
Software Safety Assurance for the Boot Power
Management Processor on NVIDIA’s Tegra SoC

A Major Qualifying Project submitted to the faculty
of the Worcester Polytechnic Institute

in partial fulfillment of the requirements for the
Degree of Bachelor of Science

Goutham Deva
Robert Harrison

Tejas Rao

Submitted to Professor Mark Claypool, Department of Computer Science, WPI
Sponsored by NVIDIA Corporation

March 1, 2019

Abstract

NVIDIA’s Tegra System-on-a-Chip (SoC) contains a small coprocessor responsible for

initializing every other component of the chip, called the Boot Power Management

Processor (BPMP). NVIDIA intends to deploy the Tegra SoC inside autonomous vehi-

cles, but in order to do this, the code running on each of its components (beginning

with the BPMP) needs to be heavily refactored in order to comply with international

safety standards. Our project is to assist the Tegra System Software team with these

changes by writing unit tests to achieve complete code coverage, refactoring indi-

vidual modules to ensure source code compliance with the MISRA C:2012 standard,

and writing documentation on each functional module in the system. We performed

each of these tasks successfully, contributing over five thousand lines of changes

and writing one full set of architecture and design documents. These changes ought

to reduce the probability of a fault in the software that would lead to a fatal error.

ii

Contents

Acknowledgments . 1

1 Introduction 3

2 Background 7
2.1 Tegra . 7
2.2 Development Environments . 8
2.3 Safety Standards and Requirements . 10

2.3.1 ISO 26262 . 10
2.3.2 Automotive SPICE Process Reference Model 11
2.3.3 Software Safety Processes within Agile Software Development . 12

2.4 Code Standards . 14
2.4.1 Functional Testing Completeness 14
2.4.2 MISRA C:2012 . 15

3 Methodology 19
3.1 Software Definition and Design . 19

3.1.1 Source Code Segregation . 21
3.1.2 Software Design Documentation 23

3.2 Software Implementation . 25
3.2.1 Code Review . 25
3.2.2 MISRA Violation Removal . 26

3.3 Software Verification by Unit Test Development 27

4 Results 29
4.1 Work Totals . 29
4.2 Work Accomplished over Time . 30

5 Conclusion 33

6 Future Work 35

References 37

iii

A Results Tooling 39
A.1 Gerrit Scraper . 39
A.2 Database Scraper . 41
A.3 SQL Statements for Chart Data Retrieval 42

iv

List of Figures

2.1 The engineering V-model. 13

3.1 A butterfly dependency graph generated by SciTools Understand. . . . 21
3.2 A butterfly dependency graph generated by SciTools Understand after

the debugfs interface code was fully segregated. 23

4.1 Total work completed. 30
4.2 Submitted and merged commits over time. 31
4.3 Line changes over time. 31

v

vi

Acknowledgments

We would like to thank the following individuals and organizations in particular for

their support and assistance in completing this project:

• Matt Longnecker and Sivaram Nair, for their guidance on the tools, resources,

and processes we needed to use in order to assist them in ensuring the safety

of the BPMP firmware.

• NVIDIA Corporation, for providing us with a project with a direct impact on the

work they do, and supporting us with staff and management throughout.

• Mark Claypool, for his work organizing the project, and his dedication to advis-

ing it during its course.

1

2

Chapter 1

Introduction

NVIDIA is a technology company known for its development of the GeForce graphics

processor series and the Tegra System-on-a-Chip (SoC), a high-performance mobile

processor used in a diverse range of products, such as the NVIDIA Shield, a televi-

sion streaming box (Daniel, 2018); the Nintendo Switch gaming console (Karandikar,

2017); and NVIDIA Drive, a simulation framework for autonomous vehicles (Smith &

Ho, 2015). Every Tegra SoC contains an internal co-processor, the Boot Power Man-

agement Processor (BPMP), which is responsible for bootstrapping the system once

it is powered, generating clock signals and delivering appropriate power to the main

Tegra processing units (NVIDIA, 2015). Regardless of whether the Tegra SoC is de-

ployed in a streaming box, game console, or autonomous vehicle, the BPMP exe-

cutes the same firmware. To facilitate development of these disparate devices, BPMP

firmware code is maintained separately from other Tegra firmware code.

In 2018, NVIDIA sought to deploy the Tegra SoC inside cars with the intent of using

them to pilot autonomous vehicles. However, international standards such as ISO

26262 (ISO, 2018) demand that NVIDIA follow a rigorous set of self-defined standards

before their software may be deployed inside a commercially produced vehicle. In

3

order to comply with these standards, NVIDIA requires that the BPMP firmware must

satisfy the latest guidelines of the Motor Industry Software Reliability Association

(MISRA)’s C standard, published in 2012 (MISRA, 2013). NVIDIA also requires that the

BPMP codebase contain requirements-based unit tests that cover all lines of code

and all branches of execution that the code runs.

Before the project began, the BPMP firmware was based on a Linux kernel for

ARM processors called littlekernel, or lk, which is suitable for many embedded

applications, but is neither MISRA-clean nor unit-tested to the necessary standards.

It was estimated that the BPMP firmware code contained between 11,900 and 15,800

MISRA violations in total, not including those in lk (static analysis tools are incapable

of fully listing MISRA violations). Additionally, only 14.6% of lines and branches in the

codebase were covered by unit tests. In order to meet the required safety standards,

the MISRA violations must be resolved, unit test coverage must be raised to 100%,

and lk must be replaced with a safety-certified, MISRA-clean kernel.1 Team lead-

ers estimate that these tasks will not be completed before April 2020, well after the

recommended deadline of January 2020.

The goal of our project is to assist the Tegra System Software team with achieving

full compliance, with compliance meant to minimize the likelihood of a fault in the

code causing software failure in production. In particular, we wrote unit tests, refac-

tored code to achieve compliance with MISRA’s standard, wrote documentation on

the contents of the codebase and the processes used to create it, and restructured

the architecture of the BPMP firmware to better align with the functional require-

ments of the system.

The teamwrote software design documents for libraries used by the BPMP firmware,

1The BPMP firmware team elected to use a real-time operating system called SafeRTOS, developed
by Wittenstein High Integrity Systems, who advertises that SafeRTOS has been externally verified to
the ISO 26262 standard. This decision and the associated work falls outside the bounds of our project.

4

which describe the ideal operation of the software system and its functional require-

ments within the larger codebase. The team also wrote unit tests to increase line

and branch coverage of files in the BPMP firmware to meet requirements of software

safety guidelines. At the same time, the team cleaned files in the BPMP codebase of

MISRA violations. Finally, the team extracted functionality from BPMP drivers related

to a debugging file system andmoved it to a separate location. This was done so that

the debugging code could be examined separately using NVIDIA’s code visualization

tools, as they do not need to be under the same safety restrictions as the drivers

themselves.

The rest of this report is organized as follows. The second chapter provides back-

ground on the Tegra SoC and the BPMP inside it and describes the development envi-

ronment, safety standards, and code standards that NVIDIA uses on this project. The

third chapter discusses what the team did over the course of the project. The chapter

is divided into three distinct sections, one for design, implementation, and verifica-

tion. Each high-level task falls under one of these categories. The fourth chapter

lists the results of our work and its impact on the BPMP firmware team. The final

chapter concludes what our team has done and discusses future steps for ensuring

the safety of NVIDIA’s BPMP firmware.

5

6

Chapter 2

Background

The first section of this chapter provides background on the Tegra SoC and the BPMP,

as well the environment that NVIDIA uses to develop software for Tegra. The next sec-

tion discusses the safety standards and requirements that NVIDIA is updating their

codebase to conform to, beginning with an overview of the automotive safety stan-

dards ISO 26262 and the Automotive SPICE process reference model. Finally, we de-

scribe how these standards are applied at NVIDIA as well as the code standards that

the project leads have decided to use. A discussion of the engineering verification

and validation model (V-model), which describes a development process consisting

of three interconnected steps, is also included.

2.1 Tegra

The term “Tegra” refers to a System-on-a-Chip designed by NVIDIA for use in various

embedded projects, including the NVIDIA Shield set-top box (Daniel, 2018), the Tesla

Model S (Shapiro, 2016), and the Nintendo Switch gaming console (Karandikar, 2017).

The Tegra X2, the latest iteration of the SoC, contains six ARMv8 processor cores, two

7

of which feature a custom architecture, and a 256-core NVIDIA graphics processor

(Franklin, 2017). Tegra is targeted towards high-performance, low-power environ-

ments as it boasts one teraflop1 of computing power and consumes only seven and

a half watts of power while doing so.

The BPMP is an ARM-based coprocessor inside the Tegra SoC’s physical package.

When the Tegra is powered on, the BPMP is the first component to receive power

and is responsible for bringing up every other processor in the SoC. Additionally, the

BPMP handles powermanagement, clockmanagement, and reset controls for the en-

tire SoC instead of the main CPUs (NVIDIA, 2017). The BPMP communicates with the

main CPUs using a shared “mailbox” interface, which consists of a dedicated mem-

ory area and a series of interrupt-enabled hardware lines that serve as “doorbells”.

When that interrupt fires, the receiving processor, which could be the BPMP or any

main CPU, will access the shared memory and read the message there.

2.2 Development Environments

NVIDIA’s system software team performs most of their work on desktop workstations

running Ubuntu 16.04. Ubuntu gives users access to the apt package manager, which

provides a large repository of packages of free and non-free software for the Linux

platform. As a long-term support release, Ubuntu 16.04 will be supported by Canon-

ical until 2021 (Ubuntu, n.d.).

NVIDIA uses Git, the distributed version control system, to manage their projects.

All version control systems offer users the ability to commit code and push it to a

central repository, but Git’s main advantage over centralized version control systems

is that it allows users to create branches, which allow authors to maintain multiple

1one trillion 32-bit floating-point operations per second

8

independent versions of a code repository that diverge from the established code-

base. Users can switch between these branches with a single, short command. To

resolve differences between two branches, Git allows users to merge two branches,

which creates a new commit on the target branch that incorporates all of the changes

from the source branch. Git also allows users to perform an interactive rebase op-

eration, which is used to change the first divergent commit (the “base”) of a branch.

This feature can also be used to rewrite the history of a branch to remove or com-

bine work-in-progress and other extraneous commits before pushing it to a central

server. The two methods are often used together: if branch B is rebased on top of

branch A, then branch B’s commit history is the entire commit history of branch A,

followed by all of the changesmade on branch B. This makesmerging B into A simple,

since they would now share the same commit history.

NVIDIA manages a central Git server for all of its teams which runs an application

called Gerrit Code Review, which was originally developed by Google’s Android team

for another version control system called Subversion, which does not have a branch-

ing scheme like Git’s (Gerrit Code Review, n.d.). Gerrit forces software developers to

get each commit approved before it is integrated into the codebase at large (usu-

ally as part of the master branch), which requires developers to develop directly

on that branch. Despite the fact that this process appears to be inconsistent with

Git’s own branching model, it is possible to perform development using branches

by interactively rebasing the source branch so it only consists of one commit, then

submitting it for review; if the commit is approved, it is applied to the head of the

target automatically.

9

2.3 Safety Standards and Requirements

For the Tegra SoC to be used in autonomous vehicles, NVIDIA must ensure that the

hardware and software system adheres to the guidelines and rules put in place by

ISO 26262. To do so, NVIDIA is retroactively creating documentation for their design

process that aligns with the guidelines set in place by the Automotive SPICE Process

Reference Model. We describe these guidelines below.

2.3.1 ISO 26262

ISO 26262 is a group of safety procedure guidelines to be followed when installing

electrical systems on vehicles over 3500 kilograms (ISO, 2018). This standard is en-

forced throughout the BPMP firmware to ensure its safety. Only the first, fourth, and

sixth sections of the standard were relevant to our work.

The first section of ISO 26262 establishes common terminology used throughout

the standard to describe functional safety requirements for product development.

This section defines fault, failure, and error as distinct defects in a system. In par-

ticular, “a fault can manifest itself as an error ... and the error can ultimately cause

a failure” (ISO, 2018). The term “Safety Case” refers to a clear, comprehensive and

defensible argument that the system is acceptably safe to operate in a particular

context. The use of this specific terminology increases the readability and concise-

ness of the BPMP firmware’s functional requirements.

The fourth section of ISO 26262 focuses on identifying functional safety require-

ments for each phase of system development. These procedures are meant to help

define system properties and determine the behavior of each component of the sys-

tem. Examples include developing technical safety requirements, defining system

constraints, as well as designing integrated tests within the project. These func-

10

tional safety requirements are derived from business requirements for the system

at large, and also consider how the system handles any failure of these components

to do what they are required to.

The sixth section of ISO 26262 provides procedures for product development at

the software level. Its details outline abstract steps to ensure the safety of each

component of the software. These procedures require the definition of functional re-

quirements, resource usage, and the potential causes of software failure for any rea-

son. The standards require that any “safe” component be tested under normal op-

erational conditions with relevant faults inserted into the system. During the course

of these tests, it is expected that faults, if present, are handled gracefully.

These sections of ISO 26262 are relevant to the project since they describe the

design process that all companies seeking to develop passenger vehicles needs to

follow. The recommendations in these sections will be applied to the BPMP firmware,

which our team is working on. Understanding these processes gives us a better un-

derstanding of what the entire team’s process will entail.

2.3.2 Automotive SPICE Process Reference Model

The Automotive Software Process Improvement and Capability Determination (SPICE)

process reference model is a set of technical standards documents for software de-

velopment processes related to automotive vehicles (VDA QMC Working Group 13 /

Automotive SIG, n.d.). The standards are non-specific so that organizations following

the standard are free to use any tools and processes, provided the basic require-

ments of the standards are met.

The relevant sections of the Automotive SPICE process reference model cover

system-level development, software development, quality assurance, and project

management (VDA QMC Working Group 13 / Automotive SIG, n.d.). The ultimate goal

11

of the processes described in the document is to ensure thorough documentation

and complete understanding by its authors of the system being developed. This

documentation should be thorough enough such that a third party can verify that

the organization is following the Automotive SPICE guidelines and procedures. Ad-

ditionally, it must be possible to track the realization of a system to their written

requirements, and from written requirements back to the actual system. Any up-

dates to that system should continue to match the requirements for older versions

of the same system.

Development of provably safe software is done using the engineering verification

and validation model shown in Figure 2.1. In this model, every component of the

system is designed based on system-level and functional requirements before it is

developed, and tested as a unit, as a component of the entire system, and from end

to end before it is integrated. This strict process is designed to reduce the probability

of faults that could cause catastrophic failures.

Much like ISO 26262, understanding the guidelines present in Automotive SPICE

is important so that our team understands how the BPMP team needs to function

in order to achieve its objective of ensuring software safety. In particular, these

guidelines motivate the use of code review tools such as Gerrit to keep track of any

and all changes that are being made to the BPMP codebase.

2.3.3 Software Safety Processes within Agile Software Development

Software teams at NVIDIA follow an agile software development model. This model

suggests that requirements and their solutions should be developed in tandem, which

results in an iteratively developed software product that adds features over time.

This is often done out of necessity as it can be impossible to determine the full set

of requirements for a piece of software at the onset of development. However, the

12

Figure 2.1: The engineering V-model.

agile development model stands in contrast to the V-model, which requires that re-

quirements be clearly defined before any development can be done. This means that

agile software development alone is insufficient to ensure functional safety to the

levels that the BPMP firmware project requires.

The V-model shown in Figure 2.1 shows time increasing from left to right (Donahue

& Van Schalkwyk, 2018). To achieve the same processes in an agile development

model, time increases from top to bottom. The first step after the software has been

created is to write software design documents for each functional unit, and to verify

them using unit tests. The next step is to write software architecture documents

and functional tests for each system above it, and so on. This continues until the

entire BPMP firmware is covered by a sweeping set of architectural and unit design

documents, and tests that range in scope from unit tests to end-to-end tests. If any

new requirements are developed, or if any verification fails, the agile process will

13

begin anew to accommodate those changes.

The V-model is held up as a standard of how the development of safe software

should be done. In NVIDIA’s case, the BPMP firmware already exists, so it is necessary

to create design documents and unit tests after the fact to ensure compliance with

the Automotive SPICE process.

2.4 Code Standards

The BPMP firmware must adhere to project-specific code standards such as MISRA

C:2012 and functional testing completeness. The goal of these code standards is to

create uniform development habits among BPMP software engineers so that reading,

examining, and maintaining code becomes easier. To accomplish this, NVIDIA has in-

tegrated a static analysis tool and unit testing framework to ensure code compliance

with these standards.

2.4.1 Functional Testing Completeness

The BPMP team is interested in three types of coverage when testing for complete-

ness of functional testing: line coverage, branch coverage, requirements coverage.

Line and branch coverage are concerned with the source code itself; line coverage

checks whether each line of code in a codebase is covered by the execution of a

set of functional tests, and branch coverage tests whether each branch of execution

is covered by the same. Requirements coverage operates on a higher level, and is

concerned whether each functional requirement (as described in a software design

document) is covered by the set of functional tests.

When developing these tests, software safety guidelines suggest that each com-

ponent of the system be fully verified. As a result, the BPMP team has imposed a re-

14

quirement upon the set of functional tests that they exhibit complete line and branch

coverage. They also require that each individual test can be cross-referenced with

a specific functional requirement in a software design document. This allows each

functional requirement to be easily verified, increasing the team’s confidence in the

safety of the BPMP firmware.

Ensuring the functional completeness of unit tests is necessary to ensure that

the software works exactly the way it is expected to. Part of our team’s project was

to write unit tests to increase the line and branch coverage of the BPMP firmware’s

entire unit test suite.

2.4.2 MISRA C:2012

MISRA C:2012 is a code standard for the C programming language that seeks to elim-

inate the presence of undefined, unspecified, or implementation-defined behavior

and to increase the readability of code by removing ambiguities. It was originally

developed by the UK-based Motor Industry Reliability Association (MISRA, 2013) for

use in software that runs in automobiles, but has also been adopted by many em-

bedded software projects that require verifiable software safety. By adopting the

standard, NVIDIA hopes to minimize the probability of its code exhibiting a fault due

to undefined behavior, or of programmer error due to obtuse code. Either of these

issues could potentially result in a software failure.

MISRA C:2012’s guidelines consist of directives, which are high-level guidelines

that apply to the codebase as a whole, and rules, which apply to individual lines or

sections of code (MISRA, 2013). All rule violations should be detectable by a compe-

tent static analysis tool (such as Coverity, which NVIDIA uses). Guidelines are also

classified as either mandatory, required (where a formal deviation report is needed

to justify breaking it), and advisory (which should still be documented if broken). Di-

15

rectives are never classified as mandatory due to their large scope, but any guideline

can be re-categorized by an organization to be more restrictive than the standard

specifies.

To ensure compliance to the standard, NVIDIA has appointed an internal review

board for MISRA compliance that is responsible for assessing every deviation that

is filed and determining its validity. Any deviation report must prove that the code

that causes the violation cannot cause a catastrophic failure if present, and that any

undefined behavior as a result of it is minimized. Ultimately, the review board has

full control over which deviation reports are accepted. The BPMP firmware team

also runs a weekly scan of the entire codebase to count all MISRA violations (except

for the ones with accepted deviation reports), and has developed a tool to scan for

MISRA violations in individual files on demand in order to simplify their removal.

A particularly disruptive guideline in the MISRA standard is the required directive

4.12, “Dynamic memory allocation shall not be used” (MISRA, 2013). This applies to

the C standard library functions malloc and free, as well as any other third-party

allocators. This directive is present because of all of the possibilities for undefined

behavior that can come as a result: the ISO C standard does not specify what hap-

pens when memory that was not dynamically allocated is freed, when freed memory

is accessed, when there is no more memory that can be allocated, and what the con-

tents of freshly allocated memory are. To comply with this rule, NVIDIA engineers are

required to develop other solutions to acquire a variable amount of memory, or to

justify the use of dynamic memory allocation by proving that it cannot cause any ill

effects in the code.

ISO 26262 requires that a specific code standard be followed by an organization

during the development of the firmware. NVIDIA chose to follow the MISRA C:2012

guidelines partly because the standard was originally developed for automotive soft-

16

ware. Part of the team’s project involved refactoring existing code to conform to

MISRA’s guidelines.

17

18

Chapter 3

Methodology

This chapter discusses the specific tasks assigned to the team as part of our project.

Design-oriented tasks are discussed first; these include a reorganization of source

code to better match the defined architecture of the BPMP firmware. Next, the re-

port discusses the development of software design documents for each component

of the firmware, which are necessary for following ISO 26262 guidelines. The next

section describes implementation-oriented tasks; of those, we were only responsi-

ble for MISRA-cleaning individual source files and conducting peer reviews on code

written by other members of our team. These changes are meant to reduce the like-

lihood of undefined behavior and programmer error, respectively. The final section

covers the development of unit tests to verify that defined functional requirements

of the BPMP firmware are satisfied.

3.1 Software Definition and Design

The V-model described in ISO 26262 and the Automotive SPICE process reference

model, shown in Figure 2.1, requires the development of an architecture design that

19

describes the requirements of each sub-systemof the entire software product (Donahue

& Van Schalkwyk, 2018). While the ideal architecture of the BPMP firmware can be de-

scribed informally by software architects and team leads, it is still necessary to doc-

ument the actual architecture of the firmware. To accomplish this, the team decided

to develop documentation on the ideal architecture of the BPMP firmware while si-

multaneously refactoring the code to match that architecture.

The true architecture of a large software project like the BPMP firmware is difficult

to realize concretely. To aid in this task, NVIDIA acquired licenses for a static code

analysis tool called SciTools Understand (SciTools, n.d.). One of its most powerful

features is that it can generate a butterfly dependency graph for each source mod-

ule. A butterfly dependency graph shows all modules that depend on a given source

module, as well as all modules that are depended upon by that given source mod-

ule. In the example shown in Figure 3.1, the module services/debugfs-service

makes 703 references to the lib module, 0 references to the startup module, and

2 references to the driversmodule. Likewise, the driversmodule makes 417 ref-

erences to debugfs interfaces.

SciTools Understand’s knowledge of the source modules in a project depends on

an externally generated architecture file, derived from Python scripts in the BPMP

codebase. Two distinct architectures have been developed to describe the firmware.

One is based on a hierarchical model of each source module: a source module

that interfaces with an analog-to-digital converter would be named drivers/adc

and would be present under a higher-level source module called drivers, which

is shown in the dependency graph in Figure 3.1. The other model splits the BPMP

codebase into four slices: three lettered ones that need to be safety-verified, and

one called Excluded that does not, as it only contains unit tests, stubs, and debug-

ging code that will never be deployed in production. It is in the interest of the entire

20

Figure 3.1: A butterfly dependency graph generated by SciTools Understand.

BPMP firmware team to place as much code in the Excluded slice as possible, since

the code in that slice will not need to be MISRA-cleaned or properly verified.

3.1.1 Source Code Segregation

One major architecture change is the extraction of debugfs interfaces from the

source code for every BPMP driver, and its consolidation in one directory outside

of the drivers’ source code. The debugfs service, as the name describes, is a de-

bugging filesystem used for diagnosing issues with the hardware or software during

testing. Each driver in the BPMP firmware contains a set of debugging routines to ini-

tialize debugfs and write data to the file system as needed. Since debugfs is not

present in the firmware in production, it does not need to be subjected to the same

test coverage and MISRA compliance standards that other production code does.

However, each BPMP driver (which contains a debugfs interface) will be present in

production and needs to be verified per the safety standards. Instead of needlessly

MISRA-cleaning and unit testing an internal debugging framework, it was determined

that debugfs needed to be extracted from each BPMP driver, placed into a different

top-level module, and moved to the Excluded slice.

The first step of this process was to put source and header files containing ref-

21

erences to debugfs into a submodule of the same name. To do this, the team first

determined which source files within each module reference the debugfs interface.

Prior implementations of debugfs were present in their own source files, which

made this process as simple as searching for files that contain the string debugfs or

include the necessary header file lib/debugfs.h. Each source or header file that fit

this description was placed in a sub-directory called debugfs, and a rules.mk file

was created to turn that sub-directory into a proper module. Finally, the driver’s top-

levelmodule was temporarilymade to link to its debugfs submodule when debugfs

was globally enabled.

The second step of this process was to move each driver’s debugfs interface

into a completely separate part of the source tree: for example, a debugfs interface

located at drivers/adc/debugfs would be moved to srv/debugfs/adc. To ac-

complish this, a new Makefile was written for srv/debugfs that would only link a

debugfs interface into the target binary if debugfs was globally enabled and the

relevant driver was enabled. If debugfs was globally disabled, nothing would be

linked; if the driver was disabled, then a stub interface would be linked instead, con-

taining only a debugfs initialization subroutine with an empty body. To finish this

step, everymodule inside srv/debugfswas placed inside a top-level module called

debugfs-service, and relegated to the Excluded slice.

Following the completion of this step, the team used SciTools Understand to de-

termine whether the migration of the debugfs interface was complete. Understand

generated figure 3.1 when prompted about the dependencies of the debugfs service.

The figure indicates that there were two references to a debugfs interface that were

actively used by the code. Performing a recursive search using grep revealed many

more that were declared but never used substantively1. The team then submitted

1Most of these turned out to be definitions of stub functions.

22

Figure 3.2: A butterfly dependency graph generated by SciTools Understand after the
debugfs interface code was fully segregated.

a series of ten small-scale patches that collectively removed these references and

placed them inside the debugfs-service module. Many of them simply involved

the removal of a stub function from a header file and placing it inside a stub sub-

module of a driver’s debugfs interface. The migration of other drivers, especially

those related to runtime code profiling, was more involved, as it proved necessary at

times to split the source files of those drivers to remove the debugfs interface inside

them. At the conclusion of this final stage, SciTools Understand emitted the butterfly

dependency graph shown in Figure 3.2, which revealed that no BPMP drivers refer-

ence debugfs, and a recursive search of source files revealed that the only textual

reference to debugfs outside the startup code is present inside a comment.

3.1.2 Software Design Documentation

For compliance with ISO 26262, the BPMP team must create design documents for

each software component (ISO, 2018). When documenting software design, the specifics

of a module’s functionality are separated into architecture design documents and

module design documents, which are detailed below.

The BPMP team writes their documentation in a format called AsciiDoc, which al-

23

lows authors to write documents in plain text with basic formatting. A related tool,

called AsciiDoctor, converts these files into HTML, PDF, and LATEXformats, among oth-

ers. In the BPMP firmware, documentation is placed in its own Git repository, which

allows the team to keep track of documented components and how the documen-

tation has changed. Each full build compiles the documentation into HTML and PDF

formats and deploy it on NVIDIA’s internal documentation website.

When developing architecture design documents for a module, it is necessary

to list the modules that depend on it, as well as the modules that it depends on.2

Architecture design documents also describe the functionality of the module as a

whole, grouped by the source file containing that functionality. Additional content

can be added as needed; if the module manipulates a data structure, the design

document will contain a diagram that details how the data in that structure is used

by each part of the firmware.

Module design documents provide an overview of the internal functional inter-

face of the module. They list the details of each function exposed by the mod-

ule, including the functions’ possible return values, error codes, and parameters,

an overview of the function’s expected behavior and requirements, and a butterfly-

dependency graph that shows its dependencies. This documentation allows devel-

opers to design unit tests that ensure that the functions do exactly what the require-

ments describe. The development of unit tests that follow this pattern reduces the

probability that code containing a potentially disastrous fault will be deployed.

2SciTools Understand’s butterfly-dependency graphs show this visually.

24

3.2 Software Implementation

Our team was also tasked with writing software to be added to the BPMP firmware

codebase. We wrote unit tests for each specific module, and cleaned up MISRA vi-

olations in various source files throughout the BPMP software. All code submitted

was subject to code reviews conducted by the other team members.

3.2.1 Code Review

When making changes to BPMP firmware, the assigned member created a new Git

branch locally, and made one or more commits along that branch for certain mile-

stones. When a change was ready to be reviewed, an interactive rebase would be

performed to move the branch on top of master and squash the entire branch into

one commit that could then be directly applied (“cherry-picked” in Git parlance) to

the head of master. This commit would then be pushed to Gerrit. If further changes

were needed because negative feedback was received during code review or the

build failed, we would make any necessary corrections, amend the commit, and push

again. Gerrit then notified other users that a new patch has been uploaded for the

same commit.

Each commit submitted to Gerrit is automatically checked for common issues by a

pair of automated processes running on a continuous integration server. The “Auto-

matic Commit Validation User” process checks the contents of each patch to ensure

that no binaries, executable files, or large files are pushed to the Git server. The

svc-bpmp process cherry-picks the commit onto a copy of the master branch and

attempt to build it. If the build succeeds, svc-bpmp adds a Verified flag to the com-

mit.

Before involving NVIDIA staff, we sought code reviews from one another. When

25

reviewing code, we ensure that it matches NVIDIA’s accepted style guidelines. During

the code review, we also ensure that every modification has a reason behind it, so

that anyone who reads the code can easily determine what it does. This usually

results in ”magic numbers” being replaced with constants, and the simplification of

particularly obtuse code. A reviewer will add a Verified flag to the commit if it builds

and tests successfully on his machine, and a code review flag between -2 and +2. Our

team was not allowed to give +2 to code reviews; only a select few developers are

capable of issuing a +2 code review flag. When a commit is given a +2 and at least

one other person has reviewed the code, the commit is automatically cherry-picked

and merged onto the master branch.

3.2.2 MISRA Violation Removal

Since the BPMP codebase was originally written without the MISRA C standard in

mind, the BPMP firmware group needs to go through all of the source files and re-

move any violations that exist (“cleaning up” the codebase). Our team was tasked

with removing MISRA violations in specific files in the BPMP codebase.

In order to clean MISRA violations in a given file, the first step is to run a script

(called misra-scan-file) that enumerates every MISRA violation in that source

file or any headers that it includes in an HTML report. For each violation, the report

lists the ID of the rule that has been violated, a link to the line in the source file

containing the violation, and the name of the function that contains the violation, if

applicable. This scan has the ability to ignore a specific set of errors, which allows

the BPMP firmware team to focus on cleaning a few errors at a time rather than try

to clean all of them at once. Once changes are made, it is possible to generate a new

report using the same script; each execution takes about two minutes for a 100-line

source file. This process continues iteratively until the file is free of MISRA violations

26

or cleaned to a specific standard, after which the developer would submit the source

file (and other associated changes) to Gerrit to be reviewed.

3.3 Software Verification by Unit Test Development

The Automotive SPICE process reference model suggests that test cases be written

before the relevant functionality is implemented. However, the BPMP firmware was

originally developed before NVIDIA knew it would be used in autonomous vehicles,

and had sparse unit test coverage at the time the project began. To conform with

the necessary safety processes, unit tests need to be written in such a way to cover

all lines of code as well as all branches in the code as well.

The BPMP firmware’s unit tests are developed using an internally developed unit

testing library called libut. This library exposes functionality to assert whether two

values are equal, and to mock interfaces for other components in the software, that

the unit test will assume works as expected. Assertions are able to print a custom

message to the console when a test fails, which makes it easy for developers to de-

termine which assertion failed in a group of tests.

Device tree source files are used to store information about hardware compo-

nents that are relevant to the operating system. They are used in both the Linux

kernel and the BPMP firmware (Rowand, 2018). Modules that interact with device

trees will be unit tested by writing device tree source files that cover every case of

possible values. This made it necessary for the team to write device trees that, when

loaded, will cause every line and branch of code to be executed. To integrate them

with the firmware (for simulation and testing and also in production), each device

tree source file is compiled into a binary blob that defines the device tree, and is

embedded as read-only data inside the executable. The firmware interacts with the

27

binary blob using the interfaces provided by the third-party libfdt library.

28

Chapter 4

Results

Since our project was not fully self-contained, results are measured in terms of

patches submitted or lines changed. This chapter begins with a table showing cu-

mulative totals of work done through the project. We then display graphs that show

our progress over time.

The data in the following sectionswere collected and placed into an SQLite database

using a Python script. Pure SQL commands and other Python tooling was used to gen-

erate the cumulative and time series data presented in the following sections. The

source code of all results tooling can be found in appendix A.

4.1 Work Totals

Table 4.1 details the cumulative work that our team has put into the BPMP safety

project, showing the number of commits we submitted, howmany of those were suc-

cessfully merged into the actual codebase, and how many lines of code we changed

in order to fulfill our goals.

29

Total Commits 60
Merged Commits 49
Unit Test Commits 16

Unit Tests Written 43
MISRA Cleanup Commits 18
Documentation Commits 3

Total Lines Added 5,736
Total Lines Deleted 1,814

Unit Test Lines Added 1,796
MISRA-compliant Lines Added 662
MISRA-violating Lines Removed 545

Work Days 36

Figure 4.1: Total work completed.

4.2 Work Accomplished over Time

Figure 4.2 displays the number of commits that our team has submitted since we

started working on the BPMP safety project. The x-axis is the time in days since

starting in January. The blue line comprises all of the code that has been submitted

to Gerrit, while the red line shows how many of our commits have been merged into

the codebase.

Figure 4.3 showcases the cumulative number of lines that were modified in each

commit over the course of our project work. The x-axis also shows the time in days

since work started on the project. The blue line specifically displays the number of

lines that were added to the master branch while the red line shows the number of

lines removed.

30

0 5 10 15 20 25 30 35 40 45 50 550

10

20

30

40

50

60

Days

Co
m
m
its

Submitted Commits
Merged Commits

Figure 4.2: Submitted and merged commits over time.

0 5 10 15 20 25 30 35 40 45 50 55
-2,000

-1,000

0

1,000

2,000

3,000

4,000

5,000

6,000

Days

Li
ne
s
Ad
de
d

Insertions
Deletions

Figure 4.3: Line changes over time.

31

In summary, the team was able to resolve hundreds of MISRA violations in the

BPMP codebase, writemany unit tests to verify the functionality of the BPMP firmware,

and develop detailed documentation on BPMP source modules. Additionally, the

team was able to fully extract debugging interface code from BPMP drivers so that it

would not have to be held up to the same safety standards as production code.

32

Chapter 5

Conclusion

Ensuring that software systems are safe is hard, requiring code to be well docu-

mented, fully tested, and reliable. These tasks are important as they have proven to

reduce the probability of faults in software causing catastrophic failures in hardware

systems. Software safety can be achieved through work prescribed by safety guide-

lines like ISO 26262 and Automotive SPICE, which require organizations to follow a

specific development process when developing software for passenger vehicles. En-

suring that the systems used to power autonomous vehicles are safe will reduce the

risk present to those who use them or exist around them.

Our teamhas achieved the primary goal of assisting the BPMP firmware groupwith

achieving compliance with ISO 26262 and the Automotive SPICE safety guidelines, and

code compliance with MISRA C:2012 standards. The team wrote unit tests, refactored

BPMP drivers, cleaned MISRA violations across the codebase, and drafted software

design documents for BPMP libraries. As displayed in the results section, our team

made significant contributions to the BPMP firmware in all of these categories. By

completing these tasks, our team has reduced the amount of work that the BPMP

firmware group needs to complete for the safety project.

33

34

Chapter 6

Future Work

The following paragraphs briefly describe work that could be done to further BPMP

software safety; specifically drafting software design documents, writing unit tests,

and cleaning up MISRA violations from the BPMP codebase to make the firmware

compliant.

The design documents written by our team are under review bymore seniormem-

bers of the BPMP team. These documents are important since NVIDIA plans on using

these libraries in other projects in the Tegra software stack. Publishing these design

documents may be beneficial for developers to reference when writing software that

depends on those libraries. There are other software components that need to be

documented in this fashion. Design documents must describe the libraries’ purpose,

its functional requirements (how the software responds to inputs), its dependencies,

the interface it exposes to other software units, and how errors are handled inter-

nally. Separate documents must describe each file or unit within the module and its

role therein.

There are other unit tests that need to be written to verify that the entire BPMP

firmware functions as expected. Of the libraries the teamwrote unit tests for, none of

35

them exhibit complete line and branch coverage yet; additionally, when more func-

tional and safety requirements of these libraries are created, more unit tests ought

to be developed that correspond to those written requirements. Achieving a direct

relationship between written requirements and functional tests may make it easier

to verify that each software unit performs the way that its design document claims

it does.

Finally, MISRA violations need to be resolved in files throughout the BPMP code-

base. Thousands of MISRA violations still exist in the BPMP codebase that either need

to be removed, or waived by NVIDIA’s internal safety committee. While some viola-

tions are relatively easy to fix, attention could be directed towards violations of more

abstract and involved rules, like those the prevent the use of recursion or dynamic

memory allocation. Removing these violations may decrease the likelihood that the

firmware (written in the C programming language) would exhibit undefined behavior.

Additionally, following these rules may increase the readability of the codebase and

help others who are not familiar with it determine what the code is doing.

36

References

Daniel, C. (2018, Sep). Signed, SHIELD, delivered: Our streaming media player gets its

20th upgrade. NVIDIA Corporation. Retrieved February 5, 2019, from https://

blogs.nvidia.com/blog/2018/09/10/shield-update-20/

Donahue, J., & Van Schalkwyk, I. (2018, July). WSDOT designmanual. In (chap. 1050.03).

Washington State Department of Transportation.

Franklin, D. (2017, Mar). NVIDIA Jetson TX2 delivers twice the intelligence to the edge.

NVIDIA Corporation. Retrieved January 18, 2019, from https://devblogs

.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/

Gerrit Code Review. (n.d.). About Gerrit. Gerrit Code Review. Retrieved January 31,

2019, from https://www.gerritcodereview.com/about.html

ISO. (2018). Road vehicles – functional safety (ISO No. 26262‒1:2018). Geneva, Switzer-

land: International Organization for Standardization.

Karandikar, A. (2017, Sep). NVIDIA gaming technology powers Nintendo Switch | NVIDIA

blog. NVIDIA Corporation. Retrieved January 24, 2019, from https://blogs

.nvidia.com/blog/2016/10/20/nintendo-switch/

MISRA. (2013). MISRA-C: 2012: guidelines for the use of the C language in critical

systems. Motor Industry Reliability Association.

NVIDIA. (2015, Dec). Tegra boot flow | Tegra public app notes. Santa Clara, CA: NVIDIA

Corporation. Retrieved January 28, 2019, from https://http.download

37

https://blogs.nvidia.com/blog/2018/09/10/shield-update-20/
https://blogs.nvidia.com/blog/2018/09/10/shield-update-20/
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
https://www.gerritcodereview.com/about.html
https://blogs.nvidia.com/blog/2016/10/20/nintendo-switch/
https://blogs.nvidia.com/blog/2016/10/20/nintendo-switch/
https://http.download.nvidia.com/tegra-public-appnotes/tegra-boot-flow.html
https://http.download.nvidia.com/tegra-public-appnotes/tegra-boot-flow.html

.nvidia.com/tegra-public-appnotes/tegra-boot-flow.html

NVIDIA. (2017). Nvidia Tegra boot and power management processor (BPMP)

[Computer software manual]. The Linux Kernel Archives. Retrieved

February 13, 2019, from https://www.kernel.org/doc/Documentation/

devicetree/bindings/firmware/nvidia%2Ctegra186-bpmp.txt

Rowand, F. (2018, Dec). Device tree reference. eLinux. Retrieved from https://

elinux.org/Device_Tree_Reference

SciTools. (n.d.). Understand: Visualize your code | scitools.com. Scientific Toolworks,

Inc. Retrieved February 6, 2019, from https://scitools.com/features/

Shapiro, D. (2016, Oct). Tesla Motors’ self-driving car “supercomputer” powered

by NVIDIA DRIVE PX 2 technology. NVIDIA Corporation. Retrieved Febru-

ary 14, 2019, from https://blogs.nvidia.com/blog/2016/10/20/tesla

-motors-self-driving/

Smith, R., & Ho, J. (2015, Jan). NVIDIA Tegra X1 preview & architecture analysis.

AnandTech. Retrieved January 24, 2019, from https://www.anandtech.com/

show/8811/nvidia-tegra-x1-preview/4

Ubuntu. (n.d.). Ubuntu release cycle. Canonical Ltd. Retrieved January 31, 2019, from

https://www.ubuntu.com/about/release-cycle

VDA QMC Working Group 13 / Automotive SIG. (n.d.). Automotive SPICE process as-

sessment / reference model. (Version 3.1)

38

https://http.download.nvidia.com/tegra-public-appnotes/tegra-boot-flow.html
https://www.kernel.org/doc/Documentation/devicetree/bindings/firmware/nvidia%2Ctegra186-bpmp.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/firmware/nvidia%2Ctegra186-bpmp.txt
https://elinux.org/Device_Tree_Reference
https://elinux.org/Device_Tree_Reference
https://scitools.com/features/
https://blogs.nvidia.com/blog/2016/10/20/tesla-motors-self-driving/
https://blogs.nvidia.com/blog/2016/10/20/tesla-motors-self-driving/
https://www.anandtech.com/show/8811/nvidia-tegra-x1-preview/4
https://www.anandtech.com/show/8811/nvidia-tegra-x1-preview/4
https://www.ubuntu.com/about/release-cycle

Appendix A

Results Tooling

A.1 Gerrit Scraper

This script scrapes the Gerrit Code Review server for data about patches submitted

by the authors of this report. Since the cookie variable contains data irrelevant to

the operation of this script, its value has been omitted.

#! /usr/bin/env python3

import json

import sqlite3

import subprocess

This Gerrit endpoint works (*for now*)

url = "https://git-master.nvidia.com/r/changes/?q=owner:tejasr@nvidia.com

&q=owner:rharrison@nvidia.com&q=owner:gdeva@nvidia.com&O=881"

cookie = "redacted"

cmd_output, _ = subprocess.Popen(["curl",

39

url,

"-H", "User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:65.0)

Gecko/20100101 Firefox/65.0",

"-H", "Accept: */*",

"-H", "Accept-Language: en-US,en;q=0.5",

"-H", "--compressed",

"-H", "Referer: https://git-master.nvidia.com/r/",

"-H", "DNT: 1",

"-H", "Connection: keep-alive",

"-H", cookie], stdout = subprocess.PIPE, stderr = subprocess.PIPE).communicate()

raw_commits = json.loads(cmd_output.decode("utf-8")[4:])

raw_commits = [item for sublist in raw_commits for item in sublist]

patch_db = sqlite3.connect("commits.db")

patch_cur = patch_db.cursor()

patch_cur.execute("CREATE TABLE IF NOT EXISTS PATCHES (ID INTEGER PRIMARY KEY,

OWNER TEXT, CREATED TEXT, FINISHED TEXT,

SUBJECT TEXT, PROJECT TEXT, INSERTIONS INTEGER,

DELETIONS INTEGER, MERGED INTEGER)")

patch_db.commit()

for c in raw_commits:

if c["status"] != "ABANDONED":

patch_cur.execute("INSERT INTO PATCHES VALUES

(?, ?, ?, ?, ?, ?, ?, ?, ?)",

[c["_number"], c["owner"]["username"],

c["created"][:23],

None if c.get("updated") is None else c["updated"][:23],

40

c["subject"], c["project"], c["insertions"], c["deletions"],

1 if c["status"] == "MERGED" else 0])

patch_db.commit()

A.2 Database Scraper

This script scrapes the SQLite database containing commit data, and writes the results of

the given query in a format that the chart renderer can interpret. This version of the script

displays merged commits over time (see section A.3 for other statements that can be put in

its place).

#! /usr/bin/env python3

import datetime

import sqlite3

curr_date = datetime.datetime(2019, 1, 8)

rollup_commits = []

db = sqlite3.connect("commits.db")

cur = db.cursor()

while curr_date <= datetime.datetime(2019, 3, 1):

cur.execute("SELECT COUNT(*) FROM PATCHES WHERE MERGED = 1 AND

FINISHED < ?", [curr_date + datetime.timedelta(hours = 8)])

this_date_commits = cur.fetchone()

rollup_commits.append(this_date_commits)

curr_date += datetime.timedelta(days = 1)

print(" ".join(str((a, *b)) for a, b in zip(range(len(rollup_commits)),

41

rollup_commits)))

A.3 SQL Statements for Chart Data Retrieval

The following statements can be run directly against the database:

• Total Commits: SELECT COUNT(*) FROM PATCHES

• Merged Commits: SELECT COUNT(*) FROM PATCHES WHERE MERGED = 1

• Unit Test Commits: SELECT COUNT(*) FROM PATCHES WHERE SUBJECT LIKE "%unit%"

• MISRA Cleanup Commits: SELECT COUNT(*) FROM PATCHES WHERE SUBJECT LIKE

"%MISRA%"

• Documentation Commits: SELECT COUNT(*) FROM PATCHES WHERE PROJECT = "tegra/

bpmp/doc"

• To determine the total number of inserted or removed lines, we selectSUM(INSERTIONS)

or SUM(DELETIONS) instead of COUNT(*).

The following statements need to be run using the database scraper script found in section

A.2.

• Submitted Commits over Time: SELECT COUNT(*) FROM PATCHES WHERE CREATED

< (date)

• Merged Commits over Time: SELECT COUNT(*) FROM PATCHES WHERE MERGED =

1 AND FINISHED < (date)

• Insertions over Time: SELECT COALESCE(SUM(INSERTIONS), 0) FROM PATCHES

WHERE CREATED < (date)

42

• Deletions over Time: SELECT COALESCE(-SUM(DELETIONS), 0) FROM PATCHES

WHERE CREATED < (date)

43

	Acknowledgments
	Introduction
	Background
	Tegra
	Development Environments
	Safety Standards and Requirements
	ISO 26262
	Automotive SPICE Process Reference Model
	Software Safety Processes within Agile Software Development

	Code Standards
	Functional Testing Completeness
	MISRA C:2012

	Methodology
	Software Definition and Design
	Source Code Segregation
	Software Design Documentation

	Software Implementation
	Code Review
	MISRA Violation Removal

	Software Verification by Unit Test Development

	Results
	Work Totals
	Work Accomplished over Time

	Conclusion
	Future Work
	References
	Results Tooling
	Gerrit Scraper
	Database Scraper
	SQL Statements for Chart Data Retrieval

