
The Wisdom of Crowds
as a Model for Trust and Security in Peer Groups

by

Justin D. Whitney

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

September 2005

APPROVED:

Professor Fernando C. Colon Osório, Thesis Advisor
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Abstract

Traditional security models are out of place in peer networks, where no hierarchy ex-

ists, and where no outside channel can be relied upon. In this nontraditional environment

we must provide traditional security properties and assure fairness in order to enable the

secure, collaborative success of the network. One solution is to form a Trusted Domain,

and exclude perceived dishonest and unfair members.

Previous solutions have been intolerant of masquerading, and have suffered from a

lack of precise control over the allocation and exercise of privileges within the Trusted

Domain. Our contribution is the introduction of a model that allows for controlled access

to the group, granular control over privileges, and guards against masquerading. Contin-

ued good behavior is rewarded by an escalation of privileges, while requiring an increased

commitment of resources. Bad behavior results in expulsion from the Trusted Domain.

In colluding with malicious nodes, well behaved nodes risk losing privileges gained over

time; collusion is thereby discouraged.

We implement our solution on top of the Bouncer Toolkit, produced by Narasimha et

al. [25], as a prototype Peer to Peer file sharing network. We make use of social models for

trust [24] [30] [26], and rely on new cryptographic primitives from the field of Threshold

Cryptography. We present the results of an experimental analysis of its performance for

a number of thresholds, and present observations on a number of important performance

and security improvements that can be made to the underlying toolkit.
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opportunity, and the fantastic ride. Thank you to my Reader Professor Murali Mani for

his hard work. Finally, thank you to everyone at the WPI Secure Systems Research Lab-

oratory (WSSRL) for their ideas.

i



Contents

1 Introduction 1

1.1 Secret Sharing and Threshold Cryptography . . . . . . . . . . . . . . . .3

1.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The Model 9

2.1 Construction of the Initial Group . . . . . . . . . . . . . . . . . . . . . .11

2.2 Admission Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

2.3 Iterative Use of the Model . . . . . . . . . . . . . . . . . . . . . . . . .17

2.4 P2P File Sharing Example . . . . . . . . . . . . . . . . . . . . . . . . .18

2.5 Attacks Against the Model . . . . . . . . . . . . . . . . . . . . . . . . .21

2.5.1 Greedy Members . . . . . . . . . . . . . . . . . . . . . . . . . .22

2.5.2 Malicious Members . . . . . . . . . . . . . . . . . . . . . . . .23

2.5.3 Collusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

3 Experimental Design 25

3.1 The Bouncer Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

3.2 Our Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

3.2.1 Changes to Setup and Installation Process . . . . . . . . . . . . .28

3.2.2 Broad Outline of Our Implementation . . . . . . . . . . . . . . .29

3.2.3 Group Charter Extensions . . . . . . . . . . . . . . . . . . . . .30

ii



3.2.4 Implementing the Matrices . . . . . . . . . . . . . . . . . . . . .31

3.2.5 GMC Extensions . . . . . . . . . . . . . . . . . . . . . . . . . .32

3.2.6 Changes to the Bootstrap Process . . . . . . . . . . . . . . . . .33

3.2.7 TS-RSA Changes . . . . . . . . . . . . . . . . . . . . . . . . . .34

3.2.8 Monitor and Tracker . . . . . . . . . . . . . . . . . . . . . . . .34

3.2.9 Networking Changes and Blacklisting . . . . . . . . . . . . . . .35

3.2.10 P2P Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

3.2.11 Changes to Certification Process . . . . . . . . . . . . . . . . . .39

3.2.12 Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

3.2.13 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

4 Experimental Testing 43

4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

4.2 Validation Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

4.2.1 Malicious Validation Tests . . . . . . . . . . . . . . . . . . . . .49

4.2.2 Greedy Validation Tests . . . . . . . . . . . . . . . . . . . . . .49

4.2.3 Validation Test for Masquerading . . . . . . . . . . . . . . . . .50

5 Results and Analysis 52

5.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

5.1.1 GMC Acquisition Results . . . . . . . . . . . . . . . . . . . . .54

5.1.2 Partial Signature Results . . . . . . . . . . . . . . . . . . . . . .56

5.1.3 Share Acquisition Results . . . . . . . . . . . . . . . . . . . . .57

5.1.4 Partial Share Issuance Results . . . . . . . . . . . . . . . . . . .58

5.2 Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

5.2.1 Overview of GMC Acquisition . . . . . . . . . . . . . . . . . . .60

5.2.2 Overview of Timing Analysis . . . . . . . . . . . . . . . . . . .63

iii



5.2.3 Timing Analysis of Partial Signature . . . . . . . . . . . . . . . .63

5.2.4 Determiningtsign andδsign . . . . . . . . . . . . . . . . . . . . . 65

5.2.5 Extrapolation Usingsigntotal . . . . . . . . . . . . . . . . . . . . 67

5.2.6 Calculation oftconst . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Extrapolation Usingttotal . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Comparison to Prior Work . . . . . . . . . . . . . . . . . . . . . . . . .74

6 Concluding Remarks 76

A Use of the Implementation 79

A.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

A.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

A.3 Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

A.4 Remaining Members . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

A.5 Malicious and Greedy Behavior . . . . . . . . . . . . . . . . . . . . . .81

A.6 Masquerading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82

A.7 Bringing it Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

A.8 Miscellaneous Details . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

iv



List of Figures

1.1 K-Bounded Coalition Offsetting Algorithm . . . . . . . . . . . . . . . . 5

2.1 Group Charter Elements . . . . . . . . . . . . . . . . . . . . . . . . . .13

2.2 GMCREQ Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

2.3 Group Charter Elements forG . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Bouncer Toolkit Provisions . . . . . . . . . . . . . . . . . . . . . . . . .26

3.2 Bouncer Toolkit Signature Schemes . . . . . . . . . . . . . . . . . . . .26

3.3 Group Charter Parameters . . . . . . . . . . . . . . . . . . . . . . . . .30

3.4 GMC Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

4.1 List of Operations Measured . . . . . . . . . . . . . . . . . . . . . . . .43

5.1 GMC Acquisition Time (sec) vs. Group Size . . . . . . . . . . . . . . . .54

5.2 GMC Acquisition Time (sec) by Level vs. Group Size . . . . . . . . . . .55

5.3 Median Time to Sign GMC (sec) vs. Group Size . . . . . . . . . . . . . .56

5.4 Median Share Acquisition Time (sec) vs. Group Size . . . . . . . . . . .57

5.5 Median Share Issuance Time (sec) vs. Group Size . . . . . . . . . . . . .59

5.6 A Timing Diagram for the Process of GMC Acquisition . . . . . . . . . .61

5.7 Time Taken by Exchanges in GMC Acquisition (sec) vs. Threshold . . .62

5.8 Values ofδsign andsigntotal . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.9 Predicted GMC Sign Times (sec) vs. Actual (sec) . . . . . . . . . . . . .68

v



5.10 Extrapolated GMC Acquisition Time (sec) vs. Actual (sec) . . . . . . . .72

5.11 GMC Acquisition (sec) vs. Narasimha et al. . . . . . . . . . . . . . . . .74

vi



List of Tables

2.1 Capabilities Matrix forG . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Policy Matrix forG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Group Charter for 15 Node Group . . . . . . . . . . . . . . . . . . . . .46

4.2 Number Assigned to Each Behavior Type . . . . . . . . . . . . . . . . .47

4.3 Implicit Validation Tests . . . . . . . . . . . . . . . . . . . . . . . . . .48

4.4 Validation Tests for Malicious Behavior . . . . . . . . . . . . . . . . . .49

4.5 Validation Tests for Greedy Behavior . . . . . . . . . . . . . . . . . . . .49

5.1 Median of All Performance Measurements for all Thresholds and Group

Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

5.2 Median GMC Acquisition Time for all Thresholds and Group Sizes . . .54

5.3 Median GMC Signature Time for all Thresholds . . . . . . . . . . . . . .56

5.4 Median of All Performance Measurements for all Thresholds and Group

Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

5.5 Median Share Issuance Time for all Thresholds and Group Sizes . . . . .58

5.6 Signature and Acquisition Time for all Thresholds . . . . . . . . . . . . .65

5.7 Difference in Signature Time Between Groups With Adjacentt . . . . . . 65

5.8 Breakingδsign Out of Signature Time . . . . . . . . . . . . . . . . . . .66

5.9 Approximated Sign Time and Actual Sign Time . . . . . . . . . . . . . .67

vii



5.10 Determining Values foractual tconst . . . . . . . . . . . . . . . . . . . . 70

5.11 Comparing Extrapolatedttotal to Actual . . . . . . . . . . . . . . . . . . 71

A.1 Selectingservant Behaviors . . . . . . . . . . . . . . . . . . . . . . .82

viii



Chapter 1

Introduction

Peer networks exhibit several interesting properties that make the application of tradi-

tional security techniques difficult [20]. Despite this difficulty, the application of some

technique is necessary if the peer group is to operate securely. We begin by examining

the environment of a peer network.

In a peer group, a number of network hosts collaborate to achieve some collective

goal. In a Mobile Ad-Hoc Wireless Network (MANET), for example, where no access

point is present and therefore wireless nodes act as both senders and routers of packets,

each wireless host collaborates to provide the basic network services of routing and traffic

forwarding for the group [31]. Wireless hosts achieve this by forming a Peer-to-Peer

(P2P) network. Another example, with greater significance to this thesis, is a P2P File

Sharing network such as Gnutella [8]. In this case, lacking any central point of control or

authority, hosts collaborate to exchange files, again forming a P2P network to do so. In

both examples, there is a need for fair, secure collaboration to achieve the common goal.

Within a peer group, no hierarchy is initially assumed, and all nodes are given equal

authority. Furthermore, no channel to nodes outside of the peer network is assumed to

exist. In particular, these assumptions make it difficult to use traditional Public Key (PKI)
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[12] techniques in this setting. Given the lack of an outside channel, no Certification

Authority (CA) can be reliably made use of to determine authenticity. Given the lack of a

hierarchy, no single host can be given a fixed role in the network, such as that of an acting

CA for the group; trust would have to be arbitrarily placed in such a host, as there is no

means of initially assessing whether it is more or less trustworthy than any other node in

the group. Furthermore, such an assignment creates a single point of failure.

Finally, a peer group should operate in an ad-hoc manner, integrating new nodes with-

out prerequisite. This further increases the challenge of designing security mechanisms

suitable to such a group, as no preexisting Security Association (SA) can be made use of.

In the case of the MANET, this means that lower layer security mechanisms such as WEP

[13] may not be used, as they require a prior SA. This requirement, in combination with

the lack of fixed roles and a CA, often makes it difficult to verify hosts as being unique,

and causes masquerading to be a problem.

In the face of these many complexities, nodes must still uphold traditional security

properties such as data integrity and authenticity in order for the network to function

securely. Furthermore, nodes must act fairly, otherwise selfish nodes can degrade the

result of collaboration. It is a unique challenge to implement security services and provide

fairness in such an environment.

In this paper we present a new model that allows for the ad-hoc formation of peer

groups, while providing traditional security properties, and assuring the fair operation of

the network. Trust in honest members is increased over time, and privileges can be ex-

tended to trustworthy members with granularity. Dishonest members are detected and

expelled from the group. Our model improves on existing work which limits trust to a

binary relationship (all or none), and which does not allow for privileges to be issued

with granularity. Furthermore, our model incorporates elements which can be used to

discourage or even prevent masquerading, which is a considerable problem in prior mod-
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els. We make use of social models for trust [30] [24], and rely on new cryptographic

primitives from the field of Threshold Cryptography. We introduce these new materials

in immediately following sections, and then proceed to describe our model.

1.1 Secret Sharing and Threshold Cryptography

Our work makes considerable use of new cryptographic primitives, primarily Threshold

Cryptography. While reliance on a CA is not possible in a peer group given the constraints

discussed in§ 1, the use of Threshold Cryptography allows this role to be distributed

between some or all members in such a way as to allow a subset of the group to perform

signing in place of the CA. The principle cryptographic primitive used by our work is a

threshold variation of the RSA algorithm which we refer to as TS-RSA [21]. The TS-

RSA algorithm uses Shamir’s Secret Sharing [29] technique to share an RSA private key

amongst group members. This technique is based on Lagrange Polynomial interpolation

[29]. We present these concepts concisely below, and refer the reader to the sources for

further details.

In Shamir’s secret sharing scheme [29], a secretS is broken inton pieces, anyt of

which may later collaborate to recover the secret. Such a system can be called a(t, N)

secret sharing scheme. Some threshold cryptographic systems make use of techniques

known collectively asproactive secret sharingwhich allowt to increase for each increase

in N . We focus our attention here on static systems in which this is note the case, and refer

the reader to Herzberg et al. [18] for further details. Initially, a trusted dealer chooses a

large primeq and selects a polynomialf (z) overZq of degreet− 1 such that

f (0) = S (1.1)
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Each share of the secretssi ∈ (ss1, ss2, ..., ssn) is computed as in Equation (1.2) and

is securely dealt to the nodei.

ssi = f (i) mod q (1.2)

Using the Lagrange Polynomial Interpolation formula in Equation (1.3) anyt nodes

may then recover the secret.

f (z) =
t∑

i=1

ssi · li (z) (mod q) (1.3)

Any fewer thant collaborating nodes may not recoverS and may gain no informa-

tion about it. Eachpublicly availablelagrange coefficientli is calculated as in Equa-

tion (1.4) [25].

li (z) =
t∏

j=1,j 6=i

z − j

i− j
(mod q) (1.4)

Many Threshold Cryptographic primitives, such as the Threshold RSA scheme pre-

sented by Kong et al. in [21], use an existing public-key algorithm, in this case RSA,

where the secretS is the private key, which is distributed amongstn nodes. While not all

Threshold Cryptographic systems allow it, in their work, Kong et al. propose a system

by which anyt nodes may issuepartial signaturesusing the shared private key. These

signatures may be reconstituted by the recipient into a full signature, signed by the group

private key, on some messageM . In this way,t nodes may make use of the shared private

key S while never disclosing the group secret to any one node. We briefly present this

work and refer the reader to [21] for further details.

To issue a partial signature on a messageM , a nodei treats its partial sharessi as the

exponent in the RSA algorithm, computing
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M ssi mod q (1.5)

The recipient oft such partial signatures is able to combine them to form a full sig-

nature onM signed by the group private key; one obstacle remains to this reassembly,

which we now address.

Givenf (0) = S (Equation (1.1)), we may restate Equation (1.3) as

d = S =
t∑

i=1

ssi · li (0) (mod q) (1.6)

For some value,j, we can also say that
∑t

i=1 ssi·li (0) (mod q) = j ·q+d [21]. How-

ever, there can be no mathematical assurance thatM j·q+d ≡ Md ≡ MS (mod q). Kong

et al. overcome this problem through the use of what they term theK-bounded coalition

offsetting algorithm1. This algorithm makes use of the group public keyPK =< e, n >,

and functions as follows.

Figure 1.1:K-Bounded Coalition Offsetting Algorithm

Z = M−n mod q
l = 0
while l ≤ K and M 6≡ Y e (mod q) do

Y = Y · Z mod q
l = l + 1

done

Result: Y ≡ Md mod q

This algorithm ensures that the result of combining the partial signatures onM is

equivalent to a full signature onM using the group private key. The use of partial signa-

tures and the algorithm above let us assign the role of a CA to some subset of a peer group

with a number of useful provisions. We can tolerate some number of faulty or malicious

1In this caseK = t, the threshold.
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nodes less thant, while still allowing the group CA to function as intended, and without

compromisingS.

Furthermore, becauset nodes arerequired to sign for some messageM in order to

fully sign asS, we create a proxy for consensus that demands thatt nodesagreeto sign

some messageM . If entrance into the peer group were based on this proxy, for example,

then by obtaining a group signature on some messageM a node can prove that it was

accepted for entrance. This idea of a thresholdt as a proxy for consensus is explored in

two relevant papers, each of which we now present briefly.

1.2 Prior Work

In their research (see [31]), Yang and colleagues sought a solution that secured routing

and packet forwarding in a MANET. In their solution nodes secure those two services

through the formation of a Trusted Domain (TD) within the peer network. Within the TD,

members are monitored promiscuously and a(t, N) threshold-shared private key is used

to certify fair and honest nodes by signingtokensfor each member. Each token is signed

only if t neighboring nodes have observed that some nodei has not acted maliciously,

having routed and forwarded packets as required. Members acting unfairly or maliciously

are expelled when their tokens expire and no coalition oft neighbors signs a new token.

Data integrity and authenticity between nodes is upheld through the use of private keys

held by each node.

Narasimha et. al. (see [25]), further explored the concept of trust in a MANET. Specif-

ically, they explored the problem of controlling admission of nodes to a Trusted Domain

such as the one introduced by Yang et al. Their work abstracted the problem of safe-

guarding membership in a Trusted Domain, creating a framework that could express the

requirements for membership in a general way. Their implementation of this framework,
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which they termed theBouncer Toolkit, implemented a number of threshold cryptographic

primitives. An arbitrary peer group can be implemented on top of the toolkit by select-

ing the appropriate signature scheme and membership requirements. We introduce a new

model that makes use of this framework, benefiting from the ideas presented in both of

these papers.

Prevention of masquerading proved to be a shortcoming of both the work of Narasimha

et al. and Yang et al. In their work, Yang et al. [31] chose to use the MAC address of a

wireless node was used to ensure that no one node received more than one share of the

group secret, or was able to sign more than once on a token for some node. The MAC

is known to be easily forgeable, however, and should not be used for this purpose. In

Narasimha et al. a certificate signed by a CA was required of each node applying for

membership to some peer group. While this offloaded the problem of masquerading on

to the CA, it created a requirement for admission that invalidated the possibility of ad-hoc

group formation.

Prior work has also suffered from a lack of precise control over the allocation and ex-

ercise of privileges within the TD. This lack of granularity means that sometimes nodes

must be trusted with sensitive capabilities that might otherwise be witheld from them,

lowering the overall security of the Trusted Domain. In both of the works referred to

above, a node is either a member of the TD or not, and members may exercise any privi-

lege granted to TD nodes. Our model provides granular control over privileges, breaking

the TD up into a number oflevelsat which a node may participate. Each level contains

a set of privileges which a node at that level may exercise. At higher levels, a greater in-

vestment of resources is required, and a greater set of privileges are allowed. Our model

guards against masquerading by requiring nodes to commit greater resources at higher

levels, and over time. Continued good behavior by fair and honest nodes is rewarded in

this way. Bad behavior results in expulsion from the Trusted Domain. In colluding with

7



malicious nodes, well behaved nodes risk losing privileges gained over time; collusion is

thereby discouraged.

In the following section,§ 2, we discuss the rationale for the model upon which our

work is based. Following that, in§ 3, we discuss he implementation of the model as a

Peer to Peer (P2P) file sharing network build on top of the Bouncer Toolkit, using the

TS-RSA algorithm as the underlying threshold cryptographic primitive. Finally, in§ 4

and§ 5, we present the results of performance and scalability testing based on laboratory

experimentation with our implementation.

8



Chapter 2

The Model

The model which we now present is intended as a solution to providing essential security

properties and fairness in a peer group, while allowing ad-hoc formation and dealing with

the problem of masquerading. Our model is founded on a number of essential assump-

tions which are roughly derived from observations of social behavior, and which we now

discuss.

Consider two people, Alice and Bob, who have just met for the first time. Neither

trusts the other person, but they both wish to accomplish some task that neither alone can

complete. Let us assume that both see that they must unite to accomplish the task, and

that they begrudgingly join forces to get the job done. Alice labors to complete her part of

the task while Bob labors to complete his. If each periodically shows the other the work

that they have completed, over time they will both come to trust that each is working

hard for the collective good. As long as Alice and Bob decide on a suitable period, then

the most undesirable thing Bob can do as far as Alice is concerned is stop working just

after he shows Alice his work. This would mean Alice continued to labor for an entire

additional period, while Bob stood by. Presumably, next time Alice saw Bob’s work, she

would realize he had been lazy, and would decide not to continue to work with him.
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On the other hand, the longer Bob continues to work hard, the longer Alice can see

that he shares the same goal as her, and is therefore likely to continue to work hard. Let

us assume that it takes a bit of time for Alice to walk over to where Bob is working,

observe that he has completed the work expected of him, and then walk back to where

she is working and begin again. Over time, Alice will grow to trust that each time she

makes a record of Bob’s work, it will be as she expected.

Alice can propose to Bob that they increase the period at which they check in with each

other. In doing so, she has admitted to some increased trust of Bob, given his continued

good behavior, and has exercised this increased trust by way of increasing the check-in

period. She can never be completely sure that Bob is not out to cheat her. But she grows

increasingly more confident that Bob is honest and fair, because he has committed so

much of his time and energy to completing their shared task. So the assumption is that

because Bob has invested so heavily into completing the task, he will not jeopardize its

completion by being lazy; rather, he will continue to work hard.

Eventually, Alice and Bob will complete what they set out to do. Before they part

ways, Alice gives Bob a token that tells the rest of the world to what extent Alice approves

of Bob. Later, if Bob runs across another person who wishes to join him in completing

some other shared task, he can use the token to show them that he has already established

a rapport with Alice.

Our model is predicated upon the observations above. We start by assuming that

some core group of nodes trust each other mutually. Each new node that wishes to take

part in the peer group is invited to do so as long as enough members approve; the first

time a node joins a group members always approve. Over time, its behavior is observed,

and offered increased privileges. With the increase in privileges comes an increase in

expected participation. As more members are added to the group, the number of observers

increases, each one adding their unique perspective. In total, their collective wisdom is
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more accurate than the wisdom of a single individual, to the benefit of the group.

If at any time a node acts maliciously, unfairly, or fails to commit the resources re-

quired of it for participation, it is expelled from the peer group. Honest, fair nodes are

discouraged from being malicious or colluding with malicious members because in doing

so they risk losing their membership. Members receive tokens proving their membership

and validating their participation. The model can be used iteratively, with one peer group

requiring membership in a more junior peer group a criteria for joining. In this way,

malicious or dishonest members may be filtered out as they proceed upward through a

hierarchy of peer groups.

The social model presented above is suitable for situations in which some degree

of misbehavior can be tolerated. Bob can always choose to misbehave at some level,

and for however long it goes undetected, this behavior must be accepted. In a situation

where the result of misbehavior is serious, the model can still be used, but over time,

given increasingly more observers, the ability to detect and expel members is increased.

Thus, the longer the model is used in such a situation, the greater its ability to deal with

misbehavior.

2.1 Construction of the Initial Group

Our model begins with a number of peer nodes coming together to form a Trusted Do-

main, a process which we termInitial Group Construction. As stated in the previous

section, the model must be used in a largely honest environment if it is to function prop-

erly. In particular, the number of colluding dishonest nodes should not be equal to or

exceed the thresholdt. If the Initial Group forms with a number of dishonest nodes at

least equal tot, then the group is compromised from the start. The easiest way to form a

TD with the desired properties is for a number of nodes with prior knowledge or out-of-
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band experience with each other to form it. We note that this may not be possible in an

entirely ad-hoc setting, however.

We present a technique for initial group formation that guarantees that group forma-

tion occurs as desired. From the Byzantine Generals Problem (BGP) [22], we know that

given any3m+1 honest parties, even in the presence ofm malicious parties we can form

an initial groupP0 and defeat attempts bym nodes to disrupt its formation. Let us assume

m = 1 malicious nodes, and therefore3m + 1 = 4 total nodes. Call these nodesp1...p4,

and letpn refer to any singlep ∈ {p0...p4}. Let us assume that each node possesses a

cryptographic certificate that is verifiable as belonging to the owner. Let us assume that

all 4 nodes have such certificates, with public keys for these certificates known to all other

nodes.

P0 forms between two times,T0 andT1 (T0 < T1). Starting from timeT0, all pn

use a distributed threshold cryptographic algorithm to bootstrap a shared private key with

thresholdt. Again using a Byzantine Agreement Protocol, at least3m = 3 honest nodes

posses shares of the shared private key at the conclusion of the exchange. Note that it is

necessary to bound the thresholdt betweenm + 1 = 2 and3m = 3 above, givenm = 1

potentially malicious nodes. Failure to boundt in this way would allow for the creation

of an unusable key, or a key which was insufficiently distributed amongstpn such thatm

nodes could compromise the group secret key. We therefore assume honest behavior by

at most3m nodes during the exchange, and accommodate malicious behavior by at most

m.

BetweenT0 and T1 it is assumed that no honest node becomes malicious, and all

honest nodes participate in the exchange. The actual value of the interval betweenT0 and

T1 is unimportant as long as the assumptions hold for that interval. The exchange could

take place over seconds or days. Typically a short exchange provides little opportunity

for attack, and so would therefore be a more suitable choice than a long interval. Once
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T1 elapses, at least3m = 3 members ofpn have formed the peer group which we now

simply termP .

Recall that the groupP has formed in order to collaborate to achieve some goal.

The exact details of how they will collaborate is articulated in a Group Charter (GC), an

X.509 Certificate [19]. There are a number of ways in which allpn can agree upon a

GC. If the group is forming entirely ad-hoc, perhaps the easiest way is to select one of a

number of predefined charters that might exist. Otherwise, a voting algorithm might be

used. Once the GC is decided upon, it is partially signed by eachpn, and bound to the

group public key. The GC contains at minimum the following elements.

Figure 2.1: Group Charter Elements

• An NxN Policy Matrix O


o0,renwal o0,upgrade . . . o0,N

o1,renwal o1,upgrade . . . o1,N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
oN,renewal oN,upgrade . . . oN,N



• An NxN Capabilities Matrix A


a0,0 a0,1 . . . a0,N

a1,0 a1,1 . . . a1,N

. . . . . . . . . . . . . . . . . . . . .
aN,0 aN,1 . . . aN,N


• The Threshold Cryptographic primitive to be used

• The initial thresholdt

These values essentially define the group, and the requirements for members of the

group. Each member in the group belongs to the group at some levell, binding it to a

row in bothA andO. Members of the Trusted Domain, such as all of those inP belong

to the group at the highest possible level, the highest-numbered row ofA andO. New

members are accepted at the lowest level,l = 0. Each row of the Capabilities Matrix,

corresponding to some level, contains a list of the actions which a group member may

take at that level. Any actions that the group allows that are not listed at that level are

prohibited for members at that level. A given row of the Policy Matrix lists the extent
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to which members at that levelmustexercise some capabilities, and the extent to which

members must limit their use of others. These matrices, and in particular the values of

orenewal andoupgrade, are discussed at length in the following section.

2.2 Admission Process

Given the Trusted DomainP , let us examine what happens when some new noden wishes

to join the group. To begin with,n must have generated, as prerequisite, only a pub-

lic/private key in order to join; there is no other requirement. First,n requests the Group

Charter from any of the nodes inP . Assumingn finds the contents of the GC to its liking,

it sends a GMC Request (GMCREQ ) signed with its private key to at leastt members of

P . TheGMCREQ contains the following.

Figure 2.2:GMCREQ Attributes

• A LevelLevel

• A StarttimeStart.

• An ExpirationtimeNotafter.

TheGMCREQ is anX.509 Request [28] containing some of these values asX.509v3

extensions [12], while others are included in the message in which theGMCREQ is sent.

The noden sets the value ofLevel to 0, as this is its initial request to join the group.Start

is set to the Universal Coordinated (UTC) time. The value ofNotafter determines when

the certificate expires. Each list of policy elementsol ∈ O contains one element that

determines for how long a GMC at that level is valid. The value ofNotafter is simply

calculated by adding this element toStart to begin with.

This is the first point at which admission is controlled by way of usingt as a proxy. If

not members findn acceptable as a new member, it cannot obtain membership. Members

of P would consider any prior knowledge ofn that they might have, as well as checking
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the values sent byn in its GMCREQ . Recall that the number of malicious nodes is less

than t for P making it impossible for a malicious coalition inP to approve members

arbitrarily. If fewer thant members decline to admitn, membership is denied. Having

declaredn admissible, at leastt members ofP sign a Group Membership Certificate

(GMC) for n constructed from theGMCREQ and using the same values.

Two elements of the Policy MatrixO are required to be defined for each Group Charter

at all levels. For some levell the elementol,renwal defines a renewal time in seconds that

is added to the current time, when each GMC is issued, to arrive at an expiration time

for each GMC. The elementol,upgrade marks the minimum time that a node must have

participated in the group before it will be considered for membership at levell.

As the last section mentioned, the levell is used to refer to a set of policy elementsol,

and a set of capabilities elementsal to whichn is to be held until the certificate expires

at Notafter. Each of these matrices specifies the way in which all honest nodes in the

group will allow other nodes to make use of their resources. Ifn requested some resource

and the capabilities matrix for their level did not allow access, any honest node receiving

this request would reject it. Or, for example, if the policy matrix specified that up to

a particular number of messages of some type may be sent, andn sent more than the

allowed number to some hosty, theny would refuse future messages fromn.

While its GMC is valid,n must only attempt to make use of the capabilities granted

to it by al. Shouldn try exceed its capabilities, as we describe above, any node receiv-

ing such a message fromn would fail the message, record the event, and refuse further

messages fromn. The same is true for elements in the policy matrix. On the other hand,

shouldn fail to meet the requirements of the policy matrix by not sendingenoughof some

message, the result would be slightly different; this outcome is addressed shortly. In all

cases, the recipient of some message can be sure that some message originated fromn

because such a message would be signed byn using its private key.
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BeforeNotafter elapses and its certificate expires,n must apply for a new GMC.

This process is essentially the same as the initial application with a few differences. The

valueNotafter is again arrived at by taking the current time and adding the expiration

time from the policy matrix to it. Again, theGMCREQ is constructed, and submitted

to each of the (at least)t nodespi ∈ P with whomn has interacted. Eachpi evaluates

n, checking to see that it has exceeded noai ∈ A, has met alloi ∈ O and has not

exceeded anyoi ∈ O. So long as this is true, all honest nodespi ∈ P partially sign 1.1 the

GMCREQ submitted byn. As we can see here,n is thus required to behave in accordance

with both matrices with at leastt other nodes. In this way,t is used as a proxy, forcingn

to interact, and do so honestly.

If n has violated either the capabilities or policy matrix for some honestpi, this node

would refuse to sign, andn would be unable to acquire its new GMC. Therefore it is in

the advantage ofn to interact with, and request itsGMCREQ of more thant nodes in

order to tolerate some misbehavior during GMC renewal. Specifically, ifn can interact

with 2t− 1 nodes, it can guarantee successful renewal1.

After n has participated at levell for the time periodol+1,upgrade, it may make a

GMCREQ of P for membership at a higher level. So long as, just as above,n has partic-

ipated in accordance with the matrices, its request would be approved. For each increase

in l, n will be granted an increasing subset of capabilities fromA, and held to a stricter

and more demanding set of policy elements fromO. By way of controlling the progres-

sion of new members through the various levels ofA andO, members ofP are able to

control the extent of the trust they give to new members. Over time, after participating for

oN,upgrade, n could request and be approved for the maximal levell, effectively joiningP

as a full member. Once approved,n may request a share of the group secret keyS. A

share ofS is calculated forn in accordance with policy, and the signature scheme used,

1Recall the assumption that no more thant− 1 malicious nodes exist in the chosen environment
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and is securely dealt ton.

2.3 Iterative Use of the Model

While the model has been designed to function in an entirely ad-hoc manner, this is not

necessarily where it can be most powerfully applied. Consider two peer groupsPx andPy

where entrance (membership at level 0) intoPy requires membership inPx at the highest

level (lN ). Some noden at lN in Px applying for membership toPy has been observed to

be honest for some extended period of time by the Trusted Domain ofPx. Given that, the

t nodes ofPy consideringn for entrance at level 0 may have a considerably higher basis

for acceptingn at level 0 than thet nodes ofPx that presumably had no prior knowledge

of n.

By iteratively requiring membership in other groups in this way, a hierarchy of peer

groups can be built with groups at the top of the hierarchy having increasing confidence

in the honesty of new nodes. This is an intentional quality of kour model that once again

follows the social trust model.

17



2.4 P2P File Sharing Example

As an example of how the model might be used, consider a Peer to Peer file sharing group

G collaborating to exchange files, as nodes in a Gnutella [8] file sharing network might.

First, we construct a Group Charter to represent the aims ofG. Recall from Figure 2.1

that a GC forG will be composed of the following elements.

Figure 2.3: Group Charter Elements forG

• An NxN Policy Matrix O


o0,renwal o0,upgrade . . . o0,N

o1,renwal o1,upgrade . . . o1,N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
oN,renewal oN,upgrade . . . oN,N



• An NxN Capabilities Matrix A


a0,0 a0,1 . . . a0,N

a1,0 a1,1 . . . a1,N

. . . . . . . . . . . . . . . . . . . . .
aN,0 aN,1 . . . aN,N


• The Threshold Cryptographic primitive to be used

• The initial thresholdt

Let us say that the groupG allows for three capabilities:send, receive, andsearch.

Building the Capabilities Matrix forG based on these possibilities we have:

Level Send Receive Search
1 X
2 X X
3 X X
4 X X X

Table 2.1: Capabilities Matrix forG

For each levell, an X marked for the capability in each column indicates that the

capability given for that column is available. Capabilities with noX are unavailable for

that level. At the first level, looking at Table 2.1, nodes may only send. The next two

levels allow nodes to search as well, and finally the last level allows nodes to receive files.
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Let us say that the policy matrix forG is as follows.

level Bytes Searches Renewal Membership
0 Bytes0 Renewal0 sec
1 Bytes1 ≤ Searches1/min Renewal1 sec Membership1 sec
2 Bytes2 ≤ Searches2/min Renewal2 sec Membership2 sec
3 Bytes3 ≤ Searches3/min Renewal3 sec Membership3 sec

Table 2.2: Policy Matrix forG

Exploring Table 2.2, we see that first of all each of the 4 levels contains 4 policy ele-

ments. Recall that for all levelsl, all policy elements must be met for certification at that

level. EachBytesl refers to the minimum number of bytes that must be sent from some

noden to each Trusted Domain host from whom a GMC will be requested; recall that this

is at minimumt such hosts. For each increase inl, some noden is required to transfer

an increasing number of bytes to each host. Note that meanwhile,n can do nothing but

send files and search. The policy elements at level 0 of the matrix, the first row, can be

considered theentrance feethat a noden must put forward to begin participation in the

group. It is the minimum required policy with withn must comply in order to participate.

At minimum, any node wishing to joinG must consider these elements with respect to the

value oft after receiving the GC for the group. Initially, in this example,n can do little

by way of misbehavior. Eventually, at the highest level,n may join the Trusted Domain

and also receive files.

As required by Figure 2.3, each row of the policy matrix includes the two variables

ol,renewal andol,upgrade which specify the time, in seconds, that a certificate is valid before

it must be renewed, and the time, in seconds, that a node must participate in the group

before it may upgrade to some levell. The variableRenewall specifies the renewal

period, andMembershipl specifies the time before upgrade may occur. By increasing or

decreasing eachMembershipl a group may require a very long or very short observation
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period at each level. The longerMembershipl is, the greater confidence members ofG

may have that some noden will continue to behave correctly2.

In combination withBytesl eachRenewall implies a rate of transfer that some node

n must meet. IfBytes1 were set to 100 bytes for example, andRenewal1 were set to 100

seconds, then some noden at levell must transfer at least 100 bytes in the renewal period

of 100 seconds, for a rate of at least100/100 = 1 byte/sec. Note thatn must renew its

certificatebeforeexpiration, and so would want to send at a rate slightly higher in order

to allow for some time to solicit for and acquire its new certificate.

Consider the selection oft for this example. With four nodes inG, selecting at of 3

ensures that the greatest number of nodes inG will observe some new membern, while

still tolerating a single malicious node. But, the failure or compromise of any other node

in G renders the shared private key unusable byG. Selecting at of 2 allows for tolerance

of a single fault or compromise inG. Selectingt as 4 renders the groupG incapable of

tolerating any faults or failures. On the other hand, selecting at of 1 allows maximal

tolerance, but clearly invalidates the use of the threshold, giving all nodes inG the full

authority to sign asG.

In Section 2.5 we discuss all manner of attacks against the model. Here, we consider

one attack against this example. If an attackern is able to masquerade ast hosts, it

can participate at the highest level inG and acquiret shares of the shared private key,

compromising it and allowingn to sign asG arbitrarily. If the values ofBytesl and

Renewall have been set high enough, it may be possible for the sustained rate in bytes

per second required to masquerade ast nodes to be made to exceed the physical capacity

of n.

Let n be connected toG through some physical connection with a maximum possible

rate of 150bytes/second. Let us say thatBytes3 andRenewal3 are set such that partici-

2See§ 2
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pation at level 3 requires a sustained rate of 100bytes/second. In this case,n will not be

able to satisfy this rate more than once, and so will succeed in disclosing more than one

share of the group private key in this way.

In some cases, unique, observable properties ofn may assist in guarding against mas-

querading. Binding IP address to the GMC for each node, for example, might make

masquerading more difficult. In some settings, a SIM id3 might exist, which is a much

stronger property that can be used for this purpose. The more unique, and difficult to

forge the property, the stronger it is in in guarding against masquerading. Lacking such

an identifier, the choices made for the policy matrix can still assist in preventing mas-

querading. Care must be taken, however, as setting the policy matrix requirements too

high would limit the types of hosts that could participate in the group.

2.5 Attacks Against the Model

Now we consider a number of attacks against the model. The behavior of any group

member can be modeled given the level at which it is held to the capabilities matrixA

and policy matrixO. Given somel, we know what the member can do, we know to what

extent it can do it, and we know for what length of time. Since the highest level affords

the greatest set of capabilities fromA, let us assume that this is where the member can do

the most damage. We will start our analysis by examining two distinct types of possible

attacker behaviors.

We categorize the types of attacks brought against the model intogreedyandmali-

cious. A greedymember wishes to do less than is required of it while benefiting as much

as possible from its membership. Amaliciousmember wishes to exceed its privileges,

or use its privileges to the disadvantage of the group. So, a greedy attacker will violate

3Such as can be found in most cell phones, for example.
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some part of the policy matrixO, while a malicious attacker will exceed or abuse its ca-

pabilities fromA. Later, we consider an arbitrary attacker that can exhibit these and other

behaviors.

2.5.1 Greedy Members

Let us consider an attackerattackerg modeled under our first example, a group of file

sharing nodes. In this example, the maximumal ∈ A and ol ∈ O allow attackerg

to conduct searches and receive files, while requiringattackerg to share files at some

rate. Ifattackerg is greedy, it might try to share files at lower than the specified rate, or

search more than the is allowed. Conversely,attackerg might attempt to share greater

than the requiredBytesl or search fewer than the maximum allowed number of times.

This behavior benefits the group, and does not benefit the attacker, and is therefore not

considered greedy. Any attempt byattackerg to search beyond what is allowed will be

rejected by any honest member ofG, and future requests fromattackerg will be ignored.

On the other hand, nodes to whomattackerg is sending files can not know that

attackerg is being greedy by sending less than the requiredBytesl until its certificate

expires; until that timeattackerg might still satisfy the requirement. Eventually, its cer-

tificate becomes invalid, orattackerg makes a GMC request without having met this

requirement, and all honest nodes refuse any GMC request fromattackerg on the basis

of this violation of policy.

In both cases of greedy behavior above, the behavior is tolerated for at mostRenewall.

There is a mechanism by which this time period can be lowered. IfG makes use of an

X.509 Certificate Revocation List (CRL) [19],t honest nodes who have detected mis-

behavior byattackerg may add its GMC and public key to the CRL. Once the CRL is

propagated, all nodes inG will refuse requests fromattackerg. In this case, greedy behav-
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ior would be tolerated only so long as not members ofG had detected such misbehavior,

and once detected, only so long as required for the CRL to propagate.

2.5.2 Malicious Members

Now we consider a malicious attackerattackerm for the same example. Such an attacker

could try to exceed its capabilities by receiving files or searching before these privileges

were allowed. Just as in the case of a greedy attacker, examination of the GMC for

attackerm would show that these capabilities were not allowed for its levell, and attempts

to make use of these capabilities would be denied, and future requests fromattackerm

ignored. Again, if a CRL were used, expulsion ofattackerm could occur as immediately

as noted above.

Now, consider the danger that compromise of the group shared secret poses. A ma-

licious attacker might try to masquerade as, compromise, or collude with a sufficient

number of other nodes in order to acquire the group secret key. Recall thatt total nodes

must act to compromise of the group shared secret. In our model we assume that no such

t nodes ever exist.

As a rationale for this claim, recall from§ 2.4 that masquerading will not succeed

in some environments; if, for example, the group consisted of IP-network nodes, and

each attacker was only able to make use of a single network address. Or if the group

consisted of nodes with observably unique transmission signatures. More generally, any

environment where the attacker cannot forge or acquire more than one unique identifier.

Furthermore, recall that even in the absence of such an identifier, the policy matrix may

be constructed in such a way as to preclude masquerading.
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2.5.3 Collusion

It is not by accident that our solution to the problem of masquerading leaves the attacker

with no choice but to collude with other members. An observation in the development of

the model was that if we can force collusion on the attacker, and at the same time make

collusion very unattractive to honest members, the attacker will be thwarted. The means

by which we provide other members with an incentive not to collude is twofold.

First, by increasing their privileges over time, and making good policy choices, we

can reward well behaved members while not taxing them too severely for their good

behavior. Second, by forcing continued good behavior over time, we build each members’

commitment of resources over time. The idea is that after so much resource commitment

on the part of each honest group member, the rewards afforded by compromise of the

group secret is not worth the risk of losing membership status. This is true as long as the

rewards for attaining higher levels outweigh the benefits of misbehaving at these levels.

This makes choices in the policy and capabilities matrix crucial in order to strike the

appropriate balance.
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Chapter 3

Experimental Design

Above, we suggest a model that we claim can provide security properties and fairness in

a peer group. We hypothesize that the model will provide these properties without signifi-

cant overhead, lending it to use in peer groups with substantial thresholds and membership

counts. We propose to implement the model described in§ 2.4 as the basis for the creation

of security mechanisms in a Peer to Peer (P2P) file sharing network. In a later section,

we test the implementation, observing its performance, and confirming correctness of

operation.

Our implementation is built upon the Bouncer Toolkit [1] version0.7 [3] and con-

stitutes a contribution of greater than 15,000 lines ofCcode. We begin by discussing the

toolkit, and then proceed to discuss our specific contributions.
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3.1 The Bouncer Toolkit

The Bouncer Toolkit1 is a framework for peer group admission control written inC by a

research team lead by Dr. G. Tsudik [6] at the Secure Network and Computing Center

at UC Irvine. Bouncer is essentially an implementation of the ideas discussed in [27]. It

provides support for the elements seen in Figure 3.1.

Figure 3.1: Bouncer Toolkit Provisions

• Creation of a Group Charter

• Static and Proactive secret sharing primitives and other signature schemes

• Admission control (admission, expulsion) using the selected signature scheme

Included in the0.7 release of the toolkit is support for the following signature schemes.

Figure 3.2: Bouncer Toolkit Signature Schemes

• PS: Plain Signatures

• TS-RSA: A Threshold-shared implementation of the RSA algorithm

• TS-DSA: A Threshold-shared implementation of the DSA algorithm

• ASM: Accountable Subgroup Multisignatures [23]

• GS: Group Signatures

Each of the signature schemes listed in Figure 3.2 is built as a staticC library. Bouncer

uses OpenSSL version0.9.6g [9] which implements the necessary underlying crypto-

graphic primitives such as RSA and DSA and provides the necessary arbitrary precision

math library2. OpenSSL also provides Bouncer with support for theX.509 ASN.1-like

[19] syntax, andASN.1 [14] Distinguished Encoding Rules (DER) [15] format encod-

ing and decoding. Bouncer includes a packet handling library which implements any

exchanges over IP which may be needed by the signature schemes.
1All comments we make in this section that referencing source line numbers of this toolkit shall apply

to our source release packages rather than the original toolkit.
2This exact version of the toolkit must be used as versions of OpenSSL are not guaranteed to be binary

compatible from one release to the next.
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Furthermore, Bouncer includes a test suite that makes use of each of the signature

schemes and performs admission control for some test group. A setup script generates

the test group to be run. Two daemon processes are required to run a test group. The

Group AuthorityDaemon (GA) and theCertification AuthorityDaemon (CA). The CA

is used only for test purposes to sign the Group Charter and perform some other limited

functions; ultimately it is not required by the implementation. The GA, on the other hand,

is required, and it is important to discuss its role as its use fixes the infrastructure and

creates a single point of failure.

The use of the GA is primarily due to the need to accurately keep track of the mem-

bership for some peer group [25]. The problem is a difficult one, and is compounded by

the fully asynchronous, decentralized group setting. The use of the GA ultimately needs

to be deprecated in favor of a better distributed solution analogous to that used by, for

example, Gnutella [8]. Nonetheless, when the GA is run, it prompts the user for various

parameters used to create a Group Charter. Once the Charter is created and signed by the

CA, an automated process, the GA becomes the membership authority mentioned above.

The most important component of the Bouncer test suite is the application server,

calledapps . Bouncer is designed to run in test mode on a single system or across a

number of networked hosts. When running across a network, the setup script must be

made aware of the address of each host that will participate in the group, as there is no

discovery mechanism. If the setup script is instructed to create a test mode group, each

host executes on the same machine, and each listens for incoming packets on a base port

plus some offset.

Upon loading, each apps instance contacts the GA downloads the Group Charter, and

is told the current membership count. If the count is above the thresholdt selected in the

GC, each member requests a Group Membership Certificate (GMC) from its peers, each

of which then then performs admission per the selected signature scheme. If the count is
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below the thresholdt, the host contacts the GA which performs a bootstrap for the host,

with the same result as above3.

Once loaded, the apps do not do very much in this test suite. Their purpose is to serve

as application servers, responding to whatever messages might be sent to them by other

hosts making use of the selected signature scheme. Though limited, their behavior serves

its purpose, which is to exercise the full range of capabilities of the Bouncer Toolkit.

3.2 Our Implementation

First, we broadly outline the behavior of our implementation, and following that we will

detail the work that was done for each significant change to behavior and functionality of

the system.

We selected the Bouncer toolkit for the basis of our implementation after having

worked with the Secure Gnutella [7] sources briefly. We found that the SGnut sources

were themselves too immature, and were based on an earlier version of Bouncer (0.5

[2])4. Bouncer0.7 appeared to be the more mature, stable choice.

3.2.1 Changes to Setup and Installation Process

The first change in our implementation was a rewrite of the original installation and setup

process. Bouncer0.7 expected to be installed to the source directory; we rewrote the

installation process to allow for installation to any directory which made deployment and

development much easier5. Once installed, two scripts created a series of test directories

3This statement is limited to all Threshold signature schemes, which we limit our interest to.
4A race condition exists in version0.1.2 of the SGnut sources which prevents them from working

properly. Incli interface.c:175 a thread is started with the entry pointgad main which binds to
and listens onGADTCP PORT. Shortly afterward,GADTCP PORTis connected to by the original process
thread; but because no coordination is used, there is no guarantee thatgad main is listening on this socket
yet.

5The setup andcertgen programs require certain files from the source directory to be present at
runtime which do not get copied to the installation directory.
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from which the test suite could be run. Both were implemented asC programs that out-

putted shell script to a file, and made asystem call to execute the resulting shell script.

Furthermore, prompts and output in these scripts was confusing, and generally, the scripts

were fairly fragile. We consolidated them into a single, robust shell script.

3.2.2 Broad Outline of Our Implementation

Once installed and configured using our setup script, the implementation functions as

follows. First, the CA and GA are started. In our implementation, all Group Charter

parameters are specified in the setup process, rather than at GA run time. Then, between

the time periodsT0 andT1, n hosts form the Trusted Domain as follows6. First, each

contacts the GA and downloads the Group Charter. Then, each constructs a GMC Request

and submits it to the GA, which checks and approves the request. The GA sends the host

its GMC, and a share of the group secret. Following this, each host waits untilT1 has

elapsed, at which point the TD has formed.

Each host, which we will refer to hereafter as aservant, is composed of three pro-

cesses, without which no servant is complete. One subprocess handles all incoming

packets, processing and responding to them. A second implements the honest behav-

ior expected of nodes participating in the group. The third is responsible for occasionally

sending aPingmessage to the GA. A Ping is sent after every GMC acquisition so that the

GA always knows which valid nodes are online, and can inform, or respond to requests

to inform, other servants of the current domain topology.

With the Trusted Domain formed, other servants may join. Each servant in the net-

work must send as much data as required of it by the policy matrix. Honest servants will

transmit to as many hosts as their bandwidth allows, and each host has a configured max-

6T0, T1 andn are specified during setup
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imum bandwidth. Any changes in domain topology are transmitted to hosts by the GA.

Any malicious or greedy hosts are blacklisted by each servant when detected.

With the general outline of the behavior above in mind, we now proceed to detail the

changes we made during implementation.

3.2.3 Group Charter Extensions

The Group Charter is anX.509 certificate signed by the CA, containing the following

parameters asX.509v3 extensions.

Figure 3.3: Group Charter Parameters

• Group Name

• Signature Type

• Threshold Type (Static, Dynamic)

• Dynamic Threshold (as a Percent of Membership Count)

• Static Threshold

• Below Threshold Policy (use GA or use all current members)

• Dealer Assignment (GA or Group)

• Policy Matrix

• Capabilities Matrix

• Model Type

• Format of Matrices

We now examine some of the extensions from Figure 3.3. ABelow Threshold Policy

may be set only for non-Threshold signature schemes allowing nodes using those schemes

to decide what to do when membership falls below the threshold. Since we are using

a Threshold signature scheme only in our model and implementation, this is ignored.

Furthermore, nodes always make use of the GA when the Trusted Domain is forming

regardless of whether membership count is below threshold, and afterward, it is never

below threshold. Should sufficient members leave causing the count to fall below, the
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group dissolves. In our implementation we chose to use a Static Threshold for testing

purposes, therefore the value of the extensionDynamic Thresholdis also ignored.

The Dealer Assignmentextension indicates whether the group, or a trusted dealer,

is to bootstrap the shared secret. We take this opportunity to note, importantly, that in

our implementation, we use TS-RSA only, and group bootstrapping is available only to

groups using TS-DSA. Initially we chose TS-DSA for this reason, but we discovered that

in Bouncer0.7 , for what seems to be testing purposes, the TS-DSA implementation

performs a number of operations wherein ultimately the secret is reconstituted at a single

servant7. Using TS-DSA would have meant changing this, and as we discuss in§ 3.2.7,

some rewriting of whatever threshold primitive was chosen was known to be required. It

was therefore decided that we make use of the most viable, and only, remaining threshold

primitive which provided a decidedly better starting point.

3.2.4 Implementing the Matrices

Our first change to the Bouncer toolkit was the addition of the last four extensions seen

in Figure 3.3 to the Group Charter. First, this required writing the necessary OpenSSL

callbacks, extending the existing code, and choosing appropriateX.509v3 Object Iden-

tifiers (OIDs) [11]. The next step was to implement code to pull the matrices out of the

GC where they areASN.1 DER encoded, and make them presentable to the rest of the

servant processes.

Two extensions from Figure 3.3 determine how the matrices are to be encoded and

decoded. First, the Group Charter extension entitledFormat of Matricesdetermines how

the matrices are encoded. In our example we encoded each matrix as ASCII formatted

text using the pipe character to delineate column boundaries, and the space character

7See apps/main.c:542 which calls GACSecret Recovery and “computes S =∑
ss(i)lagi(0) (mod p)” ( libgac/gacLib.c:210 )
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to delineate row boundaries. Our implementation is flexible, allowing for the matrices

to be encoded arbitrarily, for example as XML [16] or in a proprietary binary format.

The encoding used is separated from the format for the content of the matrices, which is

described in the extension entitledModel Type.

The combination of these two extensions determines how the matrices are parsed

out of the Group Charter and presented to the application, once they are converted into

OpenSSL native format from their DER encoding. Callbacks are used making the addition

of additional encoding/decoding types trivial. A handler examines the Group Charter, and

calls the appropriate decoder based on the encoding of the matrices; in this case only one

encoder is defined for the format described above. Once decoded, the data are passed to

the decoder specified byModel Type. Again, only one type and handler are defined. The

default decoder turns the matrix into a two-dimensional array of long integers.

3.2.5 GMC Extensions

Figure 3.4: GMC Fields

• Expiration

• Level

• Start

Similar to the extensions we made to the GC, a number of Group Membership Certifi-

cate (GMC) extensions needed to be created. While similar to the GC changes we made

earlier, in this case the GMC used no existingX.509v3 extensions. In particular, we

were concerned with integrating three values into the GMC, each of which can be seen in

Figure 3.4. One of these values was the expiration time of the certificate. EachX.509

certificate includes this parameter as part of the validity field [19], which meant that only

two parameters needed to be added to the certificate as anX.509v3 extensions. The
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Levelparameter is the level to which a servant is presently bound. TheStartparameter is

the UTC time at which the node was issued its first GMC, and can be used to determine

eligibility for upgrading to higher levels.

We added the necessary functionality to enable these extensions to be added to both

GMC Requests (which areX.509 Requests [28]) and GMCs. A set of helper routines

was created to decode these values from the GMC and present them to the application in

a native format.

3.2.6 Changes to the Bootstrap Process

At runtime, each servant loads the duration ofT0 → T1, and the count of the number of

nodes set to participate in the TD, each of which is available in a configuration file. We

changed Bouncer such that two bootstrap processes are used, one for TD nodes (before

T1 expires), and one for non-TD (afterT1). If the time periodT0 → T1 has not yet

elapsed, and the membership count is below the configured number of Trusted Domain

hosts, nodes request a certificate and share from the GA as they are expected to become

TD nodes. IfT1 has elapsed, they make use of a second distributed bootstrap process

whereint nodes are contacted for a GMC, and participate as non-TD nodes.

Bouncer has more than one bootstrap process as well, but there are significant differ-

ences between our implementation and theirs. Bouncer is designed to bootstrap up tot

nodes, and make use of a below-threshold policy. In our implementation, below threshold

always means that the TD is forming. We make use of a bootstrap periodT0 → T1, in

order to guarantee that the Trusted Domain forms as expected. As discussed earlier, when

the TD is formed, the membership count always remains above the threshold unless the

group is dissolving. Importantly, in their implementation of the the TS-RSA protocol, a

share of the group secret is always disseminated along with the GMC. It was therefore

important to alter the protocol to suite our implementation.
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3.2.7 TS-RSA Changes

We changed the TS-RSA protocol implementation in Bouncer so that GMC requests and

Share requests became two different message exchanges. This was an important and

necessary change because in our model, only certain nodes are privileged enough to be

trusted with shares of the secret. Furthermore, while shares were disseminated in Bouncer

to all nodes requesting a GMC, in our model only Trusted Domain (highest-level) nodes

are granted a share of the secret. Obviously some kind of mechanism was necessary to

prevent arbitrary disclosure of secret shares. We implemented this functionality in two

parts, which we now discuss.

3.2.8 Monitor and Tracker

The Monitor and Tracker modules are our means of controlling access to all group re-

sources in compliance with the policy and capabilities matrices. The Monitor is composed

of essentially two parts. First, a set of helper functions check various values against the

matrices. Second, a set of routines exist that are able to determine, from a number of

different factors, whether any given request or operation should succeed. A node must

request a bootstrap, for example, only when the intervalT0 → T1 has not elapsed. When a

request to bootstrap is made of the GA, it is the Monitor that ensures that it is the correct

time, and that the number of Trusted Domain nodes is lower than the number that the

setup script configured.

The Tracker module, on the other hand, keeps a log of packets received from all hosts

in the network that are of concern. In particular, each occurance of asend, receive, or

searchmessage is tracked, as well as how much data was sent, and so forth. The Monitor

is also aware of all Tracker data, so that decisions can be made that affect policy such as

how many messages of some type may be sent for each GMC duration.
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Recall that packets are processed by a subprocess dedicated to this task. All packets

logged by the Tracker are handled by a child process spawned by this subprocess. It is

therefore necessary to use some inter-process communication mechanism to share this

data between the components of each servant. We chose to use shared memory segments

and semaphores to affect this. The Monitor is a simpler module and does not need to

record any data with one exception. When a monitor check fails, in many cases a host

will be Blacklisted. Blacklisting a host means all future interactions with that host are

negated. It was necessary to affect a number of changes before blacklisting could be

implemented.

3.2.9 Networking Changes and Blacklisting

Our implementation of Blacklisting functionality required a number of significant changes

to the Bouncer toolkit network layer. First, the implementation was highly fault intoler-

ant. Any failure to send or receive from a network host caused the application to exit with

an error message. This was undesirable, but it quickly became obvious how insecure this

problem really was. Taking down any single host caused the entire network to fail due

to a domino effect where one host went down and others followed as each was unable

to send to some other node. Furthermore, packets were sent from a parent process and

blocked waiting for a response from the recipient, causing whatever the parent was doing

before blocking to be delayed indefinitely.

We added significant fault tolerance to the network infrastructure in the Bouncer

toolkit. By default, any failure to send or receive from a host simply results in that host

being blacklisted. Every blacklisted node is removed from the list of hosts that are to be

interacted with. The Monitor module denies any request of any kind from a blacklisted

host. Each entry on the blacklist is accompanied by a reason, and a timestamp. At a

35



number of important points, packets were also made to be sent from a subprocess, so that

blocking was no longer an issue.

We further improved the network layer by making substantial changes to the packet

layer. Initially, in the Bouncer0.7 implementation, each node was essentially numbered,

and could only rely on nodes less than its number being present in the network, as nodes

were intended to be run in increasing order. This number was the offset, if testing lo-

cally, from a known base port. In networked mode, recall that each node was aware of

the address of all other nodes in the network. Under this design, the GA would act as

a rudimentary discovery mechanism by telling each host the membership count, which

implied the hosts that were active (all hosts up to the membership count).

First, we replaced the test mechanism which used a base port and offset enabling

testing on a single system. Using the IP aliasing capabilities of Linux, the test mechanism

was made to work as follows. Each node on the local system uses the loopback network

device and binds to a network address of127.0.0. x wherex is the offset it would have

used initially. Each host listens on the appropriate address, and when sending to other

hosts, each was made to bind to the correct address.

This may sound simple, but it was an important change for the following reason.

When using testing mode in the Bouncer toolkit, packets received from another node

could not be attributed to that host easily. While each packet arrived on a uniquely differ-

ent port, they were sent from random ports, and all packets were sent from the same IP

address, the loopback address of127.0.0.1 . With this change implemented, not only

could each packet be uniquely attributed to a particular sender by IP address, but using

the suite in testing mode became no different from networked mode; each mode simply

tested a group of network hosts.

The discovery mechanism in Bouncer0.7 was the very simple implied mechanism

described above. Each host was aware of the membership count and its own number, and
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this implied which other hosts it should expect to be up. We replaced this mechanism

with a Ping process at each servant that sent a heartbeat to the GA each time a GMC was

acquired. The GA was made to be aware of the topology of the network at all times. Any

changes in the topology, as hosts renewed their certificates, or certificates expired, were

propagated to all hosts in the network in a subprocess.

Once a packet is received by the network layer, it is decoded into an internal packet

format and passed to a handler. Once in internal format, the packet did not contain any

information about the sender except what might have been included for some particular

packet type, for example a GMC. The IP address of the sender in particular was lost. We

augmented the packet infrastructure to support some additional information, especially

the IP address or hostname of the sender.

These changes were necessary for the Blacklist functionality to be propagated at all

levels of the system. At a low level, during a send or receive operation to or from a host,

our Blacklist functionality had already been implemented because at that level the IP was

known. At a higher level the protocols that operated at the per-packet level were now

able to use the same functionality, which was then implemented. Finally, packets in the

Bouncer toolkit were always sent by way of a handshake involving a packet sent, and one

received. We changed this so that packets could be sent one-way where no response was

intended.

Signal handling in the Bouncer toolkit was also significantly improved, in particular

as it affected the network layer. Initially, the network handling functions did not tolerate

being interrupted due to receipt of an IPC signal, treating this as failure. We improved

signal handling, enabling the network layer, and other similar functionality, to tolerate

interrupts due to receipt of signals appropriately.

Finally, the toolkit originally used a single handler for all three network processes,

the CA, GA, and servant. This was inappropriate for several reasons. First, the size and
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complexity of each of these programs was increased as all available functionality was

built in to them as the handler was built to handleany incoming packet which might be

handled by any of the signature schemes implemented by the many libraries. Second,

some packets were only ever meant for one of the three processes.

Some packets are only ever exchanged between the GA and CA, and others, in particu-

lar P2Ppackets discussed in§ 3.2.10, are only transmitted between servants. But because

of the use of a single handler, any process might receive any kind of packet, while only

really being able to handle a particular subset. Receiving packets that a process could

not really respond to would cause the process to make an attempt, usually ending in a

crash. We broke the handler apart into three separate ones, with each process handling

only packets which were appropriate for that process.

We conclude discussion of the networking changes by pointing out one change that

was observed as an eventual necessity, but did not make due to its enormity in both time

and complexity. The network layer infrastructure converts packets from internal to on-the-

wire format, and transmits this data. The same infrastructure does the converse, convert-

ing received data back to internal packet format. As implemented this process is highly

volatile, is non-portable both between system of differing endianness, as well as between

processes compiled with differing alignment and padding of certain structures, and is con-

sequently insecure8. For testing purposes, the implementation suffices, but crucially, this

functionality would need to be rethought.

3.2.10 P2P Protocol

One of the biggest portions of the implementation was the construction of a new protocol

simply calledP2Pwhich implementedsearch, send, receive, and other necessary message

exchanges for our application. Each of the messages is accompanied by the GMC of the

8SeeGACBuildPacket from libgac/gacSocket.c:187 .
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sender, and upon receipt, each packet contains the address of the sender as well. Any

message received can therefore be checked to ensure that the sender is authentic, using

its GMC, and any misbehavior is logged and the host can be blacklisted. Our prototype

network is designed to send fake data rather than actual files for simplicity, but the data is

of the appropriate length with packets being the actual size they would be in a practical

setting.

Our packet and protocol system is built in line with that of the Bouncer toolkit. Packets

are constructed in an internal format with variables stored asASN.1 types. Before being

transmitted, packets are serialized and written out to a buffer in DER format. When

packets are received, they are tracked, and checked through the Tracker and Monitor

modules.

3.2.11 Changes to Certification Process

In the Bouncer implementation, when the membership count is above the thresholdt,

nodes request their GMC from other members of the peer group. This process only occurs

once, and only the nodes numbered 1 throught are solicited during this process9. We

note that this departs from literature10, but is otherwise a satisfactory starting point for

our implementation.

To begin with, we altered the GMC request process so that it could occur any number

of times. Then, we re-wrote the portions of this process that relied on hosts1 → t to

allow it to make use of a list of anyt hosts in the network based soley on their network

addresses. Next, we separated out the TS-RSA share acquisition process, which had

previously occurred in these same messages exchanges(see§ 3.2.7). We built this share

acquisition functionality into a similar but separate function.

9Seeapps/main.c:393 in the original0.7 sources.
10§6.2 of [25], point 3.
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Apart from these changes, the functionality of each of these processes, share and

certificate acquisition, take place much as they did in the original toolkit. First, a GMC

Request is constructed in the form of anX.509 Request [28]. Next,t hosts are solicited

to ask whether they will sign our certificate, which is sent with the message. Once that is

complete, a list of these hosts is constructed, each of their Distinguished Names is placed

on the list, and the list is submitted to each of the solicited hosts. Each replies with a

partial signature on the GMC, and these are sent to the GA which responds with our new

GMC.

Crucially, the process above departs from literature in two places. First, as suggested

by the model, and [25], when soliciting some GMC request,GMC REQnew, a noden

expects to receive signatures on its new GMC,GMCnew derived from its request. In

fact, a separate, static message transmitted alongsideGMC REQnew is signed in the

toolkit11. This is insecure, vulnerable to replay attacks for one thing, but is nonetheless

the mechanism employed by this version of the toolkit. Doubtless this would need to be

fixed in a future version. We chose not to fix this as it is trivially a proxy for what we are

interested in, and ultimately it would not affect the results we were looking for.

Second, literature [25], and our model, suggests that the recipient is to recombine the

partial signatures into the necessary full signature signed by the group private key. The

use of the GA above is detrimental to distributed aims, but is nonetheless how this process

works in practice in the toolkit12. Seemingly this was done for testing or simplification

purposes.

This shortcut, however, was painful to discover, and ultimately use of the GA here

should be superseded by the functionality described in literature. As the hard pieces

of this process, specifically reassembly of the partial signatures, already occurs at the

11See [25] §6.2 point 4, andTSS Get PartSign from libtss/tssProto.c:1210 and
libtss/tssLib.c:53

12See [25]§6.2 point 5, andTSS GMCReply from libtss/tssProto.c:1378
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recipient, this change would not be particularly hard to implement. Nonetheless given

our time constraints we chose to overlook this issue as, again, it would have virtually no

affect our results.

3.2.12 Behavior

With the fairly lengthy list of changes described above complete, we were ready to im-

plement one of the most important pieces of the model. A behavior process was added to

each servant that performed the expected honest behavior required of each node partici-

pating in the peer group by the policy matrix. Each node transmits the required amount

of data to every other node while its certificate is valid. Only capabilities that may be

made use of are exercised by each honest node. Once the necessary data are exchanged,

the node requests re-certification from the nodes with which it has interacted during this

period.

Each node may be assigned a virtual bandwidth that limits the amount of data it may

exchange per period. Based on this bandwidth, and the thresholdt, each node calculates

the number of hosts with which itmustinteract, and the number with which it iscapable

of interacting while still observing requirements of the policy matrix for each host. Each

servant will send to as many as possible to as to tolerate the greatest degree of malicious

behavior during re-certification, but will not spread itself so thin as to jeopardize meeting

its obligation with each other servant.

Each servant tries to wait until it has met its obligation with all of the hosts with which

it is interacting. Should its certificate become in danger of expiring, the servant will cease

waiting and request its GMC from the hosts with which it has already met the obligation

imposed by the policy matrix. If its certificate should be in danger of expiration, and it

hasnot met this obligation for some reason, the servant continues on in hopes that it will

satisfy the matrix in time. Should it prove unable to do so, it simply gives up.
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GMC requests are made only to hosts with whom the servant has met its obligation;

to do otherwise is considered misbehavior. Any misbehavior by a solicited host during

the re-certification process is tolerated by way of a restart of the process with the host

removed and blacklisted by the servant.

When a sufficient amount of time has passed, according to the policy matrix, a node

may request an upgrade to the next level. This process is the same as re-certification,

but where the extensionLevel is simply incremented. Before requesting an upgrade to

the next level, a servant will check to ensure that it can meet the requirements of that

level by analyzing the requirements of the policy matrix at this level. If, given bandwidth

constraints, it is unable to operate in the network in the way demanded by the policy

matrix, the servant will disclose that it is limited to its present level, and continue to

operate at the same level ad infinitum.

In addition to the honest behavior described above, we implemented a number of

misbehaviors based on those modeled in§ 2.5. Each behavior is enumerated, and by

providing the necessary commandline, a host may be instructed to act out a particular

misbehavior rather than act honestly. Further details are discussed in§ 4.2.

3.2.13 Summary

Our work was aimed at providing a robust implementation of the model we describe in

§ 2. At times, implementation of the model was found to be held back by limitations of

the underlying toolkit, many of which were corrected during the implementation process

and are described in the preceding sections. Some of these limitations remain in the

implementation as it stands at the conclusion of our work, however as implemented we

were certainly able to generate the results we are interested in, and validate the model

based on our work. We proceed to discuss this validation process, and the results and the

experimental testing process used to generate them in the following chapter.
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Chapter 4

Experimental Testing

With the implementation of our Peer to Peer file sharing network complete, we con-

structed a series of laboratory tests to assess the performance and correctness of our im-

plementation. The tests took two forms. First, in order to assess the performance of

our implementation, timer routines were integrated into the code base at different points.

These routines were used to determine the resource utilization, the feasibility of the se-

curity model implemented, and the actual performance of the implementation. Figure 4.1

illustrates the set of measures considered.

• Time between GMC Request and GMC Acquisition at each level.

• Time taken by each peer node to node to partially sign each GMC Request.

• Time taken between request of a share and receipt of the share.

Figure 4.1: List of Operations Measured

Second, a series of validation tests were designed to validate the correctness of the

model. They were designed in such a way that testing will validate the behavior of an

honest node when faced with dishonest behavior. These tests had already been written

into the codebase as an essential part of the implementation of the model, largely as part

of our Monitor module (see§ 3.2.8). Testing them required implementing various forms
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of misbehavior, which we did. In§ 4.2 we discussed the details of this portion of the

experiment.

4.1 Experimental Setup

Our performance tests were conducted in a laboratory setting as described below. The

validation test were performed locally for a number of group sizes and are described in

§ 4.2. The reason for this difference was a time constraint on the use of the lab. It is worth

noting, however, that as the validation tests simply confirmed correct behavior, it is highly

unlikely that the behavior differed in any way because the tests were done locally. The

same certainly can not be said for the performance tests, which were necessarily done in

the lab.

30 lab machines were available for our tests, each equipped with an Intel Pentium

c© 3 processor, 128 megs of RAM, running Linux kernel version 2.2.x. We settled on

testing groups of size 5, 10, 15, 20, 25, and 30 nodes given the available lab environment.

A modulo of 1024 bits was used with the TS-RSA algorithm. A series of scripts were

written that allowed for the automated creation of our test cases, and which automatically

installed the correct test case on each system. The CA and GA were each run on a system

on which a node was also present. Being as lightweight as they were it was thought that

their impact would not affect our results.

For the purposes of our experiment, we assumed that 100 bytes was the average outgo-

ing bandwidth of the nodes being tested. This assignment allowed us to construct Group

Charters with the properties discussed in§ 2 and limit behaviors like Masquerading. We

assigned this virtual bandwidth, which we will callB, to each node. Recall the Group

Charter discussed for our P2P network in§ 2.4. As discussed in§ 3, each node tried to

send to as many Trusted Domain members as it could within the bounds ofB.
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Group Charters for each of the test groups were constructed by the following criteria.

For the Bytes element of our policy matrix, we required each host to commit 35% of

B at Level 0, 45% at Level 1, 55% at Level 2, and 65% at Level 3. The rationale for

this selection was that it would burden each node sufficiently to dissuade attempts at

masquerading while not overburdening them to much as to be completely impractical.

Recall that theBytesfield of the Group Charter for our P2P network is the total number

of Bytes that a nodea must have received from a nodeb for a to sign a GMC renewal

request froma. The calculation of this field was done as follows, using level zero for our

example.

First, we took(B/T ) · p% = X, as the number of bytes that a node must have

contributed to any host in the group for its GMC request to be approved, and wherep

is the percentage used for each level. Then, takingR to be the number of seconds before

a must renew its certificate, we computedY = X · R as the total number of bytes that

a must send to each host for each renewal period. Upon receipt of a GMC request, the

hostb can simply check whethera has uploaded at leastY bytes, and if so, the request

proceeds.

The Renewalperiod was chosen as 30 seconds for every level in the experiment in

order to allow nodes to quickly reach the highest level and produce the measurements we

were looking for. Membership in the next level was computed as3 ·R for all levels above

the first level, and four rounds for the first level, again lettingR be the renewal period.

So, each upgrade to the next level required three rounds of participation at the previous

level, with the noted exception above.

The constructed Group Charter for the group of 15 node is presented in Table 4.1 as

an example.

TimesT0 toT1 were selected as appropriate given the size of the group to be tested and

the amount of time needed to start the servants. Once the Trusted Domain was established,

45



Level Bytes Searches Renewal Membership

0 540 0 30 0
1 1380 3 60 120
2 2520 5 90 300
3 3960 10 120 570
Table 4.1: Group Charter for 15 Node Group

andT1 elapsed, additional nodes were brought into the group every few seconds in order

to distribute the acquisition times to some extent. Over time, varying delays in acquisition

further distributed the expiration times, and had the effect of evening out GMC requests

across each renewal period. A number of Trusted Domain nodes was selected that was

thought to appropriately represent the proportion of TD nodes that might be present for a

particular group size. This number would vary for each Group based on their selection of

a Group Charter.

Our source package contains a number of scripts used during testing which can be

found in the inst directory. Each of these scripts generates one of the test groups

described above by setting the appropriate parameters for the group, and calling the

setup.sh script. TheAUTOvariable is set in each script, causing the setup script not to

prompt for any unknown values and set reasonable defaults when necessary. The output

resulting from execution of one of the test scripts is a test directory that can be copied on

to, or share between, the nodes that will constitute the test group. Once run, the test group

will generate timing measurements which will be logged to various files. See Appendix A

for a complete explanation of this process.

Each of our test cases was run until all nodes had attained the highest level in the

Group Charter, which was level 3 for all groups. The Trusted Domain was then brought

down, and the data collected and archived. The data acquired during testing was signif-

icant in both size and scope. A presentation and analysis of the results can be found in

§ 5.
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4.2 Validation Tests

Our validation test component was quite different, but no less important, than the perfor-

mance testing. Through our validation tests we sought to confirm the proper functioning

of the implementation by observing the reaction of honest nodes to dishonest behavior;

specifically to those misbehaviors we discussed in§ 2.5. We implemented the three cate-

gories of behavior discussed earlier: Malicious, Greedy, and Masquerading. Any node in

the network could be directed to exhibit any behavior at runtime; by default nodes acted

honestly.

Each of the three types of behavior above was enumerated; the list is provided in

Table 4.2 for reference. For each of these three behavior types, the particular ways in

which a node exhibiting that behavior might misbehave was also assigned a number. For

example, a Greedy node might try to send too many search requests, or upload too little,

both of these were enumerated uniquely.

Behavior Type Number
Honest 0

Malicious 1
Greedy 2

Masquerading 3
Table 4.2: Number Assigned to Each Behavior Type

By providing the behavior type and misbehavior number on the command line1, any

node could be directed to misbehave in a specific way and at a specific time. Tables 4.3,

4.4, and 4.5 list the numbers that were chosen for each behavior. A battery of tests was run

during which each of the behaviors was assigned to an appropriate node, and the reaction

of honest nodes during misbehavior was observed. In each table, theExpected Resultis

the expected reaction of an honest node to the listed behavior. In all cases, the actual

result was the expectation, confirming the validity of this part of the implementation.

1See Appendix A for a thorough explanation of how to exhibit this behavior
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Each of the misbehaviors listed above required a unique implementation, however

some misbehaviors are always tested for by our implementation. Any P2P Protocol packet

must contain an accompanying GMC which is validated upon receipt of the packet. If the

GMC has expired, is not yet valid, or is not present, the packet is rejected, the behavior is

noted, and the sender is blacklisted. Packets are also checked for proper formatting. If an

improperly formatted packet is received, it is rejected just as above, and the behavior is

noted. These behaviors had been observed and tested for throughout the development and

testing process; it was not necessary to write an implementation for these as was required

by the other more specific misbehaviors. Table 4.3 summarizes the above.

When Behavior Expected Results

Always
Invalid or Missing GMC

Packet Rejected, Sender Blacklisted
Improperly Formatted Packet

Table 4.3: Implicit Validation Tests
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4.2.1 Malicious Validation Tests

We decided that the majority of misbehavior qualified as Malicious. Table 4.4 summarizes

the behavior that a malicious node was allowed to exhibit. The behavior number is listed

in the first column; the columnWhendetermined when each behavior was exhibited.

Each of these behaviors was assigned to a node at the appropriate time, and the reaction

of honest nodes to each behavior was observed to be as expected (seeExpected Result).

Test Number When Behavior Expected Result

1
T0 to T1 (Bootstrap)

Request early Start
GMC Request Denied, Blacklisted2 Request excessive Expiration

3 Request inappropriate Level
4

Any Time AfterT1

Attempt to Bootstrap
GMC Request Denied, Blacklisted5 Request early Start

6 Request excessive Expiration
7 Request inappropriate Level
8

Prior to any GMC Request
Attempt to Search at Level0

GMC Request Denied, Blacklisted9 Attempt to Download at Level0
10 Attempt to Download at Level1
11 Attempt to Download at Level3

Table 4.4: Validation Tests for Malicious Behavior

4.2.2 Greedy Validation Tests

The behaviors listed in Table 4.5 were decided to be Greedy. Just as with the Malicious

behaviors, each of those behaviors listed as Greedy were assigned to a node at runtime,

and the reaction of honest nodes to each behavior was observed to be as expected (see

Expected Result). Again, see§ 3.2.12 on the details of how behaviors were implemented

and Appendix A for details on how they can be assigned to a node.

Test Number When Behavior Expected Result

1 Prior to any GMC Request Excessive Search requests GMC Request Denied, Blacklisted
2

Before any GMC Request
Failure to meet Bytes requirement at Level0

GMC Request Denied, Blacklisted3 Failure to meet Bytes requirement at Level1
4 Failure to meet Bytes requirement at Level2
5 Failure to meet Bytes requirement at Level3

Table 4.5: Validation Tests for Greedy Behavior
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4.2.3 Validation Test for Masquerading

Testing the behavior of a node attempting to Masquerade required a slightly different

approach, but was also a part of our validation testing. Recall from§ 4.1 and§ 4 that

each node could be assigned a virtual bandwidth that it would not exceed. Recall as well

from our discussions of a P2P file sharing network using the model in§ 2.4 the way in

which the Group Charter was constructed. Given the choices made in the policy matrix,

no single host should be able to transmit two times the amount of data required at the

highest level.

In order to test that the implementation properly limited Masquerading as the model

intended, we selected two nodesa and b out of each test group and claimed that they

belonged to a single host which wished to masquerade. The total bandwidth of this host

would be insufficient to fulfill the requirement of the highest level twice. Nontheless,

it was distributed between nodesa andb. Nodea was given a sufficient fraction of the

bandwidth to allow it to reach the maximal level in the group, whileb was left with the

remainder.

The Trusted Domain was then formed, just as during performance testing, anda and

b were run and directed to masquerade as described above; their behavior otherwise was

that of an honest node. Recall from§ 3.2.12 that prior to requesting an upgrade to the

next level, each node tested to see that it could fulfill the requirements of the Policy and

Capabilities matrices at that level. Since nodeb was given insufficient bandwidth to reach

the highest level, eventually it was unable to pass this test. Our implementation for this

behavior largely consisted of an alert to the user that the nodeb had become permanently

stuck at its present level. It was able to continue participating in the network, but as

expected, masquerading was limited.

Our implementation behaved as expected in the presence of Malicious, Greedy, and

other behaviors. Our observations during this testing period all coincided with theEx-

50



pected Resultportion of Tables 4.3, 4.4, and 4.5 from the previous sections. As directed

earlier, the reader can refer to Appendix A for a thorough description of how the tests can

be run. In the next section, a detailed analysis of our results from the first portion of our

experiment can be found.
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Chapter 5

Results and Analysis

In the previous section we detailed our performance testing methodology, and described

how we performed measurements of various key parts of our implementation. We now

present the details of those results, as well as a detailed analysis intended to reveal impor-

tant trends and facts about our work. We begin by presenting a summary of the results.

5.1 Summary of Results

Group Size 5 10 15 20 25 30
Threshold 2 4 6 7 8 9
GMC Acquisition 0.501756 1.136846 1.698270 2.056688 2.447770 2.893956
Partial Signature 0.157661 0.165857 0.168316 0.174676 0.181019 0.187949
Share Acquisition 0.031923 0.068558 0.136361 0.221222 0.328974 0.364317
Partial Share 0.007545 0.009190 0.010694 0.011657 0.012678 0.013203

Table 5.1: Median of All Performance Measurements for all Thresholds and Group Sizes

Table 5.1 summarizes our laboratory measurements for all thresholds and group sizes,

where all values are expressed as the median of the observed results. In this table, we

present the following.GMC Acquisitionis the time taken to acquireGMCnew for some

thresholdt. Partial Signatureis the time taken to issue a partial signature onGMCnew

for some thresholdt. Share Acquisitionis the time taken to acquire a share by some
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highest-level node for some thresholdt. Last,Partial Shareis the time taken by some

highest-level node to create a partial share.

By far the greatest time taken above is for the GMC acquisition process, which in-

volves the greatest number of message exchanges, and is perhaps the greatest computa-

tional burden of all the recorded processes. Not unsurprisingly, the operation that took

the second greatest amount of time, from Table 5.1, was Share Acquisition. This process,

similar to GMC acquisition, involves a number of message exchanges, being an aggregate

of a number of Partial Share computations and message exchanges. Both Partial Signa-

ture and Partial Share times, by comparison, were quite small. We explore these and other

observations about our result in the following sections.
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5.1.1 GMC Acquisition Results

GMC Acquisition time is an important benchmark for the performance of our system.

Besides being a common operation, and therefore one which should require as little time

as possible to complete, acquisition time is significant because in large groups, given a

sufficiently short renewal period, if this process takes too long a node will be unable to

acquireGMCnew before its certificate expires.

Group Size 5 10 15 20 25 30
Threshold 2 4 6 7 8 9
GMC Acquisition 0.501756 1.136846 1.698270 2.056688 2.447770 2.893956

Table 5.2: Median GMC Acquisition Time for all Thresholds and Group Sizes

Table 5.2 shows the median time for a node to successfully complete the entire GMC

acquisition process listed by Threshold. Measurement for this metric began before the

node submitted its first Sign Request (see§ 3.2.9), and ended when the GMC had been

successfully acquired and verified. This table appears as a graph in Figure 5.1. For each

group, the corresponding threshold selected can be found in Table 5.2.

Figure 5.1: GMC Acquisition Time (sec) vs. Group Size

Figure 5.1 shows what appears to be essentially linear growth of the median time

taken to acquire a GMC at any level for all group sizes. In Figure 5.2 we break this result

54



down by level, plotting the median GMC acquisition time at each level for each of the

groups measured.

Figure 5.2: GMC Acquisition Time (sec) by Level vs. Group Size

Note that acquisition at level3 takes noticeably longer than at the previous level.

Acquisition at level2 can also be seen, with somewhat more difficulty, to be greater than

that of level1. In fact, for each increase in level, there is a slight increase in the median

GMC acquisition time. We explore this result later in this section.
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5.1.2 Partial Signature Results

As we saw previously, for each successful GMC request, at leastt Trusted Domain mem-

bers must issue a partial signature on the requestedGMCnew. Here we examine the

results of our measurement of the partial signature time.

Group Size 5 10 15 20 25 30
Threshold 2 4 6 7 8 9

Median Sign Time 0.157661 0.165857 0.168316 0.174676 0.181019 0.187949

Table 5.3: Median GMC Signature Time for all Thresholds

The median Partial Signature time for all thresholds appeared earlier in Table 5.1 and

is repeated here by itself in Table 5.3 for convenience. Measurement of this result began

upon receipt of a valid signature request, and ended onceGMCnew had been successfully

partially signed. A graph of these values appears in Figure 5.3.

Figure 5.3: Median Time to Sign GMC (sec) vs. Group Size

The growth of the median signature time as group size and threshold increases appears

essentially linear, and the time taken appears quite small; consider that ast is tripled

between the group of 5 nodes and that of 30, the median signature time increases by less

than0.03 seconds.
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5.1.3 Share Acquisition Results

The performance of partial share acquisition and share creation time were both measured.

Measurement of this metric began when a host started to solicit the necessaryt Trusted

Domain members for partial shares, and ended when the shares had been reconstituted

into a full share of the group secret. In Table 5.4 we see our observations of share acqui-

sition time.

Group Size 5 10 15 20 25 30
Threshold 2 4 6 7 8 9
Share Acquisition 0.031923 0.068558 0.136361 0.221222 0.328974 0.364317

Table 5.4: Median of All Performance Measurements for all Thresholds and Group Sizes

In Figure 5.4 we plot the Share Acquisition time by group size for all levels. Note

that this is an essentially linear operation that grows slightly for each increase in the

Threshold, but remains below even half a second for the greatest threshold recorded.

Consult Table 5.4 for the threshold used for each group.

Figure 5.4: Median Share Acquisition Time (sec) vs. Group Size

Share Acquisition times are not nearly as crucial a measurement as compared to GMC

acquisition time in our work. In our implementation, a share is only acquired once per
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host for the entirety of its participation in the group. We now examine the time taken for

issuanceof partial shares.

5.1.4 Partial Share Issuance Results

The results from the previous section detailing the total time taken to acquire the neces-

saryt partial shares. This time was an aggregate of the operation that we now concern

ourselves with, the time taken to issue a partial share for each of thet respondents, above.

Measurement of this quantity began once a partial share request had been received, and

ended once a share request was fulfilled, and a new partial share issued. In Table 5.5 we

see our results from observation of the partial share issuance process.

Group Size 5 10 15 20 25 30
Threshold 2 4 6 7 8 9
Partial Share 0.007545 0.009190 0.010694 0.011657 0.012678 0.013203

Table 5.5: Median Share Issuance Time for all Thresholds and Group Sizes

In Figure 5.5 we plot the time taken to issue each Partial Share by group size for

all levels. Note that, as with Share Acquisition time in the previous section, this is an

essentially linear operation that grows slightly for each increase in the Threshold, but

takes a total time that is marginal; for the greatest threshold recorded, this operation took

only slightly over a one-hundredth of a second. The threshold used for each of the groups

in Figure 5.5 can be found in Table 5.5.
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Figure 5.5: Median Share Issuance Time (sec) vs. Group Size

Both partial share and partial share issuance occurred very quickly in our implemen-

tation, especially by comparison to the GMC times. Furthermore, while GMC acquisition

is the most frequently occurring operation measured, partial share acquisition is the least

frequently occurring, as it happens at most once for every host in the peer group that

manages to become a member at the highest level.
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5.2 Timing Analysis

In the previous sections we concluded that the most significant operation of those mea-

sured was the GMC Acquisition process, given both the time it took to complete, and

the frequency of the operation compared to others. In this process,t partial signatures

on someGMCnew were issued. This operation was clearly the most expensive of those

observed, and given its importance to the overall functioning of the model and implemen-

tation, we wish to explore it more completely.

In this section we endeavor to reconstruct the process of GMC Acquisition as the sum

of its parts. We construct a formula expressing the timing of the process, and use it to

approximate our own results, in order to determine its accuracy. Later, we make use of

this formula again in approximating results for group sizes and thresholds greater than

those that were observed during experimentation.

5.2.1 Overview of GMC Acquisition

Figure 5.2, which graphed the GMC acquisition time for all group sizes by level, showed

that while apparently linear, the GMC acquisition time in fact grew slightly for each

increase in the threshold,t. Let us explore this result.

Recall that for each successful GMC acquisition,t partial signatures must be obtained.

This process occurs as follows in our implementation1. First, a nodeA solicits at least

t members of the Trusted Domain, asking them to commit to signing its GMC. Then,A

constructs aCommit Listcontainingt nodes out those nodes who agreed to sign. As stated

by Narasimha et al. in [25] this preliminary round is necessary to establish the list used

in Lagrange Polynomial coefficient calculation2.

Following construction of itsCommit List, A contacts each host on the list, requesting

1It occurs in the same manner in the Bouncer toolkit.
2The construction of this list is addressed in§ 5.3 where improvements to the process are suggested
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that they certify itsGMCnew by issuing the required partial signatures. Oncet partial

signatures are receivedA sends its request for aGMC to the GA, which responds with

the newGMC for A3.

Figure 5.6: A Timing Diagram for the Process of GMC Acquisition

A timing diagram for the acquisition process can be seen in Figure 5.6. Encapsulated

between two long horizontal arrows from left to right lie the communication rounds that

A must go through in acquiringGMCnew. Below this is a description of the rounds that

must be completed successfully for each GMC acquisition. Failure during the process

can occur for any of the reasons seen above at the top in red, and forcesA to restart the

process of acquisition.

So, given this description of the process, and the diagram seen in Figure 5.6, we can

say that the GMC acquisition process is the sum of several operations. Most significantly,

each successful acquisition is comprised of thet partial signatures that are issued. Second,

and also important, is network and packet processing delay that occurs for each of the

message exchanges. Finally, two exchanges contribute to the process which are roughly

constant time: theCommit Listexchange, and the final exchange in which the GMC is

acquired from the GA.

3We explore this dependency in§ 3.2.11.
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Figure 5.7: Time Taken by Exchanges in GMC Acquisition (sec) vs. Threshold

In Figure 5.7 we see the time taken (in seconds) by each of the exchanges in the GMC

acquisition process plotted against the total time taken. We can draw a number of conclu-

sions from this graph. First of all, our earlier claim that the two exchanges we discussed

above as being roughly constant time proportional tot is clearly legitimatized. Secondly,

the greatest contributor to GMC acquisition time is in fact the partial signature exchanges

as we discussed above. Clearly neither of the constant-time message exchanges above is

a significant contributor to the acquisition process when compared to signature time.

Bearing this conclusion in mind, we proceed to the next section in which we break the

GMC message exchanges down precisely
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5.2.2 Overview of Timing Analysis

We begin our construction of a formula expressing the GMC acquisition process by look-

ing at the greatest contributor to this process, the issuance of Partial Signatures. As we

have said,t such partial signatures are issued for each successful acquisition. Let us call

the time taken to issue a single partial signaturetsign, and the aggregate time taken to issue

the necessaryt partial signatures for each acquisitionsigntotal. Finally, for the purposes

of our exploration, let us factor out the GA andCommit Listexchanges, as well as network

and packet processing delays, as the constanttconst. Bearing these terms in mind, we can

express the total time taken by some GMC acquisition,tacquire, as in Equation (5.1).

tacquire = (signtotal · t) + (tconst · t) (5.1)

5.2.3 Timing Analysis of Partial Signature

Importantly, it turns out that we can describesigntotal from Equation (5.1) with greater

precision. First, recall that each signature is generated by some nodevj present in the

Commit List, vj ∈ (v1, v2, . . . , vn). From Equation (1.5) in§ 1.1, we know that each

Partial Signature on someGMCnew submitted by some nodevj is calculated asmdj

mod N . Here, the messagem is GMCnew, the partial secret keydj is computed as

ssj · lj (0), andssj is the secret share being used4.

The key to expressingsigntotal with greater precision lies in an observation that we

can make regarding the computation oflj (0), which is as follows5 [25].

lj (z) =
t∏

i=1,i6=j

z − i

j − i
(mod N) (5.2)

4See§ 3.2.11 regarding an important disparity in partial signature generation onGMCnew as imple-
mented in the Bouncer toolkit version0.7

5Here,j is the indexvj from theCommit List.
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For each increase int, the productlj increases byz−i
j−i

(mod N). Observe that in

Equation (5.2) the productlj (z) is made up oft − 1 rounds of computation. Let us do

the following. First, we factor out the increase inlj per level as the termδsign. Bearing in

mind that this term is an increase proportional tot given some basis time, let us say that

in the absence of this increase, we have the basis termtsign. Putting the two together, we

can construct Equation (5.3).

signtotal = tsign + ((t− 1) · δsign) (5.3)

Given the observations we have made during experimental testing of our implemen-

tation, we can calculate and assign values to the terms in Equation (5.3) and ultimately

Equation (5.1) based on our results. In the next section, we begin to do so by assigning

values to the terms in our equation forsigntotal.
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5.2.4 Determiningtsign and δsign

To begin to determine values fortsign andδsign, let us examine the total time taken for

both signing and acquiring a GMC across all group sizes. These values can be seen in

Table 5.6.

Threshold Signature Time Acquisition Time

2 0.157661 0.501756
4 0.165857 1.136846
6 0.168316 1.698270
7 0.174676 2.056688
8 0.181019 2.447770
9 0.187949 2.893956

Table 5.6: Signature and Acquisition Time for all Thresholds

Now we look at the difference in time required to sign a GMC between different group

sizes and different thresholds. Table 5.7 shows the difference between signature times for

the increasing thresholds used.

Difference Between ThresholdsSignature Diff

2 and4 0.004098
4 and6 0.001230
6 and7 0.006359
7 and8 0.006344
8 and9 0.006930

Table 5.7: Difference in Signature Time Between Groups With Adjacentt

Each value in theSignature Diffcolumn is the increase in time taken to sign from one

threshold to the next. If we select the median from Table 5.7, we then have the median

increase in signature time for each increase int. Recall that this is what we saidδsign

represented, the increase in signature time proportional tot. So, selecting the median as

the value for this term we can say that for our data,δsign = 0.006344 seconds.

We know thatδsign appears in the termsigntotal exactlyt− 1 times. So,δsign should

be present in each of the signature times from Table 5.6t− 1 times, once for each round
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of computation during Lagrange Polynomial coefficient calculation. We can remove the

termδsign from signtotal by subtracting(t− 1) · δsign out ofsigntotal.

Table 5.8 shows the original signature times (again for groups with adjacent values of

t) next to which we see this time with the termδsign removed as suggested above.

Threshold Signature Time Signature Time Withoutδsign Term

2 0.157661 0.151318
4 0.165857 0.146826
6 0.168316 0.136599
7 0.174676 0.136615
8 0.181019 0.136615
9 0.187949 0.137201

Table 5.8: Breakingδsign Out of Signature Time

Taking the median of the columnSignature Timefrom Table 5.6 yields the value

0.136615. We can use this value as the basis for any sign operation, which we have said

is represented by the termtsign.

In summary, through some simple arithmetic we have calculated the two values of

interest based on our sample data as we see them in Figure 5.8.

Figure 5.8: Values ofδsign andsigntotal

δsign = 0.006344
signtotal = 0.136615
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5.2.5 Extrapolation Usingsigntotal

Given our assessment of the terms from Equation (5.3), we proceed to make use of these

values in approximating two things. First, we approximate our own data using this equa-

tion, and determine the percent error resultant from a comparison to our actual results.

Second, given that this comparison legitimizes our results forsigntotal, we proceed to

approximate signature times for group sizes larger than we were able to experimentally

measure.

Table 5.9 calculates the approximation usingsigntotal, and shows it against the actual

value along with the percent error between the two.

Threshold signtotal Actual Sign Time Percent Error

2 0.142958 0.157661 9.33%
4 0.155645 0.165857 6.16%
6 0.168332 0.168316 0.01%
7 0.174676 0.174676 0%
8 0.181019 0.181019 0%
9 0.187363 0.187949 0.31%

Table 5.9: Approximated Sign Time and Actual Sign Time

A plot of these values can be seen in Figure 5.9. The greatest percent error can be

seen the groups witht values 2 and 4 respectively. The reasoning for this is that first,

as the group size (andt) increases, the number of samples increases, and so the median

Signature Time becomes more accurate. Second, ast increases, the number of rounds

during Lagrange Polynomial coefficient calculation increases, yielding a more accurate

value forδsign.
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Figure 5.9: Predicted GMC Sign Times (sec) vs. Actual (sec)

Based on the closeness of the fit seen between actual and approximated Partial Sig-

nature times in Figure 5.9, as well as the low percentage of error observed in Table 5.9,

we can conclude that our result forsigntotal is an accurate estimation of Partial Signature

time.

Looking at the graph in Figure 5.9, we can see that even for thresholds of over twice

those measured during our experiment, signature times remain as low as a quarter of a

second. Between the least and the greatest of the thresholds used, above, we see that the

total increase insigntotal was less than a tenth of a second. Note that, by contrast, we

have already concluded that the most significant contribution to the acquisition process

wassigntotal.

Two factors account for this discrepancy. Recall thatt instances of the termsigntotal

contribute totacquire, meaning that the values seen in Table 5.9 appear artificially low.

Multiplying each by the thresholdt gives a better idea of how much time thesigntotal

operation consumes. Furthermore, each of these instances brings with it transmission and

packet processing delays at both the send and receive end of the exchange. As we will

see later, in computingtconst, these delays become significant ast increases.
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5.2.6 Calculation oftconst

As we mentioned earlier, the constanttconst from Equation 5.1 represents several constant

operations proportional tot for some group size. First, and most importantly, network

and packet processing delays are represented here. Second, the roughly constant-time

operations for GA andCommit Listexchanges. We now endeavor to assign a value to this

term based on our data.

We can easily calculate the actual values fortconst; that is, the actual time taken by

the operations that we have said contribute totconst. Recall that for each successful GMC

acquisition,t partial signatures must be acquired (Equation (5.1)) and that therefore,t

instances of the termsigntotal are present in each GMC acquisition time. For each of the

median GMC Acquisition times, then, if we subtract outsigntotal exactlyt times, we have

arrived at the total time required by the operations intconst for that threshold. Dividing by

t we arrive at the value oftconst proportional tot.

We call this computation, which appears in Equation (5.4),actual tconst to differenti-

ate it fromtconst, although we note that ultimately they represent the same terms.

actual tconst = ttotal − (t · signtotal) (5.4)

In Table 5.10 we perform this computation, and display it alongside each of the vari-

ables used above. Note that in this table, we have used the observed median values for

Signature Timefor each threshold rather than our approximation usingsigntotal so as not

to introduce greater error into the calculation.

We can use Table 5.10, in particular the computed values ofactual tconst, as the basis

for our approximation,tconst. It turns out that a rather simple approach to computing this

term yields an accurate result. Because the operations constitutingtconst are all linear

proportional tot, we can representtconst as line of the formy = m · x + b, wherex ≡ t.
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Threshold Signature Time GMC Acquisition Time actual tconst

2 0.157661 0.501756 0.093217
4 0.165857 1.136846 0.118355
6 0.168316 1.698270 0.114729
7 0.174676 2.056688 0.119137
8 0.181019 2.447770 0.124952
9 0.187949 2.893956 0.133602

Table 5.10: Determining Values foractual tconst

We simply selectb = 0.093217, calculateδy as the difference between the first and last

of our actual tconst values,δx as the difference between the first and last threshold, and

finally m as δy

δx
. Doing so yields Equation (5.5).

tconst = 0.005769t + 0.093217 (5.5)

We present the fit that this approximation yields, against the actual result, by way of

presenting our final result for the computation ofttotal in the following section.

70



5.3 Extrapolation Using ttotal

Having computed each of the terms ofttotal from Equation (5.1), we can finally make

use of this result in approximating GMC acquisition times for group sizes and thresholds

greater than those measured during our experiment. This is important as it will give us an

idea of how the implementation would perform for much larger groups.

Threshold tconst ttotal Actual Percent Error

2 0.104755 0.495427 0.501756 1.26%
4 0.116294 1.087755 1.136846 4.32%
6 0.127832 1.776986 1.698270 4.64%
7 0.133602 2.157940 2.056688 4.92%
8 0.139371 2.563120 2.447770 4.71%
9 0.145140 2.992524 2.893956 3.41%
Table 5.11: Comparing Extrapolatedttotal to Actual

In Table 5.11 we computettotal for those thresholds which we have measured during

our experiment.Actual is the actual time taken to acquire a GMC at each threshold, next

to which is a percent error comparing this to the estimate. The greatest percent error can

be seen the groups witht values2 and4 respectively.

It is thought that two factors contribute to this outcome. First, as the group size (andt)

increases, the number of samples increases, and so the median Signature Time becomes

more accurate. Second, ast increases, the number of rounds during Lagrange Polynomial

coefficient calculation increases, yielding a more accurate value forδsign. Our approxi-

mations ofttotal can be considered sufficiently accurate given the stable, low percentage

of error in the computation as seen here.

Note that the values oftconst approach those ofsigntotal which we saw earlier. Con-

sider, for example, that at a threshold of9, signtotal consumed0.187363 seconds propor-

tional tot, while above, we see that the same result fortconst consumed0.145140 seconds

proportionally. And yet, by contrast, in Figure 5.7 we saw that overwhelmingly,signtotal

was the greatest contributing term tottotal.
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In trying to understand this disparity, it is crucial to recall that packet and network

delays are represented by thetconst term. The contribution that theCommit Listand GA

exchanges made was nearly constant. This suggests, then, that the greatest contributing

factor to the magnitude oftconst was network and packet processing delay.

Figure 5.10: Extrapolated GMC Acquisition Time (sec) vs. Actual (sec)

In Figure 5.10 we calculate and plotttotal for thresholds equal to, and importantly,

greater than those used during our experiment. Note that as the threshold increases to its

maximum of20 in this figure,ttotal, the total time taken to acquire a GMC, is estimated to

be greater than9 seconds. Recall from§ 4.1 that our selection of a renewal period was 30

seconds for nodes participating at level0. Clearly, therefore, an acquisition time of nearly

10 seconds, almost a third of time a node has to participate before it must re-certify,

suggests a number of things.

First of all, while an acquisition of this length may be suitable to some environments,

it would certainly not be suited to our implementation as we have discussed it here. It is

crucial to point out that in the Bouncer toolkit, as made use of by our implementation,

the GMC acquisition process occurs entirely serially. That means that a large number of

network and packet processing delays is aggregated intottotal. By contrast, if this process

were made to be parallel, during signature acquisition, for example, the total delay added
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to ttotal would be the greatest delay in sending, and the greatest delay in receiving to any

host on theCommit List. Bearing in mind that there aret such exchanges, parallelizing

this process would reducettotal by a factor oft, a highly significant savings.

Furthermore, theCommit Listround of messages can be eliminated reducing the mes-

sage exchange to a single handshake witht hosts. The justification for this is that each

soliciting node is aware of those nodes with whom it has acted in our implementation,

and whom it can reasonably trust to partial sign its request. Should a node reject the re-

quest, the result is the same as if theCommit Listround were left in: the node must restart

the process. So, in effect, nothing is lost in this reduction. We note that aCommit List

must still be used in some fashion in the acquisition process, and that it is the message

exchange round that may be eliminated here, rather than the list itself.

Lastly, in reflecting on the subject of reducingttotal it is useful to point out that, as

originally stated in [25], the Lagrange coefficients may be precomputed. We point out

that, similarly, and perhaps more importantly in this case, they may also be cached. This

could result in significant savings, given the contribution of thesigntotal term to ttotal.

Caching, in this case, would mean simply remembering the coefficients for someCommit

List that was used.
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5.4 Comparison to Prior Work

Figure 5.11: GMC Acquisition (sec) vs. Narasimha et al.

In Figure 5.11 we see the median GMC acquisition result for all Thresholds plotted

against the same result taken from an approximation of Narasimha et al. [25]. Imme-

diately obvious is that our median acquisition time is much greater than, and grows at a

much faster rate than that observed by Narasimha et al.

Several explanations can be offered that account for this result. To begin with, we

make the assumption that Bouncer version0.7 , or its functional equivalent, was used

to generate the results seen above, for the purposes of this commentary. Making this

assumption is ostensibly reasonable, given that code to generate their results is present in

this version of their codebase. Importantly, we note that our implementation is measuring

essentially the same thing in this case, which justifies the comparison.

First, by way of explaining the discrepancy between the Narasimha et al. [25] result

and that observed during our own testing, we suggest that the increase is due in large

part to the load that our clients were under, which caused significant network and packet

processing delay. In their implementation, each node is almost certainly idle when any

request is received (see§ 3.1). In our implementation, at any given time, a node receiving
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a GMC request has a substantial packet processing load. In part the discrepancy is thought

to be due to the latency between receipt of the packet, and actual processing.

Exacerbating the processing delay is the fact that our implementation maintains a

Tracker module and a series of Monitor checks that execute at least once per packet re-

ceived (see§ 3). Each of these extends the turnaround time for any request by performing

their own checks, queries, and so forth. Furthermore, each makes use of locking to coor-

dinate access to a shared data repository amongst asynchronous child processes. Locking

is necessary in this case, but is thought to add substantial delay overhead.

Lastly, we offer the following remarks. Our implementation was designed for com-

pleteness and correctness, and locking mechanisms such as those above tend to require

some optimization to minimize their impact; this was not done given time constraints.

It is thought that optimization of the existing synchronization techniques would have a

noticeable impact on performance in this case.
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Chapter 6

Concluding Remarks

We have presented here a solution to the problem of providing fairness and security in

a peer group that provides a number of improvements over prior work. In particular,

configurable tolerance of masquerading, and the use of a trust model to assign privileges

in a discrete, granular manner. We are also able to assure the fair participation of all nodes

in the network, and expel members that act unfairly. This limits the damage that can be

done by dishonest and malicious nodes.

Because we are able to assign privileges with greater granularity than previous mod-

els, we are able to trust nodes in the network only so far as their continued good behavior

warrants. By continuously observing this behavior over time, we are able to increase

our confidence in the continued honest and fair participation of all nodes. Should nodes

choose to act unfairly or dishonestly, our expiration mechanism allows us to limit these

disadvantageous behaviors to some time period. Because our model calls for these pa-

rameters to be defined for each group, our model can be adapted for use in a number of

environments.

At present, our implementation has been validated, but is constrained to working in

groups with small thresholds. In its current state, our implementation is clearly not suited
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to running at large group sizes, or to be more specific, for the kinds of large thresholds

which would be made use of by such groups. We have presented a number of suggestions

both as to why this problem exists. In particular, we believe that the principle performance

constraints are due to the sub-optimality of partial signature issuance, and to our use of

locking mechanisms.

Looking forward, two important changes should be made toward the future of this

research. First, our use of locking mechanisms should be investigated as the chief source

of delay in packet processing, and subsequently as the greatest contributor to delay in

the GMC acquisition process. Second, the partial signature issuance algorithm should be

investigated, and reduced in the manner that we describe in§ 5.3.

Furthermore, during our research, a number of problems with the underlying toolkit

were identified, as described in this thesis. Solutions to these would provide both security

and performance improvements. Moreover, during the course of our implementation, a

number of improvements to the toolkit were made which are important to its security

and robustness. These changes should be examined during future implementations, and

integrated.

Since our work was completed, a more recent version of the Bouncer Toolkit, version

0.8 , has been released. Importantly, the limitations of version0.7 of the toolkit which

we describe should be examined in light of this new release. Changes we have made may

benefit this version of the toolkit as well, and moving forward this should be examined.

Ultimately, our results contradicted our hypothesis that the implementation would run

in groups with much larger thresholds. We believe that the reasons for this, however, have

been satisfactorily resolved, and that the suggested solutions will enable the implementa-

tion to run as originally anticipated. For smaller thresholds, our work is able to provide

the security mechanisms we have discussed at the cost of the overhead we have presented

throughout§ 5.
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Given that our model is adaptable to a number of other situations, an important future

contribution would be the application of the model to a second environment. At many

points in our implementation the changes necessary to suit a different environment would

be minimal. These changes can be made largely by constructing implementation-specific

Monitor, Tracker, and Behavior modules. Particularly interesting would be results from

an implementation with much larger or smaller re-certification requirements. The balance

between delay in expulsion of non-honest members of the group, and performance cost

due to re-certification could be explored in this way.
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Appendix A

Use of the Implementation

This Appendix gives a brief outline of how to make use of our implementation. Source

code is available fromhttp://wssrl.org .

A.1 Installation

Refer toINSTALL in the source directory for detailed instructions on compilation, and

configuration of the sources. Briefly, it should be done as follows.

./configure --prefix=/install dir

make

make install

Now, the installdir directory has been created, and is used for the remainder of the

use of the programs.
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A.2 Configuration

Once installed, the setup program may be run. The setup script requires thedialog

package be installed [4].

sh setup.sh

The user is prompted for all necessary values required to create and run a test group.

Refer to this document for a deeper understanding of what each of the values means. In

general, the defaults may be used.

In addition tosetup.sh , there is a second way to configure and use test groups.

A number of scripts titled5.sh , 10.sh , and so on are also present ininstall dir .

These scripts set a number of environment variables, and then callsetup.sh which

constructs the desired group automatically. The user may examine the contents of these

scripts to determine how to construct groups in this way.

A.3 Bootstrap

Once a test group is constructed, it is ready to be run. First the two daemon processes

are executed. The GA daemon is executed and passed a script generated bysetup.sh

as input. Each must be executed in the directory in which the binaries are found.GNU

Screen [5] makes this process somewhat easier.

cd ca && ./cad

cd ga && ./gad < ga.config

Now, between the selected time periodsT0 → T1, the Trusted Domain is bootstrapped
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by starting a number of nodes. The number of nodes that will bootstrap the TD is selected

in setup.sh . Each is started in turn.

cd test/001 && ./servant

cd test/002 && ./servant

cd test/003 && ./servant

A.4 Remaining Members

Now, the user may choose to do one of two things. Either the Trusted Domain has reached

the selected size, and the user may wait untilT1 to start the remaining nodes, or the

remaining nodes may be started, and they will delay execution untilT1 has elapsed. The

Trusted Domain must be started with the selected number of nodes, otherwise the TD

dissolves.

New servants may be started until each node in the peer group is running. Nodes

participate honestly by default. In order to exhibit non-honest behavior, one of the many

misbehaviors must be selected. This brings us to command-line options for theservant

program.

A.5 Malicious and Greedy Behavior

The first command-line argument to servant is a debug option that enables a delay when

starting certain sub-processes. This value must be set to0 to disable it unless debugging

is desired. The second argument determines behavior type. Possible values are as seen

in Table A.1. The third argument determines exactly which misbehavior the servant is to
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run. Refer to Tables 4.4 and 4.5 for details on Greedy and Malicious behaviors, and refer

to § 4.2.3 for details on Masquerading behavior.

Behavior Type Value

Honest 0
Malicious 1
Greedy 2

Masquerade 3
Table A.1: Selectingservant Behaviors

As an example, to run Malicious behavior 1 (see Table 4.4) throughservant 4 , we

invoke it as follows.

cd test/004 && ./servant 0 1 1

Note that some of the behaviors are listed as occurringduring T0 → T1. In this case

a servant that is participating in TD formation must run this behavior, as opposed to

trying to elicit the behaviorafter formation.

A.6 Masquerading

Masquerading behavior is elicited similar to the above, but with a slight difference. Since

there is only a single masquerading behavior (to masquerade), the last argument toservant

in this case is the virtual bandwidth (see§ 3.2.12) to be assigned. To cause servants5 and

6 to masquerade, withservant 5 having bandwidth of60 bytes/sec andservant 6

having25 bytes/sec, we execute the following.

cd test/005 && ./servant 0 3 60

cd test/006 && ./servant 0 3 25
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A.7 Bringing it Down

The easiest way to take down the entire peer network once it has run for a sufficient period

of time, if it is running locally, is to send allservant , gad , andcad processes theTERM

signal, which each process handles by cleanly shutting down. This can be accomplished

with

killall cad gad servant

For further details, please see the source code.

A.8 Miscellaneous Details

The Subversion [10] version control system was used to manage changes during this

project. Thanks to Ben Collins-Sussman, Brian W. Fitzpatrick and C. Michael Pilato,

authors ofVersion Control with Subversion[17].
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