

Fault Location for Power Transmission Systems Using Magnetic

Field Sensing Coils

by

Kurt Josef Ferreira

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Electrical and Computer Engineering

by

__

April 2007

Approved:

__
Prof. Alexander E. Emanuel, Major Advisor

__
Prof. James W. Matthews, Thesis Committee Member

__
Dr. Herbert M. Pflanz, Thesis Committee Member

 i

Abstract

The detection and location of faults on power transmission lines is essential to the

protection and maintenance of a power system. Most methods of fault detection and

location rely on measurements of electrical quantities provided by current and voltage

transformers. These transformers can be expensive and require physical contact with the

monitored high voltage equipment.

In this work, current transformers were replaced by magnetic field sensing coils.

Such coils can be located remotely from substations and switching stations and do not

require physical contact with the conductors. Rather than observing each individual

conductor, the use of the magnetic field sensors allows the monitoring of the transmission

line condition using a collective quantity. This study explores the use of the magnetic

field sensors as an alternative measurement device for fault detection and location.

 ii

Acknowledgements

I would like to thank my advisor, Prof. Alexander E. Emanuel, for his teaching, guidance,
and especially his patience throughout the past two years. I would also like to thank Prof.
James W. Matthews and Dr. Herbert M. Pflanz for being willing to serve as my thesis
committee members.

Thanks also to the ECE Department of Worcester Polytechnic Institute for providing me
so many opportunities as both an undergraduate student and a graduate student.

Additionally, I would like to thank the Independent System Operator of New England
(ISO-NE) for their funding and support during my graduate studies.

Finally, I would like to express my gratitude to my family and friends who have been so
supportive and understanding throughout my continuing academic journey.

Kurt Ferreira
May 2007

 iii

Contents

List of Figures ... v
List of Symbols ... vii
Summary ... 1
1. Introduction and Description of Problem ... 3
2. Background... 5

2.1. Impedance-Based Methods... 5
2.2. Traveling Wave-Based Methods... 7
2.3. Detection and Location Using Magnetic Field Sensors...................................... 9

3. General Design of the System... 11
3.1. Magnetic Field Analysis of a Generalized System... 11
3.2. Magnetic Field Analysis of a Three-Conductor System................................... 17
3.3. Conductor Configurations and the Magnetic Field... 20

3.3.1. Horizontal Conductor Configuration .. 20
3.3.2. Delta Conductor Configuration... 23
3.3.3. Another Delta Conductor Configuration .. 24
3.3.4. Horizontal Configuration with Uneven Conductor Spacing..................... 27
3.3.5. Vertical Conductor Configuration .. 28

3.4. Location and Basic Design of the Sensors.. 30
3.5. Fault Location ... 38

4. Analysis Using the Magnetic Field... 43
4.1. Analysis Algorithms ... 43

4.1.1. The “Expected Ellipse” Algorithm ... 44
4.1.2. The “Previous Value” Algorithm.. 47
4.1.3. The “Delta Rho” Algorithm.. 50
4.1.4. The “Delta Theta” Algorithm ... 56
4.1.5. Fault Detection.. 60

4.2. Implementation of the Algorithm ... 61
4.2.1. Initialization .. 63
4.2.2. Error Checking.. 65
4.2.3. Fault Detection.. 66
4.2.4. Resetting Variables ... 68
4.2.5. Fault Information Storage ... 70
4.2.6. Fault Analysis ... 72

5. Testing the Algorithm... 74
6. Conclusions... 81
References... 83
Appendix A : Model for Testing... 85
References for Appendix A .. 89
Appendix B : Magnetic Field Plots by Fault Type ... 90

Line-to-Ground Fault: Phase a, at Faulted Current Peak.. 91
Line-to-Ground Fault: Phase a, at Faulted Current Zero .. 92
Line-to-Line Fault: Phases a and b ... 93

 iv

Line-to-Line-to-Ground Fault: Phases a and b ... 94
Three-Phase Fault ... 95

Appendix C : MATLAB Code.. 96

 v

List of Figures

Figure 2-1 – GPS satellite being used to synchronize fault detection timing..................... 8
Figure 3-1 – Variables for magnetic field analysis of any system.................................... 11
Figure 3-2 – Elliptical rotating magnetic field produced by three-phase, three-conductor
system ... 16
Figure 3-3 – Variables for magnetic field analysis of a three-phase system 17
Figure 3-4 – Horizontal conductor configuration and plots of its magnetic field 22
Figure 3-5 – A delta conductor configuration and plots of its magnetic field.................. 24
Figure 3-6 – A different delta conductor configuration and plots of its magnetic field ... 26
Figure 3-7 – Horizontal configuration with conductors unevenly spaced and plots of its
magnetic field.. 28
Figure 3-8 – Vertical conductor configuration and plots of its magnetic field................. 30
Figure 3-9 – Delta conductor configuration and magnetic field with sensors under center
phase ... 33
Figure 3-10 – Delta conductor configuration and magnetic field with sensors shifted 34
Figure 3-11 – Delta conductor configuration and magnetic field with sensors shifted
farther.. 35
Figure 3-12 – Delta conductor configuration and magnetic field with sensors shifted
significantly... 37
Figure 3-13 – Distances and times used in fault location ... 39
Figure 3-14 – Step size as a function of sampling rate ... 42
Figure 4-1 – Constant ellipse with a sudden change due to a fault................................... 44
Figure 4-2 – Elliptical rotating magnetic field with boundaries for the “expected ellipse”
algorithm... 46
Figure 4-3 – Elliptical rotating magnetic field with boundaries for the “previous value”
algorithm... 48
Figure 4-4 – Magnetic field with harmonics, monitored by “previous value” algorithm. 49
Figure 4-5 – Magnetic field with harmonics, monitored by “expected ellipse” algorithm
... 50
Figure 4-6 – Rho and the absolute value of the change in rho under normal operating
conditions.. 51
Figure 4-7 – Magnetic field during a three-phase fault .. 53
Figure 4-8 – Rho during a three-phase fault ... 53
Figure 4-9 – Absolute value of the change in rho during a three-phase fault................... 54
Figure 4-10 – Rotating elliptical magnetic field under normal conditions with noise added
... 55
Figure 4-11 – Absolute value of the change in rho under normal conditions with noise
added ... 55
Figure 4-12 – Rho and delta theta compared under normal operating conditions............ 58
Figure 4-13 – Magnetic field during a line to line fault.. 59
Figure 4-14 – Theta during a line to line fault .. 59
Figure 4-15 – Change in theta during a line to line fault .. 60
Figure 4-16 – Fault Detection Algorithm ... 62

 vi

Figure 5-1 – Fault location error for a single line to ground fault when the faulted phase’s
current is at a maximum.. 76
Figure 5-2 – Fault location error for a single line to ground fault when the faulted phase’s
current is zero.. 77
Figure 5-3 – Fault location error as a function of fault impedance for single line to ground
faults.. 78
Figure 5-4 – Fault location error as a function of fault impedance for line to line faults. 79
Figure 5-5 – Fault location error as a function of fault impedance for three phase faults 79
Figure A-1 – ATPDraw circuit for testing.. 85
Figure A-2 – Modeling data for testing .. 85
Figure A-3 – Transmission line geometry for testing... 86
Figure A-4 – Conductor and sensor distance relationships for testing 86
Figure B-1 – Conductor and sensor distance relationships for magnetic field fault plots 90
Figure B-2 – Line-to-Ground Fault: Phase a, fault connected at phase a current peak 91
Figure B-3 – Line-to-Ground Fault: Phase a, fault connected at phase a current zero-
crossing ... 92
Figure B-4 – Line-to-Line Fault: Phases a and b.. 93
Figure B-5 – Line-to-Line-to-Ground Fault: Phases a and b to ground 94
Figure B-6 – Three Phase Fault .. 95

 vii

List of Symbols

Hx Total horizontal magnetic field intensity

Hx,k Horizontal magnetic field intensity due to conductor k

Hy Total vertical magnetic field intensity

Hy,k Vertical magnetic field intensity due to conductor k

Dk Horizontal magnetic field position constant for conductor k

Qk Vertical magnetic field position constant for conductor k

ik Current in conductor k

Ik RMS current in conductor k

γk Angle from vertical between conductor k and the magnetic field sensor

l k Distance between conductor k and the magnetic field sensor

hk Vertical distance between conductor k and the magnetic field sensor

Lk Horizontal distance between conductor k and the magnetic field sensor

Xk Coefficient of sine function in conversion of a phase-shifted sinusoidal

current in conductor k into a sum of a sine and cosine

Yk Coefficient of cosine function in conversion of a phase-shifted sinusoidal

current in conductor k into a sum of a sine and cosine

t Time

ω Fundamental frequency

φk Phase shift in the sinusoidal current in conductor k

[XY] Sine and cosine coefficient matrix – columns of X and Y coefficients

[P] Position matrix – rows of D and Q coefficients

 viii

Ĥx Magnitude of horizontal magnetic field

Ĥy Magnitude of vertical magnetic field

φ x Phase shift in sinusoidal representation of horizontal magnetic field

φ y Phase shift in sinusoidal representation of vertical magnetic field

[H] Matrix of vertical and horizontal magnetic fields

Ax Coefficient of sine function in conversion of a phase-shifted sinusoidal

magnetic field in the horizontal direction into a sum of a sine and cosine

Ay Coefficient of sine function in conversion of a phase-shifted sinusoidal

magnetic field in the vertical direction into a sum of a sine and cosine

Bx Coefficient of cosine function in conversion of a phase-shifted sinusoidal

magnetic field in the horizontal direction into a sum of a sine and cosine

By Coefficient of cosine function in conversion of a phase-shifted sinusoidal

magnetic field in the vertical direction into a sum of a sine and cosine

r Magnitude of vertical magnetic field divided by magnitude of horizontal

magnetic field; used to simplify equations

φ Difference between phase shift of vertical magnetic field and phase shift

of horizontal magnetic field

α Angle of rotation of the magnetic field ellipse

Ĥa Magnitude of one half-axis of the magnetic field

Ĥb Magnitude of the other half-axis of the magnetic field

p Relative distance between the conductors and sensors

vx Voltage induced in the horizontal search coil

vy Voltage induced in the vertical search coil

 ix

µ0 Permeability of free space (7104 −×π H/m)

N Number of turns in each search coil

A Equivalent area of each search coil

K Coil constant of each search coil

L Inductance of the transmission line per unit length

C Capacitance of the transmission line per unit length

u Propagation velocity in the transmission line

l Total length of the transmission line

ttrans Time for a pulse to travel from one end of the transmission line to the

other end

d1 Distance from a fault to the first end of the transmission line

d2 Distance from a fault to the other end of the transmission line

t1 Time at which a fault is detected at the first end of the transmission line

t2 Time at which a fault is detected at the other end of the transmission line

tfault Time at which a fault actually occurs

∆step Fault location step size due to sampling rate

SR Sampling rate of the analog to digital converter used for analysis

ρ Distance from the origin of a point in polar coordinates (radial coordinate)

ρmin Minimum distance from the origin in the elliptical rotating magnetic field

ρmax Maximum distance from the origin in the elliptical rotating magnetic field

θ Angular coordinate of a point in polar coordinates

θshift Angular rotation of the elliptical rotating magnetic field

∆ρ Change in rho (ρ) for a set time step

 x

ρt Distance from the origin of the point at time t

∆θ Change in theta (θ) for a set time step

θt Angular coordinate at time t

dread Fault location detected by the algorithm

dactual Actual fault location

 1

Summary

A variety of methods of detecting and locating faults on power transmission lines

exist. Most of these methods utilize the measurements from voltage and current

transformers at substations or switching stations to perform their analyses. This thesis

examines the effectiveness of using magnetic field sensing coils as alternative

measurement devices for the purpose of fault detection and location.

A review of common methods of fault location is presented. This review is

focused on impedance-based and traveling wave-based fault location as they are the most

common traditional methods. A few previous uses of magnetic field sensing coils in fault

detection and location schemes are also discussed in order to determine the previously

recognized benefits of using such coils.

The underlying mathematics used in determining the magnetic field due to an

unspecified number of conductors and due to a three-conductor system are then examined.

The results of this analysis are used in simulating the magnetic field for a variety of

conductor configurations under normal operating conditions and for line to ground and

line to line fault conditions. This information is used to determine the potential

effectiveness of monitoring the magnetic field to detect faults.

Based on these findings, four algorithms are constructed which monitor the

magnetic field near the transmission line for the purpose of fault detection. Each of these

algorithms determines some aspect of the steady-state behavior of the magnetic field and

attempts to detect any deviations from this behavior. These algorithms are described in

detail and their comparative benefits and drawbacks are determined.

 2

An implementation of a complete fault detection and location procedure which

uses these algorithms in conjunction with one another is then described. This

implementation is then used to test the combined effectiveness of the algorithms for a

variety of fault types and fault resistances. The fault location errors for these tests are

then presented. This information is used in determining the effectiveness of the magnetic

field sensor as a measurement device for the purpose of fault detection and location.

 3

1. Introduction and Description of Problem

Fault detection and location has been a goal of power system engineers since the

creation of distribution and transmission systems. Quick fault detection can help protect

equipment by allowing the disconnection of faulted lines before any significant damage is

done. Accurate fault location can help utility personnel remove persistent faults and

locate areas where faults regularly occur, thus reducing the frequency and length of

power outages. As a result, while fault detection and location schemes have been

developed in the past, a variety of algorithms continue to be developed to perform this

task more accurately and more effectively [8-10].

Most analysis methods rely on the values of either current or voltage phasors

measured by means of current or voltage transformers at substations or switching stations.

To gather this information, at least three transformers are typically required at each end

of the subtransmission or transmission line. These transducers are expensive, especially

when the system involves high voltage lines. Some algorithms – particularly fault

impedance-based algorithms – require both current and voltage information. However, it

is possible to monitor a transmission system without using current or voltage

transformers through the analysis of the magnetic field near the conductors.

Since each conductor in a transmission line creates a magnetic field due to the

current through it, there is the possibility of analyzing the transmission line system based

on the resultant magnetic field produced by its conductors. The magnetic detection is

performed using two sensing coils at each end of the transmission line. One detects the

vertical magnetic field intensity and the other detects the horizontal magnetic field

 4

intensity. The two-dimensional magnetic field intensity can then be resolved from this

information.

Just as with many other fault detection methods, faults are detected when

unexpected changes occur within the monitored data. The only difference is that this

analysis attempts to detect changes in the vertical and horizontal magnetic field

intensities rather than individual changes in the monitored voltages or conductor currents.

The fault detection and location method discussed in this thesis is based on analysis of

the expected behavior of the magnetic field near a transmission line and algorithms for

detecting unexpected variations.

 5

2. Background

Fault detection is essential to the safe operation of electric power transmission and

distribution systems. Without some sort of fault detection, the automated removal of short

circuits from a transmission system would be impossible. As a result, these faults might

persist until essential electrical equipment is damaged or destroyed. Fault location is not

necessarily essential to power system protection, but it can be very helpful in the

detection of problem areas on a transmission or distribution line and in the removal of

persistent faults. For these reasons, fault detection and location has been an enduring

preoccupation of power system researchers, designers, and maintenance engineers.

A variety of fault location schemes have been developed over the years. Common

systems include impedance-based locators [1,2], or those which measure the impedance

seen by one or both ends of the transmission line, and traveling wave-based locators [8-

10], or those which rely on the timing of fault detections. In addition to categorizing these

fault location methods by the way in which they locate faults, they can also be classified

into one-terminal and two-terminal based on whether they require information from one

end or both ends of the transmission line, respectively.

2.1. Impedance-Based Methods

Traditional impedance-based fault location methods use the voltages and currents

at one or both ends of a transmission line to determine where a fault has occurred. The

impedance of the transmission line per unit length is usually required in these

calculations. One of the major problems with basic one-terminal impedance-based fault

location methods – those that only use measurements from one end of the transmission

 6

line – is that the fault impedance must be near-zero for the result to be accurate, since the

fault impedance affects the impedance seen at the end of the transmission line [3]. This

problem has been mitigated in several different ways. One of the best-known of these

ways is the Takagi method. This changes the calculation to include the difference

between the current measured before the fault and the current measured after the fault

(which is the fault current) [1]. This eliminates the fault impedance from the analysis,

thus removing this significant source of error. However, the angle of the fault current and

the angle of the current during the fault at the relay terminals are assumed to be equal; if

this is not true, there may be errors in the fault location.

Two-terminal impedance-based fault location methods, or those that use

measurements from both ends of the transmission line, can also significantly improve the

accuracy of the fault location estimate [4]. Two-terminal methods require communication

between the locators at both ends of the transmission line to transfer information about

the currents, voltages, and source impedances in order to perform the fault location. Once

all of the necessary information is gathered in one location, the fault is located by

combining the equations describing both sides of the transmission line and variables

directly related to the fault; the exact analysis depends on the particular algorithm [2,3].

The use of both sides of the transmission line in calculation removes most of the

problems associated with one-terminal impedance-based fault location methods. It is

essential to note, however, that short-duration faults are difficult to accurately detect with

any impedance-based fault location methods (although two-terminal methods reduce the

effect of short fault durations) since less data is available about the voltages and currents

and the data that is available is not necessarily in steady-state [4].

 7

2.2. Traveling Wave-Based Methods

Traveling wave-based fault location methods, like impedance-based methods, can

be divided into one-terminal and two-terminal methods. With traveling wave analysis,

however, the entire method of location rather than simply the equations change between

the one- and two-terminal methods. One-terminal methods rely on the timing between

reflections of voltage or current at impedance discontinuities – in this case, the fault – to

find the distance between the sensor and the fault while two-terminal methods work

based on the time delay between arrivals of information at the ends of the transmission

line.

Traveling wave-based fault location methods have been divided into five distinct

Types [5,6]. Type A is a one-terminal location method which calculates the fault location

based on the time between the first detection of a fault and the detections of reflections of

the transient generated by the fault. Type B is a two-terminal method in which as the

locator at each end of the transmission line detects a fault, it sends a signal to the other

end of the transmission line. The time of the signal’s arrival is used in the fault location

timing. The method of the signal transmission and the possibility of a delay between the

fault detection and the generation of the signal can vary depending on the chosen sub-

Type. Type C is a one-terminal method and is much like type A, except it uses a

generated pulse and its reflections to locate the fault rather than using the fault transient

and its reflections. Type D is a two-terminal method which uses the detection times of the

transients at opposite ends of the transmission line to determine the fault location; the

locators at both ends of the transmission line must be synchronized for this Type to work

properly. Finally, Type E is a one-terminal method which uses the transients produced

 8

when the circuit breaker re-energizes the line in order to locate persistent faults. Types A,

D, and sometimes E are the Types which are used most frequently in modern traveling

wave-based fault locators [5]; GPS has made Type D locators especially attractive since

it provides a method for synchronization of the fault locators at the two ends of the

transmission line [7]. Such a system is depicted in Figure 2-1. This enables an accurate

measurement of the difference between two fault detection times and thus a more

accurate location of the fault.

Figure 2-1 – GPS satellite being used to synchronize fault detection timing

Traveling wave-based fault locators, both two-terminal and one-terminal, are still

being designed. Many of these make use of the previously defined Types of fault locators

in combination with other algorithms such as autocorrelation [8] and the wavelet

transform [9]. The wavelet transform is similar to the Fourier transform in that it

decomposes a signal into frequency components, but it also localizes these components in

time. When it is applied to fault detection and location, the wavelet transform is often

used in conjunction with traveling wave-type fault locators as the method of fault and

Fault Detector

Communication Link

Fault Detector

Communication Link

 9

reflection detection [10]. Faults can be easily detected by monitoring the magnitudes of

the individual frequency scales.

The algorithms presented in this thesis are most similar to Type D traveling wave-

based location schemes. Traveling wave-based locators can be very accurate, provided

the time of fault arrival (and reflection arrival, for the algorithms that make use of

reflections) can be detected accurately. Problems can arise, however, with faults that

occur at the zero-crossing of the transmission line voltage or current since the resulting

change in the waveform is not particularly pronounced. This is a more significant

problem for high fault impedances; for comparatively low fault impedances, a well-

designed traveling wave-based fault location algorithm will still be able to locate all

faults with a great deal of accuracy.

2.3. Detection and Location Using Magnetic Field Sensors

Due to the simple relationship between current and magnetic field intensity, it is

understandable that magnetic field sensors have previously been used in fault detection

and location schemes. These schemes often use magnetic field sensors in place of current

transformers since magnetic field sensors can be installed independently from a

substation or switching station with a minimum amount of additional equipment [11,12].

One possible use of this relationship is simply replacing each current transformer

with a Hall effect transducer. This transducer would typically need to be within the

electrical arcing distance of the conductors to produce enough voltage for analysis and

would thus require insulation. To remove this need for insulation, the transducer can be

located between two tapered pieces of ferromagnetic material in order to concentrate the

magnetic field into the transducer [11]; as a result, the transducer does not need to be

 10

located within the arcing distance of the conductors. The measured magnetic field result

can then be used similarly to a current measurement for fault detection and location.

Due to the reduced amount of equipment needed for analysis when compared with

current transformers, it is possible to use several sets of magnetic field intensity sensors

on a single transmission line. For example, one patent [12] suggests the installation of

magnetic field intensity sensors on every pole of a transmission or distribution line as a

distributed fault detection and location system. Phase to ground faults are detected using

magnetic sensors around the ground conductors; phase to phase faults are detected with a

sensor which detects orthogonal fields due to arcing. If a fault occurs, it is most likely

between the first two poles at which it is detected, and thus any further searching for the

fault only needs to be within that area. This requires only a minimal synchronization

between the multiple sensors, since the fault location is not based upon exact time of the

fault incidence but simply the first locations at which the fault was detected. This system

is conceptually interesting but rather expensive due to the number of sensors and

microprocessors that would be required, even if sensors are only located on one out of

every few poles.

Since a magnetic field sensor does not need to make contact with the conductors

[11] and can be installed remotely from substations [12], the effectiveness of the

magnetic field sensor in fault detection and location algorithms is clearly worth

examining.

 11

3. General Design of the System

As previously stated, a three-phase system can be analyzed by detecting the

vertical and horizontal magnetic field intensities and comparing the waveforms to the

expected results. In order to better understand the algorithms which will be used for this

analysis, a basic mathematical and physical description of the magnetic field near a

transmission line is presented here.

3.1. Magnetic Field Analysis of a Generalized System

The magnetic field near a transmission or distribution line can be determined for

the general case of n conductors. The necessary analysis follows the work by Emanuel,

Orr, Pileggi, and Gulachenski [13], although some modifications have been made in this

summary of their work to accommodate differences between the magnitudes of the

conductor currents. The system to be analyzed is shown in Figure 3-1.

Figure 3-1 – Variables for magnetic field analysis of any system

h1

L2

L3

L1

Ln

h2

y3

hn

γ1
γ2 γ3

γn

i1
i2

i3

in

 12

The magnetic fields due to any given conductor k are

 kkkx iDH =, and kkky iQH =, (1)

where

k

k
k h

D
π
γ

2
cos2

= and
k

kk
k h

Q
π

γγ
2

cossin
=

(2)

and

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

k

k
k h

L1tanγ

(3)

Each current can be described as a sum of a sine and cosine, such that

 () ()[]tYtXi kkk ωω cossin2 += (4)

where Xk and Yk are real numbers. Since

 () () ()kkkk tItYtX ϕωωω +=+ sincossin (5)

where φk is the phase shift of the current and Ik is the RMS value of the current, and

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

k

k
k X

Y1tanϕ

(6)

the terms Xk and Yk can be described as

()k

k
k

I
X

ϕ2tan1+
=

(7)

and

 ()
()k

kk
k

I
Y

ϕ

ϕ
2tan1

tan

+
=

(8)

Using the trigonometric identity

 () ()kk ϕϕ 22 sectan1 =+ (9)

 13

the values of Xk and Yk can be simplified to

 ()kkk IX ϕcos= (10)

and

 ()kkk IY ϕsin= (11)

The currents and their coefficients can then be written as

[]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ni

i
i
i

i
M
3

2

1

 and []

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nn YX

YX
YX

I

XY
MM
33

22

1 0

(12)

The magnetic field due to all of the currents is then given by

 [] [][]iPH = (13)

where the magnetic field matrix is

[] ⎥

⎦

⎤
⎢
⎣

⎡
=

y

x

H
H

H

(14)

and the position matrix is

[] ⎥

⎦

⎤
⎢
⎣

⎡
=

n

n

QQQQ
DDDD

P
...
...

321

321

(15)

The magnetic field can thus be described by

 () ()[] ()xxxxx tHtBtAH φωωω +=+= sinˆcossin2 (16)

and

 () ()[] ()yyyyy tHtBtAH φωωω +=+= sinˆcossin2 (17)

where

 14

 ()222ˆ
xxx BAH += and ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

x

x
x A

B1tanφ

(18)

and

()222ˆ

yyy BAH += and ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= −

y

y
y A

B1tanφ

(19)

The coefficients Ax, Ay, Bx and By can be found using the relationship

[]][XYP

BA
BA

yy

xx =⎥
⎦

⎤
⎢
⎣

⎡

(20)

In order to determine the shape of the magnetic field, Equation (16) can be solved

for ωt, which results in

x

x

x

H
H

t φω −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= −

ˆsin 1

(21)

This in turn can be substituted into Equation (17), so that

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= −

xy
x

x
yy H

H
HH φφˆsinsinˆ 1 (22)

Substituting the variable

 xy φφφ −= (23)

this can be rewritten as

() ()

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= −− φφ sinˆsincoscosˆsinsinˆ 11

x

x

x

x
yy H

H
H
H

HH (24)

which results in

() ()φφ sinˆ

ˆ

ˆ
cosˆ

ˆ
22
xx

x

y
x

x

y
y HH

H

H
H

H

H
H −+= (25)

since

 15

x

xx

x

x

H
HH

H
H

ˆ
ˆ

ˆsincos
22

1 −
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛− (26)

This can be simplified further by defining

x

y

H

H
r ˆ

ˆ
= (27)

which gives

 () ()φφ sinˆcos 22
xxxy HHrrHH −=− (28)

After squaring both sides of the equation and canceling terms, this simplifies to

 () ()φφ sinˆcos2 2222
yyxxy HHrHHrH =−+ (29)

This is the equation for an ellipse with the angle of rotation equal to

 ()
⎟
⎠
⎞

⎜
⎝
⎛

−
= −

2
1

1
cos2tan

2
1

r
r φα

(30)

and half axes of lengths

 ()
() ()αφαα

φ

2sincoscossin

sinˆ
ˆ

222 rr

H
H y

a
++

= (31)

and

 ()
() ()αφαα

φ

2sincossincos

sinˆ
ˆ

222 rr

H
H y

b
++

= (32)

An example elliptical rotating magnetic field which could be produced by the

combined magnetic fields of several conductors is presented in Figure 3-2. This is also

shown as a part of Figure 3-7. All Figures which present magnetic fields in polar

coordinates display rho in units of amperes per meter and theta in units of degrees.

 16

(a)

 2

 4

 6

 8

30

210

60

240

90

270

120

300

150

330

180 0

(b)

Figure 3-2 – Elliptical rotating magnetic field produced by three-phase, three-conductor system

(a) – Conductor geometry; (b) – Magnetic field for p=2m

This analysis is essential to understanding the magnetic field which will be

detected by the sensors. It is applicable to any configuration of conductors, but it is

further analyzed here for a three-conductor system.

p/2

p

p/3

p

ia ib ic

 17

3.2. Magnetic Field Analysis of a Three-Conductor System

The three-conductor system shown below in Figure 3-3 is used in the simulation

of the magnetic field intensity detected by the sensors. The variables used make this

analysis something of a general case which can be modified for the analysis of most

transmission line structures. The assumption is made, however, that the sensors are

located directly below phase b.

Figure 3-3 – Variables for magnetic field analysis of a three-phase system

The distances al , bl , and cl are can be related to the other distances by the

equations

 22
aaa hL +=l (33)

 bb h=l (34)

 22
ccc hL +=l (35)

These equations are simplified (and the following analysis is simplified) when La = Lc

and ha = hc (and thus l a = l c), as would be the case for many transmission line

configurations, but at this point in the analysis this assumption is ignored.

hc
hb

l a l c

l b

ha

La Lc

γa -γc

ia
ib

ic

 18

The component identified as the magnetic sensor is comprised of two separate

magnetic sensors which will independently detect the horizontal and vertical magnetic

field intensities. These field intensities are determined by the sums of the magnetic field

intensities due to each conductor, which are given by

a

a
a

i
H

lπ2
=

(36)

b

b
b

i
H

lπ2
=

(37)

c

c
c

i
H

lπ2
=

(38)

where Ha, Hb, and Hc and ia,ib, and ic are the magnetic field intensities and currents,

respectively. These can be converted into the horizontal and magnetic field intensities

using the equations

)cos()cos(ccbaax HHHH γγ −++= (39)

)sin()sin(ccaay HHH γγ −+= (40)

where

 aaa h l=)cos(γ (41)

 ccc h l=)cos(γ (42)

 aaa L l=)sin(γ (43)

 ccc L l−=)sin(γ (44)

Substituting these results,

 () ()22
cccbbaaax hiihiH lll ++= (45)

 19

 () ()22
cccaaay LiLiH ll −= (46)

As previously stated, these can be simplified further if phases a and c are at the same

vertical and horizontal distances from the center point.

This can also be rewritten by expressing the currents as functions of time, as

 ()() ()() ()()22 sinsinsin ccccbbbaaaax htitihtiH lll ϕωϕωϕω +++++= (47)

 ()() ()()22 sinsin ccccaaaay LtiLtiH ll ϕωϕω +−+= (48)

Additionally, restating parts of Equations (16) and (17), these equations can be written as

() ()[]tBtAH xxx ωω cossin2 +=

and

() ()[]tBtAH yyy ωω cossin2 +=

Following the analysis in Section 3.1 and specifically Equations (10), (11) and (20), the

coefficients Ax, Ay, Bx, and By can be found using the equation

() ()

() ()

() ()
() ()
() ()⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
−

+

++=⎥
⎦

⎤
⎢
⎣

⎡

cccc

bbbb

aaaa

cc

c

aa

a

cc

c

baa

a

yy

xx

II
II
II

Lh
L

Lh
L

Lh
h

hLh
h

BA
BA

ϕϕ
ϕϕ
ϕϕ

ππ

πππ

sincos
sincos
sincos

2
0

2

22
1

2

2222

2222

(49)

which simplifies to

() ()

() ()
() ()
() ()⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
−

+

++=⎥
⎦

⎤
⎢
⎣

⎡

cccc

bbbb

a

cc

c

aa

a

cc

c

baa

a

yy

xx

II
II

I

Lh
L

Lh
L

Lh
h

hLh
h

BA
BA

ϕϕ
ϕϕ

ππ

πππ

sincos
sincos

0

2
0

2

22
1

2

2222

2222

(50)

if the phase shift in phase a is arbitrarily set as φa = 0.

The ground conductors also can contribute to these magnetic fields when a fault

occurs, but this contribution will be minimal unless the fault is very close to the location

 20

of the detector. This is because most of the ground currents will flow directly into the

earth prior to reaching the substation or switching station and thus the ground wires will

typically only contribute a negligible amount to the magnetic field at the substation or

switching station, even for a significant fault current [14]. As a result, the ground

conductors have not been included in this analysis.

3.3. Conductor Configurations and the Magnetic Field

The magnetic field which is detected by the current sensors will change based on

the configuration of the conductors. Since the magnetic field-based fault detector should

be able to be used in a variety of situations, it is essential to gain an understanding of its

performance for several conductor configurations. The magnetic fields of five different

conductor configurations are demonstrated below in Figure 3-4 through Figure 3-8. Each

Figure shows the conductor configuration, the magnetic field during balanced operation,

the magnetic field during a single line to ground fault on phase a, and the magnetic field

during a line to line fault on phases a and b. The currents in the unfaulted conductors

have an RMS value of 100A; the fault currents are approximately 1000A RMS. The

value of p was set as 2 meters, and the conductors are assumed to correspond to phases a,

b, and c from left to right.

3.3.1. Horizontal Conductor Configuration

Figure 3-4 shows a horizontal conductor configuration and its magnetic fields.

The sensors are located a distance p below phase b where p is the distance between

phases a and c. As expected, the vertical component of the magnetic field during normal

operation is greater than the horizontal component. The vertical maximums occur when

 21

the current in phase b is crossing zero and as a result, the other phases cancel each others’

horizontal components but add in the same direction vertically. Likewise, the horizontal

maximums occur when the current in phase b is at a maximum; however, at this time the

horizontal components of the magnetic fields due to phases a and c add in the opposite

direction and cancel some of the horizontal magnetic field due to phase b, while the

vertical components due to phases a and c cancel each other.

The magnetic field of the single line to ground fault on phase a is as expected.

The magnetic field contributions due to phases b and c become relatively insignificant,

and the magnetic field is essentially only the field due to phase a. The angle of rotation is

also mostly determined by the angle between the phase a conductor and the sensors from

a vertical reference. Neglecting the effects of the other phases, the angle of rotation

would be

() °≈=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −− 6.265.0tan2/tan 11

p
p

which is fairly close to the observed angle of rotation. The difference is due to the fact

that this calculated angle does not account for the currents in phases b and c.

The line to line fault on phases a and b creates a magnetic field which is

somewhat unexpected, particularly with respect to the angle of rotation. A brief

description will clarify this matter, however. Since the magnitudes of the currents in

phases a and b are identical in this situation and they are approximately 180° out of phase

due to the line to line fault, the positive maximum horizontal field due to phase a (which

occurs when the current is at its positive maximum) is counteracted by a field inclined at

the same angle as the angle between the phase a conductor and the sensors, as noted

above. As a result, this maximum magnetic field has a positive horizontal component and

 22

a negative vertical component. The same result in the opposite direction occurs when the

current in phase a is at its negative maximum and phase b is at its positive maximum. It is

clear from these plots that, at least for a significant fault current, a line to ground or line

to line fault could be detected using magnetic sensors for this conductor configuration.

 2

 4

 6

 8

30

210

60

240

90

270

120

300

150

330

180 0

 (a) (b)

 20

 40

 60

 80

 100

30

210

60

240

90

270

120

300

150

330

180 0

 20

 40

 60

30

210

60

240

90

270

120

300

150

330

180 0

 (c) (d)

Figure 3-4 – Horizontal conductor configuration and plots of its magnetic field
(a) – Conductor geometry; (b) – Magnetic field for balanced currents, p=2m;

(c) – Magnetic field for a line to ground fault on phase a, p=2m; (d) – Magnetic field for line to line
fault on phases a and b, p=2m

p/2

p

p/2 ia ib ic

 23

3.3.2. Delta Conductor Configuration

The conductor configuration shown in Figure 3-5 is a delta configuration. The

magnetic fields here are similar to those of the horizontal conductor configuration under

normal operating conditions and for the single line to ground fault on phase a. However,

the line to line fault on phases a and b has a very different angle of rotation. The reason

for this is that since the magnetic field is inversely proportional to the square of the

distance from the conductor, the contribution from phase b is significantly reduced

compared to its contribution for the case of the horizontal conductor configuration. As a

result, while the analysis above regarding the horizontal configuration remains true, the

magnitude of the maximum magnetic field due to phase b is reduced. Thus, the magnetic

field is more significantly affected by the current in phase a – significantly enough that

the maximum positive horizontal component due to phase b is less than the negative

horizontal component due to phase a at the same time. This in turn causes the significant

change in the angle of rotation of the ellipse.

 24

 2

 4

 6

 8

30

210

60

240

90

270

120

300

150

330

180 0

 (a) (b)

 20

 40

 60

 80

 100

30

210

60

240

90

270

120

300

150

330

180 0

 10

 20

 30

 40

 50

30

210

60

240

90

270

120

300

150

330

180 0

 (c) (d)

Figure 3-5 – A delta conductor configuration and plots of its magnetic field

(a) – Conductor geometry; (b) – Magnetic field for balanced currents, p=2m;
(c) – Magnetic field for a line to ground fault on phase a, p=2m; (d) – Magnetic field for line to line

fault on phases a and b, p=2m

3.3.3. Another Delta Conductor Configuration

A different delta conductor configuration and its magnetic fields are presented in

Figure 3-6. These results are similar to those of the previously described delta

p/2

p

p/2 p/2 ia ic

ib

 25

configuration and the changes are as expected due to the previous changes in results

between the horizontal conductor configuration and the first delta configuration. The

increase in the horizontal maximum of the total magnetic field is interesting since it

decreased previously. This is since for the horizontal configuration, the horizontal

magnetic field maximums are dominated by the current in phase b. For the first delta

configuration, this contribution has decreased. As phase b is further removed from the

sensors, the other two conductors begin to take over the maximum horizontal magnetic

field. The vertical field magnitudes have not changed since phase b does not contribute to

the vertical magnetic field and phases a and c have not been moved for these

configurations.

The magnetic field plot of the single line to ground fault on phase a has not

changed noticeably, as expected. The magnetic field for the line to line fault on phases a

and b is more significantly rotated than before, since phase b has been moved further

away from the sensors.

 26

 2

 4

 6

 8

30

210

60

240

90

270

120

300

150

330

180 0

 (a) (b)

 20

 40

 60

 80

 100

30

210

60

240

90

270

120

300

150

330

180 0

 20

 40

 60

30

210

60

240

90

270

120

300

150

330

180 0

 (c) (d)

Figure 3-6 – A different delta conductor configuration and plots of its magnetic field

(a) – Conductor geometry; (b) – Magnetic field for balanced currents, p=2m;
(c) – Magnetic field for a line to ground fault on phase a, p=2m; (d) – Magnetic field for line to line

fault on phases a and b, p=2m

p

p

p p

ia ic

ib

 27

3.3.4. Horizontal Configuration with Uneven Conductor Spacing

It is not uncommon for conductors to be unevenly spaced, especially in situations

where a single ground wire is strung with the transmission line. This type of

configuration is shown in Figure 3-7. If the magnetic field sensors are located beneath the

point halfway between the conductors for phases a and c, the magnetic fields will be

slightly different than those detected for a typical horizontal conductor configuration such

as the configuration in Section 3.3.1. The contributions of phases a and c to the magnetic

field remain the same. However, phase b now contributes a bit to the vertical field and a

bit less to the horizontal field. As a result, the magnetic field during normal operating

conditions is slightly rotated in the negative direction. The single line to ground fault on

phase a is not significantly affected, and the line to line fault is rotated from the field in

Figure 3-4 in the positive direction in accordance with the description in Section 3.3.1,

since the horizontal contribution due to phase b is reduced.

 28

 2

 4

 6

 8

30

210

60

240

90

270

120

300

150

330

180 0

 (a) (b)

 20

 40

 60

 80

 100

30

210

60

240

90

270

120

300

150

330

180 0

 10

 20

 30

 40

30

210

60

240

90

270

120

300

150

330

180 0

 (c) (d)

Figure 3-7 – Horizontal configuration with conductors unevenly spaced and plots of its magnetic field

(a) – Conductor geometry; (b) – Magnetic field for balanced currents, p=2m;
(c) – Magnetic field for a line to ground fault on phase a, p=2m; (d) – Magnetic field for line to line

fault on phases a and b, p=2m

3.3.5. Vertical Conductor Configuration

A vertical conductor configuration and the magnetic fields resulting from it are

shown in Figure 3-8. It is clear that no vertical magnetic field will be produced from any

of the conductors here; the magnitude of the magnetic field changes with the faults, but

p/2

p

p/3

p

ia ib ic

 29

higher impedance faults will obviously be much more difficult to detect for this

conductor configuration. Incidentally, if the sensors are located a distance p horizontally

away from the conductors at the same height as phase b, the resulting magnetic fields will

be the same as those in Figure 3-4 except rotated. As a result, the magnetic field sensors

can be used for a vertical conductor configuration as well, but they must be mounted to

the side of the conductors rather than beneath them.

 30

 1

 2

 3

 4

30

210

60

240

90

270

120

300

150

330

180 0

 (a) (b)

 50

 100

 150

30

210

60

240

90

270

120

300

150

330

180 0

 5

 10

 15

 20

 25

30

210

60

240

90

270

120

300

150

330

180 0

 (c) (d)

Figure 3-8 – Vertical conductor configuration and plots of its magnetic field
(a) – Conductor geometry; (b) – Magnetic field for balanced currents, p=2m;

(c) – Magnetic field for a line to ground fault on phase a, p=2m; (d) – Magnetic field for line to line
fault on phases a and b, p=2m

3.4. Location and Basic Design of the Sensors

By performing this analysis in polar coordinates rather than Cartesian coordinates,

the fault detection is based on two variables – rho and theta – but in essence only one of

p/2

p

p/2
ia

ib

ic

 31

these is used per algorithm. This makes fault detection more intuitive since only one

time-dependent variable needs to be analyzed for each algorithm rather than the three (or

more) variables in a typical fault detection and location scheme. The values of rho and

theta are given by

 22
yx HH +=ρ (51)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

x

y

H
H1tanθ

(52)

where the result of the inverse tangent has been corrected if Hx is negative.

Assuming a triangular or horizontally coplanar arrangement of conductors, the

sensors should ideally be located fairly close to the transmission lines vertically to reduce

the effects of magnetic interference since magnetic interference can affect the accuracy of

fault detection and, in extreme cases, indicate faults where they do not occur. Also,

keeping the sensors fairly close to the transmission lines helps keep the shape of the

magnetic field intensity as close to a circle as possible. The shape of the magnetic field

intensity ellipse can also cause problems in detection since long, narrow ellipses increase

the likelihood of incorrect fault detection. While the magnetic field ellipse could be kept

close to a circle in shape in the processing algorithm, it is much more difficult to reduce

or eliminate magnetic interference. It should be noted that, although close proximity to

the conductors improves the performance of the analysis as stated above, the sensors

must be kept outside the arcing distance of any of the conductors.

Additionally, the sensors should be horizontally located directly under the center

phase (if possible) to create an elliptical rotating magnetic field that is as close to a circle

 32

as possible and has an angle of rotation that is very close to 0° or 90°. This is again for

the purpose of reducing incorrect fault detection.

In order to determine the effects of the horizontal location of the sensors, the

magnetic fields were examined for several sensor locations beneath a transmission line. A

delta conductor configuration was used for this analysis, and the RMS current in each

phase was set at approximately 100A. The value of p in these tests was 2 meters. The

results are shown in Figure 3-9 – Figure 3-12.

The basic configuration with the sensors located directly underneath it was

already discussed in Section 3.3.2. While this does not merit much more discussion, it is

essential to note at this point that the angle of rotation for this conductor location is 90°.

The location of the sensors relative to the conductors and the resulting magnetic field are

shown below in Figure 3-9.

 33

(a)

 2

 4

 6

 8

30

210

60

240

90

270

120

300

150

330

180 0

(b)

Figure 3-9 – Delta conductor configuration and magnetic field with sensors under center phase

(a) – Conductor geometry; (b) – Magnetic field for balanced currents, p=2m

As the sensors are shifted horizontally, the angle of rotation of the elliptical

rotating magnetic field begins to increase. The rotation is in this direction because when

the horizontal magnetic field due to phase c is at its positive maximum, the currents in

phases a and b contribute to the magnetic field negatively, both in the horizontal and

vertical directions. This negative contribution in the horizontal direction is not enough to

p/2

p

p/2 p/2 ia

ib

ic

 34

overcome the contribution due to the current in phase c, so this maximum value of the

magnetic field is in the fourth quadrant. A similar situation occurs when the current in

phase c is at its negative maximum. A representative sensor location and the resulting

magnetic field are shown in Figure 3-10.

(a)

 2

 4

 6

 8

30

210

60

240

90

270

120

300

150

330

180 0

(b)

Figure 3-10 – Delta conductor configuration and magnetic field with sensors shifted

(a) – Conductor geometry; (b) – Magnetic field for balanced currents, p=2m

p/2

p

p/2 p/2

p/2

ia ic

ib

 35

As the sensors are shifted further, the angle of rotation of the magnetic field

continues to increase. The magnitudes of the maximums also begin to decrease; the

minimums also decrease, but not at as rapid of a rate. This is simply due to the increased

distance from all of the conductors. An example sensor position and the magnetic field at

this position are shown in Figure 3-11.

(a)

 1

 2

 3

 4

 5

30

210

60

240

90

270

120

300

150

330

180 0

(b)

Figure 3-11 – Delta conductor configuration and magnetic field with sensors shifted farther

(a) – Conductor geometry; (b) – Magnetic field for balanced currents, p=2m

p/2

p

p/2 p/2

p

ia ic

ib

 36

As the sensors are shifted even further, the angle of rotation of the elliptical

rotating magnetic field increases beyond 180°. Simultaneously, the maximum value of

the magnetic field decreases even more. This rotation is due to the increased percentage

of the magnetic field resulting from phase c as well as the fact that the angles that all

three phases make with the sensors from vertical are becoming closer in value. A sensor

location which demonstrates this and the corresponding magnetic field are shown in

Figure 3-12.

 37

(a)

 1

 2

 3

 4

30

210

60

240

90

270

120

300

150

330

180 0

(b)

Figure 3-12 – Delta conductor configuration and magnetic field with sensors shifted significantly

(a) – Conductor geometry; (b) – Magnetic field for balanced currents, p=2m

In addition to being located under the center of the transmission line and as close

to the conductors as possible, the magnetic field sensors should also be located away

from magnetic materials or materials that can be magnetized, since these will affect the

magnetic field perceived by the sensors. This means that the sensors needs to be mounted

p/2

p

p/2 p/2

3p/2

ia ic

ib

 38

on non-magnetic poles; this is of special note in the case that the pylons used in the

transmission system in question are made of material that can be magnetized such as steel.

The suggested designs for the magnetic field sensors are two search coils, one

oriented such that its induced voltage is proportional to the vertical magnetic field and

one such that its inducted voltage is proportional to the horizontal magnetic field. The

voltages induced in the coils are

 ()xx
x

x tHK
t

H
NAv θωωµ +=

∂
∂

= cosˆ
0

(53)

and

 ()yy
y

y tHK
t

H
NAv θωωµ +=

∂

∂
= cosˆ

0

(54)

where the coil constant is

 NAK 0µ= (55)

and 7
0 104 −×= πµ H/m is the permeability of free space.

3.5. Fault Location

For the analyzed system, the length of the transmission line and the velocity of

propagation are assumed to be known. This analysis is performed based on two sets of

sensors located at opposite ends of the transmission line as shown in Figure 3-13.

 39

Figure 3-13 – Distances and times used in fault location

Although the velocity of propagation in the transmission line can be described

using the Telegrapher Equations1 as

LC

u 1
=

(56)

for a lossless transmission line, where u is the velocity of propagation and L and C are the

inductance and capacitance of the transmission line per unit length, respectively, this

method of determining the velocity is somewhat cumbersome in this situation since L and

C can be difficult to measure for a multi-conductor transmission line. Since the velocity

of propagation in an unfaulted transmission line can also be described as

transt
lu =

(57)

where ttrans is the time for an impulse at one end of the transmission line to reach the other

end, the velocity of propagation u can be measured without directly knowing the line

capacitances and inductances. It is also known that u can be estimated to be close to the

1 While a complete review of the Telegrapher Equations is essential to an understanding of one-terminal
traveling-wave fault location (since this makes use of the reflection coefficient as well as other aspects of
these Equations), they will not be discussed in further detail here since the location method explained in
this thesis is a two-terminal method.

Load

tfault

t2 t1

d1 d2

l

 40

speed of light in power transmission and distribution lines; however, an accurate value of

the propagation velocity is essential in accurate traveling wave-based fault location.

Once u is known, the distance from each sensor and the actual time at which a

fault occurs can be found using the equations

 ()2121 ttudd −=−
(58)

and

 ldd =+ 21 (59)

where t1 and t2 are the times at which faults were detected by each sensor in seconds, d1

and d2 are the distances from the fault to each sensor in kilometers, l is the length of the

transmission line in kilometers, and u is the velocity of propagation in kilometers per

second. These result in

 ()[]211 2
1 ttuld −+=

(60)

 ()[] 1122 2
1 dlttuld −=−+=

(61)

u
dt

u
dtt fault

2
2

1
1 −=−=

(62)

where tfault is the estimated time at which the fault actually occurred. The actual fault time

tfault is very close to the times at which the fault is detected because u is typically very

close to the speed of light.

Since the fault detection will be performed by a microprocessor, the analog to

digital conversion sampling rate is an important consideration in the accuracy of fault

detection. The sampling rate is directly related to the maximum accuracy of the algorithm

since it determines the minimum measurable difference in fault detection times. As a

 41

result, the sampling rate must be fairly high to obtain dependable accuracy. The

difference in calculated fault location when a calculated fault time changes by a single

time step is given by

 () ()()()212111 2
11

2
1 ttult

SR
tuldd stepstep −+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛ ++=−∆+=∆

(63)

where ∆step is the step size, or minimum detectable change in meters, and SR is the

sampling rate in samples per second. This can be solved to find that

()SR
u

step 2
=∆

(64)

The factor of 2 is present since a difference of one sample at one end of the transmission

line only makes half the impact of one sample at each end in opposite directions. The step

size as a function of sampling rate for the ideal value of u = 8103× m/s is shown in

Figure 3-14.

 42

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

Sampling Rate (MHz)

S
te

p
S

iz
e

(m
)

Figure 3-14 – Step size as a function of sampling rate

The value of ∆step is used in determining the maximum accuracy available for any

given transmission line and is especially important for shorter transmission lines where

the error per length of the transmission line can be significantly affected. Incidentally, the

worst-case timing difference between two GPS-synchronized clocks is around 1µs [15],

which would, assuming a velocity of propagation of 0.98 times the speed of light, provide

a minimum detectable change of approximately 150 meters, assuming insignificant error

due to the actual sampling rate. In reality, the sampling rate will also introduce some

error, depending on the frequency at which the magnetic fields are sampled. For

reasonable accuracy, a sampling rate of greater than 1MHz is desired; this would

introduce up to another 150 meters of inaccuracy. However, as technology continues to

develop and both sampling rates and the GPS clock speeds are increased, these

inaccuracies will be reduced.

 43

4. Analysis Using the Magnetic Field

As previously stated, the most obvious coordinate system to analyze a rotating

magnetic field is a polar coordinate system, since any changes in the expected total

magnetic field will be detected most easily this way. Four algorithms are presented in this

section for the detection of faults while examining the system in polar coordinates. All of

them involve detecting if the values of rho or theta have exceeded or gone below a set of

expected boundaries or have made a significant and unexpected change.

Since each of these algorithms has a possibility of incorrectly detecting a fault, the

results of these algorithms can be analyzed collectively to better determine whether or not

a fault has truly occurred. Also, by taking the earliest fault detection times from each

algorithm, the microprocessor which is performing this analysis will be able to determine

actual fault detection times more correctly in order to perform the fault location more

accurately. As a result, this combined analysis using all of these algorithms will provide a

reduced number of “false alarms” as well as more accurate fault location.

4.1. Analysis Algorithms

The four algorithms used in this analysis detect the steady-state magnetic field

behavior then determine any deviation from it. The first algorithm estimates the ellipse

formed by the magnetic field then detects any significant deviations from this locus. The

next algorithm compares the present value of rho to the value detected a fraction of a

cycle before it and determines if too significant of a change has taken place. The third

algorithm detects the maximum change in rho between data points every quarter cycle

and determines if the change in rho between the last two data points has exceeded a

 44

multiple of this maximum. Finally, the fourth algorithm detects the maximum and

minimum changes in theta every half cycle and determines if the change in theta between

the last two data points is significantly higher than the calculated maximum or

significantly lower than the calculated minimum.

4.1.1. The “Expected Ellipse” Algorithm

Since the magnetic field will typically form an ellipse in steady state, the simplest

way for a microprocessor to determine if there is a fault is to sense if the magnetic field

intensities significantly change from the elliptical pattern. There are several ways to

perform such an analysis. One is to approximate the shape of the ellipse and determine,

once a mostly constant ellipse has been found, if and when the instantaneous magnetic

field value deviates from that ellipse. Such a deviation from a constant ellipse is shown

below in Figure 4-1.

 20

 40

 60

30

210

60

240

90

270

120

300

150

330

180 0

Figure 4-1 – Constant ellipse with a sudden change due to a fault

 45

In order to analyze this rotating field in this way, which will be referred to as the

“expected ellipse” algorithm, the following steps are performed:

1. The average maximum and minimum magnetic field intensities and any

angle of rotation of the field are determined.

2. An ellipse approximating the rotating magnetic field is generated from this

information.

3. Ellipses for the minimum and maximum allowable values of the magnetic

field intensity based on allowable percentage deviation from the average

must be created from the approximation; these are used to detect any sort of

abnormal behavior.

Similar to the Cartesian coordinate ellipse discussed in Section 3.1, the polar

coordinate ellipse which can be generated from the information about the maximum rho,

minimum rho, and shifted angle is defined by

() ()shiftshift θθρθθρ

ρρ
ρ

−+−
=

22
min

22
max

minmax

cossin

(65)

where ρ is the predicted value of rho for any given value of θ (based on the value of θ for

any data point), ρmax and ρmin are the detected maximum and minimum values of rho, and

θshift is the detected rotational shift of the ellipse. Once this ellipse is constructed, it is

used in determining allowable maximum and minimum magnetic fields.

An example elliptical rotating magnetic field with several boundaries of allowable

values of rho for given values of theta is shown below in Figure 4-2; the actual magnetic

field is shown in bold. While values of ρmax and ρmin are indicated, it should be noted that

values of ρmax and ρmin also occur at the points 180° around the ellipse from the indicated

points. The boundary which is significantly larger than the actual ellipse (the “maximum

 46

boundary”) is used for determining if a fault definitely occurred in contrast to the

possibility of a fault occurring. This is described further in Sections 4.2.2 and 4.2.3.

Figure 4-2 – Elliptical rotating magnetic field with boundaries for the “expected ellipse” algorithm

This method of analysis is effective if the maximum and minimum values of rho

can be determined accurately. However, if the steady-state currents are distorted, both the

maximums and minimums and the angles at which they are detected could be affected.

This effect can be reduced by adding an analog or digital filter to the detection device,

but there is still a chance of the detection of maximums and minimums being slightly

incorrect. Even if these values are close to correct, there is a chance of either a “false

alarm” or a fault not being detected with this algorithm alone. In order to decrease the

 47

number of these false positives, a different algorithm can be used in conjunction with the

“expected ellipse” algorithm.

4.1.2. The “Previous Value” Algorithm

Since the values of rho in the polar coordinate system do not change significantly

over a very short time step for a transmission line that is relatively well balanced, each

value of rho can be compared against a value that occurred shortly before it to detect

sudden changes. In a sense, this effectively compares the magnetic field against rotated

and scaled versions of the same magnetic field. An example of an elliptical rotating

magnetic field along with some boundaries generated for this “previous value algorithm”

is shown in Figure 4-3.

 48

Figure 4-3 – Elliptical rotating magnetic field with boundaries for the “previous value” algorithm

This “previous value” algorithm is especially useful in cases where the magnetic

field is not exactly an ellipse and thus cannot be accurately monitored with the “expected

ellipse” algorithm. The use of two detection algorithms in conjunction with each other

can reduce incorrect fault detections. For example, if the system is fairly imbalanced,

faults will be more likely to be incorrectly detected with the “previous value” algorithm,

while the “expected ellipse” algorithm will not have as much of a problem with this.

Similarly, if harmonics are seen by the sensors and are not properly filtered, the

“expected ellipse” algorithm will be much more likely to detect a fault incorrectly while

the “previous value” algorithm will not. A magnetic field with several unfiltered

arbitrarily phase-shifted harmonics is presented below. Figure 4-4 shows this magnetic

 49

field with boundaries based on the “previous value” algorithm while Figure 4-5 shows

the same magnetic field with boundaries based on the “expected ellipse” algorithm. It is

clear that the “expected ellipse” algorithm will incorrectly detect faults in this situation.

Ideally, all of the harmonics would be filtered prior to analysis, but complete filtering

would have negative impacts on the system in other ways including making faults harder

to detect. As a result, it cannot be assumed that the magnetic field will be a perfect ellipse.

Thus, the fault detection results of the “expected ellipse” algorithm are combined with the

results of the “previous value” algorithm in order to better determine if a fault has truly

occurred. This example reinforces the idea that performing an analysis of the magnetic

field using multiple algorithms in conjunction with one another can reduce the number of

incorrect fault detections if the results from each algorithm are compared against those

from the other algorithms.

 5

 10

 15

 20

30

210

60

240

90

270

120

300

150

330

180 0

Figure 4-4 – Magnetic field with harmonics, monitored by “previous value” algorithm

 50

 5

 10

 15

 20

30

210

60

240

90

270

120

300

150

330

180 0

Figure 4-5 – Magnetic field with harmonics, monitored by “expected ellipse” algorithm

4.1.3. The “Delta Rho” Algorithm

As stated before, when a fault is detected with multiple algorithms, the fault

location accuracy can be increased by using the earliest fault detection times at each end

of the transmission line. Despite this increased accuracy, the time at which the fault is

detected with the “expected ellipse” and “previous value” algorithms is not exactly the

time at which the fault propagated to the end of the transmission line due to the space

provided between the actual magnetic field and the allowable boundaries. There needs to

be this small region of allowable variation for each method in order to reduce incorrect

fault detections. However, this makes high impedance faults very difficult to detect. In

order to increase the accuracy even more and to improve high impedance fault detection,

a third algorithm, which will be referred to as the “delta rho” algorithm, is useful.

 51

This algorithm requires less analysis from the microprocessor than the other

algorithms, since it simply measures each change in rho between samples against a

multiple of the highest change in rho for the unfaulted system. The highest change in rho

is assumed to occur halfway between the minimum and maximum values of rho from the

“expected ellipse” algorithm for an elliptical magnetic field due to the relationship

between the zero crossing of a sine wave and the peak of its derivative which is a cosine.

The values of rho and the absolute value of the change in rho for an unfaulted system are

shown below in Figure 4-6.

0 0.005 0.01 0.015
6

8

10

12

14

Time (sec)

R
ho

0 0.005 0.01 0.015
0

1

2

3
x 10-3

Time (sec)A
bs

(c
ha

ng
e

in
 rh

o)
 (A

/m
/s

am
pl

e)

Figure 4-6 – Rho and the absolute value of the change in rho under normal operating conditions

 The absolute value of the change in rho is simply calculated as

1−−=∆ tt ρρρ (66)

 52

where the absolute value is used since the maximum allowable magnitude of the change

in rho is independent of direction of change. If the change in rho between any two

samples is greater than this multiple of the maximum value, there has possibly been a

fault. This method will detect a fault time before either of the previously described

algorithms and in some sense is most similar to the way a human would determine a fault

time based on a visual examination of a plot of the magnetic field.

As an example of this algorithm, the plot of the magnetic field during a three-

phase fault is shown in Figure 4-7. It is clear that this is a fault, but the exact time at

which the fault caused a change in the magnetic field would be difficult to detect with

either the “expected ellipse” algorithm or the “previous value” algorithm. Figure 4-8

shows the values of rho just prior to and during the fault. Again, it is clear that there is a

change, but the exact time might be difficult to determine using boundaries. However, it

is clear from Figure 4-9 that, once the change in rho is examined rather than the values of

rho, the fault can clearly be detected at a specific time where the change in rho increases

significantly.

 53

 20

 40

 60

30

210

60

240

90

270

120

300

150

330

180 0

Figure 4-7 – Magnetic field during a three-phase fault

0 0.005 0.01 0.015 0.02 0.025 0.03
0

10

20

30

40

50

60

Time (sec)

R
ho

 (A
/m

)

Figure 4-8 – Rho during a three-phase fault

 54

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.02

0.04

0.06

0.08

0.1

0.12

Time (sec)

A
bs

ol
ut

e
va

lu
e

of
 c

ha
ng

e
in

 rh
o

(A
/m

/s
am

pl
e)

Figure 4-9 – Absolute value of the change in rho during a three-phase fault

The downside of the “delta rho” algorithm is that even a trace of noise can cause

an incorrect fault detection. An example of a rotating elliptical magnetic field with some

noise added is shown in Figure 4-10; the absolute value of the change in rho for this

system is shown in Figure 4-11. Even though the noise does not appear to be very

significant when compared to the values of rho as seen in the ellipse, the changes in rho

due to the noise are easily enough to cause the delta rho algorithm to incorrectly detect a

fault.

 55

 5

 10

 15

30

210

60

240

90

270

120

300

150

330

180 0

 (a) (b)

Figure 4-10 – Rotating elliptical magnetic field under normal conditions with noise added

(a) – Full ellipse; (b) – Detail of noise (window is approximately 0.25 A/m in each direction)

0 0.005 0.01 0.015
0

0.5

1

1.5

2

2.5

3
x 10-3

Time (sec)

A
bs

ol
ut

e
va

lu
e

of
 c

ha
ng

e
in

 rh
o

(A
/m

/s
am

pl
e)

Figure 4-11 – Absolute value of the change in rho under normal conditions with noise added

 56

In order to minimize this risk of incorrect fault detection due to noise, the

maximum change in rho is not taken solely from the change in rho over the single time

step which would typically create the greatest change, but from an average of the changes

per time step over a short period of time. This will significantly reduce the effects of

noise, since the noise will be taken into account in this average measurement. There are

no negative effects due to this modification under noiseless conditions; under noisy

conditions, this change will make the “delta rho” algorithm a bit less likely to detect a

fault, but this is clearly superior to the possibility that the algorithm will indicate a fault

every time it detects a significant amount of noise.

Since this sudden change in rho can occur due to extreme noise even with this

modification in place, the “delta rho” algorithm is more likely to incorrectly indicate

faults than the previously discussed algorithms. However, if the time at which a fault is

detected with the other algorithms is close to the time at which the “delta rho” algorithm

detects a fault, the time from the “delta rho” detection is compared to the other times and

is used in determining the fault location, thus providing more accurate location of the

fault. Also, since this algorithm detects high impedance faults better than the other

algorithms, the fault times related to this algorithm that do not correlate with the fault

times of other algorithms are stored separately. In the case that a fault is later found to

have occurred, this information can then be used to determine the fault location.

4.1.4. The “Delta Theta” Algorithm

The algorithms described above will detect and locate most types of faults quite

well; however, line to line faults, especially those that occur when the currents in the

 57

faulted conductors are at near-equal values, are still problematic with the above three

algorithms alone. As a result, another method must be added in order to detect this type

of fault. The most distinguishing characteristic of the initial detection of a line to line

fault is a rapid change in the value of the polar angle theta (θ). As a result, the most

logical detection algorithm to add is one which detects sudden changes in the value of

theta. This algorithm will be referred to as the “delta theta” algorithm.

The change in theta per time step is simply defined as

 1−−=∆ tt θθθ (67)

The allowable change in theta per time step is between a value slightly higher than the

maximum detected change and a value slightly lower than the minimum detected change;

if the magnetic field goes beyond either of these boundaries, a fault has most likely

occurred. No absolute value is used with this algorithm since a change in the direction in

which theta is changing indicates a fault (whereas rho remaining the same or switching

from increasing to decreasing is expected under normal operating conditions).

Just like rho, theta changes at different rates throughout the ellipse. The maximum

change in theta per time step is at the minimum value of rho, and the minimum change is

at the maximum value of rho. This is shown in Figure 4-12; it is important to note that in

this Figure the “maximum” value of theta is actually a minimum since theta is always

negative (constantly decreasing) for the particular situation. Since the “delta theta”

algorithm is prone to the effects of noise in the same way as the “delta rho” algorithm, the

same averaging method is used in calculating the maximum and minimum allowable

values in order to reduce the number of incorrect fault detections.

 58

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
6

8

10

12

14

Time (sec)

R
ho

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
-8

-6

-4

-2
x 10-4

Time (sec)

C
ha

ng
e

in
 th

et
a

Figure 4-12 – Rho and delta theta compared under normal operating conditions

The magnetic field of a line to line fault is shown in Figure 4-13; Figure 4-14

shows the value of theta up to and during the fault. There is clearly an abrupt change in

the value of theta when the magnetic field changes its pattern due to the fault current, but

the exact time of this change is difficult to determine directly from theta. In contrast, the

change in theta is shown in Figure 4-15. The sudden change due to the fault can be easily

be located using this information.

 59

 20

 40

 60

 80

30

210

60

240

90

270

120

300

150

330

180 0

Figure 4-13 – Magnetic field during a line to line fault

0 0.005 0.01 0.015 0.02 0.025 0.03
-4

-3

-2

-1

0

1

2

3

4

Time (sec)

Th
et

a
(ra

d)

Figure 4-14 – Theta during a line to line fault

 60

0 0.005 0.01 0.015 0.02 0.025 0.03
-14

-12

-10

-8

-6

-4

-2

0

2
x 10-4

Time (sec)

C
ha

ng
e

in
 th

et
a

(ra
d/

sa
m

pl
e)

Figure 4-15 – Change in theta during a line to line fault

4.1.5. Fault Detection

Each algorithm detects faults independently; once faults have been detected by

one or more algorithms, the fault location is performed. If there is some kind of abnormal

behavior (a field intensity that goes outside of a minimum or maximum, or a change

greater than allowed by the “delta rho” algorithm), the detection system will perform the

following operations:

1. Record the time at which this occurred.

2. If some abnormality is recorded at both ends of the transmission line, then

the location of the fault is computed based on the difference in detection

times.

 61

3. If the abnormality is recorded at only one end of the transmission line, then

the possibility that an error might have occurred is recorded in the

microprocessor memory.

4.2. Implementation of the Algorithm

While the collective algorithm is not particularly difficult in concept, the

implementation becomes somewhat complicated since the fields in question are not

necessarily limited to ellipses in their shapes as has been noted in previous sections. This

necessitates the addition of several steps to the algorithm to prevent “false alarms” and to

increase the accuracy of the algorithm as much as possible. It is essential to note at this

point that all calculations are done identically and independently for both ends of the

transmission line, and the only time these calculations interact is when a potential fault

has been detected.

This particular implementation of the algorithm is done in a time loop, similarly

to how an actual device would function, with the only time-independent element being a

readout of possible fault information at the end of the code. The analyses for each

algorithm can be run in parallel if necessary to increase the processing speed of the

complete analysis. Figure 4-16 shows the implementation of the collective algorithm. The

complete MATLAB code can be found in Appendix C.

 62

Figure 4-16 – Fault Detection Algorithm

Convert from horizontal and vertical magnetic field
intensities to polar coordinates; initialize variables;

check if rho is increasing or decreasing

Determine if any
previous (single

end of the
transmission

line) fault
detections were

erroneous

Check for rho maxes and
mins and reset

boundaries if needed

Test for any faults

Reset maximum delta
rho if near a point

halfway between a rho
max and rho min

Test for any faults

Adjust allowable
margins for fault

detection if necessary

Test for any faults

“Delta Rho”
Algorithm

“Previous Value”
Algorithm

“Expected Ellipse”
Algorithm

If faults are detected at
both ends, store the
related information

If more than one
algorithm has

detected a fault,
store this

information
separately

Is more data
available?

Yes No
Analyze results

and compute fault
locations (if any)

If faults are detected at
both ends, store the
related information

If faults are detected at
both ends, store the
related information

Reset maximum or
minimum delta theta

values if near a max or
min change in theta

Test for any faults

“Delta Theta”
Algorithm

If faults are detected at
both ends, store the
related information

 63

4.2.1. Initialization

The process begins by receiving the inputs – specifically, currents in the

conductors, the transmission line geometry and length, sampling rates, the velocity of

propagation, the time from which the analysis starts in case it is referenced to a time

external to the code, and the time to wait for the transmission line to be re-energized

before resuming analysis. The currents are converted into the horizontal and vertical

magnetic fields using Equations (47) and (48) and the information which was provided

by the user. These values are then converted into the values of rho and theta for all values

of time. A MATLAB function called atan2 is used in this implementation to take the

inverse tangent to find theta; this takes negative Hx into account and determines in which

quadrant theta should be located. Rho is calculated using Equation (51).

These calculations are followed by an initialization of a large number of other

variables which are used at various points in the analysis. After the basic variable

initialization, all of the variables related to the minimum and maximum rho values and

the angle of rotation from a standard ellipse are found by calling two functions. These

functions have been named “checkdir” and “minmaxrho” in the code; they find whether

rho is increasing or decreasing and the minimum and maximum values of rho,

respectively. These values are used in the analysis for the “expected ellipse” algorithm.

The check for whether rho is increasing or decreasing is essential in determining

the minimum and maximum values of rho; it is implemented separately from the function

that determines the minimum and maximum values to simplify function calls in the code

and to make debugging easier. This function in and of itself is rather simple. It checks the

 64

rho value for the present time value then compares it to the value for the previous time.

This determines if rho is increasing or decreasing.

Finding the minimum and maximum values of rho is somewhat more complicated.

At the beginning of the function, all the necessary variables are temporarily set to zero.

The function will continue running until all of the necessary values (rho minimums and

maximums as well as angles of rotation) have been found, or until the end of the

available information has been reached. It is clear that the maximum and minimum

values for rho should occur when rho changes from increasing to decreasing or

decreasing to increasing, respectively; however, harmonics, noise, or errors in analog to

digital conversion may indicate local maximums or minimums that are not the maximum

or minimum for the system in this way. In order to remove the effects of these incorrect

detections of maximums and minimums, once a maximum or minimum is detected, the

system searches through the previous quarter cycle for the highest (or lowest, in the case

of a minimum) values of rho and uses this value. In order to prevent faults from

incorrectly affecting these results, the amount of time between detections of a maximum

and a minimum and vice versa is limited. As a result, faults which cause a change in a

maximum or minimum will only change the predicted ellipse based on the first changed

value due to the fault; any later changes in rho will indicate a fault. The values for the

angles of rotation (called “thetashift” in the code) are taken to be the theta values where

the maximum rhos are detected. The resulting maximums, minimums, and angles of

rotation are then returned to the main program.

 65

4.2.2. Error Checking

At this point, problems from previous time steps are analyzed. Any temporary

variables that have expired are cleared. If a fault is detected at one end of the

transmission line with any algorithm, the system waits for the maximum possible

detection time, defined by a value slightly larger than the length of the transmission line

divided by the velocity of propagation. This is the maximum time that could occur

between detection at one end of the transmission line and detection at the other for an

actual fault. If the time is exceeded, this means that the indication at one end of the

transmission line was an incorrect detection or that a fault occurred but that one end of

the transmission line did not see any evidence of this fault. The latter situation is likely to

occur for high impedance faults or for faults near the zero-crossing of the current

waveform in the faulted phase. If the fault that was detected was due to an increase above

the maximum allowable rho value, a “problem time” is recorded, since the maximum rho

should theoretically never be exceeded except in the case of a fault; thus, for the

maximum to be exceeded at one end of the transmission line without any fault detection

at the other, it means that there has been some error. Otherwise, the fault detection is

assumed to be an incorrect detection. Either way, all flags indicating a fault for the

algorithm which detected this fault are cleared after this maximum time in order to reset

the system as quickly as possible.

Additionally, if the “delta rho” algorithm has been indicating faults repeatedly

without the other algorithms detecting any faults, this could mean that there is excessive

noise in the system for some reason. As faults are detected by the “delta rho” algorithm, a

variable is set to count until a quarter of a cycle has passed. If at least three faults have

 66

been detected by the “delta rho” algorithm within this period of time, the maximum

percentage allowable above the highest change in rho in the system is doubled. This will

prevent repetitive tripping due to the “delta rho” algorithm. Since it is assumed that the

significant amount of noise required to cause this algorithm to detect a fault is a

temporary condition, the original maximum allowable percentage above the highest

change in rho is restored after a fault occurs or after an extended period of time.

4.2.3. Fault Detection

After finding all the information necessary for analysis, the fault detection can

begin. Fault detection is performed before resetting any of the algorithm variables since a

change in a variable such as the maximum detected value of rho may be due to a fault.

Thus, the fault detection is done first to reduce any impact that these variable changes

may have on the detection process.

The first attempt at fault detection is using the “delta rho” algorithm. If the change

in rho between the current time step and the previous time step is greater than a multiple

of the largest change in rho that was recently detected, this algorithm indicates a fault.

After this, the present values are tested with the “delta theta” algorithm. If the

value of theta has changed more than a multiple of the highest detected change or a

fraction of the lowest detected change, a fault is indicated. It is important to note that

there is a break in the values of theta since the inverse tangent function (which is used in

converting the horizontal and vertical magnetic field values into polar coordinates of rho

and theta) only returns values in the range [-π,π] or [0,2π] (after correction for points in

quadrants II and III). As a result, a modification must be made as the value of theta goes

beyond these boundaries since this will indicate a change in theta of nearly ±2π. If the

 67

value of theta has just made this change in either direction during the present time step,

the change in theta is calculated by subtracting 2π from the higher of the two values. As a

result, the actual change in theta is calculated.

The code continues with several checks for faults using the “expected ellipse” and

“previous value” algorithms. While a simple check for an increase in rho beyond the

maximum allowable value at one end of a line and a decrease beyond the minimum

allowable value at the other end might find faults, the fault locations which are

determined by the algorithm will not necessarily be very accurate.

The analysis begins by testing for an increase beyond the maximum rho at either

end of the transmission line. If either end satisfies this condition and has not detected a

fault recently, the time of the fault and other information will be recorded along with a

flag to indicate the cause of the fault detection at that end of the transmission line.

After comparing the current value of rho against the maximum rho, the current

rho is compared to a different value of rho above the expected value (referred to as the

“high” value of rho) which is analyzed similarly to the maximum value. Additionally,

since the high value of rho must be exceeded in order to reach the maximum value of rho,

if one end of the transmission line has been flagged for exceeding the high value of rho,

this flag can be cleared and replaced with another flag if the maximum is exceeded.

The value of rho is also compared to the minimum allowable value of rho. If the

present value of rho is less than the minimum allowable rho at either end of the

transmission line, that end of the transmission line is flagged. Additionally, if the value of

rho drops below the minimum then suddenly rises above the minimum at the other side of

 68

the ellipse, a different kind of flag is stored since this type of behavior is more likely to

indicate a fault than simply a drop below the minimum.

The amount of time that the value of rho is allowed to remain under the minimum

value before the algorithm chooses not to store this different flag is identified in the code

as “maxbelowtime.” A set of variables called “dropbelow” are defined for each end of the

transmission line and for both the “previous value” and “expected ellipse” algorithms. As

every time step is analyzed, the “dropbelow” is incremented (starting from zero) for any

algorithm which has detected that the value of rho has gone below the minimum

allowable value. If this value reaches “maxbelowtime” without the value of rho returning

above the minimum allowable value, it is assumed that rho will not be going above the

minimum value again and thus this flag for a stronger indication of a fault will not be set.

4.2.4. Resetting Variables

This algorithm continues with code very similar to the “minmaxrho” initialization

code described above, except it occurs as the time is passing; as a result, the minimum

and maximum values for rho and the angle of rotation are only updated at time values

where the condition for a minimum or maximum has occurred.

For the “delta rho” algorithm, the value of the maximum change in rho detected in

the system should occur near the angle half way between the maximum value of rho and

the minimum value of rho. Simply taking the difference between the value of rho during

this time step and the value during the previous time step should produce the maximum

change in rho, but if there is noise in the system, this could produce a change in rho much

lower than the highest change present in the non-faulted system.

 69

One way to solve this problem is to check the change in rho for every time step

and determine this change is greater than the previously defined maximum change in rho.

However, this would require a great deal of additional analysis and more importantly, it

would be affected by faults, since a fault would simply change the maximum allowable

value of rho and thus make it harder to detect further increases in rho due to the same

fault.

Instead, this algorithm averages the changes in rho over a short period of time

near the angle where the maximum change in rho should occur. This reduces the effect of

noise since the average change in rho due to the noise is taken into account. Faults would

not significantly affect this value since a fault that occurred a few time steps back would

be detected at this point. Additionally, the changes in rho over several time steps are

averaged so if a fault is just about to be detected and has made a small change to the

current value of rho but not enough to be detected, this small change in rho that has not

yet been detected is only one small part of the average.

Similarly to the “delta rho” algorithm, the values for the “delta theta” are

initialized as averages. The maximum change in theta is taken to be the average change in

theta near the minimum value of rho while the minimum change is taken as the average

near the maximum value of rho.

Since the “previous value” algorithm tests the present value of rho against

multiples of the rho values from previous time steps, the algorithm is prone to indicating

faults incorrectly when rho changes rapidly – for example, in the case of extreme

imbalance between the currents in the conductors. The allowable boundary values of the

“previous value” algorithm can be modified to prevent this kind of situation while

 70

keeping the boundaries close enough to the allowable values to detect faults as quickly as

possible.

Throughout each cycle, the value of rho is compared against four boundaries

which are a set percentage smaller than the fault detection boundaries for the “previous

value” algorithm. Two of these are slightly above and below the predicted value of rho.

Ideally, these boundaries will be exceeded at least for a bit of a cycle; if either of them is

not, the allowable value of rho in that direction (either above or below, dependent upon

which boundary is not exceeded) is reduced in order to increase the fault detection

accuracy of the algorithm. The other two values are much closer to the fault detection

boundaries. If either of these is exceeded over the course of a cycle, it means that the

algorithm is getting close to detecting faults incorrectly (or that a fault has occurred, but

presumably this would also exceed the allowable value and indicate a fault in addition to

exceeding these testing values).and a result, the allowable value of rho in the appropriate

direction is increased.

4.2.5. Fault Information Storage

If a fault has been detected at one end of the transmission line, the time at which it

was detected is stored. Once flags indicating faults have been set at both ends of the

transmission line, the system stores the information about the fault times and indication

types prior to temporarily suspending its operation. If only one algorithm is indicating a

fault and if that algorithm has not exceeded the waiting time mentioned in Section 4.2.2,

the system will wait for another algorithm to indicate a fault as well; as previously stated,

taking the earliest detection times at each end of the transmission line from two

algorithms can provide more accurate fault location. Even if the waiting time has been

 71

exceeded, if only the “delta rho” algorithm or only the “delta theta” algorithm has

detected a fault, the system will not suspend its operation as it would for detection with

either of the other algorithms or for detection with multiple algorithms. This is done since

these two algorithms (the “delta rho” algorithm in particular) are sensitive to noise, and

the fault detection should not be suspended based solely on algorithms which could be

prone to having this sort of problem. However, if one of these algorithms detects a fault

but the waiting time is exceeded, this fault timing information is stored separately from

the other fault detection timing information in case it is later determined that a fault

actually occurred.

This information is processed at the end of the available time information for the

present implementation of the algorithm; in practice, the analysis would be performed as

faults are detected since there is no end of data in a real-life situation. The algorithm then

pauses for a short period of time (which is provided by the user) to allow the breaker to

clear the transmission line. This is to prevent faults from being erroneously detected

immediately after resuming analysis. After this waiting time has passed, the system again

initializes the variables for its operation (minimum and maximum rho values, etc.),

removes the fault-indicating flags, and re-enters the time loop to wait for another fault.

It is essential to consider that, depending on the time delay between the fault

detection and resumed operation of the detector, the transmission line may not yet be re-

energized when the detector resumes operation. Since the minimum and maximum rho

will be determined based on this system, the transmission line being re-energized may

also indicate a fault. In practice, however, this fault locator device would likely be

 72

networked with other protection equipment and thus would be aware of the status of the

transmission line.

4.2.6. Fault Analysis

After the end of the available data, any faults are analyzed using Equations (60),

(61), and (62); prior to this, the information was only stored and was not processed. For

each fault, timing information may be available from any of the algorithms which

detected it. In order to obtain the most accurate measurement possible, the earliest

available detection times for each fault are used in the calculation of the fault location.

The location of the faults and the approximated times at which they occurred are then

presented along with the information about the type of change that caused the fault to be

detected.

If any fault location calculations result in a negative distance, the times resulting

in these errors are presented. As described in Section 4.2.2, a bit of leeway is given in

waiting between the detection of a fault at one end of the transmission line and the latest

expected fault detection time at the other end (at which time the information about the

detection of the fault at the first end of the transmission line is discarded). These negative

distance calculations may be the result of a fault very close to one end of the transmission

line and late fault detection at the other end of the transmission line which falls within

this leeway. The resulting negative distance can thus indicate a fault very close to one end

of the transmission line.

Additionally, any of the “problem times” – where a fault was clearly detected at

one end of the transmission line but nothing was detected at the other end – are shown

 73

after the end of the available data. This information can be used for “debugging” and

system analysis.

 74

5. Testing the Algorithm

The full algorithm was tested to determine the accuracy with which it can detect

faults. The system was tested for a 115kV transmission system. The geometry of the

transmission line and details about its simulation model are presented in Appendix A.

Single line to ground faults were used as the main fault for testing since they are by far

the most common fault types; the conductor configuration was chosen as a coplanar

arrangement. Since the accuracy of calculation is dependent upon the angle of fault

incidence, the system was tested for faults at both the zero-crossing of the faulted phase’s

current, which is the most difficult fault timing to detect, and at the faulted phase’s peak

current, which is easiest to detect. The testing was based upon a purely resistive fault.

The location of the fault was varied linearly along a 20km transmission line for fault

resistances of 0.1, 1, and 10 per unit, which are equivalent to approximately 13.225Ω,

132.25Ω, and 1322.5Ω for the 115kV transmission line in question. These values come

from

 ()
base

baseLL
base MVA

kV
Z

,3

2
,

φ

=

(68)

for the given base voltage of 115kV line to line and a chosen base 3-phase power of

100MVA which results in a per unit impedance of 132.25Ω.

The sampling rate used in this testing was 2MHz. For all tests, any frequencies

below 60Hz and any harmonics are assumed to have been filtered in a way that does not

noticeably affect the fault detection. Additionally, the magnetic sensors are assumed to be

able to respond to a change in the magnetic field instantaneously. Also, noise is assumed

to be negligible.

 75

The fault simulations were conducted using ATPDraw, a free electric power

system analysis program; the resulting data was exported into Microsoft Excel using TOP,

an output processor for power system analysis programs. The Excel-format data was then

processed by MATLAB using the code in Appendix C. In an actual power system setting,

only the actual analysis step (here represented by the MATLAB analysis) would be

performed, thus simplifying the process significantly.

The results of these analyses are shown below in Figure 5-1 and Figure 5-2. The

fault location error is specified in [3]. It is equal to

100% ×

−
=

l
dd

Error actualread

(69)

where dread is the fault location detected by the algorithm, dactual is the actual location of

the fault, and l is the total length of the transmission line. If a fault was detected with only

one of the algorithms, this detection was not discounted.

It is clear from a comparison between the accuracies of the fault detections for

zero-crossing current faults and the fault detections for peak current faults that the fault

location is much more reliable for faults at the peak of the current. In fact, the curve in

Figure 5-1 (which is the best-case situation for fault location) is independent of fault

resistance until the fault resistance becomes larger than 10 per unit (1322.5Ω) which is

the resistance for which this Figure is plotted. The faults at the current’s zero-crossing

were not detected at one end of the transmission line (thus preventing fault location) for

fault resistances greater than 1 per unit, which is 132.25Ω. (Note that the algorithm did

detect and locate the faults at 10% and 20% of the transmission line length at this

impedance, but the accuracy was incredibly poor and thus the points do not appear in

Figure 5-2.) For the sake of comparison, ground fault resistances may be as high as 800Ω

 76

“[i]n cases of high ground resistivity and no overhead ground wire” [16]. While this is a

relatively high impedance for a ground fault, it is still possible that a fault of this

impedance could occur near the zero-crossing of the faulted phase’s current and that as a

result this algorithm would not be able to detect or locate the fault. This is one of the

admitted weaknesses of this algorithm. As a result, this implementation of the fault

detector can only be recommended for use with transmission lines that have at least one

overhead ground wire.

-1.00%

-0.80%

-0.60%

-0.40%

-0.20%

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

10% 20% 30% 40% 50% 60% 70% 80% 90%

Fault distance from generator (% of line length)

Er
ro

r

R = 10 per unit

Figure 5-1 – Fault location error for a single line to ground fault when the faulted phase’s current is

at a maximum

 77

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

10% 20% 30% 40% 50% 60% 70% 80% 90%

Fault distance from generator (% of line length)

Er
ro

r R = 0.1 per unit
R = 1 per unit

Figure 5-2 – Fault location error for a single line to ground fault when the faulted phase’s current is

zero

The algorithm was also tested for a range of fault resistances for each major fault

type, including single line to ground faults (at both the faulted phase’s current maximum

and current zero-crossing), line to line faults and line to line to ground faults (when both

phases’ currents are at identical values), and three phase faults (at one of the phases’

current zero-crossings). The timings above are the most difficult portions of the cycle to

detect each of these faults, with the exception of the single line to ground fault at the

faulted phase’s current maximum which was included since it was already tested based

on fault location in Figure 5-1. The faults tested were located in the center of the

transmission line (10km from each end) in order to minimize the faults appearing to be

undetected when the problem is simply a large error. For example, if a fault is very close

to one of the ends of the transmission line and the other end does not detect the fault

exactly when the traveling wave arrives, the fault will appear to be off of the transmission

 78

line and, based on the way the analysis algorithm is designed, will be seen as an

erroneous fault detection.

The results, which are shown below in Figure 5-3, Figure 5-4, and Figure 5-5,

indicate extremely accurate fault detection. Aside from the slightly low detectable fault

impedance for the worst case of single line to ground faults as previously mentioned, the

only fault type where moderate fault impedances seem to cause a problem is the line to

line fault. As can be seen in Appendix B, this fault location must rely specifically on

detecting sudden changes in theta to produce an accurate result. By decreasing the

allowable range of values of delta theta, the maximum detectable fault impedance could

be increased; however, this would make the algorithm more likely to incorrectly detect

faults due to noise.

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

2.00%

0.01 0.025 0.05 0.1 0.25 0.5 1 2.5 5 10 25 50

Fault impedance (per unit)

Er
ro

r

Phase A-gnd (maximum)
Phase A-gnd (zero-crossing)

Figure 5-3 – Fault location error as a function of fault impedance for single line to ground faults

 79

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

2.00%

0.01 0.025 0.05 0.1 0.25 0.5 1 2.5 5 10 25 50

Fault impedance (per unit)

Er
ro

r

Phase A to Phase B
Phase A to Phase B to Ground

Figure 5-4 – Fault location error as a function of fault impedance for line to line faults

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

2.00%

0.01 0.025 0.05 0.1 0.25 0.5 1 2.5 5 10 25 50

Fault impedance (per unit)

Er
ro

r

Three Phase Fault

Figure 5-5 – Fault location error as a function of fault impedance for three phase faults

 80

The slightly jagged nature of these Figures is due to the fact that the error is

limited to a discrete set of values for a given fault location since the calculated fault

locations are also limited to a discrete set of values. This due to the step size discussed in

Section 3.5 (and specifically in Equation (64)) and is a result of the sampling rate. Higher

sampling rates than the 2MHz which was used in these tests can decrease this appearance

and may also improve the accuracy of detection, depending on the location of the fault in

question.

The errors shown are on the order of hundreds of meters since 1% error is equal to

200m for the 20km long transmission line. This is in the range of the maximum error

introduced by the synchronization using GPS [15]. As a result, significant improvements

in the accuracy of these algorithms will not necessarily provide a worthwhile benefit at

this time.

It is also important to note that the fault detection error and maximum detectable

fault impedance are based on the margins of allowable operation for each algorithm. For

example, the code in Appendix C which was used to carry out these tests requires the

change in rho at any time to be greater than double the maximum detected change in rho

for a fault to be detected. Reducing this allowable margin will increase the location

accuracy for correct fault detections and will make higher impedances easier to locate but

will also make it easier for the algorithm to detect faults incorrectly.

 81

6. Conclusions

This thesis described the theory and methods of traveling wave fault detection and

location using magnetic field sensing coils. The concept of the magnetic field for a

general and three phase system was explored. This was followed by a presentation of the

magnetic fields for a variety of conductor configurations and sensor locations. The four

algorithms used in the magnetic field-based fault detection were then described. Finally,

the combined algorithm was explained, and the results of accuracy and maximum

detectable fault resistance were presented.

The magnetic field sensors were shown to be effective in detecting faults

conceptually. Additionally, the collective algorithm was tested and was shown to provide

accurate fault detection for relatively high fault impedances and for each common type of

fault. All of this proves the magnetic field sensor to be a viable tool for power

transmission line fault detection.

Future research could be performed in applying these algorithms to more

complete systems than the single transmission line which was used for analysis in this

thesis. Additionally, other fault location algorithms – most specifically, a fault location

and classification scheme using the wavelet transform – could be modified to make use of

the magnetic field. This will most likely improve the accuracy of fault location and

increase the maximum detectable fault impedances.

Eventually a prototype of the magnetic field-based fault detector could be built

and field tested. This would require more development of the sensor coils as well as

harmonic-filtering circuitry. The MATLAB code would also need to be reconfigured

since it is currently written to analyze pre-prepared sets of data to test the algorithm

 82

rather than to continuously monitor information with which it is provided. The

programming language would also most likely need to be changed to a different language

which could be compiled directly for use with a microprocessor.

 83

References

[1] T. Takagi, Y. Yamakoshi, M. Yamamura, R. Kondow, T. Matsushima,

“Development of a New Type Fault Locator Using the One-Terminal Voltage and
Current Data,” in IEEE Transactions on Power Apparatus and Systems, Vol.
PAS-101, No. 8, August 1982, pp. 2892-2898.

[2] D. A. Tziouvaras, J. B. Roberts, G. Benmouyal, “New Multi-Ended Fault
Location Design for Two- or Three-Terminal Lines,” in Developments in Power
System Protection (IEE), Conference Publication No. 479, Amsterdam, 2001, pp.
395-398.

[3] IEEE Power Engineering Society (PES), IEEE Guide for Determining Fault
Location on AC Transmission and Distribution Lines, IEEE Std. C37.114TM-2004.

[4] K. Zimmerman, D. Costello, “Impedance-Based Fault Location Experience,” in
2005 58th Annual Conference for Protective Relay Engineers, 2005, pp. 211-226.

[5] M. Sneddon, P. Gale, “Fault Location on Transmission Lines,” in IEE
Colloquium on Operational Monitoring of Distribution and Transmission Systems,
January 1997, pp. 2/1-2/3.

[6] P. F. Gale, P. A. Crossley, X. Bingyin, G. Yaozhong, B. J. Cory, J. R. G. Barker,
“Fault Location Based on Travelling Waves,” in Fifth International Conference
on Developments in Power System Protection, 1993, pp. 54-59.

[7] P. Crossley, “Future of the Global Positioning System in Power Systems,” in IEE
Colloquium on Developments in the Use of GPS in Power Systems, London, 8
February 1994, pp. 7/1-7/5.

[8] M. Aurangzeb, P. A. Crossley, P. Gale, “Fault Location on a Transmission Line
Using High Frequency Travelling Waves Measured at a Single Line End,” in
Power Engineering Society Winter Meeting, Vol. 4, 2000, pp. 2437-2442.

[9] A. Elhaffar, M. Lehtonen, “Travelling Waves Based Earth Fault Location in
400kV Transmission Network Using Single End Measurement,” in Large
Engineering Systems Conference on Power Engineering, 2004, pp. 53-56.

[10] F. H. Magnago, A. Abur, “Fault Location Using Wavelets,” in IEEE Transactions
on Power Delivery, Vol. 13, No. 4, October 1998, p. 1475-1480.

[11] McBride. Fault Detector with Improved Response Time for Electrical
Transmission System. Bridges Electric, Inc. Patent 4,408,155. 4 October 1983.

 84

[12] Kejariwal, et al. Fault Detection and Location System for Power Transmission

and Distribution Lines. The Research and Development Institute, Inc. at Montana
State University. Patent 5,343,155. 30 August 1994.

[13] A. E. Emanuel, J. A. Orr, D. J. Pileggi, and E. M. Gulachenski, “A Non-Contact
Technique for Determining Harmonic Currents Present in Individual Conductors
of Overhead Lines,” Presented at the IEEE PES 1982 Summer Meeting, San
Francisco, July 1982.

[14] M. Vintan, “Fault Current Distribution Computation on Overhead Transmission
Lines,” in Proceedings of the Fifth International World Energy System
Conference, vol. II, 2004, Oradea, Romania, pp. 273-279.

[15] J. Jiang, Y. Lin, J. Yang, T. Too, C. Liu, “An Adaptive PMU Based Fault
Detection/Location Technique for Transmission Lines—Part II: PMU
Implementation and Performance Evaluation,” in IEEE Transactions on Power
Delivery, Vol. 15, No. 4, October 2000, pp. 1136-1146.

[16] IEEE Power Systems Relaying Committee (PSRC), IEEE Guide for Protective
Relay Applications to Transmission Lines, IEEE Std. C37.113-1999, pp. 31.

 85

Appendix A : Model for Testing

The algorithm was tested for a 115kV transmission line using the power system

simulation program ATPDraw as described in Section 5. The circuit for a ground fault

simulation is shown below in Figure A-1; the data for the transmission line is shown in

Figure A-2 and Figure A-3, and a diagram of the distances between the conductors and

sensors is shown in Figure A-4.

Figure A-1 – ATPDraw circuit for testing

Figure A-2 – Modeling data for testing

 86

Figure A-3 – Transmission line geometry for testing

Figure A-4 – Conductor and sensor distance relationships for testing

Two identical transmission line models with different lengths connected in series

were used in each test. A switch is connected to the node where these transmission lines

meet; when the switch is opened, it connects a resistance to ground, thus simulating a

ground fault. This resistance to ground is indicated by an RLC block. The lengths of each

transmission line and the resistance to ground were changed for each test. The

transmission line is terminated in a somewhat arbitrarily selected 500Ω resistive load

(approximately 3.78 per unit, based on the per unit impedance of 132.25Ω found using

Equation (68)) which is used to simulate a secondary-connected load; this is the RLC

block on the far right. This allows an RMS current of approximately 132A to flow in

3m
2m

1m 1m 1m 1m

 87

each phase during normal operation. The first RLC block is the generator impedance

which was selected as approximately 0.17 per unit with an angle of approximately 80°

since subtransient impedances are typically on this order of magnitude and are mostly

reactive [1]. The other two RLC blocks which have not been described have a negligible

resistance and are used to monitor the currents at the ends of the transmission line. These

currents are later used in the analysis algorithm.

The transmission line model and geometry, shown in Figure A-2 and Figure A-3

respectively, are rather standard. The soil resistivity for this analysis was somewhat

arbitrarily chosen as 100Ω·m since this is a typical soil resistivity for moist soils [2]. The

skin effect option was used to allow ATP to generate the appropriate impedance for each

conductor on its own.

The line model chosen was the JMarti model. This is a frequency-dependent

transmission line model which uses a constant transformation matrix [3,4]. This is useful

for fault detection studies since faults can cause high-frequency oscillations. As a result, a

frequency-dependent model more accurately predicts the actual performance of a fault

detection algorithm for a real transmission line.

The transmission line geometry chosen was a horizontal configuration. The

dimensions are as shown in Figure A-3 and are based on Cardinal and Alumoweld (7 No.

8) conductors and the Horizontal Unshielded conductor configuration in the EPRI

Transmission Line Reference Book [5]. The inner radii (used in calculating the skin

effect) are of special note. The conductivity of steel is much lower than that of aluminum

and thus the majority of current is located in the aluminum stranding of ACSR

(aluminum conductor steel reinforced) conductors [6]. As a result, the steel stranding can

 88

usually be neglected in calculations of impedance. The skin effect inner radius value

allows ATP to take this into account in its calculation of line constants.

 89

References for Appendix A

[1] Stevenson Jr., W. D., Elements of Power System Analysis, New York: McGraw-

Hill, Inc., 1982.

[2] IEEE Power Engineering Society (PES), IEEE Guide for Safety in AC Substation
Grounding, IEEE Std. 80-2000, pp. 50-53.

[3] L. Prikler, H. K. Høidalen, ATPDRAW Version 3.5 for Windows 9x/NT/2000/XP
Users’ Manual, Published through ATP-EMTP User Groups, October 2002, pp.
138, 140.

[4] Electro-Magnetic Transients Program (EMTP) Theory Book, Published through
ATP-EMTP User Groups, July 1995, pp. 4-72–4-86.

[5] Electric Power Research Institute (EPRI), Transmission Line Reference Book on
115-138 kV Compact Line Design, EPRI Publication, 1983, pp. 5-11.

[6] G. Gaba and M. Abou-Dakka, “A Simplified and accurate calculation of
Frequency Dependence Conductor Impedance,” Presented at the 8th International
Conference on Harmonics and Quality of Power (ICHQP), Athens, Greece, 1998.

 90

Appendix B : Magnetic Field Plots by Fault Type

Some of these Figures have been presented previously. They are included both in

the body of the thesis and in this Appendix for easy reference and for completeness. Note

that each of these Figures is for a fault impedance of 1 per unit (which is equal to

132.25Ω as described in Section 5) and were tested using the circuit presented in

Appendix A with each portion of the transmission line being 10km in length. The top

charts for each fault type are at the generator end of the transmission line, while the

bottom charts are for the load end. The first plot in each row is the full ellipse and

beginning of the fault; the second plot is at a different scale so the details of the fault can

be visually detected. The geometry is as described in Appendix A; it is reproduced here

in Figure B-1.

Figure B-1 – Conductor and sensor distance relationships for magnetic field fault plots

3m
2m

1m 1m 1m 1m

 91

Line-to-Ground Fault: Phase a, at Faulted Current Peak

 10

 20

 30

 40

 50

30

210

60

240

90

270

120

300

150

330

180 0

 (a) (b)

 5

 10

 15

30

210

60

240

90

270

120

300

150

330

180 0

 (c) (d)

Figure B-2 – Line-to-Ground Fault: Phase a, fault connected at phase a current peak
(a) – Generator end magnetic field; (b) – Generator end magnetic field fault detail;

(c) – Load end magnetic field; (d) – Load end magnetic field fault detail

 92

Line-to-Ground Fault: Phase a, at Faulted Current Zero

 10

 20

 30

 40

 50

30

210

60

240

90

270

120

300

150

330

180 0

 (a) (b)

 5

 10

 15

30

210

60

240

90

270

120

300

150

330

180 0

 (c) (d)

Figure B-3 – Line-to-Ground Fault: Phase a, fault connected at phase a current zero-crossing

(a) – Generator end magnetic field; (b) – Generator end magnetic field fault detail;
(c) – Load end magnetic field; (d) – Load end magnetic field fault detail

 93

Line-to-Line Fault: Phases a and b

 20

 40

 60

 80

30

210

60

240

90

270

120

300

150

330

180 0

 (a) (b)

 5

 10

 15

30

210

60

240

90

270

120

300

150

330

180 0

 (c) (d)

Figure B-4 – Line-to-Line Fault: Phases a and b

(a) – Generator end magnetic field; (b) – Generator end magnetic field fault detail;
(c) – Load end magnetic field; (d) – Load end magnetic field fault detail

 94

Line-to-Line-to-Ground Fault: Phases a and b

 20

 40

 60

30

210

60

240

90

270

120

300

150

330

180 0

 (a) (b)

 5

 10

 15

30

210

60

240

90

270

120

300

150

330

180 0

 (c) (d)

Figure B-5 – Line-to-Line-to-Ground Fault: Phases a and b to ground

(a) – Generator end magnetic field; (b) – Generator end magnetic field fault detail;
(c) – Load end magnetic field; (d) – Load end magnetic field fault detail

 95

Three-Phase Fault

 20

 40

 60

30

210

60

240

90

270

120

300

150

330

180 0

 (a) (b)

 5

 10

 15

30

210

60

240

90

270

120

300

150

330

180 0

 (c) (d)

Figure B-6 – Three Phase Fault

(a) – Generator end magnetic field; (b) – Generator end magnetic field fault detail;
(c) – Load end magnetic field; (d) – Load end magnetic field fault detail

 96

Appendix C : MATLAB Code

function [] =
hfieldxy(ia1,ib1,ic1,ia2,ib2,ic2,x,y1,y2,totlength,vel,tstart,tstep,bre
aktime)
%HFIELD Shows rotating field produced by transmission line currents.
% Inputs are phase currents for phases a, b, and c, taken from an
% Excel spreadsheet or the like.
% Distance x is between conductors; distance y1 is between the
% height of phases a and c and the height of b; y2 is between
% the height of phases a and c and the height of the sensor.
% totlength is the total length of the transmission line.
% vel is the propagation velocity of the transmission line in m/s.
% breaktime is the amonut of time to wait (in seconds) for a fault to
% settle before resuming normal monitoring of the magnetic field
% strengths.
% Distances are in meters (except totlength, which is in km).
% It is assumed that the sensor is directly underneath the b phase.
%
% In detecting faults, the meanings of numbers attached
% to error1recent and error2recent are as follows:
% 0 = no unusual behavior detected
% 1 = this sensor has detected a rise above the maximum allowable
% value
% 2 = this sensor had detected a drop below the minimum allowable
% value, then a rise above the minimum allowable value
% approximately pi radians away from the point at which it
% dropped (within a specified amount of time)
% 3 = this sensor has detected a rise above the "high" value
% 4 = this sensor has detected a drop below the minimum allowable
% value without immediately returning above the minimum value
%
% When there are two variables with almost identical names: variables
% with "x" at the end are related to the position in an array (where
% the unlabeled variables are related to actual time); variables with
% "_p" are related to the previous value analysis; variables with
% "_e" are used in the expected ellipse analysis; variables with "_d"
% are used in the delta rho analysis; and variables with "_t" are
% used in the delta theta analysis.
%
% To read from an Excel spreadsheet:
% ix = xlsread('filename.xls','Bx:By');

%Initial calculations and preparation for analysis

len = length(ia1);

rhoa = sqrt(x.^2 + y2.^2); %Diagonal distances in conductor geometry.
rhob = abs(y2+y1);
rhoa2 = rhoa.^2;

 97

Hx1 = 1./(2.*pi).*(ib1./rhob + ia1.*y2./rhoa2 + ic1.*y2./rhoa2);
Hy1 = 1./(2.*pi).*(ia1.*x./rhoa2 - ic1.*x./rhoa2);

Hx2 = 1./(2.*pi).*(ib2./rhob + ia2.*y2./rhoa2 + ic2.*y2./rhoa2);
Hy2 = 1./(2.*pi).*(ia2.*x./rhoa2 - ic2.*x./rhoa2);

%Adding noise
%Hx1 = Hx1 + wgn(len,1,-54,'dBm');
%Hy1 = Hy1 + wgn(len,1,-54,'dBm');
%Hx2 = Hx2 + wgn(len,1,-54,'dBm');
%Hy2 = Hy2 + wgn(len,1,-54,'dBm');

theta1 = atan2(Hy1,Hx1); % converting time into theta and Hx
rho1 = (Hx1.^2 + Hy1.^2).^(1/2); % and Hy into rho for polar plot
theta2 = atan2(Hy2,Hx2);
rho2 = (Hx2.^2 + Hy2.^2).^(1/2);

%Variable initialization

samplewaittime = (1./60).*(1./128); %In seconds - time to wait between
testing a rho and using it as the baseline for a test.
samplewaitx = round(samplewaittime./tstep.*10^6); %In samples
maxminwaittime = (1./60).*(1./2).*(0.9); %Minimum seconds to wait
between maxrhos and between minrhos (corresponds to 0.9 times half a
cycle - minimum usable frequency is 54Hz)
maxminwaitx = round(maxminwaittime./tstep.*10^6); %In samples

brkcorr = round(breaktime./tstep.*10^6);
maxtime = 0.001; %Maximum time that the field can spend
below rhomin (in seconds) and still be classified as a fault.
maxtimex = round(maxtime./tstep.*10^6);
maxbelowtime = (1./60).*(1./8); %Maximum time to store data about a
drop below minrho.
maxbelowtimex = round(maxbelowtime./tstep.*10^6);
faultmaxtime = 1000.*totlength./vel; %Time to wait between seeing a
fault at one end of the line and the other end before determining that
the fault was erroneous.
faultmaxtimex = round(faultmaxtime.*1.5./tstep.*10^6);
emaxtime = (1./60).*(1./64); %Min time between maximums and minimums.
emaxtimex = round(emaxtime./tstep.*10^6);
ewaittime = (1./60).*(1./16); %Difference in testing times for ellipse
maximum and minimum detection.
ewaittimex = round(ewaittime./tstep.*10^6);
quartertime = (1./60).*(1./4)*(19./20);
quartertimex = round(quartertime./tstep.*10^6);
eighthtime = (1./60).*(1./8);
eighthtimex = round(eighthtime./tstep.*10^6);
rhomaxtime = (1./60).*(1./256); %Time over which rhomax is averaged.
rhomaxtimex = round(rhomaxtime./tstep.*10^6);
thetamaxtime = (1./60).*(1./256); %Time over which thetamax is averaged.
thetamaxtimex = round(thetamaxtime./tstep.*10^6);
thetamintimex = thetamaxtimex;

 98

misfaulttime = (1./60).*(1./4); %Min time between delta rho faults
before declaring misdetection.
misfaulttimex = round(misfaulttime./tstep.*10^6);
rhomaxrestoretime = 60*60; %Time between changing rhomax and
restoring it.
rhomaxrestoretimex = round(rhomaxrestoretime./tstep.*10^6);
negdistance = 0; %At end of code, indicates if a
negative distance is generated somehow.
fault = 0;
timestore = 0; %Time storage variable for analysis of
fault.

time = ewaittimex + 1; %So time > 0 in all calculations.

fault_p = 0;
fault_e = 0;
fault_d = 0;
fault_t = 0;
error1recent_p = 0;
error2recent_p = 0;
error1recent_e = 0;
error2recent_e = 0;
error1recent_d = 0;
error2recent_d = 0;
error1recent_t = 0;
error2recent_t = 0;

newfault1time = [];
newfault2time = [];
fault1timecorr = [];
fault2timecorr = [];
timeneg = [];

deltheta1 = 0;
deltheta2 = 0;
thetatemp1a = 0;
thetatemp1b = 0;
thetatemp2a = 0;
thetatemp2b = 0;
delthetamax1 = 0;
delthetamax2 = 0;
delthetamin1 = 0;
delthetamin2 = 0;
delthetamax1dettime = 0;
delthetamax2dettime = 0;
delthetamin1dettime = 0;
delthetamin2dettime = 0;
deltheta1triptime = 0;
deltheta2triptime = 0;
faultwait_t = 0;
fault1time_t = [];
fault2time_t = [];
fault1timeonly_t = [];
fault2timeonly_t = [];

 99

fault1timeonlyx_t = []; %Separate storage for times when delta
algorithm detects
fault2timeonlyx_t = []; %a fault independently
timeneg_t = [];

delrho1 = 0;
delrho2 = 0;
delrhomax1 = 10.^9; %Maximum change in rho
delrhomax2 = 10.^9;
delrhomax1dettime = 0;
delrhomax2dettime = 0;
delrho1triptime = 0;
delrho2triptime = 0;
faultwait_d = 0;
misfaultcheck_d = 0;
misfaultwait_d = 0;
rhomaxrescount_d = 0;
tripchange_d = 0;
fault1time_d = [];
fault2time_d = [];
fault1timeonly_d = [];
fault2timeonly_d = [];
fault1timeonlyx_d = []; %Separate storage for times when delta
algorithm detects
fault2timeonlyx_d = []; %a fault independently
timeneg_d = [];

dropbelow1_p = 0; %Indicates if the magnetic field has
dropped below the minimum rho value;
dropbelow2_p = 0; %This is used in determining if the
load has simply decreased (or a fault has been cleared).
temptime1_p = 0; %A temporary time value used in
analysis.
temptime2_p = 0;
temptheta1_p = 0; %A temporary theta storage for the
possible fault.
temptheta2_p = 0;
faultwait_p = 0; %Counting variable to test for
faultmaxtimex.
belowlowallow1_p = 0;
belowhighallow1_p = 0;
belowlowallow2_p = 0;
belowhighallow2_p = 0;
abovelowallow1_p = 0;
abovehighallow1_p = 0;
abovelowallow2_p = 0;
abovehighallow2_p = 0;
minrhoold1_p = 0; %Minimum rhos from before a fault.
minrhoold2_p = 0;
fault1time_p = [];
fault2time_p = [];
fault1timeonly_p = []; %Time at which only the previous value
fault2timeonly_p = []; %algorithm finds a fault.
fault1type_p = [];
fault2type_p = [];
fault1typeonly_p = [];

 100

fault2typeonly_p = [];
timeneg_p = [];
probtime1_p = [];
probtime2_p = [];

dropbelow1_e = 0; %Indicates if the magnetic field has
dropped below the minimum rho value;
dropbelow2_e = 0; %This is used in determining if the
load has simply decreased (or a fault has been cleared).
temptime1_e = 0; %A temporary time value used in
analysis.
temptime2_e = 0;
temptheta1_e = 0; %A temporary theta storage for the drop.
temptheta2_e = 0;
faultwait_e = 0; %Counting variable to test for
faultmaxtimex.
minrho1_e = zeros(len,1);
minrho2_e = zeros(len,1); %arbitrary large numbers, to prevent
maxrho1_e = 10^9.*ones(len,1); %accidental fault detection before
maxrho2_e = 10^9.*ones(len,1); %initialization these values have been
highrho1_e = 10^9.*ones(len,1); %defined
highrho2_e = 10^9.*ones(len,1);
mintheta_e = -10.*ones(len,1);
maxtheta_e = 10.*ones(len,1);
minrhoold1_e = zeros(len,1); %minimum rhos affrom before a load
minrhoold2_e = zeros(len,1);
predrho1_e = zeros(len,1);
predrho2_e = zeros(len,1);
fault1time_e = [];
fault2time_e = [];
fault1timeonly_e = []; %Time at which only the previous value
fault2timeonly_e = []; %algorithm finds a fault.
fault1type_e = [];
fault2type_e = [];
fault1typeonly_e = [];
fault2typeonly_e = [];
timeneg_e = [];
probtime1_e = [];
probtime2_e = [];
lastrmintime1_e = 0;
lastrmintime2_e = 0;
lastrmaxtime1_e = 0;
lastrmaxtime2_e = 0;
rmin1_e = 0;
rmin2_e = 0;
rmax1_e = 10.^9;
rmax2_e = 10.^9;
wasgrowing1_e = 0;
wasgrowing2_e = 0;
thetashift1_e = 0;
thetashift2_e = 0;

lowallow1_p = 0.1; %percentage below predicted allowed (1
= everything is allowed) before a time is logged
highallow1_p = 0.1; %percentage above predicted allowed (1
= 100% above) before a time is logged

 101

maxallow1_p = 0.3; %percentage above predicted allowed (1
= 100% above) before indicating a fault
lowallow2_p = 0.1;
highallow2_p = 0.1;
maxallow2_p = 0.3;
lowtestlow1_p = 0.7.*lowallow1_p; %"low" and "high" are reversed from
the logical expectation since both correspond
lowtesthigh1_p = 0.3.*lowallow1_p; %to values subtracted (for the
lowtest variables)
lowtestlow2_p = 0.7.*lowallow2_p;
lowtesthigh2_p = 0.3.*lowallow2_p;
hightestlow1_p = 0.3.*highallow1_p;
hightesthigh1_p = 0.7.*highallow1_p;
hightestlow2_p = 0.3.*highallow2_p;
hightesthigh2_p = 0.7.*highallow2_p;

lowallow_e = 0.1; %percentage below predicted allowed (1
= everything is allowed) before a time is logged
highallow_e = 0.1; %percentage above predicted allowed (1
= 100% above) before a time is logged
maxallow_e = 0.3; %percentage above predicted allowed (1
= 100% above) before indicating a fault

delrhoallow = 1; %percentage above maximum change in rho
that is allowable
delrhoallowstart = delrhoallow; %reset value for delrhoallow

delthetaallowhigh = 0.75; %percentage above maximum change in
theta
delthetaallowlow = 0.75; %percentage below mimum change in
theta (1 = even no-change terms are allowable, negative = theta can
switch directions)

[wasgrowing1_e,wasgrowing2_e] = checkdir(rho1,rho2,time);
[rmin1_e,rmax1_e,rmin2_e,rmax2_e,thetashift1_e,thetashift2_e,wasgrowing
1_e,wasgrowing2_e,time,minrho1_e,highrho1_e,maxrho1_e,minrho2_e,highrho
2_e,maxrho2_e] =
minmaxrho(rho1,rho2,theta1,theta2,wasgrowing1_e,wasgrowing2_e,time,len,
lowallow_e,highallow_e,maxallow_e,ewaittimex,emaxtimex,quartertimex);

while time < samplewaitx + 1 %ensure that time > 0 in all
calculations
 time = time + 1;
end

%Main time loop for fault detection

while time < len

%Ensure no problems from previous iterations

 102

 if (dropbelow1_p ~= 0)
 dropbelow1_p = dropbelow1_p + 1; %Indicates that rho has
gone below the previous rhomin
 end
 if (dropbelow2_p ~= 0)
 dropbelow2_p = dropbelow2_p + 1;
 end
 if (dropbelow1_p == (maxbelowtimex+1))
 dropbelow1_p = 0;
 end
 if (dropbelow2_p == (maxbelowtimex+1))
 dropbelow2_p = 0;
 end

 if (dropbelow1_e ~= 0)
 dropbelow1_e = dropbelow1_e + 1; %Indicates that rho has
gone below the previous rhomin
 end
 if (dropbelow2_e ~= 0)
 dropbelow2_e = dropbelow2_e + 1;
 end
 if (dropbelow1_e == (maxbelowtimex+1))
 dropbelow1_e = 0;
 end
 if (dropbelow2_e == (maxbelowtimex+1))
 dropbelow2_e = 0;
 end

 if (faultwait_p > faultmaxtimex)
 if (error1recent_p ~= 1) && (error2recent_p ~= 1)
 error1recent_p = 0;
 error2recent_p = 0;
 fault_p = 0;
 end
 if (error1recent_p == 1) || (error2recent_p == 1)
 if (error1recent_p == 1)
 probtime1_p =
cat(1,probtime1_p,temptime1_p.*tstep./10^6);
 temptime1_p = 0;
 end
 if (error2recent_p == 1)
 probtime2_p =
cat(1,probtime2_p,temptime2_p.*tstep./10^6);
 temptime2_p = 0;
 end
 error1recent_p = 0;
 error2recent_p = 0;
 fault_p = 0;
 end
 faultwait_p = 0;
 end
 if ((error1recent_p ~= 0) || (error2recent_p ~= 0))
 faultwait_p = faultwait_p + 1;
 end

 if (faultwait_e > faultmaxtimex)

 103

 if (error1recent_e ~= 1) && (error2recent_e ~= 1)
 error1recent_e = 0;
 error2recent_e = 0;
 fault_e = 0;
 end
 if (error1recent_e == 1) || (error2recent_e == 1)
 if (error1recent_e == 1)
 probtime1_e =
cat(1,probtime1_e,temptime1_e.*tstep./10^6);
 temptime1_e = 0;
 end
 if (error2recent_e == 1)
 probtime2_e =
cat(1,probtime2_e,temptime2_e.*tstep./10^6);
 temptime2_e = 0;
 end
 error1recent_e = 0;
 error2recent_e = 0;
 fault_e = 0;
 end
 faultwait_e = 0;
 end
 if ((error1recent_e ~= 0) || (error2recent_e ~= 0))
 faultwait_e = faultwait_e + 1;
 end

 if (faultwait_d > faultmaxtimex)
 error1recent_d = 0;
 error2recent_d = 0;
 fault_d = 0;
 faultwait_d = 0;
 end
 if ((error1recent_d ~= 0) || (error2recent_d ~= 0))
 faultwait_d = faultwait_d + 1;
 end

 if (misfaultcheck_d >= 1)
 misfaultwait_d = misfaultwait_d + 1;
 if (misfaultwait_d > misfaulttimex)
 misfaultcheck_d = 0;
 misfaultwait_d = 0;
 tripchange_d = 0;
 end
 end
 if (misfaultcheck_d >= 3) && (tripchange_d == 0)
 delrhoallow = delrhoallow*2;
 tripchange_d = 1;
 end
 if (rhomaxrescount_d >= rhomaxrestoretimex)
 rhomaxrescount_d = 0;
 delrhoallow = delrhoallowstart;
 misfaultcheck_d = 0;
 end
 if (delrhoallow ~= delrhoallowstart)
 rhomaxrescount_d = rhomaxrescount_d + 1;
 end

 104

 if (faultwait_t > faultmaxtimex)
 error1recent_t = 0;
 error2recent_t = 0;
 fault_t = 0;
 faultwait_t = 0;
 end
 if ((error1recent_t ~= 0) || (error2recent_t ~= 0))
 faultwait_t = faultwait_t + 1;
 end

%Initialize first variables for "delta rho" algorithm

 delrho1 = abs(rho1(time-1,1)-rho1(time,1));
 delrho2 = abs(rho2(time-1,1)-rho2(time,1));

%Initialize first variables for "delta theta" algorithm

 if ((theta1((time-1),1) > pi/2) && (theta1(time,1) < -
pi/2)) %this takes care of crossings at the boudary of the atan2
conversion (since theta is within [-pi,pi])
 thetatemp1a = theta1((time-1),1)-2*pi;
 thetatemp1b = theta1((time),1);
 elseif ((theta1((time-1),1) < -pi/2) && (theta1(time,1) > pi/2))
 thetatemp1a = theta1((time-1),1);
 thetatemp1b = theta1((time),1)-2*pi;
 else
 thetatemp1a = theta1((time-1),1);
 thetatemp1b = theta1((time),1);
 end
 if ((theta2((time-1),1) > pi/2) && (theta2(time,1) < -pi/2))
 thetatemp2a = theta2((time-1),1)-2*pi;
 thetatemp2b = theta2((time),1);
 elseif ((theta2((time-1),1) < -pi/2) && (theta2(time,1) > pi/2))
 thetatemp2a = theta2((time-1),1);
 thetatemp2b = theta2((time),1)-2*pi;
 else
 thetatemp2a = theta2((time-1),1);
 thetatemp2b = theta2((time),1);
 end

 deltheta1 = thetatemp1b-thetatemp1a; %current theta minus
previous
 deltheta2 = thetatemp2b-thetatemp2a;

%Within main time loop - test for faults
%First, the "previous value" algorithm

 if (rho1(time,1) > (1 + maxallow1_p).*rho1(time-samplewaitx,1)) &&
(error1recent_p ~= 1)
 if (error1recent_p == 0)
 temptime1_p = time;

 105

 end
 error1recent_p = 1; %Indicate that a fault might have
occurred
 dropbelow1_p = 0;
 disp('Flag - Rise above max1p') %test
 end
 if (rho2(time,1) > (1 + maxallow2_p).*rho2(time-samplewaitx,1)) &&
(error2recent_p ~= 1)
 if (error2recent_p == 0)
 temptime2_p = time;
 end
 error2recent_p = 1; %indicate that a fault might have
occurred
 dropbelow2_p = 0;
 disp('Flag - Rise above max2p') %test
 end

 if (rho1(time,1) < (1-lowallow1_p).*rho1(time-samplewaitx,1)) &&
(error1recent_p == 0) && (dropbelow1_p == 0) %tests for reduced load
accidentally tripping alarm
 dropbelow1_p = 1;
 minrhoold1_p = (1-lowallow1_p).*rho1(time-samplewaitx,1);
 temptime1_p = time;
 temptheta1_p = theta1(time,1);
 error1recent_p = 4; %Indicate that a fault might have
occurred
 disp('Flag - Drop below min1p') %test
 end
 if (rho2(time,1) < (1-lowallow2_p).*rho2(time-samplewaitx,1)) &&
(error2recent_p == 0) && (dropbelow2_p == 0)
 dropbelow2_p = 1;
 minrhoold2_p = (1-lowallow2_p).*rho2(time-samplewaitx,1);
 temptime2_p = time;
 temptheta2_p = theta2(time,1);
 error2recent_p = 4; %Indicate that a fault might have
occurred
 disp('Flag - Drop below min2p') %test
 end

 if (rho1(time,1) > (1 + highallow1_p).*rho1(time-samplewaitx,1)) &&
(error1recent_p == 0)
 if (dropbelow1_p ~= 0) %Increases accuracy in the case
that the field crossed near the center
 temptime1_p = temptime1_p; %by using the time that it
crossed the minimum rho value.
 else %In the case that this didn't
happen...
 temptime1_p = time;
 end
 error1recent_p = 3; %Indicate that a fault might have
occurred
 disp('Flag - Rise above high1p') %test
 end
 if (rho2(time,1) > (1 + highallow2_p).*rho2(time-samplewaitx,1)) &&
(error2recent_p == 0)

 106

 if (dropbelow2_p ~= 0) %Increases accuracy in the case
that the field crossed near the center
 temptime2_p = temptime2_p; %by using the time that it
crossed the minimum rho value.
 else %In the case that this didn't
happen...
 temptime2_p = time;
 end
 error2recent_p = 3; %indicate that a fault might have
occurred
 disp('Flag - Rise above high2p') %test
 end

 if (rho1(time,1) > minrhoold1_p) && (dropbelow1_p ~= 0) &&
(abs(temptime1_p-time) < maxtimex) && (pi./2 < abs(theta1(time,1)-
temptheta1_p) < 3.*pi./2)
 temptime1_p = temptime1_p;
 dropbelow1_p = 0;
 error1recent_p = 2; %indicate that a fault might have
occurred
 disp('Flag - Below-above fault 1p') %test
 end
 if (rho2(time,1) > minrhoold2_p) && (dropbelow2_p ~= 0) &&
(abs(temptime2_p-time) < maxtimex) && (pi./2 < abs(theta2(time,1)-
temptheta2_p) < 3.*pi./2)
 temptime2_p = temptime2_p;
 dropbelow2_p = 0;
 error2recent_p = 2; %indicate that a fault might have
occurred
 disp('Flag - Below-above fault 2p') %test
 end

%Next, test with the "expected ellipse"

 if (rho1(time,1) > maxrho1_e(time,1)) && (error1recent_e ~= 1)
 if (error1recent_e == 0)
 temptime1_e = time;
 end
 error1recent_e = 1; %Indicate that a fault might have
occurred
 dropbelow1_e = 0;
 disp('Flag - Rise above max1e') %test
 end
 if (rho2(time,1) > maxrho2_e(time,1)) && (error2recent_e ~= 1)
 if (error2recent_e == 0)
 temptime2_e = time;
 end
 error2recent_e = 1; %indicate that a fault might have
occurred
 dropbelow2_e = 0;
 disp('Flag - Rise above max2e') %test
 end

 if (rho1(time,1) < minrho1_e(time,1)) && (error1recent_e == 0) &&
(dropbelow1_e == 0) %tests for reduced load accidentally tripping alarm

 107

 dropbelow1_e = 1;
 minrhoold1_e = minrho1_e;
 temptime1_e = time;
 temptheta1_e = theta1(time,1);
 error1recent_e = 4; %Indicate that a fault might have
occurred
 disp('Flag - Drop below min1e') %test
 end
 if (rho2(time,1) < minrho2_e(time,1)) && (error2recent_e == 0) &&
(error2recent_e == 0) && (dropbelow2_e == 0)
 dropbelow2_e = 1;
 minrhoold2_e = minrho2_e;
 temptime2_e = time;
 temptheta2_e = theta2(time,1);
 error2recent_e = 4; %Indicate that a fault might have
occurred
 disp('Flag - Drop below min2e') %test
 end

 if (rho1(time,1) > highrho1_e(time,1)) && (error1recent_e == 0)
 if (dropbelow1_e ~= 0) %Increases accuracy in the case
that the field crossed near the center
 temptime1_e = temptime1_e; %by using the time that it
crossed the minimum rho value.
 dropbelow1_e = 0;
 else %In the case that this didn't
happen...
 temptime1_e = time;
 end
 error1recent_e = 3; %Indicate that a fault might have
occurred
 disp('Flag - Rise above high1e') %test
 end
 if (rho2(time,1) > highrho2_e(time,1)) && (error2recent_e == 0)
 if (dropbelow2_e ~= 0) %Increases accuracy in the case
that the field crossed near the center
 temptime2_e = temptime2_e; %by using the time that it
crossed the minimum rho value.
 dropbelow2_e = 0;
 else %In the case that this didn't
happen...
 temptime2_e = time;
 end
 error2recent_e = 3; %indicate that a fault might have
occurred
 disp('Flag - Rise above high2e') %test
 end

 if (rho1(time,1) > minrhoold1_e(time,1)) && (dropbelow1_e ~= 0) &&
(abs(temptime1_e-time) < maxtimex) && (pi./2 < abs(theta1(time,1)-
temptheta1_e) < 3.*pi./2)
 temptime1_e = temptime1_e
 dropbelow1_e = 0;
 error1recent_e = 2; %indicate that a fault might have
occurred
 disp('Flag - Below-above fault 1e') %test

 108

 end
 if (rho2(time,1) > minrhoold2_e(time,1)) && (dropbelow2_e ~= 0) &&
(abs(temptime2_e-time) < maxtimex) && (pi./2 < abs(theta2(time,1)-
temptheta2_e) < 3.*pi./2)
 temptime2_e = temptime2_e
 dropbelow2_e = 0;
 error2recent_e = 2; %indicate that a fault might have
occurred
 disp('Flag - Below-above fault 2e') %test
 end

%Now with "delta rho" algorithm

 if (delrho1 > delrhomax1.*(1+delrhoallow)) && (error1recent_d == 0)
 delrho1triptime = time
 error1recent_d = 1;
 misfaultcheck_d = misfaultcheck_d + 1;
 end
 if (delrho2 > delrhomax2.*(1+delrhoallow)) && (error2recent_d == 0)
 delrho2triptime = time
 error2recent_d = 1;
 misfaultcheck_d = misfaultcheck_d + 1;
 end

%Now with "delta theta" algorithm

 if (delthetamax1 >= 0) && (delthetamin1 >= 0)
 if (delthetamax1 ~= 0) && ((deltheta1 >
delthetamax1.*(1+delthetaallowhigh)) || (deltheta1 < delthetamin1.*(1-
delthetaallowlow)))&& (error1recent_t == 0)
 deltheta1triptime = time
 error1recent_t = 1;
 end
 else
 if (delthetamax1 ~= 0) && ((deltheta1 <
delthetamax1.*(1+delthetaallowhigh)) || (deltheta1 > delthetamin1.*(1-
delthetaallowlow)))&& (error1recent_t == 0)
 deltheta1triptime = time
 error1recent_t = 1;
 delthetamax1
 delthetamin1
 deltheta1
 end
 end
 if (delthetamax2 >= 0) && (delthetamin2 >= 0)
 if (delthetamax2 ~= 0) && ((deltheta2 >
delthetamax2.*(1+delthetaallowhigh)) || (deltheta1 < delthetamin2.*(1-
delthetaallowlow)))&& (error2recent_t == 0)
 deltheta2triptime = time
 error2recent_t = 1;
 end
 else
 if (delthetamax2 ~= 0) && ((deltheta2 <
delthetamax2.*(1+delthetaallowhigh)) || (deltheta1 > delthetamin2.*(1-
delthetaallowlow)))&& (error2recent_t == 0)
 deltheta2triptime = time

 109

 error2recent_t = 1;
 end
 end

%Variable re-initialization
%Initialize variables for "expected ellipse" algorithm

 if (rho1((time-ewaittimex),1) > rho1(time,1)) && (wasgrowing1_e==1)
&& (time > (lastrmintime1_e + emaxtimex))
 timemaxcheck = 0;
 rmax1_e = 0;
 while (timemaxcheck < quartertimex) && ((time-timemaxcheck) >
0)
 if (rho1((time-timemaxcheck),1) > rmax1_e)
 rmax1_e = rho1((time-timemaxcheck),1);
 thetashift1_e = theta1((time-timemaxcheck),1);
 end
 timemaxcheck = timemaxcheck + 1;
 end
 lastrmaxtime1_e = time;
 wasgrowing1_e = 0;
 end
 if (rho2((time-ewaittimex),1) > rho2(time,1)) && (wasgrowing2_e==1)
&& (time > (lastrmintime2_e + emaxtimex))
 timemaxcheck = 0;
 rmax2_e = 0;
 while (timemaxcheck < quartertimex) && ((time-timemaxcheck) >
0)
 if (rho2((time-timemaxcheck),1) > rmax2_e)
 rmax2_e = rho2((time-timemaxcheck),1);
 thetashift2_e = theta2((time-timemaxcheck),1);
 end
 timemaxcheck = timemaxcheck + 1;
 end
 lastrmaxtime2_e = time;
 wasgrowing2_e = 0;
 end
 if (rho1((time-ewaittimex),1) < rho1(time,1)) && (wasgrowing1_e==0)
&& (time > (lastrmaxtime1_e + emaxtimex))
 timemincheck = 0;
 rmin1_e = 10.^9;
 while (timemincheck < quartertimex) && ((time-timemincheck) >
0)
 if (rho1((time-timemincheck),1) < rmin1_e)
 rmin1_e = rho1((time-timemincheck),1);
 end
 timemincheck = timemincheck + 1;
 end
 lastrmintime1_e = time;
 wasgrowing1_e = 1;
 if rmin1_e < 0.1
 rmin1_e = 0.1;
 end
 end

 110

 if (rho2((time-ewaittimex),1) < rho2(time,1)) && (wasgrowing2_e==0)
&& (time > (lastrmaxtime2_e + emaxtimex))
 timemincheck = 0;
 rmin2_e = 10.^9;
 while (timemincheck < quartertimex) && ((time-timemincheck) >
0)
 if (rho2((time-timemincheck),1) < rmin2_e)
 rmin2_e = rho2((time-timemincheck),1);
 end
 timemincheck = timemincheck + 1;
 end
 lastrmintime2_e = time;
 wasgrowing2_e = 1;
 if rmin2_e < 0.1
 rmin2_e = 0.1;
 end

 predrho1_e = (rmax1_e.*rmin1_e)./((rmax1_e.*sin(theta1-
thetashift1_e)).^2+(rmin1_e.*cos(theta1-
thetashift1_e)).^2+0.0001).^(1/2);
 predrho2_e = (rmax2_e.*rmin2_e)./((rmax2_e.*sin(theta2-
thetashift2_e)).^2+(rmin2_e.*cos(theta2-
thetashift2_e)).^2+0.0001).^(1/2);

 if (rmin1_e == 0.1)
 minrho1_e = zeros(len,1);
 else
 minrho1_e = predrho1_e.*(1-lowallow_e);
 end
 if (rmin2_e == 0.1)
 minrho2_e = zeros(len,1);
 else
 minrho2_e = predrho2_e.*(1-lowallow_e);
 end
 highrho1_e = predrho1_e.*(1+highallow_e);
 highrho2_e = predrho2_e.*(1+highallow_e);
 maxrho1_e = predrho1_e.*(1+maxallow_e);
 maxrho2_e = predrho2_e.*(1+maxallow_e);
 end

%Initialize more "delta rho" algorithm variables

 if (time > (delrhomax1dettime + quartertimex)) &&
((((theta1(time,1) > thetashift1_e + pi./4 - pi./128) &&
(theta1(time,1) < thetashift1_e + pi./4 + pi./128)) || ((theta1(time,1)
> thetashift1_e + 3.*pi./4 - pi./128) && (theta1(time,1) <
thetashift1_e + 3.*pi./4 + pi./128)) || ((theta1(time,1) >
thetashift1_e - pi./4 - pi./128) && (theta1(time,1) < thetashift1_e -
pi./4 + pi./128)) || ((theta1(time,1) > thetashift1_e - 3.*pi./4 -
pi./128) && (theta1(time,1) < thetashift1_e - 3.*pi./4 +
pi./128))))%%|| ((time >= eighthtimex + lastrmaxtime1_e) && (time >=
eighthtimex + lastrmintime1_e)))
 timerhotest = 0;
 delrholist = [];
 while (timerhotest < rhomaxtimex)

 111

 delrholist = cat(1,delrholist,abs(rho1(time-
(timerhotest),1)-rho1(time-(timerhotest+1),1)));
 timerhotest = timerhotest + 1;
 end
 delrhomax1 = mean(delrholist);
 delrhomax1dettime = time;
 end
 if (time > (delrhomax2dettime + quartertimex)) &&
((((theta2(time,1) > thetashift2_e + pi./4 - pi./128) &&
(theta2(time,1) < thetashift2_e + pi./4 + pi./128)) || ((theta2(time,1)
> thetashift2_e + 3.*pi./4 - pi./128) && (theta2(time,1) <
thetashift2_e + 3.*pi./4 + pi./128)) || ((theta2(time,1) >
thetashift2_e - pi./4 - pi./128) && (theta2(time,1) < thetashift2_e -
pi./4 + pi./128)) || ((theta2(time,1) > thetashift2_e - 3.*pi./4 -
pi./128) && (theta2(time,1) < thetashift2_e - 3.*pi./4 +
pi./128))))%%|| ((time >= eighthtimex + lastrmaxtime2_e) && (time >=
eighthtimex + lastrmintime2_e)))
 timerhotest = 0;
 delrholist = [];
 while (timerhotest < rhomaxtimex)
 delrholist = cat(1,delrholist,abs(rho2(time-
(timerhotest),1)-rho2(time-(timerhotest+1),1)));
 timerhotest = timerhotest + 1;
 end
 delrhomax2 = mean(delrholist);
 delrhomax2dettime = time;
 end

%Initialize more "delta theta" algorithm variables

 if (time == lastrmintime1_e) && (time > (delthetamax1dettime +
quartertimex))
 timethetatest = 0;
 delthetalist = [];
 while (timethetatest < thetamaxtimex)
 delthetalist = cat(1,delthetalist,(theta1(time-
(timethetatest),1)-theta1(time-(timethetatest+1),1)));
 timethetatest = timethetatest + 1;
 end
 delthetamax1 = mean(delthetalist);
 delthetamax1dettime = time;
 end
 if (time == lastrmintime2_e) && (time > (delthetamax2dettime +
quartertimex))
 timethetatest = 0;
 delthetalist = [];
 while (timethetatest < thetamaxtimex)
 delthetalist = cat(1,delthetalist,(theta2(time-
(timethetatest),1)-theta2(time-(timethetatest+1),1)));
 timethetatest = timethetatest + 1;
 end
 delthetamax2 = mean(delthetalist);
 delthetamax2dettime = time;
 end
 if (time == lastrmaxtime1_e) && (time > (delthetamin1dettime +
quartertimex))

 112

 timethetatest = 0;
 delthetalist = [];
 while (timethetatest < thetamintimex)
 delthetalist = cat(1,delthetalist,(theta1(time-
(timethetatest),1)-theta1(time-(timethetatest+1),1)));
 timethetatest = timethetatest + 1;
 end
 delthetamin1 = mean(delthetalist);
 delthetamin1dettime = time;
 end
 if (time == lastrmaxtime2_e) && (time > (delthetamin2dettime +
quartertimex))
 timethetatest = 0;
 delthetalist = [];
 while (timethetatest < thetamintimex)
 delthetalist = cat(1,delthetalist,(theta2(time-
(timethetatest),1)-theta2(time-(timethetatest+1),1)));
 timethetatest = timethetatest + 1;
 end
 delthetamin2 = mean(delthetalist);
 delthetamin2dettime = time;
 end

%Adjust minallow, highallow, and maxallow for "previous value"
algorithm

 if (rho1(time,1) < (1 - lowtestlow1_p).*rho1(time-samplewaitx,1))
&& (error1recent_p == 0)
 belowlowallow1_p = 1;
 end
 if (rho1(time,1) < (1 - lowtesthigh1_p).*rho1(time-samplewaitx,1))
&& (error1recent_p == 0)
 abovelowallow1_p = 1;
 end
 if (rho1(time,1) > (1 + hightestlow1_p).*rho1(time-samplewaitx,1))
&& (error1recent_p == 0)
 belowhighallow1_p = 1;
 end
 if (rho1(time,1) > (1 + hightesthigh1_p).*rho1(time-samplewaitx,1))
&& (error1recent_p == 0)
 abovehighallow1_p = 1;
 end

 if ((theta1(time-1,1) >= 0) && (theta1(time,1) <= 0)) ||
((theta1(time,1) >= 0) && (theta1(time-1,1) <= 0))
 if belowlowallow1_p == 1 %If we've gone below
the lower adjustment threshold
 lowallow1_p = lowallow1_p + 0.05;
 lowtestlow1_p = 0.7.*lowallow1_p;
 lowtesthigh1_p = 0.3.*lowallow1_p;
 end
 if abovelowallow1_p ~= 1 %If we haven't gone
below the higher adjustment threshold
 lowallow1_p = lowallow1_p - 0.01;
 lowtestlow1_p = 0.7.*lowallow1_p;
 lowtesthigh1_p = 0.3.*lowallow1_p;

 113

 end
 if belowhighallow1_p ~= 1
 highallow1_p = highallow1_p - 0.01;
 maxallow1_p = maxallow1_p - 0.02;
 hightestlow1_p = 0.3.*highallow1_p;
 hightesthigh1_p = 0.7.*highallow1_p;
 end
 if abovehighallow1_p == 1
 highallow1_p = highallow1_p + 0.05;
 maxallow1_p = maxallow1_p + 0.1;
 hightestlow1_p = 0.3.*highallow1_p;
 hightesthigh1_p = 0.7.*highallow1_p;
 end
 belowlowallow1_p = 0;
 abovelowallow1_p = 0;
 belowhighallow1_p = 0;
 abovehighallow1_p = 0;
 end

 if (rho2(time,1) < (1 - lowtestlow2_p).*rho2(time-samplewaitx,1))
&& (error2recent_p == 0)
 belowlowallow2_p = 1;
 end
 if (rho2(time,1) < (1 - lowtesthigh2_p).*rho2(time-samplewaitx,1))
&& (error2recent_p == 0)
 abovelowallow2_p = 1;
 end
 if (rho2(time,1) > (1 + hightestlow2_p).*rho2(time-samplewaitx,1))
&& (error2recent_p == 0)
 belowhighallow2_p = 1;
 end
 if (rho2(time,1) > (1 + hightesthigh2_p).*rho2(time-samplewaitx,1))
&& (error2recent_p == 0)
 abovehighallow2_p = 1;
 end

 if ((theta2(time-1,1) >= 0) && (theta2(time,1) <= 0)) ||
((theta2(time,1) >= 0) && (theta2(time-1,1) <= 0))
 if belowlowallow2_p == 1 %If we've gone below
the lower adjustment threshold
 lowallow2_p = lowallow2_p + 0.05;
 lowtestlow2_p = 0.7.*lowallow2_p;
 lowtesthigh2_p = 0.3.*lowallow2_p;
 end
 if abovelowallow2_p ~= 1 %If we haven't gone
below the higher adjustment threshold
 lowallow2_p = lowallow2_p - 0.01;
 lowtestlow2_p = 0.7.*lowallow2_p;
 lowtesthigh2_p = 0.3.*lowallow2_p;
 end
 if belowhighallow2_p ~= 1
 highallow2_p = highallow2_p - 0.01;
 maxallow2_p = maxallow2_p - 0.02;
 hightestlow2_p = 0.3.*highallow2_p;
 hightesthigh2_p = 0.7.*highallow2_p;
 end

 114

 if abovehighallow2_p == 1
 highallow2_p = highallow2_p + 0.05;
 maxallow2_p = maxallow2_p + 0.1;
 hightestlow2_p = 0.3.*highallow2_p;
 hightesthigh2_p = 0.7.*highallow2_p;
 end
 belowlowallow2_p = 0;
 abovelowallow2_p = 0;
 belowhighallow2_p = 0;
 abovehighallow2_p = 0;
 end

%Determining faults

 if ((error1recent_e ~= 0) && (error2recent_e ~= 0) && (fault_e ==
0)) %Something has happened at both ends
 disp('Flag - Fault E') %test
 fault_e = 1;
 fault1time_e = cat(1,fault1time_e,temptime1_e);
 fault1type_e = cat(1,fault1type_e,error1recent_e);
 fault2time_e = cat(1,fault2time_e,temptime2_e);
 fault2type_e = cat(1,fault2type_e,error2recent_e);
 end

 if ((error1recent_p ~= 0) && (error2recent_p ~= 0) && (fault_p ==
0)) %Something has happened at both ends
 disp('Flag - Fault P') %test
 fault_p = 1;
 fault1time_p = cat(1,fault1time_p,temptime1_p);
 fault1type_p = cat(1,fault1type_p,error1recent_p);
 fault2time_p = cat(1,fault2time_p,temptime2_p);
 fault2type_p = cat(1,fault2type_p,error2recent_p);
 end

 if ((error1recent_d ~= 0) && (error2recent_d ~= 0) && (fault_d ==
0)) %Something has happened at both ends
 disp('Flag - Fault D') %test
 fault = 1;
 fault_d = 1;
 fault1timeonlyx_d = cat(1,fault1timeonlyx_d,delrho1triptime);
 fault2timeonlyx_d = cat(1,fault2timeonlyx_d,delrho2triptime);
 delrhomax1 = 10.^9; %prevent repetitive tripping
 delrhomax2 = 10.^9;
 end

 if ((error1recent_t ~= 0) && (error2recent_t ~= 0) && (fault_t ==
0)) %Something has happened at both ends
 disp('Flag - Fault T') %test
 fault = 1;
 fault_t = 1;
 fault1timeonlyx_t = cat(1,fault1timeonlyx_t,deltheta1triptime);
 fault2timeonlyx_t = cat(1,fault2timeonlyx_t,deltheta2triptime);

 115

 delthetamax1 = 0; %prevent repetitive tripping
 delthetamax2 = 0;
 delthetamin1 = 0;
 delthetamin2 = 0;
 end

 if ((faultwait_e >= faultmaxtimex) && fault_e) || ((faultwait_p >=
faultmaxtimex) && fault_p) || (fault_e && fault_p) || (fault_d &&
fault_t)
 disp('Flag - Fault Both - or over wait') %test
 fault = 1;
 if ~fault_p
 fault1time_p = cat(1,fault1time_p,'X');
 fault2time_p = cat(1,fault2time_p,'X');
 fault1type_p = cat(1,fault1type_p,'X');
 fault2type_p = cat(1,fault2type_p,'X');
 end
 if ~fault_e
 fault1time_e = cat(1,fault1time_e,'X');
 fault2time_e = cat(1,fault2time_e,'X');
 fault1type_e = cat(1,fault1type_e,'X');
 fault2type_e = cat(1,fault2type_e,'X');
 end
 if fault_d
 fault1time_d =
cat(1,fault1time_d,fault1timeonlyx_d(length(fault1timeonlyx_d),1));
 fault2time_d =
cat(1,fault2time_d,fault2timeonlyx_d(length(fault2timeonlyx_d),1));
 fault1timeonlyx_d =
removerows(fault1timeonlyx_d,length(fault1timeonlyx_d));
 fault2timeonlyx_d =
removerows(fault2timeonlyx_d,length(fault2timeonlyx_d));
 end
 if ~fault_d
 fault1time_d = cat(1,fault1time_d,'X')
 fault2time_d = cat(1,fault2time_d,'X')
 end
 if fault_t
 fault1time_t =
cat(1,fault1time_t,fault1timeonlyx_t(length(fault1timeonlyx_t),1));
 fault2time_t =
cat(1,fault2time_t,fault2timeonlyx_t(length(fault2timeonlyx_t),1));
 fault1timeonlyx_t =
removerows(fault1timeonlyx_t,length(fault1timeonlyx_t));
 fault2timeonlyx_t =
removerows(fault2timeonlyx_t,length(fault2timeonlyx_t));
 end
 if ~fault_t
 fault1time_t = cat(1,fault1time_t,'X')
 fault2time_t = cat(1,fault2time_t,'X')
 end
 if (fault_p && fault_e) || (fault_p && fault_d) || (fault_e &&
fault_d) || (fault_t && fault_p) || (fault_t && fault_e) || (fault_t &&
fault_d)
 timestore = time;
 time = timestore + brkcorr; %wait until faulted system
has stabilized

 116

 end
 if time < len %as long as the result is before the
end of known time
 [wasgrowing1_e,wasgrowing2_e] = checkdir(rho1,rho2,time);

[rmin1_e,rmax1_e,rmin2_e,rmax2_e,thetashift1_e,thetashift2_e,wasgrowing
1_e,wasgrowing2_e,time,minrho1_e,highrho1_e,maxrho1_e,minrho2_e,highrho
2_e,maxrho2_e] =
minmaxrho(rho1,rho2,theta1,theta2,wasgrowing1_e,wasgrowing2_e,time,len,
lowallow_e,highallow_e,maxallow_e,ewaittimex,emaxtimex,quartertimex);
 end
 error1recent_p = 0; % reset these variables to prepare for
the possibility of another fault
 error2recent_p = 0;
 error1recent_e = 0;
 error2recent_e = 0;
 error1recent_d = 0;
 error2recent_d = 0;
 temptime1_p = 0;
 temptime2_p = 0;
 temptime1_e = 0;
 temptime2_e = 0;
 temptheta1_p = 0;
 temptheta2_p = 0;
 temptheta1_e = 0;
 temptheta2_e = 0;
 fault_p = 0;
 fault_e = 0;
 fault_d = 0;
 faultwait_p = 0;
 faultwait_e = 0;
 dropbelow1_e = 0;
 dropbelow2_e = 0;
 dropbelow1_p = 0;
 dropbelow2_p = 0;
 delrho1triptime = 0;
 delrho2triptime = 0;
 delrhomax1 = 10.^9;
 delrhomax2 = 10.^9;
 delrhoallow = delrhoallowstart;
 misfaultcheck_d = 0;
 deltheta1triptime = 0;
 deltheta2triptime = 0;
 delthetamax1 = 0;
 delthetamax2 = 0;
 delthetamin1 = 0;
 delthetamin2 = 0;
 end

 time = time + 1;

end

 117

%Fault analysis - after end of time loop

if fault == 0
 disp('No faults detected.')
end
if fault == 1
 tacc = 1; %Counter for while loop
 while tacc <= length (fault1time_p) %Improve accuracy of
calculation by using the
 if (fault1time_p(tacc,1) == 'X')%earliest available times
 if (fault1time_e(tacc,1) == 'X') %d
 newfault1time =
cat(1,newfault1time,fault1time_d(tacc,1));
 else
 if (fault1time_d(tacc,1) == 'X') %e
 if (fault1time_t(tacc,1) == 'X')
 fault1timeonly_e =
cat(1,fault1timeonly_e,fault1time_e(tacc,1));
 fault1typeonly_e =
cat(1,fault1typeonly_e,fault1type_e(tacc,1));
 else
 newfault1time =
cat(1,newfault1time,fault1time_e(tacc,1));
 end
 else %d&e
 if (fault1time_e(tacc,1) < fault1time_d(tacc,1))
 newfault1time =
cat(1,newfault1time,fault1time_e(tacc,1));
 else
 newfault1time =
cat(1,newfault1time,fault1time_d(tacc,1));
 end
 end
 end
 else
 if (fault1time_e(tacc,1) == 'X')
 if (fault1time_d(tacc,1) == 'X') %p
 if (fault1time_t(tacc,1) == 'X')
 fault1timeonly_p =
cat(1,fault1timeonly_p,fault1time_p(tacc,1));
 fault1typeonly_p =
cat(1,fault1typeonly_p,fault1type_p(tacc,1));
 else
 newfault1time =
cat(1,newfault1time,fault1time_p(tacc,1));
 end
 else %d&p
 if (fault1time_p(tacc,1) < fault1time_d(tacc,1))
 newfault1time =
cat(1,newfault1time,fault1time_p(tacc,1));
 else
 newfault1time =
cat(1,newfault1time,fault1time_d(tacc,1));
 end
 end

 118

 else
 if (fault1time_d(tacc,1) == 'X') %e&p
 if (fault1time_e(tacc,1) < fault1time_p(tacc,1))
 newfault1time =
cat(1,newfault1time,fault1time_e(tacc,1));
 else
 newfault1time =
cat(1,newfault1time,fault1time_p(tacc,1));
 end
 else %d&e&p
 if (fault1time_p(tacc,1) <= fault1time_d(tacc,1))
&& (fault1time_p(tacc,1) <= fault1time_e(tacc,1))
 newfault1time =
cat(1,newfault1time,fault1time_p(tacc,1));
 elseif (fault1time_e(tacc,1) <=
fault1time_d(tacc,1)) && (fault1time_e(tacc,1) <= fault1time_p(tacc,1))
 newfault1time =
cat(1,newfault1time,fault1time_e(tacc,1));
 else
 newfault1time =
cat(1,newfault1time,fault1time_d(tacc,1));
 end
 end
 end
 end
 if (fault1time_t(tacc,1) ~= 'X') %include data from t if better
 if (fault1time_t(tacc,1) < newfault1time(tacc,1))
 newfault1time = removerows(newfault1time,tacc);
 newfault1time =
cat(1,newfault1time,fault1time_t(tacc,1));
 end
 end
 if (fault2time_p(tacc,1) == 'X')
 if (fault2time_e(tacc,1) == 'X') %d
 newfault2time =
cat(1,newfault2time,fault2time_d(tacc,1));
 else
 if (fault2time_d(tacc,1) == 'X') %e
 if (fault2time_t(tacc,1) == 'X')
 fault2timeonly_e =
cat(1,fault2timeonly_e,fault2time_e(tacc,1));
 fault2typeonly_e =
cat(1,fault2typeonly_e,fault2type_e(tacc,1));
 else
 newfault2time =
cat(1,newfault2time,fault2time_e(tacc,1));
 end
 else %d&e
 if (fault2time_e(tacc,1) < fault2time_d(tacc,1))
 newfault2time =
cat(1,newfault2time,fault2time_e(tacc,1));
 else
 newfault2time =
cat(1,newfault2time,fault2time_d(tacc,1));
 end
 end
 end

 119

 else
 if (fault2time_e(tacc,1) == 'X')
 if (fault2time_d(tacc,1) == 'X') %p
 if (fault2time_t(tacc,1) == 'X')
 fault2timeonly_p =
cat(1,fault2timeonly_p,fault2time_p(tacc,1));
 fault2typeonly_p =
cat(1,fault2typeonly_p,fault2type_p(tacc,1));
 else
 newfault2time =
cat(1,newfault2time,fault2time_p(tacc,1));
 end
 else %d&p
 if (fault2time_p(tacc,1) < fault2time_d(tacc,1))
 newfault2time =
cat(1,newfault2time,fault2time_p(tacc,1));
 else
 newfault2time =
cat(1,newfault2time,fault2time_d(tacc,1));
 end
 end
 else
 if (fault2time_d(tacc,1) == 'X') %e&p
 if (fault2time_e(tacc,1) < fault2time_p(tacc,1))
 newfault2time =
cat(1,newfault2time,fault1time_e(tacc,1));
 else
 newfault2time =
cat(1,newfault2time,fault1time_p(tacc,1));
 end
 else %d&e&p
 if (fault2time_p(tacc,1) <= fault2time_d(tacc,1))
&& (fault2time_p(tacc,1) <= fault2time_e(tacc,1))
 newfault2time =
cat(1,newfault2time,fault2time_p(tacc,1));
 elseif (fault2time_e(tacc,1) <=
fault2time_d(tacc,1)) && (fault2time_e(tacc,1) <= fault2time_p(tacc,1))
 newfault2time =
cat(1,newfault2time,fault2time_e(tacc,1));
 else
 newfault2time =
cat(1,newfault2time,fault2time_d(tacc,1));
 end
 end
 end
 end
 if (fault2time_t(tacc,1) ~= 'X') %include data from t if better
 if (fault2time_t(tacc,1) < newfault2time(tacc,1))
 newfault2time = removerows(newfault2time,tacc);
 newfault2time =
cat(1,newfault2time,fault2time_t(tacc,1));
 end
 end
 tacc = tacc + 1;
 end

 fault1timeonly_d = cat(1,fault1timeonly_d,fault1timeonlyx_d);

 120

 fault2timeonly_d = cat(1,fault2timeonly_d,fault2timeonlyx_d);
 fault1timeonly_t = cat(1,fault1timeonly_t,fault1timeonlyx_t);
 fault2timeonly_t = cat(1,fault2timeonly_t,fault2timeonlyx_t);

 [fault1type_p] = typechange(fault1type_p);
 [fault2type_p] = typechange(fault2type_p);
 [fault1type_e] = typechange(fault1type_e);
 [fault2type_e] = typechange(fault2type_e);
 [fault1typeonly_p] = typechange(fault1typeonly_p);
 [fault2typeonly_p] = typechange(fault2typeonly_p);
 [fault1typeonly_e] = typechange(fault1typeonly_e);
 [fault2typeonly_e] = typechange(fault2typeonly_e);

 fault1timecorr = newfault1time.*tstep./10^6; %fault times corrected
from matrix
 fault2timecorr = newfault2time.*tstep./10^6; %indices to actual
times

 fault1timeonlycorr_p = fault1timeonly_p.*tstep./10^6; %fault times
corrected from matrix
 fault1timeonlycorr_e = fault1timeonly_e.*tstep./10^6; %indices to
actual times
 fault1timeonlycorr_d = fault1timeonly_d.*tstep./10^6;
 fault1timeonlycorr_t = fault1timeonly_t.*tstep./10^6;
 fault2timeonlycorr_p = fault2timeonly_p.*tstep./10^6; %fault times
corrected from matrix
 fault2timeonlycorr_e = fault2timeonly_e.*tstep./10^6; %indices to
actual times
 fault2timeonlycorr_d = fault2timeonly_d.*tstep./10^6;
 fault2timeonlycorr_t = fault2timeonly_t.*tstep./10^6;

 len_from_gen = (totlength + vel*10^-3*(fault1timecorr-
fault2timecorr))/2;
 len_from_load = (totlength - len_from_gen);
 fault_time = (tstart + fault1timecorr - len_from_gen/vel);

 len_from_gen_only_e = (totlength + vel*10^-3*(fault1timeonlycorr_e-
fault2timeonlycorr_e))/2;
 len_from_load_only_e = (totlength - len_from_gen_only_e);
 fault_time_only_e = (tstart + fault1timeonlycorr_e -
len_from_gen_only_e/vel);
 len_from_gen_only_p = (totlength + vel*10^-3*(fault1timeonlycorr_p-
fault2timeonlycorr_p))/2;
 len_from_load_only_p = (totlength - len_from_gen_only_p);
 fault_time_only_p = (tstart + fault1timeonlycorr_p -
len_from_gen_only_p/vel);
 len_from_gen_only_d = (totlength + vel*10^-3*(fault1timeonlycorr_d-
fault2timeonlycorr_d))/2;
 len_from_load_only_d = (totlength - len_from_gen_only_d);
 fault_time_only_d = (tstart + fault1timeonlycorr_d -
len_from_gen_only_d/vel);
 len_from_gen_only_t = (totlength + vel*10^-3*(fault1timeonlycorr_t-
fault2timeonlycorr_t))/2;
 len_from_load_only_t = (totlength - len_from_gen_only_t);
 fault_time_only_t = (tstart + fault1timeonlycorr_t -
len_from_gen_only_t/vel);

 121

 testcounter = 1;
 while (testcounter <= length(len_from_gen))
 if (len_from_gen(testcounter,1) < 0) ||
(len_from_load(testcounter,1) < 0) || (fault_time(testcounter,1) <= 0)
 len_from_gen = removerows(len_from_gen,testcounter);
 len_from_load = removerows(len_from_load,testcounter);
 timeneg = cat(1,timeneg,fault_time(testcounter,1));
 fault_time = removerows(fault_time,testcounter);
 negdistance = 1;
 testcounter = testcounter - 1; %since a row will be
removed, want to test the same row # next time
 end
 testcounter = testcounter + 1;
 end
 testcounter = 1;
 while (testcounter <= length(len_from_gen_only_e))
 if (len_from_gen_only_e(testcounter,1) < 0) ||
(len_from_load_only_e(testcounter,1) < 0) ||
(fault_time_only_e(testcounter,1) <= 0)
 len_from_gen_only_e =
removerows(len_from_gen_only_e,testcounter);
 len_from_load_only_e =
removerows(len_from_load_only_e,testcounter);
 timeneg_e =
cat(1,timeneg_e,fault_time_only_e(testcounter,1));
 fault_time_only_e =
removerows(fault_time_only_e,testcounter);
 negdistance = 1;
 testcounter = testcounter - 1; %since a row will be
removed, want to test the same row # next time
 end
 testcounter = testcounter + 1;
 end
 testcounter = 1;
 while (testcounter <= length(len_from_gen_only_p))
 if (len_from_gen_only_p(testcounter,1) < 0) ||
(len_from_load_only_p(testcounter,1) < 0) ||
(fault_time_only_p(testcounter,1) <= 0)
 len_from_gen_only_p =
removerows(len_from_gen_only_p,testcounter);
 len_from_load_only_p =
removerows(len_from_load_only_p,testcounter);
 timeneg_p =
cat(1,timeneg_p,fault_time_only_p(testcounter,1));
 fault_time_only_p =
removerows(fault_time_only_p,testcounter);
 negdistance = 1;
 testcounter = testcounter - 1; %since a row will be
removed, want to test the same row # next time
 end
 testcounter = testcounter + 1;
 end
 testcounter = 1;
 while (testcounter <= length(len_from_gen_only_d))

 122

 if (len_from_gen_only_d(testcounter,1) < 0) ||
(len_from_load_only_d(testcounter,1) < 0) ||
(fault_time_only_d(testcounter,1) <= 0)
 len_from_gen_only_d =
removerows(len_from_gen_only_d,testcounter);
 len_from_load_only_d =
removerows(len_from_load_only_d,testcounter);
 timeneg_d =
cat(1,timeneg_d,fault_time_only_d(testcounter,1));
 fault_time_only_d =
removerows(fault_time_only_d,testcounter);
 negdistance = 1;
 testcounter = testcounter - 1; %since a row will be
removed, want to test the same row # next time
 end
 testcounter = testcounter + 1;
 end
 testcounter = 1;
 while (testcounter <= length(len_from_gen_only_t))
 if (len_from_gen_only_t(testcounter,1) < 0) ||
(len_from_load_only_t(testcounter,1) < 0) ||
(fault_time_only_t(testcounter,1) <= 0)
 len_from_gen_only_t =
removerows(len_from_gen_only_t,testcounter);
 len_from_load_only_t =
removerows(len_from_load_only_t,testcounter);
 timeneg_t =
cat(1,timeneg_t,fault_time_only_t(testcounter,1));
 fault_time_only_t =
removerows(fault_time_only_t,testcounter);
 negdistance = 1;
 testcounter = testcounter - 1; %since a row will be
removed, want to test the same row # next time
 end
 testcounter = testcounter + 1;
 end

 if (length(len_from_gen) > 0)
 disp('Faults were found with at least two algorithms at the
following locations:')
 len_from_gen
 len_from_load
 disp('They occurred at the following relative times:')
 fault_time
 disp('The indications for these faults were as follows:')
 fault1type_p
 fault2type_p
 fault1type_e
 fault2type_e
 end
 if (length(len_from_gen_only_e) > 0)
 disp('Faults were found with just the ellipse algorithm at the
following locations:')
 len_from_gen_only_e
 len_from_load_only_e
 disp('They occurred at the following relative times:')
 fault_time_only_e

 123

 disp('The indications for these faults were as follows:')
 fault1typeonly_e
 fault2typeonly_e
 end
 if (length(len_from_gen_only_p) > 0)
 disp('Faults were found with just the previous value algorithm
at the following locations:')
 len_from_gen_only_p
 len_from_load_only_p
 disp('They occurred at the following relative times:')
 fault_time_only_p
 disp('The indications for these faults were as follows:')
 fault1typeonly_p
 fault2typeonly_p
 end
 if (length(len_from_gen_only_d) > 0)
 disp('Faults were found with just the delta rho algorithm at
the following locations:')
 len_from_gen_only_d
 len_from_load_only_d
 disp('They occurred at the following relative times:')
 fault_time_only_d
 disp('Note that the delta rho algorithm finds high impedance
faults better than the other algorithms but is more likely to trip
accidentally due to noise or sudden changes to the system.')
 end
 if (length(len_from_gen_only_t) > 0)
 disp('Faults were found with just the delta theta algorithm at
the following locations:')
 len_from_gen_only_t
 len_from_load_only_t
 disp('They occurred at the following relative times:')
 fault_time_only_t
 disp('Note that the delta theta algorithm finds high impedance
faults better than the other algorithms but is more likely to trip
accidentally due to noise or sudden changes to the system.')
 end

end
if (negdistance == 1)
 disp('Warning: At least one fault calculation resulted in a
negative distance calculation. Note that associated times have a margin
of error of several milliseconds.')
 if (length(timeneg) > 0)
 disp('Times resulting in negative distances detected by both
algorithms:')
 timeneg
 end
 if (length(timeneg_e) > 0)
 disp('Times resulting in negative distances detected by the
expected ellipse algorithm:')
 timeneg_e
 end
 if (length(timeneg_p) > 0)
 disp('Times resulting in negative distances detected by the
previous value algorithm:')
 timeneg_p

 124

 end
end

if (length(probtime1_p) > 0) || (length(probtime2_p) > 0)
 disp('Error: A fault has been detected at one end of the
transmission line using the previous value algorithm, but nothing has
indicated the fault at the other end. This occurred at the following
time:')
 if (length(probtime1_p) > 0)
 probtime1_p
 end
 if (length(probtime2_p) > 0)
 probtime2_p
 end
end
if (length(probtime1_e) > 0) || (length(probtime2_e) > 0)
 disp('Error: A fault has been detected at one end of the
transmission line using the expected ellipse algorithm, but nothing has
indicated the fault at the other end. This occurred at the following
time:')
 if (length(probtime1_e) > 0)
 probtime1_e
 end
 if (length(probtime2_e) > 0)
 probtime2_e
 end
end

figure(1)
polar(theta1,rho1);
title('Magnetic Field Plot at Generator End of Transmission Line.');

figure(2)
polar(theta2,rho2);
title('Magnetic Field Plot at Load End of Transmission Line.');

end

%Subfunctions that are called in the main function

function
[rhomin_i1,rhomax_i1,rhomin_i2,rhomax_i2,thetashift_i1,thetashift_i2,gr
owing_i1,growing_i2,time_i,minrho_i1,highrho_i1,maxrho_i1,minrho_i2,hig
hrho_i2,maxrho_i2] =

 125

minmaxrho(rho_i1,rho_i2,theta_i1,theta_i2,growing_i1,growing_i2,time_i,
len_i,lowallow_i,highallow_i,maxallow_i,ewaittimex_i,emaxtimex_i,quarte
rtimex_i)
%minmaxrho sets/resets the maximum and minimum rho values seen by the
% sensors on both ends of the transmission line. This information is
% later used in determining whether or not a fault is occurring/has
% occurred.

rhomin_i1 = 0;
rhomax_i1 = 0;
rhomin_i2 = 0;
rhomax_i2 = 0;
thetashift_i1 = 0;
thetashift_i2 = 0;
rhomintest_i1 = 0;
rhomaxtest_i1 = 0;
rhomintest_i2 = 0;
rhomaxtest_i2 = 0;
numreps = 1;
lastrmintime1_i = 0;
lastrmintime2_i = 0;
lastrmaxtime1_i = 0;
lastrmaxtime2_i = 0;

while (((rhomintest_i1 < numreps) || (rhomaxtest_i1 < numreps) ||
(rhomintest_i2 < numreps) || (rhomaxtest_i2 < numreps)) ||
(rho_i1(time_i,1) > rhomax_i1) && (rho_i2(time_i,1) > rhomax_i2) &&
(rho_i2(time_i,1) < rhomin_i2) && (rho_i2(time_i,1) < rhomin_i2)) &&
(time_i < len_i)
 if ((rho_i1((time_i-ewaittimex_i),1) > rho_i1(time_i,1)) &&
growing_i1==1) && (time_i > (lastrmintime1_i + emaxtimex_i))
 timemaxcheck_i = 0;
 rhomax_i1 = 0;
 while (timemaxcheck_i < quartertimex_i) && ((time_i-
timemaxcheck_i) > 0)
 if (rho_i1((time_i-timemaxcheck_i),1) > rhomax_i1)
 rhomax_i1 = rho_i1((time_i-timemaxcheck_i),1);
 thetashift_i1 = theta_i1((time_i-timemaxcheck_i),1);
 end
 timemaxcheck_i = timemaxcheck_i + 1;
 end
 lastrmaxtime1_i = time_i;
 growing_i1 = 0;
 rhomaxtest_i1 = rhomaxtest_i1 + 1;
 end
 if ((rho_i2((time_i-ewaittimex_i),1) > rho_i2(time_i,1)) &&
growing_i2==1) && (time_i > (lastrmintime2_i + emaxtimex_i))
 timemaxcheck_i = 0;
 rhomax_i2 = 0;
 while (timemaxcheck_i < quartertimex_i) && ((time_i-
timemaxcheck_i) > 0)
 if (rho_i2((time_i-timemaxcheck_i),1) > rhomax_i2)
 rhomax_i2 = rho_i2((time_i-timemaxcheck_i),1);
 thetashift_i2 = theta_i2((time_i-timemaxcheck_i),1);
 end
 timemaxcheck_i = timemaxcheck_i + 1;

 126

 end
 lastrmaxtime2_i = time_i;
 growing_i2 = 0;
 rhomaxtest_i2 = rhomaxtest_i2 + 1;
 end
 if ((rho_i1((time_i-ewaittimex_i),1) < rho_i1(time_i,1)) &&
growing_i1==0) && (time_i > (lastrmaxtime1_i + emaxtimex_i))
 timemaxcheck_i = 0;
 rhomin_i1 = 10.^9;
 while (timemaxcheck_i < quartertimex_i) && ((time_i-
timemaxcheck_i) > 0)
 if (rho_i1((time_i-timemaxcheck_i),1) < rhomin_i1)
 rhomin_i1 = rho_i1((time_i-timemaxcheck_i),1);
 end
 timemaxcheck_i = timemaxcheck_i + 1;
 end
 lastrmintime1_i = time_i;
 growing_i1 = 1;
 if rhomin_i1 < 0.1
 rhomin_i1 = 0.1;
 end
 rhomintest_i1 = rhomintest_i1 + 1;
 end
 if ((rho_i2((time_i-ewaittimex_i),1) < rho_i2(time_i,1)) &&
growing_i2==0) && (time_i > (lastrmaxtime2_i + emaxtimex_i))
 timemaxcheck_i = 0;
 rhomin_i2 = 10.^9;
 while (timemaxcheck_i < quartertimex_i) && ((time_i-
timemaxcheck_i) > 0)
 if (rho_i2((time_i-timemaxcheck_i),1) < rhomin_i2)
 rhomin_i2 = rho_i2((time_i-timemaxcheck_i),1);
 end
 timemaxcheck_i = timemaxcheck_i + 1;
 end
 lastrmintime2_i = time_i;
 growing_i2 = 1;
 if rhomin_i2 < 0.1
 rhomin_i2 = 0.1;
 end
 rhomintest_i2 = rhomintest_i2 + 1;
 end
 time_i = time_i + 1;
end

predrho_i1 = (rhomax_i1.*rhomin_i1)./((rhomax_i1.*sin(theta_i1-
thetashift_i1)).^2+(rhomin_i1.*cos(theta_i1-
thetashift_i1)).^2+0.0001).^(1/2);
predrho_i2 = (rhomax_i2.*rhomin_i2)./((rhomax_i2.*sin(theta_i2-
thetashift_i2)).^2+(rhomin_i2.*cos(theta_i2-
thetashift_i2)).^2+0.0001).^(1/2);

if (rhomin_i1 == 0.1)
 minrho_i1 = zeros(len_i,1);
else
 minrho_i1 = predrho_i1.*(1-lowallow_i);
end

 127

if (rhomin_i2 == 0.1)
 minrho_i2 = zeros(len_i,1);
else
 minrho_i2 = predrho_i2.*(1-lowallow_i);
end
highrho_i1 = predrho_i1.*(1+highallow_i);
highrho_i2 = predrho_i2.*(1+highallow_i);
maxrho_i1 = predrho_i1.*(1+maxallow_i);
maxrho_i2 = predrho_i2.*(1+maxallow_i);

end

function [growing_c1,growing_c2] = checkdir(rho_c1,rho_c2,time_c)
%checkdir checks the whether rho_c1 and rho_c2 are growing or not and
% returns this information in the variables growing_c1 and growing_c2
% (1 = rho is increasing, 0 = rho is decreasing)

if (rho_c1((time_c-1),1) > rho_c1(time_c,1))%initialize direction of
movement
 growing_c1 = 0;
else
 growing_c1 = 1;
end
if (rho_c2((time_c-1),1) > rho_c2(time_c,1))
 growing_c2 = 0;
else
 growing_c2 = 1;
end

end

function [faulttime_to] = typechange(faulttime_ti)
%typechange changes the numerical representations of the reasons for
fault
%detection into a string describing the result

faulttime_to = [];
ttype = 1;
while ttype <= length(faulttime_ti)
 if faulttime_ti(ttype,1) == 1
 faulttime_to = strvcat(faulttime_to,'Increase above maximum
allowed value');
 elseif faulttime_ti(ttype,1) == 2
 faulttime_to = strvcat(faulttime_to,'Decrease below minimum
then unexpected increase');
 elseif faulttime_ti(ttype,1) == 3
 faulttime_to = strvcat(faulttime_to,'Increase above high
allowed value');
 elseif faulttime_ti(ttype,1) == 4
 faulttime_to = strvcat(faulttime_to,'Decrease below minimum
allowed value');

 128

 elseif faulttime_ti(ttype,1) == 'X'
 faulttime_to = strvcat(faulttime_to,'No fault detected, or two
other algorithms detected the fault before this algorithm');
 else
 faulttime_to = strvcat(faulttime_to,'Unknown result');
 end
 ttype = ttype + 1;
end

end

