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Abstract 
 

The detection and location of faults on power transmission lines is essential to the 

protection and maintenance of a power system. Most methods of fault detection and 

location rely on measurements of electrical quantities provided by current and voltage 

transformers. These transformers can be expensive and require physical contact with the 

monitored high voltage equipment.  

In this work, current transformers were replaced by magnetic field sensing coils. 

Such coils can be located remotely from substations and switching stations and do not 

require physical contact with the conductors. Rather than observing each individual 

conductor, the use of the magnetic field sensors allows the monitoring of the transmission 

line condition using a collective quantity. This study explores the use of the magnetic 

field sensors as an alternative measurement device for fault detection and location. 
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Summary 
 

A variety of methods of detecting and locating faults on power transmission lines 

exist. Most of these methods utilize the measurements from voltage and current 

transformers at substations or switching stations to perform their analyses. This thesis 

examines the effectiveness of using magnetic field sensing coils as alternative 

measurement devices for the purpose of fault detection and location. 

A review of common methods of fault location is presented. This review is 

focused on impedance-based and traveling wave-based fault location as they are the most 

common traditional methods. A few previous uses of magnetic field sensing coils in fault 

detection and location schemes are also discussed in order to determine the previously 

recognized benefits of using such coils. 

The underlying mathematics used in determining the magnetic field due to an 

unspecified number of conductors and due to a three-conductor system are then examined. 

The results of this analysis are used in simulating the magnetic field for a variety of 

conductor configurations under normal operating conditions and for line to ground and 

line to line fault conditions. This information is used to determine the potential 

effectiveness of monitoring the magnetic field to detect faults. 

Based on these findings, four algorithms are constructed which monitor the 

magnetic field near the transmission line for the purpose of fault detection. Each of these 

algorithms determines some aspect of the steady-state behavior of the magnetic field and 

attempts to detect any deviations from this behavior. These algorithms are described in 

detail and their comparative benefits and drawbacks are determined. 
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An implementation of a complete fault detection and location procedure which 

uses these algorithms in conjunction with one another is then described. This 

implementation is then used to test the combined effectiveness of the algorithms for a 

variety of fault types and fault resistances. The fault location errors for these tests are 

then presented. This information is used in determining the effectiveness of the magnetic 

field sensor as a measurement device for the purpose of fault detection and location. 
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1. Introduction and Description of Problem 
 

Fault detection and location has been a goal of power system engineers since the 

creation of distribution and transmission systems. Quick fault detection can help protect 

equipment by allowing the disconnection of faulted lines before any significant damage is 

done. Accurate fault location can help utility personnel remove persistent faults and 

locate areas where faults regularly occur, thus reducing the frequency and length of 

power outages. As a result, while fault detection and location schemes have been 

developed in the past, a variety of algorithms continue to be developed to perform this 

task more accurately and more effectively [8-10]. 

Most analysis methods rely on the values of either current or voltage phasors 

measured by means of current or voltage transformers at substations or switching stations. 

To gather this information, at least three transformers are typically required at each end 

of the subtransmission or transmission line. These transducers are expensive, especially 

when the system involves high voltage lines. Some algorithms – particularly fault 

impedance-based algorithms – require both current and voltage information. However, it 

is possible to monitor a transmission system without using current or voltage 

transformers through the analysis of the magnetic field near the conductors. 

Since each conductor in a transmission line creates a magnetic field due to the 

current through it, there is the possibility of analyzing the transmission line system based 

on the resultant magnetic field produced by its conductors. The magnetic detection is 

performed using two sensing coils at each end of the transmission line. One detects the 

vertical magnetic field intensity and the other detects the horizontal magnetic field 
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intensity. The two-dimensional magnetic field intensity can then be resolved from this 

information.  

Just as with many other fault detection methods, faults are detected when 

unexpected changes occur within the monitored data. The only difference is that this 

analysis attempts to detect changes in the vertical and horizontal magnetic field 

intensities rather than individual changes in the monitored voltages or conductor currents. 

The fault detection and location method discussed in this thesis is based on analysis of 

the expected behavior of the magnetic field near a transmission line and algorithms for 

detecting unexpected variations.  
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2. Background 
 
Fault detection is essential to the safe operation of electric power transmission and 

distribution systems. Without some sort of fault detection, the automated removal of short 

circuits from a transmission system would be impossible. As a result, these faults might 

persist until essential electrical equipment is damaged or destroyed. Fault location is not 

necessarily essential to power system protection, but it can be very helpful in the 

detection of problem areas on a transmission or distribution line and in the removal of 

persistent faults. For these reasons, fault detection and location has been an enduring 

preoccupation of power system researchers, designers, and maintenance engineers. 

A variety of fault location schemes have been developed over the years. Common 

systems include impedance-based locators [1,2], or those which measure the impedance 

seen by one or both ends of the transmission line, and traveling wave-based locators [8-

10], or those which rely on the timing of fault detections. In addition to categorizing these 

fault location methods by the way in which they locate faults, they can also be classified 

into one-terminal and two-terminal based on whether they require information from one 

end or both ends of the transmission line, respectively.  

2.1. Impedance-Based Methods 
 

Traditional impedance-based fault location methods use the voltages and currents 

at one or both ends of a transmission line to determine where a fault has occurred. The 

impedance of the transmission line per unit length is usually required in these 

calculations. One of the major problems with basic one-terminal impedance-based fault 

location methods – those that only use measurements from one end of the transmission 
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line – is that the fault impedance must be near-zero for the result to be accurate, since the 

fault impedance affects the impedance seen at the end of the transmission line [3]. This 

problem has been mitigated in several different ways. One of the best-known of these 

ways is the Takagi method. This changes the calculation to include the difference 

between the current measured before the fault and the current measured after the fault 

(which is the fault current) [1]. This eliminates the fault impedance from the analysis, 

thus removing this significant source of error. However, the angle of the fault current and 

the angle of the current during the fault at the relay terminals are assumed to be equal; if 

this is not true, there may be errors in the fault location. 

Two-terminal impedance-based fault location methods, or those that use 

measurements from both ends of the transmission line, can also significantly improve the 

accuracy of the fault location estimate [4]. Two-terminal methods require communication 

between the locators at both ends of the transmission line to transfer information about 

the currents, voltages, and source impedances in order to perform the fault location. Once 

all of the necessary information is gathered in one location, the fault is located by 

combining the equations describing both sides of the transmission line and variables 

directly related to the fault; the exact analysis depends on the particular algorithm [2,3]. 

The use of both sides of the transmission line in calculation removes most of the 

problems associated with one-terminal impedance-based fault location methods. It is 

essential to note, however, that short-duration faults are difficult to accurately detect with 

any impedance-based fault location methods (although two-terminal methods reduce the 

effect of short fault durations) since less data is available about the voltages and currents 

and the data that is available is not necessarily in steady-state [4]. 
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2.2. Traveling Wave-Based Methods 
 

Traveling wave-based fault location methods, like impedance-based methods, can 

be divided into one-terminal and two-terminal methods. With traveling wave analysis, 

however, the entire method of location rather than simply the equations change between 

the one- and two-terminal methods. One-terminal methods rely on the timing between 

reflections of voltage or current at impedance discontinuities – in this case, the fault – to 

find the distance between the sensor and the fault while two-terminal methods work 

based on the time delay between arrivals of information at the ends of the transmission 

line.  

Traveling wave-based fault location methods have been divided into five distinct 

Types [5,6]. Type A is a one-terminal location method which calculates the fault location 

based on the time between the first detection of a fault and the detections of reflections of 

the transient generated by the fault. Type B is a two-terminal method in which as the 

locator at each end of the transmission line detects a fault, it sends a signal to the other 

end of the transmission line. The time of the signal’s arrival is used in the fault location 

timing. The method of the signal transmission and the possibility of a delay between the 

fault detection and the generation of the signal can vary depending on the chosen sub-

Type. Type C is a one-terminal method and is much like type A, except it uses a 

generated pulse and its reflections to locate the fault rather than using the fault transient 

and its reflections. Type D is a two-terminal method which uses the detection times of the 

transients at opposite ends of the transmission line to determine the fault location; the 

locators at both ends of the transmission line must be synchronized for this Type to work 

properly. Finally, Type E is a one-terminal method which uses the transients produced 
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when the circuit breaker re-energizes the line in order to locate persistent faults. Types A, 

D, and sometimes E are the Types which are used most frequently in modern traveling 

wave-based fault locators [5]; GPS has made Type D locators especially attractive since 

it provides a method for synchronization of the fault locators at the two ends of the 

transmission line [7]. Such a system is depicted in Figure 2-1. This enables an accurate 

measurement of the difference between two fault detection times and thus a more 

accurate location of the fault. 

 
Figure 2-1 – GPS satellite being used to synchronize fault detection timing 

 
Traveling wave-based fault locators, both two-terminal and one-terminal, are still 

being designed. Many of these make use of the previously defined Types of fault locators 

in combination with other algorithms such as autocorrelation [ 8 ] and the wavelet 

transform [9 ]. The wavelet transform is similar to the Fourier transform in that it 

decomposes a signal into frequency components, but it also localizes these components in 

time. When it is applied to fault detection and location, the wavelet transform is often 

used in conjunction with traveling wave-type fault locators as the method of fault and 

Fault Detector 

Communication Link

Fault Detector

Communication Link 
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reflection detection [10]. Faults can be easily detected by monitoring the magnitudes of 

the individual frequency scales. 

The algorithms presented in this thesis are most similar to Type D traveling wave-

based location schemes. Traveling wave-based locators can be very accurate, provided 

the time of fault arrival (and reflection arrival, for the algorithms that make use of 

reflections) can be detected accurately. Problems can arise, however, with faults that 

occur at the zero-crossing of the transmission line voltage or current since the resulting 

change in the waveform is not particularly pronounced. This is a more significant 

problem for high fault impedances; for comparatively low fault impedances, a well-

designed traveling wave-based fault location algorithm will still be able to locate all 

faults with a great deal of accuracy. 

2.3. Detection and Location Using Magnetic Field Sensors 
 
Due to the simple relationship between current and magnetic field intensity, it is 

understandable that magnetic field sensors have previously been used in fault detection 

and location schemes. These schemes often use magnetic field sensors in place of current 

transformers since magnetic field sensors can be installed independently from a 

substation or switching station with a minimum amount of additional equipment [11,12].  

One possible use of this relationship is simply replacing each current transformer 

with a Hall effect transducer. This transducer would typically need to be within the 

electrical arcing distance of the conductors to produce enough voltage for analysis and 

would thus require insulation. To remove this need for insulation, the transducer can be 

located between two tapered pieces of ferromagnetic material in order to concentrate the 

magnetic field into the transducer [11]; as a result, the transducer does not need to be 
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located within the arcing distance of the conductors. The measured magnetic field result 

can then be used similarly to a current measurement for fault detection and location. 

Due to the reduced amount of equipment needed for analysis when compared with 

current transformers, it is possible to use several sets of magnetic field intensity sensors 

on a single transmission line. For example, one patent [12] suggests the installation of 

magnetic field intensity sensors on every pole of a transmission or distribution line as a 

distributed fault detection and location system. Phase to ground faults are detected using 

magnetic sensors around the ground conductors; phase to phase faults are detected with a 

sensor which detects orthogonal fields due to arcing. If a fault occurs, it is most likely 

between the first two poles at which it is detected, and thus any further searching for the 

fault only needs to be within that area. This requires only a minimal synchronization 

between the multiple sensors, since the fault location is not based upon exact time of the 

fault incidence but simply the first locations at which the fault was detected. This system 

is conceptually interesting but rather expensive due to the number of sensors and 

microprocessors that would be required, even if sensors are only located on one out of 

every few poles. 

Since a magnetic field sensor does not need to make contact with the conductors 

[11] and can be installed remotely from substations [12], the effectiveness of the 

magnetic field sensor in fault detection and location algorithms is clearly worth 

examining.  
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3. General Design of the System 

As previously stated, a three-phase system can be analyzed by detecting the 

vertical and horizontal magnetic field intensities and comparing the waveforms to the 

expected results. In order to better understand the algorithms which will be used for this 

analysis, a basic mathematical and physical description of the magnetic field near a 

transmission line is presented here. 

3.1. Magnetic Field Analysis of a Generalized System 
 
The magnetic field near a transmission or distribution line can be determined for 

the general case of n conductors. The necessary analysis follows the work by Emanuel, 

Orr, Pileggi, and Gulachenski [13], although some modifications have been made in this 

summary of their work to accommodate differences between the magnitudes of the 

conductor currents. The system to be analyzed is shown in Figure 3-1. 

 
Figure 3-1 – Variables for magnetic field analysis of any system 

h1 

L2 

L3 

L1 

Ln 

h2 

y3 

hn 

γ1 
γ2 γ3 

γn 

i1 
i2 

i3 

in 



 12

The magnetic fields due to any given conductor k are 

 kkkx iDH =,  and kkky iQH =,  (1)
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Each current can be described as a sum of a sine and cosine, such that 

 ( ) ( )[ ]tYtXi kkk ωω cossin2 +=  (4)

where Xk and Yk are real numbers. Since  
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where φk is the phase shift of the current and Ik is the RMS value of the current, and  
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the terms Xk and Yk can be described as  
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Using the trigonometric identity  
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the values of Xk and Yk can be simplified to 

 ( )kkk IX ϕcos=  (10)

and 

 ( )kkk IY ϕsin=  (11)

The currents and their coefficients can then be written as 
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The magnetic field due to all of the currents is then given by 

 [ ] [ ][ ]iPH =  (13)

where the magnetic field matrix is 
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and the position matrix is 
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The magnetic field can thus be described by 

 ( ) ( )[ ] ( )xxxxx tHtBtAH φωωω +=+= sinˆcossin2  (16)

and 

 ( ) ( )[ ] ( )yyyyy tHtBtAH φωωω +=+= sinˆcossin2  (17)

where 
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The coefficients Ax, Ay, Bx and By can be found using the relationship 
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In order to determine the shape of the magnetic field, Equation (16) can be solved 

for ωt, which results in 

 
x

x

x

H
H

t φω −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= −

ˆsin 1  
 

(21)

This in turn can be substituted into Equation (17), so that 
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x
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H
HH φφˆsinsinˆ 1  (22)

Substituting the variable 

 xy φφφ −=  (23)

this can be rewritten as 
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x

x

x
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H
H
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which results in 
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since 
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This can be simplified further by defining 

 

x

y

H

H
r ˆ

ˆ
=  (27)

which gives 

 ( ) ( )φφ sinˆcos 22
xxxy HHrrHH −=−  (28)

After squaring both sides of the equation and canceling terms, this simplifies to 

 ( ) ( )φφ sinˆcos2 2222
yyxxy HHrHHrH =−+  (29)

This is the equation for an ellipse with the angle of rotation equal to 

 ( )
⎟
⎠
⎞

⎜
⎝
⎛

−
= −

2
1

1
cos2tan

2
1

r
r φα  

 
(30)

and half axes of lengths 

 ( )
( ) ( )αφαα

φ

2sincoscossin

sinˆ
ˆ

222 rr

H
H y

a
++

=  (31)

and 

 ( )
( ) ( )αφαα

φ

2sincossincos

sinˆ
ˆ

222 rr

H
H y

b
++

=  (32)

An example elliptical rotating magnetic field which could be produced by the 

combined magnetic fields of several conductors is presented in Figure 3-2. This is also 

shown as a part of Figure 3-7. All Figures which present magnetic fields in polar 

coordinates display rho in units of amperes per meter and theta in units of degrees. 
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Figure 3-2 – Elliptical rotating magnetic field produced by three-phase, three-conductor system 

(a) – Conductor geometry; (b) – Magnetic field for p=2m 
 

This analysis is essential to understanding the magnetic field which will be 

detected by the sensors. It is applicable to any configuration of conductors, but it is 

further analyzed here for a three-conductor system. 
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3.2. Magnetic Field Analysis of a Three-Conductor System 
 

The three-conductor system shown below in Figure 3-3 is used in the simulation 

of the magnetic field intensity detected by the sensors. The variables used make this 

analysis something of a general case which can be modified for the analysis of most 

transmission line structures. The assumption is made, however, that the sensors are 

located directly below phase b. 

 
Figure 3-3 – Variables for magnetic field analysis of a three-phase system 

 
The distances al , bl  , and cl  are can be related to the other distances by the 

equations 

 22
aaa hL +=l  (33)

 bb h=l  (34)

 22
ccc hL +=l  (35)

These equations are simplified (and the following analysis is simplified) when La = Lc 

and ha = hc (and thus l a = l c), as would be the case for many transmission line 

configurations, but at this point in the analysis this assumption is ignored. 

hc 
hb 

l a l c 

l b 

ha 
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The component identified as the magnetic sensor is comprised of two separate 

magnetic sensors which will independently detect the horizontal and vertical magnetic 

field intensities. These field intensities are determined by the sums of the magnetic field 

intensities due to each conductor, which are given by 

 

a

a
a

i
H

lπ2
=  

 
(36)

 

b

b
b

i
H

lπ2
=  

 
(37)

 

c

c
c

i
H

lπ2
=  

 
(38)

where Ha, Hb, and Hc and ia,ib, and ic are the magnetic field intensities and currents, 

respectively. These can be converted into the horizontal and magnetic field intensities 

using the equations 

 )cos()cos( ccbaax HHHH γγ −++=  (39)

 )sin()sin( ccaay HHH γγ −+=  (40)

where 

 aaa h l=)cos(γ  (41)

 ccc h l=)cos(γ  (42)

 aaa L l=)sin(γ  (43)

 ccc L l−=)sin(γ  (44)

Substituting these results, 

 ( ) ( )22
cccbbaaax hiihiH lll ++=  (45)
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 ( ) ( )22
cccaaay LiLiH ll −=  (46)

As previously stated, these can be simplified further if phases a and c are at the same 

vertical and horizontal distances from the center point.  

This can also be rewritten by expressing the currents as functions of time, as 

 ( )( ) ( )( ) ( )( )22 sinsinsin ccccbbbaaaax htitihtiH lll ϕωϕωϕω +++++=  (47)

 ( )( ) ( )( )22 sinsin ccccaaaay LtiLtiH ll ϕωϕω +−+=  (48)

Additionally, restating parts of Equations (16) and (17), these equations can be written as  

( ) ( )[ ]tBtAH xxx ωω cossin2 +=  

and 

( ) ( )[ ]tBtAH yyy ωω cossin2 +=  

Following the analysis in Section 3.1 and specifically Equations (10), (11) and (20), the 

coefficients Ax, Ay, Bx, and By can be found using the equation 
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which simplifies to  
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(50)

if the phase shift in phase a is arbitrarily set as φa = 0.  

The ground conductors also can contribute to these magnetic fields when a fault 

occurs, but this contribution will be minimal unless the fault is very close to the location 
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of the detector. This is because most of the ground currents will flow directly into the 

earth prior to reaching the substation or switching station and thus the ground wires will 

typically only contribute a negligible amount to the magnetic field at the substation or 

switching station, even for a significant fault current [14]. As a result, the ground 

conductors have not been included in this analysis. 

3.3. Conductor Configurations and the Magnetic Field 
 

The magnetic field which is detected by the current sensors will change based on 

the configuration of the conductors. Since the magnetic field-based fault detector should 

be able to be used in a variety of situations, it is essential to gain an understanding of its 

performance for several conductor configurations. The magnetic fields of five different 

conductor configurations are demonstrated below in Figure 3-4 through Figure 3-8. Each 

Figure shows the conductor configuration, the magnetic field during balanced operation, 

the magnetic field during a single line to ground fault on phase a, and the magnetic field 

during a line to line fault on phases a and b. The currents in the unfaulted conductors 

have an RMS value of 100A; the fault currents are approximately 1000A RMS. The 

value of p was set as 2 meters, and the conductors are assumed to correspond to phases a, 

b, and c from left to right. 

3.3.1. Horizontal Conductor Configuration 
 

Figure 3-4 shows a horizontal conductor configuration and its magnetic fields. 

The sensors are located a distance p below phase b where p is the distance between 

phases a and c. As expected, the vertical component of the magnetic field during normal 

operation is greater than the horizontal component. The vertical maximums occur when 
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the current in phase b is crossing zero and as a result, the other phases cancel each others’ 

horizontal components but add in the same direction vertically. Likewise, the horizontal 

maximums occur when the current in phase b is at a maximum; however, at this time the 

horizontal components of the magnetic fields due to phases a and c add in the opposite 

direction and cancel some of the horizontal magnetic field due to phase b, while the 

vertical components due to phases a and c cancel each other. 

The magnetic field of the single line to ground fault on phase a is as expected. 

The magnetic field contributions due to phases b and c become relatively insignificant, 

and the magnetic field is essentially only the field due to phase a. The angle of rotation is 

also mostly determined by the angle between the phase a conductor and the sensors from 

a vertical reference. Neglecting the effects of the other phases, the angle of rotation 

would be  

( ) °≈=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −− 6.265.0tan2/tan 11

p
p  

which is fairly close to the observed angle of rotation. The difference is due to the fact 

that this calculated angle does not account for the currents in phases b and c. 

The line to line fault on phases a and b creates a magnetic field which is 

somewhat unexpected, particularly with respect to the angle of rotation. A brief 

description will clarify this matter, however. Since the magnitudes of the currents in 

phases a and b are identical in this situation and they are approximately 180° out of phase 

due to the line to line fault, the positive maximum horizontal field due to phase a (which 

occurs when the current is at its positive maximum) is counteracted by a field inclined at 

the same angle as the angle between the phase a conductor and the sensors, as noted 

above. As a result, this maximum magnetic field has a positive horizontal component and 
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a negative vertical component. The same result in the opposite direction occurs when the 

current in phase a is at its negative maximum and phase b is at its positive maximum. It is 

clear from these plots that, at least for a significant fault current, a line to ground or line 

to line fault could be detected using magnetic sensors for this conductor configuration. 
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Figure 3-4 – Horizontal conductor configuration and plots of its magnetic field 
(a) – Conductor geometry; (b) – Magnetic field for balanced currents, p=2m;  

(c) – Magnetic field for a line to ground fault on phase a, p=2m; (d) – Magnetic field for line to line 
fault on phases a and b, p=2m 
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3.3.2. Delta Conductor Configuration 
 

The conductor configuration shown in Figure 3-5 is a delta configuration. The 

magnetic fields here are similar to those of the horizontal conductor configuration under 

normal operating conditions and for the single line to ground fault on phase a. However, 

the line to line fault on phases a and b has a very different angle of rotation. The reason 

for this is that since the magnetic field is inversely proportional to the square of the 

distance from the conductor, the contribution from phase b is significantly reduced 

compared to its contribution for the case of the horizontal conductor configuration. As a 

result, while the analysis above regarding the horizontal configuration remains true, the 

magnitude of the maximum magnetic field due to phase b is reduced. Thus, the magnetic 

field is more significantly affected by the current in phase a – significantly enough that 

the maximum positive horizontal component due to phase b is less than the negative 

horizontal component due to phase a at the same time. This in turn causes the significant 

change in the angle of rotation of the ellipse. 
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Figure 3-5 – A delta conductor configuration and plots of its magnetic field 

(a) – Conductor geometry; (b) – Magnetic field for balanced currents, p=2m;  
(c) – Magnetic field for a line to ground fault on phase a, p=2m; (d) – Magnetic field for line to line 

fault on phases a and b, p=2m 
 

3.3.3. Another Delta Conductor Configuration 
 

A different delta conductor configuration and its magnetic fields are presented in 

Figure 3-6. These results are similar to those of the previously described delta 
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configuration and the changes are as expected due to the previous changes in results 

between the horizontal conductor configuration and the first delta configuration. The 

increase in the horizontal maximum of the total magnetic field is interesting since it 

decreased previously. This is since for the horizontal configuration, the horizontal 

magnetic field maximums are dominated by the current in phase b. For the first delta 

configuration, this contribution has decreased. As phase b is further removed from the 

sensors, the other two conductors begin to take over the maximum horizontal magnetic 

field. The vertical field magnitudes have not changed since phase b does not contribute to 

the vertical magnetic field and phases a and c have not been moved for these 

configurations.  

The magnetic field plot of the single line to ground fault on phase a has not 

changed noticeably, as expected. The magnetic field for the line to line fault on phases a 

and b is more significantly rotated than before, since phase b has been moved further 

away from the sensors. 
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Figure 3-6 – A different delta conductor configuration and plots of its magnetic field 

(a) – Conductor geometry; (b) – Magnetic field for balanced currents, p=2m;  
(c) – Magnetic field for a line to ground fault on phase a, p=2m; (d) – Magnetic field for line to line 

fault on phases a and b, p=2m 
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3.3.4. Horizontal Configuration with Uneven Conductor Spacing 
 
It is not uncommon for conductors to be unevenly spaced, especially in situations 

where a single ground wire is strung with the transmission line. This type of 

configuration is shown in Figure 3-7. If the magnetic field sensors are located beneath the 

point halfway between the conductors for phases a and c, the magnetic fields will be 

slightly different than those detected for a typical horizontal conductor configuration such 

as the configuration in Section 3.3.1. The contributions of phases a and c to the magnetic 

field remain the same. However, phase b now contributes a bit to the vertical field and a 

bit less to the horizontal field. As a result, the magnetic field during normal operating 

conditions is slightly rotated in the negative direction. The single line to ground fault on 

phase a is not significantly affected, and the line to line fault is rotated from the field in 

Figure 3-4 in the positive direction in accordance with the description in Section 3.3.1, 

since the horizontal contribution due to phase b is reduced. 

 

 

 



 28

       

  2

  4

  6

  8

30

210

60

240

90

270

120

300

150

330

180 0

  
 (a) (b) 

 
 

  20

  40

  60

  80

  100

30

210

60

240

90

270

120

300

150

330

180 0

  10

  20

  30

  40

30

210

60

240

90

270

120

300

150

330

180 0

 
 (c) (d) 

 
Figure 3-7 – Horizontal configuration with conductors unevenly spaced and plots of its magnetic field 

(a) – Conductor geometry; (b) – Magnetic field for balanced currents, p=2m;  
(c) – Magnetic field for a line to ground fault on phase a, p=2m; (d) – Magnetic field for line to line 

fault on phases a and b, p=2m 
 

3.3.5. Vertical Conductor Configuration 
 
A vertical conductor configuration and the magnetic fields resulting from it are 

shown in Figure 3-8. It is clear that no vertical magnetic field will be produced from any 

of the conductors here; the magnitude of the magnetic field changes with the faults, but 
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higher impedance faults will obviously be much more difficult to detect for this 

conductor configuration. Incidentally, if the sensors are located a distance p horizontally 

away from the conductors at the same height as phase b, the resulting magnetic fields will 

be the same as those in Figure 3-4 except rotated. As a result, the magnetic field sensors 

can be used for a vertical conductor configuration as well, but they must be mounted to 

the side of the conductors rather than beneath them. 
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Figure 3-8 – Vertical conductor configuration and plots of its magnetic field 
(a) – Conductor geometry; (b) – Magnetic field for balanced currents, p=2m;  

(c) – Magnetic field for a line to ground fault on phase a, p=2m; (d) – Magnetic field for line to line 
fault on phases a and b, p=2m 

 

3.4. Location and Basic Design of the Sensors 
 

By performing this analysis in polar coordinates rather than Cartesian coordinates, 

the fault detection is based on two variables – rho and theta – but in essence only one of 
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these is used per algorithm. This makes fault detection more intuitive since only one 

time-dependent variable needs to be analyzed for each algorithm rather than the three (or 

more) variables in a typical fault detection and location scheme. The values of rho and 

theta are given by 

 22
yx HH +=ρ  (51)

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

x

y

H
H1tanθ  

 
(52)

where the result of the inverse tangent has been corrected if Hx is negative. 

Assuming a triangular or horizontally coplanar arrangement of conductors, the 

sensors should ideally be located fairly close to the transmission lines vertically to reduce 

the effects of magnetic interference since magnetic interference can affect the accuracy of 

fault detection and, in extreme cases, indicate faults where they do not occur. Also, 

keeping the sensors fairly close to the transmission lines helps keep the shape of the 

magnetic field intensity as close to a circle as possible. The shape of the magnetic field 

intensity ellipse can also cause problems in detection since long, narrow ellipses increase 

the likelihood of incorrect fault detection. While the magnetic field ellipse could be kept 

close to a circle in shape in the processing algorithm, it is much more difficult to reduce 

or eliminate magnetic interference. It should be noted that, although close proximity to 

the conductors improves the performance of the analysis as stated above, the sensors 

must be kept outside the arcing distance of any of the conductors. 

Additionally, the sensors should be horizontally located directly under the center 

phase (if possible) to create an elliptical rotating magnetic field that is as close to a circle 



 32

as possible and has an angle of rotation that is very close to 0° or 90°. This is again for 

the purpose of reducing incorrect fault detection.  

In order to determine the effects of the horizontal location of the sensors, the 

magnetic fields were examined for several sensor locations beneath a transmission line. A 

delta conductor configuration was used for this analysis, and the RMS current in each 

phase was set at approximately 100A. The value of p in these tests was 2 meters. The 

results are shown in Figure 3-9 – Figure 3-12. 

The basic configuration with the sensors located directly underneath it was 

already discussed in Section 3.3.2. While this does not merit much more discussion, it is 

essential to note at this point that the angle of rotation for this conductor location is 90°. 

The location of the sensors relative to the conductors and the resulting magnetic field are 

shown below in Figure 3-9. 
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Figure 3-9 – Delta conductor configuration and magnetic field with sensors under center phase 

(a) – Conductor geometry; (b) – Magnetic field for balanced currents, p=2m 
 

As the sensors are shifted horizontally, the angle of rotation of the elliptical 

rotating magnetic field begins to increase. The rotation is in this direction because when 

the horizontal magnetic field due to phase c is at its positive maximum, the currents in 

phases a and b contribute to the magnetic field negatively, both in the horizontal and 

vertical directions. This negative contribution in the horizontal direction is not enough to 
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overcome the contribution due to the current in phase c, so this maximum value of the 

magnetic field is in the fourth quadrant. A similar situation occurs when the current in 

phase c is at its negative maximum. A representative sensor location and the resulting 

magnetic field are shown in Figure 3-10. 
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Figure 3-10 – Delta conductor configuration and magnetic field with sensors shifted 

(a) – Conductor geometry; (b) – Magnetic field for balanced currents, p=2m 
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As the sensors are shifted further, the angle of rotation of the magnetic field 

continues to increase. The magnitudes of the maximums also begin to decrease; the 

minimums also decrease, but not at as rapid of a rate. This is simply due to the increased 

distance from all of the conductors. An example sensor position and the magnetic field at 

this position are shown in Figure 3-11.  
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Figure 3-11 – Delta conductor configuration and magnetic field with sensors shifted farther 

(a) – Conductor geometry; (b) – Magnetic field for balanced currents, p=2m 
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As the sensors are shifted even further, the angle of rotation of the elliptical 

rotating magnetic field increases beyond 180°. Simultaneously, the maximum value of 

the magnetic field decreases even more. This rotation is due to the increased percentage 

of the magnetic field resulting from phase c as well as the fact that the angles that all 

three phases make with the sensors from vertical are becoming closer in value. A sensor 

location which demonstrates this and the corresponding magnetic field are shown in 

Figure 3-12. 
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Figure 3-12 – Delta conductor configuration and magnetic field with sensors shifted significantly 

(a) – Conductor geometry; (b) – Magnetic field for balanced currents, p=2m 
 

In addition to being located under the center of the transmission line and as close 

to the conductors as possible, the magnetic field sensors should also be located away 

from magnetic materials or materials that can be magnetized, since these will affect the 

magnetic field perceived by the sensors. This means that the sensors needs to be mounted 
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on non-magnetic poles; this is of special note in the case that the pylons used in the 

transmission system in question are made of material that can be magnetized such as steel. 

The suggested designs for the magnetic field sensors are two search coils, one 

oriented such that its induced voltage is proportional to the vertical magnetic field and 

one such that its inducted voltage is proportional to the horizontal magnetic field. The 

voltages induced in the coils are 

 ( )xx
x

x tHK
t

H
NAv θωωµ +=

∂
∂

= cosˆ
0  

 
(53)

and 

 ( )yy
y

y tHK
t

H
NAv θωωµ +=

∂

∂
= cosˆ

0  
 

(54)

where the coil constant is 

 NAK 0µ=  (55)

and 7
0 104 −×= πµ H/m is the permeability of free space. 

3.5. Fault Location 
 

For the analyzed system, the length of the transmission line and the velocity of 

propagation are assumed to be known. This analysis is performed based on two sets of 

sensors located at opposite ends of the transmission line as shown in Figure 3-13.  
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Figure 3-13 – Distances and times used in fault location 
 
Although the velocity of propagation in the transmission line can be described 

using the Telegrapher Equations1 as 

 
LC

u 1
=  

 
(56)

for a lossless transmission line, where u is the velocity of propagation and L and C are the 

inductance and capacitance of the transmission line per unit length, respectively, this 

method of determining the velocity is somewhat cumbersome in this situation since L and 

C can be difficult to measure for a multi-conductor transmission line. Since the velocity 

of propagation in an unfaulted transmission line can also be described as 

 

transt
lu =  

 
(57)

where ttrans is the time for an impulse at one end of the transmission line to reach the other 

end, the velocity of propagation u can be measured without directly knowing the line 

capacitances and inductances. It is also known that u can be estimated to be close to the 

                                                 
1 While a complete review of the Telegrapher Equations is essential to an understanding of one-terminal 
traveling-wave fault location (since this makes use of the reflection coefficient as well as other aspects of 
these Equations), they will not be discussed in further detail here since the location method explained in 
this thesis is a two-terminal method. 

Load

tfault 

t2 t1 

d1 d2 

l 
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speed of light in power transmission and distribution lines; however, an accurate value of 

the propagation velocity is essential in accurate traveling wave-based fault location. 

Once u is known, the distance from each sensor and the actual time at which a 

fault occurs can be found using the equations 

 ( )2121 ttudd −=−   
(58)

and 

 ldd =+ 21  (59)

where t1 and t2 are the times at which faults were detected by each sensor in seconds, d1 

and d2 are the distances from the fault to each sensor in kilometers, l is the length of the 

transmission line in kilometers, and u is the velocity of propagation in kilometers per 

second. These result in 

 ( )[ ]211 2
1 ttuld −+=  

 
(60)

 ( )[ ] 1122 2
1 dlttuld −=−+=  

 
(61)
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(62)

where tfault is the estimated time at which the fault actually occurred. The actual fault time 

tfault is very close to the times at which the fault is detected because u is typically very 

close to the speed of light. 

Since the fault detection will be performed by a microprocessor, the analog to 

digital conversion sampling rate is an important consideration in the accuracy of fault 

detection. The sampling rate is directly related to the maximum accuracy of the algorithm 

since it determines the minimum measurable difference in fault detection times. As a 
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result, the sampling rate must be fairly high to obtain dependable accuracy. The 

difference in calculated fault location when a calculated fault time changes by a single 

time step is given by 

 ( ) ( )( )( )212111 2
11

2
1 ttult

SR
tuldd stepstep −+−⎟⎟
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(63)

where ∆step is the step size, or minimum detectable change in meters, and SR is the 

sampling rate in samples per second. This can be solved to find that 

 
( )SR
u

step 2
=∆  

 
(64)

The factor of 2 is present since a difference of one sample at one end of the transmission 

line only makes half the impact of one sample at each end in opposite directions. The step 

size as a function of sampling rate for the ideal value of u = 8103× m/s is shown in 

Figure 3-14. 
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Figure 3-14 – Step size as a function of sampling rate 

 
The value of ∆step is used in determining the maximum accuracy available for any 

given transmission line and is especially important for shorter transmission lines where 

the error per length of the transmission line can be significantly affected. Incidentally, the 

worst-case timing difference between two GPS-synchronized clocks is around 1µs [15], 

which would, assuming a velocity of propagation of 0.98 times the speed of light, provide 

a minimum detectable change of approximately 150 meters, assuming insignificant error 

due to the actual sampling rate. In reality, the sampling rate will also introduce some 

error, depending on the frequency at which the magnetic fields are sampled. For 

reasonable accuracy, a sampling rate of greater than 1MHz is desired; this would 

introduce up to another 150 meters of inaccuracy. However, as technology continues to 

develop and both sampling rates and the GPS clock speeds are increased, these 

inaccuracies will be reduced. 
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4.  Analysis Using the Magnetic Field 
 

As previously stated, the most obvious coordinate system to analyze a rotating 

magnetic field is a polar coordinate system, since any changes in the expected total 

magnetic field will be detected most easily this way. Four algorithms are presented in this 

section for the detection of faults while examining the system in polar coordinates. All of 

them involve detecting if the values of rho or theta have exceeded or gone below a set of 

expected boundaries or have made a significant and unexpected change.  

Since each of these algorithms has a possibility of incorrectly detecting a fault, the 

results of these algorithms can be analyzed collectively to better determine whether or not 

a fault has truly occurred. Also, by taking the earliest fault detection times from each 

algorithm, the microprocessor which is performing this analysis will be able to determine 

actual fault detection times more correctly in order to perform the fault location more 

accurately. As a result, this combined analysis using all of these algorithms will provide a 

reduced number of “false alarms” as well as more accurate fault location. 

4.1. Analysis Algorithms 
 

The four algorithms used in this analysis detect the steady-state magnetic field 

behavior then determine any deviation from it. The first algorithm estimates the ellipse 

formed by the magnetic field then detects any significant deviations from this locus. The 

next algorithm compares the present value of rho to the value detected a fraction of a 

cycle before it and determines if too significant of a change has taken place. The third 

algorithm detects the maximum change in rho between data points every quarter cycle 

and determines if the change in rho between the last two data points has exceeded a 
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multiple of this maximum. Finally, the fourth algorithm detects the maximum and 

minimum changes in theta every half cycle and determines if the change in theta between 

the last two data points is significantly higher than the calculated maximum or 

significantly lower than the calculated minimum. 

4.1.1. The “Expected Ellipse” Algorithm 
 

Since the magnetic field will typically form an ellipse in steady state, the simplest 

way for a microprocessor to determine if there is a fault is to sense if the magnetic field 

intensities significantly change from the elliptical pattern. There are several ways to 

perform such an analysis. One is to approximate the shape of the ellipse and determine, 

once a mostly constant ellipse has been found, if and when the instantaneous magnetic 

field value deviates from that ellipse. Such a deviation from a constant ellipse is shown 

below in Figure 4-1. 
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Figure 4-1 – Constant ellipse with a sudden change due to a fault 
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In order to analyze this rotating field in this way, which will be referred to as the 

“expected ellipse” algorithm, the following steps are performed: 

1. The average maximum and minimum magnetic field intensities and any 

angle of rotation of the field are determined. 

2. An ellipse approximating the rotating magnetic field is generated from this 

information. 

3. Ellipses for the minimum and maximum allowable values of the magnetic 

field intensity based on allowable percentage deviation from the average 

must be created from the approximation; these are used to detect any sort of 

abnormal behavior.  

Similar to the Cartesian coordinate ellipse discussed in Section 3.1, the polar 

coordinate ellipse which can be generated from the information about the maximum rho, 

minimum rho, and shifted angle is defined by  

 

( ) ( )shiftshift θθρθθρ

ρρ
ρ

−+−
=

22
min

22
max

minmax

cossin
 

 
(65)

where ρ is the predicted value of rho for any given value of θ (based on the value of θ for 

any data point), ρmax and ρmin are the detected maximum and minimum values of rho, and 

θshift is the detected rotational shift of the ellipse. Once this ellipse is constructed, it is 

used in determining allowable maximum and minimum magnetic fields. 

An example elliptical rotating magnetic field with several boundaries of allowable 

values of rho for given values of theta is shown below in Figure 4-2; the actual magnetic 

field is shown in bold. While values of ρmax and ρmin are indicated, it should be noted that 

values of ρmax and ρmin also occur at the points 180° around the ellipse from the indicated 

points. The boundary which is significantly larger than the actual ellipse (the “maximum 
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boundary”) is used for determining if a fault definitely occurred in contrast to the 

possibility of a fault occurring. This is described further in Sections 4.2.2 and 4.2.3. 

 
Figure 4-2 – Elliptical rotating magnetic field with boundaries for the “expected ellipse” algorithm 

 
This method of analysis is effective if the maximum and minimum values of rho 

can be determined accurately. However, if the steady-state currents are distorted, both the 

maximums and minimums and the angles at which they are detected could be affected. 

This effect can be reduced by adding an analog or digital filter to the detection device, 

but there is still a chance of the detection of maximums and minimums being slightly 

incorrect. Even if these values are close to correct, there is a chance of either a “false 

alarm” or a fault not being detected with this algorithm alone. In order to decrease the 
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number of these false positives, a different algorithm can be used in conjunction with the 

“expected ellipse” algorithm. 

4.1.2. The “Previous Value” Algorithm 
 

Since the values of rho in the polar coordinate system do not change significantly 

over a very short time step for a transmission line that is relatively well balanced, each 

value of rho can be compared against a value that occurred shortly before it to detect 

sudden changes. In a sense, this effectively compares the magnetic field against rotated 

and scaled versions of the same magnetic field. An example of an elliptical rotating 

magnetic field along with some boundaries generated for this “previous value algorithm” 

is shown in Figure 4-3.  
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Figure 4-3 – Elliptical rotating magnetic field with boundaries for the “previous value” algorithm 
 

This “previous value” algorithm is especially useful in cases where the magnetic 

field is not exactly an ellipse and thus cannot be accurately monitored with the “expected 

ellipse” algorithm. The use of two detection algorithms in conjunction with each other 

can reduce incorrect fault detections. For example, if the system is fairly imbalanced, 

faults will be more likely to be incorrectly detected with the “previous value” algorithm, 

while the “expected ellipse” algorithm will not have as much of a problem with this. 

Similarly, if harmonics are seen by the sensors and are not properly filtered, the 

“expected ellipse” algorithm will be much more likely to detect a fault incorrectly while 

the “previous value” algorithm will not. A magnetic field with several unfiltered 

arbitrarily phase-shifted harmonics is presented below. Figure 4-4 shows this magnetic 
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field with boundaries based on the “previous value” algorithm while Figure 4-5 shows 

the same magnetic field with boundaries based on the “expected ellipse” algorithm. It is 

clear that the “expected ellipse” algorithm will incorrectly detect faults in this situation. 

Ideally, all of the harmonics would be filtered prior to analysis, but complete filtering 

would have negative impacts on the system in other ways including making faults harder 

to detect. As a result, it cannot be assumed that the magnetic field will be a perfect ellipse. 

Thus, the fault detection results of the “expected ellipse” algorithm are combined with the 

results of the “previous value” algorithm in order to better determine if a fault has truly 

occurred. This example reinforces the idea that performing an analysis of the magnetic 

field using multiple algorithms in conjunction with one another can reduce the number of 

incorrect fault detections if the results from each algorithm are compared against those 

from the other algorithms.  
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Figure 4-4 – Magnetic field with harmonics, monitored by “previous value” algorithm 
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Figure 4-5 – Magnetic field with harmonics, monitored by “expected ellipse” algorithm 
 

4.1.3. The “Delta Rho” Algorithm 
 

As stated before, when a fault is detected with multiple algorithms, the fault 

location accuracy can be increased by using the earliest fault detection times at each end 

of the transmission line. Despite this increased accuracy, the time at which the fault is 

detected with the “expected ellipse” and “previous value” algorithms is not exactly the 

time at which the fault propagated to the end of the transmission line due to the space 

provided between the actual magnetic field and the allowable boundaries. There needs to 

be this small region of allowable variation for each method in order to reduce incorrect 

fault detections. However, this makes high impedance faults very difficult to detect. In 

order to increase the accuracy even more and to improve high impedance fault detection, 

a third algorithm, which will be referred to as the “delta rho” algorithm, is useful.  
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This algorithm requires less analysis from the microprocessor than the other 

algorithms, since it simply measures each change in rho between samples against a 

multiple of the highest change in rho for the unfaulted system. The highest change in rho 

is assumed to occur halfway between the minimum and maximum values of rho from the 

“expected ellipse” algorithm for an elliptical magnetic field due to the relationship 

between the zero crossing of a sine wave and the peak of its derivative which is a cosine. 

The values of rho and the absolute value of the change in rho for an unfaulted system are 

shown below in Figure 4-6.  
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Figure 4-6 – Rho and the absolute value of the change in rho under normal operating conditions 
 

 The absolute value of the change in rho is simply calculated as  

 
1−−=∆ tt ρρρ  (66)
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where the absolute value is used since the maximum allowable magnitude of the change 

in rho is independent of direction of change. If the change in rho between any two 

samples is greater than this multiple of the maximum value, there has possibly been a 

fault. This method will detect a fault time before either of the previously described 

algorithms and in some sense is most similar to the way a human would determine a fault 

time based on a visual examination of a plot of the magnetic field.  

As an example of this algorithm, the plot of the magnetic field during a three-

phase fault is shown in Figure 4-7. It is clear that this is a fault, but the exact time at 

which the fault caused a change in the magnetic field would be difficult to detect with 

either the “expected ellipse” algorithm or the “previous value” algorithm. Figure 4-8 

shows the values of rho just prior to and during the fault. Again, it is clear that there is a 

change, but the exact time might be difficult to determine using boundaries. However, it 

is clear from Figure 4-9 that, once the change in rho is examined rather than the values of 

rho, the fault can clearly be detected at a specific time where the change in rho increases 

significantly. 
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Figure 4-7 – Magnetic field during a three-phase fault 
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Figure 4-8 – Rho during a three-phase fault 
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Figure 4-9 – Absolute value of the change in rho during a three-phase fault 

 

The downside of the “delta rho” algorithm is that even a trace of noise can cause 

an incorrect fault detection. An example of a rotating elliptical magnetic field with some 

noise added is shown in Figure 4-10; the absolute value of the change in rho for this 

system is shown in Figure 4-11. Even though the noise does not appear to be very 

significant when compared to the values of rho as seen in the ellipse, the changes in rho 

due to the noise are easily enough to cause the delta rho algorithm to incorrectly detect a 

fault. 
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Figure 4-10 – Rotating elliptical magnetic field under normal conditions with noise added 

(a) – Full ellipse; (b) – Detail of noise (window is approximately 0.25 A/m in each direction) 
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Figure 4-11 – Absolute value of the change in rho under normal conditions with noise added 
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In order to minimize this risk of incorrect fault detection due to noise, the 

maximum change in rho is not taken solely from the change in rho over the single time 

step which would typically create the greatest change, but from an average of the changes 

per time step over a short period of time. This will significantly reduce the effects of 

noise, since the noise will be taken into account in this average measurement. There are 

no negative effects due to this modification under noiseless conditions; under noisy 

conditions, this change will make the “delta rho” algorithm a bit less likely to detect a 

fault, but this is clearly superior to the possibility that the algorithm will indicate a fault 

every time it detects a significant amount of noise. 

Since this sudden change in rho can occur due to extreme noise even with this 

modification in place, the “delta rho” algorithm is more likely to incorrectly indicate 

faults than the previously discussed algorithms. However, if the time at which a fault is 

detected with the other algorithms is close to the time at which the “delta rho” algorithm 

detects a fault, the time from the “delta rho” detection is compared to the other times and 

is used in determining the fault location, thus providing more accurate location of the 

fault. Also, since this algorithm detects high impedance faults better than the other 

algorithms, the fault times related to this algorithm that do not correlate with the fault 

times of other algorithms are stored separately. In the case that a fault is later found to 

have occurred, this information can then be used to determine the fault location. 

4.1.4. The “Delta Theta” Algorithm 
 

The algorithms described above will detect and locate most types of faults quite 

well; however, line to line faults, especially those that occur when the currents in the 
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faulted conductors are at near-equal values, are still problematic with the above three 

algorithms alone. As a result, another method must be added in order to detect this type 

of fault. The most distinguishing characteristic of the initial detection of a line to line 

fault is a rapid change in the value of the polar angle theta (θ). As a result, the most 

logical detection algorithm to add is one which detects sudden changes in the value of 

theta. This algorithm will be referred to as the “delta theta” algorithm. 

The change in theta per time step is simply defined as  

 1−−=∆ tt θθθ  (67)

The allowable change in theta per time step is between a value slightly higher than the 

maximum detected change and a value slightly lower than the minimum detected change; 

if the magnetic field goes beyond either of these boundaries, a fault has most likely 

occurred. No absolute value is used with this algorithm since a change in the direction in 

which theta is changing indicates a fault (whereas rho remaining the same or switching 

from increasing to decreasing is expected under normal operating conditions). 

Just like rho, theta changes at different rates throughout the ellipse. The maximum 

change in theta per time step is at the minimum value of rho, and the minimum change is 

at the maximum value of rho. This is shown in Figure 4-12; it is important to note that in 

this Figure the “maximum” value of theta is actually a minimum since theta is always 

negative (constantly decreasing) for the particular situation. Since the “delta theta” 

algorithm is prone to the effects of noise in the same way as the “delta rho” algorithm, the 

same averaging method is used in calculating the maximum and minimum allowable 

values in order to reduce the number of incorrect fault detections. 
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Figure 4-12 – Rho and delta theta compared under normal operating conditions 

 
The magnetic field of a line to line fault is shown in Figure 4-13; Figure 4-14 

shows the value of theta up to and during the fault. There is clearly an abrupt change in 

the value of theta when the magnetic field changes its pattern due to the fault current, but 

the exact time of this change is difficult to determine directly from theta. In contrast, the 

change in theta is shown in Figure 4-15. The sudden change due to the fault can be easily 

be located using this information. 
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Figure 4-13 – Magnetic field during a line to line fault 
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Figure 4-14 – Theta during a line to line fault 
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Figure 4-15 – Change in theta during a line to line fault 

 

4.1.5. Fault Detection 
 

Each algorithm detects faults independently; once faults have been detected by 

one or more algorithms, the fault location is performed. If there is some kind of abnormal 

behavior (a field intensity that goes outside of a minimum or maximum, or a change 

greater than allowed by the “delta rho” algorithm), the detection system will perform the 

following operations: 

1. Record the time at which this occurred. 

2. If some abnormality is recorded at both ends of the transmission line, then 

the location of the fault is computed based on the difference in detection 

times. 



 61

3. If the abnormality is recorded at only one end of the transmission line, then 

the possibility that an error might have occurred is recorded in the 

microprocessor memory. 

4.2. Implementation of the Algorithm 
 

While the collective algorithm is not particularly difficult in concept, the 

implementation becomes somewhat complicated since the fields in question are not 

necessarily limited to ellipses in their shapes as has been noted in previous sections. This 

necessitates the addition of several steps to the algorithm to prevent “false alarms” and to 

increase the accuracy of the algorithm as much as possible. It is essential to note at this 

point that all calculations are done identically and independently for both ends of the 

transmission line, and the only time these calculations interact is when a potential fault 

has been detected.  

This particular implementation of the algorithm is done in a time loop, similarly 

to how an actual device would function, with the only time-independent element being a 

readout of possible fault information at the end of the code. The analyses for each 

algorithm can be run in parallel if necessary to increase the processing speed of the 

complete analysis. Figure 4-16 shows the implementation of the collective algorithm. The 

complete MATLAB code can be found in Appendix C. 
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Figure 4-16 – Fault Detection Algorithm 
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4.2.1. Initialization 
 

The process begins by receiving the inputs – specifically, currents in the 

conductors, the transmission line geometry and length, sampling rates, the velocity of 

propagation, the time from which the analysis starts in case it is referenced to a time 

external to the code, and the time to wait for the transmission line to be re-energized 

before resuming analysis. The currents are converted into the horizontal and vertical 

magnetic fields using Equations (47) and (48) and the information which was provided 

by the user. These values are then converted into the values of rho and theta for all values 

of time. A MATLAB function called atan2 is used in this implementation to take the 

inverse tangent to find theta; this takes negative Hx into account and determines in which 

quadrant theta should be located. Rho is calculated using Equation (51).  

These calculations are followed by an initialization of a large number of other 

variables which are used at various points in the analysis. After the basic variable 

initialization, all of the variables related to the minimum and maximum rho values and 

the angle of rotation from a standard ellipse are found by calling two functions. These 

functions have been named “checkdir” and “minmaxrho” in the code; they find whether 

rho is increasing or decreasing and the minimum and maximum values of rho, 

respectively. These values are used in the analysis for the “expected ellipse” algorithm.  

The check for whether rho is increasing or decreasing is essential in determining 

the minimum and maximum values of rho; it is implemented separately from the function 

that determines the minimum and maximum values to simplify function calls in the code 

and to make debugging easier. This function in and of itself is rather simple. It checks the 
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rho value for the present time value then compares it to the value for the previous time. 

This determines if rho is increasing or decreasing. 

Finding the minimum and maximum values of rho is somewhat more complicated. 

At the beginning of the function, all the necessary variables are temporarily set to zero. 

The function will continue running until all of the necessary values (rho minimums and 

maximums as well as angles of rotation) have been found, or until the end of the 

available information has been reached. It is clear that the maximum and minimum 

values for rho should occur when rho changes from increasing to decreasing or 

decreasing to increasing, respectively; however, harmonics, noise, or errors in analog to 

digital conversion may indicate local maximums or minimums that are not the maximum 

or minimum for the system in this way. In order to remove the effects of these incorrect 

detections of maximums and minimums, once a maximum or minimum is detected, the 

system searches through the previous quarter cycle for the highest (or lowest, in the case 

of a minimum) values of rho and uses this value. In order to prevent faults from 

incorrectly affecting these results, the amount of time between detections of a maximum 

and a minimum and vice versa is limited. As a result, faults which cause a change in a 

maximum or minimum will only change the predicted ellipse based on the first changed 

value due to the fault; any later changes in rho will indicate a fault. The values for the 

angles of rotation (called “thetashift” in the code) are taken to be the theta values where 

the maximum rhos are detected. The resulting maximums, minimums, and angles of 

rotation are then returned to the main program. 
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4.2.2. Error Checking 
 

At this point, problems from previous time steps are analyzed. Any temporary 

variables that have expired are cleared. If a fault is detected at one end of the 

transmission line with any algorithm, the system waits for the maximum possible 

detection time, defined by a value slightly larger than the length of the transmission line 

divided by the velocity of propagation. This is the maximum time that could occur 

between detection at one end of the transmission line and detection at the other for an 

actual fault. If the time is exceeded, this means that the indication at one end of the 

transmission line was an incorrect detection or that a fault occurred but that one end of 

the transmission line did not see any evidence of this fault. The latter situation is likely to 

occur for high impedance faults or for faults near the zero-crossing of the current 

waveform in the faulted phase. If the fault that was detected was due to an increase above 

the maximum allowable rho value, a “problem time” is recorded, since the maximum rho 

should theoretically never be exceeded except in the case of a fault; thus, for the 

maximum to be exceeded at one end of the transmission line without any fault detection 

at the other, it means that there has been some error. Otherwise, the fault detection is 

assumed to be an incorrect detection. Either way, all flags indicating a fault for the 

algorithm which detected this fault are cleared after this maximum time in order to reset 

the system as quickly as possible. 

Additionally, if the “delta rho” algorithm has been indicating faults repeatedly 

without the other algorithms detecting any faults, this could mean that there is excessive 

noise in the system for some reason. As faults are detected by the “delta rho” algorithm, a 

variable is set to count until a quarter of a cycle has passed. If at least three faults have 
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been detected by the “delta rho” algorithm within this period of time, the maximum 

percentage allowable above the highest change in rho in the system is doubled. This will 

prevent repetitive tripping due to the “delta rho” algorithm. Since it is assumed that the 

significant amount of noise required to cause this algorithm to detect a fault is a 

temporary condition, the original maximum allowable percentage above the highest 

change in rho is restored after a fault occurs or after an extended period of time.  

4.2.3. Fault Detection 
 

After finding all the information necessary for analysis, the fault detection can 

begin. Fault detection is performed before resetting any of the algorithm variables since a 

change in a variable such as the maximum detected value of rho may be due to a fault. 

Thus, the fault detection is done first to reduce any impact that these variable changes 

may have on the detection process. 

The first attempt at fault detection is using the “delta rho” algorithm. If the change 

in rho between the current time step and the previous time step is greater than a multiple 

of the largest change in rho that was recently detected, this algorithm indicates a fault. 

After this, the present values are tested with the “delta theta” algorithm. If the 

value of theta has changed more than a multiple of the highest detected change or a 

fraction of the lowest detected change, a fault is indicated. It is important to note that 

there is a break in the values of theta since the inverse tangent function (which is used in 

converting the horizontal and vertical magnetic field values into polar coordinates of rho 

and theta) only returns values in the range [-π,π] or [0,2π] (after correction for points in 

quadrants II and III). As a result, a modification must be made as the value of theta goes 

beyond these boundaries since this will indicate a change in theta of nearly ±2π. If the 
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value of theta has just made this change in either direction during the present time step, 

the change in theta is calculated by subtracting 2π from the higher of the two values. As a 

result, the actual change in theta is calculated. 

The code continues with several checks for faults using the “expected ellipse” and 

“previous value” algorithms. While a simple check for an increase in rho beyond the 

maximum allowable value at one end of a line and a decrease beyond the minimum 

allowable value at the other end might find faults, the fault locations which are 

determined by the algorithm will not necessarily be very accurate.  

The analysis begins by testing for an increase beyond the maximum rho at either 

end of the transmission line. If either end satisfies this condition and has not detected a 

fault recently, the time of the fault and other information will be recorded along with a 

flag to indicate the cause of the fault detection at that end of the transmission line.  

After comparing the current value of rho against the maximum rho, the current 

rho is compared to a different value of rho above the expected value (referred to as the 

“high” value of rho) which is analyzed similarly to the maximum value. Additionally, 

since the high value of rho must be exceeded in order to reach the maximum value of rho, 

if one end of the transmission line has been flagged for exceeding the high value of rho, 

this flag can be cleared and replaced with another flag if the maximum is exceeded. 

The value of rho is also compared to the minimum allowable value of rho. If the 

present value of rho is less than the minimum allowable rho at either end of the 

transmission line, that end of the transmission line is flagged. Additionally, if the value of 

rho drops below the minimum then suddenly rises above the minimum at the other side of 
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the ellipse, a different kind of flag is stored since this type of behavior is more likely to 

indicate a fault than simply a drop below the minimum.  

The amount of time that the value of rho is allowed to remain under the minimum 

value before the algorithm chooses not to store this different flag is identified in the code 

as “maxbelowtime.” A set of variables called “dropbelow” are defined for each end of the 

transmission line and for both the “previous value” and “expected ellipse” algorithms. As 

every time step is analyzed, the “dropbelow” is incremented (starting from zero) for any 

algorithm which has detected that the value of rho has gone below the minimum 

allowable value. If this value reaches “maxbelowtime” without the value of rho returning 

above the minimum allowable value, it is assumed that rho will not be going above the 

minimum value again and thus this flag for a stronger indication of a fault will not be set. 

4.2.4. Resetting Variables 
 

This algorithm continues with code very similar to the “minmaxrho” initialization 

code described above, except it occurs as the time is passing; as a result, the minimum 

and maximum values for rho and the angle of rotation are only updated at time values 

where the condition for a minimum or maximum has occurred. 

For the “delta rho” algorithm, the value of the maximum change in rho detected in 

the system should occur near the angle half way between the maximum value of rho and 

the minimum value of rho. Simply taking the difference between the value of rho during 

this time step and the value during the previous time step should produce the maximum 

change in rho, but if there is noise in the system, this could produce a change in rho much 

lower than the highest change present in the non-faulted system.  
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One way to solve this problem is to check the change in rho for every time step 

and determine this change is greater than the previously defined maximum change in rho. 

However, this would require a great deal of additional analysis and more importantly, it 

would be affected by faults, since a fault would simply change the maximum allowable 

value of rho and thus make it harder to detect further increases in rho due to the same 

fault.  

Instead, this algorithm averages the changes in rho over a short period of time 

near the angle where the maximum change in rho should occur. This reduces the effect of 

noise since the average change in rho due to the noise is taken into account. Faults would 

not significantly affect this value since a fault that occurred a few time steps back would 

be detected at this point. Additionally, the changes in rho over several time steps are 

averaged so if a fault is just about to be detected and has made a small change to the 

current value of rho but not enough to be detected, this small change in rho that has not 

yet been detected is only one small part of the average. 

Similarly to the “delta rho” algorithm, the values for the “delta theta” are 

initialized as averages. The maximum change in theta is taken to be the average change in 

theta near the minimum value of rho while the minimum change is taken as the average 

near the maximum value of rho. 

Since the “previous value” algorithm tests the present value of rho against 

multiples of the rho values from previous time steps, the algorithm is prone to indicating 

faults incorrectly when rho changes rapidly – for example, in the case of extreme 

imbalance between the currents in the conductors. The allowable boundary values of the 

“previous value” algorithm can be modified to prevent this kind of situation while 
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keeping the boundaries close enough to the allowable values to detect faults as quickly as 

possible.  

Throughout each cycle, the value of rho is compared against four boundaries 

which are a set percentage smaller than the fault detection boundaries for the “previous 

value” algorithm. Two of these are slightly above and below the predicted value of rho. 

Ideally, these boundaries will be exceeded at least for a bit of a cycle; if either of them is 

not, the allowable value of rho in that direction (either above or below, dependent upon 

which boundary is not exceeded) is reduced in order to increase the fault detection 

accuracy of the algorithm. The other two values are much closer to the fault detection 

boundaries. If either of these is exceeded over the course of a cycle, it means that the 

algorithm is getting close to detecting faults incorrectly (or that a fault has occurred, but 

presumably this would also exceed the allowable value and indicate a fault in addition to 

exceeding these testing values).and a result, the allowable value of rho in the appropriate 

direction is increased.  

4.2.5. Fault Information Storage 
 

If a fault has been detected at one end of the transmission line, the time at which it 

was detected is stored. Once flags indicating faults have been set at both ends of the 

transmission line, the system stores the information about the fault times and indication 

types prior to temporarily suspending its operation. If only one algorithm is indicating a 

fault and if that algorithm has not exceeded the waiting time mentioned in Section 4.2.2, 

the system will wait for another algorithm to indicate a fault as well; as previously stated, 

taking the earliest detection times at each end of the transmission line from two 

algorithms can provide more accurate fault location. Even if the waiting time has been 
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exceeded, if only the “delta rho” algorithm or only the “delta theta” algorithm has 

detected a fault, the system will not suspend its operation as it would for detection with 

either of the other algorithms or for detection with multiple algorithms. This is done since 

these two algorithms (the “delta rho” algorithm in particular) are sensitive to noise, and 

the fault detection should not be suspended based solely on algorithms which could be 

prone to having this sort of problem. However, if one of these algorithms detects a fault 

but the waiting time is exceeded, this fault timing information is stored separately from 

the other fault detection timing information in case it is later determined that a fault 

actually occurred. 

This information is processed at the end of the available time information for the 

present implementation of the algorithm; in practice, the analysis would be performed as 

faults are detected since there is no end of data in a real-life situation. The algorithm then 

pauses for a short period of time (which is provided by the user) to allow the breaker to 

clear the transmission line. This is to prevent faults from being erroneously detected 

immediately after resuming analysis. After this waiting time has passed, the system again 

initializes the variables for its operation (minimum and maximum rho values, etc.), 

removes the fault-indicating flags, and re-enters the time loop to wait for another fault.  

It is essential to consider that, depending on the time delay between the fault 

detection and resumed operation of the detector, the transmission line may not yet be re-

energized when the detector resumes operation. Since the minimum and maximum rho 

will be determined based on this system, the transmission line being re-energized may 

also indicate a fault. In practice, however, this fault locator device would likely be 
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networked with other protection equipment and thus would be aware of the status of the 

transmission line. 

4.2.6. Fault Analysis 
 

After the end of the available data, any faults are analyzed using Equations (60), 

(61), and (62); prior to this, the information was only stored and was not processed. For 

each fault, timing information may be available from any of the algorithms which 

detected it. In order to obtain the most accurate measurement possible, the earliest 

available detection times for each fault are used in the calculation of the fault location. 

The location of the faults and the approximated times at which they occurred are then 

presented along with the information about the type of change that caused the fault to be 

detected. 

If any fault location calculations result in a negative distance, the times resulting 

in these errors are presented. As described in Section 4.2.2, a bit of leeway is given in 

waiting between the detection of a fault at one end of the transmission line and the latest 

expected fault detection time at the other end (at which time the information about the 

detection of the fault at the first end of the transmission line is discarded). These negative 

distance calculations may be the result of a fault very close to one end of the transmission 

line and late fault detection at the other end of the transmission line which falls within 

this leeway. The resulting negative distance can thus indicate a fault very close to one end 

of the transmission line. 

Additionally, any of the “problem times” – where a fault was clearly detected at 

one end of the transmission line but nothing was detected at the other end – are shown 



 73

after the end of the available data. This information can be used for “debugging” and 

system analysis. 
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5. Testing the Algorithm 
 

The full algorithm was tested to determine the accuracy with which it can detect 

faults. The system was tested for a 115kV transmission system. The geometry of the 

transmission line and details about its simulation model are presented in Appendix A. 

Single line to ground faults were used as the main fault for testing since they are by far 

the most common fault types; the conductor configuration was chosen as a coplanar 

arrangement. Since the accuracy of calculation is dependent upon the angle of fault 

incidence, the system was tested for faults at both the zero-crossing of the faulted phase’s 

current, which is the most difficult fault timing to detect, and at the faulted phase’s peak 

current, which is easiest to detect. The testing was based upon a purely resistive fault. 

The location of the fault was varied linearly along a 20km transmission line for fault 

resistances of 0.1, 1, and 10 per unit, which are equivalent to approximately 13.225Ω, 

132.25Ω, and 1322.5Ω for the 115kV transmission line in question. These values come 

from  
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for the given base voltage of 115kV line to line and a chosen base 3-phase power of 

100MVA which results in a per unit impedance of 132.25Ω. 

The sampling rate used in this testing was 2MHz. For all tests, any frequencies 

below 60Hz and any harmonics are assumed to have been filtered in a way that does not 

noticeably affect the fault detection. Additionally, the magnetic sensors are assumed to be 

able to respond to a change in the magnetic field instantaneously. Also, noise is assumed 

to be negligible. 
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The fault simulations were conducted using ATPDraw, a free electric power 

system analysis program; the resulting data was exported into Microsoft Excel using TOP, 

an output processor for power system analysis programs. The Excel-format data was then 

processed by MATLAB using the code in Appendix C. In an actual power system setting, 

only the actual analysis step (here represented by the MATLAB analysis) would be 

performed, thus simplifying the process significantly. 

The results of these analyses are shown below in Figure 5-1 and Figure 5-2. The 

fault location error is specified in [3]. It is equal to  
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where dread is the fault location detected by the algorithm, dactual is the actual location of 

the fault, and l is the total length of the transmission line. If a fault was detected with only 

one of the algorithms, this detection was not discounted. 

It is clear from a comparison between the accuracies of the fault detections for 

zero-crossing current faults and the fault detections for peak current faults that the fault 

location is much more reliable for faults at the peak of the current. In fact, the curve in 

Figure 5-1 (which is the best-case situation for fault location) is independent of fault 

resistance until the fault resistance becomes larger than 10 per unit (1322.5Ω) which is 

the resistance for which this Figure is plotted. The faults at the current’s zero-crossing 

were not detected at one end of the transmission line (thus preventing fault location) for 

fault resistances greater than 1 per unit, which is 132.25Ω. (Note that the algorithm did 

detect and locate the faults at 10% and 20% of the transmission line length at this 

impedance, but the accuracy was incredibly poor and thus the points do not appear in 

Figure 5-2.) For the sake of comparison, ground fault resistances may be as high as 800Ω 
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“[i]n cases of high ground resistivity and no overhead ground wire” [16]. While this is a 

relatively high impedance for a ground fault, it is still possible that a fault of this 

impedance could occur near the zero-crossing of the faulted phase’s current and that as a 

result this algorithm would not be able to detect or locate the fault. This is one of the 

admitted weaknesses of this algorithm. As a result, this implementation of the fault 

detector can only be recommended for use with transmission lines that have at least one 

overhead ground wire. 

-1.00%

-0.80%

-0.60%

-0.40%

-0.20%

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

10% 20% 30% 40% 50% 60% 70% 80% 90%

Fault distance from generator (% of line length)

Er
ro

r

R = 10 per unit

 
Figure 5-1 – Fault location error for a single line to ground fault when the faulted phase’s current is 

at a maximum 
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Figure 5-2 – Fault location error for a single line to ground fault when the faulted phase’s current is 

zero 
 

The algorithm was also tested for a range of fault resistances for each major fault 

type, including single line to ground faults (at both the faulted phase’s current maximum 

and current zero-crossing), line to line faults and line to line to ground faults (when both 

phases’ currents are at identical values), and three phase faults (at one of the phases’ 

current zero-crossings). The timings above are the most difficult portions of the cycle to 

detect each of these faults, with the exception of the single line to ground fault at the 

faulted phase’s current maximum which was included since it was already tested based 

on fault location in Figure 5-1. The faults tested were located in the center of the 

transmission line (10km from each end) in order to minimize the faults appearing to be 

undetected when the problem is simply a large error. For example, if a fault is very close 

to one of the ends of the transmission line and the other end does not detect the fault 

exactly when the traveling wave arrives, the fault will appear to be off of the transmission 
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line and, based on the way the analysis algorithm is designed, will be seen as an 

erroneous fault detection.  

The results, which are shown below in Figure 5-3, Figure 5-4, and Figure 5-5, 

indicate extremely accurate fault detection. Aside from the slightly low detectable fault 

impedance for the worst case of single line to ground faults as previously mentioned, the 

only fault type where moderate fault impedances seem to cause a problem is the line to 

line fault. As can be seen in Appendix B, this fault location must rely specifically on 

detecting sudden changes in theta to produce an accurate result. By decreasing the 

allowable range of values of delta theta, the maximum detectable fault impedance could 

be increased; however, this would make the algorithm more likely to incorrectly detect 

faults due to noise. 
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Figure 5-3 – Fault location error as a function of fault impedance for single line to ground faults 
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Figure 5-4 – Fault location error as a function of fault impedance for line to line faults 
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Figure 5-5 – Fault location error as a function of fault impedance for three phase faults 
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The slightly jagged nature of these Figures is due to the fact that the error is 

limited to a discrete set of values for a given fault location since the calculated fault 

locations are also limited to a discrete set of values. This due to the step size discussed in 

Section 3.5 (and specifically in Equation (64)) and is a result of the sampling rate. Higher 

sampling rates than the 2MHz which was used in these tests can decrease this appearance 

and may also improve the accuracy of detection, depending on the location of the fault in 

question. 

The errors shown are on the order of hundreds of meters since 1% error is equal to 

200m for the 20km long transmission line. This is in the range of the maximum error 

introduced by the synchronization using GPS [15]. As a result, significant improvements 

in the accuracy of these algorithms will not necessarily provide a worthwhile benefit at 

this time.  

It is also important to note that the fault detection error and maximum detectable 

fault impedance are based on the margins of allowable operation for each algorithm. For 

example, the code in Appendix C which was used to carry out these tests requires the 

change in rho at any time to be greater than double the maximum detected change in rho 

for a fault to be detected. Reducing this allowable margin will increase the location 

accuracy for correct fault detections and will make higher impedances easier to locate but 

will also make it easier for the algorithm to detect faults incorrectly. 
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6. Conclusions 
 
This thesis described the theory and methods of traveling wave fault detection and 

location using magnetic field sensing coils. The concept of the magnetic field for a 

general and three phase system was explored. This was followed by a presentation of the 

magnetic fields for a variety of conductor configurations and sensor locations. The four 

algorithms used in the magnetic field-based fault detection were then described. Finally, 

the combined algorithm was explained, and the results of accuracy and maximum 

detectable fault resistance were presented. 

The magnetic field sensors were shown to be effective in detecting faults 

conceptually. Additionally, the collective algorithm was tested and was shown to provide 

accurate fault detection for relatively high fault impedances and for each common type of 

fault. All of this proves the magnetic field sensor to be a viable tool for power 

transmission line fault detection. 

Future research could be performed in applying these algorithms to more 

complete systems than the single transmission line which was used for analysis in this 

thesis. Additionally, other fault location algorithms – most specifically, a fault location 

and classification scheme using the wavelet transform – could be modified to make use of 

the magnetic field. This will most likely improve the accuracy of fault location and 

increase the maximum detectable fault impedances. 

Eventually a prototype of the magnetic field-based fault detector could be built 

and field tested. This would require more development of the sensor coils as well as 

harmonic-filtering circuitry. The MATLAB code would also need to be reconfigured 

since it is currently written to analyze pre-prepared sets of data to test the algorithm 
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rather than to continuously monitor information with which it is provided. The 

programming language would also most likely need to be changed to a different language 

which could be compiled directly for use with a microprocessor. 
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Appendix A : Model for Testing 
 
The algorithm was tested for a 115kV transmission line using the power system 

simulation program ATPDraw as described in Section 5. The circuit for a ground fault 

simulation is shown below in Figure A-1; the data for the transmission line is shown in 

Figure A-2 and Figure A-3, and a diagram of the distances between the conductors and 

sensors is shown in Figure A-4. 

 

 
Figure A-1 – ATPDraw circuit for testing 

  

 
Figure A-2 – Modeling data for testing  
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Figure A-3 – Transmission line geometry for testing 

 

 
Figure A-4 – Conductor and sensor distance relationships for testing 

 
 

Two identical transmission line models with different lengths connected in series 

were used in each test. A switch is connected to the node where these transmission lines 

meet; when the switch is opened, it connects a resistance to ground, thus simulating a 

ground fault. This resistance to ground is indicated by an RLC block. The lengths of each 

transmission line and the resistance to ground were changed for each test. The 

transmission line is terminated in a somewhat arbitrarily selected 500Ω resistive load 

(approximately 3.78 per unit, based on the per unit impedance of 132.25Ω found using 

Equation (68)) which is used to simulate a secondary-connected load; this is the RLC 

block on the far right. This allows an RMS current of approximately 132A to flow in 
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each phase during normal operation. The first RLC block is the generator impedance 

which was selected as approximately 0.17 per unit with an angle of approximately 80° 

since subtransient impedances are typically on this order of magnitude and are mostly 

reactive [1]. The other two RLC blocks which have not been described have a negligible 

resistance and are used to monitor the currents at the ends of the transmission line. These 

currents are later used in the analysis algorithm. 

The transmission line model and geometry, shown in Figure A-2 and Figure A-3 

respectively, are rather standard. The soil resistivity for this analysis was somewhat 

arbitrarily chosen as 100Ω·m since this is a typical soil resistivity for moist soils [2]. The 

skin effect option was used to allow ATP to generate the appropriate impedance for each 

conductor on its own. 

The line model chosen was the JMarti model. This is a frequency-dependent 

transmission line model which uses a constant transformation matrix [3,4]. This is useful 

for fault detection studies since faults can cause high-frequency oscillations. As a result, a 

frequency-dependent model more accurately predicts the actual performance of a fault 

detection algorithm for a real transmission line. 

The transmission line geometry chosen was a horizontal configuration. The 

dimensions are as shown in Figure A-3 and are based on Cardinal and Alumoweld (7 No. 

8) conductors and the Horizontal Unshielded conductor configuration in the EPRI 

Transmission Line Reference Book [5]. The inner radii (used in calculating the skin 

effect) are of special note. The conductivity of steel is much lower than that of aluminum 

and thus the majority of current is located in the aluminum stranding of ACSR 

(aluminum conductor steel reinforced) conductors [6]. As a result, the steel stranding can 
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usually be neglected in calculations of impedance. The skin effect inner radius value 

allows ATP to take this into account in its calculation of line constants. 
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Appendix B : Magnetic Field Plots by Fault Type 
 

Some of these Figures have been presented previously. They are included both in 

the body of the thesis and in this Appendix for easy reference and for completeness. Note 

that each of these Figures is for a fault impedance of 1 per unit (which is equal to 

132.25Ω as described in Section 5) and were tested using the circuit presented in 

Appendix A with each portion of the transmission line being 10km in length. The top 

charts for each fault type are at the generator end of the transmission line, while the 

bottom charts are for the load end. The first plot in each row is the full ellipse and 

beginning of the fault; the second plot is at a different scale so the details of the fault can 

be visually detected. The geometry is as described in Appendix A; it is reproduced here 

in Figure B-1. 

 

 
Figure B-1 – Conductor and sensor distance relationships for magnetic field fault plots 
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Line-to-Ground Fault: Phase a, at Faulted Current Peak 
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Figure B-2 – Line-to-Ground Fault: Phase a, fault connected at phase a current peak 
(a) – Generator end magnetic field; (b) – Generator end magnetic field fault detail; 

(c) – Load end magnetic field; (d) – Load end magnetic field fault detail 
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Line-to-Ground Fault: Phase a, at Faulted Current Zero 
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Figure B-3 – Line-to-Ground Fault: Phase a, fault connected at phase a current zero-crossing 

(a) – Generator end magnetic field; (b) – Generator end magnetic field fault detail; 
(c) – Load end magnetic field; (d) – Load end magnetic field fault detail 
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Line-to-Line Fault: Phases a and b 
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Figure B-4 – Line-to-Line Fault: Phases a and b 

(a) – Generator end magnetic field; (b) – Generator end magnetic field fault detail; 
(c) – Load end magnetic field; (d) – Load end magnetic field fault detail 
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Line-to-Line-to-Ground Fault: Phases a and b 
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Figure B-5 – Line-to-Line-to-Ground Fault: Phases a and b to ground 

(a) – Generator end magnetic field; (b) – Generator end magnetic field fault detail; 
(c) – Load end magnetic field; (d) – Load end magnetic field fault detail 
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Three-Phase Fault 
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Figure B-6 – Three Phase Fault 

(a) – Generator end magnetic field; (b) – Generator end magnetic field fault detail; 
(c) – Load end magnetic field; (d) – Load end magnetic field fault detail 
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Appendix C : MATLAB Code 
 
function [] = 
hfieldxy(ia1,ib1,ic1,ia2,ib2,ic2,x,y1,y2,totlength,vel,tstart,tstep,bre
aktime) 
%HFIELD Shows rotating field produced by transmission line currents. 
%   Inputs are phase currents for phases a, b, and c, taken from an 
%   Excel spreadsheet or the like. 
%   Distance x is between conductors; distance y1 is between the 
%   height of phases a and c and the height of b; y2 is between 
%   the height of phases a and c and the height of the sensor. 
%   totlength is the total length of the transmission line. 
%   vel is the propagation velocity of the transmission line in m/s. 
%   breaktime is the amonut of time to wait (in seconds) for a fault to  
%   settle before resuming normal monitoring of the magnetic field  
%   strengths. 
%   Distances are in meters (except totlength, which is in km). 
%   It is assumed that the sensor is directly underneath the b phase. 
% 
%   In detecting faults, the meanings of numbers attached  
%   to error1recent and error2recent are as follows: 
%   0 = no unusual behavior detected 
%   1 = this sensor has detected a rise above the maximum allowable 
%       value 
%   2 = this sensor had detected a drop below the minimum allowable  
%       value, then a rise above the minimum allowable value  
%       approximately pi radians away from the point at which it  
%       dropped (within a specified amount of time) 
%   3 = this sensor has detected a rise above the "high" value 
%   4 = this sensor has detected a drop below the minimum allowable  
%       value without immediately returning above the minimum value 
% 
%   When there are two variables with almost identical names: variables 
%   with "x" at the end are related to the position in an array (where  
%   the unlabeled variables are related to actual time); variables with  
%   "_p" are related to the previous value analysis; variables with  
%   "_e" are used in the expected ellipse analysis; variables with "_d"  
%   are used in the delta rho analysis; and variables with "_t" are  
%   used in the delta theta analysis. 
% 
%   To read from an Excel spreadsheet: 
%   ix = xlsread('filename.xls','Bx:By'); 
  
  
  
%Initial calculations and preparation for analysis 
  
len = length(ia1); 
  
rhoa = sqrt(x.^2 + y2.^2);    %Diagonal distances in conductor geometry. 
rhob = abs(y2+y1); 
rhoa2 = rhoa.^2; 
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Hx1 = 1./(2.*pi).*(ib1./rhob + ia1.*y2./rhoa2 + ic1.*y2./rhoa2); 
Hy1 = 1./(2.*pi).*(ia1.*x./rhoa2 - ic1.*x./rhoa2); 
  
Hx2 = 1./(2.*pi).*(ib2./rhob + ia2.*y2./rhoa2 + ic2.*y2./rhoa2); 
Hy2 = 1./(2.*pi).*(ia2.*x./rhoa2 - ic2.*x./rhoa2); 
  
%Adding noise 
%Hx1 = Hx1 + wgn(len,1,-54,'dBm'); 
%Hy1 = Hy1 + wgn(len,1,-54,'dBm'); 
%Hx2 = Hx2 + wgn(len,1,-54,'dBm'); 
%Hy2 = Hy2 + wgn(len,1,-54,'dBm'); 
  
  
theta1 = atan2(Hy1,Hx1);    % converting time into theta and Hx  
rho1 = (Hx1.^2 + Hy1.^2).^(1/2);  % and Hy into rho for polar plot 
theta2 = atan2(Hy2,Hx2); 
rho2 = (Hx2.^2 + Hy2.^2).^(1/2); 
  
  
%Variable initialization 
  
  
samplewaittime = (1./60).*(1./128); %In seconds - time to wait between 
testing a rho and using it as the baseline for a test. 
samplewaitx = round(samplewaittime./tstep.*10^6); %In samples 
maxminwaittime = (1./60).*(1./2).*(0.9); %Minimum seconds to wait 
between maxrhos and between minrhos (corresponds to 0.9 times half a 
cycle - minimum usable frequency is 54Hz) 
maxminwaitx = round(maxminwaittime./tstep.*10^6); %In samples 
  
brkcorr = round(breaktime./tstep.*10^6); 
maxtime = 0.001;                %Maximum time that the field can spend 
below rhomin (in seconds) and still be classified as a fault. 
maxtimex = round(maxtime./tstep.*10^6); 
maxbelowtime = (1./60).*(1./8); %Maximum time to store data about a 
drop below minrho. 
maxbelowtimex = round(maxbelowtime./tstep.*10^6); 
faultmaxtime = 1000.*totlength./vel; %Time to wait between seeing a 
fault at one end of the line and the other end before determining that 
the fault was erroneous. 
faultmaxtimex = round(faultmaxtime.*1.5./tstep.*10^6); 
emaxtime = (1./60).*(1./64);    %Min time between maximums and minimums. 
emaxtimex = round(emaxtime./tstep.*10^6); 
ewaittime = (1./60).*(1./16); %Difference in testing times for ellipse 
maximum and minimum detection.  
ewaittimex = round(ewaittime./tstep.*10^6); 
quartertime = (1./60).*(1./4)*(19./20); 
quartertimex = round(quartertime./tstep.*10^6); 
eighthtime = (1./60).*(1./8); 
eighthtimex = round(eighthtime./tstep.*10^6); 
rhomaxtime = (1./60).*(1./256); %Time over which rhomax is averaged. 
rhomaxtimex = round(rhomaxtime./tstep.*10^6); 
thetamaxtime = (1./60).*(1./256); %Time over which thetamax is averaged. 
thetamaxtimex = round(thetamaxtime./tstep.*10^6); 
thetamintimex = thetamaxtimex; 
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misfaulttime = (1./60).*(1./4); %Min time between delta rho faults 
before declaring misdetection. 
misfaulttimex = round(misfaulttime./tstep.*10^6); 
rhomaxrestoretime = 60*60;      %Time between changing rhomax and 
restoring it. 
rhomaxrestoretimex = round(rhomaxrestoretime./tstep.*10^6); 
negdistance = 0;                %At end of code, indicates if a 
negative distance is generated somehow. 
fault = 0; 
timestore = 0;                  %Time storage variable for analysis of 
fault. 
  
time = ewaittimex + 1;          %So time > 0 in all calculations. 
  
  
fault_p = 0; 
fault_e = 0; 
fault_d = 0; 
fault_t = 0; 
error1recent_p = 0; 
error2recent_p = 0; 
error1recent_e = 0; 
error2recent_e = 0; 
error1recent_d = 0; 
error2recent_d = 0; 
error1recent_t = 0; 
error2recent_t = 0; 
  
newfault1time = []; 
newfault2time = []; 
fault1timecorr = []; 
fault2timecorr = []; 
timeneg = []; 
  
deltheta1 = 0; 
deltheta2 = 0; 
thetatemp1a = 0; 
thetatemp1b = 0; 
thetatemp2a = 0; 
thetatemp2b = 0; 
delthetamax1 = 0; 
delthetamax2 = 0; 
delthetamin1 = 0; 
delthetamin2 = 0; 
delthetamax1dettime = 0; 
delthetamax2dettime = 0; 
delthetamin1dettime = 0; 
delthetamin2dettime = 0; 
deltheta1triptime = 0; 
deltheta2triptime = 0; 
faultwait_t = 0; 
fault1time_t = []; 
fault2time_t = []; 
fault1timeonly_t = []; 
fault2timeonly_t = []; 
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fault1timeonlyx_t = [];         %Separate storage for times when delta 
algorithm detects 
fault2timeonlyx_t = [];         %a fault independently 
timeneg_t = []; 
  
delrho1 = 0; 
delrho2 = 0; 
delrhomax1 = 10.^9;             %Maximum change in rho 
delrhomax2 = 10.^9; 
delrhomax1dettime = 0; 
delrhomax2dettime = 0; 
delrho1triptime = 0; 
delrho2triptime = 0; 
faultwait_d = 0; 
misfaultcheck_d = 0; 
misfaultwait_d = 0; 
rhomaxrescount_d = 0; 
tripchange_d = 0; 
fault1time_d = []; 
fault2time_d = []; 
fault1timeonly_d = []; 
fault2timeonly_d = []; 
fault1timeonlyx_d = [];         %Separate storage for times when delta 
algorithm detects 
fault2timeonlyx_d = [];         %a fault independently 
timeneg_d = []; 
  
dropbelow1_p = 0;               %Indicates if the magnetic field has 
dropped below the minimum rho value; 
dropbelow2_p = 0;               %This is used in determining if the 
load has simply decreased (or a fault has been cleared). 
temptime1_p = 0;                %A temporary time value used in 
analysis. 
temptime2_p = 0; 
temptheta1_p = 0;               %A temporary theta storage for the 
possible fault. 
temptheta2_p = 0; 
faultwait_p = 0;                %Counting variable to test for 
faultmaxtimex. 
belowlowallow1_p = 0; 
belowhighallow1_p = 0; 
belowlowallow2_p = 0; 
belowhighallow2_p = 0; 
abovelowallow1_p = 0; 
abovehighallow1_p = 0; 
abovelowallow2_p = 0; 
abovehighallow2_p = 0; 
minrhoold1_p = 0;               %Minimum rhos from before a fault. 
minrhoold2_p = 0; 
fault1time_p = []; 
fault2time_p = []; 
fault1timeonly_p = [];          %Time at which only the previous value 
fault2timeonly_p = [];          %algorithm finds a fault. 
fault1type_p = []; 
fault2type_p = []; 
fault1typeonly_p = []; 
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fault2typeonly_p = []; 
timeneg_p = []; 
probtime1_p = []; 
probtime2_p = []; 
  
dropbelow1_e = 0;               %Indicates if the magnetic field has 
dropped below the minimum rho value; 
dropbelow2_e = 0;               %This is used in determining if the 
load has simply decreased (or a fault has been cleared). 
temptime1_e = 0;                %A temporary time value used in 
analysis. 
temptime2_e = 0; 
temptheta1_e = 0;               %A temporary theta storage for the drop. 
temptheta2_e = 0; 
faultwait_e = 0;                %Counting variable to test for 
faultmaxtimex. 
minrho1_e = zeros(len,1);      
minrho2_e = zeros(len,1);       %arbitrary large numbers, to prevent 
maxrho1_e = 10^9.*ones(len,1);  %accidental fault detection before 
maxrho2_e = 10^9.*ones(len,1);  %initialization these values have been 
highrho1_e = 10^9.*ones(len,1); %defined 
highrho2_e = 10^9.*ones(len,1); 
mintheta_e = -10.*ones(len,1);   
maxtheta_e = 10.*ones(len,1); 
minrhoold1_e = zeros(len,1);    %minimum rhos affrom before a load  
minrhoold2_e = zeros(len,1); 
predrho1_e = zeros(len,1); 
predrho2_e = zeros(len,1); 
fault1time_e = []; 
fault2time_e = []; 
fault1timeonly_e = [];          %Time at which only the previous value 
fault2timeonly_e = [];          %algorithm finds a fault. 
fault1type_e = []; 
fault2type_e = []; 
fault1typeonly_e = []; 
fault2typeonly_e = []; 
timeneg_e = []; 
probtime1_e = []; 
probtime2_e = []; 
lastrmintime1_e = 0; 
lastrmintime2_e = 0; 
lastrmaxtime1_e = 0; 
lastrmaxtime2_e = 0; 
rmin1_e = 0; 
rmin2_e = 0; 
rmax1_e = 10.^9; 
rmax2_e = 10.^9; 
wasgrowing1_e = 0; 
wasgrowing2_e = 0; 
thetashift1_e = 0; 
thetashift2_e = 0; 
  
lowallow1_p = 0.1;              %percentage below predicted allowed (1 
= everything is allowed) before a time is logged 
highallow1_p = 0.1;             %percentage above predicted allowed (1 
= 100% above) before a time is logged 
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maxallow1_p = 0.3;              %percentage above predicted allowed (1 
= 100% above) before indicating a fault 
lowallow2_p = 0.1; 
highallow2_p = 0.1; 
maxallow2_p = 0.3; 
lowtestlow1_p = 0.7.*lowallow1_p;   %"low" and "high" are reversed from 
the logical expectation since both correspond 
lowtesthigh1_p = 0.3.*lowallow1_p;  %to values subtracted (for the 
lowtest variables) 
lowtestlow2_p = 0.7.*lowallow2_p; 
lowtesthigh2_p = 0.3.*lowallow2_p; 
hightestlow1_p = 0.3.*highallow1_p; 
hightesthigh1_p = 0.7.*highallow1_p; 
hightestlow2_p = 0.3.*highallow2_p; 
hightesthigh2_p = 0.7.*highallow2_p; 
  
lowallow_e = 0.1;               %percentage below predicted allowed (1 
= everything is allowed) before a time is logged 
highallow_e = 0.1;              %percentage above predicted allowed (1 
= 100% above) before a time is logged 
maxallow_e = 0.3;               %percentage above predicted allowed (1 
= 100% above) before indicating a fault 
  
delrhoallow = 1;                %percentage above maximum change in rho 
that is allowable 
delrhoallowstart = delrhoallow; %reset value for delrhoallow 
  
delthetaallowhigh = 0.75;        %percentage above maximum change in 
theta  
delthetaallowlow = 0.75;         %percentage below mimum change in 
theta (1 = even no-change terms are allowable, negative = theta can 
switch directions)  
  
[wasgrowing1_e,wasgrowing2_e] = checkdir(rho1,rho2,time); 
[rmin1_e,rmax1_e,rmin2_e,rmax2_e,thetashift1_e,thetashift2_e,wasgrowing
1_e,wasgrowing2_e,time,minrho1_e,highrho1_e,maxrho1_e,minrho2_e,highrho
2_e,maxrho2_e] = 
minmaxrho(rho1,rho2,theta1,theta2,wasgrowing1_e,wasgrowing2_e,time,len,
lowallow_e,highallow_e,maxallow_e,ewaittimex,emaxtimex,quartertimex); 
  
while time < samplewaitx + 1    %ensure that time > 0 in all 
calculations 
    time = time + 1; 
end 
  
  
  
%Main time loop for fault detection 
     
while time < len 
  
  
%Ensure no problems from previous iterations 
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    if (dropbelow1_p ~= 0) 
        dropbelow1_p = dropbelow1_p + 1;     %Indicates that rho has 
gone below the previous rhomin 
    end 
    if (dropbelow2_p ~= 0) 
        dropbelow2_p = dropbelow2_p + 1; 
    end 
    if (dropbelow1_p == (maxbelowtimex+1)) 
        dropbelow1_p = 0; 
    end 
    if (dropbelow2_p == (maxbelowtimex+1)) 
        dropbelow2_p = 0; 
    end  
     
    if (dropbelow1_e ~= 0) 
        dropbelow1_e = dropbelow1_e + 1;     %Indicates that rho has 
gone below the previous rhomin 
    end 
    if (dropbelow2_e ~= 0) 
        dropbelow2_e = dropbelow2_e + 1; 
    end 
    if (dropbelow1_e == (maxbelowtimex+1)) 
        dropbelow1_e = 0; 
    end 
    if (dropbelow2_e == (maxbelowtimex+1)) 
        dropbelow2_e = 0; 
    end 
  
    if (faultwait_p > faultmaxtimex) 
        if (error1recent_p ~= 1) && (error2recent_p ~= 1) 
            error1recent_p = 0; 
            error2recent_p = 0; 
            fault_p = 0; 
        end 
        if (error1recent_p == 1) || (error2recent_p == 1) 
            if (error1recent_p == 1) 
                probtime1_p = 
cat(1,probtime1_p,temptime1_p.*tstep./10^6); 
                temptime1_p = 0; 
            end 
            if (error2recent_p == 1) 
                probtime2_p = 
cat(1,probtime2_p,temptime2_p.*tstep./10^6); 
                temptime2_p = 0; 
            end 
            error1recent_p = 0; 
            error2recent_p = 0; 
            fault_p = 0; 
        end 
        faultwait_p = 0; 
    end 
    if ((error1recent_p ~= 0) || (error2recent_p ~= 0)) 
        faultwait_p = faultwait_p + 1; 
    end 
     
    if (faultwait_e > faultmaxtimex) 
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        if (error1recent_e ~= 1) && (error2recent_e ~= 1) 
            error1recent_e = 0; 
            error2recent_e = 0; 
            fault_e = 0; 
        end 
        if (error1recent_e == 1) || (error2recent_e == 1) 
            if (error1recent_e == 1) 
                probtime1_e = 
cat(1,probtime1_e,temptime1_e.*tstep./10^6); 
                temptime1_e = 0; 
            end 
            if (error2recent_e == 1) 
                probtime2_e = 
cat(1,probtime2_e,temptime2_e.*tstep./10^6); 
                temptime2_e = 0; 
            end 
            error1recent_e = 0; 
            error2recent_e = 0; 
            fault_e = 0; 
        end 
        faultwait_e = 0; 
    end 
    if ((error1recent_e ~= 0) || (error2recent_e ~= 0)) 
        faultwait_e = faultwait_e + 1; 
    end 
  
    if (faultwait_d > faultmaxtimex) 
        error1recent_d = 0; 
        error2recent_d = 0; 
        fault_d = 0; 
        faultwait_d = 0; 
    end 
    if ((error1recent_d ~= 0) || (error2recent_d ~= 0))  
        faultwait_d = faultwait_d + 1; 
    end 
  
    if (misfaultcheck_d >= 1) 
        misfaultwait_d = misfaultwait_d + 1; 
        if (misfaultwait_d > misfaulttimex) 
            misfaultcheck_d = 0; 
            misfaultwait_d = 0; 
            tripchange_d = 0; 
        end 
    end 
    if (misfaultcheck_d >= 3) && (tripchange_d == 0) 
        delrhoallow = delrhoallow*2; 
        tripchange_d = 1; 
    end 
    if (rhomaxrescount_d >= rhomaxrestoretimex) 
        rhomaxrescount_d = 0; 
        delrhoallow = delrhoallowstart; 
        misfaultcheck_d = 0; 
    end 
    if (delrhoallow ~= delrhoallowstart) 
        rhomaxrescount_d = rhomaxrescount_d + 1; 
    end 
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    if (faultwait_t > faultmaxtimex) 
        error1recent_t = 0; 
        error2recent_t = 0; 
        fault_t = 0; 
        faultwait_t = 0; 
    end 
    if ((error1recent_t ~= 0) || (error2recent_t ~= 0))  
        faultwait_t = faultwait_t + 1; 
    end 
     
%Initialize first variables for "delta rho" algorithm 
     
    delrho1 = abs(rho1(time-1,1)-rho1(time,1)); 
    delrho2 = abs(rho2(time-1,1)-rho2(time,1)); 
  
%Initialize first variables for "delta theta" algorithm 
  
    if ((theta1((time-1),1) > pi/2) && (theta1(time,1) < -
pi/2))    %this takes care of crossings at the boudary of the atan2 
conversion (since theta is within [-pi,pi]) 
        thetatemp1a = theta1((time-1),1)-2*pi; 
        thetatemp1b = theta1((time),1); 
    elseif ((theta1((time-1),1) < -pi/2) && (theta1(time,1) > pi/2)) 
        thetatemp1a = theta1((time-1),1); 
        thetatemp1b = theta1((time),1)-2*pi; 
    else 
        thetatemp1a = theta1((time-1),1); 
        thetatemp1b = theta1((time),1); 
    end 
    if ((theta2((time-1),1) > pi/2) && (theta2(time,1) < -pi/2)) 
        thetatemp2a = theta2((time-1),1)-2*pi; 
        thetatemp2b = theta2((time),1); 
    elseif ((theta2((time-1),1) < -pi/2) && (theta2(time,1) > pi/2)) 
        thetatemp2a = theta2((time-1),1); 
        thetatemp2b = theta2((time),1)-2*pi; 
    else 
        thetatemp2a = theta2((time-1),1); 
        thetatemp2b = theta2((time),1); 
    end 
  
    deltheta1 = thetatemp1b-thetatemp1a;    %current theta minus 
previous 
    deltheta2 = thetatemp2b-thetatemp2a; 
         
       
     
%Within main time loop - test for faults 
%First, the "previous value" algorithm 
  
     
    if (rho1(time,1) > (1 + maxallow1_p).*rho1(time-samplewaitx,1)) && 
(error1recent_p ~= 1) 
        if (error1recent_p == 0) 
            temptime1_p = time; 
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        end 
        error1recent_p = 1;       %Indicate that a fault might have 
occurred 
        dropbelow1_p = 0; 
        disp('Flag - Rise above max1p')  %test 
    end 
    if (rho2(time,1) > (1 + maxallow2_p).*rho2(time-samplewaitx,1)) && 
(error2recent_p ~= 1) 
        if (error2recent_p == 0) 
            temptime2_p = time; 
        end 
        error2recent_p = 1;       %indicate that a fault might have 
occurred 
        dropbelow2_p = 0; 
        disp('Flag - Rise above max2p')  %test 
    end 
  
    if (rho1(time,1) < (1-lowallow1_p).*rho1(time-samplewaitx,1)) && 
(error1recent_p == 0) && (dropbelow1_p == 0) %tests for reduced load 
accidentally tripping alarm 
        dropbelow1_p = 1; 
        minrhoold1_p = (1-lowallow1_p).*rho1(time-samplewaitx,1); 
        temptime1_p = time; 
        temptheta1_p = theta1(time,1); 
        error1recent_p = 4;       %Indicate that a fault might have 
occurred 
        disp('Flag - Drop below min1p')  %test 
    end 
    if (rho2(time,1) < (1-lowallow2_p).*rho2(time-samplewaitx,1)) && 
(error2recent_p == 0) && (dropbelow2_p == 0) 
        dropbelow2_p = 1; 
        minrhoold2_p = (1-lowallow2_p).*rho2(time-samplewaitx,1); 
        temptime2_p = time; 
        temptheta2_p = theta2(time,1); 
        error2recent_p = 4;       %Indicate that a fault might have 
occurred 
        disp('Flag - Drop below min2p')  %test 
    end 
  
    if (rho1(time,1) > (1 + highallow1_p).*rho1(time-samplewaitx,1)) && 
(error1recent_p == 0) 
        if (dropbelow1_p ~= 0)        %Increases accuracy in the case 
that the field crossed near the center 
            temptime1_p = temptime1_p;  %by using the time that it 
crossed the minimum rho value. 
        else                        %In the case that this didn't 
happen... 
            temptime1_p = time; 
        end 
        error1recent_p = 3;       %Indicate that a fault might have 
occurred 
        disp('Flag - Rise above high1p')  %test 
    end 
    if (rho2(time,1) > (1 + highallow2_p).*rho2(time-samplewaitx,1)) && 
(error2recent_p == 0) 
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        if (dropbelow2_p ~= 0)        %Increases accuracy in the case 
that the field crossed near the center 
            temptime2_p = temptime2_p;  %by using the time that it 
crossed the minimum rho value. 
        else                        %In the case that this didn't 
happen... 
            temptime2_p = time; 
        end 
        error2recent_p = 3;       %indicate that a fault might have 
occurred 
        disp('Flag - Rise above high2p')  %test 
    end 
     
    if (rho1(time,1) > minrhoold1_p) && (dropbelow1_p ~= 0) && 
(abs(temptime1_p-time) < maxtimex) && (pi./2 < abs(theta1(time,1)-
temptheta1_p) < 3.*pi./2)  
        temptime1_p = temptime1_p; 
        dropbelow1_p = 0; 
        error1recent_p = 2;       %indicate that a fault might have 
occurred 
        disp('Flag - Below-above fault 1p')  %test 
    end 
    if (rho2(time,1) > minrhoold2_p) && (dropbelow2_p ~= 0) && 
(abs(temptime2_p-time) < maxtimex) && (pi./2 < abs(theta2(time,1)-
temptheta2_p) < 3.*pi./2)  
        temptime2_p = temptime2_p; 
        dropbelow2_p = 0; 
        error2recent_p = 2;       %indicate that a fault might have 
occurred 
        disp('Flag - Below-above fault 2p')  %test 
    end 
     
     
%Next, test with the "expected ellipse" 
     
    if (rho1(time,1) > maxrho1_e(time,1)) && (error1recent_e ~= 1) 
        if (error1recent_e == 0) 
            temptime1_e = time; 
        end 
        error1recent_e = 1;       %Indicate that a fault might have 
occurred 
        dropbelow1_e = 0; 
        disp('Flag - Rise above max1e')  %test 
    end 
    if (rho2(time,1) > maxrho2_e(time,1)) && (error2recent_e ~= 1) 
        if (error2recent_e == 0) 
            temptime2_e = time; 
        end 
        error2recent_e = 1;       %indicate that a fault might have 
occurred 
        dropbelow2_e = 0; 
        disp('Flag - Rise above max2e')  %test 
    end 
  
    if (rho1(time,1) < minrho1_e(time,1)) && (error1recent_e == 0) && 
(dropbelow1_e == 0) %tests for reduced load accidentally tripping alarm 
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        dropbelow1_e = 1; 
        minrhoold1_e = minrho1_e; 
        temptime1_e = time; 
        temptheta1_e = theta1(time,1); 
        error1recent_e = 4;       %Indicate that a fault might have 
occurred 
        disp('Flag - Drop below min1e')  %test 
    end 
    if (rho2(time,1) < minrho2_e(time,1)) && (error2recent_e == 0) && 
(error2recent_e == 0) && (dropbelow2_e == 0) 
        dropbelow2_e = 1; 
        minrhoold2_e = minrho2_e; 
        temptime2_e = time; 
        temptheta2_e = theta2(time,1); 
        error2recent_e = 4;       %Indicate that a fault might have 
occurred 
        disp('Flag - Drop below min2e')  %test 
    end 
  
    if (rho1(time,1) > highrho1_e(time,1)) && (error1recent_e == 0) 
        if (dropbelow1_e ~= 0)        %Increases accuracy in the case 
that the field crossed near the center 
            temptime1_e = temptime1_e;  %by using the time that it 
crossed the minimum rho value. 
            dropbelow1_e = 0; 
        else                        %In the case that this didn't 
happen... 
            temptime1_e = time; 
        end 
        error1recent_e = 3;       %Indicate that a fault might have 
occurred 
        disp('Flag - Rise above high1e')  %test 
    end 
    if (rho2(time,1) > highrho2_e(time,1)) && (error2recent_e == 0) 
        if (dropbelow2_e ~= 0)        %Increases accuracy in the case 
that the field crossed near the center 
            temptime2_e = temptime2_e;  %by using the time that it 
crossed the minimum rho value. 
            dropbelow2_e = 0; 
        else                        %In the case that this didn't 
happen... 
            temptime2_e = time; 
        end 
        error2recent_e = 3;       %indicate that a fault might have 
occurred 
        disp('Flag - Rise above high2e')  %test 
    end 
     
    if (rho1(time,1) > minrhoold1_e(time,1)) && (dropbelow1_e ~= 0) && 
(abs(temptime1_e-time) < maxtimex) && (pi./2 < abs(theta1(time,1)-
temptheta1_e) < 3.*pi./2)  
        temptime1_e = temptime1_e 
        dropbelow1_e = 0; 
        error1recent_e = 2;       %indicate that a fault might have 
occurred 
        disp('Flag - Below-above fault 1e')  %test 
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    end 
    if (rho2(time,1) > minrhoold2_e(time,1)) && (dropbelow2_e ~= 0) && 
(abs(temptime2_e-time) < maxtimex) && (pi./2 < abs(theta2(time,1)-
temptheta2_e) < 3.*pi./2)  
        temptime2_e = temptime2_e 
        dropbelow2_e = 0; 
        error2recent_e = 2;       %indicate that a fault might have 
occurred 
        disp('Flag - Below-above fault 2e')  %test 
    end   
  
%Now with "delta rho" algorithm  
  
    if (delrho1 > delrhomax1.*(1+delrhoallow)) && (error1recent_d == 0) 
        delrho1triptime = time 
        error1recent_d = 1; 
        misfaultcheck_d = misfaultcheck_d + 1; 
    end 
    if (delrho2 > delrhomax2.*(1+delrhoallow)) && (error2recent_d == 0) 
        delrho2triptime = time 
        error2recent_d = 1; 
        misfaultcheck_d = misfaultcheck_d + 1; 
    end 
     
%Now with "delta theta" algorithm  
  
    if (delthetamax1 >= 0) && (delthetamin1 >= 0) 
        if (delthetamax1 ~= 0) && ((deltheta1 > 
delthetamax1.*(1+delthetaallowhigh)) || (deltheta1 < delthetamin1.*(1-
delthetaallowlow)))&& (error1recent_t == 0) 
            deltheta1triptime = time 
            error1recent_t = 1; 
        end 
    else 
        if (delthetamax1 ~= 0) && ((deltheta1 < 
delthetamax1.*(1+delthetaallowhigh)) || (deltheta1 > delthetamin1.*(1-
delthetaallowlow)))&& (error1recent_t == 0) 
            deltheta1triptime = time 
            error1recent_t = 1; 
            delthetamax1 
            delthetamin1 
            deltheta1 
        end 
    end 
    if (delthetamax2 >= 0) && (delthetamin2 >= 0) 
        if (delthetamax2 ~= 0) && ((deltheta2 > 
delthetamax2.*(1+delthetaallowhigh)) || (deltheta1 < delthetamin2.*(1-
delthetaallowlow)))&& (error2recent_t == 0) 
            deltheta2triptime = time 
            error2recent_t = 1; 
        end 
    else 
        if (delthetamax2 ~= 0) && ((deltheta2 < 
delthetamax2.*(1+delthetaallowhigh)) || (deltheta1 > delthetamin2.*(1-
delthetaallowlow)))&& (error2recent_t == 0) 
            deltheta2triptime = time 
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            error2recent_t = 1; 
        end 
    end 
     
     
     
%Variable re-initialization 
%Initialize variables for "expected ellipse" algorithm  
     
    if (rho1((time-ewaittimex),1) > rho1(time,1)) && (wasgrowing1_e==1) 
&& (time > (lastrmintime1_e + emaxtimex)) 
        timemaxcheck = 0; 
        rmax1_e = 0; 
        while (timemaxcheck < quartertimex) && ((time-timemaxcheck) > 
0) 
            if (rho1((time-timemaxcheck),1) > rmax1_e) 
                rmax1_e = rho1((time-timemaxcheck),1); 
                thetashift1_e = theta1((time-timemaxcheck),1); 
            end 
            timemaxcheck = timemaxcheck + 1; 
        end 
        lastrmaxtime1_e = time; 
        wasgrowing1_e = 0; 
    end 
    if (rho2((time-ewaittimex),1) > rho2(time,1)) && (wasgrowing2_e==1) 
&& (time > (lastrmintime2_e + emaxtimex)) 
        timemaxcheck = 0; 
        rmax2_e = 0; 
        while (timemaxcheck < quartertimex) && ((time-timemaxcheck) > 
0) 
            if (rho2((time-timemaxcheck),1) > rmax2_e) 
                rmax2_e = rho2((time-timemaxcheck),1); 
                thetashift2_e = theta2((time-timemaxcheck),1); 
            end 
            timemaxcheck = timemaxcheck + 1; 
        end 
        lastrmaxtime2_e = time; 
        wasgrowing2_e = 0; 
    end 
    if (rho1((time-ewaittimex),1) < rho1(time,1)) && (wasgrowing1_e==0) 
&& (time > (lastrmaxtime1_e + emaxtimex)) 
        timemincheck = 0; 
        rmin1_e = 10.^9; 
        while (timemincheck < quartertimex) && ((time-timemincheck) > 
0) 
            if (rho1((time-timemincheck),1) < rmin1_e) 
                rmin1_e = rho1((time-timemincheck),1); 
            end 
            timemincheck = timemincheck + 1; 
        end 
        lastrmintime1_e = time; 
        wasgrowing1_e = 1; 
        if rmin1_e < 0.1 
            rmin1_e = 0.1; 
        end 
    end 
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    if (rho2((time-ewaittimex),1) < rho2(time,1)) && (wasgrowing2_e==0) 
&& (time > (lastrmaxtime2_e + emaxtimex)) 
        timemincheck = 0; 
        rmin2_e = 10.^9; 
        while (timemincheck < quartertimex) && ((time-timemincheck) > 
0) 
            if (rho2((time-timemincheck),1) < rmin2_e) 
                rmin2_e = rho2((time-timemincheck),1); 
            end 
            timemincheck = timemincheck + 1; 
        end 
        lastrmintime2_e = time; 
        wasgrowing2_e = 1; 
        if rmin2_e < 0.1 
            rmin2_e = 0.1; 
        end 
  
        predrho1_e = (rmax1_e.*rmin1_e)./((rmax1_e.*sin(theta1-
thetashift1_e)).^2+(rmin1_e.*cos(theta1-
thetashift1_e)).^2+0.0001).^(1/2); 
        predrho2_e = (rmax2_e.*rmin2_e)./((rmax2_e.*sin(theta2-
thetashift2_e)).^2+(rmin2_e.*cos(theta2-
thetashift2_e)).^2+0.0001).^(1/2); 
      
        if (rmin1_e == 0.1) 
            minrho1_e = zeros(len,1); 
        else 
            minrho1_e = predrho1_e.*(1-lowallow_e); 
        end 
        if (rmin2_e == 0.1) 
            minrho2_e = zeros(len,1); 
        else 
            minrho2_e = predrho2_e.*(1-lowallow_e); 
        end 
        highrho1_e = predrho1_e.*(1+highallow_e); 
        highrho2_e = predrho2_e.*(1+highallow_e); 
        maxrho1_e = predrho1_e.*(1+maxallow_e); 
        maxrho2_e = predrho2_e.*(1+maxallow_e); 
    end 
     
%Initialize more "delta rho" algorithm variables 
     
    if (time > (delrhomax1dettime + quartertimex)) && 
((((theta1(time,1) > thetashift1_e + pi./4 - pi./128) && 
(theta1(time,1) < thetashift1_e + pi./4 + pi./128)) || ((theta1(time,1) 
> thetashift1_e + 3.*pi./4 - pi./128) && (theta1(time,1) < 
thetashift1_e + 3.*pi./4 + pi./128)) || ((theta1(time,1) > 
thetashift1_e - pi./4 - pi./128) && (theta1(time,1) < thetashift1_e - 
pi./4 + pi./128)) || ((theta1(time,1) > thetashift1_e - 3.*pi./4 - 
pi./128) && (theta1(time,1) < thetashift1_e - 3.*pi./4 + 
pi./128))) )%%|| ((time >= eighthtimex + lastrmaxtime1_e) && (time >= 
eighthtimex + lastrmintime1_e))) 
        timerhotest = 0; 
        delrholist = []; 
        while (timerhotest < rhomaxtimex) 
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            delrholist = cat(1,delrholist,abs(rho1(time-
(timerhotest),1)-rho1(time-(timerhotest+1),1))); 
            timerhotest = timerhotest + 1; 
        end 
        delrhomax1 = mean(delrholist); 
        delrhomax1dettime = time; 
    end 
    if (time > (delrhomax2dettime + quartertimex)) && 
((((theta2(time,1) > thetashift2_e + pi./4 - pi./128) && 
(theta2(time,1) < thetashift2_e + pi./4 + pi./128)) || ((theta2(time,1) 
> thetashift2_e + 3.*pi./4 - pi./128) && (theta2(time,1) < 
thetashift2_e + 3.*pi./4 + pi./128)) || ((theta2(time,1) > 
thetashift2_e - pi./4 - pi./128) && (theta2(time,1) < thetashift2_e - 
pi./4 + pi./128)) || ((theta2(time,1) > thetashift2_e - 3.*pi./4 - 
pi./128) && (theta2(time,1) < thetashift2_e - 3.*pi./4 + 
pi./128))) )%%|| ((time >= eighthtimex + lastrmaxtime2_e) && (time >= 
eighthtimex + lastrmintime2_e))) 
        timerhotest = 0; 
        delrholist = []; 
        while (timerhotest < rhomaxtimex) 
            delrholist = cat(1,delrholist,abs(rho2(time-
(timerhotest),1)-rho2(time-(timerhotest+1),1))); 
            timerhotest = timerhotest + 1; 
        end 
        delrhomax2 = mean(delrholist); 
        delrhomax2dettime  = time; 
    end 
     
%Initialize more "delta theta" algorithm variables     
     
    if (time == lastrmintime1_e) && (time > (delthetamax1dettime + 
quartertimex)) 
        timethetatest = 0; 
        delthetalist = []; 
        while (timethetatest < thetamaxtimex) 
            delthetalist = cat(1,delthetalist,(theta1(time-
(timethetatest),1)-theta1(time-(timethetatest+1),1))); 
            timethetatest = timethetatest + 1; 
        end 
        delthetamax1 = mean(delthetalist); 
        delthetamax1dettime = time; 
    end 
    if (time == lastrmintime2_e) && (time > (delthetamax2dettime + 
quartertimex)) 
        timethetatest = 0; 
        delthetalist = []; 
        while (timethetatest < thetamaxtimex) 
            delthetalist = cat(1,delthetalist,(theta2(time-
(timethetatest),1)-theta2(time-(timethetatest+1),1))); 
            timethetatest = timethetatest + 1; 
        end 
        delthetamax2 = mean(delthetalist); 
        delthetamax2dettime = time; 
    end 
    if (time == lastrmaxtime1_e) && (time > (delthetamin1dettime + 
quartertimex)) 
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        timethetatest = 0; 
        delthetalist = []; 
        while (timethetatest < thetamintimex) 
            delthetalist = cat(1,delthetalist,(theta1(time-
(timethetatest),1)-theta1(time-(timethetatest+1),1))); 
            timethetatest = timethetatest + 1; 
        end 
        delthetamin1 = mean(delthetalist); 
        delthetamin1dettime = time; 
    end 
    if (time == lastrmaxtime2_e) && (time > (delthetamin2dettime + 
quartertimex)) 
        timethetatest = 0; 
        delthetalist = []; 
        while (timethetatest < thetamintimex) 
            delthetalist = cat(1,delthetalist,(theta2(time-
(timethetatest),1)-theta2(time-(timethetatest+1),1))); 
            timethetatest = timethetatest + 1; 
        end 
        delthetamin2 = mean(delthetalist); 
        delthetamin2dettime = time; 
    end 
     
%Adjust minallow, highallow, and maxallow for "previous value" 
algorithm 
  
    if (rho1(time,1) < (1 - lowtestlow1_p).*rho1(time-samplewaitx,1)) 
&& (error1recent_p == 0) 
        belowlowallow1_p = 1; 
    end 
    if (rho1(time,1) < (1 - lowtesthigh1_p).*rho1(time-samplewaitx,1)) 
&& (error1recent_p == 0) 
        abovelowallow1_p = 1; 
    end 
    if (rho1(time,1) > (1 + hightestlow1_p).*rho1(time-samplewaitx,1)) 
&& (error1recent_p == 0) 
        belowhighallow1_p = 1; 
    end 
    if (rho1(time,1) > (1 + hightesthigh1_p).*rho1(time-samplewaitx,1)) 
&& (error1recent_p == 0) 
        abovehighallow1_p = 1; 
    end 
     
    if ((theta1(time-1,1) >= 0) && (theta1(time,1) <= 0 )) || 
((theta1(time,1) >= 0) && (theta1(time-1,1) <= 0 )) 
        if belowlowallow1_p == 1                %If we've gone below 
the lower adjustment threshold 
            lowallow1_p = lowallow1_p + 0.05; 
            lowtestlow1_p = 0.7.*lowallow1_p; 
            lowtesthigh1_p = 0.3.*lowallow1_p; 
        end 
        if abovelowallow1_p ~= 1                %If we haven't gone 
below the higher adjustment threshold 
            lowallow1_p = lowallow1_p - 0.01; 
            lowtestlow1_p = 0.7.*lowallow1_p; 
            lowtesthigh1_p = 0.3.*lowallow1_p; 
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        end 
        if belowhighallow1_p ~= 1 
            highallow1_p = highallow1_p - 0.01; 
            maxallow1_p = maxallow1_p - 0.02; 
            hightestlow1_p = 0.3.*highallow1_p; 
            hightesthigh1_p = 0.7.*highallow1_p; 
        end 
        if abovehighallow1_p == 1 
            highallow1_p = highallow1_p + 0.05; 
            maxallow1_p = maxallow1_p + 0.1; 
            hightestlow1_p = 0.3.*highallow1_p; 
            hightesthigh1_p = 0.7.*highallow1_p; 
        end 
        belowlowallow1_p = 0; 
        abovelowallow1_p = 0; 
        belowhighallow1_p = 0; 
        abovehighallow1_p = 0; 
    end 
     
    if (rho2(time,1) < (1 - lowtestlow2_p).*rho2(time-samplewaitx,1)) 
&& (error2recent_p == 0) 
        belowlowallow2_p = 1; 
    end 
    if (rho2(time,1) < (1 - lowtesthigh2_p).*rho2(time-samplewaitx,1)) 
&& (error2recent_p == 0) 
        abovelowallow2_p = 1; 
    end 
    if (rho2(time,1) > (1 + hightestlow2_p).*rho2(time-samplewaitx,1)) 
&& (error2recent_p == 0) 
        belowhighallow2_p = 1; 
    end 
    if (rho2(time,1) > (1 + hightesthigh2_p).*rho2(time-samplewaitx,1)) 
&& (error2recent_p == 0) 
        abovehighallow2_p = 1; 
    end 
     
    if ((theta2(time-1,1) >= 0) && (theta2(time,1) <= 0 )) || 
((theta2(time,1) >= 0) && (theta2(time-1,1) <= 0 )) 
        if belowlowallow2_p == 1                %If we've gone below 
the lower adjustment threshold 
            lowallow2_p = lowallow2_p + 0.05; 
            lowtestlow2_p = 0.7.*lowallow2_p; 
            lowtesthigh2_p = 0.3.*lowallow2_p; 
        end 
        if abovelowallow2_p ~= 1                %If we haven't gone 
below the higher adjustment threshold 
            lowallow2_p = lowallow2_p - 0.01; 
            lowtestlow2_p = 0.7.*lowallow2_p; 
            lowtesthigh2_p = 0.3.*lowallow2_p; 
        end 
        if belowhighallow2_p ~= 1 
            highallow2_p = highallow2_p - 0.01; 
            maxallow2_p = maxallow2_p - 0.02; 
            hightestlow2_p = 0.3.*highallow2_p; 
            hightesthigh2_p = 0.7.*highallow2_p; 
        end 
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        if abovehighallow2_p == 1 
            highallow2_p = highallow2_p + 0.05; 
            maxallow2_p = maxallow2_p + 0.1; 
            hightestlow2_p = 0.3.*highallow2_p; 
            hightesthigh2_p = 0.7.*highallow2_p; 
        end 
        belowlowallow2_p = 0; 
        abovelowallow2_p = 0; 
        belowhighallow2_p = 0; 
        abovehighallow2_p = 0; 
    end 
  
     
     
     
%Determining faults 
     
    if ((error1recent_e ~= 0) && (error2recent_e ~= 0) && (fault_e == 
0))   %Something has happened at both ends 
        disp('Flag - Fault E')  %test 
        fault_e = 1; 
        fault1time_e = cat(1,fault1time_e,temptime1_e); 
        fault1type_e = cat(1,fault1type_e,error1recent_e); 
        fault2time_e = cat(1,fault2time_e,temptime2_e); 
        fault2type_e = cat(1,fault2type_e,error2recent_e); 
    end 
     
    if ((error1recent_p ~= 0) && (error2recent_p ~= 0) && (fault_p == 
0))   %Something has happened at both ends 
        disp('Flag - Fault P')  %test 
        fault_p = 1; 
        fault1time_p = cat(1,fault1time_p,temptime1_p); 
        fault1type_p = cat(1,fault1type_p,error1recent_p); 
        fault2time_p = cat(1,fault2time_p,temptime2_p); 
        fault2type_p = cat(1,fault2type_p,error2recent_p); 
    end 
  
    if ((error1recent_d ~= 0) && (error2recent_d ~= 0) && (fault_d == 
0))   %Something has happened at both ends 
        disp('Flag - Fault D')  %test 
        fault = 1; 
        fault_d = 1; 
        fault1timeonlyx_d = cat(1,fault1timeonlyx_d,delrho1triptime); 
        fault2timeonlyx_d = cat(1,fault2timeonlyx_d,delrho2triptime); 
        delrhomax1 = 10.^9;      %prevent repetitive tripping 
        delrhomax2 = 10.^9; 
    end 
  
    if ((error1recent_t ~= 0) && (error2recent_t ~= 0) && (fault_t == 
0))   %Something has happened at both ends 
        disp('Flag - Fault T')  %test 
        fault = 1; 
        fault_t = 1; 
        fault1timeonlyx_t = cat(1,fault1timeonlyx_t,deltheta1triptime); 
        fault2timeonlyx_t = cat(1,fault2timeonlyx_t,deltheta2triptime); 
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        delthetamax1 = 0;      %prevent repetitive tripping 
        delthetamax2 = 0; 
        delthetamin1 = 0; 
        delthetamin2 = 0; 
    end 
     
    if ((faultwait_e >= faultmaxtimex) && fault_e) || ((faultwait_p >= 
faultmaxtimex) && fault_p) || (fault_e && fault_p) || (fault_d && 
fault_t) 
        disp('Flag - Fault Both - or over wait')  %test 
        fault = 1; 
        if ~fault_p 
            fault1time_p = cat(1,fault1time_p,'X'); 
            fault2time_p = cat(1,fault2time_p,'X'); 
            fault1type_p = cat(1,fault1type_p,'X'); 
            fault2type_p = cat(1,fault2type_p,'X'); 
        end 
        if ~fault_e 
            fault1time_e = cat(1,fault1time_e,'X'); 
            fault2time_e = cat(1,fault2time_e,'X'); 
            fault1type_e = cat(1,fault1type_e,'X'); 
            fault2type_e = cat(1,fault2type_e,'X'); 
        end 
        if fault_d 
            fault1time_d = 
cat(1,fault1time_d,fault1timeonlyx_d(length(fault1timeonlyx_d),1)); 
            fault2time_d = 
cat(1,fault2time_d,fault2timeonlyx_d(length(fault2timeonlyx_d),1)); 
            fault1timeonlyx_d = 
removerows(fault1timeonlyx_d,length(fault1timeonlyx_d)); 
            fault2timeonlyx_d = 
removerows(fault2timeonlyx_d,length(fault2timeonlyx_d)); 
        end 
        if ~fault_d 
            fault1time_d = cat(1,fault1time_d,'X') 
            fault2time_d = cat(1,fault2time_d,'X') 
        end 
        if fault_t 
            fault1time_t = 
cat(1,fault1time_t,fault1timeonlyx_t(length(fault1timeonlyx_t),1)); 
            fault2time_t = 
cat(1,fault2time_t,fault2timeonlyx_t(length(fault2timeonlyx_t),1)); 
            fault1timeonlyx_t = 
removerows(fault1timeonlyx_t,length(fault1timeonlyx_t)); 
            fault2timeonlyx_t = 
removerows(fault2timeonlyx_t,length(fault2timeonlyx_t)); 
        end 
        if ~fault_t 
            fault1time_t = cat(1,fault1time_t,'X') 
            fault2time_t = cat(1,fault2time_t,'X') 
        end 
        if (fault_p && fault_e) || (fault_p && fault_d) || (fault_e && 
fault_d) || (fault_t && fault_p) || (fault_t && fault_e) || (fault_t && 
fault_d) 
            timestore = time; 
            time = timestore + brkcorr;     %wait until faulted system 
has stabilized 
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        end 
        if time < len           %as long as the result is before the 
end of known time 
            [wasgrowing1_e,wasgrowing2_e] = checkdir(rho1,rho2,time); 
            
[rmin1_e,rmax1_e,rmin2_e,rmax2_e,thetashift1_e,thetashift2_e,wasgrowing
1_e,wasgrowing2_e,time,minrho1_e,highrho1_e,maxrho1_e,minrho2_e,highrho
2_e,maxrho2_e] = 
minmaxrho(rho1,rho2,theta1,theta2,wasgrowing1_e,wasgrowing2_e,time,len,
lowallow_e,highallow_e,maxallow_e,ewaittimex,emaxtimex,quartertimex); 
        end 
        error1recent_p = 0;     % reset these variables to prepare for 
the possibility of another fault 
        error2recent_p = 0; 
        error1recent_e = 0; 
        error2recent_e = 0; 
        error1recent_d = 0; 
        error2recent_d = 0; 
        temptime1_p = 0; 
        temptime2_p = 0; 
        temptime1_e = 0; 
        temptime2_e = 0; 
        temptheta1_p = 0; 
        temptheta2_p = 0; 
        temptheta1_e = 0; 
        temptheta2_e = 0; 
        fault_p = 0; 
        fault_e = 0; 
        fault_d = 0; 
        faultwait_p = 0; 
        faultwait_e = 0; 
        dropbelow1_e = 0; 
        dropbelow2_e = 0; 
        dropbelow1_p = 0; 
        dropbelow2_p = 0; 
        delrho1triptime = 0; 
        delrho2triptime = 0; 
        delrhomax1 = 10.^9; 
        delrhomax2 = 10.^9; 
        delrhoallow = delrhoallowstart; 
        misfaultcheck_d = 0; 
        deltheta1triptime = 0; 
        deltheta2triptime = 0; 
        delthetamax1 = 0; 
        delthetamax2 = 0; 
        delthetamin1 = 0; 
        delthetamin2 = 0; 
    end 
     
    time = time + 1; 
    
end 
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%Fault analysis - after end of time loop 
  
  
if fault == 0 
    disp('No faults detected.') 
end 
if fault == 1 
    tacc = 1;                           %Counter for while loop 
    while tacc <= length (fault1time_p) %Improve accuracy of 
calculation by using the 
        if (fault1time_p(tacc,1) == 'X')%earliest available times 
            if (fault1time_e(tacc,1) == 'X') %d 
                newfault1time = 
cat(1,newfault1time,fault1time_d(tacc,1)); 
            else 
                if (fault1time_d(tacc,1) == 'X') %e 
                    if (fault1time_t(tacc,1) == 'X') 
                        fault1timeonly_e = 
cat(1,fault1timeonly_e,fault1time_e(tacc,1)); 
                        fault1typeonly_e = 
cat(1,fault1typeonly_e,fault1type_e(tacc,1)); 
                    else 
                        newfault1time = 
cat(1,newfault1time,fault1time_e(tacc,1)); 
                    end 
                else %d&e 
                    if (fault1time_e(tacc,1) < fault1time_d(tacc,1)) 
                        newfault1time = 
cat(1,newfault1time,fault1time_e(tacc,1)); 
                    else 
                        newfault1time = 
cat(1,newfault1time,fault1time_d(tacc,1)); 
                    end 
                end 
            end 
        else         
            if (fault1time_e(tacc,1) == 'X') 
                if (fault1time_d(tacc,1) == 'X') %p 
                    if (fault1time_t(tacc,1) == 'X') 
                        fault1timeonly_p = 
cat(1,fault1timeonly_p,fault1time_p(tacc,1)); 
                        fault1typeonly_p = 
cat(1,fault1typeonly_p,fault1type_p(tacc,1)); 
                    else 
                        newfault1time = 
cat(1,newfault1time,fault1time_p(tacc,1)); 
                    end 
                else %d&p 
                    if (fault1time_p(tacc,1) < fault1time_d(tacc,1)) 
                        newfault1time = 
cat(1,newfault1time,fault1time_p(tacc,1)); 
                    else 
                        newfault1time = 
cat(1,newfault1time,fault1time_d(tacc,1)); 
                    end 
                end 
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            else 
                if (fault1time_d(tacc,1) == 'X') %e&p 
                    if (fault1time_e(tacc,1) < fault1time_p(tacc,1)) 
                        newfault1time = 
cat(1,newfault1time,fault1time_e(tacc,1)); 
                    else 
                        newfault1time = 
cat(1,newfault1time,fault1time_p(tacc,1)); 
                    end 
                else %d&e&p 
                    if (fault1time_p(tacc,1) <= fault1time_d(tacc,1)) 
&& (fault1time_p(tacc,1) <= fault1time_e(tacc,1)) 
                        newfault1time = 
cat(1,newfault1time,fault1time_p(tacc,1)); 
                    elseif (fault1time_e(tacc,1) <= 
fault1time_d(tacc,1)) && (fault1time_e(tacc,1) <= fault1time_p(tacc,1)) 
                        newfault1time = 
cat(1,newfault1time,fault1time_e(tacc,1)); 
                    else 
                        newfault1time = 
cat(1,newfault1time,fault1time_d(tacc,1)); 
                    end 
                end 
            end 
        end 
        if (fault1time_t(tacc,1) ~= 'X') %include data from t if better 
            if (fault1time_t(tacc,1) < newfault1time(tacc,1)) 
                newfault1time = removerows(newfault1time,tacc); 
                newfault1time = 
cat(1,newfault1time,fault1time_t(tacc,1)); 
            end 
        end 
        if (fault2time_p(tacc,1) == 'X') 
            if (fault2time_e(tacc,1) == 'X') %d 
                newfault2time = 
cat(1,newfault2time,fault2time_d(tacc,1)); 
            else 
                if (fault2time_d(tacc,1) == 'X') %e 
                    if (fault2time_t(tacc,1) == 'X') 
                        fault2timeonly_e = 
cat(1,fault2timeonly_e,fault2time_e(tacc,1)); 
                        fault2typeonly_e = 
cat(1,fault2typeonly_e,fault2type_e(tacc,1)); 
                    else 
                        newfault2time = 
cat(1,newfault2time,fault2time_e(tacc,1)); 
                    end 
                else %d&e 
                    if (fault2time_e(tacc,1) < fault2time_d(tacc,1)) 
                        newfault2time = 
cat(1,newfault2time,fault2time_e(tacc,1)); 
                    else 
                        newfault2time = 
cat(1,newfault2time,fault2time_d(tacc,1)); 
                    end 
                end 
            end 
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        else         
            if (fault2time_e(tacc,1) == 'X') 
                if (fault2time_d(tacc,1) == 'X') %p 
                    if (fault2time_t(tacc,1) == 'X') 
                        fault2timeonly_p = 
cat(1,fault2timeonly_p,fault2time_p(tacc,1)); 
                        fault2typeonly_p = 
cat(1,fault2typeonly_p,fault2type_p(tacc,1)); 
                    else 
                        newfault2time = 
cat(1,newfault2time,fault2time_p(tacc,1)); 
                    end 
                else %d&p 
                    if (fault2time_p(tacc,1) < fault2time_d(tacc,1)) 
                        newfault2time = 
cat(1,newfault2time,fault2time_p(tacc,1)); 
                    else 
                        newfault2time = 
cat(1,newfault2time,fault2time_d(tacc,1)); 
                    end 
                end 
            else 
                if (fault2time_d(tacc,1) == 'X') %e&p 
                    if (fault2time_e(tacc,1) < fault2time_p(tacc,1)) 
                        newfault2time = 
cat(1,newfault2time,fault1time_e(tacc,1)); 
                    else 
                        newfault2time = 
cat(1,newfault2time,fault1time_p(tacc,1)); 
                    end 
                else %d&e&p 
                    if (fault2time_p(tacc,1) <= fault2time_d(tacc,1)) 
&& (fault2time_p(tacc,1) <= fault2time_e(tacc,1)) 
                        newfault2time = 
cat(1,newfault2time,fault2time_p(tacc,1)); 
                    elseif (fault2time_e(tacc,1) <= 
fault2time_d(tacc,1)) && (fault2time_e(tacc,1) <= fault2time_p(tacc,1)) 
                        newfault2time = 
cat(1,newfault2time,fault2time_e(tacc,1)); 
                    else 
                        newfault2time = 
cat(1,newfault2time,fault2time_d(tacc,1)); 
                    end 
                end 
            end 
        end 
        if (fault2time_t(tacc,1) ~= 'X') %include data from t if better 
            if (fault2time_t(tacc,1) < newfault2time(tacc,1)) 
                newfault2time = removerows(newfault2time,tacc); 
                newfault2time = 
cat(1,newfault2time,fault2time_t(tacc,1)); 
            end 
        end 
        tacc = tacc + 1; 
    end 
  
    fault1timeonly_d = cat(1,fault1timeonly_d,fault1timeonlyx_d); 
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    fault2timeonly_d = cat(1,fault2timeonly_d,fault2timeonlyx_d); 
    fault1timeonly_t = cat(1,fault1timeonly_t,fault1timeonlyx_t); 
    fault2timeonly_t = cat(1,fault2timeonly_t,fault2timeonlyx_t); 
     
    [fault1type_p] = typechange(fault1type_p); 
    [fault2type_p] = typechange(fault2type_p); 
    [fault1type_e] = typechange(fault1type_e); 
    [fault2type_e] = typechange(fault2type_e); 
    [fault1typeonly_p] = typechange(fault1typeonly_p); 
    [fault2typeonly_p] = typechange(fault2typeonly_p); 
    [fault1typeonly_e] = typechange(fault1typeonly_e); 
    [fault2typeonly_e] = typechange(fault2typeonly_e); 
     
    fault1timecorr = newfault1time.*tstep./10^6; %fault times corrected 
from matrix 
    fault2timecorr = newfault2time.*tstep./10^6; %indices to actual 
times 
  
    fault1timeonlycorr_p = fault1timeonly_p.*tstep./10^6; %fault times 
corrected from matrix 
    fault1timeonlycorr_e = fault1timeonly_e.*tstep./10^6; %indices to 
actual times 
    fault1timeonlycorr_d = fault1timeonly_d.*tstep./10^6; 
    fault1timeonlycorr_t = fault1timeonly_t.*tstep./10^6; 
    fault2timeonlycorr_p = fault2timeonly_p.*tstep./10^6; %fault times 
corrected from matrix 
    fault2timeonlycorr_e = fault2timeonly_e.*tstep./10^6; %indices to 
actual times 
    fault2timeonlycorr_d = fault2timeonly_d.*tstep./10^6; 
    fault2timeonlycorr_t = fault2timeonly_t.*tstep./10^6; 
     
    len_from_gen = (totlength + vel*10^-3*(fault1timecorr-
fault2timecorr))/2; 
    len_from_load = (totlength - len_from_gen); 
    fault_time = (tstart + fault1timecorr - len_from_gen/vel);  
  
    len_from_gen_only_e = (totlength + vel*10^-3*(fault1timeonlycorr_e-
fault2timeonlycorr_e))/2; 
    len_from_load_only_e = (totlength - len_from_gen_only_e); 
    fault_time_only_e = (tstart + fault1timeonlycorr_e - 
len_from_gen_only_e/vel);  
    len_from_gen_only_p = (totlength + vel*10^-3*(fault1timeonlycorr_p-
fault2timeonlycorr_p))/2; 
    len_from_load_only_p = (totlength - len_from_gen_only_p); 
    fault_time_only_p = (tstart + fault1timeonlycorr_p - 
len_from_gen_only_p/vel);  
    len_from_gen_only_d = (totlength + vel*10^-3*(fault1timeonlycorr_d-
fault2timeonlycorr_d))/2; 
    len_from_load_only_d = (totlength - len_from_gen_only_d); 
    fault_time_only_d = (tstart + fault1timeonlycorr_d - 
len_from_gen_only_d/vel);  
    len_from_gen_only_t = (totlength + vel*10^-3*(fault1timeonlycorr_t-
fault2timeonlycorr_t))/2; 
    len_from_load_only_t = (totlength - len_from_gen_only_t); 
    fault_time_only_t = (tstart + fault1timeonlycorr_t - 
len_from_gen_only_t/vel);  
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    testcounter = 1; 
    while (testcounter <= length(len_from_gen)) 
        if (len_from_gen(testcounter,1) < 0) || 
(len_from_load(testcounter,1) < 0) || (fault_time(testcounter,1) <= 0) 
            len_from_gen = removerows(len_from_gen,testcounter); 
            len_from_load = removerows(len_from_load,testcounter); 
            timeneg = cat(1,timeneg,fault_time(testcounter,1)); 
            fault_time = removerows(fault_time,testcounter); 
            negdistance = 1; 
            testcounter = testcounter - 1;      %since a row will be 
removed, want to test the same row # next time 
        end 
        testcounter = testcounter + 1; 
    end 
    testcounter = 1; 
    while (testcounter <= length(len_from_gen_only_e)) 
        if (len_from_gen_only_e(testcounter,1) < 0) || 
(len_from_load_only_e(testcounter,1) < 0) || 
(fault_time_only_e(testcounter,1) <= 0) 
            len_from_gen_only_e = 
removerows(len_from_gen_only_e,testcounter); 
            len_from_load_only_e = 
removerows(len_from_load_only_e,testcounter); 
            timeneg_e = 
cat(1,timeneg_e,fault_time_only_e(testcounter,1)); 
            fault_time_only_e = 
removerows(fault_time_only_e,testcounter); 
            negdistance = 1; 
            testcounter = testcounter - 1;      %since a row will be 
removed, want to test the same row # next time 
        end 
        testcounter = testcounter + 1; 
    end 
    testcounter = 1; 
    while (testcounter <= length(len_from_gen_only_p)) 
        if (len_from_gen_only_p(testcounter,1) < 0) || 
(len_from_load_only_p(testcounter,1) < 0) || 
(fault_time_only_p(testcounter,1) <= 0) 
            len_from_gen_only_p = 
removerows(len_from_gen_only_p,testcounter); 
            len_from_load_only_p = 
removerows(len_from_load_only_p,testcounter); 
            timeneg_p = 
cat(1,timeneg_p,fault_time_only_p(testcounter,1)); 
            fault_time_only_p = 
removerows(fault_time_only_p,testcounter); 
            negdistance = 1; 
            testcounter = testcounter - 1;      %since a row will be 
removed, want to test the same row # next time 
        end 
        testcounter = testcounter + 1; 
    end 
    testcounter = 1; 
    while (testcounter <= length(len_from_gen_only_d)) 
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        if (len_from_gen_only_d(testcounter,1) < 0) || 
(len_from_load_only_d(testcounter,1) < 0) || 
(fault_time_only_d(testcounter,1) <= 0) 
            len_from_gen_only_d = 
removerows(len_from_gen_only_d,testcounter); 
            len_from_load_only_d = 
removerows(len_from_load_only_d,testcounter); 
            timeneg_d = 
cat(1,timeneg_d,fault_time_only_d(testcounter,1)); 
            fault_time_only_d = 
removerows(fault_time_only_d,testcounter); 
            negdistance = 1; 
            testcounter = testcounter - 1;      %since a row will be 
removed, want to test the same row # next time 
        end 
        testcounter = testcounter + 1; 
    end 
    testcounter = 1; 
    while (testcounter <= length(len_from_gen_only_t)) 
        if (len_from_gen_only_t(testcounter,1) < 0) || 
(len_from_load_only_t(testcounter,1) < 0) || 
(fault_time_only_t(testcounter,1) <= 0) 
            len_from_gen_only_t = 
removerows(len_from_gen_only_t,testcounter); 
            len_from_load_only_t = 
removerows(len_from_load_only_t,testcounter); 
            timeneg_t = 
cat(1,timeneg_t,fault_time_only_t(testcounter,1)); 
            fault_time_only_t = 
removerows(fault_time_only_t,testcounter); 
            negdistance = 1; 
            testcounter = testcounter - 1;      %since a row will be 
removed, want to test the same row # next time 
        end 
        testcounter = testcounter + 1; 
    end 
     
    if (length(len_from_gen) > 0) 
        disp('Faults were found with at least two algorithms at the 
following locations:') 
        len_from_gen 
        len_from_load 
        disp('They occurred at the following relative times:') 
        fault_time 
        disp('The indications for these faults were as follows:') 
        fault1type_p 
        fault2type_p 
        fault1type_e 
        fault2type_e 
    end 
    if (length(len_from_gen_only_e) > 0) 
        disp('Faults were found with just the ellipse algorithm at the 
following locations:') 
        len_from_gen_only_e 
        len_from_load_only_e 
        disp('They occurred at the following relative times:') 
        fault_time_only_e 
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        disp('The indications for these faults were as follows:') 
        fault1typeonly_e 
        fault2typeonly_e 
    end 
    if (length(len_from_gen_only_p) > 0) 
        disp('Faults were found with just the previous value algorithm 
at the following locations:') 
        len_from_gen_only_p 
        len_from_load_only_p 
        disp('They occurred at the following relative times:') 
        fault_time_only_p 
        disp('The indications for these faults were as follows:') 
        fault1typeonly_p 
        fault2typeonly_p 
    end 
    if (length(len_from_gen_only_d) > 0) 
        disp('Faults were found with just the delta rho algorithm at 
the following locations:') 
        len_from_gen_only_d 
        len_from_load_only_d 
        disp('They occurred at the following relative times:') 
        fault_time_only_d 
        disp('Note that the delta rho algorithm finds high impedance 
faults better than the other algorithms but is more likely to trip 
accidentally due to noise or sudden changes to the system.') 
    end 
    if (length(len_from_gen_only_t) > 0) 
        disp('Faults were found with just the delta theta algorithm at 
the following locations:') 
        len_from_gen_only_t 
        len_from_load_only_t 
        disp('They occurred at the following relative times:') 
        fault_time_only_t 
        disp('Note that the delta theta algorithm finds high impedance 
faults better than the other algorithms but is more likely to trip 
accidentally due to noise or sudden changes to the system.') 
    end 
     
end 
if (negdistance == 1) 
    disp('Warning: At least one fault calculation resulted in a 
negative distance calculation. Note that associated times have a margin 
of error of several milliseconds.') 
    if (length(timeneg) > 0) 
        disp('Times resulting in negative distances detected by both 
algorithms:') 
        timeneg 
    end 
    if (length(timeneg_e) > 0) 
        disp('Times resulting in negative distances detected by the 
expected ellipse algorithm:') 
        timeneg_e 
    end 
    if (length(timeneg_p) > 0) 
        disp('Times resulting in negative distances detected by the 
previous value algorithm:') 
        timeneg_p 
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    end 
end 
  
if (length(probtime1_p) > 0) || (length(probtime2_p) > 0) 
    disp('Error: A fault has been detected at one end of the 
transmission line using the previous value algorithm, but nothing has 
indicated the fault at the other end. This occurred at the following 
time:') 
    if (length(probtime1_p) > 0) 
        probtime1_p 
    end 
    if (length(probtime2_p) > 0) 
        probtime2_p 
    end 
end 
if (length(probtime1_e) > 0) || (length(probtime2_e) > 0) 
    disp('Error: A fault has been detected at one end of the 
transmission line using the expected ellipse algorithm, but nothing has 
indicated the fault at the other end. This occurred at the following 
time:') 
    if (length(probtime1_e) > 0) 
        probtime1_e 
    end 
    if (length(probtime2_e) > 0) 
        probtime2_e 
    end 
end 
  
  
  
figure(1) 
polar(theta1,rho1); 
title('Magnetic Field Plot at Generator End of Transmission Line.'); 
  
figure(2) 
polar(theta2,rho2); 
title('Magnetic Field Plot at Load End of Transmission Line.'); 
  
end 
  
  
  
  
  
  
  
  
  
%Subfunctions that are called in the main function 
  
function 
[rhomin_i1,rhomax_i1,rhomin_i2,rhomax_i2,thetashift_i1,thetashift_i2,gr
owing_i1,growing_i2,time_i,minrho_i1,highrho_i1,maxrho_i1,minrho_i2,hig
hrho_i2,maxrho_i2] = 
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minmaxrho(rho_i1,rho_i2,theta_i1,theta_i2,growing_i1,growing_i2,time_i,
len_i,lowallow_i,highallow_i,maxallow_i,ewaittimex_i,emaxtimex_i,quarte
rtimex_i) 
%minmaxrho sets/resets the maximum and minimum rho values seen by the 
%   sensors on both ends of the transmission line. This information is 
%   later used in determining whether or not a fault is occurring/has  
%   occurred. 
  
rhomin_i1 = 0; 
rhomax_i1 = 0; 
rhomin_i2 = 0; 
rhomax_i2 = 0; 
thetashift_i1 = 0; 
thetashift_i2 = 0; 
rhomintest_i1 = 0; 
rhomaxtest_i1 = 0; 
rhomintest_i2 = 0; 
rhomaxtest_i2 = 0; 
numreps = 1; 
lastrmintime1_i = 0; 
lastrmintime2_i = 0; 
lastrmaxtime1_i = 0; 
lastrmaxtime2_i = 0; 
  
while (((rhomintest_i1 < numreps) || (rhomaxtest_i1 < numreps) || 
(rhomintest_i2 < numreps) || (rhomaxtest_i2 < numreps)) || 
(rho_i1(time_i,1) > rhomax_i1) && (rho_i2(time_i,1) > rhomax_i2) && 
(rho_i2(time_i,1) < rhomin_i2) && (rho_i2(time_i,1) < rhomin_i2)) && 
(time_i < len_i) 
    if ((rho_i1((time_i-ewaittimex_i),1) > rho_i1(time_i,1)) && 
growing_i1==1) && (time_i > (lastrmintime1_i + emaxtimex_i)) 
        timemaxcheck_i = 0; 
        rhomax_i1 = 0; 
        while (timemaxcheck_i < quartertimex_i) && ((time_i-
timemaxcheck_i) > 0) 
            if (rho_i1((time_i-timemaxcheck_i),1) > rhomax_i1) 
                rhomax_i1 = rho_i1((time_i-timemaxcheck_i),1); 
                thetashift_i1 = theta_i1((time_i-timemaxcheck_i),1); 
            end 
            timemaxcheck_i = timemaxcheck_i + 1; 
        end 
        lastrmaxtime1_i = time_i; 
        growing_i1 = 0; 
        rhomaxtest_i1 = rhomaxtest_i1 + 1; 
    end 
    if ((rho_i2((time_i-ewaittimex_i),1) > rho_i2(time_i,1)) && 
growing_i2==1) && (time_i > (lastrmintime2_i + emaxtimex_i)) 
        timemaxcheck_i = 0; 
        rhomax_i2 = 0; 
        while (timemaxcheck_i < quartertimex_i) && ((time_i-
timemaxcheck_i) > 0) 
            if (rho_i2((time_i-timemaxcheck_i),1) > rhomax_i2) 
                rhomax_i2 = rho_i2((time_i-timemaxcheck_i),1); 
                thetashift_i2 = theta_i2((time_i-timemaxcheck_i),1); 
            end 
            timemaxcheck_i = timemaxcheck_i + 1; 
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        end 
        lastrmaxtime2_i = time_i; 
        growing_i2 = 0; 
        rhomaxtest_i2 = rhomaxtest_i2 + 1; 
    end 
    if ((rho_i1((time_i-ewaittimex_i),1) < rho_i1(time_i,1)) && 
growing_i1==0) && (time_i > (lastrmaxtime1_i + emaxtimex_i)) 
        timemaxcheck_i = 0; 
        rhomin_i1 = 10.^9; 
        while (timemaxcheck_i < quartertimex_i) && ((time_i-
timemaxcheck_i) > 0) 
            if (rho_i1((time_i-timemaxcheck_i),1) < rhomin_i1) 
                rhomin_i1 = rho_i1((time_i-timemaxcheck_i),1); 
            end 
            timemaxcheck_i = timemaxcheck_i + 1; 
        end 
        lastrmintime1_i = time_i; 
        growing_i1 = 1; 
        if rhomin_i1 < 0.1 
            rhomin_i1 = 0.1; 
        end 
        rhomintest_i1 = rhomintest_i1 + 1; 
    end 
    if ((rho_i2((time_i-ewaittimex_i),1) < rho_i2(time_i,1)) && 
growing_i2==0) && (time_i > (lastrmaxtime2_i + emaxtimex_i)) 
        timemaxcheck_i = 0; 
        rhomin_i2 = 10.^9; 
        while (timemaxcheck_i < quartertimex_i) && ((time_i-
timemaxcheck_i) > 0) 
            if (rho_i2((time_i-timemaxcheck_i),1) < rhomin_i2) 
                rhomin_i2 = rho_i2((time_i-timemaxcheck_i),1); 
            end 
            timemaxcheck_i = timemaxcheck_i + 1; 
        end 
        lastrmintime2_i = time_i; 
        growing_i2 = 1; 
        if rhomin_i2 < 0.1 
            rhomin_i2 = 0.1; 
        end 
        rhomintest_i2 = rhomintest_i2 + 1; 
    end 
    time_i = time_i + 1; 
end 
  
predrho_i1 = (rhomax_i1.*rhomin_i1)./((rhomax_i1.*sin(theta_i1-
thetashift_i1)).^2+(rhomin_i1.*cos(theta_i1-
thetashift_i1)).^2+0.0001).^(1/2); 
predrho_i2 = (rhomax_i2.*rhomin_i2)./((rhomax_i2.*sin(theta_i2-
thetashift_i2)).^2+(rhomin_i2.*cos(theta_i2-
thetashift_i2)).^2+0.0001).^(1/2); 
  
if (rhomin_i1 == 0.1) 
    minrho_i1 = zeros(len_i,1); 
else 
    minrho_i1 = predrho_i1.*(1-lowallow_i); 
end 
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if (rhomin_i2 == 0.1) 
    minrho_i2 = zeros(len_i,1); 
else 
    minrho_i2 = predrho_i2.*(1-lowallow_i); 
end 
highrho_i1 = predrho_i1.*(1+highallow_i); 
highrho_i2 = predrho_i2.*(1+highallow_i); 
maxrho_i1 = predrho_i1.*(1+maxallow_i); 
maxrho_i2 = predrho_i2.*(1+maxallow_i); 
  
end 
  
  
  
function [growing_c1,growing_c2] = checkdir(rho_c1,rho_c2,time_c) 
%checkdir checks the whether rho_c1 and rho_c2 are growing or not and 
%   returns this information in the variables growing_c1 and growing_c2 
%   (1 = rho is increasing, 0 = rho is decreasing) 
  
if (rho_c1((time_c-1),1) > rho_c1(time_c,1))%initialize direction of 
movement 
    growing_c1 = 0; 
else 
    growing_c1 = 1; 
end 
if (rho_c2((time_c-1),1) > rho_c2(time_c,1)) 
    growing_c2 = 0; 
else 
    growing_c2 = 1; 
end 
  
end 
  
  
  
function [faulttime_to] = typechange(faulttime_ti) 
%typechange changes the numerical representations of the reasons for 
fault 
%detection into a string describing the result 
  
faulttime_to = []; 
ttype = 1; 
while ttype <= length(faulttime_ti) 
    if faulttime_ti(ttype,1) == 1 
        faulttime_to = strvcat(faulttime_to,'Increase above maximum 
allowed value'); 
    elseif faulttime_ti(ttype,1) == 2 
        faulttime_to = strvcat(faulttime_to,'Decrease below minimum 
then unexpected increase'); 
    elseif faulttime_ti(ttype,1) == 3 
        faulttime_to = strvcat(faulttime_to,'Increase above high 
allowed value'); 
    elseif faulttime_ti(ttype,1) == 4 
        faulttime_to = strvcat(faulttime_to,'Decrease below minimum 
allowed value'); 
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    elseif faulttime_ti(ttype,1) == 'X' 
        faulttime_to = strvcat(faulttime_to,'No fault detected, or two 
other algorithms detected the fault before this algorithm'); 
    else 
        faulttime_to = strvcat(faulttime_to,'Unknown result'); 
    end 
    ttype = ttype + 1; 
end 
     
end 
 


