to be responsive to red, green, or

blue wavelengths of light, while blocking other wavelengths from reaching the photodiode.

2The specific connections set up with the GPIO pins is further discussed in Section 3.4

16

Figure 11: Image of TCS34275 device

The team used this device to simulate human color perception. It has the ability to report back

effective values for red, green and blue intensities, which is very similar to the way the eye uses the

three types of cone cells. For comparison, we have included the spectral response of the TCS sensor

side by side with the previous figure showing the spectral response of cone cells in the human eye.

Figure 12 below shows this comparison.

(a) (b)

Figure 12: Left: TCS sensor spectral sensitivity [24]. Right: cone cell spectral sensitivity

There is a built in analog-to-digital converter in the TCS34275 which takes the analog voltages

from the photodiode array and converts them into a industry standard digital communication format

called i2c. A block diagram showing the information flow is shown in Figure 13 below. This format is a

17

400kHz, two wire serial bus used many communication connections to microcontrollers and embedded

processors. The Raspberry Pi has two GPIO pins already configured to serve as an i2c communication

bus, making communication with the TCS device relatively simple.

Figure 13: Block diagram for the TCS34275 device [24]

Connecting the sensor is fairly simple when following the proper instructions. The TCS34725 color

sensor requires 4 ports to connect to the Raspberry Pi. The ports we used to connect the sensor are

ports 1, 3, 5, 6, and 9. The ports and their purposes are labeled below in Figure 14.

Figure 14: Raspberry Pi GPIO pins used by the TCS34725 color sensor [22]

The sensor was connected to the Raspberry Pi’s GPIO pins using thin wires called breadboard

jumper wires. The jumper wires are small enough so that the individual GPIO pins on the Raspberry

Pi are easily accessible, and the wires help to consolidate the device design making it as portable as

possible.

The TCS34725 color sensor itself contains seven pins for connection. The pins and sensor itself

ship individually, so in order to use the pins, we first soldered the pins into the corresponding holes on

the color sensor. Then, we connected the sensor pins and GPIO ports together with the breadboard

18

wires described earlier. Figure 15 below shows the five pins on the sensor that are used to connect

the sensor to the Raspberry Pi.

Figure 15: Pins on the TCS34725 color sensor [24]

As seen in Figure 15 above, the TCS 34725 contains pins labeled LED, INT, SDA, SCL, 3V3,

GND, and VIN. Each Pin controls a separate component of the sensor and serves a purpose when

connected to the Raspberry Pi.

The LED pin is used to control the LED and is connected by a white cable in port 9. When the

LED cable is connected from the sensor to the Raspberry Pi ground pin, the LED on the sensor is

turned off. When the cable is disconnected from the Raspberry Pi ground, the LED will turn on.

The INT pin was not used for our project. It serves as an external interrupt that will start and

stop the sensor’s data collection. Because we used the Raspberry Pi and a Python program to control

19

our data collection, we did not need to use this pin, however it might be more applicable for smaller

microcomputers like Arduino.

The SDA and SCL pins are both used to transmit data. The SDA, connected with a yellow wire,

and the SCL, connected with an orange wire, are connected to ports 3 and 5 respectively. These pins

communicate to the Raspberry Pi the RGBC color values collected by the photoarray on the sensor.

The 3V3 and VIN pins are both designed to power the sensor through a voltage source, however

we only used the VIN pin for our project. The VIN pin, connected by a red wire in GPIO port 1, is

connected to the Raspberry Pi which is itself connected to a power source (either an outlet or battery

source). The wire sends 3.3 Volts from the RPI to power the sensor.

Finally, the GND pin is a ground pin, connected to the RPI by a black wire. The wire connects

the sensor to Raspberry Pi’s ground in GPIO port 6. Figure 16 below shows the breadboard wires

connected to the pins of the TCS34725 sensor.

Figure 16: Breadboard wires connected to the TCS34725 color sensor

Once connected to the Raspberry Pi, the TCS34725 requires a prewritten module written in the

Python 2 programming language. Because Python 2 is an open source language, we downloaded

the module from GitHub, a hosting service for computer programming, and adapted the module for

our usage. The module, titled Adafruit TCS34725.py, reads and returns values for r,g,b, and c; the

amount of light collected by the red, green, blue, and clear photodiodes respectively. The program

also contains 6 prewritten integration times that the program can choose from.

In order for this sensor to work for our project, we had to test its linearity. For example, if the

intensity incident is doubled, do the reported values for red, green, blue and clear double as well? We

conducted a wide range of tests on the TCS sensor, using neutral density filters to change the intensity

of incident light. We tested under several lighting sources and for every color that we expect the TCS

sensor to help us identify. An example of this data (taken for a white card under fluorescent light)

20

is shown in Figure 17. We found that for the most part, the sensor behaved linearly. However, there

were some areas where non-linear effects were observed. Some of these effects caused all the values to

change by the same non-linear factor. These instances actually don’t affect the performance, because

as we will discuss later, we are concerned with the ratios between the color values recorded, not the

raw values themselves. If all of the values change by the same factor then those ratios are unaffected.

An example of this effect is shown in Figure 17, where the last value is lower than expected for a

linear trend.

Figure 17: Raw values vs Intensity

We can show conclusively that this kind of effect didn’t cause a problem for the final design. By

dividing all color values by the clear values, as is done in our Python program (shown in Figure 18),

we can look at the data in a new way. In this graph we should expect perfectly flat lines if the sensor

was completely linear. We can observe that for the most part, we do see flat lines within a tolerance

of about 0.05 for most ratio values. We can see that the non-linear effect at the last data point for

Figure 17 is not very apparent, and that dividing by the clear value does account for this non-linear

effect.

Some of the data, however, showed some noticeable non-linearity that would change the ratios

between these reported raw values. These were mostly under low intensity conditions (seen on the

left-most data points in Figure 18), where even the human eye might have trouble detecting colors

accurately. Still, we should be aware that lowering intensity values too low could easily result in

incorrect color identification because the values coming from the sensor were simply too inaccurate.

However, these results were mostly promising, and we were confident that the TCS sensor would be

a good choice of color sensor moving forward with the device implementation.

21

Figure 18: Color ratios vs. intensity for a white card under fluorescent light

3.2 Fiber

3.2.1 Selecting a Fiber and Numerical Aperture

In order to input light directly onto the TCS34725 color sensor, the team used a plastic optical

fiber. This fiber was made by a company that had gone out of business, leaving us unable to find any

information on the plastic fiber’s specifications. Therefore, the team experimented using laser light

collimated through the plastic fiber to make measurements on the numerical aperture, acceptance

angle, and core-cladding structure of the fiber. Although information on the plastic fiber was harder

to obtain, the team determined the plastic fiber to be the best choice available, because the plastic

fiber is sturdy and durable and would not break easily. Additionally, the plastic fiber’s diameter was

relatively large, which allows the plastic fiber to accept more light than other fibers. This means the

TCS34725 sensor will receive a stronger signal, which was desirable for our purposes. After making

the decision to move forward with the plastic fiber, we used the photonics lab to explore the properties

of this fiber.

The team first determined the numerical aperture of the fiber. To do so, we used a He-Ne laser,

the plastic fiber mounted at each end by plastic blocks, and a grid paper. The set up is pictured in

Figure 19 below.

22

Figure 19: Experimental set up to determine the NA of the plastic fiber

In this experiment, the light from the He-Ne laser was collimated through the fiber and emitted

from the fiber onto a grid paper. By measuring the distance between the fiber and the red spot on

the grid paper, as well as the radius of the red spot, the team was able to determine the half angle of

the fiber. Figure 20 below gives the equation used to find the acceptance angle of the plastic fiber.

Figure 20: Equation for the half angle of a fiber

The team collected data on the half angle of the plastic fiber for several lengths and found an

average half angle of 13.7°±1.5°. The numerical aperture of the fiber core is given by equation 6

below.

23

NA = nosin(θ) (6)

Here no is the index of refraction of the outside medium. For our experiment, the medium outside

the fiber was air which has an index of refraction approximately equal to 1. The average NA found

was .24±.015. We found this NA to be acceptable for the purpose of our project.

3.2.2 Core-Cladding Structure of the Fiber

The team found that by examining at the plastic fiber under a microscope, it was unclear what

the core-cladding structure of the plastic fiber looked like. In Figure 21 below, the fiber is shown

emitting LED light under a microscope. In the figure it appears that the entire fiber is lit with LED

light. Therefore it seems possible that the fiber does not have a cladding and only a core, or that

the incident LED light propagated through both the fiber core and cladding. Because we could not

visibly see any cladding on the plastic fiber, we aimed to determine whether the cladding was small

or non-existent through experimentation. We explored the fiber structure by measuring the diameter

or the core, as well as the diameter of the fiber as a whole.

Figure 21: Fiber end lit with LED light

First, we used a reticle and a microscope to measure the diameter of the entire fiber. Figure 22

below shows the reticle placed on top of the plastic fiber.

24

Figure 22: Reticle on top of the plastic fiber

From Figure 22, we estimated that the diameter of the fiber end was about 700 µm ± 50 µm.

Additionally, we measured the diameter of the fiber end with a pair of calipers and obtained a value

of 736 µm ± 1 µm.

Both the reticle and the caliper measurements were only able to determine the diameter of the

entire fiber. However, if a cladding existed around the core, the measurements taken so far did not

give a value for the core diameter. To find a core diameter measurement, we set up an experiment

with the He-Ne laser, the plastic fiber mounted at both ends, a photodiode, a micrometer, and a razor

blade.

The fiber was mounted in front of the He-Ne laser and the second fiber end was mounted in front

of a photodiode. The photodiode was connected through a resistor to a digital multimeter that read

the photodiode’s voltage generated by the incident laser light emitted from the second end of the

fiber. The micrometer held a razor blade positioned in between the photodiode and the second fiber

end as pictured in Figure 23. We used the micrometer to incrementally move the razor blade between

the fiber and photodiode until the fiber light was blocked completely by the razor blade. The team

noted at what position the photodiode voltage, as read by the multimeter, first began to drop. This

position indicated the beginning of the fiber area that emits light. The position at which the voltage

read by the photodiode drops to zero indicates the end of the fiber area that emits light.

25

Figure 23: Razor blade positioned between photodiode and fiber end

The difference between the two positions explained above is the diameter of the illuminated fiber

region. This region could consist only of the fiber core, or it could be the diameter of the entire fiber

if either there is no cladding or if the cladding contains modes that propagate the laser light. We

obtained a diameter of 650 µm, which led us to believe that, because there is about a 86 µm difference

between this measurement and the reticle and caliper measurements, there is thin cladding on the

plastic fiber.

Due to the difference in diameter between the illuminated region explained above, and the entire

fiber diameter measured with the reticle and calipers, we believed that only a small amount of light, if

any at all, propagates through the cladding. However, to further solidify our conclusions, we repeated

our experiment for the NA of the fiber. For this experiment, we wrapped the fiber around a post to

create small bends in the fiber and then measured the NA of the fiber exactly as before. Figure 24

below shows the set up for this experiment.

If the cladding of the fiber did contain light, bending the fiber would release light from the fiber

in the bends. We would expect to see a different numerical aperture if this were the case. From this

experiment we found an average NA of .23 whereas the NA we had measured with no bends was

.24. Because the two numerical apertures found are fairly similar, we believe that there is no light

propagating in the cladding for any significant distance. Therefore we conclude that the diameter of

the fiber core is about 650 µm and the diameter of the entire fiber (core plus thin cladding) to be

about 736 µm.

26

Figure 24: Measuring the NA of the plastic fiber with bends in the fiber

3.2.3 Sensor to Fiber Alignment

To approach the problem of aligning the fiber and the sensor, we compared the diameter of the fiber

to the size of the photodiode array on the TCS34725 color sensor. We wanted to determine whether

we would have to focus light from the fiber onto the photoarray with a lens. As we had mentioned

earlier, we determined the diameter of the photodiode to be about 650 µm, and the photodiode array

on the TCS34725 color sensor is 409x369 µm as listed on its product page.3 Therefore, a circle of

diameter 548 µm or larger would cover the entire photoarray. The photoarray and fiber are pictured

in Figure 25.

Figure 25: Plastic Fiber and TCS34725 Color Sensor with photoarray

3Adafruit product page: https://www.adafruit.com/products/1334?gclid=CPj8xoXH38kCFUskgQod9g4BNA

27

If the fiber diameter was much larger than the photoarray, a percentage of the source light collected

by the fiber would miss the photoarray. This would cause a problem because it limits the size of objects

that we are able to see and collect light from. Because we found the photodiode array and the fiber

to be of comparable sizes, we can simply position the fiber flush against the photoarray. We will use

a micrometer to incrementally adjust the x, y, and z position of the fiber and optimize the amount of

light transmitted from the fiber onto the photoarray.

We created a three-component system to secure the fiber and correctly align it with the sensor.

The first part simply encases the TCS34725 color sensor. Parts two and three are both identical

horizontal blocks. Part three, the top block in Figure 26, is attached to part one with screws that run

through the TCS34725 color sensor, part one, and part three. Part two has a groove that is lined up

with the color sensor’s photoarray to secure the fiber in place. Figure 26 shows how parts one, two

and three are aligned.

Figure 26: Fiber holder assembly

When parts two and three are wedged together the fiber is secured. To clamp the fiber holder all

together, parts two and three are wedged between two identical rectangular blocks of PVC plastic.

The bottom block is glued to the bottom of the electric project box which we used to encase our

device/footnoteThe complete layout of our device is detailed is Section 3.4, flush against the box’s

front. We engraved a depression into the bottom block so that part two would securely fit into the

block. The depression is not flush against the box front, and only extends the length of part two of

the fiber holder. By doing this we allowed the fiber to bend before it reaches the hole in the box front.

The top block of PVC lays on top of the fiber holder and effectively clamps parts two and three

together by screws that extend through the top and bottom PVC plastic blocks. We had the option

of simply screwing the fiber holder itself together, however, once we do so the alignment becomes

28

permanent. It is imperative for the fiber to be properly aligned on the color sensor’s photoarray so

as to collect as much fiber light as possible. Because of this we decided to create the clamping blocks

to make the alignment adjustable. Figure 27 shows the clamping of the two PVC plastic blocks with

the fiber holder wedged in between.

Figure 27: Fiber holder clamps

To align the fiber on the photoarray, we make incremental changes in the fiber’s position and

observe the resulting changes in recorded ’C’ values. To assist in our alignment, we connected a screw

through part three of the fiber holder and through the side of the project box. The screw is adjustable

so it can be turned to adjust the y position of the fiber. This process is similar to the concept of a

linear worm gear and greatly simplifies our alignment process. The z position of the fiber is fixed by

clamping the fiber holder together and the x position can be adjusted by hand before clamping the

holder.

Finally, the fiber extends from the fiber holder through the box through a small hole drilled in

the front of the box. Our fiber length is about three feet (.914 m) to allow the user to easily point

the fiber at objects without moving the project box. The fiber hole in the front of the box is where

we are most concerned about excess light leaking into the box as any light through the fiber hole is

directly incident on the color sensor’s photoarray (as the photoarray faces the fiber hole). To eliminate

as much light leakage as possible we put putty around the fiber hole. With the putty in place, our

29

leakage to signal ratio is about 6.8%. Additionally, we tried covering the lights on the Raspberry Pi,

the screws holes in the electric project box, as well as the cord slots for the speaker. However, we

only noticed a significant change when we covered the fiber itself with black cloth. Figure 28 below

shows the percentage of light leakage for various methods of reduction.

Figure 28: Leakage percentages for varying degrees of coverage

As the figure shows, the light leakage was significantly reduced when half of the fiber was covered

and nearly completely eliminated with the entire fiber covered. This leads us to believe that unwanted

light is somehow getting into the fiber along the length of the fiber. Though we do not know exactly

why this seems to be happening, we suspect it could be due to light incident on the edges of the fiber

cylinder becoming trapped in skewed modes or cladding modes and traveling the length of the fiber.

Usually, light entering the fiber from the sides is not significant. However, we have a relatively short

length of fiber, and the light we are attempting to capture at the end is very similar in intensity and

distribution to the light incident on the fiber sides (as opposed to a laser or diode source). Although

the cause is still not certain, the remedy is simple and effective. We address this issue by covering

the entire fiber with black heat shrink tubing, and by doing so we eliminate all excess light.

3.3 Aperture

We implemented an aperture to limit the acceptance angle of the fiber allowing our device to

identify objects that are smaller and farther away than what was possible without an aperture. We

had the choice of making the aperture adjustable or fixed. For simplicity, we decided to keep the

aperture fixed to a certain diameter.

To create an aperture-like component for our fiber, we decided to create a sheath that encases

and extends past the fiber end. The sheath forces the fiber into collecting light from a more focused

area. We can adjust the effective acceptance angle by changing the distance between the fiber end

and sheath end. We had the freedom to choose these lengths based on what we deemed reasonable

for our project. Figure 29 below shows the design of our aperture.

30

Figure 29: Diagram of sheath-like aperture

The aperture sheath was created using heat shrink tubing, therefore the diameter of the sheaths

end is approximately equal to the fiber’s diameter which was previously found to be about 736 µm. To

determine the optimal distance between the sheath’s end and the fiber end, we took into consideration

two things; how small can we make the aperture’s opening and still achieve a sufficient RGBC signal,

and what ratio of object size to object distance is reasonable and desirable for our device.

We decided that an aperture that limits the fiber’s acceptance full angle to approximately 15°
would be appropriate for our device. Therefore d, the distance between the fiber end and aperture

end is about 3 mm. This acceptance angle allows a user to see a 21 cm object (a standard sheet of

paper) 80 cm away.

As stated above, heat shrink tubing was used to make our device’s aperture. Figure 30 below

shows two pieces of fiber covered by the heat shrink tubing. The tubing is black and matte so the

tubing should not cause excess light to reflect into the fiber. The tubing material is fairly durable

and malleable, however it is very sensitive to heat so it must be kept out of high temperatures.

Figure 30: Samples of plastic tubing covering our fiber

31

To create the tubing pieces for our fiber, we first heated the tubing on a an extra piece of fiber.

We use an extra piece of fiber to create the sheath because we found that the high temperature from

the heat gun ended up melting our fiber. Once the tubing was shrunk down to the fiber diameter,

we stripped the tubing from the fiber. The tubing could then be used to encase the fiber we use for

our device. We position the tubing sheath so that there is a space between the end of the fiber and

the end of the iris (which we defined as d in equation 5 above). To keep the tubing in place, we will

adhere the end of the sheath to the fiber using glue or electrical tape.

3.4 Device

3.4.1 Device Components

To make our device portable, we composed our device from five main components encased in a

plastic electric project box pictured in Figure 31 below. The electric project box, dimensions 8-1/4”

length x 5-9/64” width x 3-7/64” height, consists of a rectangular box base with a removable top. We

found that the box’s dimensions, along with the removable lid served our purposes well as it allows

for enough space inside the box to connect and disconnect components as well as allowing room for

the wired connections to bend.

Figure 31: Electric Project Box from BUD Industries [3]

The portable components in and on the box include the Raspberry Pi, the TCS34725 color sensor,

a battery source, a wireless keypad and a portable speaker. The Raspberry Pi serves as the center of

32

our device as all other components are connected to the RPI.

The TCS34725 Color Sensor along with our plastic fiber collects light input data and sends this

information to the Raspberry Pi through wired connections to the RPI’s GPIO pins. The TCS34725

Color Sensor is aligned with the fiber so that light from the fiber is output evenly onto the color

sensor’s photoarray. Once aligned, the fiber and TCS34725 Color Sensor are clamped using blocks of

PVC plastic. .

The user interacts with the Python program by entering numbers on a portable keypad. Our

keypad connects to the Raspberry Pi through a wireless USB module. The keypad contains only

numbers 0-9, enter, backspace, and other punctuation options.

To output color information as sounds, we use a portable USB powered speaker. The speaker

is powered by the Raspberry PI through a connection in one of the RPI’s USB ports, and sound

information is sent from the Raspberry Pi to the speaker through the headphone jack. The speaker

is mounted on the top of the project box lid so that a user can adjust the speakers volume using its

dial.

The project’s components are powered by a small power bank inside the box. The power bank is

connected only to the Raspberry Pi through a USB port, as all other components are then connected

to the Raspberry Pi. The power bank supplies 5 volts to the RPI and is rechargeable. Using the

power bank, the device is able to run continuously for about 4.8 hours.

In addition to the device’s portable component’s, the user also has the option of connecting to a

monitor using the Raspberry Pi’s HDMI port, as well as using a wired or wireless mouse through a

USB port on the RPI.

3.4.2 Device Layout

Our electric project box was large enough that we had plenty of room for our power bank, Rasp-

berry Pi, and TCS34725 color sensor to fit easily in the box along with their wires. Our Raspberry

Pi is mounted to the bottom right corner of the project box’s removable lid. We mounted the RPI

with standoffs to allow for easy access to the RPI’s four USB ports, power connection, HDMI port,

and GPIO pins.

For now, our power bank is attached to the project box with double sided tape. We had many

options when it came to choosing the battery source. Therefore we decided not to permanently secure

this component to the box. The power bank is taped in the bottom of the project box and the speaker

is taped on top of the box. Figure 32 below shows the location of the power bank, Raspberry and

Fiber Holder components in the project box.

33

Figure 32: Project box layout top and bottom

The speaker is small enough that it could fit inside the box, but we decided to keep it taped on

the box lid instead to allow more room inside the box and to allow the user to better hear the sounds

that the speaker emits. The speaker’s two wires enter the box through a small slot that was filed

directly underneath the lid on the back of the box. Because the cord’s slots were filed to the cords

measurement and the slots are located behind the TCS34725 color sensor, we do not anticipate a

significant amount of light leakage from the slots.

We have set up a HDMI cord connected through the Raspberry Pi’s HDMI port as well. The

HDMI cord comes out of the box through a slot between the lid and back of the box similar to the

slots for the speaker’s cords. Though it is not necessary to connect to a monitor to use the device,

we do need a monitor to start the Python program. It is also useful to connect to a monitor for

demonstration and editing the program’s script.

3.5 Python Program

The process of analyzing color information and detecting a color takes place in a computer program.

We found that Python was the optimal language to use due to its easy and fast implementation and

open source module written to access the Raspberry Pi’s GPIO ports. We created three modules in

Python including a wrapper to perform the task of identifying a color and playing its corresponding

tone. The Python program serves four major purposes: to obtain and manipulate RGBC values,

34

to account for background lighting distributions, to learn colors and backgrounds, and to identify a

color.

3.5.1 Obtaining and Manipulating RGBC Values

The first step was to obtain red, green, blue and clear intensity values from the TCS34725 sensor

and record them in Python variables. To do this, we used an open source module found on GitHub

that contained the necessary libraries to communicate with the TCS sensor. Essentially, this module

allowed us to call a function to ask for RGBC values from the sensor, and record those values in local

variables R, G, B and C.

We wanted to use the raw intensity values for red, green, blue, and clear (unfiltered) light produced

by the TCS sensor to create a set of criteria characteristic only to an objects color that can be compared

under any background source. So, there are several ’normalizations’ that we made to refine the raw

data into usable values dependent only on color.

The first consideration is intensity. By dividing the red, green and blue values by the clear value,

we created a set of three values that are intensity-independent. Next, we had to normalize for back-

ground distribution. To this end, we divided the new values by similar (intensity normalized) values

taken from observing a white card under the same background light. Now, our data is normalized

for intensity and background distributions. Effectively, we have three values (red, green and blue)

that represent how much light was reflected as a fraction of how much was available for reflection.

However, from our observations, these values are not necessarily what determines a particular color.

What is more characteristic are red-green, red-blue and green-blue ratios. For example, Magenta is

characterized by a high red-blue and red-green ratio, and has a green-blue ratio of nearly one. We

created these ratios using the aforementioned normalized values, and we are confident that these

ratios only change with changing color.

Once the color values have been obtained and normalized, the rest of the program consists of a

continuous loop. The loop begins by asking a user for input, prompting with a sound cue. The user

should then enter either 4, 5, 6, or 7, which can be entered with a wireless portable USB keypad. The

loops consists of a decision tree, carrying out a particular set of instructions based on the user input.

If 4 is chosen, a new background is taken. If the user presses 5, the program collects a set of data

from the TCS sensor, normalizes it, and determines the color with characteristic ratios closest to it.

If the user presses 6 or 7, the program is instructed to ’learn’ a color or a background source type,

respectively.

Once the selected option has been carried out, the program loops back to the beginning, so a

new input can be obtained. The entire process of one action can be executed in 3 to 4 seconds. The

speed is most limited by the time needed to make a measurement with the TCS sensor and the time

required to play the sound cues, which can’t be easily reduced.

35

3.5.2 Account for Background Lighting Distributions

As we mentioned before, the spectral power distribution of light varies significantly for common

lighting sources. ”Taking a background” refers to the act of accounting for these changes. To take

a background, the user first points the fiber at a black cloth, and then at a white card. The black

cloth value represents any excess light reaching the sensor. We eliminate this effect by subtracting

the black cloth ”leakage” values from the white card values. The white card values are representative

of the spectral power distribution of the current lighting environment.

Overall, this set of data represents the background distribution. The program matches this dis-

tribution to the closest source type (Tungsten, CFL, LED, Fluorescent or Sunlight)4, and uses these

values for normalization as discussed in the previous section. A sound cue consisting of two notes is

also played at this time, with a unique sequence corresponding to the source type.

3.5.3 Learn Colors and Backgrounds

In order to identify colors, we decided that we should compare unknown values to ”learned” values

that the user had previously defined. Therefore, we needed a way to tell the program the RGB values

it should expect for the detectable colors. We implemented a basic machine learning technique to

allow the device to ”learn” colors.

From our research in color theory we hypothesized that background distributions and intensity

could be completely normalized, and therefore it would be possible to record color values under one

background source and use them to determine colors under another source. Although this theory

seems sound, we found in practice that large changes in background lighting still had a noticeable

affect on these ratios. However, small changes in background could still be effectively accounted for

with normalization. To fix this, we created a different set of criteria for each type of background

source; this meant that we had to learn background source types as well. Slight changes between

instances of the same source are still accounted for with normalization, but large changes completely

change the set of values used for comparisons.

The implementation for this part of the code was done in a separate module titled LearnColor-

Ratios. This module contains function definitions which can be used by the main program in order

to assist in completing repetitive tasks. The LearnColorRatios module revolves around receiving nor-

malized color ratio information as function arguments, and either saving that information in csv files

or reading existing information from csv files and using it to determine colors or background source

types.

As mentioned before, we have created separate libraries for color ratio storage for each type of

background source. When the user presses 6 to learn a new color, they must also tell the program

what color is being learned by entering a key (such as ’M’ for Magenta). The normalized ratios are

appended to the csv file for the corresponding color in the current source type library. The program

then automatically updates a second file, named ’colorinfo.csv’, which contains the mean values of

4The comparison will be discussed in Section 3.5.4

36

these ratios for each color. A separate ’colorinfo.csv’ exists for each source type, and the program

uses the information from this file when determining a color. A similar system exists for learning

background source types, accessed when the user enters 7. This implementation is very flexible and

dynamic, allowing the user to ’teach’ several instances of a color to improve the devices accuracy. The

process of learning a color is shown in Figure 33.

Figure 33: Flowchart of the process of learning a color

3.5.4 Identify a Color

If the user presses 5, the main program attempts to determine a color. The LearnColorRatios

module contains a function, compareColor, which handles the decision. This function requires three

normalized values (red, green and blue) as input. It also takes the current background source type.

With this information, it opens the corresponding instance of ’colorinfo.csv’ and reads the information

from it. To decide which color has the closest characteristic ratios, the function loops through each

possible color and computes the variable called Lms. Lms is calculated by raising the difference

between the detected object’s color ratios and the known characteristic color ratios to the fourth

power, and then summing those values. It is similar to calculating least mean squares, except we use

the fourth power to bias towards cases where each ratio is only slightly off, and against cases where

any one ratio has a moderate to large difference. Our research has shown that even just one ratio

being significantly off is indicative that the color in question is not correct. A similar process is used

to identify background source types. This process is illustrated in Figure 34.

The program keeps track of the lowest Lms, and correspondingly, the best color. Here, we imple-

mented a clause that overrides a choice of white if a second best color had an Lms score that was

within 30 percent of the Lms score for white. This reduces false white identifications and has had

no negative effect on correct white identifications. We have noted that if the color in question is

white, the Lms score will often be extremely small, as white has characteristic ratios of unity when

normalized to the background. Another way of thinking about background normalization is that we

are defining what white is as a benchmark for other colors to be measured against. Therefore, we

37

Figure 34: Flowchart of the process of detecting a color

can be very strict about the requirements for detecting white, as the characteristic values should be

identical to those of the background.

3.6 Audio Output

This portion of the project has a simple objective. The user should be able to rely on sound cues

alone to operate the instrument and to determine which color had been detected. We also decided

it would be important for the user to know the type of background source from a different set of

sound cues. These sounds should be distinct to the human ear and require minimal ear training to

remember and recognize, and the user should be able to tell immediately whether the device was

ready for operation, had just detected a color, or was awaiting an input command.

Since we used Python to detect colors, we decided to continue using the program to handle playing

musical tones. This module uses the pygame library to play .wav files based on the color detected.

For each color, a designated wav file exists to denote that particular color. The sounds played when

a color is detected are composed of a three note sequence. The first note is always middle C, and

the second note is always higher than the first. This is unique among our sound cues, letting the

user know right away that a color is being described. The three note sequences all use basic melodic

structures that are easily distinguished; for example, the sequence for red is C, D, E, the same as

the beginning of the nursery rhyme Frere Jacques. Every sequence is equally as simple melodically,

allowing even someone with no formal musical training to use the device with an easy learning curve.

A table of the sequences and the colors they represent is shown below. The ’Melodic Descriptions’

are just examples in well known songs where these three note melodies can be found, and there are

likely many more.

38

Three-note Sequences by Color

Color Sequence Melodic Description

Magenta C-A-B ”The Way You Look Tonight” - ”Just Thinking”

Red C-D-E Frere Jacques

Orange C-D-F ”Valerie” opening notes - ”Well Sometimes”

Yellow C-E-G C major chord arpeggio

Green C-A-G Downward Progression - used in ...

Cyan C-F-E ... ”You’re Never Fully Dressed ...

Blue C-D-C ... Without a Smile”

Purple C-F-C Jeopardy theme beginning

Brown C-B-Bb Chromatic scale (descending)

White C-G-C Octave above middle c

A similar system exists for the detection of background source types. Here, every sequence is

only two notes long, and each one starts an octave above middle C. The second note is always lower,

creating an interval that is easy to hear and distinguish. We also created a sequence G, C that is

played when the device is ready for input, and a single tone of G is played when background is being

obtained. These unique cues help the user know when and how to interact with the device. The table

below shows the note sequences for each background source.

Other Sound Cues

Purpose Sequence Description

Fluorescent Source C-F Perfect fifth interval

CFL Source C-E Minor sixth interval

LED Source C-D Dominant seventh interval

Tungsten Source C-G Perfect fourth interval

Sunlight Source C-A Minor third interval

Ready for Input G-C User should input command

Background Read G Single note when reading values

Startup E-C-G Quick, only plays once

All of these sequences were made using the free program Audacity, a simple audio editing suite.

The tones are simple sine waves generated at a frequency corresponding to a note in the 12 tone

chromatic scale in western music. Each tone lasts for half a second to give the user enough time to

hear and recognize it. With this implementation we were able to realize the goal of communicating

device status and color information to the user by taking advantage of the ear’s natural strength in

melodic recognition.

39

4 Results and Conclusions

4.1 Accuracy

We can test the accuracy of our device by attempting to identify colors at increasing distances.

For this experiment, we keep our aperture length, bulb intensity, and card size fixed and increment

the distance between the fiber and the card. As we mentioned earlier, we chose to use an aperture

that limits the fiber’s acceptance angle to about 15°. Therefore, we should be able to exclusively see

a card with a 21.5 cm diameter up to a distance of about 80 cm. Past 80 cm, the fiber begins to see

not only the card, but also the surface or background surrounding the card. Therefore, we say that

a perfectly functional color sensor should begin to fail at 80 cm.

We repeated this experiment for all background lighting sources that we currently have learned:

Sunlight, Tungsten Bulbs, CFLs, Fluorescent Lamps, and LEDs. The fiber to card distances were 7

cm, 20 cm, 35 cm, and 50 cm. The detected objects were the same color cards that were used to learn

the colors.

Overall, we had generally satisfactory results. We were able to correctly identify colors under all

light sources with a fiber to card distance of at least 35 cm. Only at a distance of 50 cm did we start

failing to correctly identify colors. Under the CFL, Fluorescent and Tungsten lights, the device was

unable to identify red at a fiber to card distance of 50 cm as can been seen in Figure 35. Although,

the device was still able to correctly identify red under sunlight and LED light, the LMS calculation

for these identifications was relatively high (on the order of a tenth) which means that the device was

close to failing and mistaking the red card for orange or magenta. We consider the fiber distance to

be the main factor causing our device to fail as all other conditions were kept constant.

Figure 35: Ability to identify red card at a distance of 50 cm

All other colors, however, were correctly identified even at 50 cm. It is worth noting that the

incorrectly identified colors (orange and magenta) can be considered shades of red. This suggests that

these failures were not due to some kind of signal to noise problem. The sensor was still generally

40

able to detect the shade, but the ratios were significantly different than the correct values. The best

explanation calls on our earlier results when testing the sensor for linearity. The aforementioned

non-linear problem areas could very well explain these results, although we do not have a conclusive

answer for the root cause of these color identification failures.

4.2 Limitations

Although we can be generally satisfied that our device can accurately identify all colors that it

has been taught, there are still limitations to the device. The accuracy results illustrate difficulty

identifying objects that are farther away. At a distance of 7 cm, the LMS calculation for the correct

color was very low (on the order of a millionth). As we increase the distance between the card and the

fiber, the LMS numbers steadily grew, displaying that the device was having a harder time detecting

the object’s color. We can say that the main limitation to this device is the distance from the object,

and that we experience color identification failure at a distance closer than theoretically predicted.

While there are inherent distance limitations to the design, we were not able to optimize accuracy to

these limitations, and we experienced identification failure at significantly closer distances.

The other main limitation for this device in terms of accuracy is the shininess of the examined

object. Shiny objects reflect light very differently than their matte counterparts; the distribution

observed contains much more white light, which makes color identification harder. We experience

this as glare in our everyday lives. Our eyes use their spatial resolution to look around glare and

still detect object color, but this device cannot resolve spatially at all. A different implementation,

perhaps using a digital camera, would allow the developers to have the tools to tackle this issue.

However, it is an inherent limitation for our design.

Finally, this device does not have the necessary ease of use to be produced as an actual product

for typical users. The color detecting program has to be started manually, and is not a stand alone

executable. It needs the Python IDLE environment to run. Furthermore, a user needs to use a mouse

and a display to start the program. We expect that these limitations could be addressed without too

much difficulty, but the current group felt that their lack of programming knowledge and experience

prohibited them from creating a useful and elegant solution.

4.3 Conclusions and Future Work

In conclusion, we have successfully met the objectives that were set at the beginning of this project.

However, our project can be significantly improved by addressing the device’s limitations as well as

expanding the device to accomplish more.

First the issue of distance should be addressed. During the implementation of this project, we

considered using a lens in order to be able to focus on small objects that are far away. However,

for the device to be able to see objects that are both near and far, the lens should be retractable;

effectively imitating the focusing power of the eye. An elegant solution could consist of a lens that

41

automatically adjusts based on the distance of the object being examined.

Additionally, other facets of the device design can be improved. The aperture that we used was

fixed to an acceptance angle of about 15°, but we found that the sacrifice of light intensity from the

implementation of an aperture would not affect color detection until a limited acceptance angle of

about 4°. Therefore, an adjustable aperture could be implemented to expand the distance of objects

that the device can naturally detect, even without the help of a lens. Secondly, the device can be

made even more compact and portable by using a smaller project box as well as using the newest

model of the Raspberry Pi (Model Zero) which is significantly smaller than the Model 2B that we

used.5

While this design produced a reasonably successful implementation, there are undoubtedly many

other ways to resolve the problem of color detection. We hope that others will continue to try new

and creative ways to approach this project and reach new solutions.

5The Raspberry Pi Zero (65mm x 30mm x 5mm) was released recently with much smaller dimensions than our
model, the Raspberry Pi 2 B (85.60mm x 56mm x 21mm).

42

5 Appendices

5.1 Python Code

Main Program Module: ListeningtoLight Final.py

===

Main Program f o r L i s t en ing to Light MQP

Authors : Ryan Lang and Amanda Varr i ch ione

===

This program a c c e s s e s the Adafru i t TCS34725 senso r from Raspberry Pi GPIO por t s .

from Adafruit TCS34725 Exp import TCS34725

from time import s l e e p

import math

import ColorSounds Final as s o r t

import LearnCo lorRat ios F ina l as LC

I n i t i a l i z e the TCS34725 and use d e f a u l t ga in

t c s = TCS34725 (integrat ionTime=0x00 , ga in=0x03)

t c s . s e t I n t e r r u p t (Fa l se) # False s e t s s enso r to a c t i v e s t a t e

intTimes d e f i n e s p o s s i b l e i n t e g r a t i o n t imes corre spond ing to s e t t i n g s in

Adafruit TCS34725 Exp

intTimes = [0xFF , 0xFC, 0xF8 , 0xF4 , 0xF0 , 0xEC, 0xE8 , 0xE4 , 0xE0 , 0xDC, 0xD8 , 0xD4 , 0

xD0 , 0xCC, 0xC8 , 0xC4 , 0xC0 , 0xBC, 0xB8 , 0xB4 , 0xB0 , 0xAC, 0 xA8 , 0 xA4 , 0 xA0 , 0 x9C , 0 x98

, 0 x94 , 0 x90 , 0 x8C , 0 x88 , 0 x84 , 0 x80 , 0 x7C , 0 x78 , 0 x74 , 0 x70 , 0 x6C , 0 x68 , 0 x64 , 0 x60 , 0 x5C , 0 x58 , 0

x54 , 0 x50 , 0 x4C , 0 x48 , 0 x44 , 0 x40 , 0 x3C , 0 x38 , 0 x34 , 0 x30 , 0 x2C , 0 x28 , 0 x24 , 0 x20 , 0 x1C , 0 x18 , 0

x14 , 0 x10 , 0 x0C , 0 x08 , 0 x04 , 0 x00]

backIntTimes s e t s i n t e g r a t i o n t imes f o r each p o s s i b l e background

backIntTimes = { ’ Tungsten ’ : 20 , ’ F luore scent ’ : 20 , ’LED ’ : 20 , ’ Sun l ight ’ : 20 , ’CFL ’ :

20}

t c s . s e t Integrat i onTime (intTimes [2 0]) # I n i t i a l i z e s i n t e g r a t i o n time be f o r e obta in ing

background

I n i t i a l i z e s background and l i g h t c o r r e c t i o n v a r i a b l e s

haveBackground = False

background = ’ ’

co r r = [0 . 0 , 0 . 0 , 0 . 0 , 0 . 0]

Lets user know dev i ce i s ready

s o r t . startupSound ()

s l e e p (1)

43

whi le True :

Prompts user f o r input

s o r t . readySound ()

cho i c e = s t r (raw input (’ 4 f o r background , 5 f o r co lo r , 6 to l e a r n co lo r , 7 to

l e a r n background : ’))

t c s . s e t I n t e r r u p t (Fa l se)

C o l l e c t s data and c o r r e c t s f o r l i g h t l eakage and i n t e n s i t y

rgb = t c s . getRawData ()

c = f l o a t (rgb [’ c ’]) − co r r [0]

i f c == 0 : # Avoids d i v i s i o n by zero

c = 1

rc = (f l o a t (rgb [’ r ’]) − co r r [1]) /c

gc = (f l o a t (rgb [’ g ’]) − co r r [2]) /c

bc = (f l o a t (rgb [’b ’]) − co r r [3]) /c

i f r c != 0 and gc != 0 and bc != 0 : # Don ’ t t ry in p i t ch black

User asked to s e t new background

i f cho i c e == ’ 4 ’ : # User needs to cover f i b e r with black c l o t h

rgb = t c s . getRawData () # Gets l eakage l e v e l s

co r r [0] = f l o a t (rgb [’ c ’])

c o r r [1] = f l o a t (rgb [’ r ’])

c o r r [2] = f l o a t (rgb [’ g ’])

c o r r [3] = f l o a t (rgb [’b ’])

s o r t . backgroundSound () # I n d i c a t e l eakage l e v e l s obta ined

s l e e p (1)

User needs to po int f i b e r at white card

raw input (’Aim f i b e r at white card and pre s s ente r to cont inue ’)

p r i n t ’ Reading background ’

rgb = t c s . getRawData ()

c = f l o a t (rgb [’ c ’]) − co r r [0]

i f c == 0 :

c = 1

r r = (f l o a t (rgb [’ r ’]) − co r r [1]) /c

gr = (f l o a t (rgb [’ g ’]) − co r r [2]) /c

br = (f l o a t (rgb [’b ’]) − co r r [3]) /c

p r i n t ’ Background obtained ’

s o r t . backgroundSound ()

Determines background source type

44

background = s t r (LC. f indBack (rr , gr , br))

p r i n t (background)

haveBackground = True

Sets i n t e g r a t i o n time to new l e v e l based on source type

t c s . s e t Integrat i onTime (intTimes [backIntTimes [background]])

s l e e p (1)

Determines an o b j e c t s c o l o r

e l i f cho i c e == ’ 5 ’ and haveBackground == True :

p r i n t (’ Finding Color . . . ’)

Normal izes ob j e c t c o l o r va lue s to background va lues

Nr = rc / r r

Ng = gc/ gr

Nb = bc/br

Uses normal ized va lue s to determine c o l o r

c o l o r = LC. compareColor (Nr , Ng , Nb, background)

p r in t (c o l o r)

s o r t . Color (c o l o r) # Plays sound corre spond ing to c o l o r

s l e e p (1)

Learns a c o l o r

e l i f cho i c e == ’ 6 ’ and haveBackground == True :

Nr = rc / r r

Ng = gc/ gr

Nb = bc/br

Writes c o l o r va lue s to cor re spond ing f i l e

LC. LearnColor (Nr , Ng ,Nb, background)

p r in t (’ Learning Color . . . ’)

Updates f i l e conta in ing averages o f a l l c o l o r s

LC. Mean(background)

p r in t (’ Color l ea rned ’)

s o r t . backgroundSound () # Lets user know c o l o r has been recorded

s l e e p (1)

Learns a background source

e l i f cho i c e == ’ 7 ’ :

LC. LearnBack (rc , gc , bc) # Writes background va lues to cor re spond ing f i l e

p r i n t (’ Learning Background . . . ’)

Updates f i l e conta in ing averages o f a l l backgrounds

LC. MeanBack ()

p r i n t (’ Background l ea rned ’)

45

s o r t . backgroundSound () # Lets user know background has been recorded

s l e e p (1)

Ends the program

e l i f cho i c e == ’ 999 ’ :

break

t c s . s e t I n t e r r u p t (True)

s l e e p (1)

t c s . d i s a b l e ()

46

Color Learning Module: LearnColorRatios Final.py

===

Color Comparison Module f o r L i s t en ing to Light MQP

Authors : Ryan Lang and Amanda Varr i ch ione

===

import math

import csv

Def ine s f i l e paths f o r c o l o r s and background sourc e s

f i l enames = { ’M’ : ’ magenta . csv ’ , ’R ’ : ’ red . csv ’ , ’Y ’ : ’ ye l low . csv ’ , ’G’ : ’ green . csv ’ ,

’C ’ : ’ cyan . csv ’ , ’B ’ : ’ b lue . csv ’ , ’W’ : ’ white . csv ’ }
backnames = { ’T ’ : ’ Tungsten . csv ’ , ’F ’ : ’ F luore s cent . csv ’ , ’L ’ : ’LED. csv ’ , ’C ’ : ’

Compact f luorescent . csv ’ , ’ S ’ : ’ Sun l i ght . csv ’ }

Learns a c o l o r by wr i t i ng r , g , b r a t i o s to the cor re spond ing f i l e

de f LearnColor (Nr , Ng ,Nb, background) :

rgRat io = Nr/Ng # Red to Green

rbRatio = Nr/Nb # Red to Blue

gbRatio = Ng/Nb # Green to Blue

User t e l l s program the ob j e c t c o l o r

Color = s t r (raw input (”What c o l o r i s t h i s ? Enter M,R,Y,G,C,B, or W: ”))

data = [] # Wil l r e c i e v e o ld f i l e data

Opens and re co rd s e x i s t i n g f i l e data

with open (’ /home/ pi /MQP/ ’+s t r (background)+’ / ’+f i l enames [Color]) as c s v f i l e r e a d :

reader = csv . DictReader (c s v f i l e r e a d)

f o r row in reader : # Saves each row o f data in ’ data ’ l i s t

data . append ({ ’ rgRat io ’ : row [’ rgRat io ’] , ’ rbRatio ’ : row [’ rbRatio ’] , ’

gbRatio ’ : row [’ gbRatio ’] })

Re−w r i t e s f i l e with new data added

with open (’ /home/ pi /MQP/ ’+s t r (background)+’ / ’+f i l enames [Color] , ’w ’) as

c s v f i l e w r i t e :

f i e ldnames = [’ rgRat io ’ , ’ rbRatio ’ , ’ gbRatio ’] # Header in fo rmat ion

w r i t e r = csv . DictWriter (c s v f i l e w r i t e , f i e ldnames=f i e ldnames)

w r i t e r . wr i teheader () # Writes header to f i r s t l i n e

f o r l i n e in data : # Writes e x i s t i n g data from ’ data ’ l i s t

w r i t e r . writerow (l i n e)

Writes new data entry at end o f f i l e

w r i t e r . writerow ({ ’ rgRat io ’ : rgRatio , ’ rbRatio ’ : rbRatio , ’ gbRatio ’ : gbRatio })

re turn

I d e n t i c a l to LearnColor , but r e co rd s a background value in s t ead

de f LearnBack (Nr , Ng ,Nb) :

47

rgRat io = Nr/Ng

rbRatio = Nr/Nb

gbRatio = Ng/Nb

Color = s t r (raw input (”What background i s t h i s ? Enter T, F , C, S , or L : ”))

data = []

with open (’ /home/ pi /MQP/Background/ ’+backnames [Color]) as c s v f i l e r e a d : # Save

e x i s t i n g data

reader = csv . DictReader (c s v f i l e r e a d)

f o r row in reader :

data . append ({ ’ rgRat io ’ : row [’ rgRat io ’] , ’ rbRatio ’ : row [’ rbRatio ’] , ’

gbRatio ’ : row [’ gbRatio ’] })

with open (’ /home/ pi /MQP/Background/ ’+backnames [Color] , ’w ’) as c s v f i l e w r i t e :

f i e ldnames = [’ rgRat io ’ , ’ rbRatio ’ , ’ gbRatio ’]

w r i t e r = csv . DictWriter (c s v f i l e w r i t e , f i e ldnames=f i e ldnames)

w r i t e r . wr i teheader ()

f o r l i n e in data :

w r i t e r . writerow (l i n e)

w r i t e r . writerow ({ ’ rgRat io ’ : rgRatio , ’ rbRatio ’ : rbRatio , ’ gbRatio ’ : gbRatio })

re turn

Computes mean f o r a l l c o l o r va lue s f o r one background source and reco rd s in ’

c o l o r i n f o . csv ’ f i l e

de f Mean(background) :

data = {} # I n i t i a l i z e data d i c t i o n a r y

f o r key in f i l enames : # Loops f o r each c o l o r f i l e name

I n i t i a l i z e mean va lue s and counter

rgSum = 0.0

rbSum = 0.0

gbSum = 0.0

rgMean = 0 .0

rbMean = 0 .0

gbMean = 0 .0

counter = 0

Opens cur rent c o l o r f i l e

with open (’ /home/ pi /MQP/ ’+s t r (background)+’ / ’+f i l enames [key]) as c s v f i l e :

r eader = csv . DictReader (c s v f i l e)

f o r row in reader : # Sums rg , rg , gb r a t i o s

rgSum += f l o a t (row [’ rgRat io ’])

rbSum += f l o a t (row [’ rbRatio ’])

gbSum += f l o a t (row [’ gbRatio ’])

counter +=1

i f (counter) != 0 : # Div ides by number o f r a t i o s in sum

rgMean = rgSum/ f l o a t (counter)

48

rbMean = rbSum/ f l o a t (counter)

gbMean = gbSum/ f l o a t (counter)

data [key] = [rgMean , rbMean , gbMean] # Adds means to data d i c t i o r a r y

Writes new data f i l e with new in format ion

with open (’ /home/ pi /MQP/ ’+s t r (background)+’ / c o l o r i n f o . csv ’ , ’w ’) as c s v f i l e :

f i e ldnames = [’ Color ’ , ’ rgMean ’ , ’ rbMean ’ , ’ gbMean ’]

w r i t e r = csv . DictWriter (c s v f i l e , f i e ldnames=f i e ldnames)

w r i t e r . wr i teheader ()

f o r key in data :

w r i t e r . writerow ({ ’ Color ’ : key , ’ rgMean ’ : data [key] [0] , ’ rbMean ’ : data [key] [1] ,

’ gbMean ’ : data [key] [2] })

re turn

I d e n t i c a l to Mean , but computes mean f o r background va lue s

de f MeanBack () :

data = {}
f o r key in backnames :

rgSum = 0.0

rbSum = 0.0

gbSum = 0.0

rgMean = 0 .0

rbMean = 0 .0

gbMean = 0 .0

counter = 0

with open (’ /home/ pi /MQP/Background/ ’+backnames [key]) as c s v f i l e :

r eader = csv . DictReader (c s v f i l e)

f o r row in reader :

rgSum += f l o a t (row [’ rgRat io ’])

rbSum += f l o a t (row [’ rbRatio ’])

gbSum += f l o a t (row [’ gbRatio ’])

counter +=1

i f (counter) != 0 :

rgMean = rgSum/ f l o a t (counter)

rbMean = rbSum/ f l o a t (counter)

gbMean = gbSum/ f l o a t (counter)

data [key] = [rgMean , rbMean , gbMean]

with open (’ /home/ pi /MQP/Background/ c o l o r i n f o . csv ’ , ’w ’) as c s v f i l e :

f i e ldnames = [’ Color ’ , ’ rgMean ’ , ’ rbMean ’ , ’ gbMean ’]

w r i t e r = csv . DictWriter (c s v f i l e , f i e ldnames=f i e ldnames)

w r i t e r . wr i teheader ()

f o r key in data :

w r i t e r . writerow ({ ’ Color ’ : key , ’ rgMean ’ : data [key] [0] , ’ rbMean ’ : data [key] [1] ,

49

’ gbMean ’ : data [key] [2] })

re turn

Determines c o l o r by comparing cur rent rg , rb , gb r a t i o s to f i l e in fo rmat ion

de f compareColor (Nr , Ng , Nb, background) :

rgRat io = Nr/Ng

rbRatio = Nr/Nb

gbRatio = Ng/Nb

Lms r e p r e s e n t s how c l o s e the cur rent c o l o r s r a t i o s are to each c o l o r f i l e

Lms = 10000000 # I n i t i a l i z e with imposs ib ly high value

Lms2 = 10000000 # 2nd best lms

c o l o r = ’ ’

c o l o r 2 = ’ ’

Opens ’ c o l o r i n f o . csv ’ f o r cur rent background

with open (’ /home/ pi /MQP/ ’+s t r (background)+’ / c o l o r i n f o . csv ’) as c s v f i l e :

r eader = csv . DictReader (c s v f i l e)

f o r row in reader : # For each co lo r , compare cur rent r a t i o s to known va lue s

newLms = (f l o a t (row [’ rgMean ’]) − rgRat io) ∗∗4 + (f l o a t (row [’ rbMean ’]) −
rbRatio) ∗∗4 + (f l o a t (row [’gbMean ’]) − gbRatio) ∗∗4

i f newLms < Lms : # I f cur rent c o l o r s co r e i s b e t t e r than the prev ious best

c o l o r 2 = c o l o r

c o l o r = row [’ Color ’] # Sets c o l o r to cur rent c o l o r

Lms2 = Lms

Lms = newLms

e l i f newLms < Lms2 :

c o l o r 2 = row [’ Color ’]

Lms2 = newLms

pr in t (co lo r , Lms , co lor2 , Lms2)

i f c o l o r == ’W’ : # Correct f o r f a l s e white d e t e c t i o n

i f abs (Lms − Lms2) /Lms < 0 . 3 :

c o l o r = c o l o r 2

re turn c o l o r

I d e n t i c a l to compareColor , but compares background va lue s to determine c o r r e c t

background source

de f f indBack (Nr , Ng , Nb) :

rgRat io = Nr/Ng

rbRatio = Nr/Nb

gbRatio = Ng/Nb

Lms = 10000000

50

back = ’ ’

with open (’ /home/ pi /MQP/Background/ c o l o r i n f o . csv ’) as c s v f i l e :

r eader = csv . DictReader (c s v f i l e)

f o r row in reader :

newLms = (f l o a t (row [’ rgMean ’]) − rgRat io) ∗∗4 + (f l o a t (row [’ rbMean ’]) −
rbRatio) ∗∗4 + (f l o a t (row [’gbMean ’]) − gbRatio) ∗∗4

i f newLms < Lms :

back = row [’ Color ’]

Lms = newLms

i f back == ’T ’ :

back = ’ Tungsten ’

i f back == ’F ’ :

back = ’ F luore s cent ’

i f back == ’L ’ :

back = ’LED ’

i f back == ’C ’ :

back = ’CFL ’

i f back == ’S ’ :

back = ’ Sun l ight ’

r e turn back

Clear s and formats c o l o r f i l e s

de f i n i t i a l i z e C o l o r F i l e s (background) :

f o r key in f i l enames :

f i l ename = f i l enames [key]

with open (’ /home/ pi /MQP/ ’+s t r (background)+’ / ’+f i l ename , ’w ’) as c s v f i l e :

f i e ldnames = [’ rgRat io ’ , ’ rbRatio ’ , ’ gbRatio ’]

w r i t e r = csv . DictWriter (c s v f i l e , f i e ldnames=f i e ldnames)

w r i t e r . wr i t eheader ()

re turn

Clear s and formats background f i l e s

de f i n i t i a l i z e B a c k F i l e s () :

f o r key in backnames :

f i l ename = backnames [key]

with open (’ /home/ pi /MQP/Background/ ’+f i l ename , ’w ’) as c s v f i l e :

f i e ldnames = [’ rgRat io ’ , ’ rbRatio ’ , ’ gbRatio ’]

w r i t e r = csv . DictWriter (c s v f i l e , f i e ldnames=f i e ldnames)

w r i t e r . wr i t eheader ()

re turn

51

Sound Playing Module: ColorSounds Final.py

===

Module f o r Sound F i l e s f o r L i s t en ing to Light MQP

Authors : Ryan Lang and Amanda Varr i ch ione

===

from time import s l e e p

import pygame as s

s . mixer . i n i t ()

These f u n c t i o n s play wav f i l e s f o r d i f f e r e n t program prompts

de f backgroundSound () :

s . mixer . music . load (’ /home/ pi /MQP/ SoundFi les /background . wav ’)

s . mixer . music . play ()

whi l e s . mixer . music . get busy ()== True :

cont inue

de f startupSound () :

s . mixer . music . load (’ /home/ pi /MQP/ SoundFi les / s ta r tup . wav ’)

s . mixer . music . play ()

whi l e s . mixer . music . get busy ()== True :

cont inue

de f readySound () :

s . mixer . music . load (’ /home/ pi /MQP/ SoundFi les / ready . wav ’)

s . mixer . music . play ()

whi l e s . mixer . music . get busy ()== True :

cont inue

Plays a wav f i l e based on c o l o r in fo rmat ion

de f Color (c o l o r) :

i f c o l o r == ’M’ :

s . mixer . music . load (’ /home/ pi /MQP/ SoundFi les /magenta . wav ’)

s . mixer . music . play ()

whi l e s . mixer . music . get busy ()== True :

cont inue

e l i f c o l o r == ’R ’ :

s . mixer . music . load (’ /home/ pi /MQP/ SoundFi les / red . wav ’)

s . mixer . music . play ()

whi l e s . mixer . music . get busy ()== True :

cont inue

e l i f c o l o r == ’Y ’ :

s . mixer . music . load (’ /home/ pi /MQP/ SoundFi les / ye l low . wav ’)

52

s . mixer . music . play ()

whi l e s . mixer . music . get busy ()== True :

cont inue

e l i f c o l o r == ’G’ :

s . mixer . music . load (’ /home/ pi /MQP/ SoundFi les / green . wav ’)

s . mixer . music . play ()

whi l e s . mixer . music . get busy ()== True :

cont inue

e l i f c o l o r == ’C ’ :

s . mixer . music . load (’ /home/ pi /MQP/ SoundFi les /cyan . wav ’)

s . mixer . music . play ()

whi l e s . mixer . music . get busy ()== True :

cont inue

e l i f c o l o r == ’B ’ :

s . mixer . music . load (’ /home/ pi /MQP/ SoundFi les / blue . wav ’)

s . mixer . music . play ()

whi l e s . mixer . music . get busy ()== True :

cont inue

e l i f c o l o r == ’W’ :

s . mixer . music . load (’ /home/ pi /MQP/ SoundFi les / white . wav ’)

s . mixer . music . play ()

whi l e s . mixer . music . get busy ()== True :

cont inue

return

53

5.2 Device Operation

One motivation of this MQP is to create a device that could be used by the visually impaired to

distinguish colors. This appendix provides instructions on how to operate the device.

To start using the device, we must run our Python program called ”ListeningtoLight Final.” To do

so, we must have a power source for the Raspberry Pi, either from a wall outlet or using the portable

battery source in the electronic project box. Additionally, to start the program, we must connect the

HDMI cord from the RPi to a monitor. Once the RPi is plugged in, it will boot up which takes about

a minute.

To start the program, we click the start menu in the top left corner of the screen and select

Programming. Under programming we select Python 2 to open an IDLE window. In the IDLE window

we can open our program by selWcting file and then open and then choosing ”ListeningtoLight Final.6

To run this module we select run and then run module. The user will know that the module is running

when the ”start-up sound” is played. With the program running, we are continually given a list of four

options to execute: take a background(4), detect a color(5), learn a color(6), learn a background(7).

We make a choice by entering the corresponding number of our desired action on the wireless keypad.

The user will know to enter input after hearing the ”ready” tone.7

Take a Background Key 4 takes a background. After entering 4 on the keypad, the user is asked

to cover the fiber with a black cloth as signaled by a single beep. Do so, and then press enter. A

second beep tells the user that they should aim the fiber at a white cloth and press enter. After this

action has been completed and the background has been identified, the program will return the chord

corresponding to the identified background.

Detect a Color Key 5 detects a color. To detect a color we simply aim the fiber at a colored object

and enter 5 on the wireless keypad. The program returns the corresponding color 3-note sequence.

Learn a Color or Background To learn a color or background we must be connected to a monitor

and a full keyboard (through one of the Raspberry Pi’s USB ports). After entering the choice 6 or 7,

the user should point the fiber at the object whose color is to be learned (for a background point the

fiber at a white card). The program will signal that a RGBC measurement has been recorded with

a single beep. Then, the user should input either the color or background being learned. Below is a

table of keys that indicate the color or background being learned.

6we can also open the module under the recent files tab.
7The machine sound cues are discussed in Section 3.6.

54

Keys for Learning Colors and Backgrounds

Color/Background Key

White W

Magenta M

Red R

Orange O

Yellow Y

Green G

Cyan C

Blue B

Purple P

Brown BR

Fluorescent Lamp F

Compact Fluorescent Bulb C

LED Bulb L

Tungsten Bulb T

Sunlight S

55

References

[1] About Python. (2015). Retrieved October 15, 2015, from https://www.python.org/about/

[2] Breadboard Jumper Wire. Retrieved December 16, 2015, from
https://www.uxcell.com/breadboard-jumper-wires

[3] BUD Industries Utility Box. (2016). Retrieved March 01, 2016, from
http://www.amazon.com/gp/product/B005T5A28G?psc=1&redirect=true&ref =od aui detailpages00

[4] Convex Lenses. (2011). Retrieved October 15, 2015, from
http://www.a-levelphysicstutor.com/optics-convx-lnss.php

[5] Cunningham, C. (2015, May 5). PianoGlove. Retrieved October 15, 2015, from
https://learn.adafruit.com/pianoglove

[6] Davidson, M. (2003, March 6). Sources of Visible Light. Retrieved October 9, 2015.

[7] Demetrius T. Paris and F. Kenneth Hurd, Basic Electromagnetic Theory, McGraw-Hill, New York
1969, ISBN 0-07-048470-8, pp. 512, 546

[8] Dichroic Filters. Retrieved October 1, 2015, from
https://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup ID=986

[9] Eye Lighting International, Light Spectrum Explained. (2015). Retrieved March 30, 2015, from
http://www.eyelighting.com/resources/lighting-technology-education/general-lighting-basics/light-
spectrum/

[10] Facts and Figures on Adults with Vision Loss. (2014, May 1). Retrieved October 15, 2015.

[11] Fixed Lens Mount. Retrieved October 10, 2015, from
http://search.newport.com/?q=*&x2=sku&q2=LH-1

[12] Fundamentals of Telephone Communication Systems. Western Electric Company. 1969.

[13] Hecht, Eugene (2002). Optics. Addison-Wesley. ISBN 0-321-18878-0.

[14] How Sound Waves Work. (2012). Retrieved October 15, 2015, from
http://www.mediacollege.com/audio/01/sound-waves.html

[15] Judd, Deane B.; Wyszecki, Günter (1975). Color in Business, Science and Industry. Wiley Series in
Pure and Applied Optics (3rd ed.). New York: Wiley-Interscience. p. 388. ISBN 0-471-45212-2.

[16] Light Waves. (2015). Retrieved October 15, 2015, from
http://www.bbc.co.uk/education/guides/zq7thyc/revision/6

[17] Multimode Optical Fiber. Retrieved October 10, 2015, from
http://www.thorlabs.com/thorproduct.cfm?partnumber=FG200LCC

[18] Garton, B. Musical Intervals. Retrieved October 15, 2015, from
http://music.columbia.edu/cmc/MusicAndComputers/chapter1/01 03.php

[19] ”Optical Fiber”. http://www.thefoa.org/. The Fiber Optic Association, Inc. Retrieved 3 Oct. 2015.

56

[20] Plastic Hybrid Acylinder Lenses. Retrieved October 9, 2015, from
http://www.edmundoptics.com/optics/optical-lenses/cylinder-lenses/plastic-hybrid-acylinder-
lenses/84394/

[21] Quimby, R. (2006). Acceptance Angle and Numerical Aperture. In Photonics and lasers: An
introduction (1st ed., p. 45). Hoboken, New Jersey: Wiley-Interscience.

[22] Raspberry Pi. Retrieved September 28, 2011, from https://www.raspberrypi.org

[23] Raspberry Pi 2 Model b. Retrieved September 28, 2015, from
http://www.mcmelectronics.com/content/en-US/raspberry-pi

[24] RGB Color Sensor with IR Filter and White LED. Retrieved October 11, 2015, from
https://www.adafruit.com/products/1334

[25] Spectral Power Distribution. Retrieved October 15, 2015, from
http://www.lrc.rpi.edu/education/learning/terminology/spectralpowerdistribution.asp

[26] Transmission curves of many filters for monochrome photography, Schneider, p.1

[27] USB Powered Speakers. Retrieved December 16, 2015, from https://adafruit.com/products/1363

[28] What Wavelength Goes With a Color? (2011, November 15). Retrieved October 15, 2015, from
http://science-edu.larc.nasa.gov/EDDOCS/Wavelengths for Colors.html

[29] Wyszecki, Günther; Stiles, W.S. (1982). Color Science: Concepts and Methods, Quantitative Data and
Formulae (2nd ed.). New York: Wiley Series in Pure and Applied Optics. ISBN 0-471-02106-7

[30] Young, H., & Freedman, R. (2004). Mechanical Waves. In Sears and Zemansky’s university physics:
With modern physics. (11th ed., p. 496). San Francisco, California: Pearson Addison Wesley.

[31] Young, T., 1802. Bakerian Lecture: On the Theory of Light and Colours. Phil. Trans. R. Soc. Lond.
92:12-48. doi: 10.1098/rstl. 1802.000

57

