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EXECUTIVE SUMMARY

This paper conducts an exploration of gravitational theory, from Newton’s Law of Universal Grav-

itation to Einstein’s Theories of Special and General Relativity, and examines the potential unification of

relativity and quantum mechanics through Modified Newtonian Dynamics (MOND). Einstein’s theories

introduce dark elements, called dark matter and dark energy, which are attributed to the acceleration of

the universe. The problem with these elements lies in their lack of interaction with any part of the elec-

tromagnetic spectrum, so their existence is merely observed across large distances. Mordehai Milgrom,

an Israeli physicist, proposed Modified Newtonian Dynamics (MOND) as a means to reconcile relativity

and quantum mechanics, by replacing dark constituents with an additional acceleration constant.

Without proper instrumentation to conduct observational experiments and collect real astronomi-

cal data, further understanding of these theories was achieved through extensive research and simulations.

The research was conducted through the use of Google Scholar and other search engines. The simula-

tions were plotted using Microsoft Excel for simplicity and basic modeling. The simulations displayed

comparisons between Newton’s Law of Universal Gravitation and MOND. Four graphs were modeled:

acceleration due to gravity versus distance, acceleration due to gravity versus mass, force-to-max force

ratio versus distance, and force-to-max force ratio versus mass. Said graphs can be found below in Section

4 Results and Discussion. The behavior displayed in each graph was consistent with the literature. No-

tably, MOND acceleration was greater than Newtonian acceleration across distance and mass, resulting

in a greater MOND force ratio than the Newtonian counterpart. The acceleration plots indicated a point

of deviation or convergence, where the behavior between the theories changed. The change occurred at

very small distances and extremely large masses. The behavior of these graphs aligns with the research;

however, this paper does not aim to conclusively prove any theory, but rather to discuss where they

differ. From the simulations, the points of deviation and convergence could be areas of future research.

Additionally, the current ΛCDM model seems to be favored, albeit incomplete.
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Abstract

This study explores the initial gravitational theory proposed by Isaac Newton and the subsequent
advancements that led to Einstein’s Theories of Special and General Relativity, as well as the modern
alternative, Modified Newtonian Dynamics. Although General and Special Relativity more accurately
explain the behavior of gravity, Einstein’s “cosmological constant” continues to perplex physicists,
inhibiting the progress of a unified theory of physics. A new, emerging theory, MOND, claims
to effectively integrate dark energy and the Theories of Relativity and may contain answers on
unifying these theories with quantum mechanics. Through plotting gravitational acceleration graphs
against various parameters, this paper analyzes gravity under Newtonian, Einsteinian, and MONDian
dynamics. The study utilized acceleration due to gravity versus distance and mass graphs for both
Newton’s Law of Universal Gravitation and MOND to explore deviations between these methods.
Without conducting observational experiments, this paper does not conclude which theory is correct;
however, based on extensive research, the consensus seems to show a majority in favor of the current
ΛCDM model.
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1 INTRODUCTION

The infinite universe is at the forefront of
scientific study. The foundational force connecting
the fabric of space and astrophysical phenomena is
known as gravity. The Lambda Cold Dark Matter
(ΛCDM) theory is the currently accepted model of
gravity. In the ΛCDM model, Einstein’s Theories
of Special and General Relativity contribute to a
large aspect of astrophysics (regarding massive bod-
ies), while Quantum Mechanics refers to the micro-
scopic, particle interactions. Currently, relativity
cannot be extended to apply to quantum mechan-
ics, accurately, and quantum mechanics cannot be
extrapolated to portray the physics of relativity cor-
rectly. The disconnect between these branches of
physics gives way to the “Theory of Everything,”
the idea of a unified theory that describes all of
the fundamental forces in one singular framework.
In addition to the discrepancies between relativity
and quantum mechanical theories, the concepts of
“dark energy” and “dark matter” have perplexed
scientists for decades. The need for the cosmolog-
ical constant in the equations of relativity furthers
the idea that these theories prohibit progress toward
the unified field theory.

Considering Einstein’s “cosmological con-
stant” and Newton’s Universal Law of Gravitation,
physicists are researching a new theory that may
correctly predict gravitation according to Newton,
while extrapolating these results to account for Ein-
stein’s missing mass problem, which is dark energy
and matter. Within the last few years, many studies
have been published both in support of and in op-
position to this new theory of Modified Newtonian

Dynamics (MOND). The first author of a study sup-
porting MOND, physicist Indranil Banik published
a paper addressing answers that MOND provides to
questions long unanswered. Through data analysis
and simulations, Banik presented conclusions sug-
gesting the current universe model is not accurate.
However, a few years later, Banik authored a study
that considered the same test but improved the pro-
cess through refined uncertainties. The result of
this study was not in favor of his previous work;
Banik abandoned MOND and suggested that his
new work does not necessarily support the current
ΛCDM model, but does favor Einstein and Newto-
nian principles of gravitation rather than the latter.

Alongside research, graphical representations
of each theory explored in this study were used to
gain a deeper understanding of the strengths and
limitations of each. Through comparison of plots,
the nature of the behavior of gravity under New-
tonian and MONDian dynamics was explored and
areas of deviation were noted. The results of these
graphs represent very basically the behavior of each
method and were not modeled using real astronom-
ical data, and therefore were not heavily considered
in concluding MOND. Without proper instrumen-
tation, this paper aims to expose potential areas for
future research that could aid in uniting the theo-
ries of gravity, as well as the ΛCDM model and
Quantum Mechanics.
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2 BACKGROUND

I NEWTONIAN AND
EINSTEINIAN DYNAMICS

In the 16th century, physicist Isaac Newton
demonstrated the fundamentals of gravity on Earth
and extrapolated his findings to apply to the uni-
verse. Newton’s discovery became the model for
gravitational interactions for centuries until Albert
Einstein found the instantaneity of these interac-
tions to be improper. In 1905, Einstein published
his Theory of Special Relativity, with the ground-
breaking discovery that light travels at a finite
speed. Einstein’s new theory postulated that space
and time are interconnected, creating the space-
time continuum. In this model, Einstein states that
as a result of light traveling at a finite speed, ob-
servers could experience events at different times.
The Theory of Special Relativity was revolutionary
for the advancement of science, however, Einstein
did not apply the finite speed of light to gravita-
tion [12]. In 1915, Einstein published the Theory of
General Relativity, where massive bodies warp the
fabric of space-time.

Figure 1. A visualization of the warping of
spacetime, where the Sun and Earth are massive
bodies that disrupt the structure of the fabric of

spacetime [13].

With the curving of the fabric of space-time
as seen in Figure 1 above, Einstein stated that im-
pacts on the massive body would impact the gravi-
tational field in a ripple effect. The idea that grav-
itation follows the limitation set on the universe
by the finite speed of light completely contradicted
the fundamentals of Newton’s theory; instantaneity
does not abide by the limit set on space travel. Ein-
stein’s Theory of General Relativity became widely
accepted as the new model for gravity, governed by
the Einstein Field Equations. Although Einstein
had described the role of gravity in the universe,
his field equations demonstrated that the universe

was expanding. Einstein was troubled by this re-
sult and included a “cosmological constant” in his
equations explaining this expansion [2].

II THE COSMOLOGICAL
CONSTANT AND EINSTEIN’S
FIELD EQUATIONS

The idea of this unknown constant was not
accepted by the scientific community until decades
later after Einstein had rescinded his statement.
In 1998, the cosmological constant (now known as
“dark energy”) was discovered by two international
teams. The astronomers compared observational
data to mathematical predictions to calculate the
universe’s deceleration. However, supernova 1997ff
(the astronomical feature studied in this case) ap-
peared dimmer than the predicted calculated lumi-
nosity [3]. In a decelerating universe, astronomical
phenomena would appear brighter as the distance
between features decreased. Therefore, the only so-
lution as to why luminosity would be decreasing
over time, is that the distance between objects was
increasing, thus the universe was not decelerating,
but was accelerating. Based on the curvature of
spacetime as a result of the existence of massive
bodies, gravitational is strictly an attractive force,
so a question arose from the observation that the
universe is expanding: what force is opposing grav-
ity, and how strong is this force to have the abil-
ity to overcome gravity? Coined “dark energy” by
Michael Turner, this new force is “dark” as it does
not interact with any waves in the electromagnetic
spectrum [2]. Scientists are still unable to fully de-
fine this phenomenon and only prove its existence
by measuring its opposition to gravity. The cosmo-
logical constant appears in Einstein’s Field Equa-
tions,

Rµν − 1

2
Rgµν + Λgµν =

8πG

c4
Tµν , (1)

where Rµν is the Ricci tensor, R is the Ricci
scalar, gµν is the metric tensor, Λ is the cosmolog-
ical constant, κ represents the constant 8πG

c4 , and
Tµν is the energy-stress-momentum tensor [6]. Both
the Ricci tensor R and the Ricci scalar R relate to
the curvature of spacetime.

CURVATURE AND GEODESICS IN
DIMENSIONAL SPACES

The left-hand side of the equation relates to
the geometry of the curvature of spacetime. Be-
fore discussing the curvature of a four-dimensional
space, understanding the curvature of a three-
dimensional space is important. The curvature of a
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three-dimensional space is easily understood using
a cylinder as an example [21].

Figure 2. The curvature on a three-dimensional
figure (cylinder) and the path represented on a

two-dimensional figure (plane) to demonstrate the
linearity of a geodesic [11].

Considering this example, when the two-
dimensional plane is curved around the cylinder,
the straight line curves. The curving of the fabric
of spacetime follows this same concept. The mass of
celestial bodies causes the warping (or curving) of
spacetime in the same manner as depicted in Figure
2, although not in cylindrical terms, but in more
spherical terms. Now it is important to understand
movement on curved surfaces. In two-dimensional
space, to move from Point A to Point B, an object
would travel along a straight line, as seen below.

Figure 3. The path between Point A and Point B
in a two-dimensional coordinate plane to

demonstrate the linearity of the shortest path in
two dimensions [5].

However, to travel from Point A to Point B along
a curved surface, the path would be curved as well
[7]. Although that seems intuitive, it is difficult to
visualize at a point on the surface. Consider travel-
ing from the United States to somewhere in Europe.
As we are accustomed to the flat map of the Earth,

it would seem like the shortest path to travel would
be a straight line, however, the flight path appears
curved on a two-dimensional plane in order to show
the actual path is not straight (Figure 4).

Figure 4. The straight path (in blue) from the
United States to Europe and the actual path (in

red), where the red line is the geodesic and
displays the true three-dimensional path along a

curved surface [24].

The actual path appears as a curved line, as travel-
ing in a “straight” line on Earth is, in reality, travel-
ing along the curve of the sphere of Earth. Traveling
directly from the US to Europe along the red line
depicted in Figure 4 is the shortest possible path for
the flight to move along in a curved space, called a
geodesic [7]. Below is a three-dimensional visual-
ization of this movement from Point A to Point B
along a curved object.

Figure 5. The geodesic from Point A to Point B
on a sphere, where geodesic refers to the shortest

path between points on a curved surface [8].
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CALCULATING DISTANCE IN
DIMENSIONAL SPACES

In two-dimensional space, calculating the
distance between two points is easily accomplished
using the Pythagorean Theorem, where a2+b2 = c2.
However, in higher-dimensional space, the distance
between two points on a curved surface, or the
length of the geodesic, cannot be calculated using
the Pythagorean Theorem, as there is no right an-
gle. Instead, the length of the geodesic, known as
the spacetime interval, will be dependent on the
metric tensor, gµν , following the Pythagorean The-
orem using Riemann metrics:

C1(∆X)2 +C2(∆X)(∆Y )+C3(∆Y )(∆X)+C4(∆Y )2 (2)

where C1, C2, C3, and C4 are constants, and
∆X and ∆Y are the changes in the distance along
the x and y axes, respectively. The above equation
is the Pythagorean Theorem using Riemann met-
rics in two-dimensional space, where C2 and C3 are
equal to zero. However, considering this equation
in its current form, a matrix can be made using the
constants as components [7].

[
C1 C2

C3 C4

]
(3)

This matrix is the metric tensor g for two-
dimensional space. The metric tensor in Einstein’s
Field Equation seen in Equation 4 represents four-
dimensional space, where time is the fourth dimen-
sion.

gµν =


g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

 , (4)

where the indices represent the dimensions, and
time is considered to be the zeroth dimension.

The Ricci tensor Rµν represents the measure-
ment of the deviation in volume of a curved space
from Euclidean geometry. Consider moving in two-
dimensional space. An object may move in any di-
rection and return to its original position in the
same orientation, resulting in a deviation of zero [7].
However, in a curved space, direction is an impor-
tant factor, for as an object moves along a geodesic,
the angle is constantly changing, so when returned
to its original position, the object may have rotated,
and therefore there is a deviation.

Figure 6. Two-dimensional movement, where the
black arrow is the original position and the red

arrows are translations.

As seen in Figure 6 above, both translations result
in the arrow pointing in the same direction, so when
returned to the position of the black arrow, the di-
rection will be the same as the original.

Figure 7. Three-dimensional movement along a
curved surface, where the black arrow is the
original position and the red arrows are

translations.

As seen in Figure 7 above, each translation points
in a new direction. The final translation is seen in
the box with the original arrow but points in a com-
pletely different direction. The deviation between
the original arrow and the final translation arrow is
what the Ricci tensor represents [7]. A representa-
tion of the Ricci tensor is shown below.
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Figure 8. A visualization of the components used
for calculating the deviation of a curved space

from Euclidean space [7].

In Figure 8, V 1, V 2, and V 3 represent vectors in
each of the three dimensions, where indices repre-
sent the dimension and are not exponents, dX1 and
dX2 are the changes in their respective dimensions,
and dV2 and dV3 are the changes of the vector’s
direction in their respective dimensions. The math-
ematical representation of the calculation of these
changes in vector direction is

dV 1 = dX1dX2 (V 1{. . .}+ V 2{. . .}+ V 3{. . .}
)

dV 2 = dX1dX2 (V 1{. . .}+ V 2{. . .}+ V 3{. . .}
)

dV 3 = dX1dX2 (V 1{. . .}+ V 2{. . .}+ V 3{. . .}
)
,

(5)

where colors are included to demonstrate the dif-
ference between indices of the same number. The
complete equation below includes the Ricci scalar,
which is the measurement of the curvature of a
Riemannian space, or the curvature of a space
that follows Riemannian geometry rather than
Pythagorean geometry [7].

dV 1 = dX1dX2 (V 1R1
112 + V 2R1

212 + V 3R1
312

)
dV 2 = dX1dX2 (V 1R2

112 + V 2R2
212 + V 3R2

312

)
dV 3 = dX1dX2 (V 1R3

112 + V 2R3
212 + V 3R3

312

) (6)

These scalar values of curvature are a part of
the components of the Ricci tensor once again
in four-dimensional space to represent our three-
dimensional universe with time as the fourth di-
mension.

Rµν =


R00 R01 R02 R03

R10 R11 R12 R13

R20 R21 R22 R23

R30 R31 R32 R33

 , (7)

where R00 = R0
000 + R1

101 + R2
202 + R3

303, and so
on. As stated above, Λ denotes the cosmological
constant, which has a value of ≈ 1.056×10−52m−2.

ENERGY-RELATED DENSITIES

Now consider the right-hand side of the
equation, κ = 8πG

c4 , denoted as Einstein’s grav-
itational constant which includes Newton’s gravi-
tational constant of G = 6.674 × 10−11 Nm2kg2.
Tµν is known as the energy-stress-momentum ten-
sor. From Newtonian physics, momentum, p, is
equivalent to the product of mass, m, and veloc-
ity, v. However, p = mv assumes the momentum
is in the system’s reference frame. For relativity,
m refers to the rest mass and v refers to the veloc-
ity relative to an observer, therefore gamma, γ, is
multiplied as the relativistic factor, or the Lorentz
factor:

p = γmv (8)

where γ = 1√
1−( v

c )
2
to account for the mass chang-

ing as velocity changes according to an observer [7].

Figure 9. A depiction of velocity and its
components in the x-y-z directions in

three-dimensional space [7].

From Figure 9, velocity has three components, one
in each of the three spatial dimensions, where V1,
V2, and V3 represent the velocity in the x-, y-, and
z- directions, respectively. To extend the velocity
vector to four dimensions, V0 is used to denote
the velocity through time, or the speed of light, c.
Apply these velocity components to the relativistic
momentum equation to calculate the momentum in
each of the four dimensions.
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p0 = γmV 0 =
γmc2

c
=

E

c

p1 = γmV 1

p2 = γmV 2

p3 = γmV 3,

(9)

where p0 is the momentum in time and p1, p2, and
p3 are the momentums in the x-, y-, and z- direc-
tions, respectively [7]. From Equation 9, the mo-
mentum in time is equivalent to Einstein’s famous
equation of energy, E = mc2 divided by the velocity
through time, c. By multiplying each momentum
by its respective velocity, the energy density in that
dimension is yielded.

Tµν =


V 0p0 V 0p1 V 0p2 V 0p3

V 1p0 V 1p1 V 1p2 V 1p3

V 2p0 V 2p1 V 2p2 V 2p3

V 3p0 V 3p1 V 3p2 V 3p3

 (10)

Tµν =


T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33

 (11)

where each component is multiplied by another γ
to account for length contraction when calculated
per unit volume. Tµν represents energy density and
is calculated as

Tµν = γm(V µν)2 (12)

per unit volume. Einstein’s Field Equations do not
include Tµν but include Tµν , which does not denote
the same value.

Tµν = T 00g0µg0ν + T 01g0µg1ν + T 02g0µg2ν + T 03g0µg3ν

+T 10g1µg0ν + T 11g1µg1ν + T 12g1µg2ν + T 13g1µg3ν

+T 20g2µg0ν + T 21g2µg1ν + T 22g2µg2ν + T 23g2µg3ν

+T 30g3µg0ν + T 31g3µg1ν + T 32g3µg2ν + T 33g3µg3ν
(13)

The value of Tµν represents the density of energy
and momentum at any point in spacetime. Finally,
the stress-energy-momentum tensor and each of the
previously discussed variables in Einstein’s Field
Equations can be understood together to demon-
strate that gravity is the result of spacetime being
curved by mass and energy [7]. Einstein’s theory of
gravity is currently accepted in the standard model
of cosmology, called the Lambda Cold Dark Matter
Theory (ΛCDM), where Λ represents the cosmolog-
ical constant.

III THE LAMBDA COLD DARK
MATTER MODEL OF
COSMOLOGY

The accepted model of cosmology is known
as the Lambda Cold Dark Matter Theory, or briefly
as the ΛCDM Theory, where lambda represents the
cosmological constant, now known as dark energy.
The ΛCDM Theory models the universe’s inflation
beginning at the Big Bang and includes dark energy,
dark matter, and ordinary matter.

Figure 10. A visualization of the Lambda Cold
Dark Matter (ΛCDM) Model of Cosmology where
Einstein’s Theory of General Relativity is the

Accepted Model of Gravity [16].

In this model, Einstein’s general relativity is con-
sidered the correct theory of gravity. Beginning at
the Big Bang, the universe underwent a period of
inflation, where the universe expanded at a rate
faster than the speed of light with extreme heat,
measuring about 1028 K. Before the Big Bang, the
universe was a singularity, a point of infinite density
where the laws of physics do not apply. Throughout
the lifetime of the universe, nuclei, elements, atoms,
stars, galaxies, black holes, and finally, human life
were formed [18]. During each stage of formation,
the universe continued to cool until its current tem-
perature of about 2.7 K and expanded due to the
force of the cosmological constant, known as dark
energy. The ΛCDM model understands dark en-
ergy as a mysterious force that does not interact
with any part of the electromagnetic spectrum but
can be measured as the opposing force to gravity.
The dependence on dark energy to explain the stan-
dard model of cosmology without a proper under-
standing of what it is has prompted many scientists
to consider an alternate theory of gravity, Modified
Newtonian Dynamics (MOND).
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IV MODIFIED NEWTONIAN
DYNAMICS (MOND)

The uncertainty behind the origin and com-
position of dark energy and dark matter led to
the development of a new theory, Modified Newto-
nian Dynamics (MOND). First introduced in 1982
by Mordehai Milgrom, MOND considers the idea
that previously unaccounted-for gravitational inter-
actions can replace the effects of the cosmological
constant. Milgrom proposed that tweaking New-
ton’s equations to account for this external grav-
itation could explain the extra force in Einstein’s
equations [17]. Below are both Newton’s equation
of gravitation and the modified equation of gravita-
tion.

Law of Gravitation G =
Mm

r2
(14)

Modified Newtonian Equation G =
Mm(
a
a0

)
r2

(15)

The extra variable in the modified equation
is the ratio of the actual acceleration due to gravity
of the object to the expected acceleration due to
gravity as predicted by Newton’s Law of Universal
Gravitation. Newtonian gravity is representative
of high-acceleration environments but breaks down
when applied to those of low-acceleration. Mil-
grom proposed this ratio of acceleration to agree
with Newton’s Second Law, while also supporting
his new theory regarding low-acceleration environ-
ments [17]. Below are mathematical representations
of the modified Newtonian equation when a0 is and
is not equal to a (the gravitational acceleration pre-
dicted by Newton).

MOND Equation, where a0 = a G = Mm

( a
a )r2

MOND Equation, where a0 ̸= a G = Mm(
a
a0

)
r2

The premise of this new variable of acceleration is
to propose the weak gravitation experienced by ob-
jects at the perimeter of galaxies and solar systems
is responsible for the extra factors of energy and
mass in accordance with the external field effect.

EXTERNAL FIELD EFFECT

The external field effect (EFE) is the effect
of a large system on a much smaller system.

M =
RV 2

G
(16)

M =
gex
a0

RV 2

G
(17)

Consider a binary star system. According to New-
ton, the gravitational force between the two bod-
ies is calculated by his Law of Gravitation seen in
Equation 13 above [20].

Figure 11. A binary star system with
gravitational wave emission to display the system

extensively studied by MOND [1].

Newton’s Law of Gravitation does not consider the
impact of external objects’ gravitation on the sys-
tem in consideration. However, MOND proposes
that the sum of the very small accelerations due to
gravity induced by bodies not involved in the sys-
tem could be the true force of dark energy [20].

Figure 12. An inaccurate portrayal of a binary
star system to show the presence of other massive
bodies whose gravitational force is considered in

MOND [4].

Visualizing this concept, Figure 12 displays a binary
star system between three other massive bodies. In
Figure 11, only the forces between the two stars

13



were considered, however, Figure 12 demonstrates
the proximity of external bodies, in which, accord-
ing to MOND, their effects of gravity on the said
system must be factored in.

V BANIK ET AL. “THE GLOBAL
STABILITY OF M33 IN MOND”

In 2020, first author Banik published his pa-
per “The Global Stability of M33 in MOND” along-
side other scholars explaining and proving the the-
ory of MOND. Under the ΛCDM model of gravity,
the stability of disk galaxies is sustained by dark
matter halos (DM). However, Banik et al. explored
the possibility that the MOND theory of gravity
more accurately explains the stability of disk galax-
ies and can be extrapolated [14].

PROPERTIES OF DISK GALAXIES:
ROTATION CURVES AND STABILITY

Constituting roughly 80% of all galaxies,
disk galaxies exhibit a physical similarity to disks,
hence the name, where most celestial objects orbit
the galactic core on the same plane, as seen below
in Figure 13.

Figure 13. A visual representation of a disk
galaxy portraying the “flatness” of the shape [22].

In 1973, Ostriker and Peebles demonstrated
through N-body simulations (a simulation of par-
ticles under force, such as gravity) that disk galax-
ies can be stabilized by dark matter halos. The
model suggests that such disk galaxies are not self-
gravitating, but are constrained by the DM ha-
los. The gravitational effect from the DM halos
increases the disk’s rotation curve (RC), therefore
simulating a “flattening” effect on the outskirts of
the galaxy [14]. Although this model is consid-
ered to be an essential part of the ΛCDM model,
scientists have encountered problems in matching
the properties of RCs and the long-term stability of

such galaxies. Banik et al. believe that compatibil-
ity between observation and theory does not prove
the theory true, and other explanations should be
considered. An alternative possibility explored by
Banik et al. considers the idea that Newtonian dy-
namics may not be accurate on galactic scales. As
Newtonian dynamics are based solely on data col-
lected from the Solar System, another explanation
is plausible that utilizes data that can be more ac-
curately extrapolated [14]. In this theory, the grav-
itational field strength can be demonstrated by the
equation below.

g =

√
GMa0
R

,R ≫
√

GM

a0
(18)

where a0 is about 1.2 × 10−10 ms−2. The above
equation and MOND are consistent with proper-
ties of polar ring and shell galaxies, further sup-
porting the plausibility of the theory. Discrepan-
cies between quantum mechanics and gravity are
thought to have the potential to be reconciled by
the MOND theory [14]. As mentioned above, an
increase in RC results in the ends of the galaxy be-
coming asymptotically flat; MOND describes this
relation in terms of velocity, vf .

vf = 4
√
GMa0 (19)

According to angular momentum, the velocity is
greatest near the center and gradually decreases to-
wards the ends. Equation 18 describes this relation-
ship mathematically in terms of MOND.

EXTERNAL FIELD EFFECT

Once again, the EFE is specific to the
MOND theory of gravity, where internal gravita-
tional accelerations of a sub-system do not deter-
mine the effect that an external field will have on
said sub-system. Banik et al. explore the idea that
MOND cannot be superposed, creating a weaken-
ing effect on the galaxy’s gravitational field that is
independent of and, therefore, does not affect the
inertial mass of the galaxy. MOND with the EFE
is compatible with the curve of Galactic escape ve-
locity, providing further proof the EFE exists. In
addition, the data from the Gaia mission demon-
strates that MOND must exist alongside an EFE.
Using the velocities and observations of wide binary
stars, Banik et al. conclude that MOND must in-
clude the EFE [14].
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VI “STRONG CONSTRAINTS ON
THE GRAVITATIONAL LAW
FROM GAIA DR3 WIDE BI-
NARIES”

Although the article explored above sug-
gested strong evidence in support of MOND, first
author Banik has since refuted this theory. In 2023,
Banik et al. published “Strong Constraints on the
Gravitational Law from GAIA DR3 Wide Binaries”
contradicting their previous work. Analysis of data
from GAIA DR3 (Global Astrometric Interferome-
ter for Astrophysics Data Release 3), specifically re-
garding wide binary systems, along with more qual-
ity cuts and accurate uncertainties led the group to
the conclusion that Newtonian dynamics and the
ΛCDM model better portray the physics of the uni-
verse [15]. GAIA is a European mission conducted
by the European Space Agency (ESA) that maps
and models the motion of the stars in the Milky
Way Galaxy. Figure 14 below depicts some of these
models from GAIA DR3.

Figure 14. GAIA DR3 imaging of the Milky Way
Galaxy, whose data was analyzed as a method of

disproving the MOND theory [9].

BAYESIAN STATISTICS

Physicists conducting this experiment en-
sured reliable results by focusing on accurate un-
certainties. Benefits of Bayesian Statistics include
the probability distribution of hypotheses, and com-
bining observed data with previous information.
Rather than calculating the likelihood of the data
given the hypothesis, Bayesian Statistics suggests
collecting the data and calculating the likelihood of
the hypothesis. Bayes’ Theorem has been used in
astronomy to correct measurement errors, allowing
for the hypothesis and the data to correlate with
more accurate uncertainties [19].

WIDE BINARY TEST

From the wide binary test using a sample
size of 8611, Banik et al. conclude that the Newto-
nian model drastically outperformed the model for
MOND. Their work demonstrates the inadequacy of
MOND, however, Banik et al. stress the fact that
disproving MOND does not prove the ΛCDMmodel
to be fully accurate. Regardless of the plausibility
of MOND, the authors of this article conclude that
our current understanding of the dynamics of the
universe is incomplete [15].

3 METHODS

I RESEARCH

This project required understanding the ba-
sic principles of the geometry and physics that gov-
ern Newton’s Universal Law of Gravitation and
Einstein’s Field Equations. Using Google Scholar,
information regarding geodesics and curvature in
metric spaces was studied. In addition to retriev-
ing information regarding the two governing theo-
ries of gravity in our universe, an introduction to
a new theory of gravity, Modified Newtonian Dy-
namics (MOND), has also been studied. Without
proper instrumentation, a conclusion on the plau-
sibility of the MOND theory in place of the cur-
rent ΛCDM model cannot be drawn, so a consider-
ation of the areas in which they differ was explored
through graphical representations.

II GRAPHICAL
REPRESENTATIONS

Graphing each theory of gravity (Einstein’s
Field Equations, Newton’s Law of Universal Grav-
itation, and MOND) in the proper spatial dimen-
sions requires the use of software capable of decod-
ing and representing differential equations. Due to
a lack of time and coding experience, computation
and the use of Microsoft Excel were chosen instead.
For graphs modeling the acceleration due to grav-
ity, one variable was held constant. Data from our
solar system was used as the model for constant
mass and constant distance. Calculating the force
then required a smaller, constant mass, and the
mass of the moon was selected to understand the
impacts on a system on the scale of our Solar Sys-
tem. When needed, the use of a logarithmic scale
was implemented to better visualize the behaviors
of the graphs on a more equal scale. The goal of
said plots was to explore the differences between
the theories and suggest that deviation could be an
important area for further research.
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PLOTTING NEWTON’S LAW OF UNI-
VERSAL GRAVITATION

To graph the acceleration due to gravity
against both mass and distance, Newton’s Law
must be in terms of acceleration. The relationship
is demonstrated by the sequences of equations that
reformulate Newton’s Law to be in terms of acceler-
ation due to gravity instead of in terms of the force
of gravitational attraction.

F =
GMm

r2
(20)

ma =
GMm

r2
(21)

a =
GM

r2
(22)

For the graph representing the acceleration due to
gravity against distance, the mass (M) was held
constant. The same was done for the graph rep-
resenting the acceleration due to gravity against
mass; the distance (r) was held constant. Modeling
the ratio of the force of gravitational attraction to
the maximum force required another constant mass
(m). Using Newton’s Second Law, the acceleration
calculated from Eq. 21 was multiplied by mass, m,
to yield the force, F.

To graph the force to maximum force ra-
tio against distance and mass, the maximum force
yielded by Newton’s Second Law and the forces over
distance and mass were used. The ratio was calcu-
lated with the constant mass and distance used in
plotting the acceleration graphs.

PLOTTING MODIFIED NEWTONIAN
DYNAMICS

To graph the acceleration due to gravity
against mass and distance, again, the formula must
be in terms of acceleration. The following MOND
equation in terms of acceleration was used.

a =

√
GMa0
r

(23)

Both the accelerations due to gravity and the force-
to-maximum force ratio were calculated using the
same data as above in the Plotting Newton’s Law
of Universal Gravitation section.

4 RESULTS AND
DISCUSSION

Graphical representations of the theories of
gravity were utilized to exploit the point where de-

viation occurs. Deviation between theories may sig-
nify an area of research that could be beneficial in
uniting the theories of gravity and quantum me-
chanics.

I ACCELERATION DUE
TO GRAVITY VS DISTANCE

After calculating the acceleration due to
gravity for both Newton’s Law of Universal Gravi-
tation and MOND using a constant mass (the mass
of the Earth), the ranges of the accelerations differ
greatly. As seen in Figure 15 below, the acceler-
ation according to the MOND theory ranges from
powers of the negative 6th order of magnitude to
the negative 19th order of magnitude.

Figure 15. Acceleration due to Gravity vs
Distance Graphs Plotting Newton’s Universal Law
of Gravitation (Blue) Against MOND (Red) to

Demonstrate Where Acceleration Differs Between
the Theories.

The range mentioned is many orders of magnitude
greater than that of Newton’s Law, where New-
ton’s Law has acceleration ranging from powers of
the negative 4th order of magnitude to the negative
28th order of magnitude. Newton’s Law of Univer-
sal Gravitation spans a much larger range consist-
ing of much smaller accelerations. Considering the
fact that MOND accounts for the effects of dark
energy and matter within its acceleration constant,
a0, the larger accelerations calculated are logical.
The distances spanned from 0.0000001 light years
to 1,000,000 light years, where one light year equals
9.46×1015m. Recall that on a smaller scale, MOND
breaks down to Newton’s Law. Distances less than
0.0001 light years, according to Figure 15, display
Newton’s Law to be greater than MOND, which
is logical as dark energy and dark matter are ob-
served on a large scale, meaning 0.0001 light years
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may be too short to observe such effects. The ac-
celeration due to gravity according to MOND de-
creases at a significantly lower rate as opposed to
Newton’s Law. Without conducting observational
experiments, a full analysis cannot be explained in
this paper, however, the small range of orders of
magnitude for acceleration according to MOND as
well as the distance at which the theories deviate
from each other could be an area of consideration
for the plausibility of the theory.

II ACCELERATION DUE
TO GRAVITY VS MASS

After calculating the acceleration due to
gravity for Newton’s Law of Universal Gravitation
and MOND, similar to the distance graphs in the
section above, the range of accelerations differed
greatly. As demonstrated in Figure 16 below, the
acceleration due to gravity according to Newton’s
Law has a much steeper increase and spans a greater
range (about 10−24 to 10−11 than MOND.

Figure 16. Acceleration due to Gravity vs Mass
Graphs Plotting Newton’s Universal Law of
Gravitation (Blue) Against MOND (Red) to

Demonstrate Where Acceleration Differs Between
the Theories.

According to MOND, the acceleration increases
over about seven orders of magnitude (about 10−17

to 10−10). Considering the fact that the range of
mass is from 1 solar mass to 10,000,000,000,000 so-
lar masses, the increase in accelerations in both
Newton’s Law and MOND is understandable. Re-
lating this relationship to the one explored in the
previous section, acceleration due to gravity un-
der MOND over mass is less than that over dis-
tance. The acceleration according to MOND is
vastly greater than that according to Newton over
distance, which is understandable as MOND also
accounts for the effect of dark energy and dark mat-
ter, which is better seen on a larger scale. Simi-
larly, over mass, the acceleration under MONDian

dynamics is vastly greater than that under Newto-
nian dynamics. Dark energy and dark matter ef-
fects are observed over a larger scale (as above with
distance), however, such effects are expected to be
observed over larger masses as well, as seen above.

When first simulating the graph shown in
Figure 16, the distance of 0.0001 light years re-
sulted in Newton’s Law being greater than MOND
over mass. Adjusting the distance to 1,000,000 light
years yielded more accurate results aligned with
the expectation that MOND accelerations should
be greater than Newton accelerations. Due to the
MONDian acceleration being well in excess of New-
tonian acceleration over distance, dark energy may
be responsible for this increase in MOND. Similarly,
dark constituents may be responsible for the in-
creases in MOND over mass, as well. From Figures
15 and 16, it appears that distance has a greater im-
pact on MONDian and Newtonian dynamics, per-
haps due to the effects of dark energy and dark
matter. Figure 16 displays a converging behavior
between MOND and Newton’s Law. As distance
affected the results of deviation most, the distance
of 0.0001 light years could be an area for future re-
search, as well as the mass at which convergence
occurs.

III FORCE-TO-MAX FORCE
RATIO

From the accelerations calculated in the sec-
tions above, the force was calculated under Newto-
nian and MONDian dynamics. The new mass in
the calculation is equal to the mass of the moon,
again for an understanding of the behavior on a
well-known scale. After calculating the force across
various distances, the maximum force was identi-
fied and used in the subsequent calculation. A ra-
tio between the force at a certain distance and this
maximum force was calculated and the relationship
can be seen in Figure 17 below.

All simulations were modeled using Microsoft
Excel and were manually coded, which may intro-
duce slight errors in the values. However, based
on extensive research the behavior depicted in the
simulations should remain accurate.
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Figure 17. Force to Max Force Ratio vs Distance
Graph Plotting Newton’s Universal Law of
Gravitation (Blue) Against MOND (Red) to

Highlight the Differences in How Force Decreases
Over Distance.

According to the graph above, the ratio un-
der MOND is much greater than that under New-
ton’s Law. As force over distance decreases, the
starting value of 1 aligns with behavioral expecta-
tions. With the mass of the moon multiplied by ac-
celeration, the force under MOND is greater than
that under Newton’s Law as MOND acceleration is
greater. Each acceleration, and therefore force, un-
der MOND, is greater, explaining the behavior seen
in Figure 17 above. From Figure 17, the conclusion
seems to be consistent, MOND is greater than New-
ton’s Law of Gravitation due to the addition of dark
elements.

The multiplication of acceleration and the
mass of the moon was calculated for the force-to-
max force ratio vs mass as well. As the behavior of
the acceleration vs mass graph was increasing, the
force and the force-to-max ratio plots exhibited this
behavior as well.

Figure 18. Force to Max Force Ratio vs Mass
Graph Plotting Newton’s Universal Law of
Gravitation (Blue) Against MOND (Red) to

Highlight the Differences in How Force Decreases
Against Mass.

Figure 18 above displays the MOND force ra-
tio to be greater than Newton’s force ratio, which,
again, is consistent with the literature. Demon-
strated in this plot is also the steep incline in the
force ratio under Newtonian dynamics, where the
force ratio under MOND increases more gradually.
In each of the four graphs, MOND acceleration and
force is overall greater than Newton’s Law by quite
a few orders of magnitude, most probably explained
by the inclusion of dark energy and dark matter in
the MONDian acceleration constant.

5 CONCLUSION AND
RECOMMENDATIONS

I CONCLUSION

Through simulations of both Newton’s Law
of Universal Gravitation and MOND, the accelera-
tions due to gravity are greater under MONDian dy-
namics, which is in line with expectations of MOND
as MOND accounts for dark constituents. The two
methods have points of deviation and convergence
when considered over varying distances and masses.
Perhaps these points could be further studied to
better understand which method more accurately
explains such behavior. This paper did not uti-
lize real astronomical data or conduct observational
experiments and therefore does not aim to prove
any theories, but merely explore any differences.
However, based on extensive research, including the
papers authored by Banik et al. previously dis-
cussed, many seem to be in favor of our current
model. MOND has since been dismissed by many,
but physicists continue to think outside the box and
stretch the bounds of astrophysics. Although this
theory may not hold the answers to unite general
relativity and quantum mechanics, understanding
its shortcomings could help steer physics in the right
direction.

II RECOMMENDATIONS

For future research regarding the differ-
ing theories of gravity, the ability to use observa-
tional data or instrumentation to retrieve such data
could be very useful in examining specific scenarios.
Studying specific situations provides a deeper un-
derstanding of the limits each theory possesses. For
future graphical representations, a two- or three-
dimensional visual is recommended to better model
the behavior of gravity under each method. To sim-
ulate such models, proficiency in multiple coding
languages is strongly advised. For proficient coders,
the use of the Einstein Toolkit may provide better
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visuals and easier coding than Excel, as modeling
Einstein’s Field Equations is the purpose of such
software. However, if using the Einstein Toolkit,
I strongly recommend using Windows or Linux, as
MacOS is a bit harder to use for downloading multi-

ple coding languages and packages. Perhaps in the
future WPI may be able to provide this resource for
students pursuing research in astronomy and astro-
physics.
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