
Page |

THE GATEWAY
INTERFACE

Sponsored by:

Yuchen Guo
Zhuohao Ling
Krystel Walker

 THE GATEWAY INTERFACE

A Major Qualifying Project Report

submitted to the faculty of Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

Submitted on January 29, 2015

Submitted By:

Yuchen Guo

Zhouhao Ling

Krystel Walker

Submited To:

 On-site Liaison:

 Terrance Snyder

Project Advisors:

Jon Abraham

Micha Hofri

Xinming Huang

This report represents the work of three WPI undergraduate students submitted

to the faculty as evidence of completion of a degree requirement. WPI routinely

publishes these reports on its website without editorial or peer review. For more

information about the projects program at WPI, please see

http://www.wpi.edu/Acadmics/Project.

Page | i

Abstract

The gateway interface acts as a communication framework, which

connects any potential internal client system to the Barclays’ reporting

database. This gateway interface processes a client's pre-confirmation request

and triggers a message to the reporting platform. A pre-confirmation report, of

futures contracts, documents all the daily transactions for each client before it

is archived in the books and records system. Since Barclays has clients in

Tokyo, who frown on amendments in the books and records system, this

gateway interface provides them the ability to confirm their stance on the

offsetting trade transactions. In addition, it automates the process and

significantly reduces the fifteen minutes wait-time for one report to two

minutes for all pre-confirmation reports.

Page | ii

Executive Summary

 Barclays offers pre-confirmation report as a product for ten of its Tokyo

clients, because these clients frown on amendments in the books and records

system. A pre-confirmation report, of futures contracts, documents the daily

transactions for each client before it is archived in the books and records

system. The purpose of a pre-confirmation report is to show the clients what

their end of day data will look like. This allows clients to verify their end of day

transactions before the confirmation is sent, which eliminates the Firm having

to make possible amendments. Barclays generates approximately ten pre-

confirmation reports daily, this is done via a manual process. Similar to many

other manual processes it is error prone and takes approximately 15 minutes

per report.

 We were invited to Barclays to automate the process of generating the

pre-confirmation report. Two of the major requirements that the firm needed

the students to achieve were to:

Based on the objectives outlined by the firm, the goal of the project is to

create an application that serves as a gateway interface between any potential

upstream system and the reporting database. Upstream systems are often

referred to as client systems within the Firm, for example a trade blotter

system. These client systems are the Firm’s entities. The reporting database is

Barclay’s Major Requirements:

 Reduce the wait time of approximately fifteen minutes (per report)

between the time the client request the pre-confirmation report and the

time the report is delivered to two minutes (for all reports).

 Create an application that would automate the process that allows the

Futures Contracts transaction data to be inserted into the reporting

database.

Page | iii

Figure A: Manual Process (left) & Automated Process (right) of Generating a Pre-confirmation Report

an oracle database within the Firm, which is used to store data coming from

upstream systems. Based on this goal, we outlined the following objectives:

1. Understand pre-confirmation reports

2. Understand different technologies associated with the development of the

gateway interface

3. Design and develop the gateway interface

4. Develop a system that is isolated and easy to maintain

To ensure that we were able to accomplish these objectives, we enforced an

agile form of project management, Scrum. Scrum is an iterative and

incremental agile software development framework for managing product

development. It defines a work strategy where a development team works as a

unit to reach a common goal. Applying this form of project management allow

us to work efficiently in designing a gateway interface that automates the

process of generating pre-confirmation reports. The gateway interface is

designed to be flexible and scalable. It can accept and process data from

multiple sources that are intended to send data to the reporting database. The

Figure A below illustrates the manual process and the automated process.

The image on the left illustrates the manual process, while the image on the

left illustrates the automated process. The manual process is as follows: an

employee, from Tokyo operations, will query transaction data from the Order

Page | iv

Entry System and manually import the data into a Microsoft Excel file. Within

the excel file he will run Excel Macros, which will generate a pre-confirmation

report. The automated process starts with the transfer of the transaction data,

from the upstream system. It is transmitted into the gateway interface via a

JMS queue. The gateway interface is responsible for, but not limited to:

identifying the data type, injecting data into the reporting database, and

building a trigger message. The data leaves via a database inserter and a

different JMS queue. The database inserter inputs the transaction data into the

reporting database and sends a trigger message to the reporting platform. This

automated process of generating a pre-confirmation report also makes a

connection between the reporting database and reporting platform. Once the

reporting platform receives the trigger message, it will extract the necessary

transaction data from the reporting database and create a pre-confirmation

report.

This new process that we designed and implemented reaps many benefits to

Barclays.

 As we reflect on the project, we found that the project was conceptually

fascinating and yet intellectually challenging. We are from different academic

background, this allowed us to approach the problems from our own

perspective and contribute through our own special way. During this intense

 Benefits of the Gateway Interface:

 Automates the process of generating pre-confirmation report

 Reduces the time of generating the pre-confirmation report from about

fifteen minutes for each report down to two minutes for all reports

 Give clients the ability to approve their stance on the offsetting trading

transactions before the data is submitted to the books and records

system

 Allows multiple upstream systems, rather than one, to send data to

downstream reporting database.

 Strengthens the relationship between Barclays and their clients in

Tokyo, who frown on revisions in books and records system

Page | v

period, we realized that we were able to practice the ideas and theories we

learned throughout our academic career at WPI and came up with creative

solutions to solve real world problems at Barclays. We also feel very fortunate

to have the opportunity to make an extra impact on the firm by providing

solution to connecting to the reporting database.

Page | vi

Acknowledgement

We would like to thank our advisors, Professor Jon Abraham, Professor

Micha Hofri, and Professor Xinming Huang, for their continued support and

guidance throughout this project. Furthermore, we would like to thank onsite

liaisons, Terrance Snyder, and Gregory Friel, for their support, willingness to

contribute to this project, and for giving us the opportunity to work on this

project.

Our team was comprised of three students with different academic

backgrounds from Worcester Polytechnic Institute (WPI), and they were

pursuing Bachelor degrees in Actuarial Mathematics, Computer Science,

Electrical and Computer engineering. Working as cross-functional team

provided a unique and educational experience.

Page | vii

Table of Contents

Abstract ... i

Executive Summary .. ii

Acknowledgement .. vi

Chapter 1: Introduction .. 1

Chapter 2: Background ... 3

2.1 Barclays ... 3

2.2 Project Overview ... 3

2.3 Technology ... 5

2.3.1 Java ... 5

2.3.2 Java Message Service ... 6

2.3.3 Enterprise Integration Patterns and Messaging 6

2.3.4 Spring Framework .. 7

2.3.5 Apache Maven .. 7

2.3.6 Testing ... 7

2.3.7 Google Protocol Buffers ... 8

2.4 Development Technique ... 9

Chapter 3: Methodology .. 10

3.1 Pre-confirmation report .. 10

3.2 Understand the different technologies associated with the development of

the gateway interface.. 10

3.3 Design and development of the gateway interface 11

3.4 Develop a system that is isolated and easy to maintain 12

3.5 Project Management ... 13

Chapter 4: Gateway Interface Design and Process ... 15

4.1 Current process of generating pre-confirmation reports 15

4.2 Generating a pre-confirmation report with the gateway interface 16

4.2.1 Design Considerations .. 24

4.2.2 Benefits of the gateway interface ... 26

Chapter 5: Future Recommendations .. 27

Page | viii

Chapter 6: Conclusion .. 29

Appendices A: Glossary of Terms ... 31

Appendices B: Sample from Handover Documentation 32

Page | ix

Table of Figures

Figure A: Manual Process (left) & Automated Process (right) of Generating a

Pre-confirmation Report……………………………………………………….iii

Figure 1: Current Process of Generating a Pre-Confirmation Report 5

Figure 2: Burndown Chart - Sprint 2... 14

Figure 3: Current Process of Generating a Pre-confirmation Report 15

Figure 4: New Process of Generating a Pre-confirmation Report 16

Figure 5: Gateway Interface ... 17

Figure 6: Upstream Message in Memory Used ... 18

Figure 7: Required Format from Upstream Systems……………………………..…19

Page | 1

Chapter 1: Introduction

Barclays is a major global financial services provider founded in Lombard

Street, London during the 1690's by two goldsmiths, John Fream, and Thomas

Gould. Barclays is currently located in 50 different countries around the world,

spanning from the Americas, to Asia, and employs over 140,000 people

worldwide.

This project is sponsored by the Barclays IT - Futures Clearing

department within the Investment Bank in New York. The department is

currently working on the decommission Futures trade processing project. The

Middle-Office system, that is responsible for the trade processing, performs a

variety of tasks. A few are: position maintenance, position reporting, trade

closeouts, and client specific pre-confirmation reports. This project focuses on

client specific pre-confirmation reports; a client in this case can be thought of

as a trader.

A pre-confirmation report, of futures contracts, documents all the daily

transactions for each client before it is archived in the books and records

system. This is sent to the client pending their confirmation of their daily

trading activities. These daily trading activities refers to futures contracts.

Futures contracts can be thought of as a financial agreement, which requires a

buyer or seller to purchase or sell at a prearranged date or price. In a futures

contract a client opens or closes a position by buying or selling futures. A client

can have a long position or a short position. A long position, can be thought of

as, buying futures with the intention to sell it at a higher price on an upcoming

date. A short position is selling futures that a client does not yet own, with the

intention to buy it at a lower price on a upcoming date. A client can either open

a new position or close an existing position depending on the risk they are

willing to take. Closing an existing position is similar to canceling a risk; the

client’s potential of a loss occurring has been repealed. While opening a new

position would be creating a new risk, the client has now made himself

vulnerable to a potential loss.

Page | 2

The pre-confirmation report gives client the ability to verify their end of

day transactions before it is submitted and archived in the books and record

system. Since the Firm has “Platinum” clients who frown on amendments to

the books and records system, the pre-conformation report is needed to

eliminate the possibility of the Firm having to make changes. “Platinum” clients

refer to the Firm’s largest clients, clients who generate a great deal of business.

At this time, pre-confirmation reports are only offer to the “Platinum” clients in

Tokyo. Currently there is a manual process in place that generates a pre-

confirmation report upon request; as such it is error prone. We focused on

automating the pre-confirmation process through a new workflow, in order to

generate reports in real time.

The goal of the project is to create an application that serves as a

gateway interface between any potential upstream system and the reporting

database. Upstream systems are often referred to as client systems within the

Firm, for example a trade blotter system. These client systems are the Firm’s

entities. The reporting database is an oracle database within the Firm, which is

used to store data coming from upstream systems. This gateway interface

stores, processes, and creates a trigger message to the reporting platform for

the pre-confirmation report. The gateway interface will act as a communication

framework between the client systems and the reporting database. The

objectives that are outlined in Chapter Three: Methodology of this paper allow

the team to accomplish this goal.

Before the project commenced, the team developed an understating of a

pre-confirmation report and its core factors. Additionally, the team was

required to understand different technologies that are essential to the design

and the development of the interface. The team also ensured that the interface

they developed is easy to maintain and provided documentation as well as

recommended enhancements.

Page | 3

Chapter 2: Background

 This Chapter gives more details on the Firm, an overview of the project

and takes a closer look at the concepts and technology that we used to

complete the project.

2.1 Barclays

The British bank offers a variety of products, such as: retail banking,

credit cards, corporate and investment banking and wealth management. 1

Barclays, the Firm, continues to be a pioneer for banks across the world. In

1819, when others thought the train was a futuristic idea, Barclays funded the

world’s first industrial steam railway. Barclays introduced the world’s first ATM

in 1967. In addition, Barclays was the first to offer online banking services and

the first bank in the UK to offer credit cards. During the 2008 financial crisis

the firm acquired the bulk Lehman brothers investment banking operations.

More recently the Firm introduced Barclays Biometric Reader in the UK. This

allows customers to register a finger with a backup PIN. Giving the customers

access to their accounts by simply scanning their fingers, more specifically the

biometric reader scans the vein patterns for login credentials. This new

technology will be available to corporate clients in 2015. Barclays continues to

be a pioneer to offer banking services with innovative technology.

2.2 Project Overview

The Order Entry System (OES) is a legacy Japan middle office system

used for futures trade processing. The Firm’s Japanese business flows through

the OES. The initial implementation of the OES was for a Futures and

Options/Cash platform. Since the decommission process of the OES has

started, its trading functions has been move to other strategic platforms and it

1 https://www.banking.barclaysus.com/about-us.html

Page | 4

is most commonly used for its middle office function. Below are the divisions

for the OES Decommission Project.

This project focuses on Client Specific Pre-Confirmation Reports, a small

section of the ‘OES Decommission Project’. As alluded to earlier in this report, a

pre-confirmation report documents the daily transactions for each client before

the data is submitted and archived into the books and records system. The

Firm offers pre-confirmation report as a product for its Tokyo clients, because

these clients frown on amendments in the books and records system. Currently

pre-confirmation reports are offered to ten Tokyo clients. The purpose of a pre-

confirmation report is to show the clients what their end of day data will look

like. This allows clients to verify their end of day transactions before the

confirmation is sent, which eliminates the Firm having to make possible

amendments. The report gives the client the opportunity to confirm their

stance on the offsetting transactions. Ultimately giving them the chance to

agree with the opening of a new trade position or the closing of an existing

trade position; a position can either be long or short. Currently the pre-

confirmation is generated manually, and like many other manual processes, it

is error prone. Below is a flow chart that outlines the current manual process.

 OES Decommission divisions:

 IT Risk

 Operational Risk

 Client Capacity

 Cost Avoidance

 Client Specific Pre-Confirmation Reports

Page | 5

Figure 1: Current Process of Generating a Pre-Confirmation Report

The process is as follows: an employee, from Tokyo operations, will query

transaction data from the OES and manually import the data into a Microsoft

Excel file. Within the excel file he will run Excel Macros, which will generate a

pre-confirmation report. It takes approximately fifteen minutes to generate

each pre-confirmation report. As you can see in figure 1, the OES is an

essential member of the current process. Since the Firm intends to no longer

use the OES, our project designed a gateway interface that creates an alternate

way to generate pre-confirmation reports. This will be discussed in more detail

in Chapter Four: Design and Development of the Gateway Interface.

2.3 Technology

This section describes the different technologies used in this project.

2.3.1 Java

Java is a programming language created by Sun Microsystem.2 It is a

language designed for objected-oriented programming concepts. Implementing

this concept in Java, developers can represent the objects with data fields

(attributes) and methods (desired procedures). Java is also designed to allow

programs to run on any platform without having to be rewritten or recompiled.

2 https://www.java.com/en/download/faq/whatis_java.xml

https://www.java.com/en/download/faq/whatis_java.xml

Page | 6

This feature is achieved with Java Virtual Machine (JVM), which interprets

compiled Java bytecode and executes it as actions of the operating system.3

2.3.2 Java Message Service

Java Message Service (JMS) is an Application Programming Interface (API)

that enables applications to create, send, receive, and process messages.4 For

any project that requires message transmission from one system to another,

developers can set up a messaging queue, which connects the upstream and

downstream system. Within the upstream system, a message sender is

responsible for constructing the payload, or message, by adding headers to the

data and sending it downstream. On the other end, the message receiver

listens on the arrival of the desired payload. Once the payload is received, the

receiver can process the data and perform a series of commands to complete

the request.5

2.3.3 Enterprise Integration Patterns and Messaging

Enterprise Integration Patterns (EIP), proposed by Gregor Hohpe and

Bobby Woolf, is a collection of design patterns that aims to provide consistent

and reliable solutions for connecting large-scale systems. 6 For systems to

communicate, data need to be exchanged in a consistent form. Messaging is

one of the most commonly used forms of EIP, which enables high-speed,

asynchronous communication with reliable delivery. A channel, or queue, is

the gateway that connects two systems to facilitate message delivery. A sender

is the one that produces and delivers the message to a channel, while a

receiver is the one that accepts and processes the message. On the other hand,

a message normally consists of a metadata and a message body. The metadata

contains the information about the message, which is usually irrelevant to the

3 http://searchsoa.techtarget.com/definition/Java-virtual-machine
4 http://docs.oracle.com/javaee/1.3/jms/tutorial/1_3_1-fcs/doc/overview.html#1027335
5 http://docs.oracle.com/javaee/1.3/jms/tutorial/1_3_1-fcs/doc/client.html#1056518
6 http://www.enterpriseintegrationpatterns.com/

http://searchsoa.techtarget.com/definition/Java-virtual-machine
http://docs.oracle.com/javaee/1.3/jms/tutorial/1_3_1-fcs/doc/overview.html#1027335
http://docs.oracle.com/javaee/1.3/jms/tutorial/1_3_1-fcs/doc/client.html#1056518
http://www.enterpriseintegrationpatterns.com/

Page | 7

application. The body contains the data to be delivered, and it is processed by

the receiver.

2.3.4 Spring Framework

Spring framework is an open source Java based application framework.

It contains a set of powerful extensions that help speed up the development

process. For example, the Spring Web Service extension within the framework

provides libraries that help developer quickly launch a website by writing

minimal amount of code. 7 Spring framework, which supports Enterprise

Integration Patterns (EIP), can be used to serve as the foundation of a message-

based system. 8 , 9 With the framework, the development process will be

immensely simplified, due to that fact that many components of the system are

already created and available for use. Once new implementation is added, the

project can be configured and built seamlessly.

2.3.5 Apache Maven

Apache Maven, often referred to as Maven, is a build framework that

ensures that the application is built successfully. Maven is designed

specifically for Java-based projects.10 Build framework refers to automating the

various tasks of the developers within the project. Using Maven to aid a project

not only allows developers to build the application uniformly, but also allows

them to manage the project dependencies on external components and

modules.

2.3.6 Testing

Developers often use Test Driven Development (TDD) as a systematic way

to ensure code accuracy. It combines test-first development where one writes a

7 http://projects.spring.io/spring-ws/
8 http://projects.spring.io/spring-framework/
9 http://www.enterpriseintegrationpatterns.com/
10 https://maven.apache.org/

http://projects.spring.io/spring-framework/
http://www.enterpriseintegrationpatterns.com/

Page | 8

test code before the production code. A unit test is one or a collection of test

codes that executes a specific functionality in the application. JUnit is a

framework for developing Java unit tests, which help implement the concept of

TDD.11,12 It provides a base class called “Test Case”, which create a series of

tests for the production code. In addition, the “Assertion” library is used for

evaluating the results of individual test cases.13

2.3.7 Google Protocol Buffers

Google Protocol Buffers is a widely used, robust, and efficient data

interchange format provided and maintained by Google. At present, the main

Protocol Buffers implementation supports three target programming languages:

C++, Java and Python. To build a protocol buffer, developers define structured

data using a .proto specification file. The file normally contains one message

type that has one or more uniquely numbered fields. In addition, fields can be

specified as optional, required, or repeated based on the need of project. This

file is then consumed by the Protocol Buffers compiler (protoc), which will

generate supporting methods so that it can write and read objects to and from

a variety of streams. Protocol Buffers plays an important role for systems that

need to communicate between each other through messages.14 Since Protocol

Buffers is extensible, the defined message type can be updated at a later time

without breaking programs that used the earlier message. The main benefit of

using Protocol Buffers is that data can be encoded using Protocol Buffer API

and sent over a specific network.15

11 http://users.csc.calpoly.edu/~djanzen/research/TDD08/cdesai/IntroducingJUnit/IntroducingJUnit.html
12 http://www.vogella.com/tutorials/JUnit/article.html
13 http://www.mathcs.richmond.edu/~lbarnett/mcs_dept/junit/junit_intro.html
14 http://www4.in.tum.de/~schwitze/TUM-I1120.pdf
15 http://www.javacodegeeks.com/2012/06/google-protocol-buffers-in-java.html

http://users.csc.calpoly.edu/~djanzen/research/TDD08/cdesai/IntroducingJUnit/IntroducingJUnit.html
http://www.vogella.com/tutorials/JUnit/article.html
http://www.mathcs.richmond.edu/~lbarnett/mcs_dept/junit/junit_intro.html
http://www4.in.tum.de/~schwitze/TUM-I1120.pdf
http://www.javacodegeeks.com/2012/06/google-protocol-buffers-in-java.html

Page | 9

2.4 Development Technique

Scrum, required by the Firm, is an iterative and incremental agile

software development framework for managing product development. It defines

a work strategy where a development team works as a unit to reach a common

goal.16 In this technique, there are three roles: Product Owner, Scrum Master

and Development Team. Product Owner is responsible for communicating the

vision of the product to the development team. He determines the various tasks

and the time frame for completing them. The Scrum Master works to remove

any impediments that are obstructing the team from achieving its goal. The

Development Team is responsible for completing work and demonstrating what

was built.

The core of Scrum is called sprint, a regular repeatable work cycle. Every

new sprint starts immediately after the conclusion of the previous one. The

sprint can be cancelled by the Product Owner before the work cycle is over.

Sprint planning is a meeting where the team schedules the different task they

intend to complete during the sprint. The Scrum Master ensures that the event

takes place and the team understands its purpose. During the Sprint Planning,

the team needs to decide what to accomplish and how to deliver at the end of

the upcoming sprint.

In addition, the team hosts Daily Scrum, usually a fifteen-minute

meeting, for them to synchronize activities and plan for the time between now

and the next Daily Scrum. During this meeting each team members explains

what he did, is currently doing, will do, and what might prevent him from

meeting the sprint goal. The Daily Scrum helps the team track progress that

trends toward completing the sprint. Moreover, at the end of each sprint, the

team needs to review what was done. This review process is called Sprint

Review.17 After which the team should have a Sprint Retrospect to reflect on

obstacles and try to make improvements for upcoming sprints.

16 http://www.scrumguides.org/scrum-guide.html
17 http://searchsoftwarequality.techtarget.com/definition/Scrum

http://www.scrumguides.org/scrum-guide.html
http://searchsoftwarequality.techtarget.com/definition/Scrum

Page | 10

Chapter 3: Methodology

This chapter goes more in depth, outlining the various steps we took in

order to achieve the goal of creating an application that serves as a gateway

interface. The gateway interface will act as a communication framework

between any internal upstream system and the Firm’s reporting database. To

achieve the goal, we took the time to outline the following objectives:

1. Understand the pre-confirmation report

2. Understand different technologies associated with the development of the

gateway interface

3. Design and develop the gateway interface

4. Develop a system that is isolated and easy to maintain

Below you will find the different methods used to achieve these objectives

incorporated in the sprints.

3.1 Pre-confirmation report

To understand the pre-confirmation report, we acquired knowledge of the

different client systems involved in generating the report. We gained this

knowledge from conducting meetings with numerous employees at the Firm. In

addition, we learned the necessary data that should be included in the report.

As a result of the Firm’s well detailed documentation, we were able to study the

flow chart of the existing report structure. Thus, we gained more insight into

the changes we would be making to the structure and the benefits of the new

gateway interface. Meetings were the most effective way to learn this

information, because it enabled us to interact with the Firm’s employees

frequently.

3.2 Understand the different technologies associated with the

development of the gateway interface

After developing a comprehension of the pre-confirmation report, we

researched the different technologies that would be used to build the gateway

Page | 11

interface. From initial meetings with the sponsor, we received a list of

recommended software and development tools that should be used to build the

gateway interface. Since each member had a different level of expertise, we did

the necessary research and practiced with tutorials, in order to become adept

at using the development tools. In addition, we arranged meetings with a few of

the employees at the Firm to learn how to use the existing infrastructure, as

this was essential to developing the gateway interface. The gateway interface

was built "by convention not by configuration." This means that the team needed

to include the required dependencies and use modules from the existing

application framework rather than write new source code for each component

of the gateway interface. This allowed us to work at a more efficient pace and to

write code that was clean and easy to read by the Firm's employees.

3.3 Design and development of the gateway interface

First, we examined the existing infrastructure at the Firm to assess

which type of design would be the most beneficial to the Firm. Second, we had

numerous meetings with the project sponsor to agree on a design that would

be acceptable to the Firm. Finally, we met with the different groups from the

upstream, downstream systems and the report platform to determine the most

effective way to communicate and pass to and from the gateway interface.

After numerous meetings and reaching an agreement on the design, the

team began the development process. The development of the components of

the gateway interface followed both of the methods listed below:

 Utilizing the existing framework developed by the Firm’s employees to

configure various components.

 Writing new Java source code for the components that cannot be

configured using the existing framework.

The existing framework, implementing the concepts from EIP, is optimized

for message exchange systems, such as our gateway interface. This allows the

team to reuse many components from the framework in the gateway interface

Page | 12

implementation. Moreover, it is reliable to reuse the components from the

framework, since all of them have been well tested, deployed, and used in

development.

Most of the components in the gateway needed to be developed by us.

Enforcing test driven development, we developed each gateway interface

component in the following procedure. The team first wrote an automated test

case to define the desired feature and then write the source code to pass that

test. Once the test case was passed, we repeated the process until the gateway

interface components were fully implemented.

In addition to using existing framework and developing new components,

we also wrote integration test to ensure that all components of the gateway

interface were properly connected. The integration test simulated the process

by populating mock data into a payload and sending the payload to a JMS

queue, the entry point to the gateway interface. Once the payload arrives, the

gateway interface would then process the payload with the necessary

components. The integration test would pass if the data processing succeeded

without causing any error.

3.4 Develop a system that is isolated and easy to maintain

The gateway interface will be placed into production after the completion

of the ‘OES Decommission Project’. As such, it was fundamental that the team

build a system that was isolated and easy to maintain. The gateway interface

we developed does not depend or belong to any other system within the Firm. It

was built to facilitate multiple upstream systems that would like to import data

into the downstream reporting database.

During the course of the project, we learned that there are two distinct

sides within the engineering department of the Firm: "Build the Firm" and "Run

the Firm." The former refers to the side that develops the different products that

will eventually go into production; while the latter refers to the team that

maintain the products in production. Currently the gateway interface is

Page | 13

developed by the "Build the Firm" side. In order to make the interface

maintainable for the "Run the Firm" side, the team ensured that the system

code is readable, well documented, and fully tested with JUnit test cases.

As mentioned earlier, the team built the gateway interface by convention.

This allows members from both sides of the Firm to understand the system

code, since it used a framework that they were extremely familiar with. This

allows them to spend less time understanding the different parts of the system

code easily. In addition to building by convention, we had a well-documented

code. We did this by creating Javadoc to accompany the system code. Javadoc

is a tool that analyzes the documentation comments within the system code

and produces HTML files that explain the methods used. 18 This gives the

members of the "Run the Firm" side an opportunity to read the documentation

and understand exactly what the system code does.

3.5 Project Management

As mentioned in the background of this report, the team used Scrum

development technique to complete this project. The team ran one-week sprints,

and the tasks for each sprint were assigned during the sprint planning

meetings held once a week. During the sprint, the team also held fifteen-

minute daily scrum meetings. These allowed each member of the development

team to synchronize their progress, discuss obstacles, and decide how they will

move forward. At the end of each sprint, the team would participate in a sprint

retrospect, where they would reflect on the assigned tasks, the challenges they

faced during the sprint, the solutions to the obstacles, and the expectations for

next sprint

Below is a burndown chart of a specific sprint. The team had a list of

tasks which weighted a total of twenty points in difficulty. Ideally, the team

should complete four points of tasks at the end of each day. In reality, the team

was able to complete five points of the tasks on the first day. On the second

18 https://docs.oracle.com/javase/7/docs/technotes/guides/javadoc/

Page | 14

day, the team finished four points; on the third day they cut down the total

remaining difficulty points to eight, and so on. As shown in the "Burndown

Chart-Sprint 2", the blue line shows the ideal burndown rate, and the red line

shows the actual burndown rate based on the work that the team completed

each day.

Figure 2: Burndown Chart - Sprint 2

A burndown chart was created at the end of each sprint. Examining the

burndown rate every week allowed the team to plan the upcoming sprints more

effectively.

0

5

10

15

20

25

0 1 2 3 4 5

D
if

fi
cu

lt
y

o
f

Ta
sk

s

Burndown Chart - Sprint 2

IDEAL

ACTUAL

Iteration Timeine (days)

Page | 15

Chapter 4: Gateway Interface Design and Process

This upcoming chapter takes a closer look at the current and upcoming

process of generating pre-confirmation reports. It illustrates both processes

with flow charts. In addition, it explains the role of the different components of

each process and examines the design considerations of the gateway interface.

4.1 Current process of generating pre-confirmation reports

As alluded to earlier in the report, pre-confirmation reports are generated

manually, and as such they are error prone. In addition, there is also a wait

time of approximately fifteen minutes between the time the client request the

pre-confirmation report and the time the report is delivered. To date there are

approximately ten pre-confirmation reports generated daily. Below is a flow

chart that illustrates the current process.

Figure 3: Current Process of Generating a Pre-confirmation Report

When a client requests a pre-confirmation report, an employee from the

operation team in Tokyo has to retrieve the trade transaction data from the

Order Entry System, as seen in Figure 3. Once the data is ready, the employee

then inputs the data into an Excel file and runs the Excel Macros. These

Macros are programmed to generate the pre-confirmation report. The excel file

containing the pre-confirmation report will then be attached to an email and

sent to the client.

Page | 16

4.2 Generating a pre-confirmation report with the gateway interface

The new process, that utilizes the gateway interface, is automated. This

process eliminates the possibility of errors. In addition, the wait time for

generating reports is reduced significantly, and the client will only have to wait

two minutes. This process also utilizes a message-based event driven system.

Figure 4 illustrates a flow chart that documents the process of generating a

report using the gateway interface.

Figure 4: New Process of Generating a Pre-confirmation Report

The work starts with the transfer of the transaction data, from the

upstream system. It is transmitted into the gateway interface via a JMS queue.

As the data arrives in the JMS queue, it will be processed by the gateway

interface. The gateway interface is responsible for, but not limited to:

identifying the data type, injecting data into the reporting database, and

building a trigger message. The data leaves via a database inserter and a

different JMS queue. The database inserter inputs the transaction data into the

reporting database and sends a trigger message to the reporting platform as

shown in figure 4. The reporting platform refers to the entity within the Firm

that is responsible for generating pre-confirmation reports. The new process of

generating a pre-confirmation report also makes a connection between the

reporting database and reporting platform. Once the reporting platform

Page | 17

receives the trigger message, it will extract the necessary transaction data from

the reporting database and create a pre-confirmation report. The flow chart

below outlines the different processes within the gateway interface.

Figure 5: Gateway Interface

To efficiently build a gateway interface that allows communication

between upstream and downstream systems, the team designed an Application

Program Interface (API). Designed with Google Protocol Buffers, the API sets the

standards for the messages sent from the upstream systems in a payload. The

payload contains the metadata and the message body. The API requires the

Page | 18

upstream systems to populate the payload with transaction data before

sending it to the gateway interface through the JMS queue.

 JMS queue is the entry point into the gateway interface. The queue is an

instance of a message channel that allows payloads from multiple upstream

systems to be delivered to the gateway interface. With the help from Barclays'

software developers, we established a JMS queue in the server (PDQ Solace

Instance). The queue is set up with a maximum size of five megabytes. This

requires upstream systems to divide their data into multiple payloads, when

the size of the data being transmitted exceeds the size limit.

Figure 6: Upstream Message in Memory Used

In addition to the size limit of the JMS queue, we also took into account

the memory used in JVM. The scatterplot in Figure 6 shows the relationship

between the memory of the JVM and the size of the payload. The data were

collected by running a test that populated a payload with various numbers of

data, or messages, and observing the program with JConsole, a JVM

monitoring tool. The purpose of this test was to ensure that the payload was

within the size limit of the JMS queue, does not exceed the memory used in the

JVM.

0

50

100

150

200

250

 - 200,000 400,000 600,000 800,000 1,000,000 1,200,000M
em

o
ry

 U
se

d
 (

M
eg

aB
yt

es
)

Num of Message in Payload

Upstream message in Memory Memory Used
(MegaBytes)

Page | 19

Figure 7: Required Format from Upstream Systems

The payload

defines the format of

the data that the

gateway interface

expects to receive

from upstream

systems. It contains

the metadata and the

message body. The

information in the

metadata contains

logical dataset

identifiers that help

the different

components of the

gateway interface

determine how to

process the

transaction data. For

example, it requires

the upstream systems

to list the message type, a sender reference, business date, etc., as seen in

Figure 7. The metadata is also designed to contain the essential information for

triggering a report, which will be discussed later in this chapter. The message

body is essentially a collection of transaction data. This transaction data will

not be processed by the gateway interface. The gateway interface is responsible

for sending the transaction data to the different handlers that will process it.

Figure 7 is a copy of the payload as a .proto file.

The illustration shows that the payload is divided into four sections. The

first three sections define the metadata and the last section comprises of both

Page | 20

the metadata and the message body. The first highlighted section (lines 6 – 10)

will be used by the payload router, the second highlighted section (lines 11 – 13)

will be used by the paging router, and the third highlighted section (lines 14 –

31) will be used by the trigger builder. Once the payload is fully populated, it is

sent through the JMS queue and captured by the listener.

The listener is configured by utilizing the Firm's existing framework. The

listener’s purpose is to wait on the incoming payload as it enters the JMS

queue. Once a payload arrives, the listener notifies and forwards the payload to

the paging router, as shown in the figure 5.

 The role of the paging router is to examine the total number of pages

represented by the field, total_num_pages, in the metadata and decide whether

the message should be sent to the re-sequencer or to the payload router. The

total_num_pages field is populated by the upstream system. If the field contains

an integer greater than one, this means that the gateway will receive multiple

payloads for the same logical dataset. A logical dataset is a collection of

transaction data that belongs to one client. Then the payloads are passed down

to the re-sequencer. On the other hand, if the field is not populated or is equal

to one, then the gateway will only expect to receive one payload for the logical

dataset. In this case, the payload is sent to the payload router.

In the event that the paging router expects to receive multiple payloads,

each payload is sent to the re-sequencer. The purpose of this re-sequencer is to

allow the upstream system's data to be passed down when the size of the data

exceeds the size limit of the JMS queue. The re-sequencer is designed to cache

the payloads until it receives all that belong to the same logical dataset. The re-

sequencer then reorganizes the payloads from the upstream system, based on

the page_num field in the metadata. The re-sequencer utilizes four strategies:

correlation, sequencing, identity, and release. The correlation strategy defines a

function that identifies all the payloads that belong to the same logical dataset.

It correlates the payloads based on the party_id in the metadata. Since the

payloads may not come in order, the sequencing strategy is designed to reorder

Page | 21

them by looking at the page_num field in the metadata. The identity strategy

defines how the re-sequencer can uniquely identify a payload by examining the

universally unique identifier of the metadata, which is the party_id. The release

strategy checks whether or not all the payloads have arrived. If so, the re-

sequencer will hand over the upstream collection of payloads associated with

one logical dataset to the assembler.

 The assembler then receives the collection of payloads that belongs to

the same logical dataset and concatenates them into one new payload. It will

first create a message builder designed to construct a payload. Then the

assembler iterates through the collection of payloads and extracts the metadata

from the first payload, as well as the message body from each payload. It will

use the convenient function in the payload protocol buffer builder to create the

new payload. This new payload contains the necessary information that will be

used by the remaining components of the gateway interface, and it will be sent

to the payload router.

The payload router will receive one payload from either the paging router

or the assembler. The payload router consists of an advisor and the processing

rules. This router uses an advisor to process the payload and stores the

metadata in the context. The processing rules are stored in a map. It maintains

Java string constants as the keys and chain event handlers as values. The

advisor informs the router what to do with the message body in the payload.

The advisor is programmed to examine the metadata and check for the

payload's originating upstream system. Once the advisor identifies the

upstream system, it returns a string as the key to the router. The router then

retrieves the corresponding chain event handler with the given key to continue

the procedure. Additionally, the advisor is able to check whether a specific

payload has been sent multiple times, known as a "replay message". In the

event that a replay message occurs, the payload router will direct the payload

to a different chain event handler.

 Currently the gateway interface contains two chain event handlers (CEH),

Reporting Database Pre-Conf Sequencer and Reporting Platform Trigger

Page | 22

Sequencer. A CEH is made up of numerous handlers that perform different

tasks, in sequence, on the payload. Each handler has a generic design, with

the exception of the Transformer. This was done so that they can be used in

multiple CEHs. The Reporting Database Pre-Conf Sequencer includes five

handlers: Transformer, Iterator, Database (DB) Inserter, DB Reader, and Post

Insertion Router. The Reporting Platform Trigger Sequencer contains Trigger

Builder and JMS Writer. The chain event handlers are configured in an xml file,

using handlers built by the team and existing framework built by the Firm's

employees. Each handler logs the events at a different interest level to the

server, so that the processed events can be accessed at a later time.

The Transformer is responsible for converting the collection of

transaction data from the upstream system to an acceptable data format for

the reporting database. It does this by preforming a mapping from upstream to

downstream transaction data. The mapping uses the convenient functions from

two .java files, which are generated from compiling the .proto system files. The

first java file written by the team is a simple transformer that only handles one

transaction message. Once the team successfully built the simple version of the

Transformer, the second Transformer was built. It utilizes the simple

transformer to convert a collection of transaction messages. The second

transformer uses the system code from java files that are generated by

compiling the Google Protocol Buffer .proto files. The transaction data from the

upstream system contains data fields that are different from those required by

the reporting database. The downstream transaction data, or converted

structures from the upstream transaction data, are convenient for inserting the

transaction data into the downstream reporting database. The input of the

transformer is a single payload, and the output is a collection of transaction

data, which will be passed to the iterator.

The Iterator is designed to filter through the given collection of

transaction data and delegate the task of handling each message to the DB

Inserter. As a result of this the Iterator and the DB Inserter function

synchronously. The DB Inserter picks up the current message that the Iterator

Page | 23

is processing and inserts the message directly into the client reporting

database, the downstream system. Both the Iterator and the DB Inserter are

configured from the existing framework developed by the Firm's staff. Once the

DB Inserter has inserted the entire collection of transaction data, the DB

Reader will begin processing the payload.

The DB Reader performs the data validation of the insertion in the

reporting database. It executes a stored procedure in the reporting database

environment. A stored procedure is a function, stored in the reporting database.

This function will return a value indicating the status of the data insertion.

More specifically, it will reveal whether or not the transaction data was

successfully inserted into the reporting database. This stored procedure will

return an integer value of zero, indicating data insertion has succeeded without

any error. Otherwise, it will return an error code signaling the exact error that

has occurred during the data insertion. The error code is an integer of any

value except zero. This value will be sent to the Post Insertion Router.

The Post Insertion Router determines whether or not to build the trigger

message for the reporting platform. Similar to the other routers mentioned

above, it has an advisor and processing rules. The advisor examines the return

value from the DB Reader and returns a String key to router. If the value zero

is received, the process will move on to the CEH that is responsible for creating

the trigger message. In the event that the router receives an error code, it will

invoke the error handler with the error code. The errors are currently dealt with

by a system developed by the Firm.

The Trigger Builder handler references a trigger template and compiles a

trigger message, based on the subscriptions outlined by the reporting platform.

The roles of the Trigger Builder include: examining the metadata in the context

that is set available by the Router, extracting the essential data in the

metadata, and composing the trigger message by loading the data into the

template. The output of the builder is a String representing the XML trigger

message that will trigger the reporting platform to generate the desired pre-

Page | 24

confirmation report. After the trigger message is composed, it is sent to the

reporting platform, via a JMS Writer.

The JMS Writer sends the trigger message to a different JMS queue

connected to the reporting platform and eventually delivered to the other JMS

queue for processing. This queue is created by the reporting platform team.

Based on the contents in the given trigger message, the reporting platform will

extract the data from the reporting database and generate the pre-confirmation

report with the data.

Once the reporting platform receives the trigger message in their JMS

queue, it will extract the transaction data from the reporting database based on

the information specified in the trigger message. This transaction data will be

used to generate the pre-confirmation report, after which the pre-confirmation

report will be emailed to the client. This process takes approximately 2 minutes.

4.2.1 Design Considerations

We had to take many considerations into account when designing the

gateway interface. This section will explain the different considerations the

team took.

File-Based versus Message-Based

The team first reviewed the approach of using a file-based polling system,

before deciding to go with a message based system. Filed based polling sends a

batch of files based on a timer, while a message-based system is event driven.

The approach of using a file-based polling system was proposed by the sponsor,

because there had been such a system developed by the Firm previously. The

developers chose to make the file-based system polling timer based, rather

than event driven, in order to fulfill other requirements within the Firm. If we

adopted this approach, it would allow us to shorten the development process

by simply building infrastructure to use the polling system. Although both

systems would automate the process of generating a report, the team decided

to use a message-based event driven system. We chose this because it is

Page | 25

important to reduce the wait time of generating pre-confirmation reports, which

the polling based system would fail to do. The event driven system reduces the

wait time by utilizing a message listener, which processes the message upon

arrival in the JMS queue. Reducing wait time in the automation process is a

part of the Service Level Agreement.

Bridge between multiple upstream systems and the reporting database

The team was tasked with automating the process of generating pre-

confirmation reports. We decided to build a gateway that will automate the

process, and also serve as a bridge between any potential upstream system and

the reporting database. That is, it is not only designed to accept data from the

upstream system that is responsible for pre-confirmation reports, but it is also

designed to accept data from any upstream system that wants to input data

into the reporting database in the future.

Multiple downstream systems

As part of the task to automate the process of generating pre-

confirmation reports, the transaction data will be saved to the reporting

database. This is the only downstream system that the gateway interface

currently interacts with. However, the team designed a highly customizable

gateway interface. This aims to allow future developers to direct data coming

from upstream to any downstream system, by simply adding new component to

the gateway interface without heavily modifying the existing code.

Separation of Data Model and Gateway Interface Instance

The team used Google Protocol Buffers to define the data model used in

the gateway interface. One benefit of using Google Protocol Buffers is that the

data format can be compiled into source code in multiple languages, including

Java, C++, and Python. To take advantage of this feature, the team created two

projects in Eclipse; one contains the data model, while the other consists of all

components of the gateway interface. The data model project is added to the

gateway interface project as a Maven dependency. This separation gives the

gateway interface more flexibility. First, the data model can be compiled into

source codes in other languages, which allows for systems that are developed

Page | 26

in languages other than Java to interact with the gateway interface.

Futhermore, future developers will be able to add new data formats that they

desire the gateway interface to be processed in the data model project, without

having to modify the code in the gateway interface project.

4.2.2 Benefits of the gateway interface

As a product that is delivered to the real world, the gateway interface has

several benefits to the firm and its clients.

 Benefits of the Gateway Interface:

 Automates the process of generating pre-confirmation report

 Reduces the time of generating the pre-confirmation report from about

fifteen minutes for each report down to two minutes for all reports

 Give clients the ability to approve their stance on the offsetting trading

transactions before the data is submitted to the books and records

system

 Allows multiple upstream systems, rather than one, to send data to

downstream reporting database.

 Strengthens the relationship between Barclays and their clients in

Tokyo, who frown on revisions in books and records system

Page | 27

Chapter 5: Future Recommendations

In this chapter, we will discuss our recommendations for improving the

existing gateway interface. After reviewing our design, we developed the

following list of recommendations for future developers that will continue to

develop the gateway interface.

1. Implement a feedback system that sends acknowledgement and non-

acknowledgement message based on the sender of the payload. The

acknowledgement message will state that the gateway interface was able

to process the data, while a non-acknowledgement message will state

that we receive the data but was unable to process it. Moreover, non-

acknowledgement messages can be implemented with error code, so that

the upstream system will be able to identify what error has occurred in

the gateway interface and adopt certain actions, such as republishing the

data.

2. Implement replay message table that stores a subset of data fields from

the metadata of the payload, which can identify the logical dataset the

payload belongs to, when previous data has been processed. This is

useful for processing the “replay message”. Since this payload contains

data that have been already stored in the reporting database, the table

can be used to verify if the previous appearance of the payload, so that

the gateway interface can create the trigger message without saving the

data in the payload into the reporting database.

3. Create new transformers specific to other upstream systems. Currently

the gateway interface only facilities converting data from one upstream

system.

4. Create multiple trigger builders and templates that can be used with a

client id, and account group rather than party_id. This will allow the

Page | 28

gateway interface to send multiple types of trigger messages to the

reporting platform.

Page | 29

Chapter 6: Conclusion

In seven weeks, we were able to complete a conceptually fascinating and

yet intellectually challenging project of building a gateway interface. At the

beginning of the project, there was a steep learning curve of understanding the

task and the expectation of the project. Also, we familiarized ourselves with the

existing framework and the technology associated with the project. The

customized Scrum method that we utilized assisted us to create a deliverable

product within the time frame.

The task we were given upon arriving at the Firm was to design a

gateway interface, which functioned as a communication tool between one

potential client system and the reporting database. As the project expands, the

team collects more requests from different teams. The team set the goal as to

create this gateway interface that allows multiple upstream system to send

data to the reporting database. We were able to achieve this very technical goal.

This gateway interface not only eliminates the Firm making changes to the

books and records system, but also reduces the time for generating the pre-

confirmation report.

At the end of the project, we also created an existing framework training

tool for the Barclays Futures Clearing Department and a handover document

for the developer who continues to advance this gateway interface. A sample

from the handover document can be seen in Appendix B. The training tool

explains the operation of the gateway interface in technical detail, so that

future developers could understand this project that uses EIP and build on to

the interface that we designed.

As we reflect on this project, we realize that were able to put the theories

and ideas we learned at WPI into practice at Barclays. When we arrived at the

Firm, we were required to work with teams of different disciplines. We were

able to work efficiently with the teams, since we have trained to work in a

project based environment at WPI. This gateway interface plays an important

Page | 30

role in strengthen the relationship between Barclays and its clients in Tokyo.

We feel honored to be given the opportunity to have this global impact.

Page | 31

Appendices A: Glossary of Terms

Term Explanation

Client Trader

Upstream System The Firm’s entities

Client System The Firm’s entities

Reporting

Database

An oracle database within the Firm, which is used to

store data coming from upstream systems

Reporting

Platform

An entity within the Firm that responsible for generating

pre-confirmation reports

Gateway Communication Channel between multiple upstream

systems and the reporting database

Logical Dataset A collection of transaction data that belongs to one client

By convention not
by configuration

The team needed to include the required dependencies
and use modules from the existing application framework
rather than write new source code for each component of

the gateway interface

Build the Firm The side of the Firm that develops the different products

that will eventually go into production

Run the Firm The side of the Firm that maintain the products in

production.

Page | 32

Appendices B: Sample from Handover Documentation

The metadata contains the data fields hat help the different elements of

the gateway interface determine how to process the payload. In addition. It also

consists of the data that is necessary for populating a trigger message. All fields

in the metadata should be populated by upstream source. The following are the

fields in the metadata:

1) classname String Class name of the proto

buffer message

2) is_replay_message Boolean Flag indicating if the payload

is a replay message

3) version Integer Key determining if this
dataset is related to another.
(eg. If pre-conf report

(version1) is sent to the
client and he/she disagrees
with the information. The

client will request another
report (version 2) with

accurate information)

4) party_id String Identification of a logical

dataset. This is used by the
gateway interface, it
associates the message body

with an account ID

5) party_id_role Enumeration Type of the party_id

6) sender_reference String Reference to the sender of
the payload. This is for the
reporting platform to track

back to the sender in case of
an error. This is a string that
uniquely identifies the

message that was sent. This
can be thought of as a

sender system ID.

Page | 33

7) business_date Integer Business date for the

dataset. This is used to
create the trigger message

for the reporting platform.

8) event_timestamp Integer Timestamp populated by

sender. This is used to create
the trigger message for the
reporting platform.

9) feed_name String Name of the feed/trigger.

This is used to create the
trigger message for the
reporting platform.

10) region_code String Where the subscription

comes from. This is used to
create the trigger message
for the reporting platform.

11) source_system_code String Code of the upstream

system. This is used to

create the trigger message
for the reporting platform.

This is a string that uniquely
identifies the upstream
system that sent the

payload. This can be thought
of as sender system.

12) total_num_pages Integer Number of pages the dataset
is divided into. This is used

for the re-sequencer.

13) page_num Integer Current page the data in the

payload message represents.
This is used for the re-

sequencer.

The message body is essentially a collection of transaction data from the

upstream system. With the current contract, all transaction data in the

payload message will be saved into a table in the reporting database. The

message body is represented as byte array in the message.

