

 1

Worcester Polytechnic Institute

PARbot:

A Personal Assistive Robot

Authors: Keywords:

Kevin Burns WPI Robotics Engineering

Nikhil Godani Robot Operating System

Olivia Hugal Assistive Technology

Jeffrey Orszulak SLAM

Julien Van Wambeke-Long Computer Vision

 2

PARbot:

A Personal Assistive Robot

A Major Qualifying Project Report

submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfilment of the requirements for the

Degree of Bachelor of Science

By

Kevin Burns

Nikhil Godani

Olivia Hugal

Jeffrey Orszulak

Julien Van Wambeke-Long

Date: April 30, 2014

Report Submitted to:

Professor Taskin Padir, Advisor, WPI

This report represents the work of five WPI undergraduate students submitted to the faculty as

evidence of completion of a degree requirement. WPI routinely publishes these reports on its

website without editorial or peer review.

 3

Abstract

 The aging population of the United States is creating a growing need to provide assistive care for

elderly and people with disabilities. As the Baby Boomer generation enters retirement, the ratio of

caregivers to those that require assistance is projected to decrease [1]. There are currently no

commercially available modular assistive robots that can fill this need. Our project aims to provide an

alternative to current assisted living options through the development, construction, and testing of a

Personal Assistive Robot (PARbot) that allows individuals with general or age related disabilities to

maintain some aspects of their independence, such as the ability to shop.

 Our unique solution implements a design that allows user oriented customization. Modularity is

a key component in the design to allow for future expansion and potential user customization. The

robot will be designed to ADA specifications to ensure that it can operate anywhere the user desires.

Human Robot Interaction (HRI) will be an important aspect in our project; users should feel comfortable

in the presence of the robot. Ultimately, PARbot will be capable of navigating in public areas, such as a

grocery store, and utilize a Simultaneous Localization and Mapping (SLAM) algorithm for navigation

while tracking its user.

 4

Acknowledgements

 We would like to thank our advisor Taskin Padir for his support through the project. Further we

would like to thank the following members of the WPI community: Tracey Coetzee, Joe St. Germain,

Velin Dimitrov, Dmitry Sinyukov, Fred Looft, Cameron Canale, Devon Locke and Michelle Gagnon. We

would also like to thank those who supported the project financially, including the National Science

Foundation, Worcester Polytechnic Institute, and the Cornell Cup as presented by Intel.

 5

Table of Authorship

Abstract Jeffrey

Acknowledgments Jeffrey

1 Background Jeffrey

1.1 Need for Robotic Aids Jeffrey

1.2 Current Technology Olivia

1.3 Robotic Bases Julien

1.3.1 Mobile Robot MP-500 Julien

1.3.2 PeopleBot Julien

1.3.3 Pioneer P3-DX Julien

1.4 ADA Guidelines Jeffrey

1.5 Hardware Kevin

1.5.1 Electronics Kevin

1.5.2 Batteries Kevin

1.5.3 Sensors Nikhil

1.5.3.1 Accelerometers Nikhil

1.5.3.2 Gyroscopes Nikhil

1.5.3.3 Ultrasonic Sensors Nikhil

1.5.3.4 Cliff Detection Sensors Nikhil

1.5.3.5 Rotary Encoders Nikhil

1.5.3.6 Microphone and Speakers Nikhil

1.5.3.7 LiDAR Julien

1.5.3.8 RGB-D Julien

1.5.3.9 Intel Galileo – Arduino Nikhil

1.6 Robot Operating System (ROS) Kevin

1.6.1 Groovy Galapagos Kevin

1.6.2 Hydro Medusa Kevin

1.7 Simultaneous Localization and Mapping Julien

1.7.1 Localization Julien

1.7.1.1 Particle Filter Olivia

1.7.1.2 Kalman Filter Olivia

1.7.2 Mapping Olivia

1.7.3 QR Code Tracking Nikhil

1.8 Path Planning Olivia

 6

1.8.1 Occupancy Grid Olivia

1.8.2 Search Methods Jeffrey

1.8.2.1 Breadth First Search Olivia

1.8.2.2 Depth First Search Olivia

1.8.2.3 Dijkstra's Algorithm Olivia

1.8.2.4 A* Kevin

1.9 Cornell Cup Competition as Presented by Intel Jeffrey

2 Design Requirements and Specifications Jeffrey

2.1 Stakeholders Jeffrey

2.2 Development of Specifications Jeffrey

2.2.1 Boston Abilities Expo Jeffrey

2.2.2 Personas Nikhil

2.3 Resulting Requirements Jeffrey

3 Design and Analysis Devon

3.1 Drivetrain Jeffrey

3.2 Chassis Design Jeffrey

3.3 Shopping Cart Module Kevin

3.4 Onboard Electronics Julien

3.4.1 Battery Selection Jeffrey

3.4.2 Motor Selection Kevin

3.4.3 Voltage Converters Julein

3.5 Onboard Computer Olivia

3.5.1 Communication Julien

3.5.2 Networking Jeffrey

3.5.3 Analog to Digital Conversion Julien

3.5.4 Sensors: Navigation Julien

3.5.5 Inertial Measurement Unit Olivia

3.5.6 Cliff Detection Nikhil

3.5.7 Motor Controller Julien

3.6 Graphical User Interface (GUI) Devon

3.7 Localization and Mapping: Navigation Sensor Selection Julien

3.8 Tracking System Kevin

3.9 Software Kevin

3.9.1 Path Planning Software Development Jeffrey

 7

3.9.2 ROS Software Structure Jeffrey

3.9.2.1 PARbot_Vision.launch Olivia

3.9.2.2 PARbot_pose_transformer Jeffrey

3.9.2.3 PARbot_search Jeffrey

3.9.2.4 Target_sim Olivia

3.9.2.5 Parbot_gmapping.launch Olivia

3.9.2.6 Motion_Planning Kevin

3.9.2.7 User Tracking Olivia

3.9.2.7.1 QR Code Tracking Olivia

3.9.2.7.2 Pixy Tracking Nikhil

4 Results Jeffrey

4.1 Foldability Julien

4.2Modularity Olivia

4.2.1 Hardware Olivia

4.2.2 Software Olivia/Kevin

4.2.3 Graphical User Interface (GUI) Devon

4.3 Power Capacity and Consumption Julien

4.4 Cliff Detection Nikhil

4.5 Mapping and Path Planning Jeffrey

4.6 User Tracking Kevin

4.7 Motion Planning Kevin

5 Conclusions Jeffrey

6 Future Recommendations Jeffrey

6.1 Ubuntu 14.04 Jeffrey

6.2 Win_ROS Jeffrey

6.3 Android Jeffrey

8 Appendix A: Personas Jeffrey

8.1 Persona 1 Kevin

8.2 Persona 2 Nikhil

8.3 Persona 3 Olivia

8.4 Persona 4 Jeffrey

8.5 Persona 5 Julien

8.6 Persona 6 Devon

9 Appendix B: Development on PARbot Kevin

 8

9.1 Connecting to PARbot Over the Wifi Bridge Kevin

9.2 Moving file to and from PARbot Kevin

 9

Table of Contents

Abstract ... 3

Acknowledgements ... 4

Table of Authorship ... 5

List of Figures ... 13

Table of Tables ... 15

1 Background ... 16

1.1 Need for Robotic Aids .. 16

1.2 Current Technology .. 18

1.3 Robotic Bases ... 18

1.3.1 Mobile robot MP-500 .. 18

1.3.2 PeopleBot .. 19

1.3.3 Pioneer P3-DX .. 19

1.4 ADA Guidelines ... 19

1.5 Hardware.. 20

1.5.1 Electronics .. 20

1.5.2 Batteries ... 22

1.5.3 Sensors ... 22

1.5.3.1 Accelerometers ... 22

1.5.3.2 Gyroscopes .. 23

1.5.3.3 Ultrasonic Sensors ... 23

1.5.3.4 Cliff Detection Sensors .. 23

1.5.3.5 Rotary Encoders .. 24

1.5.3.6 Microphone and Speakers .. 24

1.5.3.7 LIDAR ... 24

1.5.3.8 RGB-D .. 24

1.5.3.9 Intel Galileo – Arduino .. 25

1.6 Robot Operating System (ROS) .. 25

1.6.1 Groovy Galapagos .. 26

1.6.2 Hydro Medusa ... 26

1.7 Simultaneous Localization and Mapping (SLAM) ... 26

1.7.1 Localization .. 26

1.7.1.1 Particle Filter ... 26

 10

1.7.1.2 Kalman Filter ... 27

1.7.2 Mapping ... 27

1.7.3 QR Code Tracking ... 27

1.8 Path Planning ... 28

1.8.1 Occupancy Grid .. 28

1.8.2 Search Methods ... 29

1.8.2.1 Breadth First Search .. 29

1.8.2.2 Depth First Search ... 29

1.8.2.3 Dijkstra’s Algorithm ... 30

1.8.2.4 A* .. 30

1.9 Cornell Cup Competition as Presented by Intel ... 31

2 Design Requirements and Specifications .. 32

2.1 Stakeholders ... 32

2.2 Development of Specifications .. 32

2.2.1 Boston Abilities Expo ... 32

2.2.2 Personas ... 33

2.3 Resulting Requirements ... 33

3 Design and Analysis... 34

3.1 Drivetrain ... 34

3.2 Chassis Design .. 34

3.3 Shopping Cart Module ... 35

3.4 Onboard Electronics ... 35

3.4.1 Battery Selection .. 36

3.4.2 Motor Selection .. 36

3.4.3 Voltage Converters .. 37

3.5 Onboard Computer .. 37

3.5.1 Communication.. 38

3.5.2 Networking .. 39

3.5.3 Analog to Digital Conversion.. 39

3.5.4 Sensors: Navigation ... 39

3.5.5 Inertial Measurement Unit (IMU) .. 39

3.5.6 Cliff Detection .. 40

3.5.7 Motor Controller .. 47

3.4.11 Wiring diagram .. 48

 11

3.4.12 Safety features ... 49

3.6 Graphical User Interface (GUI) ... 50

3.7 Localization and Mapping: Navigation Sensor Selection ... 51

3.8 Tracking System ... 52

3.9 Software ... 52

3.9.1 Path Planning Software Development Process .. 53

3.9.2 ROS Software Structure ... 55

3.9.2.1 Parbot_Vision.launch .. 55

3.9.2.2 PARbot_pose_transformer ... 58

3.9.2.3 PARbot_search .. 58

3.9.2.4 Target_sim .. 58

3.9.2.5 PARbot_gmapping.launch ... 59

3.9.2.6 Motion Planning .. 59

3.9.2.7 User Tracking .. 62

4 Results ... 65

4.1 Foldable .. 65

4.2 Modularity .. 65

4.2.1 Hardware ... 66

4.2.2 Software ... 67

4.2.3 Graphical User Interface (GUI) ... 67

4.3 Power Capacity and Consumption ... 68

4.4 Cliff Detection .. 69

4.5 Mapping and Path Planning ... 69

4.6 User Tracking .. 70

4.7 Motion Planning ... 72

5 Conclusions ... 74

6 Future Recommendations .. 76

6.1 Ubuntu 14.04 ... 76

6.2 Win_ROS .. 76

6.3 Android... 76

7 References .. 77

8 Appendix A: Personas ... 81

8.1 Persona 1: .. 81

8.2 Persona 2: .. 82

 12

8.3 Persona 3: .. 83

8.4 Persona 4: .. 84

8.5 Persona 5: .. 85

8.6 Persona 6: .. 86

9 Appendix B: Development on PARbot .. 87

9.1 Connecting to PARbot Over the WiFi Bridge: ... 87

9.2 Moving files to and from PARbot ... 87

 13

List of Figures

Figure 1: Caregiver Support Ratio, United States .. 16

Figure 2: Projected Age 80+ Population, U.S. .. 17

Figure 3: MP-500 Robotic Base .. 18

Figure 4: PeopleBot Robotic Base .. 19

Figure 5: Pioneer P3-DX ... 19

Figure 6: Intel Galileo for Arduino Environment ... 25

Figure 7: Image of a QR Code .. 28

Figure 8: Breadth First Search Examination Order .. 29

Figure 9: Depth Breadth First Search Examination Order ... 30

Figure 10: Example of a Planned Path ... 31

Figure 11: Data Connections Map ... 38

Figure 12: Cliff Sensor Mount .. 41

Figure 13: Cliff Sensor Arrangement.. 41

Figure 14: Cliff Detection Calibration Best Fit Graph ... 43

Figure 15: Top Down View of Cliff Detection Test Plate .. 45

Figure 16: Cliff Detection Sensor Mounts .. 46

Figure 17: MDC2230 Motor Controller .. 47

Figure 18: Power Connections Map... 48

Figure 19: 120 Amp Switch .. 49

Figure 20: GIGAVAC Contactor Switch ... 49

Figure 21: Emergency Stop Button .. 50

Figure 22: Touchscreen GUI ... 51

Figure 23: Simulated Development Environment ... 53

Figure 24: Software Flow Overview ... 55

Figure 25: PrimeSenses Mounted on PARbot .. 56

Figure 26: PrimeSense Transformation Data and Representation .. 57

Figure 27: depthimage data produced by primesenses .. 57

Figure 28: Five Velocity Sets with Ten Tenticles Each ... 59

Figure 29: example of tentacle based motion planning .. 60

Figure 30: THE TENTACLE SELECTED BASED ON THE BLUE TARGET PATH AND THE PURPLE OBSTACLES 61

Figure 31: cost cross-section ... 61

Figure 32: Pixy Connected to Arduino Microcontroller ... 63

Figure 33: Object Tracking Color Pattern .. 64

Figure 34: Open and Closed Configuration .. 65

https://d.docs.live.net/3fccad09a0ccd953/School/MQP/MQP%20share/MQP%20final%20report%20-%20rev2Padir.docx#_Toc386640227
https://d.docs.live.net/3fccad09a0ccd953/School/MQP/MQP%20share/MQP%20final%20report%20-%20rev2Padir.docx#_Toc386640228
https://d.docs.live.net/3fccad09a0ccd953/School/MQP/MQP%20share/MQP%20final%20report%20-%20rev2Padir.docx#_Toc386640229
https://d.docs.live.net/3fccad09a0ccd953/School/MQP/MQP%20share/MQP%20final%20report%20-%20rev2Padir.docx#_Toc386640251
https://d.docs.live.net/3fccad09a0ccd953/School/MQP/MQP%20share/MQP%20final%20report%20-%20rev2Padir.docx#_Toc386640252
https://d.docs.live.net/3fccad09a0ccd953/School/MQP/MQP%20share/MQP%20final%20report%20-%20rev2Padir.docx#_Toc386640254

 14

Figure 35: Power Connector Pin Out ... 66

Figure 36: Mounting Plate ... 67

Figure 37: Cliff Detection Data Stream .. 69

Figure 38: Atwater Kent Second Floor Map with Path .. 70

Figure 39: QR Tracking Test ... 71

Figure 40: PIXY color tracking .. 71

Figure 41: Stamped Pose from PIXY .. 72

https://d.docs.live.net/3fccad09a0ccd953/School/MQP/MQP%20share/MQP%20final%20report%20-%20rev2Padir.docx#_Toc386640263

 15

Table of Tables

Table 1: Brushed vs Brushless .. 36

Table 2: Recorded Cliff Detection Data ... 42

Table 3: Cliff Detection Pair Value Comparison ... 43

Table 4: Cliff Detection States ... 44

Table 5: Cliff Detection Test Plate Wiring .. 45

Table 6: Code Runtimes for 512x512 Element Grid... 55

Table 7: Transformer Power Calculations .. 68

Table 8: Motor Power Calculations ... 68

 16

1 Background
The decreasing cost of electronics coupled with an increase in processing power has allowed for

the development of robots for applications outside of production lines. Robots for simple, repetitive

tasks such as vacuuming and mowing the lawn have begun to enter everyday life. More complex

applications are cropping up in the automotive industry, for example, cars that can parallel park

themselves are becoming more common. Few commercialized developments have been made in the

form of personal assistive robots. However, a potential consumer base is expected to expand greatly in

the coming decades.

1.1 Need for Robotic Aids
The age demographic of the United States is changing; there will be an increase in the

percentage of elderly individuals (70 and older) expected over the next 40 years. Based on 2010 census

data collected, 13 percent of the US population is over the age of 65 [1]. However, as the number of

elderly people in the United States increases, the number of caregivers, especially familial caregivers, is

expected to remain the same due to changes in the average size of the American family. Most familial

caregivers are between 45 and 65 and hold a full time job outside the home in addition to helping their

elderly relatives. As a result, the ratio of demand for Long-Term Services and Support (LTSS) to available

caregivers will increase. Furthermore, in the next 10 to 15 years, the Baby Boomer generation will pass

into the 75 to 85 year old age bracket, greatly increasing the need for caregivers [2].

FIGURE 1: CAREGIVER SUPPORT RATIO, UNITED STATES

From 1990 to 2010, the Baby Boomer generation shouldered the majority of the caregiving role,

providing support for their parents. This increased the caregiver to need ratio from 6.6:1 in 1990 to 7.2:1

in 2010, allowing for the care of the elderly to be divided between more of the population. As can be

seen in Figure 1, from 2010 onward the caregiver to need ration is expected to steadily decrease as the

role of caregiver passes from the Baby Boomer generation to their children. In 2030, the caregiver to

need ratio is expected to be 4.1:1 and will drop to 2.9:1 by the year 2050. Figure 2 shows the percentage

 17

of Americans that will be in the 80 years old or older category as time advances. As a result of the

change in the American family structure, the elderly population will be less able to lean on their children

for support as they age, meaning the need, and therefore cost, for external aid will increase in the

coming 30 years [2].

FIGURE 2: PROJECTED AGE 80+ POPULATION, U.S.

To make up for the difference between the available caregivers and the individuals needing

attention, an increase in external care will be needed. This need can be filled several ways based upon

the current abilities of the elderly. According to AARP, 30% of individuals aged 80 or older need help on

a daily basis to perform daily task such as bathing or cooking [2]. These individuals need high levels of

care, but others who are more mobile do not need constant, one-on-one, attention. Technologies such

as robotic aids can be developed and utilized by some of the elderly to help with tasks such as shopping

or carrying items. This would allow individuals to remain independent for longer time, decreasing the

caregiving burden of the younger population.

 18

1.2 Current Technology
There are several efforts being made in the field of robotic assistance; some of these efforts

focus directly on increasing one’s mobility while others increase the ability of persons with disabilities to

perform various tasks. There are two main archetypes of assistive robots today: physical and social.

Within this division there are further subdivisions; there are two types of physically assistive robots:

Mobile and Stationary. The research into current technology is focused on mobile personal assistive

robots.

The Quality of Life Center at Carnegie Mellon University (QoLC) is one of several organizations

conducting research into assistive robots. One of their projects is for a Home Exploring Robot Butler or

HERB [3]. HERB features a Segway base and two Barrett WAM arms. HERB can navigate in cluttered

indoor locations and even microwave dinner.

Toyota has also begun working on assistive robots. They created the Human Support Robot

(HSR) [4], which is designed to live with a family and provide support. The robot has an articulating arm

and can be controlled by a tablet that also serves as the HSR’s face. The HSR can also be used as a

telepresence machine.

RTC, a Japanese company, has created the first robot to transfer humans from their beds to

their wheelchairs and back. The robot is called RIBA and can lift a payload of up to 61 kg. While RIBA

does all the lifting, a human operator is still present to guide the robot using tactile sensors on the

robot’s arms [5]. RIBA is an example of a human in the loop robot, where the robot can perform various

tasks but is monitored by a user at all times.

1.3 Robotic Bases
There are currently many different robotic bases available for research and development. One

of the first steps to designing something new is to see what currently available options are readily

available. It is advantageous to use a ready-made base because the development cycle for hardware is

shorter. With a pre-assembled base more advanced software can be written sooner, rather than

spending time developing specifications and designs for each physical aspect of the drivetrain. The

following robotic bases are all Robotic Operation System (ROS) enabled, which is one of the main

features to be included in the project.

1.3.1 Mobile robot MP-500

MP-500, shown in Figure 3, is a robotic base which

is very robust and sturdy, and is made to traverse many

different environments. It is also made to handle dynamic

environments similar to ones the project is defined to

operate within. With 10 hours of uptime, the base also has

enough time to perform many different tasks. But the

robot has a very limited battery time if one considers

FIGURE 3: MP-500 ROBOTIC BASE

 19

adding peripherals, so future modular additions might need to contain their own power sources. [6]

1.3.2 PeopleBot

The PeopleBot, shown in Figure 4, is designed for effective Human

and Robot Interactivity (HRI) which is a key part of any robot that is aimed to

be interacted with. It is also quite friendly looking with its molded plastic

exterior, and it does not look overly industrial. The main downside to this

robot is its lack of modularity; it is a relatively closed system, so future

modules would be hard to develop [7].

1.3.3 Pioneer P3-DX
The Pioneer P3-DX robot, shown in Figure 5, is about the size that would be

sensible for the project. It can fit easily in the ADA defined doorways and

hallways. This robot also has a 23 kg (50 lbs.) payload, which is a good amount

to allow for future additions. It also allows for up to 3 batteries, which means

that enough power could be provided for future modular additions. The

downside to this robot is that it lacks additional ports; this limits the potential

for extra sensors. The manufacturer also says that the robot works mostly on

hard surfaces, so the soft surfaces that the project aims to traverse would not

be possible. [8]

1.4 ADA Guidelines
 In 1990, the Americans with Disabilities Act was passed by the United States Congress to provide

a comprehensive set of guidelines for the construction of buildings. These guidelines were designed to

allow individuals with physical disabilities to move about on their own. The establishment of these

guidelines allows for a standard design system for buildings. This therefore ensures that all products that

adhere to the standard will be able of operate in public and privately constructed ADA environments.

Standardization also allows for use of select products, such as wheelchairs that suit the needs of a

person with disabilities, without needing to worry if the product will fit through halls or have room to

turn.

FIGURE 5: PIONEER P3-DX

FIGURE 4: PEOPLEBOT

ROBOTIC BASE

 20

ADA restrictions govern aspects such as door and hall width, as well as the amount of room

required to allow a wheelchair to turn. The ADA also defines the dimensions of a wheelchair: 32 inches

wide and 48 inches long. All other restrictions regarding mobility assume these dimensions as a

maximum. Additional restrictions described in ADA guidelines concern the turning radius of the

wheelchair, or robot. A complete 180 degree turn must be completed in a 60 inch diameter circle.

ADA guidelines are also used when constructing access ramps for elevated doorways. The ADA

states that that the maximum slope of a new ramp will be no greater than 1’:12’ with a maximum rise of

30 inches before a landing is required. This means that a ramp cannot rise more than 1 foot for every 12

feet of horizontal travel. Using trigonometry, the maximum slope of the ramp will be tan-1(
1

12
), or 4.764

degrees. This regulation does not apply to ramps that have already been constructed, so not all

“handicap accessible” ramps meet this restriction. Additionally, after a vertical rise of 30 inches, a 5’x 5’

landing must be constructed in the ramp to give the operator an opportunity to rest while climbing.

Railings are also provided along the length of the ramp for security. The railings extend 12 inches past

the point where the ramp ends to provide additional guidance [9].

The ADA restrictions can be used to define the regulations for a personal assistive robot as well.

ADA supplies guidelines that can be utilized to develop a conceptual working environment defining what

types of obstacles a robot could encounter. Compliance with ADA restrictions assures that an assistive

robot will be able to work with its user in many locations, especially environments designed for

individuals with disabilities.

Individuals who require the assistance of a wheelchair for mobility can use specialized vans for

transportation. Such vans are regular production model vehicles, such as a Honda Odyssey or Toyota

Sienna, with modifications to their doors or trunk to include a lift mechanism. The two types of vehicles,

side door and rear door, have similar dimension restrictions for the height of the wheelchair:

approximately 57 inches from floor to ceiling. Similarly, the potential length for the wheelchair ranges

from 58 to 91 inches long; there are short and long wheelbase models. The width can range from 31 to

60 inches wide. This range is due to the seating configuration; some allow for a passenger seat next to

the wheelchair [10]. To enter the vehicle, a ramp is generally used, with an incline of 9 -11 degrees.

While this is steeper than typical ADA regulation allows, the user is never alone when using the van; a

driver is present to assist them.

1.5 Hardware
 The selection process associated with the design and implementation of a robot is essential to

its success. There are several factors associated with choosing a component: cost, performance,

reliability, and power consumption. Each of these factors may have different weights associated with

the design of the robot. For example, on a robot that operates in a remote location, reliability is more

important than the monetary cost of a component. This section will explore the different components

available for various functions performed by the robot.

1.5.1 Electronics

The topic of electronics covers a large number of devices and systems that connect the other

components. This may include computing solutions, communications, power systems, and any other

 21

electrical system. These systems are critical for the success of any mobile robotic system; without these

systems a robot cannot process information, communicate, or act on its environment.

Computing systems come in many shapes and size. For this project only standard laptop and

desktop processors (x86/x64) will be considered. Even within this relatively small subset of processors,

there are still hundreds of options with power consumption from less than 1W, such as the Intel Atom

Z500, to over 100W like the Intel Core i7-4960X. High level robotics tasks such as SLAM and image

processing require a large amount of computational power. At the same time, mobile robots have a

limited amount of power available. This means that a careful balance must be made between power

usage and processing capability.

Laptops are well suited to mobile robotic systems since they include a battery, screen, and some

communication system, but they are not without flaws. Laptops use proprietary power connectors, non-

standard villages, and have fewer communication ports than desktop boards.

Computing solutions designed for desktop form factors provide a wide range of options for

mobile robotic platforms. There are solutions available for any power budget, computational, or

communication need. Desktop systems use standardized power connections and voltages, making them

easy to support, upgrade, and replace. Desktop systems lack screens, wireless communications, and

dedicated batteries. Though both options are viable it depends on the specific requirements of the

system as to which are the better option.

Communication systems can play a major role in mobile robotics. In particular, wireless

communications are essential to the field of mobile robotics. Being able to connect to a mobile robot,

send commands, and receive sensor information, along with other data, can be vital to a successful

robotic system. Wi-Fi, Bluetooth, xbee, and other radio frequency systems can be used for these

purposes. ROS supports distributed processing, and data sharing over a network connection. This means

that some of the processing can be done on a networked computer, rather than on the robot, and

information can be uploaded to the ROS system. This allows more powerful computers, with higher

power consumptions to be used, but not place a draw on the electrical system of the robot. To support

this type of computing, robots using ROS benefit from a Wi-Fi connection. This can be done in a variety

of ways, including having the robot broadcast its own Wi-Fi network. Regardless of how it is achieved,

communicating with a robotic system can vastly improve the performance of the system.

Communication is an extremely important part of a robotic system, but without power to run the

communication systems they are useless.

Power distribution and regulation is critically important to the success of any mobile robot.

Sensitive electronics, such as sensors and controllers, must be protected from voltage fluctuations that

can be caused by high draw devices, such as motors. If the voltage drops too low the device can brown

out, shut down unexpectedly, or give errant values. If the voltage goes too high, such devices can be

permanently damaged. For less sensitive loads, it is important to make sure that power system and

batteries are protected from excessive current draw. This can be done using current limiting resistors,

breakers, or by ensuring that the supply will always exceed the need. For a modular robot, having plenty

of available power connections for additional modules is a must. In addition to having available

connections, the use of standardized quick connect allows for easy replacement of modules.

 22

1.5.2 Batteries

Batteries are an extremely important part of any mobile robotic system; they provide the power

for most mobile robotic systems. Although the power density of batteries is low compared to other

systems, they do not produce emissions, noise, or any other dangerous byproducts. These properties

have allowed batteries to become an integral part of everyday life. Battery performance can be

measured by three criteria: energy density, specific energy, and specific power. Specific energy is the

amount of energy per unit mass, while energy density is the amount of energy stored per unit volume.

Specific power refers to the power to weight ratio of the battery. There are many different types of

batteries are suited to different performance specifications.

Lead acid batteries have been in use for more than 150 years. They are extremely durable,

reliable, and have excellent storage life. This type of battery is thermally insensitive, can withstand very

high surge current, and does not degrade, even after thousands of charging cycles. Storage time is a

concern in many applications and lead acid batteries can be stored for years without any significant

impact on performance. Lead acid batteries have a charging efficiency of up to 92%, which is extremely

high [11]. The largest flaw with lead acid batteries is weight; this limits the batteries specific power to

40W/kg. Lead acid batteries lend themselves to applications that require large amounts of power in any

condition; many charge cycles and where weight is not a major concern, such as in the automotive

industry and powered wheelchairs.

Nickel-metal hydride (NiMH) batteries offer many advantages over older lead acid technology.

With a specific energy of up to 120 Wh/kg, a power density of up to 300 Wh/L, and a specific power of

up to 1000W/kg NiMH batteries can deliver a powerful punch [12]. The downsides to this type include

poor charging efficiency, around 66%, limited storage times (losing about 2% a month), and a short life

expectancy of only 1000 charge cycles. These shortcomings have not stopped NiMH batteries from

become extremely popular. They are used in many small electronics, and due to their relatively low cost

they are used extensively in electric and hybrid vehicles.

Lithium-polymer (Li-poly) batteries have been commercially available for less than 20 years, but

they have helped make the modern mobile electronic world possible. Li-poly’s give unparalleled

performance, with a specific energy of up to 200 Wh/kg, a power density of up to 300Wh/L, a specific

power of up to 10 KW/kg, and a charging efficiency of up to 99.8% [13]. One concern when using Li-poly

batteries is safety. If a Li-poly is charged incorrectly it can explode and catch fire. Since it contains

lithium, water will only make this kind of fire worse. Despite these concerns, the performance of Li-polys

has made them an integral part of modern electronics like laptops, cell phones, and robot.

1.5.3 Sensors

To properly understand its surroundings, a robot must be equipped with sensors. These sensors

interpret the surrounding world into a format that the robot can process. Choosing a suite of sensors

that will have the greatest effect on a specific platform is important and many different sensors need to

be considered. This section will detail the different types of sensors that a robot might have.

1.5.3.1 Accelerometers

An accelerometer is a device that measures proper acceleration. They are used to detect and

monitor vibration in rotating machinery. Inside an accelerator, micro electro-mechanical systems, MEMS

 23

are present; these are basically tiny micro-structures that bend due to acceleration [19]. When it

experiences any form of acceleration, these tiny structures bend an amount that is proportional to the

acceleration on the device which can be electrically detected and used to calculate the acceleration.

Accelerometers have multiple applications in industry and science because they can sense such a wide

range of motion. Highly sensitive accelerometers are components of inertial navigation systems for

aircrafts and Autonomous Underwater Vehicles (AUVs). They have been used to detect when the

computer's suddenly moved or dropped, so the hard drive can stop before the drive is damaged. There

are various applications for accelerometers in robotics such as enabling a mobile robot to balance.

Accelerometers are also used in Inertial Measurement Units (IMUs) which are electronic devices that

measure and report on a craft’s velocity, orientation and gravitational forces, using a combination of

accelerometers and gyroscopes [20]. The IMU detects the current rate of acceleration by using one or

more accelerometers.

1.5.3.2 Gyroscopes

 A gyroscope is a device for measuring or maintaining orientation, based on the principles of

angular momentum. Mechanically, a gyroscope is a spinning wheel or disc in which the axle is free to

assume any orientation [21]. Due to the disc's high rate of spin and moment of inertia, the change in this

orientation due to external is small. The disc's orientation remains nearly fixed, regardless of the

mounting platform's motion, because mounting the device in a gimbal minimizes external torque.

Gyroscopes are now being used to keep complex robots, that would normally just fall over, upright: one

such robotic example is two legged robots. Gyroscopes are also present in Inertial Measurement Units

along with accelerometers as discussed above and the IMUs detect changes in rotational attributes like

pitch, roll and yaw using one or more gyroscopes [20].

1.5.3.3 Ultrasonic Sensors

Ultrasonic sensors generate high frequency sound waves and evaluate the echo which is

received back by the sensor [22]. The sensor measures the time of flight -- that is, the time it takes for

the signal to reach a surface and reflect back [23]. This method of distance measurement is called

echolocation and bats rely on the same principle to map their environment. Because ultrasonic sensors

use sound rather than light for detection, they work in applications where photo-electronic sensors may

not. However, this technology is limited by the shapes of surfaces and the density or consistency of the

material. For example, foam, cloth, or even rain can distort sensor readings.

1.5.3.4 Cliff Detection Sensors

 A Cliff Sensor is important to have on certain robotic systems to avoid excessive drops that

otherwise might damage the robot. The iRobot Roomba models include a cliff sensor to help them avoid

driving over stairwells or ledges [24]. A cliff sensor can be mechanical, optical, or even ultrasonic,

however they all fulfill the same purpose. A mechanical cliff sensor is a contact that runs along the

ground, looking for any drop-offs. When a drop off is encountered, the sensors generates a digital signal

which indicates that the cliff has been detected. The Roomba uses an optical cliff sensor, which shines

an LED onto the ground at an angle that is picked up by a sensor. When the Roomba comes across a

large drop off, the reflected light from the LED is no longer detected by the receiver, and the drop is

registered. Ultrasonic sensors can also be used to detect cliffs. Each type of cliff sensor has its own

http://en.wikipedia.org/wiki/Gyroscope

 24

strengths and weaknesses. These are primarily due to the effects of different surfaces, color and

reflectivity effect optical sensors; however, texture matters most for ultrasonic sensors.

1.5.3.5 Rotary Encoders

 A Rotary Encoder is used to convert the angular position or motion of a shaft or the axle to an

analog or digital code and the types of information they offer can be packaged in various ways [25].

Rotary encoders are mainly two types - absolutes encoders and incremental encoders, sometimes also

referred to as relative encoders. The output of absolute encoders indicates the current position of the

shaft, making them angle transducers. The output of incremental encoders provides information about

the motion of the shaft, which is typically further processed elsewhere into information such as speed,

distance, and position. One of the more popular types of encoders is called an optical rotary quadrature

encoder which is an incremental encoder. This type of encoder uses two LED emitter and receiver pairs

that are about 90 degrees out of phase. Between both pairs of emitters and receivers, is placed a slotted

disk that when rotated will either block or allow light to pass between the sensor/emitter pairs. As the

slotted disk is rotated, the light sensors respond to fluctuations in light and cause them to output a

"pulsed" voltage waveform that corresponds to the slot position on the rotating disk. Translating this

into real-world measurements, by knowing how many slots are on the encoder disk (called resolution),

the amount the shaft has rotated can be determined. Robots rely on encoders to determine speed,

distance and joint position or other feedback that is essential for proper performance.

1.5.3.6 Microphone and Speakers

 A Microphone converts sound waves into analog signals. As the sound waves reach the

microphone, they move a small diaphragm back and forth within the device making the attached

piezoelectric material to generate a voltage as the diaphragm moves back and forth [26]. This signal of

the diaphragm motion can be captured and the recording can be analyzed by a robot for speech

detection, or even detect beats to music. A Speaker works in reverse to a microphone. As a microphone

detects sound waves as changes in pressure, a speaker generates pressure waves that human ears can

interpret [27]. Speakers on robots allow them to generate different noises or voice instructions to

indicate or provide some additional level of feedback to the user.

1.5.3.7 LIDAR

One method of sensing the environment is Light Detection and Ranging (LIDAR). LIDAR uses

different forms of light to generate images of the environment. This is achieved by shining a light and

measuring how long it takes for the reflection to get back. This allows the sensor to calculate distance to

that point. The LIDAR does this in an arc meaning that the sensor provides a very detailed two

dimensional map of distances to all objects in its field of view. By tilting the LIDAR sensor up and down a

three dimensional field can be built from the data.

1.5.3.8 RGB-D

RGB-D sensors use a combination or two vision systems. One that detects visible light (RGB), and

the other that detects infrared light emitted by the sensor that gives depth (D). The purpose of this

combination is to allow the sensor to “see” in a similar way to a human. Stereoscopic vision systems can

produce similar vision data, but converting the raw RGB data into the depth data requires a large

amount of processing power. RGB-D sensors can use custom ASIC’s to process the depth information in

 25

hardware. A leader in this technology is an Israeli company names PrimeSense. PrimeSense supplied the

technology behind Microsoft’s Kinect and ASUS’s Xtion sensors. The Kinect intended for use with gaming

systems to allow users to use their bodies as controllers. ASUS’s sensor was designed for use with a PC.

The Kinect uses proprietary libraries to do onboard skeletal tracking, while the Xtion uses library from

OPNI NITE. OpenNI is an open source library that supports RGB-D sensors. After selling their technology

to both Microsoft and ASUS PrimeSense has begun producing its own sensors.

1.5.3.9 Intel Galileo – Arduino
Intel Galileo as shown in Figure 6 is the first in a line of Arduino-certified development

boards/microcontrollers based on Intel x86 architecture and is designed for the maker and education

communities. The board runs an open source Linux operating system with the Arduino software

libraries, enabling re-use of existing software, called sketches. This platform provides the ease of Intel

architecture development through support for the Microsoft Windows, Mac OS, and Linux host

operating systems. Galileo is designed to support shields that operate at either 3.3V or 5V. The core

operating voltage of Galileo is 3.3V. However, a jumper on the board enables voltage translation to 5V

at the I/O pins [46].

FIGURE 6: INTEL GALILEO FOR ARDUINO ENVIRONMENT

1.6 Robot Operating System (ROS)
Robot Operating System (ROS) is an open source meta-operating system that runs on top of

Linux [29] ROS allows for hardware abstraction and multi-process message passing. ROS’s modular

nodes allow for the development of code for one robot to be used on other robotic systems. This kind of

modularity allows for ROS packages to be to be added and removed as needed. For a modular robot this

means that when a new module is added, very few software changes are required. Distributed

computing can be a very useful tool in robotics, especially when some multiple computationally

 26

expensive tasks must be done simultaneously. ROS has native support of distributed computing,

allowing for seamless integration of multiple computers into a robotics system. ROS is a versatile tool for

robotics. It also has multiple stable versions each of which has its own pros and cons.

1.6.1 Groovy Galapagos

ROS Groovy Galapagos was released on December 31, 2012 and brought with it major changes

to the ROS core components [30]. Groovy introduced a new build method that is more adaptable for use

with other operating systems and improves workflow. Stacks, collections of code to enhance sharing,

were also removed to improve the modularity, and ease of installation of new packages. Met packages

allow multiple packages to depend on one another the way stacks did, but without the added

redundancies. One of Groovy’s major advantages over other releases is its age. Almost a year after its

initial release a vast majority of its bugs have been fixed, and there is a large pool of well tested

packages for Groovy. Groovy may work well, but it is nearing the end of its supported life.

1.6.2 Hydro Medusa

Hydro Medusa is the latest release of ROS, having been released on September 4th, 2013 [31].

One of the main focuses of Hydro Medusa was converting core ROS packages to the catkin build system

introduced in Groovy Galapagos. Improvements were also made to some of ROS tools, and many

common packages were moved to a canonical release schedule. Overall Hydro Medusa made relatively

minor changes to the ROS system while making improvements to ROS’s existing features. Hydro Medusa

is currently the version of ROS recommended by Open Source Robotics Foundation (OSRF), and will be

supported until the end of 2014 if not longer. This continued support is an important consideration for

an ongoing project such as this.

1.7 Simultaneous Localization and Mapping (SLAM)
Simultaneous Localization and Mapping (SLAM) is a technique used in robotics to create a virtual

space that the robot “sees” and plans movement through. This movement is then translated to the real

world via robotic movement. After moving the robot will scan again and repeat the process. By

performing this process rapidly the robot can interpret its environment in real time. SLAM allows the

robot to adapt in situations with high amounts of uncertainty, such as a high traffic area. SLAM can be

divided into two major topics: localization and mapping [48].

1.7.1 Localization

Localization involves using a mathematical process to determine the location of the robot in an

uncertain environment. This is done in two parts; sensing, followed by applying the selected localization

method to the sensor data. This can be difficult because moving adds uncertainty, so a very robust

approach must be used.

1.7.1.1 Particle Filter

A particle filter is one of many ways to localize using signal data and information processing. To

begin a particle filter one must first obtain a map of their environment. This map is then populated with

a number of particles [32] which leads to better results. These particles represent possible places for a

robot to be. They each have an x, y position and a theta, which represents the angle rotated from a

predetermined zero orientation. With each of these particles one could evaluate what they “see”

 27

against what the robot is currently seeing from the sensor data. Once all the particles have been

evaluated the algorithm will assign each particle a probability depending on how well they match the

current sensor data. Then the program will eliminate a certain number of the particles based upon the

cutoff probability. The map will also be repopulated with a number of random particles. These random

particles help the robot to re-localize if it moves in an unexpected way. For instance if a person bumps

the robot so that it is no longer in the same location the random particles could be a good fit to what the

robot now sees. Whereas if the random particles were not there, the robot would have to reevaluated

and remove all of the previous particles before it could get a clear view of where it is. This method can

be incredibly effective at localization the robot has the processor speeds necessary. Evaluating the

position of thousands of particles at high speeds can become very computationally heavy. A Kalman

filter can be just as effective as a particle filter but is less computationally intensive.

1.7.1.2 Kalman Filter

A Kalman Filter is an algorithm that can be used to estimate the state of a system. In robotics,

this can be used as a part of SLAM to keep track of a robot’s location. A Kalman filter has two steps:

prediction and measurement. In the prediction step the algorithm calculates the estimate of the current

position estimate of the robot including the level of uncertainty for each variable. In the measurement

step the algorithm takes into account the measurements from the robot’s sensors and the amount of

likely error for these measurements and updates the state of the robot giving more weight to more

certain variables [33]. One of the main conveniences of using a Kalman filter algorithm is that since it is a

recursive algorithm it can be run in real time. An important aspect to remember when considering a

Kalman filter is that it performs best in linear systems. An example of a linear system is a spring pushing

a cart in a line. While a nonlinear system would be the Theory of General Relativity, so the Kalman filter

is best in simple situations, but the more dynamic the system is the harder the Kalman filter becomes to

implement.

1.7.2 Mapping

Mapping is the act of taking sensor data and creating a map from it. If a robot receives data

from a sensor about the distances to nearby obstacles and data from odometry sensors, the robot can

determine the obstacle’s position in a generated map relative to its own position. This is done by

drawing objects seen by the sensor onto a virtual map. When the robot turns, it keeps track of its

position using odometry so new obstacles can be added to the current map. And it knows where the

new data goes in relation to the old creating a new map with many more landmarks. This can be a very

effective method, but due to the generally uncertain nature of sensors and the moving world around the

robot, making a map can become a very difficult task.

1.7.3 QR Code Tracking
QR code or Quick Response Code is a type of two-dimensional matrix barcode as shown in

Figure 7 which consists of a series of black modules arranged in a square grid on a white background

which can be read by an imaging device like a barcode laser scanner or a camera. It is simply a machine-

readable optical label that contains information regarding the item to which it is attached and data is

encoded in the patterns present in both horizontal and vertical components of the image. It was first

designed for its uses in the automotive industry to track vehicles during manufacture as it was designed

 28

to allow high-speed component scanning. A QR code uses four standardized encoding modes (numeric,

alphanumeric, byte / binary, and kanji) to efficiently store data [45].

FIGURE 7: IMAGE OF A QR CODE

1.8 Path Planning
 Path Planning is the process an autonomous or semi-autonomous robot uses to find a route

from its current position to the target location. In order to plan a path, the robot must first interpret its

environment into a series of nodes that can or cannot be traversed. Then, the traversable nodes must

be examined using a search algorithm to find the safest, most efficient route.

1.8.1 Occupancy Grid

Creating an Occupancy Grid overlay on a map is an important step in path planning for that

map. An occupancy grid takes a map and splits it into grid cells [34]. An occupancy grid can be comprised

of squares, hexagons, triangles or other shapes that allow for tessellation. This means that the shape can

be repeated to cover an area completely without overlap. The cells also do not have to be the same size.

Sometimes it is advantageous to have different sized cells. The occupancy grid is used to determine if a

robot can exist in the different cells. When an object is detected in a cell, that cell is defined as

impassible. When planning a path, each potential location (cell) is defined as a node. A path consists of a

list of adjacent nodes that represent the locations a robot will be on the proposed route from start to

end location.

One method that results in different sized cells is to only split up cells until they have only open

space or obstacles in them. This results in a few very large cells that are all open space or obstacle and

many smaller cells that had to be split up to separate the obstacles from the free space. This is helpful

because it results in the smallest number of grid cells for a given map, which helps with computation

time, and because a robot is less likely to drive into an obstacle since it will never go to a cell that has

any obstacles in them.

 29

1.8.2 Search Methods
 Many methods for searching a data structure exist, each with its own advantages and

disadvantages. A search algorithm that is both time efficient and capable of always returning the

optimal path are generally key to a robot’s success. Some search methods use a guided search, meaning

that each node is expanded using an equation to determine if it is the most viable method, non-guided

search methods expand nodes blindly.

1.8.2.1 Breadth First Search

A breadth first search (BFS) algorithm is one of the two major graph searching algorithms. The

process of conducting a BFS is simple [35]. In a graph of nodes (in SLAM these can be occupancy grid

cells), given a starting node, the algorithm will examine all the starting node’s neighbors and only then

move on to searching the next node’s neighbors. The search pattern of a Breadth First Search can be

seen in Figure 8.

FIGURE 8: BREADTH FIRST SEARCH EXAMINATION ORDER

1.8.2.2 Depth First Search

A depth first search (DFS) algorithm also can be used to explore a graph of nodes. When given a

starting node, a DFS will pick one neighbor and search it before choosing one of that neighbors’

neighbors and continuing down the line [36]. The DFS algorithm will only return to the starting node

when all the children of the first neighbor are explored. After doing that it will choose the next neighbor

and explore down its line. The search pattern of a Depth First Search can be seen in Figure 9.

 30

FIGURE 9: DEPTH BREADTH FIRST SEARCH EXAMINATION ORDER

1.8.2.3 Dijkstra’s Algorithm

Dijkstra’s search algorithm finds the shortest path to the target. This is done by exploring each

node on the map, in order of lowest cost to highest cost, until it finds a path to the target. When each

node is explored the neighbors or that node have their costs evaluated and updated if this new path to

that node is less expensive than a previous path. To do all of this, the algorithm must keep track of all

the nodes and the neighbor relationships that certain nodes share. To sort through all the nodes, they

are all given an infinite cost and added to a queue. The starting position is then given a cost of zero and

its neighbors are explored. The exploration of all the nodes continues from there. Unlike the A*

algorithm, Dijkstra does not keep track of the nodes it has explored as the fact that all the nodes are

added to the list to explore only once ensures that Dijkstra’s algorithm has a finite run time.

1.8.2.4 A*

A* search algorithms find the shortest path to the destination by exploring paths with the

lowest expected cost [37]. For each path segment, an estimate of the cost to reach the destination is

made. The estimate for each location is derived using a heuristic function; for navigation, this could be

the straight line distance between the potential next location and the destination. This heuristic function

must be admissible, meaning it will never overestimate the cost of the path. The algorithm must keep

track of all of the explored nodes, as well as the estimated cost to go from each explored node to the

destination. When implemented, the algorithm expands the lowest cost node. The lowest cost node is

the node whose heuristic value added to cost of getting to that node is the smallest. A* finds the least

cost path without expanding every possibility and as such is usually faster than either a BFS or a DFS. The

search pattern of an A* algorithm can be seen in Figure 10.

 31

FIGURE 10: EXAMPLE OF A PLANNED PATH

1.9 Cornell Cup Competition as Presented by Intel
The Cornell Cup Competition is an annual competition that is organized by Cornell University

and is currently sponsored by Intel. The purpose of the competition is to showcase the capabilities of an

Intel Processor. In the case of the 2013-2014 competition, the competition provides two Intel Atom

development boards and 2 Arduino Galileo boards for use in the designed system. The completion,

which is intended for College students, has a strong focus on the Systems Engineering approach to the

design and implementation of a system. Further, Cornell encourages participants to develop a business

plan for their project to have an additional focus on developing entrepreneurial skills [47].

Start

End

 32

2 Design Requirements and Specifications
The development and construction of PARbot requires taking into consideration all the

specifications and requirements laid out before and an initial design can take from. Having a clear list of

design requirements and restrictions, as well as a defined working environment is critical to developing

a product that meets the project guidelines. It is also important to know the reason for designing a

system before developing the system requirements. The PARbot system is being designed to fulfill a

developing need in the assistive care industry as a part of grant from the National Science Foundation

(NSF).

2.1 Stakeholders
In order to develop the specifications of PARbot, the parties involved with the system must first

be recognized. In the case of PARbot, the main stakeholders for the project are individuals with mobility

or strength disabilities (users), the project team, and the project sponsors- in this case WPI, the National

Science Foundation, and the Cornell Cup USA as Presented by Intel. Other stakeholders include but are

not limited to the bystanders who share the environment with the potential user.

2.2 Development of Specifications
The primary goal of the PARbot project is to provide assistive care to the elderly or other

individuals living with disabilities. To fulfill this goal, PARbot must be able to follow its user. ADA

restrictions, described in the background section, provided a well-defined, nationwide standard for

accessible building construction. These guidelines provide a starting point for physical restrictions on

the robot, such as length, width and turning radius, as they are determined by the space allocated to a

wheelchair under ADA regulations. Doorframes restrict the width of the robot to 32 inches, not

accounting for navigational error. A typical wheelchair is no more than 48 inches long and a 60 inch

turning circle is provided where 180 degree turns are required. [38]

2.2.1 Boston Abilities Expo

Boston, Massachusetts hosted an "Abilities Expo" where necessary products and services for the

community of people with disabilities, their families, caregivers, seniors and healthcare professionals are

brought together under one roof. Opportunities are introduced that can enrich the lives of these

individuals through equipment providing mechanical assistance of various sorts. The expo aims to

increase awareness of products, many of which people weren't aware of were now commercially

available. "Abilities Expo" is held in several cities across the nation and each Abilities Expo offers three

days of access to the latest technologies and resources for various disabilities. Informative workshops

are offered on issues that resonate with the community and fun activities, such as adaptive sports,

dance, assistive animal demos and a number of similar ability-enhancing activities are presented.

Attending the Abilities Expo was of great help to the PARbot team as the Expo offered new ideas

and effective solutions to our problems. For example, one of the workshops offered information on "The

Accessible Home" which shows the design process of a house for someone with a disability based on

building connections, living and dining areas, design functional driveways and parking areas, and other

functionalities in deign which would make a home more accessible. This information was of great value

while performing software development and deciding how the PARbot would move around the house.

 33

The Expo also offered a great deal of information regarding what kind of Interface for Human Robot

Interaction would be ideal for the targeted users. Allowing simple, yet effective communication

between the robot and its user is essential to the successful operation of the robot.

2.2.2 Personas

A clear definition of the consumer of a product is essential to the product’s success; designing a

product without taking into account the needs of the user results in an unmarketable product. In order

to develop a concrete idea of who the users of PARbot would be, each team member developed a

“persona” – a short biography of who the each team member envisioned as potential user of the

assistant robot. The individual personas are included in Appendix A. The biographies resulted in a wide

range of possible markets, but clear sectors emerged and one was to be selected for the first phase of

the project. The design of PARbot would focus mainly on assisting the elderly or those living with

physical disabilities, such as arthritis, and is confined to a wheelchair. While the scope of the project

could be expanded to amputees, a narrow consumer demographic was determined to be better to

design for.

The development of a series of personas also highlighted the possible uses cases that the robot

would need to fulfill. Analysis of these use cases allows for further examination of how the developed

system will interact with its environment and the impact that it will have on those around it.

2.3 Resulting Requirements
Resulting from the research and specifications as described above, the team developed

requirements for PARbot. The team decided PARbot would need to be able to operate in an ADA

environment which would set our maximum sizes. Additionally, the robot should be capable of folding

to fit in the trunk of the average motor vehicle to allow the users to take their assistive device with them

in public. The ability for the user to take the robot with them also means that its weight should be

minimized; a maximum weight of 50 pounds was assigned to the PARbot. The robot would also need to

be able to help its users, so the team decided that a carrying capacity was required and we decided the

minimum necessary was about equal to the weight of several bags of groceries, approximately 10lbs.

The team required that PARbot have a battery life of 4 hours, as well as the ability to map and navigate

within its environment to ensure usability. Since the robot can be taken with the user into public

settings, a number of different terrains will be encountered, ranging from hard wood floors and

linoleum to carpet to asphalt and concrete.

PARbot is required to be a modular system, allowing for easy expansion in the future. This

means that in PARbot's design, it is to be easy to modify elements of the software, simple to add or

remove components, and easy to access the power and data connections for future changes. The robot

must be able to follow its user and not get lost, potentially causing it to begin following another person.

Additionally, the robot's design must not be intimidating; users and the public must feel comfortable

around it. Since PARbot's target demographic is often more likely to feel threatened by larger, more

industrial style robots, care must be taken when designing the robot casing to ensure it is aesthetically

pleasing and non-threatening.

 34

3 Design and Analysis
A robotic system consists or three main parts: the mechanical systems used to actuate various

parts of the robot, the electrical systems which carry sensor data to the robot's processer and

commands to motor controllers, as well as provides energy to the robot in the form of an electrical

potential, and the software which provides an overarching control system to give commands to all other

systems. Each of these systems have a direct impact on the others and must be designed to allow for

easy interfacing; the electrical system must be able to deliver enough current so all other systems can

operate without browning out. By examining each system of the robot, a clear picture of it internal

working and design becomes clear.

3.1 Drivetrain
When examining options for the drive system of PARbot, two options were considered:

holonomic drive and differential drive. In a holonomic drive system, Mecanum (omni) wheels are used.

This type of wheel contains rollers evenly spaced around the center hub of the wheel with their axis of

rotation offset from the rotation of the hub itself. This configuration allows the vehicle to move in any

direction, regardless of the orientation of the wheels, and allows the robot to have a zero turning

center. This means that the robot is capable turning about its central axis, rather than a point outside

the wheelbase. However, to utilize this increased degree of mobility, all wheels must be driven,

requiring additional motors, motor controllers, and electrical power. Further, the drive code written for

the robot is more complex to take into account the increased mobility.

A differential drive design consists of having only two wheels powered, one wheel on each side.

Additional wheels are non-powered castors or idler wheels. This configuration can be used with any

wheel type, so allows for a larger number of choices in wheel sizes. A differential drive robot is limited in

degrees of mobility based on the combination of idle wheels, powered wheels, and castors. Typically, a

differential drive robot does not have a zero turning center and rotates about a point outside of the

wheelbase. This means that turning a differential drive robot's turning radius is impacted by its

wheelbase and requires more space to complete a maneuver.

The design of PARbot took into account the pros and cons of each type of drivetrain; the final

design uses a differential drive system, with the powered wheels at the rear of the robot and a pair of

castors at the front. Differential drive was selected because traditional pneumatic tires can be used.

The team felt that due to the wide variety of surfaces that the robot could encounter, the durability of

wheels is important. Mecanum wheels have many rollers in them, each of which is a potential failure

point. Rough surfaces such as pavement could damage the rollers and carpet fibers could catch at the

roller mounting points. Pneumatic tires can easily travel over these surfaces with fewer points of

failure; they can also adsorb some of the vibration caused by traveling over rough surfaces. Finally, a

differential drive system uses fewer motors than a holonomic drive system, meaning the overall weight

of the robot can be kept lower.

3.2 Chassis Design
The chassis of a robot system not only holds all of the system components, but determines the

size, shape, weight and other critical features of the system. As the requirements for the robot changed,

 35

the chassis changed to accommodate them. Early chassis designs were large, allowing for maximum

interior space and providing exposed channel for mounting external modules. To make the design more

visually pleasing, the outer shell of the robot was made up of complex curves. This design was lacking in

good mounting locations for certain modules. These limitations led to a new octagonal design which

allows modules to be both internal and external at the same time. Giving every module internal space

allows it to get power, data, and structural mounting in a standard package. Although the design has

many advantages, it is very costly to produce to the high level of custom manufacturing required. The

estimated weight of this robot is over 100lbs, making it nearly impossible to fit in a standard car. To

make the robot better suited to the home environment it would have to be smaller, lighter, and more

maneuverable. To further its suitability, a weight limit of 50 pounds was imposed.

A smaller chassis design allows the robot to maneuver easily in the home and seem less

threatening to the end user. The design has significantly less interior space than other designs, therefore

internal module space is not included in the design; additional components can be attached to the

upper surface of the robot where additional power and data connections are available. Modules can be

attached using a through-hole plate. The design includes the ability to collapse the super structure

allowing the robot to fit in most vehicles. The design also reduces the need for custom manufacturing;

only motor mounts and wheel hubs will need custom made. This allows the robot to be more easily

assembled using off the shelf, commercial parts. The ride height of the robot is a critical factor in

designing the chassis. The requirement of four inches of ground clearance force the motor mounts to

join the front and back of the chassis. The final design fits all of the requirements set for it and provides

space for all of the robots components.

The designs wide folding section is made smaller to make the robot appear less threatening and

reduce the chance that it will hit obstacles. This change drastically changes the profile of the robot and

the amount of space for the robot’s vision sensors. The reduced space poses a risk to the vision sensors

since they could be damaged by impact with the chassis. The design change requires additional parts to

be ordered, but parts are available to temporarily secure the folding section. These temporary supports

are less stable than hoped, yet the system is stable enough for testing to proceed.

3.3 Shopping Cart Module
 The shopping cart module is designed to allow PARbot to tow a shopping cart. The module is

intended to adjust to fit most shopping carts in use today. It is designed to be adjusted to the correct

height by the user, placing the sloped side of the hooks such that the robot will lift the cart when it

backs up. The robot can then be told backup using the touch interface. To release the cart when the user

is done shopping two handles can be loosened to release the rotary breaks.

3.4 Onboard Electronics
The onboard electrical system of PARbot runs off a single 24 volt battery. Onboard DC-DC

converters are employed to provide the lower voltages necessary to run the onboard computer,

network router, and various sensors for navigation in interaction with the environment. USB cables

relay digital sensor data to the onboard computer for processing. The Simultaneous Localization and

Mapping (SLAM) algorithm utilizes a point cloud of data to recognize obstacles and generate a map of

showing the safe locations for the robot in its current environment. Various types of cliff detection

 36

sensors are used to offset the flaws inherent to a single sensor type, providing more accurate data to

prevent accidents.

3.4.1 Battery Selection

Battery selection is a very important part of building any mobile robot. The battery has to have a

good ratio of power capacity to weight. A mobile robot needs a large amount of power available in

order to operate for extended periods of time while staying light enough to move itself and power any

extra systems on the robot. Weight is critical when a robot can brought with someone by putting it in

their car. Normal high capacity car batteries are typically lead-acid; these batteries are very heavy.

Lithium Polymer batteries are a new, lighter technology which can be high capacity and are substantially

lighter than their Lead-acid counterparts. The lighter weight is attributed to the use lithium and polymer

to hold the electrical charge, rather than of lead.

The PARbot team decided to use a Lithium-Polymer battery because of the lower weight to

power ratio that the batteries have. The battery selected was purchased from the AA Portable Power

Corp and has a rated voltage of 25.6 volts and a 20Amp Hour capacity. The total weight of the battery is

9lbs and 11.8 Oz; a comparable lead acid battery would weigh around 25 Lbs. [40]

3.4.2 Motor Selection

When buying electric motors, there are two choices on types of motors, brushed or brushless

motors. A brushed motor has two or more carbon "brushes" on the inside of it; these complete the

circuit and cause the motor to spin. A brushless motor instead uses a rotating magnetic field to generate

the spin of the motor. A table of advantages and disadvantages is shown in Table 1.

TABLE 1: BRUSHED VS BRUSHLESS

Brushed

Brushless

Pros Cons Pros Cons

Easy two wire control Maintenance required

due to brushes

Less maintenance due

to absence of brushes

Higher cost

Brushes can be

replaced

Poor heat dissipation High Efficiency Control is complex due

to the use of Hall

sensors

Low cost Lower speed range due

to brush friction

High power out to size

ratio

Controller is expensive

 High noise Low noise

The original plan for the robot was to find a brushless motor that would have all the required

torque. After some research it was determined that an off the shelf brushless motor was not an option.

Brushless motors with numbers that meet the project specifications are only available through custom

manufacturing. Therefore it was decided to move to a brushed motor, the ease of acquiring and ease of

control were the main factors that pushed towards the change. The change to a brushed motor means

that the robot will periodically need brushes changed, but the lower motor cost would offset the future

costs.

 37

3.4.3 Voltage Converters

To support any future modular additions to the robot, several different voltages will be available

to use. The decided upon voltages are 3.3, 5, and 12 volts, these are common voltages among sensors

and motors. These voltages will be provided by the main 24V battery through different transformers.

The 3.3 volt transformer will output 3.3 volts at 5 Amps. The 5 volt transformer will support 3A out, and

the 12 volts will be supplied at a maximum of 20A. The full spec sheets for these transformers will be

available in the appendix.

3.5 Onboard Computer
The onboard computer is responsible for handling all of the processing, control, and interaction

functions of the robot. It must be able to interpolate all of the sensor data coming in, perform SLAM,

path planning, user tracking, keep track of user commands, and any other functions that future modules

may add. Additional processing power is also budgeted for unforeseen additional components or

processing needs in the future. The first option that was considered was an Intel Atom D2550 based

system provided by the Cornell Cup.

The Cornell Cup rules require that a specific computer system be used. This system has an Intel

Atom D2550 and an Atmel FPGA onboard. Due to the sensors being used, the FPGA cannot be used as a

sensor interface without the addition of a complex daughter board. Rather, an Arduino board (described

previously) is used for analog sensor interfacing and USB connections are used for digital

communications. This sensor connection and programming plan requires that the processing be done by

the Atom. Tests of the Atom's processing power show that it delivers about 350 Megaflops of

performance. Other tests show that streaming data from the PrimeSenses and processing the data is not

possible with the limited processing power of the Atom board. Additionally, when running the six

processes needed to use the sensors and convert the data to lasers scans the Atom was limited to about

75% total CPU usage. This stems from the single threaded implantation of the depthimage processing

libraries. Although an openMP implementation was investigated the underlying memory management

was not suited to openMP’s shared memory model resulting in unresolved stability issues. More over

the laser scan data produced by the Atom was delayed by approximately half a second under ideal

condition, reduced depth image size and a high percentage of frame drops. This meant that even if the

all of the other code needed for the robots operation could run on a single thread core, since the Atom

contains two Hyper-Threaded physical cores, its decisions would be out of sync with the real world. Such

a delay could cause the robot to cover two body lengths before even getting data informing it of an

obstacle. A likely outcome of this combined with the PrimeSenses dead zone, an area about 30-40

centimeters in front of each sensors that cannot be reliably observed, is that the robot would run into

any static first observed from less than a meter away. Dynamic obstacles such as people would move at

high enough speeds relative to the robot to that there could be no certainty of avoidance.

The designed onboard computer uses an Intel core-i7-4770K Haswell processor with Intel's Z87

chipset. An ASUS Impact VI mini-ITX motherboard is used to provide improved voltage control and

power efficiency. Voltage control is necessary to ensure that fulminations in the supply voltage due to

components due to other components turning on or off do not brown out or damage the processor.

Eight GB of 2400MHz DDR3 ram is used by the system which provides enough space and speed for the

 38

system. A Zalman Reserator 3 Max CPU cooler was considered to keep the robot watertight, but when

design changes allowed for sufficient airflow the stock cooling system was left in place. Tests show that

the i7-4770K reached approximately 200 gigaflops when running Intel’s Linpack test or about 570 times

faster than the Atom processor. Through testing, this system has shown that it is capable of processing

the necessary vision sensor data as well without consuming significant processing resources.

3.5.1 Communication

On the PARbot system, there are several communication networks in used. A Local Area

Network (LAN) is hosted by an onboard router for communication between the main system computer

and a Human Robot Interface, and can provide additional connectivity as required. Sensors and motor

controllers will communicate with the main processor over USB, allowing for simple, standard

connections. Analog sensors will communicate over USB via an Arduino which serves as an Analog to

Digital Converter. Figure 11 shows a diagram of the data connections included in the robot.

FIGURE 11: DATA CONNECTIONS MAP

 As shown in Figure 11, USB connections make up the backbone of PARbot’s data

communications system. USB connections allow for simple addition and removal of components with

standardized, reverse compatible jacks and cables. Further, USB connections are digital, which provides

a small level of resistance to signal interference and can provide a limited amount of power to the

device that is connected, allowing some modules to be added though the connection of only a USB

cable. To ensure that there is not a data bottleneck, several USB buses are used to allow critical data to

flow more quickly.

 39

 In addition to the USB connections which are prevalent on the robot, several device specific

connections are present on the robot. A six pin wire is connected to the motor controller to provide it

with data from the two wheel encoders that are equipped to the robot. Three pin wires are used to

connect the analog interfaces of the cliff detection sensors (Power, Signal, and Ground) to an Analog to

Digital Converter on the Arduino Galileo boards. Ultimately, this information is communicated to the

computer via PARbot’s USB connections. Finally, Ethernet connection are made available for

connections to other computers and modules.

3.5.2 Networking

In the PARbot project, the inclusion on an onboard Ethernet network was needed to allow for

onboard communication for current features as well as future modules. Further, a wireless network

needed to be broadcast to allow for communication with the robot during testing without a tether. This

wireless network could later be used for incorporating external modules as well. Router selection for

the project was based on available gigabit Ethernet ports and availability of high speed, multi-bandwidth

Wi-Fi support. The router selected was a Western Digital My Net N900. The router allows for the use of

multiple computers and the connection of the onboard user interface. It also allows for data to be

streamed from the robot to external computers for debugging and monitoring.

3.5.3 Analog to Digital Conversion

While some sensors communicate over the robots' network via Ethernet or USB, other sensors

output an analog voltage containing the data. In order to interpret and use the information from these

sensors, a system to transform these analog signals to a digital format is needed. To achieve this Analog

to Digital Conversion (ADC), an Arduino is in use on the robot. The Arduino is a small microprocessor

with many analog input ports and an easy to use programming library. Each analog sensor will be

connected to one of the Arduino's analog inputs and the digital values are output over the USB

connection to the main processor. There is also a ROS stack made for interfacing with the Arduino over

USB, removing any potential communication issues. With these features it is simple to add additional

sensors to the robot without the need for additional conversion hardware.

3.5.4 Sensors: Navigation

In order to ensure that PARbot's navigation ability operates at the necessary level of accuracy to

ensure safe and reliable operation, several sensor configurations were considered. These sensors are

necessary to ensure the robot's navigation is both robust and safe. The operating environment for

PARbot means that the robot will be around numerous humans in addition to the user and the ability to

avoid them as well as static obstacles while performing SLAM is addressed through these sensors.

3.5.5 Inertial Measurement Unit (IMU)

The 9DOF Razor Inertial Measurement Unit (IMU) operates at 3.3VDC and incorporates three

sensors - an ITG-3200 (MEMS triple-axis gyro), ADXL345 (triple-axis accelerometer), and HMC5883L

(triple-axis magnetometer) that provides nine degrees of inertial measurement. The outputs of all

sensors are processed by an on-board ATmega328 chip and output over a serial interface. This enables

the 9DOF Razor to be used as a very powerful control mechanism for autonomous vehicles, UAVs and

image stabilization systems. The board comes programmed with the 8MHz Arduino boot loader

(stk500v1) and firmware that demos the outputs of all the sensors. The serial TX and RX pins are

 40

connected with a 3.3V FTDI Basic Breakout which transfers data serially at 57600bps. The Arduino IDE

used to program your firmware code onto the 9DOF using the Arduino Pro or Pro Mini (3.3v, 8 MHz)

w/ATmega328' as the board. ROS C++ and Python packages are available online that publish the yaw,

pitch and roll data from the sensor to the terminal through a USB connection and perform simulation

presenting a graphical representation of the orientation of the IMU. [39]

The IMU unit is used on PARbot to supplement the odometry data received from the wheel

encoders. The IMW will also provide data on any slope the robot is climbing, which is necessary for

computing the transformations used to generate a map of the operating environment.

3.5.6 Cliff Detection

One of the problems that a robot faces in an environment made for humans are cliffs. These

could be actual cliffs or much simpler cases such as a curb or stair. If the robot is not given appropriate

sensors it will not be able to interpret its environment. To make sure that the robot will not miss a set of

stairs a series of sensors are added, these are called cliff detection sensors. To have very accurate data

two different types of sensors are to be used. The first sensor is an Infrared Sensor (IR), this sensor uses

infrared light to determine distance. Because this sensor uses light it is susceptible to problems due to

reflectivity of surfaces. To counteract this problem the IR sensor will be used in conjunction with an

ultrasonic range finder. This sensor uses ultra-sonic sound to determine distance. By using both of these

together the robot will have a much more accurate indication of its surroundings.

The cliff detection system on PARbot uses eight sensors arranged in pairs, one infrared paired

with one ultrasonic sensor. By arranging the sensors in pairs, the likelihood of a sensor not recognizing a

risk is mitigated through the inclusion of a sensor with different features. A distance of 1.5 inches

separates the leading and trailing pairs of sensors to prevent gaps, such as those found at the entrance

to elevator doors, from registering as a cliff.

 41

FIGURE 12: CLIFF SENSOR MOUNT

 Figure 12 shows an individual cliff sensor mount with the pairs of cliff sensors mounted. One of

these assemblies is mounted in front of each of the main drive wheels. In Figure 13 provides a

theoretical overview of the complete sensor arrangement at the front of the robot with the distances

between sensors labeled.

Infrared
Sensor
Set#3

Ultrasonic Sensor
Set#3

 Ultrasonic
Sensor
Set#1

Infrared Sensor
Set#1

(Distance of 1.5 inches between
the two sets)

(Distance of 1.5 inches between
the two sets)

Infrared
Sensor
Set#4

Ultrasonic Sensor
Set#4

Ultrasonic
Sensor
Set#2

Infrared Sensor
Set#2

(Distance of 2 inches from the
front plate of the robot base or 7

inches from the center of the
wheel)

(Distance of 2 inches from the
front plate of the robot plate or 7

inches from the center of the
wheel)

Robot Base

FIGURE 13: CLIFF SENSOR ARRANGEMENT

 42

Before the sensors can be used they must be properly calibrated. The Arduino program maps

the value from the analog voltage to an appropriate value for the sensor connected; this value is then

returned in inches. IR mapping is accomplished through the testing of various physical conditions to

collect sensor values for different readings. A best fit equation is then applied to the data. The resulting

equation is:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖𝑛) = 6202.3 ∗ 𝑆𝑒𝑛𝑠𝑜𝑟 𝑉𝑎𝑙𝑢𝑒−1.056

This equation has an R2 value of .9914 which means that the equation represents the actual data with a

99.4% accuracy rate. The data used to compute the equation can be seen in Table 2. The actual and

best fit data are plotted together for comparison in Figure 14. The equation is implemented in the

Arduino code. The data is transmitted via a USB connection to the computer where the ROS node uses

this data.

TABLE 2: RECORDED CLIFF DETECTION DATA

Sensor Data Distance: Measured (Inches) Distance: Best Fit (Inches)

502 8 8.72187069

434 10 10.17099907

379 12 11.73572065

329 14 13.62680059

283 16 15.9759353

257 18 17.68737528

229 20 19.9786666

213 22 21.56671045

199 24 23.17202136

139 36 33.84769818

91 48 52.94257476

 43

FIGURE 14: CLIFF DETECTION CALIBRATION BEST FIT GRAPH

The cliff_detection node publishes one of four states that are derived from the values of the

four Infrared sensors and four Ultrasonic sensors: safe, slowdown, stop, and arbitrary. The logic for the

program is such that if either one of the sensors from a set of parallel combination of an Infrared sensor

and an Ultrasonic sensor gets triggered then that portion of the robot or that set would put the robot in

a state of possible cliff or edge. Figure 13 represents the configuration of the sensors with respect to the

robot when seen from a top view with the sensors being in from of the robot.

The minimum distance for a reading to be considered as a cliff or an edge is 12 inches vertically.

The minimum value for cliff distance was chosen both analytically and by conducting research. The cliff

mounts are mounted at a height of 10 inches from the ground and therefore differences in cliff reading

of 2 inches or more would be treated as a cliff or edge. The program makes use of a switch case to

interpret cliff states. Table 3 is a truth table for the output from each pair of sensors and Table 4 shows

the overall robot state as determined by the combination of the 4 pairs of sensors.

TABLE 3: CLIFF DETECTION PAIR VALUE COMPARISON

Infrared Sensor Ultrasonic Sensor Set Value

0 0 0

0 1 1

1 0 1

1 1 1

 44

Note: A value of 0 signifies that the sensor has not been triggered and a cliff/edge has not been

detected yet. A value of 1 signifies that the sensor has been triggered and a cliff/edge has been

detected.

TABLE 4: CLIFF DETECTION STATES

In order to draw specifications on the mounting plate for the cliff sensors and get the minimum

distance needed for the robot to stop, a test mount was developed and used, as shown in Figure 15. The

sensors were placed at different mounting points in the series on the mounting plate and an appropriate

stopping distance was obtained and recorded by using the odometry data from the odometry package

while the sensors were triggered (when a depth of the cliff distance value of a minimum of 12 inches or

greater was recorded). The odometry data was obtained by first supplying a stop signal to the motor on

a continuously flat surface to make sure that the robot doesn’t tip over a set of staircases when first

testing it and the stop distance in this case was recorded to be 7 inches. This minimum stopping distance

value was then tested on a cliff/edge and the value was validated to be 7 inches from the center of the

wheel. This value was used a base line for the mounting points and therefore the rear mounts were

mounted at a distance of 7 inches from the center of the wheel while the front set of sensors were an

additional 1.5 inches from the rear sensor in order to account for any surfaces that bear similar

resemblance to the gorge between the floor of a building and the building elevator while entering or

exiting an elevator which would be one of the most common scenarios associated with following ADA

Guidelines.

Set 4 Set 3 Set 2 Set 1 Total State

Left-Rear Left-Forward Right-Rear Right-Forward
0 0 0 0 0 Safe
0 0 0 1 1 Slowdown
0 0 1 0 2 Arbitrary
0 0 1 1 3 Stop
0 1 0 0 4 Slowdown
0 1 0 1 5 Arbitrary
0 1 1 0 6 Arbitrary
0 1 1 1 7 Stop
1 0 0 0 8 Arbitrary
1 0 0 1 9 Arbitrary
1 0 1 0 10 Arbitrary
1 0 1 1 11 Stop
1 1 0 0 12 Stop
1 1 0 1 13 Stop
1 1 1 0 15 Stop
1 1 1 1 16 Stop

 45

FIGURE 15: TOP DOWN VIEW OF CLIFF DETECTION TEST PLATE

TABLE 5: CLIFF DETECTION TEST PLATE WIRING

Sensor – Wire Color Pin Configuration

Infrared – Red 5V on Galileo

Infrared – Black GROUND on Galileo
Infrared Sensor 1 –Yellow Analog Input pin A0 on Galileo
Infrared Sensor 2 –Yellow Analog Input pin A1 on Galileo

Ultrasonic – Red 5V on Galileo
Ultrasonic – Black GROUND on Galileo

Ultrasonic Sensor 1 –Yellow Analog Input pin A2 on Galileo
Ultrasonic Sensor 2 –Yellow Analog Input pin A3 on Galileo

Table 5 contains a table reference for the connector wiring for this sensor assembly. The

electrical connections on each of the two Galileo’s is such that all the 5V supply wires/ red wires for the

two Infrared and two Ultrasonic sensors are soldered into one connection to the 5V supply port on the

Galileo and all the GROUND wires/ black wires from the two Infrared and the two Ultrasonic sensors are

soldered into one connection to the GND port on the Galileo.

The sensors were mounted to the system and tested for proper functionality. The robot passed

all the tests as expected. The cliff readings for various pre-recorded surfaces were accurately depicted

by the readings published by the cliff_detection node on the terminal and the robot followed the

routine for safe motion, slowdown, stop and arbitrary states as expected. Final design of the sensor

mounts is shown in Figure 16.

 46

FIGURE 16: CLIFF DETECTION SENSOR MOUNTS

 47

3.5.7 Motor Controller

A motor controller is a piece of hardware that manages the amount of current going to each

motor. This in turn controls the speed and torque that the motor outputs. For safety reasons having a

robust motor controller is imperative on this project. If the motor controller is not properly configured

or wired, it can have disastrous effects. The motor controller chosen for our application is the Roboteq

MDC 2230, pictured in Figure 17.

FIGURE 17: MDC2230 MOTOR CONTROLLER

This controller was chosen for several main reasons. The first reason was because of this

controller’s ability to handle two channels of motor voltage. This saves on space inside the robot

because one motor controller can handle the two motors of the robot. Secondly was this controller’s

ability to automatically process Encoder data and perform the math for a PID (Proportional Integral

Derivative) loop control. This simplifies the programming of the motion of the robot. Thirdly the

controller had readily available software that interfaces with ROS from a previous project. And finally,

the controller is rated to work within the currents and voltages of the chosen motors.

 48

3.4.11 Wiring diagram

The robot is powered off of its single 25.6 volt battery. This voltage is fed into several

transformers to create the appropriate voltages for powering the system. These different voltages are

passed into a modular DIN rail voltage distribution system. After that they are sent to specific

components. Figure 18 is a diagram of where each voltage is used.

FIGURE 18: POWER CONNECTIONS MAP

 49

3.4.12 Safety features

The components within the robot need to be correctly protected to ensure the safety of the

user and to prevent damage to the robot. The first step in the overall safety system of the robot is a

large 120A switch fuse, shown in Figure 19. This switch will trigger a fuse to break connection when over

120 amps is drawn through it.

FIGURE 19: 120 AMP SWITCH

The second step comes from the internal circuitry of the battery. There is a circuit that will cut

off current if 40 amps is pulled from the battery. The next component is an emergency contactor switch.

This switch is designed to prevent high current arcing inside of a switch. It achieves this through a

vacuum, this vacuum means that are no particles for electricity to arc through. This switch is in place for

a worst case scenario where no fuses are triggered and is shown in Figure 20.

FIGURE 20: GIGAVAC CONTACTOR SWITCH

After passing through the contactor switch, the 24 volts from the battery is passed into a fuse

board. This board has several slots for fuses, these fuses lead to the voltage transformers. These fuses

were designed to safeguard the robot in case of an overdraw of current. If a regulator draws more

current than the fuse allows for the connection will break. To minimize work required by users the fuses

are auto resetting. After around 10 seconds of rest the fuses will reset themselves and be ready to

conduct again. To prevent damage to the motor controller a Transient Suppressing Diode (TVS) is

 50

installed in the circuitry. A TVS prevents a large voltage spike from damaging components by absorbing

the energy contained in that spike.

These components are all in place to prevent damage to the robot internally, but if there is a

problem with programming which causes the robot to drive erratically there has to be a way to quickly

stop it to prevent potential damage and injury. To remedy this situation the robot has a large emergency

stop built in, as shown in Figure 21.

FIGURE 21: EMERGENCY STOP BUTTON

This button, when hit, will shut off all power on the robot. To re enable the robot one must twist

the button to release it. It is easy to access and will quickly stop the robot in case of the aforementioned

situations.

3.6 Graphical User Interface (GUI)
A GUI was developed using Java to allow for real time interaction between the user and the

PARbot system. This GUI provides the user with several functionalities, including a software emergency

stop, a power button option, a button to activate a tele-operation mode and a button to pause and

resume autonomous follow mode. Figure 22 shows the completed visualization with the buttons in

their default state.

 51

FIGURE 22: TOUCHSCREEN GUI

 The GUI is built as a Java application that accomplishes the specified function by calling a batch

file designed to send the appropriate commands to the PARbot system to interpret the user input and

react accordingly.

3.7 Localization and Mapping: Navigation Sensor Selection
In order to perform Localization and Mapping, data needs to be recorded to form an image or

map of the environment. The most common way to get this environmental data is to use vision sensors

to get laser scan data which tells the sensor about the objects around it. This information can then be

used to form a map of the surrounding environment.

Vision sensors for robotic bases can be separated into two main categories: cameras and Light

Detection and Ranging (LiDAR). Each system has positive and negative attributes. Cameras provide an

image that can be used to generate a three dimensional array of points, where each point has a

horizontal and vertical position as well as a distance value (measured from the camera). LiDAR, by

comparison, provides a single row of data points evenly spaced based on the angular resolution of the

selected unit. Data collected from a LiDAR unit consists of an array of distances. To compute the

horizontal location of the point, the angular resolution of the unit is multiplied by the point’s position in

the array. The vertical position of the data points is fixed based upon the placement of the scanner on

the robot. A point cloud similar to that of a camera can be generated using a LiDAR unit placed on tilt

unit.

The two units considered for use in the PARbot vision system were the PrimeSense and a

Hokuyo LiDAR unit. The Hokuyo LiDAR's main benefit is that it directly provides a laser scan and requires

no extra computations to provide usable data. However, the downfall of the Hokuyo LiDAR is that it only

provides data on a single level. This means that certain obstacles such as tables are very hard to detect.

 52

The PrimeSense, however, provides both a picture and a depth image. There is built in ROS support

allowing the provided depth image to be converted into laser scan data while taking into account

obstacles at all visible levels of the camera.

The PrimeSense was selected to be used on the PARbot for Localization and Mapping for its

increased versatility. Using the PrimeSense allows information from a wide range of vertical heights to

be collected simultaneously, providing a cleared view of the robot's surroundings without the need for a

pan-tilt unit. The image data can also be used for user tracking by detecting a body image within the

array of data.

3.8 Tracking System
 Tracking the user is critical to the functionality of PARbot. Color target and QR code tracking

were considered by the team. Color tracking was implemented using a Logitech USB web cam, but this

system had difficulties recognizing colors in certain lighting conditions. Florescent lights caused too

much glare and most of the data in the image returned by the camera appeared to be white. This made

tracking a color target, to square color blocks next to each other, extremely unreliable. For these

reasons QR code tracking was pursued.

 QR codes or quick recognition codes are a form of 2 dimensional barcode developed by

Japanese car makers. These codes are designed to be read from any orientation without compromising

the quality of the scan. This feature makes these codes perfect for this kind of application, its designed

to stand out in most environments. Because QR codes are relatively easy to identify. QR codes have well

defined proportions making it relatively simple to determine the size or location of the QR code given

the other. This can be done using a two dimensional image, if the size of the QR code is known then the

position and alignment markers can be used to determine the relative size of the code. Determine the

relative size of the code can give the distance to the code, although cameras distort the image it can be

corrected if the distortion is known. For this reason any camera used to do three dimensional QR

tracking must be calibrated so that its distortion factors are known.

 Tracking QR code tracking system was implemented using the Visp Vision library. This library

was customized to allow for the use of multiple cameras. With the ability to use multiple cameras in

place, a combination of Prime Sense and Logitech USB cameras could be used. The Logitech camera is

capable of providing 1920X1080 video for QR tracking. This was not done because it images of that size

could not be processed fast enough to be useful, instead a 1280X720 video stream is used. The QR code

that is intended to be attached to the user’s wheelchair is approximately 8”X8”. The size of the QR code

makes it easy to recognize while not being so large as to be cumbersome.

3.9 Software
The software system for PARbot runs on a Linux operating system: Ubuntu 12.04. This version of

Ubuntu was selected for multiple reasons. First, this version is the latest long-term support release,

meaning that it will continue to receive updates and bug fixes until the next long term support version.

Ubuntu 12.04 is also very stable, with many of the bugs fixed and many resources pertaining to the

Operating System (OS) are available online.

 53

PARbot utilizes Robot Operating System (ROS) on top of the operating system. ROS has many

built in packages of code to assist with the given development tasks. The built in ROS nodes execute

code and publish information to "topics" which can then be accessed by other nodes and packages. This

allows for easy communication between onboard systems. ROS also features launch files, which can

start multiple "packages" and "nodes" with assigned parameters. Launch files allow for starting all the

necessary code for PARbot using a single command. The most recent version of ROS, Hydro Medusa, a

long term support version has been chosen for this project. ROS Hydro is recommended to run on

Ubuntu 12.04.

3.9.1 Path Planning Software Development Process

As is the case with most software systems that designed and implemented, testing takes place in

phases; adding to the software a little at a time allows for bugs to be found and dealt with earlier and

more easily. This is no different with the path planning system used on PARbot.

Initially, the path planning software was written as a Python script. The use of Python allowed

for simpler implementation than its equivalent in C++. This in turn allowed for the implementation’s

potential functionality to be tested quickly. Upon completion of a Dijsktra search algorithm and

occupancy grid interpreter in Python, a simulated environment was used for testing. The use of Gazebo,

a simulator in ROS, the provided Willow Garage world (a Gazebo environment representing one floor of

an office building) and a simulated robot (the Clearpath Husky) allowed nearly all aspects of the path

planning system to be tested in a virtual environment where more variables can be controlled. The

Husky can be seen operating in the simulated Willow Garage environment on the right side if Figure 23.

The left side of Figure 23 shows the resulting map from driving through the environment. The red lines

represent the simulated laser scan data and the yellow arrows depict a planned path.

FIGURE 23: SIMULATED DEVELOPMENT ENVIRONMENT

 54

The path planning system’s results were as desired, however the performance characteristics of

the software were not sufficient for a robot that would need to update its path in order to follow the

user. The long execution times were exponentially related to the size of the map being navigated; with

times reaching into minutes for execution of moderate sized maps (512 x 512 elements, where each cell

had a resolution of 20cm x 20cm). Much of the delay was due to the memory access that Python uses to

access the values of the imported occupancy grid and create a list of the searchable graph nodes. As a

result of the long run times, it was decided that the code would be re-implemented using C++, a more

efficient coding language with better retrieval and storage times for lists and vectors of data.

The same software structure was implemented using C++ to create a faster running path

planning algorithm. This conversion saw a great improvement in the time taken to convert an occupancy

grid: now about 3 seconds to convert a 512 x 512 element grid. However, the Dijsktra search algorithm

execution time was not greatly impacted by change in execution language. Search times still ranged

from 20 seconds to several minutes. As a result, an A* algorithm with a straight line heuristic function

was implemented in C++ for comparison. The same node structure was using, due to the modular

implementation of the code structure. When testing, the total run time for the path planning system

remained under 4 seconds, a condition deemed acceptable by the PARbot team.

The use of simulated environment testing was used after successful implementation of the path

planning system with a reasonable run time. In order to map the environment that the robot was in,

Hector SLAM was utilized. This package, a freely available ROS software package would map and localize

the robot in its environment. During simulated testing, the Hector SLAM software worked well, creating

an accurate, clear map as well as publishing the location of the robot in the “map” frame for easy

access. However, when testing with Hector SLAM began in a real environment, the node crashed

whenever the robot would move and the laser scan data would not integrate properly with the SLAM

unit. As a result, alternatives were considered.

Ultimately, the use of gmapping, a ROS mapping software package was found and included.

Testing returned to simulation to determine its viability. The map generated by the gmapping node was

not as crisp as that of hector slam, but the data provided was accurate enough to navigate with and was

still quite similar to the actual environment. When used in the real world environment, the system did

not crash and integrated well with the existing sensors, unlike Hector SLAM. Through tuning of the

odometry system and the map resolution, a map representing the robot’s actual environment could be

generated reliably.

After successfully running gmapping in a real world environment, the path planning code was

run on the map generated by gmapping. By setting fixed target and using the robot as the start location,

the system was tested to see if how a path would be planned while the map was being built. The

transition from simulation to real world environment was successful with the A* search and path

creation operating as desired without need for any modifications. Table 6 shows the time required to

process the occupancy grid and run a search algorithm in both Python and C++; the advantage

associated with C++’s speed is evident.

 55

TABLE 6: CODE RUNTIMES FOR 512X512 ELEMENT GRID

Programming Language Occupancy Grid
Generation

Dijkstra's Algorithm A* Algorithm

Python 16 minutes > 5 minutes N/A
C++ 3.5 seconds > 5 minutes < 3 seconds

3.9.2 ROS Software Structure

All code running on the PARbot system operates within the ROS-Hydro environment in the form

of Nodes. Each Node is made up of one or more source files written in C++ or Python and serves a single

purpose from planning a path to mapping the environment to simply publishing a target. This structure

allows for simple communication between programs using a topic based system as well as a modular

design that facilities changes in software and hardware. An overview of our software can be seen in

Figure 24.

FIGURE 24: SOFTWARE FLOW OVERVIEW

3.9.2.1 Parbot_Vision.launch

The Parbot_vision node launches the three PrimeSense cameras and utilizes a modified version

of depth-image-to-laserscan to take the three pixel clouds and turn them into laser scans. The node then

merges the three laser scans into a single scan with transform data to be used by SLAM. Each camera is

 56

mounted upside down to the tray surface of the robot, so when the scan data is received, it must be

reversed before it can be used. Additionally, the side cameras are mounted at approximately 60 degree

angles to provide roughly a 180 degree field of view. The final mounting configuration is shown in Figure

25.

FIGURE 25: PRIMESENSES MOUNTED ON PARBOT

 Additional transformations to the data are used in the ROS framework to put all the scan data

in the same reference frame. The transformation data relationship as displayed in a virtual environment

can be seen in the left side of Figure 26. The red lines represent the direction that each PrimeSense is

facing. The red and green coordinate frame that appears behind the camera represents the base_frame

of the robot. The right side of Figure 26 shows the implementation of this arrangement using a

SolidWorks model, where the black rectangles represent the PrimeSenses.

 57

FIGURE 26: PRIMESENSE TRANSFORMATION DATA AND REPRESENTATION

After depth image data from the PrimeSenses is merged, the data can be used to visualize the

operating environment by displaying the three dimensional point cloud of data that is being generated.

An example of this data is shown in Figure 27. The colors associated with the data points correspond to

how close the point is to the camera, with red being the closest and purple being the farthest away. In

Figure 27, the series of red, green, and blue coordinate frames represent to robot's and camera's

positions.

Robot Position

FIGURE 27: DEPTHIMAGE DATA PRODUCED BY PRIMESENSES

 58

3.9.2.2 PARbot_pose_transformer

In order for the robot path planning and motion planning to operate as desired, the robot's

current position must be made available in the "map" frame of reference. This transformation is

accomplished in this node using a transform_listener. A "pose" (ROS type that contains a Cartesian point

and a Quaternion orientation) with all fields equal to zero in the "base_footprint" frame is created to

represent the location of the robot in its own local frame of reference – a location of all zeros relative to

the robot centers the robot on itself. Next, the transform_listener is used to convert from the pose's

current coordinate frame (base_footprint) to the map’s coordinate frame where it can be used for

navigation in a global sense. This pose is published to the "robot_pose" topic so it can be accessed by

any node that needs it.

3.9.2.3 PARbot_search

Path Planning for the PARbot project is run in the PARbot_search node, implemented using C++.

Here, an occupancy grid is read in from the map topic and processed into a series of GraphNodes

representing the areas that are not marked as obstacles. A GraphNode is a custom class that contains

information regarding points on the map, including their Cartesian coordinate location and the

estimated cost to navigate there. The GraphNodes can be explored using a search algorithm; an A*

search with a straight line distance heuristic is currently being used. The system is designed so a

different algorithm can be implemented in the future if such a need arises.

To create GraphNodes, the X and Y coordinates of the node to be created are determined by

using the map-metadata that accompanies the occupancy grid. This includes information such as the

width, height (in number of cells), and resolution (meters per cell) of the map. By iterating over the map

data, these are used to assign a coordinate in the map frame. This process occurs each time a new map

“message” is published or as quickly as possible, depending on the current processor load. Care was

taken to ensure that the code to convert an occupancy grid only relied on information gathered from

the map itself so the code can be used with maps of varying sizes and resolutions.

Upon completion of generating a series of GraphNodes, the start and target locations (provided

as X,Y points) are identified as specific GraphNodes for use in an A* search. The start and targets are

variables specific to the PARbot_search code that are updated using ROS subscriber functions. For

example, the start location is always received from the topic publishing the robot’s current location and

the target is the location of the user (with some built in personal space to ensure the robot does not hit

the user). If either GraphNode is not defined, the closest GraphNode to the desired location that does

exist is selected. Next, the complete list of GraphNodes as well as the Start and Target GraphNodes are

passed to the search algorithm. The result is processed into a series of poses (a ROS type containing a

coordinate for location and quaternion for orientation) which make up a Path message. This message

contains the series of waypoints that the robot is intended to follow and is published to the parbotPath

topic for use with motion planning.

3.9.2.4 Target_sim

In order to test the path planning in simulation and in the real world a target simulation node

was required. In its final form the robot gets the target that it needs to navigate to from the target

tracking node. To test the path planning separately, a mock target needs to be provided. This node

 59

simply publishes a target pose message to the “Tracking/object_position” topic; the same topic that the

target tracking node publishes to. For simplicity, this pose message is in the “map” frame so that no

transforms are required.

3.9.2.5 PARbot_gmapping.launch

Generating a map of the operating environment is necessary to navigate safely to the target

location. The ROS navigation stack contains a mapping tool called gmapping. This operation uses laser

scan and odometry data to generate map of the environment. The map is made up of cells which are

black (occupied / obstacles) or white (open space). This launch file opens the gmapping code with the

parameters desired for the PARbot application; this includes setting the desired resolution of the map

and the transform that represents the robot’s chassis. The gmapping system publishes and occupancy

grid containing map data to the map topic as well as the “map to odom” transformation which relates

the robot’s location to the map being generated.

3.9.2.6 Motion Planning

Motion planning for PARbot is intended to ensure that the robot moves safely along its intended

path. This includes making the robot move smoothly even if the path is not smooth, while avoiding

obstacles that may not have been added to the map. This means that motion planning must be fast and

accurate when calculating PARbot’s path. To accomplish this task it was decided to look at how others

had solved these problems. A paper from the University of the Armed Forces in Munich showed a

plausible solution, tentacles [41].

Tentacles are paths that represented by circular arc segments, these segments can be followed

by the robot by following constant linear and rotational velocity. For use with PARbot’s motion planning

the tentacles would be calculated for the next second. Figure 28 shows a subset of the tentacles that

PARbot will test to determine what immediate direction it should travel.

FIGURE 28: FIVE VELOCITY SETS WITH TEN TENTICLES EACH

 60

For each tentacle a collision matrix is generated. This matrix is based on a grid with an origin at

the robots turning center. To generate these matrixes the paths had to be broken up into many steps,

each the length of a grid cell. At each step the predicted orientation and position of the robot was used

to project a representation of the robots footprint at that point. This meant that many points

overlapped; additionally at small grid sizes this process is extremely computationally expensive. Because

of these issues all of this was done during initialization. The advantages of this system are clear, since

the robot only has to find one path pre-calculating many options makes the planning faster. Figure 29

shows the relationship between the calculated tentacles (grey), the desired path (red), and the path

(blue) that the robot (here shown as a car) will take to reach its goal state [41].

FIGURE 29: EXAMPLE OF TENTACLE BASED MOTION PLANNING

To test each tentacle both laserscan and map data would be used. This data needs to be

converted to the same grid structure as the tentacles use. To do this handler objects were created to

convert these external messages into internal data structures that can easily be used to find the best

path. These handlers are designed to be reconfigurable if needed in other applications. The constructors

use optional parameters so that only the parameters that need to be changed are given. This

development method allows for easier reuse of code. A downside to this system is the increased

complexity of building. The CMake for the package includes many libraries that must be compiled before

the executables can be compiled.

Once the data has been converted to the correct format for motion planning it is used to

determine which of the available paths is the best option. To do this is scores each path, or tentacle,

that is safe on how closely it matches the path given by path planning, and how safe it is. Matching the

given path is done by finding the straight line distance from points on the given path to points on

tentacle. An example of selecting a tentacle to match a provided path can be seen in Figure 30.

 61

Determining safety is a more complex problem, in motion planning this is done by using and

internal cost map. This is handled by the cost_mapper object, it takes a set of points relative to the

robot and expands them using the curve shown in Figure 31.

FIGURE 31: COST CROSS-SECTION

After cost expansion is complete the path can be scored. This score is divided by the number of

points in the path, thus the score does not discriminate based on the length of the path. The impact of

the cost expansion is that the robot can find the center of things such as hallways and doorways, and

will keep a safe distance from any obstacles around it.

FIGURE 30: THE TENTACLE SELECTED BASED ON THE BLUE TARGET PATH AND THE PURPLE OBSTACLES

 62

 Motion planning is set to run at 10Hz, this means that each time a motion path is chosen it will

be revaluated nine times before it’s completed. This means that the robot has many opportunities to

ensure that the path it is on is a safe one. Another consequence of this system is that the robot will

reduce its speed as it approaches its destination. If PARbot is following a user the destination will be

constantly moving, this means that the PARbot will attempt to stay one second behind the user at all

times. This makes matching the users speed almost trivial.

3.9.2.7 User Tracking

 In order for this system to follow a user and assist them PARbot must be able to locate the user

and localize them on the map. Two different methods were considered to achieve this functionality:

tracking a QR code using the visp_auto_tracker, a part of the visp_vison ROS package, and tracking a

color pattern using a Pixy [42].

3.9.2.7.1 QR Code Tracking

 The first method of tracking implemented was tracking the QR code. Originally, a PrimeSense

was used for this, until it was realized that the camera in the PrimeSense had too low of a resolution to

be effective. The resolution of 640 x 480 made tracking QR codes at longer distances impossible. A

Logitech web camera, model C930e, with a max resolution of 1920 x 1080 was then utilized and proved

to have much better results. The web camera is run at 1280 x 720 instead of full resolution, however, as

running at full resolution quadruples the run time and only adds about 6-8 inches to the range. At 1280 x

720 resolution the approximate range is 8.2 feet.

 In order to track the QR code the visp_auto_tracker package was utilized. This ROS package uses

a camera to track a QR code by providing a ROS stamped pose message with the code’s location. This

stamped pose can then be transformed from the camera’s frame of reference to the map’s frame of

reference for user tracking. In order to target the QR code and get the proper distance, a model that

includes the dimensions of the code must be included. This information must be known to calculate the

distance of the code based on its registered size. The tracking code is run every time the camera

provides it a new image.

 There are two main drawbacks to this QR based tracking system. One, that the user would be

required to wear an unattractive QR code on their person, which to some users would be considered

unacceptable. The second major drawback is that this system’s range is highly dependent on the lighting

in an area, and would not function at all in the dark.

3.9.2.7.2 Pixy Tracking

The second method of tracking used was tracking an object using a pattern of colors that can be

easily detected by the Pixy vision sensor. Pixy can detect up to 7 different color signatures, which means

that objects can be detected by the pixy that bear a pattern of all the seven signatures. For Pixy has a

robust color filtering algorithm that enables it to easily identifying the color signatures and has a

resolution of 320 x 200. In addition, Pixy features a variety of configuration features like adjusting the

brightness, minimum saturation, hue spread, etc. that allows differentiating objects of similar color

signatures easy.

 63

In order to track a particular object, the signature resembling the object needs to be taught to

pixy and this is done by installing PixyMon software package which provides the tools to achieve this

task. The software has features that make it easier to teach pixy a particular object by simply taking a

picture of the object in its surrounding and creating a boxed area around the edges of the object and

pixy then detects the object in the frames from the continuous video feed of the pixy camera. The Pixy

vision sensor is connected to the Arduino microcontroller, as seen in Figure 32, which is programmed to

serially transmit all the detected blocks for the color signatures taught and their signature number, x, y,

width and height values in pixels to the ROS node that further interprets this data to estimate the

position of the object that needs to be detected.

FIGURE 32: PIXY CONNECTED TO ARDUINO MICROCONTROLLER

One of the problems that is faced while teaching pixy different color signatures is that

configuration parameters such as brightness cannot be applied to detecting every color signature and in

order to overcome this problem, the ROS node has been makes use of an algorithm that uses position

comparison of different blocks detected by the pixy to detect the set of blue and red block placed

adjacent to each other that resembles our object as shown in Figure 33.

 64

FIGURE 33: OBJECT TRACKING COLOR PATTERN

Practical experimentation resulted in the following relationship between X (horizontal), Y

(vertical) and Z (distance to the object) axes; at a distance of x units from the object, the frame is 2x

units wide and x units high and this was used to detect the x, y and z coordinates of the object in terms

of distance from the center of the camera. After the object has been identified the average pixel values

for the two color signatures or in certain cases one color signature is interpreted in terms of meters and

a stamped pose message is published stating the position of the object with respect to the center of the

camera and the axes following the right-hand thumb rule.

 65

4 Results
 The PARbot project took place over one academic year of study and resulted in the creation of a

modular robotic base as well as a working code base with features such target tracking and path

planning. The robot base itself is differential drive and is capable of travelling at speeds up to 2.5 meters

per second, or 5.5 miles per hour. The footprint of the robot 24 inches long and 27 inches wide, with a

low profile; the main component housing is 11 inches high. This small design allows the robot to have a

non-threatening presence in its operating environment. Finally, the robot has a foldable design which

allows it to be stored or transported in a small location.

 The software developed runs in a ROS-Hydro environment. The code developed provides

functionality for path planning and obstacle avoidance, with safety measures to prevent collisions.

Further, the cameras mounted to the robot allow the robot to generate a map of its environment.

4.1 Foldable
To allow for users to easily store and transport the robot, a folding feature was built into the

design. Figure 34 demonstrates the open configuration and closed configuration. Open is used for

having the robot navigate and move. Closed configuration allows for the robot to be placed inside a

vehicle. It also allows for the robot to be more easily stored in a home.

FIGURE 34: OPEN AND CLOSED CONFIGURATION

4.2 Modularity
The PARbot system features a modular design to allow for the robot to better meet the user’s

needs. Rather than over engineering a system that far surpasses the average user’s needs in an effort to

meet every potential user’s needs, the PARbot system is designed as a base platform that can have

individual modules added to fit the user, and only the user, needs. This is done through several design

decisions.

 66

4.2.1 Hardware

 Firstly, the robot features power connectors for the most common standard and hobby voltages

(3.3V, 5V, 12V, and 12V) to ensure that any new modules need to fit the user’s needs can be powered

onboard the robot. Figure 35 shows the pin out configuration of the waterproof power connection. The

robot also features eight USB 2.0 and three gigabit Ethernet ports that connect to the main computer.

With access to power and data adding new modules that communicate with the robot is simple.

FIGURE 35: POWER CONNECTOR PIN OUT

 In order to add these modules, though, they need to be able to be mounted the robot. To do

this, a through-hole plate with holes forming a one inch grid, is attached to the robot as seen in Figure

36. In the figure, the plate is being used to mount the Intel Atom Development Board which is a part of

the user interface module. In addition to a dedicated mounting area, the robot is made of extruded

aluminum, which features channels that are easy to mount to. This is especially helpful for modules that

may weigh a lot and would need more support.

 67

FIGURE 36: MOUNTING PLATE

 There is another feature of the extruded aluminum that is used for the frame of the robot.

Because of how the aluminum frame fits together it becomes possible to increase the vertical size of the

case that houses the robot’s internal electronics without changing the overall height of the robot. This

allows the user to have more space inside the robot if internal modules are a necessity.

4.2.2 Software

 In addition to the modular approach taken with the hardware aspects of the robot, software

modularity is also an important aspect of the project. The use of ROS allows for the implementation of

highly modular software. This is made possible by ROS’s simplified inter-process communication system.

This system is based on message passing. These messages are organized into “topics” which allow for

quick and easy replacement of components called “nodes.” In order to receive or make data available,

all one needs to do is instantiate a publisher or subscriber, and in the case of a subscriber a callback that

handles the data. Since ROS handles the inter-process communication future development can be

focused on accomplishing new tasks without worrying about how data is being handled elsewhere.

 ROS also makes it possible to change out sensors without making any changes to the existing

code other than the code needed to interface with the sensor and provide the same data type. For

example, the QR tracking code executes by finding the location of the QR code and publishing a stamped

pose ROS message to make this information available to the Path Planning code. Switching from a QR

based tracking system to a color based tracking system can occur with no changes to the software

structure as long as the Pixy ROS node publishes the same type of message that the QR node published,

a stamped pose message, and uses the same topic. In this way the software is just as modular as the

hardware.

4.2.3 Graphical User Interface (GUI)

The simple and user friendly GUI allows for the operator to interact with the robot in real time,

without needing any knowledge about the code needed to run the PARbot system. The GUI is designed

to be simple to operate and to give basic users the ability to enable disable a few basic robot feature.

 68

The basis of a Java application for the GUI allows for easy changes to be made to incorporate new

features or to improve the currently existing ones. Currently, the GUI can enable and disable the

following mode, enable and disable the teleoperation, provide a software emergency stop in addition to

the hardware stop, and provide a shutdown command to the entire system.

4.3 Power Capacity and Consumption
To insure a usable operation time, the electrical system demands must be determined prior to

battery selection. Since 4 voltages are to be provided on-board, the total draw must be calculated at the

battery voltage, 24 Volts, for each transformer at peak draw. Table 7 shows the maximum current draw

of the transformers used, accounting for their efficiency. The maximum draw of this system is 24.46A.

TABLE 7: TRANSFORMER POWER CALCULATIONS

Item Voltage
(V)

Current
(A)

Quantity Power
(W)

Efficiency (%) Current @ 24VDc

3.3V line 3.3 5 2 33 95 1.44

5V line 5 3 3 45 95 1.97

12V line 12 20 2 480 95 21.05

Total Draw 24.46

The calculations in Table 7 do not include the motor current, as they operate at the battery

voltage. Table 8 shows the motor's current consumption in various operational conditions. The stall

current is the maximum draw by the motor when the output shaft is not allowed to rotate. The No Load

current shows the current use when the motor is allowed to spin freely. The Rated voltage is the motor's

current consumption when it is operating in its designed capacity. This is the value that will be used for

computing the runtime of the robot.

TABLE 8: MOTOR POWER CALCULATIONS

Item Voltage (V) Current (A) Quantity Power (W) Efficiency (%) Current @
24VDc

Motor (Stall) 24 20 2 960 95 42A

Motor (No
Load)

24 0.9 2 43.2 95 1.89

Motor
(Rated)

24 4.6 2 220.8 95 9.684

Based on the data presented in Tables 7 and 8 the maximum operating total current draw of the

robot at 24V is 34.144. Since the battery is rated for 20 Amp Hours, this gives a run time of only 35

minutes. It is important to keep in mind, however, that this is under high draw operation. Although this

current draw is over the 40 Amp limit of the internal battery safety circuit, this situation should not

occur. In the case that the 40 Amp draw occurs the battery will shut the system down to protect itself.

Through real world testing and operation and repeated trials, the robot battery has been shown

to last for 5 hours or more of operation. This included having the robot drive on a level surface for nearly

half of the time and running both the Atom Module and the on-board Intel i7 computer. In real world

 69

operation, the robot can be expected to exceed 3 hours in its current configuration. The additional

power available in the system is intended for use by future modules.

4.4 Cliff Detection
The cliff sensing module accurately detects any cliff or edges that come along the path of the

Personal Assistive Robot while it is operational. Any ranges that exceed the depth of 12 inches are

registered as a possible cliff by the robot and the system control software accordingly decides whether

the current state of the cliff modules depicts safe movement or whether the robot needs to slowdown

or stop. As shown in the Figure 37, the terminal running the cliff detection node publishes an int32 value

to represent the state of the cliff detection module with respect to the surface around the robot and in

this case the node publishes a value of zero signifying safety in its operational movement as the robot

continues to conduct its tasks. The terminal initiates the data stream by printing the states of the robot

corresponding to their int32 values that would be parsed by the motion planning node for conducting its

routine.

FIGURE 37: CLIFF DETECTION DATA STREAM

 Currently, the cliff detection system is capable of recognizing a dangerous location and can set a

flag to stop the robot; however this flag is not “listened to” in the robot’s autonomous drive system.

However, listening to this flag can be implemented in the future as it does not require the addition of

any hardware or complex software.

4.5 Mapping and Path Planning
 The PrimeSense cameras mounted to the underside of the robot tray system use a gmapping

system to create a map and localize in its environment. Once the map is generated, it is interpreted by a

cost map generator and used to determine the least dangerous path for the robot to take. Additionally

the map is used in the A* path planning algorithm to provide a more long term goal for the robot to

reach. The map shown in Figure 38 displays a map of the second floor of Atwater Kent Laboratories at

 70

Worcester Polytechnic Institute, as generated by the gmapping system. The red line on the right side of

the map shows a path planned by the A* system.

FIGURE 38: ATWATER KENT SECOND FLOOR MAP WITH PATH

4.6 User Tracking
 Tracking the user is crucial to the functionality of PARbot; because of this multiple approaches

were used. The first system implemented was the QR code based user tracking system. This system

worked reliably and accurately. An offset was included it give user some personal space. Figure 39

shows the data collection process for a target using a QR code.

 71

FIGURE 39: QR TRACKING TEST

Target
Location

User
Location

The QR code is approximately 8”x8” and is shown in Figure 39. It is attached to the back of a

cafeteria tray in the image to keep it flat during testing. The QR tracking system is sensitive to the

surface the QR code is on. That is if the QR was on bent paper detecting the QR was much more difficult

for the system. In addition to this issue the camera used was never designed to be used on a moving

platform and there for has trouble focusing while the robot is in motion. This causes the robot to

temporarily lose the user when the robots turns quickly. These issues proved to be less critical than

initially thought, and in the end the system was able to track users at close range and low speeds. After

tuning the map so that the user did not become an obstacle in the map, the system worked very well.

Pixy efficiently tracks the object in terms of the two color signatures as shown in Figure 40.

FIGURE 40: PIXY COLOR TRACKING

Robot
Location

 72

The following table shows the data obtained regarding the parameters of the block detected

and the distance of the block from the camera. A relationship was drawn between the area of the block

and its distance from the camera using regression testing. This could have very well been accomplished

using the line fitting features that Matlab offers.

Width of Block
(pixels)

Height of Block
(pixels)

Area of Block
(pixels)

Distance from Pixy
(inches)

63 63 3969 24

58 58 3364 26

56 56 3136 28

51 51 2601 30

48 48 2304 32

46 46 2116 34

44 44 1936 36

42 42 1764 38

40 40 1600 40

The following equation, draws a relationship between the distance of the object to its area as

detected by pixy in pixel counts.

Distance in meters = ((-0.006644502*Area) + 48.825)*0.0254

The position values are then published using a stamped pose message from the geometry

messages package that is inbuilt into ROS. Figure 41 shows an image of the terminal showing the

position of the object being published.

FIGURE 41: STAMPED POSE FROM PIXY

4.7 Motion Planning
 For PARbot to perform any of the tasks required this year and future years require the robot to

move quickly and safely while confronted with dynamic and complex obstacles. Motion planning

 73

determines how to move the robot based on the data generated by the rest of the software system. This

system required many of the other software systems before it could tested on the robot. For this reason

a great deal of testing was done by simulating data from other systems. Once these problems were

solved PARbot moved in a quick, safe, and smooth manor. PARbot is able to reliably navigate doorways

that are only a few inches wider than itself. Hallways and other large spaces are handled with

confidence and precision. Smooth motion is even achieved at high speeds, only sharp corners cause the

robot to stumble. When the robot turns quickly it may pause to ensure that it is safe to proceed. This

process takes one to three seconds and is mostly due to the slow map updates. Motion planning does

what is intended to do, move quickly, safely, and smoothly to the user or another target.

 74

5 Conclusions
 The need for assistive care is projected to increase steadily over the coming decades. With this

increasing demand for care will come with an increase in cost as the available supply decreases. In order

to supply an alternative to personal care, the PARbot team has developed a Personal Assistive Robot

that aims to increase a user’s independence and decrease, if not eliminate, their need for a personal

aide. PARbot’s aim is to allow individuals with disability to maintain their lifestyle and independence for

a greater amount of time.

 The implementation of the PARbot system has helped to identify some of the potential

challenges associated with developing an assistive care robot. Size and weight are the two largest

challenges; the robot needs to be large enough to be useful while still remaining compact and non-

threatening to a potential user. In complex systems where space is a premium, component selection and

layout are crucial. Many of the space issues this project faced could have been solved through the

inclusion of custom components best ordered in large quantities.

 In addition to the engineering challenges previously identified, the importance of the systems

engineering approach was made clear. While the PARbot team followed the approach loosely, a more

critical approach would have made the project specifications and design decisions clearer and more

easily supportable. The PARbot team was able gain a deeper understanding of systems engineering as

the project progressed, however several large decisions had already been made and committed to.

Through analysis of the decisions made, the choices could be supported, but better arguments could

have been formed. In future years, a stricter application of the guidelines would lead to a faster, more

concise decision making process.

 PARbot has also shown features that would be desirable to include in future iterations of the

PARbot project or other personal assistants. When speaking with members of the Massachusetts

Assisted Living Facilities Association (Mass-ALFA) at their monthly meeting several possible features

were mentioned. One of the most agreed upon features was the inclusion of personal calendar for

reminding the user of events scheduled for their day as well as reminding the user of the current date. It

was suggested that repetition is especially helpful for elderly users. Any way of relaying a call for help or

an automated call for help is also ranked as highly desirable. Because of the modular approach to the

PARbot project, it is possible to include these features in future version of the project.

 Overall, PARbot has demonstrated the capabilities of a modular robotic platform and shown the

areas where additional functionality would be the most beneficial. The current functionality includes

navigation, mapping, localization, target tracking, driving to the target location and the ability to accept

commands through a touch screen interface. Further, through the testing and development cycle, the

PARbot team was impressed by the long battery life of the robot. While the expected battery life was

only 2 or 3 hours and calculations previously presented suggested even less, under real world testing

with intermittent driving, the robot was able to run for 5-6 hours under one charge. This shows that the

overall system has excess power available for future modules, an important feature. Alternativly the

battery capacity could be reduced to allow for a smaller battery to be placed in the frame, making it

lighter and freeing internal space.

 75

Overall, the PARbot project was also a great learning experience with a real engineering challenge

to create a marketable product. The Cornell Cup as Presented by Intel helped to emphasize the design

process and keep an emphasis on the end user.

 76

6 Future Recommendations
The PABot MQP is designed to be active for 5 years, covering several iterations of the robot and

its design. This section will highlight some of the possible future changes that could be implemented to

improve the operation or increase the functionality of PARbot.

6.1 Ubuntu 14.04
This is a new version of the Linux based operating system currently used on the robot. This

version of Ubuntu offers greater support for high-resolution display. The largest advantage to this

system would be the integration of a tablet designed to work specifically with this operating system, and

therefore would be compatible with ROS. The current implementation of the touchscreen interface

uses an externally mounted Intel Atom Module running Windows 7, 32 bit. The application executes

Batch files, which call bash files to make robot commands. While this does work, it is not the most

elegant or simple interface and the use of a Linux based table could make the process far simpler [43].

6.2 Win_ROS
Win_ROS is a version of ROS that will run in a Windows 7, 32 bit environment. This would allow

for the ROS meta-operating system to be more accessible to individuals unfamiliar with the Ubuntu

operating system and broaden the number of components that can interface with the system. Until this

time, a stable release of the Win_ROS platform has not been available, but has recently been released.

Additionally, the use of a Windows operating system would resolve the complex touch screen interface

as well, allowing for smoother operation [44].

6.3 Android
Android operating system will increase the possibilities for interface devices. The use of Android

in the PARbot system would allow for integration of other devices, such as an Android tablet or

smartphone. This would give the user more ways to customize PARbot to suit their needs. Based on

suggestions from the meetings with Mass-ALFA, the inclusion of a personal calendar would be a useful

feature that could be easily added though the use of an Android system. ROS supports Android with its

ROSJAVA API.

 77

7 References

1. "Age and Sex." - The Older Population in the United States: 2011. U.S. Department of Commerce, 28

Nov. 2012. Web. 21 Apr. 2014.

2. Donald Redfoot, Lynn Feinberg, and Ari Houser, “The Aging of the Baby Boom and the Growing Care

Gap: A Look at Future Declines in the Availability of Family Caregivers,” AARP, Washington DC, Issue

85, August 2013.

3. "Personal Robotics Lab." Personal Robotics. Carnegie Mellon, 11 Mar. 2013. Web. 21 Apr. 2014.

<https://personalrobotics.ri.cmu.edu/projects.php>.

4. "Partner Robot Family." Toyota Global Site. Toyota, n.d. Web. 21 Apr. 2014. <http://www.toyota-

global.com/innovation/partner_robot/family_2.html>.

5. "CONCEPT." RIBA公式ページ 理研-東海ゴム 人間共存ロボット連携センター. RIKEN-TRI

Collaboration Center for Human-Interactive Robot Research, n.d. Web. 21 Apr. 2014.

6. "Mobile Robot MP-500." MP-500 - Neobotix. Neobotix, 21 Apr. 2014. Web. 21 Apr. 2014.

<http://www.neobotix-robots.com/mobile-robot-mp-500.html>.

7. "PeopleBot." Robot Makes Human-Robot Interaction Research Affordable. Adept, 21 Apr. 2014. Web.

21 Apr. 2014. <http://www.mobilerobots.com/researchrobots/peoplebot.aspx>.

8. "Pioneer P3-DX." Adept MobileRobots Pioneer 3-DX (P3DX) Differential Drive Robot for Research and

Education. Adept, 21 Apr. 2014. Web. 21 Apr. 2014.

<http://www.mobilerobots.com/researchrobots/pioneerp3dx.aspx>.

9. "United States Access Board." ADAAG. United States Access Board, 21 Apr. 2014. Web. 21 Apr. 2014.

<http://www.access-board.gov/guidelines-and-standards/buildings-and-sites/about-the-ada-

standards/background/adaag#purpose>.

10. "Which Wheelchair Vans Are Right For Me?" Choosing a Wheelchair Van, Handicap Van, or Accessible

Vehicle. BraunAbility, 21 Apr. 2014. Web. 21 Apr. 2014. <http://www.braunability.com/which-

minivan.cfm>.

11. Linden, David; Reddy, Thomas B., ed. (2002). Handbook Of Batteries (3rd ed.). New York: McGraw-Hill. p. 23.5.

ISBN 0-07-135978-8.

12. "What's the Best Battery?". Battery University. November 2006. Retrieved 10 September 2011.

13. GMB Liion Battery Individual Data Sheets. 2014. Guangnzhou Markyn Battery Co., Ltd. 21 April. 2014.

<http://www.powerstream.com/lip/GMB052030.pdf>.

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-07-135978-8
http://batteryuniversity.com/learn/article/whats_the_best_battery
http://www.powerstream.com/lip/GMB052030.pdf

 78

14. "DC Motor." Wikipedia. Wikimedia Foundation, 18 Apr. 2014. Web. 21 Apr. 2014.

<http://en.wikipedia.org/wiki/DC_motor>.

15. "Brushed DC Electric Motor." Wikipedia. Wikimedia Foundation, 04 Nov. 2014. Web. 21 Apr. 2014.

<http://en.wikipedia.org/wiki/Brushed_DC_electric_motor>.

16. "Brushless DC Motor." Wikipedia. Wikimedia Foundation, 04 Feb. 2014. Web. 21 Apr. 2014.

<http://en.wikipedia.org/wiki/Brushless_DC_motor>.

17. "Stepper Motor." Wikipedia. Wikimedia Foundation, 21 Apr. 2014. Web. 21 Apr. 2014.

<http://en.wikipedia.org/wiki/Stepper_motor>.

18. "Servo Motor." Wikipedia. Wikimedia Foundation, 20 Apr. 2014. Web. 21 Apr. 2014.

<http://en.wikipedia.org/wiki/Servo_motor>.

19. "Accelerometer." Wikipedia. Wikimedia Foundation, 18 Apr. 2014. Web. 21 Apr. 2014.

<http://en.wikipedia.org/wiki/Accelerometer>.

20. "Inertial Measurement Unit." Wikipedia. Wikimedia Foundation, 15 Apr. 2014. Web. 21 Apr. 2014.

<http://en.wikipedia.org/wiki/Inertial_measurement_unit>.

21. "Gyroscope." Wikipedia. Wikimedia Foundation, 21 Apr. 2014. Web. 21 Apr. 2014.

<http://en.wikipedia.org/wiki/Gyroscope>.

22. "Ultrasonic Sensor." Wikipedia. Wikimedia Foundation, 21 Apr. 2014. Web. 21 Apr. 2014.

<http://en.wikipedia.org/wiki/Ultrasonic_sensor>.

23. "Robot App Store." Robot App Store. Robot App Store, 21 Apr. 2014. Web. 21 Apr. 2014.

<http://www.robotappstore.com/Robopedia/Ultrasonic%2520Sensor>.

24. "Robot App Store." Robot App Store. Robot App Store, 21 Apr. 2014. Web. 21 Apr. 2014.

<http://www.robotappstore.com/Robopedia/Cliff-Sensor>.

25. "Rotary Encoder." Wikipedia. Wikimedia Foundation, 19 Apr. 2014. Web. 21 Apr. 2014.

<http://en.wikipedia.org/wiki/Rotary_encoder>.

26. "Robot App Store." Robot App Store. Robot App Store, 21 Apr. 2014. Web. 21 Apr. 2014.

<https://www.robotappstore.com/Robopedia/Microphone>.

27. "Robot App Store." Robot App Store. Robot App Store, 21 Apr. 2014. Web. 21 Apr. 2014.

<https://www.robotappstore.com/Robopedia/Speaker>

28. John MacCormick, John. "How Does the Kinect Work?" How Does the Kinect Work? 21 Mar. 2014.

Web. 21 Mar. 2014. <http://users.dickinson.edu/~jmac/selected-talks/kinect.pdf>.

https://www.robotappstore.com/Robopedia/Microphone
https://www.robotappstore.com/Robopedia/Speaker

 79

29. "Wiki." Documentation. Open Source Robotics Foundation, 17 Dec. 2013. Web. 21 Apr. 2014.

<http://wiki.ros.org/>.

30. "Wiki." Groovy. Open Source Robotics Foundation, 17 Dec. 2013. Web. 21 Apr. 2014.

<http://wiki.ros.org/groovy>.

31. "Wiki." Hydro. Open Source Robotics Foundation, 17 Dec. 2013. Web. 21 Apr. 2014.

<http://wiki.ros.org/hydro>.

32. Rekleitsis, Ioannis. A Particle Filter Tutorial For Mobile Robot Localization. Centre For Intelligent

Machines, 21 Apr. 2014. Web. 21 Apr. 2014.

<http://www.cim.mcgill.ca/~yiannis/particletutorial.pdf>.

33. Welch, Greg, and Gary Bishop. An Introduction to the Kalman Filter. University of North Carolina at

Chapel Hill, 24 July 2006. Web. 20 Mar. 2014.

<http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf>.

34. Kuipers, Benjamin. "Occupancy Grids." University of Texas at Austin, Austin. Web. 04 Mar. 2014.

<http://www.cs.utexas.edu/~kuipers/slides/L13-occupancy-grids.pdf>.

35. Cormen, Thomas H., Charles E. Leiserson, and Ronald L. Rivest. p.590

36. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to

Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7. Section 22.3:

Depth-first search, pp. 540–549.

37. Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic Determination of Minimum Cost

Paths".IEEE Transactions on Systems Science and Cybernetics SSC4 4 (2): 100–

107. doi:10.1109/TSSC.1968.300136

38. "United States Access Board." ADAAG - ADA Accessibility Guidlines. U.S. Government, Sept. 2002.

Web. 21 Apr. 2014. <http://www.access-board.gov/guidelines-and-standards/buildings-and-

sites/about-the-ada-standards/background/adaag#purpose>.

39. Sparkfun. (2013). Retrieved from Sparkfun : https://www.sparkfun.com/products/10736

40. Taico Lead Acid Battery 24V 20AH (2013): Retrieved from Alibaba: http://www.alibaba.com/product-

gs/970365407/Taico_lead_acid_battery_24V_20AH.html?s=p

41. Von Hundelshausen, Felix, Michael Himmelsbach, Falk Hecker, Andre Mueller, and Hans-Joachim

Wuensche. "Driving with Tentacles: Integral Structures for Sensing and Motion." Journal Of Field

Robotics (2008): n. pag. Web. 10 Mar. 2014. <www.interscience.wiley.com>. Novotny, Filip.

42. "Wiki." Visp_auto_tracker. N.p., n.d. Web. 28 Apr. 2014.
43. "Ubuntu 14.04 Desktop: Trusted OS for Consumers and Business." Ubuntu Insights. N.p., 16 Apr.

2014. Web. 29 Apr. 2014.

http://en.wikipedia.org/wiki/Thomas_H._Cormen
http://en.wikipedia.org/wiki/Charles_E._Leiserson
http://en.wikipedia.org/wiki/Ronald_L._Rivest
http://en.wikipedia.org/wiki/Clifford_Stein
http://en.wikipedia.org/wiki/Introduction_to_Algorithms
http://en.wikipedia.org/wiki/Introduction_to_Algorithms
http://en.wikipedia.org/wiki/Special:BookSources/0262032937
http://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2FTSSC.1968.300136
https://www.sparkfun.com/products/10736
http://www.alibaba.com/product-gs/970365407/Taico_lead_acid_battery_24V_20AH.html?s=p
http://www.alibaba.com/product-gs/970365407/Taico_lead_acid_battery_24V_20AH.html?s=p

 80

44. Stonier, Daniel, and Yeong-Il Choe. "Win_ros." ROS.org. N.p., n.d. Web. 29 Apr. 2014.

45. QR Code. Digital image. Barcodes India. N.p., n.d. Web. 30 Apr. 2014. <http://www.barcode1.in/wp-

content/uploads/QRcodeINDIA.gif>.

46. "Intel Galileo Development Board." Intel Galileo. Mouser, n.d. Web. 30 Apr. 2014.

<http://www.mouser.com/new/Intel/intel-galileo-development-board/>.

47. "About." Cornell Cup USA as Presented by Intel. N.p., n.d. Web. 30 Apr. 2014.

<http://www.systemseng.cornell.edu/engineering2/se/intel/about/>.

48. S. Thrun. Simultaneous localization and mapping. In M.E. Jefferies and W.-K. Yeap, editors, Spatial
Mapping Approaches in Robotic and Natural Mapping Systems. Springer Tracts in Advanced Robotics,
Berlin, 2006.

 81

8 Appendix A: Personas

 The following are the personas developed by the group to form a concept for potential users of the

PARbot project. These were used to help define use cases for the robot, determine stakeholders in the project, as

well as define the operating environment.

8.1 Persona 1:

name: Jim Henderson

age:71

 Jim is a retired electrical engineer with severe rheumatoid arthritis. His arthritis limits his

mobility but allows him to perform most daily tasks. He can drive himself around, but walking long

distances and caring items can be very tiring and painful. Because of these limitations tasks such as

moving things around his home, shopping, or getting things from his car can be very difficult. Jim uses a

cane to help get around, but this can make tasks more difficult because it takes a hand to use. Due to

his restricted income from retirement he cannot afford to live in an assisted care facility or have an aide

come and help him. Having a relatively low cost solution that could be available on demand would help

improve his day to day life.

 Because of these limitations tasks such as moving things around his home, shopping, or getting

things from his car can be very difficult. Jim uses a cane to help get around, but this can make tasks

more difficult because it takes a hand to use. Even with the difficulties his illnesses cause him, Jim is

determined to live at home.

 82

8.2 Persona 2:

John

Age-75

 John is 75 year old retired army personnel who besides his disability due to the age

factor had a significant mobility hindering accident while on a army mission. He was shot in

the back, and the doctors decided that he needed to have a few vertebrae fused. Although

John can help himself to some of the daily tasks, he needs help with others. His wife has

passed away and he doesn’t see his children quite often either. From time to time he needs

help with going to the grocery stores and needs someone to carry the heavy grocery bags for

him. He is a real fanatic about gardening and wants to go the nursery pretty often to get new

plants for his lawn but is limited due to his abilities and could certainly use a strong hand to

carry all the plants and the heavy compost for his garden.

 John is looking for or rather has a need for an intelligent electro-mechanical device that

he could easily control and carry it around with him as his personal assistance machine to do

all the lifting for him and any other features associated with the device that might be easy to

use, give him a peace of mind and make his life better.

 Besides that John could also use some help carrying trays containing food from the

kitchen incase his old buddies from the army decide to come over and he could show off his new

personal assistive robot.

 83

8.3 Persona 3:

Mary Shelly

Age: 30

Injury/Disability: Partially paralyzed in a car crash

 Mary was in a serious car crash last year that resulted in partial paralysis of the left side of her

body. She is still able to move her arm and leg, however, she lost some of her range of motion and

strength on that side of her body. Mary is able to travel short distances by walker though she mostly

uses a wheelchair. She is able to carry light objects in her left hand though her grip is weak. Her right

side functions fully with no loss of strength or mobility.

 Mary works as a high school teacher and is able to navigate the school as it meets ADA

requirements. She has trouble in the cafeteria and other high traffic areas and can’t carry a lunch tray on

her own. The students and staff are very helpful and understanding.

 She misses her independence and hates that she needs help from family and friends for basic

tasks like shopping. A personal robot would help her to carry items when out and about as well as in the

grocery store. The robot would allow her to gain back some of her independence and freedom. The

robot would also prove to be helpful in her home to help with general tasks such as carrying dinner from

her kitchen to her dining room; a task which normally takes multiple trips.

 84

8.4 Persona 4:

Paul: Age 40

 Paul is a veteran who has served the past 18 years of his life in the army. After graduating

college with a degree in mechanical engineering, he enlisted and was a part of several

deployments. Near the end of his last tour of Iraq, he was shot in the leg which resulted in the

amputation of the lower 30% of his left leg. Paul returned home and works in an office building but

must move about with crutches or a wheelchair. He is able to carry out many everyday tasks such as

cooking (his upper body was unharmed) and driving (with his other leg still intact) but tasks that require

moving objects are difficult. When shopping he is limited by what he can carry in his lap while in the

wheelchair and going to buffets require someone to carry the tray for him to prevent spills. Paul sees no

need to move to an assisted living facility, but also does not want to become a nuisance to his family and

friend who help him do his weekly shopping. Most importantly, Paul wants to maintain his

independence.

 As a result of his injury carrying items is difficult for Paul, but he still has a good deal of upper

body strength from his time in the army. A personal assistant robot could be put to good use by

Paul. When Paul needs to go shopping, the robot could be easily lifted and placed in the trunk of his car

and then removed in when he arrives at the shopping center. The robot would attach to a shopping cart

and follow Paul as he made his way around the store, placing items in the cart. When finished the

groceries and the robot could be placed back in the trunk by Paul who could then drive home. Such

robot could allow Paul to maintain his quality of life without another person needing to help

him. Additionally this one time investment would keep Paul independent rather than have to pay for

assistive care a few times a week.

 85

8.5 Persona 5:

Name: Bethany Cerulean

Age: 32

Occupation:

Disability: Bethany is a veteran who was injured in a roadside bomb, which caused her to lose both her

legs and become legally blind.

 Bethany had a hard time coming to terms with not having the use of both her legs. She was very

active and loved going for weekend hikes. She has been getting around using a wheelchair in her home

and she has a set of prosthetic legs for going outside. In her home she can get around quite well.

Because she knows the layout and her blindness really doesn’t hurt her at home. But when she goes to

the store it is hard for her to push the cart and pick things up because of the limited mobility of her

prosthesis and her poor vision. By having the robot take care of the cart she would not have to worry

about running into someone with the cart, Or just generally causing problems with it. With the future

prospects of having the robot able to take things off the shelves it would make the entire process even

easier.

Ways the robot could potentially help at home:

 If the robot could go to the door and provide a video feed to a smartphone could make it easier for

her to not have to move her wheelchair and provides the data to her immediately.

 86

8.6 Persona 6:

Name-Mike Jones

Age-80

 Mike Jones is an 80 year old retiree who has been trying to live independently for the last 15

years although his family considered having another person live with him to assist him. He has recently

had a problem when he goes to stores where he has not been able to carry as much as he used to be

able to. He has also lost some ability to push shopping carts with the loss of his upper body

strength. He has been losing his upper body strength over the last few years as well as developing

problems with walking and recently used either a walking cane or a walker. The main problem with

Mike’s health is from his old age and a small case of arthritis, giving him joint pain, trouble moving his

arms and a loss of upper body strength. He is still able to drive as he is able to use his legs for this,

however he encounters a problem when he attempts to shop for the food and other necessities he

needs. This problem has been compounded by his recent reliance on his walker and cane, which

removes one of his hands from being able to carry bags. A personal robot would be very helpful for

Mike as it would be able to move a shopping cart around and follow Mike giving him a mobile shopping

cart that he would not have to push. This would greatly increase his ability to shop for himself giving

him the ability to live as independently as he would like to. This would ease the strain on his family and

greatly improve his quality of life.

 87

9 Appendix B: Development on PARbot

9.1 Connecting to PARbot Over the WiFi Bridge:
 PARbot’s onboard computer uses the static IP address 192.168.1.100. To connect to the

onboard computer SSH is used. The group created a script called parbot_login.sh; this script calls the

command ssh –X parbot@192.168.1.100 which allows command line access to the onboard computer

with X-forwarding. X-forwarding allows graphics to be sent over the network, meaning that programs

like gedit or nautilus can be run on the robot but viewed on another computer. However, certain types

of rendered views, such as Rviz, do not work with X-forwarding. To make this process easier a WiFi

Bridge was setup.

A WiFi bridge consists of two or more wireless routers are connected to one another using the

WiFi network in a manner that acts as an extension between them. In the case of PARbot, the onboard

router is the host and the TP-LINK router is the client. When a device is connected to the TP-LINK

router’s Ethernet connection, it operates as if it were connected to the Ethernet ports of the onboard

router. This link runs over the PARbot5G network on the 5GHz band, and is limited to 120Mb/s due to

interference although this may be higher in locations other than WPI. The 5GHz band was selected for it

lower traffic and stronger signal strength in the testing environment.

9.2 Moving files to and from PARbot
Although Secure Shell (SSH) has many features, file transferring is not one of them. To transfer

files to and from PARbot, SFTP (SSH File Transfer Protocol) is used. This protocol is based on SSH but is

specifically designed to handle file transfer. A script called sftp_login.sh was created to run the

command sftp parbot@192.168.1.100. Once connected via SFTP the standard UNIX file commands still

function. SFTP also has its own set of commands that are important to understand. The first of which is

get. This command takes files from the system that has been logged into, in this case, PARbot, and sends

it to the folder that SFTP was called from. The other SFTP command is put. The put command is

essentially the opposite. It is important to note that get uses the local file path while put uses an

absolute file path. Both commands can be called with the –R option which allows folders and their

contents to be transferred recursively.

