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Abstract

With the phenomenal growth of digital devices coupled with their ever-increasing
capabilities of data generation and storage, sequential data is becoming more and more
ubiquitous in a wide spectrum of application scenarios. There are various embodi-
ments of sequential data such as temporal database, time series and text (word se-
quence) where the first one is synchronous over time and the latter two often generated
in an asynchronous fashion. In order to derive precious insights, it is critical to learn
and understand the behavior dynamics as well as the causality relationships across
sequences.

Pharmacovigilance is defined as the science and activities relating to the detec-
tion, assessment, understanding and prevention of adverse drug reactions (ADR) or
other drug-related problems. In the post-marketing phase, the effectiveness and the
safety of drugs is monitored by regulatory agencies known as post-marketing surveil-
lance. Spontaneous Reporting System (SRS), e.g., U.S. Food and Drug Administra-
tion Adverse Event Reporting System (FAERS), collects drug safety complaints over
time providing the key evidence to support regularity actions towards the reported
products. With the rapid growth of the reporting volume and velocity, data mining
techniques promise to be effective to facilitating drug safety reviewers performing su-
pervision tasks in a timely fashion.

My dissertation studies the problem of exploring, analyzing and modeling various
types of sequential data within a typical SRS:

Temporal Correlations Discovery and Exploration. SRS can be seen as a temporal
database where each transaction encodes the co-occurrence of some reported drugs
and observed ADRs in a time frame. Temporal association rule learning (TARL) has
been proven to be a prime candidate to derive associations among the objects from
such temporal database. However, TARL is parameterized and computational expen-
sive making it difficult to use for discovering interesting association among drugs and
ADRs in a timely fashion. Worse yet, existing interestingness measures fail to capture
the significance of certain types of association in the context of pharmacovigilance, e.g.
drug-drug interaction (DDI) related ADR. To discover DDI related ADR using TARL,
we propose an interestingness measure that aligns with the DDI semantics. We pro-
pose an interactive temporal association analytics framework that supports real-time
temporal association derivation and exploration.

Anomaly Detection in Time Series. Abnormal reports may reveal meaningful ADR
case which is overlooked by frequency-based data mining approach such as association
rule learning where patterns are derived from frequently occurred events. In addition,
the sense of abnormal or rareness may vary in different contexts. For example, an
ADR, normally occurs to adult population, may rarely happen to youth population
but with life threatening outcomes. Local outlier factor (LOF) is identified as a suitable
approach to capture such local abnormal phenomenon. However, existing LOF algo-
rithms and its variations fail to cope with high velocity data streams due to its high
algorithmic complexity. We propose new local outlier semantics that leverage kernel
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density estimation (KDE) to effectively detect local outliers from streaming data. A
strategy to continuously detect top-N KDE-based local outliers over streams is also
designed, called KELOS - the first linear time complexity streaming local outlier de-
tection approach.

Text Modeling. Language modeling (LM) is a fundamental problem in many natural
language processing (NLP) tasks. LM is the development of probabilistic models that
are able to | predict the next word in the sequence given the words that precede it. Re-
cently, LM is advanced by the success of the recurrent neural networks (RNNs) which
overcome the Markov assumption made in the traditional statistical language mod-
els. In theory, RNNs such as Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU) can “remember” arbitrarily long span of history if provided with enough
capacity. However, they do not perform well on very long sequences in practice as
the gradient computation for RNNs becomes increasingly ill-behaved as the expected
dependency becomes longer. One way of tackling this problem is to feed succinct in-
formation that encodes the semantic structure of the entire document such as latent
topics as context to guide the modeling process.

Clinical narratives that describe complex medical events are often accompanied
by meta-information such as a patient’s demographics, diagnoses and medications.
This structured information implicitly relates to the logical and semantic structure of
the entire narrative, and thus affects vocabulary choices for the narrative composition.
To leverage this meta-information, we propose a supervised topic compositional neu-
ral language model, called MeTRNN, that integrates the strength of supervised topic
modeling in capturing global semantics with the capacity of contextual recurrent neu-
ral networks (RNN) in modeling local word dependencies.
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1 Introduction

1.1 Sequential Data Mining

Data mining is a systematic process of extracting information from database and trans-
forming it into an understandable structure for further usage. Over the past three decades,
plentiful techniques have been invented and developed to discover useful patterns such
as frequent pattern mining, clustering, classification, outlier detection, regression, summarization
and etc. Beyond the core data analysis step, studies within the field of data mining also in-
volve data processing and management aspects, data modeling and inference approaches,
interestingness and evaluation metrics designs, computational complexity and efficiency

considerations, data visualizations and etc.

t,
i

\

(a) Synchronous sequence. (b) Asynchronous sequence.

Figure 1: Two sequential data types.

The design of the data mining technique is primarily driven by the types of input data
and the desirable transformation (output). My dissertation focuses on sequential data
types, e.g. time-series data types and other ordered types such as text. These sequential
data types can be categorized into synchronous and asynchronous sequence.

As illustrated in Figure 1(a), the synchronous type describes a sequence of events where
an event consists of multiple objects occurring at the same time. An example of this type
is retail database that stores customers” purchases. Each transaction records the products
being checked out and is associated with a timestamp. A typical desired analysis on such
data is temporal association analysis where the associations of different products over the
time are discovered to support business decision making. On the other hand, the asyn-
chronous type depicted in Figure 1(b) describes a sequence of objects occur in order without
having the same timestamp. Examples of such type are time series that records the values
of a variable over time, a piece of text where words are written in order according to a lan-
guage and a gene which is a sequence of DNA or RNA which codes for a molecule. Many
data mining tasks have been proposed and studied on this data type such as trend analysis,
language modeling and sequence generation.
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1.2 Applications in Pharmacovigilance

Pharmacovigilance is defined as the science and activities relating to the detection, assess-
ment, understanding and prevention of adverse drug reactions (ADRs) or other drug-related
problems. An adverse reaction corresponds to an unwanted and dangerous effect caused
by the administration of a drug. According to the U.S. Food and Drug Administration
(FDA) every year hundreds of thousands of people die because of these adverse reac-
tions while over two million serious adverse reactions are reported every year. In the
post-marketing phase the effectiveness and the safety of drugs is monitored by regulatory
agencies known as post-marketing surveillance.

For early detection of novel ADRs which are not captured during the clinical trials,
Spontaneous Reporting Systems (SRS) are designed to collect information on adverse events
related to drugs reported by patients, health care professionals and drug manufacturers
filed via mail, telephone and Internet. FDA Adverse Event Reporting System (FAERS) [] is
one such system. Data collected from the surveillance programs is a useful resource to tap
into ADRs. As thousands of new reports are added on a daily basis, discovering ADRS by
aimlessly screening and analyzing all these reports is extremely difficult if not impossible.
Therefore, computational methods, especially data mining techniques promise to be crit-
ical for identifying the most emerging ADR signals from massive reports. These signals
which can be seen as ADR hypothesis along with the reports that derive these signals are

then recommended to the drug safety evaluator for further investigation and validation.

A typical ADR report consists of structured fields and comment sections that are writ-
ten in natural language. Structured fields record the most essential information about an
incident such as the report date, patient’s demographics, drugs and ADRs. The primary
goal of SRS is to provide information to find emerging unlabeled ADR. One of the example
tasks that can leverage such structured, temporal data to achieve the goal is temporal drug-
ADR association analysis. That is, if a drug is highly associated with an ADR that is not
supposed to be triggered by the usage of this drug according to the SRS database, then this
drug-ADR pair may be a suspicious case that requires attention and further investigation.
Another task that can use these structured information is performing report cluster/out-
lier detection where similar reports are gathered or special reports are identified to support

systematic incidents exploration and monitoring.

Although the original report has structured fields, the unstructured narratives used for
reporting an adverse event often contain information that is left blank in the structured
fields. More importantly, these narratives are rich in detailed information regarding the
adverse event. Automatically extracting information from the unstructured ADR report

narratives into structured format is critical for advanced analytics and vital for timely de-



10 Dissertation — Xiao Qin

tection, assessment and prevention of future incidents of ADRs. Many sequence modeling
tasks have been studied to identify valuable information from the text such as language

modeling, sequence labeling (named entity recognition) and text generation.

1.3 State-of-the-Art

Temporal Association Analytics. Temporal association rule learning (TARL) [111] is a
technique that discovers temporal casual relationships among the items based upon their
co-occurrence within a timeframe. It has been studied and extended to solve various prob-
lems including sequential association mining [42], cyclic association mining [80], stock
trading rule mining [62], patent mining [101], clinical mining [106], image time series
mining [48], software adoption and penetration mining [83], temporalutility mining [119],
fuzzy temporal mining [61], and calendar association mining [111].

Lag in responsiveness is known to risk losing an analyst’s attention during the explo-
ration process. In applications like pharmacovigilance, such delay in decision making may
prove to be the cause of public health crisis. Unfortunately, temporal association mining algo-
rithms [7, 81] are known to be computationally intensive. To overcome this challenge, [111]
pregenerates the intermediate itemsets that are subsequently used to derive the temporal as-
sociations instead of extracting them from the huge raw data store. With this promising
one-time preprocessing strategy, the response time has been shown to be greatly reduced.
However, the process of the final rule derivation remains a query-time task.

Temporal association mining algorithms are parametrized not only by traditional mea-
sures like support, confidence but also by time-variant measures [67, 95, 97]. Parameter set-
tings used for one batch of data may produce insignificant rules for a newly incoming data
batch. Thus the data analysts often must perform numerous successive trial-and-error
iterations to find an appropriate parameter configuration out of a seemingly infinite num-
ber of possible settings. Existing state-of-the-art models tend to correspond to a blackbox
[7, 38, 65, 81, 111] - providing little to no feedback about which parameter settings best
capture the analyst’s interest. To tackle this, [66] incorporates an indexing technique to
swiftly produce parameter recommendations. However it is restricted to static data and
thus does not support time variant operations essential for temporal association mining.

Temporal Outlier Detection. Finding outliers in streaming data is a fundamental task
in many online applications ranging from fraud detection, network intrusion monitoring
to system fault analysis.

LEAP [23] and Macrobase [8] scale distance-based and statistical-based outlier detec-
tion methods respectively to data streams where they rely on either the number of neigh-

bors in a certain distance range or the frequency of each data point to detect outliers. More
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specifically in these works, a data point is considered to be an outlier if its neighbor count
(or frequency) is lower than a global cut-off threshold. However, applying such a global cut-
off threshold uniformly to the whole dataset is not ineffective in handling skewed datasets
[33]. For example, a point with a small number of neighbors is not necessarily an outlier
if it is located in a relative sparse subspace of the dataset. On the other hand, a point with
a relative large number of neighbors might instead be an outlier, if it is located in a dense
subspace and other points have many more neighbors than it.

Several methods [87, 99] have been proposed in recent years that leverage the concept
of local outlier [18] to detect outliers from data streams. Local outlier is based on the
observation that real world datasets tend to be skewed, where different subspaces of the
data exhibit different distribution properties. It is thus often more meaningful to decide on
the outlier status of a point based on its difference from the points in its local neighborhood
as opposed to using a global density [23] or frequency [8] cutoff threshold to detect outliers
[33]. More specifically, a point x is considered a local outlier if the probability density (PD)
at x is low relative to that at the points in 2’s local neighborhood. -

Unfortunately, existing streaming local outlier solutions [87, 99] are not scalable to high
volume data streams. The root cause is that they measure the probability density at each
point x based on the point’s distance to its k nearest neighbors (kNN). Unfortunately, kNN
is very sensitive to data updates, meaning that the insertion or removal of even a small
number of points can cause the kNN of many points in the dataset to be updated. Since
the complexity of the kNN search [18] is quadratic in the number of the points, significant
resources may be wasted on a large number of unnecessary kNN re-computations. There-
fore, those approaches suffer from high response time when handling high-speed streams.
For example, it took [87, 99] 10 minutes to processing just 100k tuples as shown in their
experiments.

Language Model and Text Generation. Language model can be classified into two cat-
egories, namely, count based and continuous-space based modeling. Count based models [53]
such as traditional statistical language model, make an n-th order Markov assumption and
estimate n-gram probabilities via counting and subsequent smoothing. The problem with
such assumption is that the new combinations of n words that were not seen in the training
corpus are likely to occur, thus causing zero probability being assigned frequently. Vari-
ous smoothing methods such as modified Kneser-Ney smoothing [57] and Jelinek-Mercer
smoothing [25] have been proposed to solve the data sparsity problem. In recent years,
continuous space based models such as feed-forward neural probabilistic language models
[11] (NPLMs) and recurrent neural network language models [73] (RNNs) are proposed.
These Neural Language Models (NLM) solve the problem of data sparsity of the n-gram

model, by representing words as vectors (word embeddings) and using them as inputs to
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a NLM.

Language model has been applied to many NLP tasks including document modeling,
information extraction text generation etc. Existing language models typically model lo-
cally coherent language that is on topic; however, overall they can miss information that
should have been introduced or introduce duplicated or superfluous content. These errors
are particularly common in situations where there are multiple distinct sources of input or
the length of the output text is sufficiently long. [54] leverages the attention mechanism to
control the content that must be included when generating desired topic. [28] combines
recurrent neural network and topic model to model and generate text with hidden topics. In
addition, documents are composed by different author and may describe totally different
events. [76] proposes a variation of topic model that incorporates document level features
for modeling. However, it does not model the language therefore cannot be used for tasks

such as sequence labeling and text generation.

1.4 Research Challenges

Temporal Association Analytics. Given a time-variant data set containing n unique items,
the maximum number of possible associations are bounded by 3" — 2" 41 [66]. The signif-
icance of associations may vary over time, as newly incoming data may bring new items
and associations. Being able to quickly extract these associations and their behavior w.r.t
different time horizons to answer analysts’ requests is the key to providing an interactive
mining experience. However, it is almost impossible to pre-generate all such information.
Thus the system must have an efficient preprocessing strategy that pregenerates a minimal
yet sufficient amount of information as its critical knowledge store to support interactive
temporal association exploration.

Typical input parameters, such as minimum support and confidence, can be configured
using any real number restricted to a certain range. Similarly, the time specification can be
composed of one or multiple time periods along the continuous timeline. Clearly, an infi-
nite number of possible parameter settings exists. Maintaining the corresponding ruleset
for each parameter setting individually thus is impractical. Therefore, an efficient mecha-
nism is needed to map the pregenerated temporal associations to the space of parameter
settings.

The prominence level of an association may vary significantly for some associations
while remaining stable for others. Such time-variant properties of parameter values may
reveal important evolving patterns of an association in the evolving dataset. Yet keeping
each single historical parameter value for each association is inefficient, resulting in large

storage and search space. Therefore, a compact archive structure is needed to efficiently
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maintain the parameter values of the associations across time while supporting fast system
access to retrieve any desired information.

To effectively rank the produced rules and therefore help the drug-safety evaluator
concentrate on the rules most likely to be real MDARs, measures that effectively reflect
the significance of the association between a set of drugs and a set of ADRs have to be
provided. However, the off-the-shelf common used association measures such as support,
confidence and lift (RR) [10] focus only on a single association rule based on the number of
its occurrences, while the correlations among different rules have to be considered when
measuring the significance of a rule to be a MDAR. For examples, if two rules contain the
same ADRs and overlaps on the medicines, their significance might be influenced by each
other. Therefore, we are in need of a customized measure to quantify the significance of an
association in terms of its signaled MDARs.

Local Outlier Detection Over Data Stream. Effectively leveraging KDE in the stream-
ing context comes with challenges. First, the effectiveness of KDE depends on several
factors. In particular, both the kernel function and the smoothing parameter (commonly
referred to as bandwidth) [121] have to be carefully selected to achieve a high accuracy for
density estimation. Further, to ensure the effectiveness of KDE in multimodal distributions
prevalent in real world datasets, customized density estimators have to be established for
different data subspaces. This raises the problem of how to select relevant kernel cen-
ters to enable the inference of these different estimators. Making correct decisions on all
these factors is complex. Worst yet, the distribution characteristics of a data stream evolve.
Therefore, these factors would have to be continuously tuned to fit the data.

Furthermore, similar to kNN search, the complexity of KDE is quadratic in the number
of points [102]. While the computational costs can be reduced by running the density
estimation on kernel centers sampled from the input dataset, sampling leads to a trade-off
between accuracy and efficiency. Although a low sampling rate can dramatically reduce
the computational complexity, one must be cautious because the estimated probability
density at each point may be inaccurate due to an insufficient number of kernel centers.
On the other hand, a higher sampling rate will certainly lead to a better estimation of the
density. However, computational costs of KDE increase quadratically with more kernel
centers. With a large number of kernel centers, KDE would be at risk of becoming too
costly to satisfy the stringent response time requirements of streaming applications.

Topically-coherent Text Generation. Existing studies [57, 25, 11] on language model
focuses on modeling local coherent text based on n-gram Markov assumption. Although
they can bed used to generate readable text in proper grammar, they lack of mechanism to
control the topical coverage of the content. In many scenario, e.g. adverse drug reaction

report narrative, a valid document contains certain information such indication, drug in-
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formation and adverse events. Generating topically-coherent text is challenging since the
generated must keeps track of what has been generated and what needs to be generated.

Recent work has focused on adapting neural network architectures to improve cover-
age [116] with application to generating customer service responses, such as hotel infor-
mation, where a single sentence is generated to describe a few key ideas. [54] leverages
attention mechanism with a controlled vocabulary to check if certain words are generated as
expected. However, these techniques require explicit encoding and design to solve respec-
tive domain problem.

Documents are often composed by different authors and describing different events.
The language used in these documents therefore may vary. TopicRNN [28] proposes a
general solution that combines the strength of neural language model and topic model.
However, it does not leverage the document level information for more customized mod-

eling.

1.5 List of Proposed Solutions

Topic 1: Temporal Association Analytics. We propose the first interactive temporal asso-
ciation rule mining analytics framework called TARA [89] that enables analysts to explore
associations across time and pinpoint appropriate parameter settings in a systematic way.
The TARA model organizes the temporal associations in the space of query parameters.
It abstracts the temporal associations at the coarse granularity of time-aware stable regions
across multiple time periods. The TARA model is supported by evolving parameter space
index structure that indexes time-aware stable regions along with the associated domina-
tion graph. To cope with the fast data, we propose an incremental parameter space index
construction strategy [88] that can speed up the computation by orders of magnitude.

In the context of pharmacovigilance, existing semantics of the rule fail to capture the sig-
nificance of certain types of association, e.g. drug-drug interaction (DDI) related ADR. To
discover DDI related ADR using TARL, we propose an interestingness measure called con-
trast [92, 91] that aligns with the DDI semantics. Our experimental evaluations show that
the contrast score allows the TARL to achieve high accuracy with significant less amount
of rules.

Topic II: Temporal Local Outlier Detection. We propose new local outlier semantics that
leverage kernel density estimation (KDE) to effectively detect local outliers from streaming
data [90]. A strategy to continuously detect top-N KDE-based local outliers over streams
is also designed, called KELOS - the first linear time complexity streaming local outlier
detection approach. KELOS solves the effectiveness versus efficiency trade-off of KDE in

the stream context by introducing the notion of abstract kernel centers. This concept could
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be applied to a much broader class of density estimation related stream mining tasks be-
yond outlier detection. Our extensive experiments using public datasets with outlier la-
bels demonstrate the effectiveness of KELOS in detecting outliers while achieving several
orders of magnitude performance gain in computational costs against the alternative ap-
proaches.

Topic III: Text Modeling and Generation. Clinical narratives that describe complex med-
ical events are often accompanied by meta-information such as a patient’s demographics,
diagnoses and medications. This structured information implicitly relates to the logical
and semantic structure of the entire narrative, and thus affects vocabulary choices for the
narrative composition. We propose a neural language model called MeTRNN which en-
hances RNN-based language models’ capability of establishing long-range dependencies
by leveraging arbitrary document meta-information through their implicit influence via
supervised latent topics and through explicit influence via a feature layer that directly con-
nects to the RNN cells.

MeTRNN defines and explicitly models the text generative process based on the ob-
servation of the composition of the clinical narrative in an Electronic Health Record (EHR).
MeTRNN captures the latent topics in text by leveraging the associated meta-information,
which serves as the global context of the text that leads to better language modeling perfor-
mance. To cope with various structured information in the EHRs, we propose a flexible su-
pervised topic model component that can take on arbitrary meta-information. We design
a joint model that connects sTMs to cRNNs with an end-to-end autoencoding variational
Bayes inference method using the conditional variational autoencoder framework. It is a
“black box” method that can be easily adjusted or extended. We demonstrate the effective-
ness of MeTRNN in word prediction using publicly available text datasets as well as real
world EHRs. MeTRNN achieves improvement in perplexity from 5% to 40% against base-
lines. We also conduct a case study that demonstrates MeTRNN's ability to learn useful
global context for better language modeling performance and more relevant topics to the

structured meta-information.

1.6 Road Map

The dissertation is organized as follows. Chapter 1 first provides the introduction of this
dissertation. Chapter 2 (Topic I) proposes the techniques for supporting interactive tem-
poral association analytics and an interestingness measure to detect drug-drug interac-
tion related adverse drug reactions. The local temporal outlier detection method for data
streams is discussed in Chapter 3 (Topic II). Chapter 4 (Topic III) discusses the proposed

RNN based language model for clinical text modeling and generation.
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2 Temporal Association Analytics
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2.1 Introduction
2.1.1 Motivation

Nowadays batches of data are continuously transmitted from a rich variety of sources
including websites, mobile devices and other data sources, henceforth referred to as evolv-
ing datasets. Discovering associations and their dynamics hidden in such large evolving
datasets has been recognized as critical for domains ranging from market products analy-
sis, stock trend monitoring, targeted advertising to weather forecasting.

For example, in the retail businesses, the arrival of new fashions or gadgets may boost
unprecedented sales while seasonal products may gain or lose customers” interest. Some
products are purchased together more frequently in the days leading to a large sports
event or during a traditional holiday like Thanksgiving. Companies such as Amazon,
eBay, Walmart and other retail businesses apply temporal association mining techniques
to their transaction logs to identify popular product combination at specific times and their
behavior over time. Such information is critical for deciding the times when products can
be placed together on a web page or configured into attractive bundle-offers to be used for
recommendations to encourage sales.

Interactive data mining models, crucial for discovering knowledge from data, enable
analysts to actively engage in the analysis process. State-of-the-art temporal association

mining systems [7, 65, 81, 111], once supplied with a specific parameter setting, tend to
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generate the ruleset for each request from scratch. This one-at-the-time request model
suffers from severe limitations described below.

2.1.2 Limitations of State-of-the-Art

Lack of instantaneous responsiveness. Lag in responsiveness is known to risk losing an
analyst’s attention during the exploration process. In applications like targeted ad place-
ment such delay in decision making may prove to be the cause of missed business op-
portunities and thus a potentially huge loss in profit. Unfortunately, temporal association
mining algorithms [7, 81] are known to be computationally intensive. To overcome this
challenge, [111] pregenerates the intermediate itemsets that are subsequently used to derive
the temporal associations instead of extracting them from the huge raw data store. With
this promising one-time preprocessing strategy, the response time has been shown to be
greatly reduced. However, the process of the final rule derivation remains a query-time
task. This results in the shortcoming that the response times for mining such requests are
not sufficient to support truly interactive exploration as confirmed by our experiments.

Lack of parameter recommendations. Temporal association mining algorithms are
parametrized not only by traditional measures like support and confidence but also by time-
variant measures [67, 95, 97]. Parameter settings used for one batch of data may produce
insignificant rules for a newly incoming data batch. Thus the data analysts often must
perform numerous successive trial-and-error iterations to find an appropriate parameter
configuration out of a seemingly infinite number of possible settings. Existing state-of-
the-art models tend to correspond to a blackbox [7, 38, 65, 81, 111] - providing little to no
feedback about which parameter settings best capture the analyst’s interest. To tackle this,
[66] incorporates an indexing technique to swiftly produce parameter recommendations.
However it is restricted to static data and thus does not support time variant operations
essential for temporal association mining.

Lack of evolving ruleset comparison. Analysis of the data in finer time granularity
may reveal that associations exist only in certain time periods. Some may fluctuate as new
data arrives while others may remain stable. Furthermore, two seemingly similar param-
eter settings can generate different results. Systems like [7, 38, 81, 111] independently gen-
erate the ruleset for each parameter settings. Worse yet, analysts then have to go through
a tedious process to manually investigate the results generated by different parameter set-
tings to extract their differences. This can be extremely tedious and impractical for large
data sets.

Lack of insights into the evolving associations. Given a parameter configuration, a

system often generates a huge number of rules. Analysts would benefit from being able to
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quickly identify the most interesting ones, such as the most stable rules [67] within the last
week, the most significant rules that occur every weekend, or the rules concerning specific
products. Offering such rich insights into time-variant rule behavior would provide the
analysts with the opportunity to leverage their domain knowledge to drive the discovery
process. Unfortunately, most existing parameter-driven exploration systems [66, 95, 111]

do not support the analyst in the discovery of such useful time-sensitive insights.

2.1.3 Research Challenges

To develop an interactive temporal analytic system, the following research challenges must
be tackled.

Processing time-variant evolving data. Given a time-variant data set containing n
unique items, the maximum number of possible associations are bounded by 3" — 2" + 1
[66]. The significance of associations may vary over time, as newly incoming data may
bring new items and associations. Being able to quickly extract these associations and
their behavior w.r.t different time horizons to answer analysts” requests is the key to pro-
viding an interactive mining experience. However, it is almost impossible to pre-generate
all such information. Thus the system must have an efficient preprocessing strategy that
pregenerates a minimal yet sufficient amount of information as its critical knowledge store
to support interactive temporal association exploration.

Managing temporal associations for all parameters. Typical input parameters, such
as minimum support and confidence, can be configured using any real number restricted
to a certain range. Similarly, the time specification can be composed of one or multiple
time periods along the continuous timeline. Clearly, an infinite number of possible pa-
rameter settings exists. Maintaining the corresponding ruleset for each parameter setting
individually thus is impractical. Therefore, an efficient mechanism is needed to map the
pregenerated temporal associations to the space of parameter settings.

Maintaining parameter values for different time periods. The prominence level of an
association may vary significantly for some associations while remaining stable for others.
Such time-variant properties of parameter values may reveal important evolving patterns
of an association in the evolving dataset. Yet keeping each single historical parameter
value for each association is inefficient, resulting in large storage and search space. There-
fore, a compact archive structure is needed to efficiently maintain the parameter values
of the associations across time while supporting fast system access to retrieve any desired
information.

Supporting advanced temporal association exploration. Rule mining algorithms tend

to generate too many rules - making it extremely hard for the analysts to quickly identify
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Figure 2: The TARA Approach.

the interesting ones. The problem of interestingness of temporal rules has been previously
investigated [68, 97]. An interactive temporal association exploration system must inte-
grate such interestingness measures to provide critical insights about the associations such
as their evolving behaviors across time. The retrieved rules w.r.t particular parameter set-
tings must be efficiently evaluated using these measures so that the instant responsiveness
of the system is safeguarded.

2.1.4 The TARA Approach

We propose a novel temporal association rule analytics (TARA) framework that addresses
the above challenges. The TARA infrastructure depicted in Figure 2 employs an offline
preprocessing phase composed of Association Generator and Knowledge Base Construc-
tor followed by TARA Online Explorer that enables analysts to interactively explore the
evolving data with support by the knowledge base.

The Association Generator extracts temporal associations from the evolving data and
compactly stores them in the Temporal Association Rule Archive (TAR Archive) of TARA
knowledge base. Later, by request, the parameter values of a particular association w.r.t
various fine granularities can be quickly computed without processing the raw data again.
These pregenerated temporal associations are compressed into a knowledge-rich yet com-
pact evolving parameter space (EPS) that encodes the relationships among the temporal as-
sociations. Next, the TARA knowledge base explicitly extracts and then models the dis-
tribution of the pregenerated temporal associations with respect to their parameters, e.g.
support, confidence and time periods.

Beyond achieving speedup in response time, the online processing strategies leverage

the EPS index to offer analysts an innovative “rule-centric panorama” into the temporal
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associations present within the evolving dataset. The framework supports rich classes of
novel exploration operations from time-travel queries and parameter recommendations to

evolving ruleset comparisons.

2.1.5 Contributions

Key contributions of this work include:

e We propose the first interactive temporal association rule mining analytics framework
called TARA that enables analysts to explore associations across time and pinpoint appro-
priate parameter settings in a systematic way.

e The TARA model organizes the temporal associations in the space of query param-
eters. It abstracts the temporal associations at the coarse granularity of time-aware stable
regions across multiple time periods.

e The TARA model is supported by evolving parameter space (EPS) index structure that
indexes time-aware stable regions along with the associated domination graph. TARA offers
efficient algorithms for offline EPS index construction.

e For the rules generated, we design a temporal association rule archive, called TAR
Archive, that compactly encodes the parameter values of each rule across time. Our spe-
cially designed encoding and decoding strategies achieve fast access to the requested in-
formation from this archive.

e We propose a rich set of novel temporal rule exploration operations beyond tradi-
tional temporal rule mining. Effective strategies for the online processing of the proposed
operations that leverage our precomputed TARA index structures are provided.

e TARA framework supports the exploration of the associations at coarser or finer time
granularities by roll-up and drill down operations. We provide a theoretical bound on the
approximation of the solution under roll-up operations.

e Our extensive experiments using IBM Quest [5], retail [19] and webdocs [70] datasets
demonstrate that TARA is 3 to 5 orders of magnitude faster than its state-of-the-art com-
petitors for traditional temporal association mining, while in addition supporting novel

analytics within milliseconds.

2.2 Foundation
2.2.1 Temporal Association Rule

T ={....ti, ..., tj, ...} denotes a set of times, countably infinite, over which a linear order jr
is defined, where ¢; j7 t; means ¢; occurs strictly before ¢;. Let Z = {iy, i2, ..., i, } represent

a set of items. D = {dy,ds,...,d,} is a collection of subsets of I called the transaction
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database. Each transaction d; in D is a set of items such that d; C Z. Each d; has an
associated timestamp t;, denoted by d;.time = t;. Let X C T be a set of items, called
itemset. If X' C d;, d; contains X. If the cardinality of X is k, X' is called a k-itemset. Given
a closed time period [t;,t;] where t; 7 t;, then the set of transactions in the range [¢;, ¢;]
of D that contain X is indicated by F (X, D, [t;,t;]) = {dr | dx € D N t; < dy.time < t; A
X Cdy).

Definition 1. A temporal association rule is an expression of the form Rltvtil = (¥ = ),
where X CZ,Y C I\ X, and [t;,t;] indicates that R is derived from all the transactions in D
whose timestamps fall into [t;, t;].

A temporal association rule defaults to the traditional association rule if the time pe-
riod is set to the entire timeline. This time restriction [t;, ;] empowers the data analysts
to discover associations that are not significant throughout the entire data set. Moreover,
an association may reappear in multiple time periods expressing some periodicity. Fur-
thermore, the association may behave differently in terms of its measured values. The

evolution of the associations over time can lead to insightful observations [67].

2.2.2 Interestingness Measures

Many measurements [97] have been proposed to evaluate the interestingness of associa-
tions. Out of these measurements, we work with the most common measures of support
and confidence to demonstrate the key principles of our framework, though others can be
plugged in the future.

_ "F(‘X U y7D7 [ti7tjD’

Support(RIEtily = \F(0,D, [ti, t;])| .

Confidence(RI"') = | F(X, D, [t;, t;])] ?
3 ) LYy Y]

; [ti,t5]) — ’f(XUJ),D, [ti7t’])’X‘F((Z)v,ll[tivt'])‘
LiftRES) = =@, D, i )] X [F 0, D, fs )

€)

The support (Formula 1) describes the proportion of the transactions that contain all
items in the association. confidence (Formula 2) describes the probability of finding the
consequent ) of the association under the condition that these transactions also contain the
antecedent X. It is a maximum likelihood estimate of the conditional probability P()|X).
Lift (Formula 3) measures how many times more often X and Y occur together than ex-

pected if they are statistically independent.
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2.3 Interestingness Measure for Finding Drug-Drug Interactions

Let Zpyug = {d1,d>, ...,do} and Zapr = {a1, a2, ..., a, } represent a set of drugs and a set of
ADRs where Zp,ug N Zapr = 0. T = {t1,t2,...,tm} is a collection of ADR reports. Each
report t; = D; U A; contains a drug set D; where D; C Ip,,, and an ADR set A; where
A; C Zappg. Since we are only interested in modeling the associations from a set of drugs
to a set of ADRs in a collection of ADR reports, we define the Drug-ADR association as
below.

Definition 2. A Drug-ADR association is an expression of the form R = D = A where
D C Iprugs A S Zapr and Iprug N Iapr = 0.

Irrelevant Association. If the traditional association rule model were to be directly
applied on the ADR reports 7, the ARL algorithm can possibly generate 3°t% — 20+% 4 1
(O(3") where n = o + u) associations where o and u denote the total number of unique
drugs and ADRs respectively. However, based on Definition 2, the number of possible
Drug-ADR associations instead corresponds to:

|21Drug X QIADR‘ = i (Z) X i (:) = (20 — 1) X (2“ — 1). (4)
k=1

k=1

According to Formula 4, the number of possible Drug-ADR associations (O(2") where
n = o + u) is much smaller than O(3™). The associations that do not confirm the defined
Drug-ADR expression are irrelevant, therefore need to be pruned in the learning process.
Also, since we study MDARSs in this work, we focus on the Drug-ADR associations which

contain at least two drugs in the antecedent.

2.3.1 Non-spurious Drug-ADR Association

Without pre-established dependency constraints among items, existing ARL algorithms
[117] consider every possible combination of items that appears in a transaction as an item-
set. This results in a huge amount of redundant [120, 9, 85] even misleading associations in
the context of signaling ADRs from ADR reports as we show below.

2.3.2 Types of Drug-ADR Associations

Explicitly Supported Drug-ADR Association. Let us consider an ADR report ¢t; = D; U
A; with a set of drugs D; = {d;,d2,d3} and a set of ADRs A; = {a1,a2}. This particular
ADR report explicitly establishes the association between D; and A;, expressed by the
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association Ry = (di A da A d3) = (a1 A az). However, based upon this single report,
traditional ARL would generate 24 variants of Drug-ADR associations ((3% — 1) x (22 — 1)),
such as (di Adg) = (a1), (d1 Ad3) = (ag) etc. including R. All of these associations, except
R1, are partial interpretations of the report, randomly leaving out certain item(s), e.g.,
some drugs or some ADRs mentioned in the report. In many scenarios, these associations
could be misleading unless there is additional evidence to support them. For example,
R2 = di = axo tells us that taking d; might lead to as. This may however not be true in our
context since this report does not explicitly indicate that drug d; by itself will lead to ADR
as therefore cannot be confirmed by this ADR report.

Definition 3. A Drug-ADR association R = D = A is explicitly supported by a collection of
ADR reports T if there exists at least one report t; € T where t; = D; U A; such that t; = D U A.

If a Drug-ADR association is explicitly supported, according to definition 3, at least one
report must exist that refers exactly to drugs and ADRs in the association and no additional
ones. Other reports that contain these drugs and ADRs can be used as evidence to measure
the significance of this association.

Implicitly Supported Drug-ADR Association. In addition to ¢; in the last example, let
us consider adding another ADR report t; = D; U A; with a set of drugs D; = {d1,d>,d4}
and a set of ADRs A; = {a1,a2}. According to Definition 3, R3 = (di AdaAdy) = (a1 Nag)is
explicitly supported by 7. Although the Drug-ADR association R4 = (d1 A d2) = (a1 A ag)
is a partial interpretation of ¢; or ¢;, it may be of interest to the drug safety evaluator
since it involves the intersection of two reports which can be interpreted as a commonly
prescribed drug combination or a commonly caused ADRs. The Drug-ADR associations
formed by the intersection of multiple reports such as R4 are defined as implicitly supported
Drug-ADR associations:

Definition 4. A Drug-ADR association R = D = A is implicitly supported by a collection of
ADR reports T if there exist at least two ADR reports t;, t; € T wherei # j,t; # t;,t; = D; U A;
and t; = D U Ajsuch that t;,t; Z DUA D =D;NDjand A= A;NA;.

According to Definition 4, if a Drug-ADR association is implicitly supported, it models
an association between a commonly prescribed drug combination and commonly caused
ADRs suggested by at least two reports and it is not explicitly supported. If a Drug-ADR
association is neither explicitly nor implicitly supported, it is a spurious association which
must be treated with caution as it may convey misleading information. Next, we will
discuss how our system identifies these associations.
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2.3.3 Learning Non-spurious Drug-ADR Association

Sezp and S;y, denote complete sets of explicitly and implicitly supported Drug-ADR as-
sociations learned from a collection of ADR reports 7. Below we show that identifying
Sexp U Simp is equivalent to identifying closed associations [85] from all possible Drug-ADR
associations in 7. Closed associations [9] compactly represent the same information as the
full set of all possible associations and can be used to recover the full set. The notion of a
closed association is defined as below:

Definition 5. An association R; = X; = )); is called closed in a set of transactions T if there
does not exist an association R; = X;j = ) where i # j such that X;U); C X;UY; and |X; U Y|
=15 U .

According to Definition 5, if an association R; is not closed in a dataset, there exists
another association R ; with additional items (richer information) which is also contained
by the same set of transactions. For example, for associations R; = (i1 Aiz) = (i3 Aig) and
Ra = (i1) = (i3 A i4) where i represents an item, if |{i1, 92, 93,44 }| = |{i1, 3, 14 }|, this means
that 1 and R, are contained by the same set of transactions. Regardless whether or not
R is closed, R4 is not closed since it only presents partial information of R;.

Let Sprug—apr denote a complete set of Drug-ADR associations learned from a collec-
tion of ADR reports 7 and S7,.,,,_ 4 pr be the complete set of closed Drug-ADR associations
in Sprug—apr.- We have the following claim.

Lemma 1. The closed Drug-ADR association set
Shrug—apR = Seap U Simp where Sp,. o 4 p s Seap 1A Signyp are learned from the same collection
of ADR reports T.

Proof. The proof is bi-directional. First, if a Drug-ADR association is closed, it is either
explicitly or implicitly supported. Second, if a Drug-ADR association is either explicitly or
implicitly supported, it must be closed.

First, consider a Drug-ADR association R = D = A, if R is closed then there does
not exist an R; such that R; has additional items beyond R and is contained by the same
set of ADR reports as R. There are two possibilities causing such non-existence: (1) no
report exists that contains more items than D U A which makes R explicitly supported; (2)
D U Ais an intersection of multiple reports and all R; with additional items are of course
also contained in less reports; If there is a report among them that contains the exact same
items in R then R is explicitly supported, otherwise it is implicitly supported.

Second, if R is explicitly supported, either (1) there exists no report with additional
items in R which makes R closed because there is no R; with additional items that can
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be learned from the reports; or (2) in addition to the report(s) that contain the exact items
in R, there are reports with more items; But this will make the R; with additional items
be contained by less amount of reports than R; Therefore, R is closed. If R is implicitly
supported, it contains the interaction of multiple reports, then all the R; with additional
items are contained by less reports; Therefore R is closed. O

We use Lemma 1 as theoretical foundation to efficiently identify non-spurious Drug-

ADR associations.

2.3.4 Contextual Association Cluster

Table 1: Example of a Contextual Association Cluster of R

R [Furosemide] [Isosorbide] [Aspirin] = [Myocardial Infarction]

7%% = [Furosemide] [Isosorbide] = [Myocardial Infarction]

R? 7@% = [Furosemide] [Aspirin] => [Myocardial Infarction]

7%% = [Isosorbide] [Aspirin] = [Myocardial Infarction]

7%} = [Furosemide] = [Myocardial Infarction]

= [Isosorbide] = [Myocardial Infarction]

= [Aspirin] = [Myocardial Infarction]

Next, we introduce how MARAS measures non-spurious Drug-ADR associations that
contain multiple drugs to signal MDARs. Existing measures [10] including support, confi-
dence and [ift (RR) evaluate the strength of the association between two set of items. How-
ever, they lack the ability to verify whether this strong association is already implied by a
subset of the antecedent. Such a domination from a subset of the drug antecedents would
weaken the MDAR signal. For example, if the ADRs are already highly associated with
an individual drug in the given combination of drugs of the association, it means that the
ADRs are likely caused by this particular drug or subset of drugs instead of the larger
MDAR.

To measure this notion of exclusiveness of the association between drugs and ADRs,
any association between a subset of drugs and the ADRs needs to be considered. These
related associations are henceforth referred to as the contextual associations of the target
association.

Definition 6. A Drug-ADR association R; = D; = A; is a contextual association of a Drug-
ADR Association R; = Dj = A; if and only if Dj C Dy and A; = A;.

Based on Definition 6, we define the Contextual Associ-

ation Cluster (CAC) of a target Drug-ADR association.
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Definition 7. A Contextual Association Cluster C = {R,Ry,..., R,,} includes an explicitly or
implicitly supported Drug-ADR association R = D = A and its contextual associations such that
U, D; = P(D) — {0, D} where D; is antecedent of the contextual association R; and P(D) is the
power set of D. R is called target association.

Table 1 shows an example of the CAC of a target Drug-ADR association R which repre-
sents the MDAR signal. The CAC is organized based on the cardinality of the antecedent.
The number n in R™ refers to the number of drugs in the association. In this example, R
has 3 drugs. Hence, there are 6 contextual associations in CAC. MARAS uses CAC to eval-
uate the interestingness of the target Drug-ADR association that contains multiple drugs
in terms of signaling the most severe MDARs.

2.3.5 Contrast Score for MDAR Signal

To measure if a Drug-ADR association encodes a strong signal that indicates a severe
MDAR, two factors need be taken into consideration. First, how strong the association
of ADRSs is with the drug combination and second, how strong the association of ADRs is
with the individual or subset of drugs. As explained in Section 2.3.4, if ADRs are caused
by the interaction of a drug combination then not only the ADRs must be strongly associ-
ated with the drug combination but also any subset of these drugs should only be weakly
associated with the particular ADRs.

For the first factor, MARAS adopts the confidence model that represents a maximum
likelihood estimate of the conditional probability P(.A|D) for a Drug-ADR association R.
It models the strength of the association between the antecedent and consequent. High
confidence indicates strong association while low confidence indicates weak association. For
the second factor, we first defined the CAC introduced in Section 2.3.4. A CAC includes
a target association that represents the MDAR signal along with all its contextual associa-
tions that represent the associations between the target ADRs and the subsets of the target
drugs. The MDAR signal is strongest if the target association has high confidence and all of
its contextual associations in the cluster have low confidence. To quantify such a contrast
that captures the intuition of the MDAR phenomenon, as discussed in Section 2.3.4, we
propose the contrast measure.

LetC = {R, ..., 7%3-, ...} represent a CAC, with R the target association and 7@3 its con-
textual associations where i denotes the number of drugs in the association and j is used
to distinguish between different contextual associations with the same amount of drugs
i. P:(R) denotes the confidence of an association R. The MDAR signal is strong if the



Dissertation — Xiao Qin 27

confidence of R is significantly higher than any confidence of its contextual associations.
contrast;ma(C) = Pe(R) — max(Pc(fQ;)). (5)

A negative contrast,,,, value means that a subset of drugs is more likely to cause the
ADRs then the actual target set. This idea is similar to the improvement measure proposed
by Bayardo et al. [52]. However, only considering the contextual association with the
highest confidence deprives us of the opportunity to differentiate more complex cases. For
example, even if two MDAR signals share the same contrast value, the one with more
higher confidence contextual associations may be less interesting than the other one because
more drugs may cause the same ADRs showing a weaker sign of the MDAR. To utilize the
full context in the evaluation of the MDAR signal, an alternative solution would be to
measure the difference between the confidence of the target association and the average

confidence of its contextual associations:

contrastayg(C) = Pe(R) — |C|1—1 Z Z 770(7%3) (6)

i=1 j=1

The shortcoming of this solution is that it falsely weakens the negative effect of any
contextual association with a high confidence. For example, let us consider two CAC cases
€1 = {RRL,RL} and C, = {Ry, R}, R} where the confidence of each association in the
CAC are C;:{1,0.2,0.8} and C:{1,0.5,0.55}. Using the measure defined by Formula 6, C;
scores higher than C; (0.5 > 0.475). However, intuitively the contextual association in C;
with 0.8 confidence indicates that the ADRs are more likely to be caused by one of the indi-
vidual drugs. In this example, C2 should score higher since all of its contextual associations
have relatively lower confidence as compared to the target association. To overcome this,
we now introduce the coefficient of variation to penalize the CAC with diverse contextual

associations w.r.t their confidence:
contraste,(C) = contrastqayy(C) x G(C —R), (7)

where
G(‘S) = (1_9'01)(8))’ (8)

Cy(S) computes the coefficient of variation of the confidence set of a set of associations

S, while 6 denotes a user-specified parameter (0 < ¢ < 1) that controls the effect of this
penalty. Using the previous example with § = 0.75, then contraste,(C;) =0.18 and contrast.,(Cz)
= 0.45 where contrast,, is in favor of Cy now.

A drug-safety evaluator is typically knowledgeable about the individual drugs but
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may be less experienced with unknown MDARs. To expose more complicated cases,
MARAS assigns more weight to the contextual association with less drugs. For example,
if there are 3 drugs in the target association, the weak association between each individ-
ual drug and the ADRs is more important than the weak association between any 2 of the
drugs and the ADRs. By considering this, the CAC that involves more drugs should get
higher score so that it is pointed out to the drug-safety evaluator. Therefore, we design the

final contrast score as below:

m

iZ;Z(PC(R) — Pu(RY)) x H(i,n) x GUR'Y), 9)

where H (i,n) is a weighting function that is inversely proportional to the number of drugs
in an association, i the number of drugs in R%, n the number of drugs in R, and {R'}
denotes the set of contextual associations with the same number of drugs (7). In our ex-
periment, H (i,n) is chosen to be a linear decay function where H(i,n) = (1 — (i — 1)/n),
though other functions are possible.

2.4 Interactive Temporal Association Analytics

We now introduce our TARA model framework for interactive exploration of associations

from evolving data.

2.4.1 Time Dimension of the TARA Model
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Figure 3: Tumbling Window Model of TARA

Data analysts often are interested in exploring the associations that hold in particular
time periods, such as an hour or a day. Coarser time specifications can be broken down
to ranges of smaller granularities. Moreover, the measures of an association in a longer
time period can then be computed based on the measures of the associations in the shorter
periods that are part of this longer period. Based on this observation, TARA partitions

the data set into disjoint time periods, called windows. Mining queries with a coarser time
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Table 1: Example of pregenerated temporal association rule.

Support
[temset , :
‘II ’I; (Support, Confidence)
Rule
a 0.36 0.44 T. 7,
. Ry b-> 0. 18 0.4 0.11,0.5)
c 036 | 044 ib oo
Rya->c | (0.18,0.5) | (0.33,0.75)
ab 0.18 0.1 Rice-=a | (0.18,0.5) | (0.33,0.75)
ac 0.18 0.33 Re:e=b | 0.09,0.25) | 0.11,0.25)
be 0.09 0.11 Rg: b-=c . (0.11,0.5)
(a) Itemset (min supp = 0.05). (b) Rule (min conf = 0.25).

granularity settings than this basic window size are then supported using roll-up operations.

Let D be the evolving data set and w be the basic window size that represents the
minimum granularity. Therefore, the set of times 7 contains disjoint but consecutive time
periods each of size w denoted by 7 ={..., T;, ..., T}, ...}, VT;, T;),if T; # T;, and T;NT; = 0.
The evolving data set D is partitioned into small chunks according to each time period 7;
in 7 denoted by D = {..., D;, ..., Dj, ...} where D; = F((, D, T;). In Figure 3, for example we
set the window size w = 20. That is, the time frame is partitioned into a set of time periods of
length 20, e.g T2 = [t21,t40]. The evolving data set D is partitioned into time-oriented data
subsets D; according to these time periods, e.g. Dy = F(), D, Tz). For each data partition
D;, TARA pregenerates the associations off-line. TARA processes the raw data D once to
pregenerate the temporal associations held in these windows. A query with the coarser

time specification can then be answered based on these pregenerated associations.

Definition 8. Time availability: Let w be the finest time granularity. Then T* = {..., T, ..., T}*, ...

corresponds to the basic time periods of T that are generated by TARA through time partztzoning
by w. A time specification Ty, supported in TARA thus is Tj, = T, wherei < j.

mzm/

This strategy allows us to support roll-up and drill-down of time periods at run time

such as days, months or years to support long and short term goals.

2.4.2 Evolving Parameter Space Model

In association rule mining, the input parameter values of minimum support and confidence

can be any real number within [0,1]. Each combination, referred to as parameter setting,

}
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corresponds to a set of rules generated by using this parameter setting. We now extend
this into the notion of an Evolving Parameter Space (EPS) that models relationships and

distribution of rules across the multi-dimensional temporal parameter space.

s - 0.11,0.5
| Cut Location : STQE()A(),()A()))
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Ry, Ry}
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(0.18,0.5)
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Figure 4: Evolving Parameter Space

Definition 9. Evolving Parameter Space: Let D be an evolving data set, D; be a partition of D
by a basic time granularity T;, VT; € T. Let p; be one of the n parameters. The (n+1)-dimensional
space, denoted by € = { pi,....pn, T} and called Evolving Parameter Space (EPS), organizes
the rules {R}7 where {R}T = U*_ {R}Ti and k is the total number of time partitions of D. A
temporal association rule R is associated with its temporal parametric locations (R.value(py),...,
R.value(p,))T: where R.value(p;) denotes the value of the j™" parameter for rule R in time T;.

For simplicity, we use two parameters, namely support and confidence while others
could be defined as well. Thus henceforth, the EPS £ is a 3-dimensional space with support,
confidence and time as its dimensions. A temporal parametric location depicting a rule R in
time 7;, denoted as R(supp, conf)”:, is represented as a line segment indicating the param-
eter values of R in 7;. Rules R, R3 and R4 map to the same temporal parametric location
(0.18, 0.5)71 in the time period 7;. However in time 73, R travels in the space so that now

it maps to same location as R5(0.11,0.5)72.

Lemma 2. Let L denote a temporal parametric location in the EPS &, L.p; be the value of pa-
rameter p; for location L. Given a set of temporal parametric locations in the same time period T;,
VL, Ly € {L}, where m # n, if there exists a p; such that L,.p; # Ly.pi, then the temporal
association rules that map to L, are guaranteed to be distinct from those that map to L,,.

Proof. Rules’ temporal parametric locations in time 7; are generated from the same data par-

tition D;. Any given rule at time 7; cannot have two distinct values for one parameter.
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Figure 5: Evolving Parameter Space slice at Time 75

Therefore, a rule R cannot map to two distinct temporal parametric locations within the same
time. ]

Each rule’s temporal parametric location can either remain steady or change over multiple
time periods. We call this stream of locations the trajectory of the association.

Definition 10. Trajectory of an association: Given a sequence of time periods {T } ={Ti...., Tm},
the trajectory of an association R in {T } is the set of temporal parametric locations that repre-
sent its parameter values in the time periods in {T }.

This trajectory of a rule allows us to compute different measures about the rule that
summarize its evolving patterns like coverage [95], stability [67] and standard deviation. These
measures can be computed for each individual rule or even for a set of rules to provide in-
dividual or global summarization respectively.

Given a data set with n unique items, the maximum number of rules is finite, bounded
by 3" — 2" + 1 [66]. Therefore, some set of parameter settings must correspond to same
set of rules. Figure 5 shows a slice of the evolving parameter space for time 7>. Rules with
identical parameter values are represented by the same point in this space. These points
partition the space into 4 regions marked by dashed lines. If a user specified minimum
support and confidence configuration for mining falls into region S3, then regardless of its
actual position within the region, the output ruleset is always {R3, R4}. This observation is
inspired by the work presented in [66]. Thus the entire evolving parameter space at a time
7; can be partitioned into a finite set of regions referred to as time-aware stable regions. This
notion of time-aware stable regions forms our coarse granularity abstraction of the temporal

association rules generated from an evolving data set D.

Definition 11. Time-Aware Stable Regions: Given an EPS & of n parameters {p;,...,pn} and

times T as (n + 1) dimensions for an evolving data set D, then a time-aware stable region in a
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time period T; is a closed hyper-box denoted by St E{?ﬁij;(ﬁ i)uﬁﬁﬁfﬁjg

ified by locations (S.upper(p1),....S.upper(pn))Ti and {(S .lower(p1),...,S.lower(p,))7:} within

) with its boundary spec-

each of which no matter how the parameter values are adjusted, the set of rules generated from D;

remains unchanged.

Considering the 3-dimensional EPS in Figure 4, a time-aware stable region is bounded by
an upper location
(suppy,conf,)’i and k lower locations {(suppy; ,con flj)Ti} where j € [1, k]. The support and
confidence values of the upper location will always be greater than those of all its lower

points, i.e., Vj (supp, > supp;) and (conf, > confi,). The upper location of a time-aware
stable region is called its cut location.

Definition 12. Cut Location: Let EPS £ be a 3-dimensi-onal space with support x, confidence
y and time z as its dimensions, {X'} be a set of the intersections formed by the perpendicular
projections of each temporal parametric location onto x and y planes. The cut locations within £
are then denoted by {C}, where {X} = {C} U {L}.

(0.18,0.5)

(0.18,05) 4 o (0.11,0.5) (1805),

Figure 4 depicts time-aware stable regions St;  y ;) T2(0.0)

the cut location is (0.18,
0.5)71. It is bounded by the parametric locations (0.18,0.5)7* and (0,0.4)"* and contains rules
Rl , Rg and R4.

. For region S

Lemma 3. Given a set of time-aware stable regions {S}
for the same T;, ¥ Sy, Sy, € {S}, where m # n, the associations that map to the cut location of Sp,
are guaranteed to be distinct from the ones that map to the cut location of S,.

Proof. By Lemma 2, rules generated in the same time period but map to different temporal
parametric locations are guaranteed to be distinct. The locations in { X'} either belong to {£}
or have no rule. Therefore, within a time period 7;, rules that map to different time-aware

stable regions are guaranteed to be distinct. O

Definition 13. Dominating Stable Region: A time-aware stable region S,, dominates region
Sy, where m # n, if and only if Vp; € P S,,.C.p;s < S,,.C.p;, and Sy, and S,, are in same T; where

Sm.C refers to the cut location of stable region S,,.

Lemma 4. Considering two time-aware stable regions S,, and S, where m # n. If S,,, dominates
Sy, then rules valid within the dominated region S,, are also valid in the dominating region S,, but
not vice versa.

Proof. A temporal rule R; is in the final output ruleset if in the specified 7y, V p;, R;.value(p;)
> min parameters where p; € {p1,...,pn}. If R; belongs to region S,,, the temporal parametric
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Precision in %

K
Figure 6: Precision of top K MARAS MDAR signals.

location of R; is the upper location of S,,. Because S,, dominates S, V p;, Sy,.upper(p;)
< Sy.upper(p;), meaning V p;, Sy,.upper(p;) < R;.value(p;). So R, is valid in Sy, as well.

However, vice versa is not true, as can be trivially shown. O

Consider S; = S; Eg‘éi?’m and Sy = S1; Eg.g?,o.%) in Figure 4. Based on Def. 13, S dom-

inates S; because every parameter value in the upper location of Sy is smaller than the

corresponding value of S;.

ST gg.g?,o.%) are included in the final result, then region must also

contain the rules that are valid in S7; Eg'éi?@. By Lemma 4, given a user-specified param-

If the rules in region

eter setting, once a region is identified as a valid region to produce the final ruleset, all its
dominated regions should then also be included in the user output.

Using this concept of dominating stable regions [66], each rule is stored once in the
stable region and by iterating over its dominating regions the final ruleset can simply be

obtained for a given pair of support and confidence values.

2.5 Experimental Results
2.5.1 Effectiveness of the Contrast Measure

The FAERS Data Source. We work with ADR reports from FAERS, a reporting system and
database maintained by the FDA as a part of its post-marketing drug safety surveillance
program. It contains million of records about adverse events and medication errors. To
ensure the reproducibility of this experiment, we used the public version of the FAERS [3]
data available quarterly from 2013-15. We selected the mandatory reports submitted by
manufacturers marked as expedited (EXP). Each quarter has 100k - 160k reports, 30k - 37k
reported drugs and 9k - 10k reported ADRs.

Quality of MDAR Signal. The main purpose of MARAS is to alert the drug-safety re-
viewers about possibly unknown MDAR cases collected through the post-market surveil-
lance programs. There is no benchmark database that can be used to systematically eval-
uate how one should most effectively signal MDARs using ADR reports i.e., no “golden
standard”. Therefore, one of our evaluation strategies is to evaluate the effectiveness of

MARAS by measuring the precision in terms of a hit of a known MDARs. The two sources
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we used are Drugs.com [1], a FDA recommended resource for obtaining information on
known MDARs and DrugBank [35], a drug database that contains comprehensive bio-
chemical and pharmacological information providing insights on MDARs. Figure 6 shows
the precision of MARAS within the top & results. Precision is defined by the ratio of the
number of hits to the number of the signals. “Precision at K” measures the accuracy of
MARAS for signaling the known MDAR as well as the effectiveness of the contrast mea-
sure for ranking the returned signals. The precision of MARAS for each year is an average
precision on 4 quarters data. There are relatively more hits in the higher ranked results,
thus proving the effectiveness of our ranking strategy.

Case Study. Here, we report a case study on three top signals detected by MARAS.
The goal of our case study using FAERS ADR reports is to validate the top ranked MDARs
identified by MARAS through domain knowledge resources.

Case I: Eliquis and Ibuprofen (Detected and ranked 2" by MARAS in 2014-Q2 dataset).
Eliquis (Apixaban), an anticoagulant for the treatment of venous thromboembolic events
is used to prevent platelets in the blood from sticking together and forming a blood clot.
Ibuprofen is a nonsteroidal anti-inflammatory drug used to reduce inflammation and pain
in the body. According to Drugs.com and DrugBank, using these two drugs together may
increase the anticoagulant activities of Apixaban, lowering the body’s ability to form clots
and may cause increased bleeding, including severe and sometimes fatal hemorrhage.
Case II: Ondansetron and Lithium (Detected and ranked 1% by MARAS in 2014-Q3
dataset). Ondansetron is used to prevent nausea and vomiting that may be caused by
surgery or by medicine to treat cancer. Lithium is used to treat the manic episodes of bipo-
lar disorder. According to DrugBank, “Lithium may increase the neurotoxic activities of
Ondansetron”. Neurotoxicity occurs when the exposure to natural or man-made toxic sub-
stances (neurotoxicants) alters the normal activity of the nervous system [2]. According
to Drugs.com, “using the two drugs together can increase the risk of a rare but serious
condition called the serotonin syndrome, which may include symptoms such as confu-
sion, hallucination, seizure, extreme changes in blood pressure, increased heart rate, fever.
Severe cases may result in coma and even death”.

Case III: Abilify and Ramipril (Detected and ranked 15 by MARAS in 2015-Q3 dataset).
Abilify (Aripiprazole), an antipsychotic medication is used to treat the symptoms of psy-
chotic conditions such as schizophrenia and bipolar I disorder. Ramipril, an ACE inhibitor
is used to treat high blood pressure or congestive heart failure. According to Drugs.com
and DrugBank, these two medications taken in combination can have an additive effect in
lowering blood pressure and can cause headache, dizziness, fainting, and/or changes in

pulse or heart rate.
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Table 2: Top 5 MDAR signals from 3"¢ Quarter of 2015.

Rank Confidence Reporting Ratio MARAS
Procyclidine Citalopram Suicidal Ideation Abilify
1 | Amlodipine [Bradycardia Fluoxetine Inhibitory Drug Ramipril Drug Interaction
Doxazosin Zoladex Interaction P
. . Inhibitory Drug .
Procyclidine Citalopram . Xgeva Osteonecrosis
Interaction
2 — Fall - -
Amlodipine Fluoxetine Depressive . of the Jaw
- Prednison
Doxazosin Zoladex Symptom
Neutrophil Count
Procyclidine Fall Citalopram Suicidal Ideation Lisinopril DECKeasEd
Influenza
Inhibitory Drug White Blood Cell
3 Interaction Count Decreased
Amlodipine |Bradycardia Zoladex Prednisolone Blepharitis
Depressive Lower
Symptom Respiratory Tract
Infection
Procyclidine Citalopram Suicidal Ideation Methadone
4 Bl e —— Enterococcal
Amlodipine Zoladex nhubitory brug Olanzapine Infection
Interaction
Procyclidine [Bradycardia Citalopram Suicidal Ideation Ibuprofen
5 i Suicide Attempt
Doxazosin Fall Zoladex IDepiEsEine Nifedipine ®
Symptom

Comparison to State-of-the-Art Baselines.

Table 2 shows top 5 MDAR signals generated each from 2015 Q3 data by three different
methods namely Confidence [115], Reporting Ratio [43] (Lift) and MARAS as depicted in
the columns one, two and three respectively. The first two columns show the associations
between drugs and ADRs ranked by their confidence and RR values respectively. These two
methods do not filter spurious associations. As a result, there are many similar redundant
and possibly misleading signals.

In contrast, top ranked signals generated by MARAS are more diverse as compared
to those produced by the first two methods. Worse yet, the top ranked signals produced
by MARAS signals on interaction between Rampiril and Abilify as verified via a case study
is ranked 2,436 by confidence and 16,984'" by RR. Similarly, the second top ranked as-
sociation by MARAS that shows interaction between Xgeva and Prednison can lead to os-
teonecrosis of jaw is ranked 2,166 by confidence and 9,312"" by RR. Thus by using the
Confidence or Reporting Ratio (RR) we would risk important findings staying hidden in the
association set. Hence we can deduce that MARAS successfully detects non-spurious and
non-redundant MDARs, which other methods fail to detect.

2.5.2 Efficiency of TARA

Experimental Setup. Experiments are conducted on a OS X machine with 2.4 GHz Intel
Core i5 processor and 8 GB RAM. The system and its competitors are implemented in C++

using Qt Creator with Clang 64-bit compiler.
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Table 3: Datasets

100retail T5k T2k webdocs
Transactions 8,816,200 | 5,000,000 | 2,000,000 | 1,692,082
Unique Items 16,470 23,870 30,551 5,267,656
Avg Len of Tran 10 50 100 177
Size 416.8 MB 1.48 GB 1.38 GB 1.48 GB

Datasets. We select a variety of datasets with diverse characteristics here. The bench-
mark datasets, TOkL50N100 and T2kL100N1k, are generated by the IBM Quest data generator
[5] modeling transactions in a retail store. We partition these datasets into 5 equal-sized
batches to form the evolving data sources. The retail dataset [19] contains 88,163 transac-
tions collected from a Belgian retail supermarket store in 5 months. To study scalability,
we replicate this retail dataset 100 times. The webdocs dataset [70] is built from a spidered
collection of web html documents. Both of these real datasets are partitioned into 10 equal-
sized batches to form evolving data sources.The statistics of the datasets are summarized
in Table 3.

Alternate State-of-the-art Techniques. The performance of TARA is compared against
three competitors. DCTAR [65] derives the ruleset directly from the raw data given a
parameter configuration. It computes the associations from scratch whenever a new batch
of data arrives. H-Mine [111] instead pregenerates the intermediate frequent item sets
offline. For specific parameter settings, the algorithm utilizes the itemsets to generate the
associations online instead of extracting them from the raw data. PARAS [66] pregenerates
frequent itemsets and rules offline for the entire data set assuming all data is static and
given apriori. That is, time is ignored. For our experiments, we construct the PARAS index
for a single time period. However at online time if request comes for different periods it
then generates the associations from scratch.

Experimental Methodologies: The performance of our approach and state-of-the-art
algorithms is measured by:

Offline Preprocessing Time. We measure the single and multiple data batches prepro-
cessing time for TARA, H-Mine and PARAS. Since DCTAR does not involve any prepro-
cessing, it is excluded from this measurement.

Online Processing Time. We measure the online processing time for a query averaged
over multiple runs to evaluate the speedup.

Size of Pregenerated Information. We compare the sizes of the preprocessed informa-
tion. DCTAR is again excluded. The size of the tree structure in H-Mine and the size of the
TAR Archive in TARA are thus compared.

Evaluation of Preprocessing Time. We first compare the preprocessing times for
H-Mine, PAR-AS and TARA. In the offline step, as the window slides, H-Mine (1) precom-

putes the frequent item sets and (2) stores them along with their associated support value
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Table 4: Thresholds for Indexes

Dataset | H-Mine || TARA&PARAS (supp, conf)

retail

0.0002

(0.0002, 0.1)

T5k

0.0012

(0.0012, 0.2)

T2k

0.001

(0.001, 0.2)

webdocs

0.1123

(0.1123,0.2)
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into a tree structure. Whereas TARA (1) precomputes the frequent item sets, (2) derives
the ruleset, (3) archives them along with the associated support and confidence values and
(4) updates the EPS-Index. PARAS proceeds with the same process as TARA except that it
does not utilize the archive nor does it keep the pregenerated information from the previ-
ous windows. Therefore, the total preprocessing time of PARAS is similar to TARA except
for the archival time. Figure 9 compares the preprocessing time of H-Mine and TARA for
all windows for the retail, T5kL50N100, T2kL100N1k datasets, with the system threshold
settings summarized in Table 4. As shown, frequent item set generation occupies a rela-
tively large portion of the preprocessing time as compared to other tasks. This confirms
prior works [41] that rule generation is more efficient compared to frequent itemset gener-
ation. Overall, the additional preprocessing tasks in TARA require no more than 20% extra
time than H-Mine. This extra time gives significant advantage to TARA in terms of truly
interactive online performance and support of many advanced exploration operations.
Evaluation of Online Processing Time. Next, we compare the online processing times
(y-axis in log scale) for our proposed operations. The user-specified parameters, namely
minsupp, minconf and time periods, are varied. The examined queries fall into two cat-
egories: (1) Rule trajectory and parameter recommendation queries and (2) Ruleset com-
parison queries. In the first experiment, we test the performance of TARA against the three
competitors using several query types, namely 1 and @3 in single match mode. Second,
we use ()2 in exact match mode to test the performance of TARA against others. We choose
Q1, Q2 and @3 because they cover the major exploration operations and subroutines in the

online processing phase.

2.5.3 Trajectory and Parameter Recommendation

To process 1, the system needs to find the rules that satisfy minsupp and conf in a sin-
gle time period and examine their parameter values in other specified time periods. For
DCTAR, it mines the rules from the transactions that fall into the last window and ex-
amines their parameter values by processing the transactions that fall into the 3 previous
windows. For PARAS, the process is identical except that the rules are retrieved from the
PARAS index built based upon the newest window. For H-Mine, the rules are derived and
examined by using its item set index.

Impact of Varying Support and Confidence. To determine the effect of minsupp, we
conduct several experiments by fixing minconf to a constant value and varying the minsupp
value. Figure 7 illustrate the query processing times for retail, TokL50N100, T2kL100N1k
and webdocs datasets with fixed minconf 0.4, 0.2, 0.2 and 0.4, respectively.

We observe that, TARA consistently outperforms DCTAR and PARAS by 6,7,7 and 5
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orders and H-Mine by 3, 4, 4 and 4 orders of magnitude for retail, T5kL50N100, T2kL100N1k
and webdocs datasets respectively. TARA-S stands for the implementation of TARA with
the rule index inside each time sensitive stable region to support content based exploration
(Q5). The merging of indexes when dominated regions are being collected incurs extra costs
as compared to the TARA system without these rule indexes. Especially when the number
of rules in the result is small, this extra cost results in similar or slower response time com-
pared to H-Mine as shown in Figs. 7(b) and (c). The reason of the fast response of TARA
is that it prepares sufficient amount of information in the offline stage, so that answering
such queries is simply about searching the TARA index.

TARA-R shows the response time of returning the time-sensitive stable region which an-
swers Q3. Since PARAS always builds the index for the latest window, in this particular
experiment, it achieves the same response time as TARA because only regions that fall into
the latest window are considered. All other systems are not capable of answering Q3. That
is, using DCTAR and H-Mine, an analyst would need to generate all possible rules in the
specified time period and then investigate all to find the answer.

Impact of Varying Confidence. Next, we fix the minsupp to a constant value and vary
the minconf value. Figure 8 illustrates the query processing times for retail, T5kL50N100,
T2kL100N1k and webdocs datasets with fixed minsupp 0.0002, 0.0012, 0.0012 and 0.1123, re-
spectively. Overall, both TARA and TARA-S consistently perform several orders of mag-
nitude better than the three competitors.

2.5.4 Ruleset Comparison Queries

()2 returns the differences of the rulesets w.r.t two parameter settings that share the same
time specification. In this particular experiment, the query is configured with the exact
match mode. It returns the differences of two parameter setting across 4 windows. Since
the DCTAR and H-Mine do not support such query, we implement a subroutine in their
rule derivation module to determine if the parameter value of the rule satisfies one setting
but not the other. This subroutine is optimized so that it does not generate the overlapping
ruleset w.r.t 2 different settings. In this experiment, we either fix minsupp or minconf and
vary the other one.

Impact of Varying 2"¢ Support. Figure 10 illustrates the query processing times for
retail, TSkL5ON100, T2kL100N1k and webdocs datasets. The fixed min parameters for these
datasets are (minsuppi, mincon fi, minconfs): (0.0002, 0.4, 0.4), (0.0012, 0.2, 0.2), (0.0012,
0.2, 0.2) and (0.1123, 0.4, 0.4), respectively. The query processing times increase with an
increase in the minsupp because the increase of the deviation from minsupp; to minsupps
results in larger differences between the two parameter settings. In particular, TARA out-



40 Dissertation — Xiao Qin

1ed 1e4
1e3
1e2
lel
1ef

TARA —5—
DCTAR —%—

o B

P 00005y
GAOOLBRRE

1ed
1e3
1e2
1e:

1e0

H-Mine —&—
PARAS —B—

ec)[log scale]

e (s

Query tim

1

Query time (sec)[log scale]
e R 55

Query time (sec)[log scale]
Query time (sec)[log scale]
iidie

1e-
le-
1e-
1e-

[ — ]

e-
e2
e3
e-d
e5

0

0.0004 0.0006 0.0008 .0015  0.002 0.0025 0.003 0.0035 0.004 .002 0.003 0.004 0.005 0.006 0.007 0.008 0.12 0.125 0.13
Min support (0-1) Min support (0-1) Min support (0-1) Min support (0-1)

(a) retail (b) T5KL50N100 (c) T2kL100N1k (d) webdocs

Figure 10: Ruleset Comparison: Varying 2"¢ Support

o} g le4 oy 1ed
T 1e2 T 1e3 T 1e3 ) TARA —&—
1e2 @ g le3 DCTAR —%—
g2 lel o 2 le2 3 le2 H-Mine —6—
= 1e0 = e = et 2 e e PARAS —B—
8 1e1 e g & 1e0 § 10
2 te2 e 1ot 2 fe-1 § et
S jes 52 S ez 5 2
> 1e-3 § 2 te3
3 1ea ‘E 1e-4 % 1e-3 e § o
9 e S tes 9 ted © les
0.4 0.5 0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8
fidence (0-1) Min confidence (0-1) Min confidence (0-1) Min confidence (0-1)
(a) retail (b) T5KL50N100 (c) T2kL100N1k (d) webdocs

Figure 11: Ruleset Comparison: Varying 2"¢ Confidence

performs DCTAR and PARAS by 6,7,6 and 6 orders, H-Mine by 4, 5, 4 and 4 orders for
retail, TSkL50N100, T2kL100N1k and webdocs datasets, respectively.

Impact of Varying 2"¢ Confidence. Figure 11 illustrates the query processing times for
retail, TSkL5ON100, T2kL100N1k and webdocs datasets. The fixed min parameters for these
four datasets are (minsuppi, mincon f1, minsu
pp2): (0.0002, 0.4, 0.0002), (0.0012, 0.2, 0.0012), (0.0012, 0.2, 0.0012) and (0.1123, 0.4, 0.1123),
respectively. TARA consistently performed several orders of magnitude better than the

three competitors.
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Figure 12: Size of the TAR Archive

Evaluation of Archive Size. We compare the sizes of the pregenerated information in
TARA, H-Mine and PARAS. For H-Mine, the size of the structure is determined by the
number of frequent item sets times the number of processed partitions, while the size of
pre-stored information in TARA is determined by the size of the TAR Archive. PARAS only
pregenerates the association in a single window. Its maximum size is 3" — 2" 4+ 1 where n
is the unique items in that particular window. The actual index sizes can be estimated by

multiplying the number of instances with the average space required per instance.



Dissertation — Xiao Qin 41

Figure 12 shows the size of the H-Mine Index, TAR Archive and the actual number
of uncompressed rule parameter values for our four datasets with the system threshold
settings summarized in Table 4. As TARA pre-generates rules instead of only the item
sets, the size of the TAR Archive is larger than the H-Mine index. However, our encoding
technique achieves favorable compression as compared to uncompressed rule parameter

values.

2.6 Related Work

MDARS. [108, 109] used statistical methods to find interactions among drug classes. How-
ever, these methods are typically designed for a particular class of drugs or ADRs only.
Hence, they do not consider all reported drugs and ADRs crucial for drug-surveillance.
Unsupervised methods in particular association rule mining has been used in the medical
domain to explore drug related ADRs [36, 51, 40]. These methods considered the identifi-
cation of ADRs related to a single drug, rather than a combination of drugs.

ARL for Signaling MDAR. [43, 50] used ARL with Reporting Ratio (RR) and Propor-
tional Reporting Ratio (PRR) respectively to find drug interactions triggering a set of
ADRs. However, these approaches do not consider the association of individual drugs
with the ADRs within a drug combination therefore providing many false positive sig-
nals. Cai et al [20] uses ARL and defines interestingness based on causal relation between
two interacting drugs and ADRs. Moreover, none of these approaches remove spurious or
misleading rules as introduced by our work.

Interestingness in ARL. Various attempts have been made in the literature to reduce
the number of the generated rules and rank the most interesting ones [98, 120, 9]. However
the majority of these measures are either for classification rules or are subjective measures
that need domain specific knowledge to define interestingness. Sub-rules based interest-
ingness has been studied by [31], where interestingness is defined as an unexpected confi-
dence among a neighborhood. The interestingness based on sub-rule’s confidence known
as improvement [14] ensures that for every rule none of its simplifications offer any pre-
dictive advantage over it. None of these methods capture the most interesting associations
among multiple drugs and ADRs.

Temporal association mining. Adding the time dimension in the context of association
rules was first mentioned in [81]. However, while more follow-on works [38, 65, 111] im-
prove the efficiency of temporal association mining by maintaining intermediate frequent
item sets, all of these approaches require the user to input a specific parameter setting. This
one-at-a-time approach not only limits efficiency, but also provides very limited feedback

for the user.



42 Dissertation — Xiao Qin

Interestingness of temporal associations. [68, 97] identify the importance of analyz-
ing the interestingness measures of associations. In the context of time-variant data, [67]
measures the changes of the interestingness of the association w.r.t its histories. It is sug-
gested that the interest in the rule itself is primarily determined by the interestingness of
its change over time. Neither of these works tackle interactive mining through precompu-
tation. In contrast, we explore the space of interestingness parameters for prestoring data
mining results to facilitate fast online mining.

Interactive association mining. Prior works [22, 24, 66] have explored the space of pa-
rameters for handling data mining requests. However this work is restricted to static data.
These approaches do not consider the time dimension as a property of the pattern. In-
stead we now study the problem of incorporating the time dimension into the association

mining exploration process.



Dissertation — Xiao Qin 43

3 Temporal Local Outlier Detection

Manuscript

1. Xiao Qin, Lei Cao, Elke A. Rundensteiner and Samuel Madden. Scalable Kernel Den-
sity Estimation-based Local Outlier Detection over Large Data Streams. EDBT’19.

3.1 Introduction

Motivation. The phenomenal growth of digital devices coupled with their ever-increasing
capabilities to generate and transmit live data presents an exciting new opportunity for
real time data analytics. As the volume and velocity of data streams continue to grow,
automated discovery of insights in such streaming data is critical. In particular, finding
outliers in streaming data is a fundamental task in many online applications ranging from
fraud detection, network intrusion monitoring to system fault analysis. In general, out-
liers are data points situated away from the majority of the points in the data space. For
example, a transaction of a credit card in a physical location far away from where it has
normally been used may indicate fraud. Over 15.4 million U.S residents were victims of
such fraud in 2016 according to [6]. On the other hand, as more transactions take place in
this new location, the previous transaction may appear legitimate as it begins to conform to
the increasingly expected behavior exemplified by the new data. Thus, in streaming envi-
ronments, it is critical to design a mechanism to efficiently identify outliers by monitoring
the statistical properties of the data as it changes over time.

State-of-the-Art. To satisfy this need, several methods [87, 99] have been proposed in re-
cent years that leverage the concept of local outlier [18] to detect outliers from data streams.
Local outlier is based on the observation that real world datasets tend to be skewed, where
different subspaces of the data exhibit different distribution properties. It is thus often
more meaningful to decide on the outlier status of a point based on its difference from the
points in its local neighborhood as opposed to using a global density [23] or frequency [8]
cutoff threshold to detect outliers [33]. More specifically, a point x is considered a local
outlier if the probability density (PD) at x is low relative to that at the points in z’s local
neighborhooa.

Unfortunately, existing streaming local outlier solutions [87, 99] are not scalable to high
volume data streams. The root cause is that they measure the probability density at each
point = based on the point’s distance to its k£ nearest neighbors (xNN). Unfortunately, kNN
is very sensitive to data updates, meaning that the insertion or removal of even a small
number of points can cause the kNN of many points in the dataset to be updated. Since

the complexity of the kNN search [18] is quadratic in the number of the points, significant
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resources may be wasted on a large number of unnecessary kNN re-computations. There-
fore, those approaches suffer from high response time when handling high-speed streams.
For example, it took [87, 99] 10 minutes to processing just 100k tuples as shown in their
experiments.

Intuitively, kernel density estimation (KDE) [102], an established probability den-

sity approximation method, could be leveraged for estimating the density at each point
[107, 59, 100]. Unlike kNN-based density estimation that is sensitive to data changes, KDE
estimates data density based on the statistical properties of the dataset. Therefore, it tends
to be more robust to gradual data changes and is a better fit for streaming environments.
However, surprisingly, to date no method has been proposed that utilizes KDE to tackle
local outlier detection from data streams.
Challenges. Effectively leveraging KDE in the streaming context comes with challenges.
First, the effectiveness of KDE depends on several factors. In particular, both the kernel
function and the smoothing parameter (commonly referred to as bandwidth) [121] have to
be carefully selected to achieve a high accuracy for density estimation. Further, to ensure
the effectiveness of KDE in multimodal distributions prevalent in real world datasets, cus-
tomized density estimators have to be established for different data subspaces. This raises
the problem of how to select relevant kernel centers to enable the inference of these dif-
ferent estimators. Making correct decisions on all these factors is complex. Worst yet, the
distribution characteristics of a data stream evolve. Therefore, these factors would have to
be continuously tuned to fit the data.

Furthermore, similar to kNN search, the complexity of KDE is quadratic in the number
of points [102]. While the computational costs can be reduced by running the density
estimation on kernel centers sampled from the input dataset, sampling leads to a trade-off
between accuracy and efficiency. Although a low sampling rate can dramatically reduce
the computational complexity, one must be cautious because the estimated probability
density at each point may be inaccurate due to an insufficient number of kernel centers.
On the other hand, a higher sampling rate will certainly lead to a better estimation of the
density. However, computational costs of KDE increase quadratically with more kernel
centers. With a large number of kernel centers, KDE would be at risk of becoming too
costly to satisfy the stringent response time requirements of streaming applications.

Due to the above challenges, to the best of our knowledge, no method has successfully
adapted KDE to streaming data in an efficient manner to date.

Proposed Solution. In this work, we propose a KDE-based strategy for detecting top-
N local outliers over streams, or in short KELOS. For the first time, KELOS makes local
outlier detection practical to streaming data.

KELOS employs a new KDE-based semantics for streaming local outliers that focuses
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Figure 13: An illustration of KELOS approach.

on the continuous detection of the most promising outliers from data streams. Based on
a thorough analysis of the properties of different kernel functions, we adopt the product
kernel function for the semantics in KELOS. We show that this choice is appropriate for
continuously approximating the density of multi-dimensional streaming data — key prop-
erty needed for outlier detection. Furthermore, KELOS employs a data-driven bandwidth
approximation mechanism that automatically adapts the bandwidth to the dynamics in-
herent in data streams. Thus, this choice of semantics establishes a promising foundation
for the design of a scalable streaming local outlier detection method.

Second, KELOS solves the accuracy versus efficiency trade-off of KDE by introducing
the notion of abstract kernel centers. The abstract kernel center concept is inspired by the
nature of KDE, namely, in KDE, the density at a point z; is determined by the additive
influences from other points x;, with the strength of the influence from one point x; to an-
other x; being determined by the distance between z; and ;. As a result, points close to
each other tend to have a similar influence on other points. These nearby points thus can
be clustered together and considered as one abstract kernel center weighted by the data
cardinality. Compared to the traditional sample point-based KDE, this strategy achieves
higher accuracy in density estimation using many fewer kernel centers. Furthermore, al-
though producing the abstract kernel centers typically is more expensive than sub-linear
time complexity sampling, the small number of abstract kernel centers speeds up the later

quadratic complexity process of local density estimation. This results in the overall com-
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putational costs for abstract kernel center-based KDE (aKDE) being much smaller than the
traditional KDE, as shown in our experimental evaluation (Section 3.4.1).

Further, unlike existing techniques [87, 99], which detect outliers by routinely comput-
ing the probability density and then the outlierness score for every data point, KELOS
employs an inlier pruning strategy. It quickly prunes the vast majority of the data points
that have no chance to be outliers. The more expensive KDE method is only used after-
wards to evaluate the remaining small number of individual potentially promising outlier
candidates. Inlier pruning leverages the stable density observation that the data points in a
tight cluster tend to share similar probability density and small outlierness scores. More-
over, the outlierness scores can be bounded based on the radius of the cluster.

Finally, inspired by micro-clustering [4] popular in the streaming context, KELOS uses
a dual purpose stream clustering (DSC) approach to produce data clusters which are needed
by both aKDE and the inlier pruning. By only doing a linear pass over the data, DSC not
only produces the clusters, but also simultaneously collects the statistics sufficient for up-
dating the density estimator of a X DE and bounding the outlierness scores of each cluster
for inlier pruning.

Putting all these optimizations together, we obtain the first linear time complexity
streaming local outlier detection approach that thus scales to truly high speed streams
as confirmed by our experiments.

Contributions. Our key contributions include:

e We propose new streaming local outlier detection semantics amenable for the design
of scalable continuous local outlier detection strategies.

e We solve the effectiveness versus efficiency trade-off of KDE in the stream context
by introducing the notion of abstract kernel centers. It by itself could be applied to a much
broader class of density estimation related stream mining tasks beyond outlier detection.

e We propose a data-cluster granularity inlier pruning strategy that concentrates com-
putation resources on strictly inspecting a small set of highly suspicious outlier candidates.

e We design a linear-time complexity data-clustering strategy that continuously pro-
duces the clusters yet collecting statistics sufficient for inlier pruning and density estimator
updates.

e Our extensive experiments using public datasets with outlier labels demonstrate
the effectiveness of KELOS in detecting outliers while achieving 3 orders of magnitude

performance gain in computational costs against the alternative approaches.

3.2 Foundation

In this section we review the concepts of local outliers and kernel density estimation.
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3.2.1 Local Outlier
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Figure 14: Local outlier detection using local densities.

The notion of local outliers [18] is based on the observation that different portions of
a dataset may exhibit very different characteristics. It is thus often more meaningful to
decide on the outlier status of a point based on its difference from the points in its local
neighborhood as opposed to using a global density [23] or frequency [8] cutoff threshold to
detect the outliers. Specifically, a point z; is a local outlier if the density at x; is significantly
lower than the densities at z;’s neighbors.

As illustrated in Figure 14, although the densities at 1 and x5 are both low, the density
at x1 is quite different than the densities at the locations of its neighbors. However, the
densities at the neighbors of x5 is similar to x2. Therefore, z; is more likely to be an outlier
than x, due to its relatively low density in contrast to those at its neighbors.

Therefore, conceptually measuring a point z;’s status of being a local outlier corre-

sponds to the two-steps:
1. Estimate the density at z; and the densities at its neighbors;

2. Compute the outlierness score of z; based on the deviation of the density at z; in

contrast to those at its neighbors.

3.2.2 Kernel Density Estimation

Kernel density estimation (KDE) is a statistical method to estimate the probability density
(PD) at the point in a dataset X = {z1,---,z,}. Given a point z; € X, the kernel density
estimator computes the density at z; using a probability density function (PDF) fla):

flai) = %ZKh(\ﬂfi—ij!)- (10)
j=1

The core variables in Equation 10 are explained next.
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Figure 15: An example of univariate kernel density estimator using Gaussian kernel with different
bandwidth.

Kernel Centers. kc; (1 <j < m) are called the kernel centers in the estimator. Typically,
kc; is a point sampled from X. The selected set of kernel centers should be sufficient to
represent the data distribution of X [102].

Each kernel center kc; carries a kernel function Kj,. The density contribution by a kernel
center kc; is calculated based upon the distance from kc; to the target point x;. The density
at z; is estimated by the average density contribution by all kernel centers. For example, in
Figure 15(a), there are 7 kernel centers. Each of them carries a kernel function (red dashed
curve). The shape of the overall density function across all kernels is represented by the
blue solid line. Given a dataset X with n points and m kernel centers, the time complexity
of computing a density value at each and every point z; € X is O(nm).

Kernel Function. A wide range of kernel functions can be used in kernel density esti-

mation [102]. The most commonly used ones are the Gaussian and Epanechnikov kernel
functions [33]:

1 1u?
K auss = T (72h )7 11
3
Kepanechnikov (U) = R (1 - Zi), (12)

where u represents the distance from a kernel center kc; to the target point z; and & is an
important smoothing factor, called bandwidth, explained below.

The bandwidth controls the smoothness of the shape of the estimated density function.
The greater the value h, the smoother the shape of the density function f. As shown in
Figures 15(a) and (b), using the same set of kernel centers but different bandwidth values,

the estimated PDFs (the blue lines) are significant different from each other. Therefore, an
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appropriate bandwidth is critical to the accuracy of the density estimation.

Balloon Kernel for Modeling Local Density. In the context of local outlier detection, the
balloon kernel is recommended [100] to handle multimodal distribution, where different
subspaces of the data demonstrate different distribution properties. When estimating the
density at a target point x;, only the k nearest kernel centers of x; are utilized in the estima-
tor. Leveraging the study of variable kernel density estimation [110], this provides each point
x; a customized kernel density estimator that adapts to the distribution characteristics of
x;'s surrounding area, hence also called local density. Selecting an appropriate k is critical
and shown to be challenging [100].

3.3 KDE-based Local Outlier Detection from Data Streams
3.3.1 Density Estimator

In this section, we propose our abstract kernel center-based KDE strategy («KDE). It solves
the problem of accurately yet efficiently estimating the density at a given point. In con-
trast to the traditional sampling-based KDE approach [102], our density estimation is per-
formed on top of a set of clusters (Figure 16) that succinctly summarize the distribution
characteristics of the dataset. This approach is inspired by our abstract kernel center obser-
vation below.

ond Dimension

' Dimension

Figure 16: An illustration of abstract kernel centers (AKC). The abstract kernel centers are the
virtual centroids of the clusters (red circle).

Abstract Kernel Center Observation. In KDE, the density at a given point x; is determined
by the additive influences of the kernel centers, while the influence from one center kc; is
determined by the distance between kc; and x;. The centers close to each other tend to
have similar influence on the target point z;. Therefore, clustering centers together and
treating them as one abstract kernel center weighted by the cluster’s data cardinality is
effectively equivalent to using the whole set of data points as kernel centers.

Figure 17(b) shows an example estimation using the abstract kernel centers. The origi-
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nal 7 points in Figure 15(a) are abstracted into three clusters. The estimations (blue line) in

Figure 17(b) with 3 centers and Figure 17(a) using all 7 points as kernel centers are similar.
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Figure 17: Local kernel density estimator.

On the performance side, real world data sets tend to be skewed. Therefore, typically
most points can be clustered into a small number of tight clusters. Correspondingly the
number of the abstract kernel centers tends to be much smaller than the number of sam-
pled kernel centers that would be sufficient to represent the overall data distribution of the
dataset. Since the core costs of local density estimation correspond to the computation of
the k nearest kernel centers for each to be estimated point z;, the small number of abstract
kernel centers promises to reduce the complexity of the successive density estimation pro-
cess.

Furthermore, the abstract kernel centers allow us to use a small k£ while establishing a
diversified neighborhood — hence a comprehensive density estimator for each point. This
not only reduces the complexity of the kNN search and kernel density computation, but
also alleviates the problem of selecting an appropriate k. This selection, while critical for
the accuracy of density estimation, is challenging as shown in the preliminaries (Section
3.2.2). Since the abstract kernel centers representing data clusters are more stable than sam-
pled individual points in terms of their statistical properties, our selected k by such method
would be more robust to the continuously changing stream data. Next, we formally define

the concept of abstract kernel centers.

Definition 14. Given a stream window SWe = {z1,--+ ,xn}, the abstract kernel centers of SWe
are a set of pairs AKC(SV<) = {{ce,, |c1]), -+, (ce,s |eml)}, where c., (1 < i < m) corresponds
to the centroid of the respective data cluster c; and |c;| the number of points in c;. Here | J!" | ¢; =
SWe and Vi, j,i # j ciNe; =0

Weighted Kernel Density Estimator. Intuitively, each abstract kernel center represents

the centroid of a cluster of points close to each other along with the data cardinality of
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this cluster. Utilizing these abstract kernel centers, we construct a weighted kernel density
estimator [39], where the kernel centers correspond to the centroids in AKC(S"<) (the first
component of AKC) and the weight corresponds to the cardinality of the data cluster rep-
resented by the centroid (the second component). Therefore, the weighted kernel density
estimator reflects the distribution characteristics of the entire dataset by utilizing only a
small number of kernel centers. The formula is shown below:

k d
Farceqswey(@i) =Y w(ce,) [ Kn(lah = 1) (13)
j=1 =1
and
;]
w(ce,) = ————, (14)
Yk lem]

where c., € kNN (z;, AKC(S"<)). Here fAK@( swey(w;) in Equation 13 corresponds
to a weighted product kernel estimator that computes the local density at z; and
kNN (z;, AKC(S"¢)) corresponds to the k nearest centroids of x; in the abstract kernel
centers.

Bandwidth Estimation. One additional step required to make the weighted kernel density
estimator work is to establish an appropriate bandwidth for the product kernel. Here
we show that the rule-of-thumb strategy can be efficiently applied here by leveraging the
abstract kernel centers.

By rule-of-thumb, the [th dimension bandwidth of the product kernel is determined by

the weighted standard deviation of the kernel centers on /th dimension o computed by:
k
ol = \| D wlean )k, = 1), (15)
m=1

where

k
Ml — Zm:l w(ccm>clcm
A )

(16)

and c.,, € kNN (z;, AKC(SWe)).

3.3.2 Discussion on Effectiveness and Efficiency

Effectiveness. Our «KDE builds robust density estimator based on the observation that
real world datasets typically can be represented by tight data clusters because of the skew-

ness of the data distribution. This is confirmed by our experiments using real datasets. If
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a dataset is uniform, then traditional sampling-based KDE tends to be effective as well.

Efficiency. As shown, the time complexity of KDE is O(nm), with n is number of data
points and m is the number of kernel centers. Since aKDE dramatically reduces the number
of kernel centers, it significantly speeds up the KDE computation. On the other hand, data
clustering introduces extra computation overhead. As we will introduce in Section 3.3.5,
we design a low complexity stream clustering algorithm that successfully clusters the data
points by processing each point only once. This overhead is significantly outweighed by
the saved KDE computation costs. Therefore, overall aKDE significantly outperforms the

traditional KDE in computation costs — as shown in Section 3.4.1.

3.3.3 Outlier Detector

Our top-N local outlier detector fully leverages the data clusters produced for our aKDE.
It is based on our stable density observation described below.

Stable Density Observation. Data points in a tight data cluster are close to each other.
Therefore, they tend to share the same kernel centers and have similar probability densi-
ties. By the definition of local outliers, the outlierness score of a point x depends on the
relative density at « in contrast to those at its neighbors. Therefore, these points tend to
have similar outlierness scores. Since outliers only correspond to small subset of points
with the largest outlierness scores, it is likely that most of the data clusters do not contain
any outlier.

Assume we have a method that can approximate the largest (upper bound) and small-
est (lower bound) outlierness scores for the points in each data cluster. Then by leveraging
the bounds, the data clusters that have no chance to contain any outlier can be quickly
identified and pruned from outlier candidate set without any further investigation. More
specifically, if the upper bound outlierness score of a data cluster ¢; is smaller than the
lower bound outlierness score of a data cluster c;, then the whole ¢; can be pruned (under
the trivial premise that c; has no fewer than IV points). This is so because there are at least
N points in the dataset that have outlierness scores larger than any point in c;.

Leveraging this observation, we now design an efficient local outlier detection strategy.
The overall process is given in Algorithm 1. We first rank and then prune data clusters
based on their upper and lower KLOME score bounds. As shown, a small KLOME score
indicates large outlier possibility. Therefore, the upper KLOME bound corresponds to the
lower outlierness score bound. Similarly, the lower KLOME bound corresponds to the
upper outlierness score bound. Therefore, if the lower KLOME bound of a cluster ¢; is
higher than the upper KLOME bound of another cluster c¢;, all points in ¢; can be pruned

immediately. Only the clusters with a small lower KLOME bound (large outlierness score
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upper bound) are subject to further investigation. The densities and KLOME scores at the
data point-level are computed only for the data points in these remaining clusters. Finally,
the top-N results are selected among these points by maintaining their KLOME scores in a

priority queue.

3.3.4 Bounding the KLOME Scores

Next, we present an efficient strategy to establish the upper and lower KLOME bounds for
each given data cluster.
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Figure 18: An example of lower KLOME bound.

By definition, the KLOME score of a point z; corresponds to z-score(f(z;), X), where
X refers to the densities at x;’s kernel centers. Since the points in the same cluster ¢;
typically share the same kernel centers, the data point z,,;, € ¢; with the minimal density
determines the lower bound KLOME score of the entire cluster ¢;. Similarly the upper
bound is determined by the point z,,q, with the maximal density. Obviously it is not
practical to figure out the lower /upper bound by computing the densities at all points and
thereafter finding x,,i, and 4z
Lower bound. We now show that by utilizing the statistical property of each data cluster
— more specifically the radius, the bounds can be derived in constant time. Here we use the

lower bound as example to demonstrate our solution.

Lemma 5. Given a data cluster c¢;, its k nearest kernel centers {c.,,- - ,cc, } and the data point
Tmin Which has the minimum density among all points in c;, fmin(ci) < f (Zmin), wWhere fmin(ci)
= Z?Zl w(ce; ) Kn(lce; — ce;| + 7). Here r is the radius of c; and c., is the centroid of c;.

Proof. The density contribution Kj,(|z; — c.,|) is inversely proportional to the distance be-
tween the evaluated point z; and the kernel center c.;. The longer the distance, the smaller
the density contribution is from the kernel center. The radius r of a cluster ¢; is the dis-
tance from ¢;’s centroid ¢, to the furthest possible points in ¢;. The longest possible dis-

tance from a kernel center c.; to any point in ¢; is denoted as d. = lce, — ccj\ + r. The
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distance from c., to z;,;y, is denoted as d, = |ch — Tpin|. de > dy by the triangle inequal-
ity. Therefore Kj,(d,) < Kp(d.). This holds for any kernel center c.;. Therefore fmm(c,) =
Z?:l w(ccj)Kh(‘CCj — ce| + 1) < f(Tmin)- O

Intuitively, the density at a data point is measured by the summation of the density
contributions of all relevant kernel centers. The summation of the density contribution
from each kernel center c.; to the point z; that is the point furthest to c.; in ¢; is guaranteed
to be smaller or equal to the density at point x,,;,. This is so because the distance from z,,
to each kernel center c., cannot be larger than the distance between ¢, and x;.

According to Lemma 5, given the radius of a data cluster ¢; and its k nearest kernel
centers c., - -+ ¢, the lower KLOME bound of cluster ¢; is computed as:

KLOMEy,(¢;) = z—score(fmm(ci), {f(ccl) e f(cck)})a (17)

Upper Bound. Similarly, we can show that the maximal local density at a cluster c;, de-
noted by faz(ci), can be obtained based on the shortest distance from each kernel center
to the points in ¢;.

fmam ci) ZW Cc; VK1 |Cc] Cci‘ —) (18)

Accordingly, the upper KLOME bound of each cluster ¢; KLOME,;(c;) is derived
based on fmw(ci).

KLOMEup(Ci) = Z-SCO?“E(fmaz(Ci), {f(cq) T f(Cck)}), (19)

3.3.5 The Stream Data Extractor

The stream data extractor features a lightweight stream clustering algorithm that clusters
the similar data points together. As the clusters are continuously constructed and incre-
mentally maintained, the statistics needed by both «KDE and inlier pruning, namely the
cardinality, the centroid, and the radius of the cluster, must also be continuously generated.
We thus refer to this as dual-purpose clustering.

The dual-purpose clustering is based on two key ideas: additive meta data and pane-based
meta data maintenance.

The additive meta data is inspired by Micro-cluster [4] — a popular stream clustering
approach. The idea is that by maintaining meta data that satisfies the additive proper-
ties, the statistics required by both the density estimator and the outlier detector can be

computed in constant time whenever the window evolves.
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Definition 15. A cluster ¢; in a d-dimensional data set Sy, = {z1,- - , Ty} corresponding to the
data in the current window W, of stream S is represented as a 4-tuple set {M, LS, Rynin, Rmaz }

where M denotes the cardinality of the cluster, LS =< Y"1 al, -+ S a¢ > is the linear sum

Lo qpd

min> s Tiin > And Rypqp =< z} z¢ > are

maz> " Ymazx

of the points by dimension, Ry, =< x
the minimum and maximum values of the points in each dimension.

Cardinality and Centroids for aKDE. In Definition 15, M refers to data cardinality of
cluster ¢;. M is used to compute the weight (Equation 14) and the centroid of the abstract
kernel center. The linear sum LS is used to compute the centroid of cluster ¢; = £2.

The Radius for Inlier Pruning. R, and R,,,, representing the minimal and maximal
values in each dimension are utilized to compute the radius of cluster ¢;. Radius is a
key statistic needed by our outlier detector to quickly prune the clusters from the outlier
candidate set.

Since the radius is defined as the distance from the centroid c., to its furthest point in
cluster ¢;, the radius changes whenever the centroid changes. All points in ¢; then have
to be re-scanned to find the point “furthest” from the new centroid. This, being computa-
tional expensive, is not acceptable in online applications.

The remedy comes from our carefully selected product kernel function. In the product
kernel, each dimension has its own customized bandwidth. Accordingly, we only need
the radius on each single dimension to estimate the bandwidth instead of the radius over
the multi-dimensional data space. We now show that updating the radius in each one-

dimensional space can be accomplished in constant time by utilizing R,,:, and R,z

Lemma 6. Given a new centroid c., and its value on Ith dimension vt the radius of c; on the lth

U= maz{| v — z! —v! |}, where z! . € Ry and !, € Ryaa.

) ’ ‘gjl .
min | min

dimension r A

Pane-based meta data maintenance. The pane-based meta data maintenance strategy [64]
is utilized to effectively update the meta data for each cluster as the window slides. Given

S.win

ged(S.win,S.slide)
small panes where gcd refers to greatest common divisor. The meta data of a cluster ¢;

the window size S.win and slide size S.slide, a window can be divided into

is maintained at the pane granularity instead of maintaining one meta data structure for
the whole window. Since the data points in the same pane arrive and expire at the same
slide pace, the meta data can be quickly computed by aggregating the meta data structures
maintained for the unexpired panes as the window moves. This process is illustrated in
Figure 19. Since the meta data satisfies the additive property, the computation can be done
in constant time. In this way, no explicit operation is required to handle the expiration of
outdated data from the current window. Therefore, our stream clustering algorithm only

needs to exclusively deal with the new arrivals.
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Figure 19: An example of an evolving cluster.

The Dual-Purpose Stream Clustering Algorithm. Once a new data point x arrives, DSC
first finds its nearest cluster according to the distance of z to all the centroids. If the distance
from z to its nearest cluster ¢; denoted as dist(z, c.,) is smaller than a radius threshold 6,
x is inserted into ¢;. The corresponding 4-tuple meta data is updated accordingly. On the
other hand, if dist(z, c.;) > 6, a new cluster will be created.

3.4 Experimental Results

3.4.1 Efficiency on Real Data Streams
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Figure 20: Efficiency on HTTP.

In this section, we report the end-to-end execution time as well as the memory con-
sumption of different methods by varying the number of neighbors £ on HTTP dataset.

In this set of experiments, we fix the window size for HTTP as 6,000 and vary the
number of neighbors k. The k parameter defines the number of neighbors to be considered
in the computation of outlierness score for each point. It is critical to the effectiveness and
efficiency of local outlier detection. The radius threshold 6 of KELOS is set as 0.095. The
sampling rates of KDEOS.S is set as 10%. This relatively high sampling rate ensures that
KDEOS_S always has more than k kernel centers to use as k increases.
Execution Time. As shown in Figure 20 (a), KELOS is more than 2 orders of magnitude
faster than the alternatives. The line of KELOS stops at 800, because KELOS uses our
cluster-based aKDE approach. The number of the kernel centers is restricted by the num-
ber of the clusters. Similarly, the line of KDEOS_S stops at 1,000 due to the limited number
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Figure 21: PQ|O| of varied number of neighbors k. Note the maximum % that each method can
reach is different. For LOF, it depends on the total number of data points. For KDE-based methods,
it depends on the number of kernel centers available.
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Figure 22: AP of varied number of neighbors k. Note the maximum £ that each method can reach
is different.

of samples. Among these algorithms LOF and KDEOS are the slowest and have the similar
performance, because their time complexities are both quadratic in the number of points in
each window. KDEOS_S is much faster than KDEOS and LOEF, because KDEOS_S only uti-
lizes the points uniformly sampled from the data as kernel centers. Searching the k nearest
kernel centers from the small sampled kernel center set is much faster than the k nearest
kernel center search among all points in each window. However, KDEOS_S is still at least
1 order of magnitude slower than KELOS. This is because, in order to satisfy the accuracy
requirement, the number of the sampled kernel centers has to be large enough to represent
the distribution of the data stream. The aKDE approach of KELOS only uses the centroid
of each cluster as abstract kernel center, while the number of the clusters tends to be much
smaller than the number of the sampled kernel centers. Furthermore, KELOS effectively
prunes most of the inliers without conducing the expensive density estimation, while in
contrast, KDEOS_S has to compute the outlierness score for each and every data point.

3.4.2 Effectiveness Evaluation

In this set of experiments, we compare the accuracy of the proposed method to the base-
lines on the labeled public datasets by varying the most important variables.

Varying Number of Neighbors k. This set of experiments is conducted on the HTTP,
Yahoo! Al, and Yahoo! A2 datasets. The radius thresholds of KELOS for HTTP, Yahoo!



58 Dissertation — Xiao Qin

Al, and Yahoo! A2 are set as 0.095, 0.1 and 40. The window sizes of HTTP, Yahoo! A1, and
Yahoo! A2 are set as 6,000, 1,415, and 1,412 respectively. The sampling rates of KDEOS_S
is set as 10% for the similar reason with the efficiency evaluation (Section 3.4.1).

Table 1: Accuracies on labeled real datasets.

P@|O)] AP

HTTP Yahoo! A1 | Yahoo! A2 HTTP Yahoo! A1 | Yahoo! A2
LOF 87.06% 65.97% 725.11% 77.34% 69.16% 77.19%
KDEOS 86.88% 64.17% 75.11% 76.06% 68.84% 76.95%
KDEOS_S 87.43% 37.39% 74.89% 77.54% 36.43% 77.10%
KELOS 93.40% 67.83% 75.75% 85.92% 69.64% 77.30%

Table 1 shows the peak PQ|O| and AP for each approach on each dataset. KELOS
outperforms all other approaches in all cases.

Figures 21 and 22 further demonstrate the trend of PQ|O| and AP as k varies. Figure
21(a) shows the results on the HTTP dataset. For our KELOS, as k increases, the PQ|O| in-
creases until k reaches 80. It then starts decreasing after £ is larger than 100. This confirms
our observation that using as many as possible kernel centers in the density estimator
does not always lead to more accurate density estimation. This justifies our decision of
adopting the balloon kernel that only takes the close kernels into consideration when es-
timating the density at a point p. Overall KDEOS, KDEOS_S, and LOF show the similar
trend. Compared to KELOS they have to use a much larger & to get relative high accuracy.
Interestingly, KDEOS_S has similar P@|O| with KDEOS. This shows that sampling-based
KDE works well on large datasets.

The trends on the Yahoo! Al and A2 datasets are different from that on the HTTP
dataset as shown in Figures 21 (b) and 21 (c). Similar to the HTTP dataset, the PQ|O| con-
tinuously increases and gets stable after k reaches certain value. Furthermore, we observe
that KDEOS_S works poor on Yahoo! Al dataset. The reason is that the Yahoo! Al and A2
datasets are relatively small. The samples drawn from small dataset often are not sufficient
to represent the distribution of the whole dataset.

The trends of AP are similar to the trends of PQ|O| on all datasets as shown in Figure
22. Overall, KELOS is as accurate or more accurate than alternative approaches. Further-
more, compared to the alternatives, KELOS uses a smaller £ to achieve high accuracy. This

also contributes to the performance gain of KELOS in execution time.

3.5 Related Works

Local Outlier Factor. Local outlier detection has been extensively studied in the literature
since the introduction of the Local Outlier Factor (LOF) semantics [18]. A detailed survey
of LOF and its variations can be found in [21]. The concept of local outlier, LOF in particu-

lar, has been successfully applied in many applications [21]. However, LOF requires kNN
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search for each and every data point and needs multiple iterations over the entire dataset
to compute these LOF values. For this reason, to support continuously evolving streaming
data, [87] studied how to quickly find the points whose LOF scores are influenced by new
arrivals or expired data to avoid re-computing the LOF score for each point as the window
slides. However as the velocity of the stream increases, most of the points in a window
will be influenced. Therefore this approach does not scale to high volume streaming data.
In [99] an approximation approach was designed to support LOF in streaming data that fo-
cuses on the memory efficiency. However, the more important problem in stream mining,
namely the CPU efficiency, was overlooked, which now is instead the focus of our work.
Efficient Kernel Density Estimation. Kernel density estimation is considered as a
quadratic process O(nm) with n the total number of data points and m the number of
kernel centers in the probability density function. Previous efforts have been made to ac-
celerate this process while still providing accurate estimation, such as utilizing sampling
[102]. [122, 44] designed a method that incrementally maintains a small and fixed size
of kernel centers to perform density estimation over data streams. However, to ensure
the accuracy of density estimation over skewed dataset, the sample size has to be large.
Therefore it cannot solve the efficiency problem of KDE in our context.

[37] studied the density-based classification problem. It proposed a pruning method

that correctly classifies the data without estimating the density for each point by utilizing a
user-defined density threshold. However, this pruning method can not be applied to solve
our problem, since a point with low density is not necessarily an outlier based on the local
outlier semantics we target on.
Outlier Detection using KDE. For each point in the current window of a sliding window
stream, [107] utilizes KDE to approximate the number of its neighbors within a certain
range. This information is then utilized to support distance-based outlier detection and
LOCI [82]. It directly applies off-the-shelf KDE method on each window. No optimization
technique is proposed to speed up KDE in the streaming context.

[59] is the first work that studied how to utilize KDE to detect local outliers in static
dataset. This later was improved by [100] to be better aligned with LOF semantic. Each
data point’s density is estimated based upon the surrounding kernel centers only, therefore
called local density. Instead of considering outliers only based on their density value, data
points are measured based on the density in contrast to their neighbors. However, this
work does not focus on improving the efficiency of KDE. Nor it considers streaming data.
As confirmed in our experiments, it is orders of magnitude slower than our KELOS.
Other Streaming Outlier Detection Approaches. LEAP [23] and Macrobase [8] scale
distance-based and statistical-based outlier detection methods respectively to data streams

where they rely on either the number of neighbors in a certain distance range or the fre-
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quency of each data point to detect outliers. More specifically in these works, a data point
is considered to be an outlier if its neighbor count (or frequency) is lower than a global cut-
off threshold. However, applying such a global cut-off threshold uniformly to the whole
dataset is not ineffective in handling skewed datasets [33]. For example, a point with a
small number of neighbors is not necessarily an outlier if it is located in a relative sparse
subspace of the dataset. On the other hand, a point with a relative large number of neigh-
bors might instead be an outlier, if it is located in a dense subspace and other points have

many more neighbors than it.

3.5.1 Conclusion

We present the first solution called KELOS for continuously monitoring top-N KDE-based
local outliers over sliding window streams. First, we propose the KLOME semantics, ef-
fective in measuring the outlierness scores of streaming data. Furthermore, continuous
detection strategy is devised that efficiently supports the KLOME semantics by leveraging
the key properties of KDE. Using both real world and synthetic datasets we demonstrate
that KELOS is 2-3 orders of magnitude faster than the baselines, while being highly effec-

tive in detecting outliers from data stream.
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4.1 Introduction

This decade has seen an explosion in the amount of digital information presented in the
electronic health records (EHR), in part due to the Health Information Technology for Eco-
nomic and Clinical Health (HITECH) Act of 2009 which promotes the adoption and mean-
ingful use of health information technology [12]. In 2015, 84% of hospitals in the United
States adopted at least a Basic EHR system which represents a 9-fold increase since 2008 [45].
An EHR is a patient-centered record consisting of heterogeneous data elements, including
patient demographic information, diagnoses, laboratory test results, medication prescrip-
tions, medical images and free-form clinical narratives [118]. In particular, the clinical nar-
ratives provide a diagram that concatenates complex medical events via natural language
which encode critical insight very often not presented or missed from the structured fields,
e.g. description of Challenge-Dechallenge-Rechallenge (CDR) [104] phenomenon that verifies
adverse drug reactions. The problem of text mining clinical narratives through natural
language processing (NLP) has attracted increasing attention in recent years.

Language models (LMs) whose goal is to learn the joint probability function of
sequences of words in a language are one of the key enablers to many NLP applications
including machine translation, named entity recognition and text summarization. The

capability of capturing long term relationships among text is crucial to the performance
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Figure 23: The generative process of a clinical narrative. Green dashed box highlights document
meta-information, red box the latent topics of the narrative and their associated vocabulary, while
red dashed box the preceding text.

of LMs [74]. Recurrent neural network (RNN) based language models in particular
have demonstrated promising results in modeling complex and long dependencies.
Recently, RNN based methods have been widely used in processing medical text [69]. In
theory, RNNs such as Long Short-Term Memory (LSTM) [47] and Gated Recurrent Unit
(GRU) [26] can “remember” arbitrarily long span of history if provided with enough
capacity. However, they do not perform well on very long sequences in practice as
the gradient computation for RNNs becomes increasingly ill-behaved as the expected
dependency becomes longer [84]. One way of tackling this problem is to feed succinct
information that encodes the semantic structure of the document such as latent topics
as context to guide the modeling process [75], as illustrated in Figure 24(a). In this vein,
existing works [29, 60, 112] focus on the global context obtained from the text itself,
overlooking the opportunity to exploit existing document meta-information which may

provide explicit insight into the global context.

Motivating Example. Let’s consider the generative process of a clinical narrative de-
scribing a patient’s adverse drug events as illustrated in Figure 23. Before drafting the
narrative, the doctor fills out the structured template form with the “central ingredients”
of the narrative such as the patient’s demographics, suspected drugs, severity, etc. With
this descriptive information and the observed events such as “experiencing nausea after
taking Ciproxin” in mind, the doctor then composes the overall story by considering the

relevant topics and their corresponding vocabulary. Finally, the narrative summarizing
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Figure 24: Intuitions of different text modeling approaches.

all information is composed with appropriate words in order. This motivating example
highlights the following insights: (1) Latent topic information such “Bacterial Illness”
topic and its proportion in the text as the global context to guide and regulate the
language modeling process; (2) Document meta-information could be leveraged to learn

more accurate and relevant topic information with respect to the key medical information.

Limitations of State-of-the-Art. Contextual RNNs (cRNNs) [75] obtain topic information
from latent Dirichlet allocation (LDA) [16] and feed it into an additional feature layer
connected to the recurrent unit to guide the modeling process. To ensure that the learned
topics are in favor of those that indeed improve the language modeling performance,
TopicRNN [29] further extends cRNN by combing topic model and cRNN into a unified
model that trains the two components simultaneously. However, these models only focus
on the semantic structure inferred from the text itself. Hence, they miss the opportunity
of obtaining a more complete context that also incorporates document meta-information.
On this front, supervised topic models (sTMs) [96, 77, 71, 93, 94, 78, 49], illustrated in
Figure 24(b), use observable document meta-information to supervise the learning of
better topic representations. However, these models are bag-of-word models that do not

account for word ordering, which is essential to our problem.

Challenges. To integrate the strength of sTMs into cRNNs for better clinical narra-
tive modeling performance, the following research challenges need to be tackled: (1)
Flexible supervised topic model component. Existing latent Dirichlet allocation (LDA) varia-
tions [96, 77,71, 93, 94, 49] that incorporate document meta-information focus on specially

constructed models. Even small changes to these ad-hoc solutions require deriving new
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inference methods which can be onerous for practitioners to freely experiment with
different modeling assumptions. Moreover, existing solutions cannot accommodate
combinations of modalities of data beyond their original intention. The lack of capability
to manage arbitrary meta-data limits their effectiveness on complex inputs such as EHR
which contains meta-information coded in various format. (2) End-to-end Framework.
sTMs learn the the topics from the bag-of-words representation of the text and their cor-
responding meta-information. Although the learned topics representing the underlying
semantic structure of a document can encode long-range dependencies for cRNNSs, such
topics do not reflect on information indicated by the ordering of the words (e.g “eat to
live” vs. “live to eat”) missing the opportunity to capture the true semantics of the text. In
order to better facilitate cRNNs on sequence modeling task, establishing direct connection
between sTMs to the goal of language model becomes critically important.

Contribution. To tackle the above challenges, we propose a neural language model called
MeTRNN (Figure 24(c)) which enhances RNN-based language models’ capability of es-
tablishing long-range dependencies by leveraging arbitrary document meta-information
through their implicit influence via supervised latent topics and through explicit influence
via a feature layer that directly connects to the RNN cells. It is worthwhile to highlight the

following contributions of the proposed approach.

1. MeTRNN defines and explicitly models the text generative process based on the ob-

servation of the composition of the clinical narrative in an EHR.

2. MeTRNN captures the latent topics in text by leveraging the associated meta-
information, which serves as the global context of the text that leads to better lan-
guage modeling performance. To cope with various structured information in the
EHRs, we propose a flexible supervised topic model component that can take on

arbitrary meta-information.

3. We design a joint model that connects sSTMs to cRNNs with an end-to-end autoen-
coding variational Bayes inference method using the conditional variational autoen-
coder framework [103]. It is a “black box” method that can be easily adjusted or
extended.

4. We demonstrate the effectiveness of MeTRNN in word prediction using publicly
available text datasets as well as real world Electronic Health Records (EHRs).
MeTRNN achieves improvement in perplexity from 5% to 40% against baselines.
We also conduct a case study that demonstrates MeTRNN's ability to learn useful
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global context for better language modeling performance and more relevant topics
to the structured meta-information.

4.2 Preliminary
421 RNN-based Language Models.

Traditional n-gram and feed-forward neural network-based language models make the
Markov assumption about the dependencies between consecutive words where the chain
rule limits conditioning to a fixed size context window. RNN-based language models
overcome the Markov assumption by defining the conditional probability of each word
w; given all the previous words wy.;—1 through a hidden state h;:

plwi|wi—1) 2 plw|hy),
he = f(hi—1,wi—1).

The function f(-) can be a standard RNN cell or a more complex cell such as GRU or LSTM.
While in principle RNN is good at remembering the long-term dependencies, in practice,

(20)

training a large-scale neural network on long histories can be difficult. Contextual RNN
(cRNN) [75] tackles this problem by adding a feature layer that regulates the model by
introducing the side information as additional context. Side information refers to informa-
tion in or reasoned from the text such as document topic information obtained from latent
Dirichlet allocation (LDA) [16]:

(21)
where z denotes the side information.

4.2.2 Latent Dirichlet Allocation.

Probabilistic topic models are a family of models that aim to find groups of words that tend
to co-occur within a document. These groups of words are called topics. Each topic 3, rep-
resents a probability distribution that puts most of its mass on this topic related vocabulary.
A document can then be represented as a mixture over these topics 8 = (51 ---Bk). 5 is
said to encode the global semantics. Topic models are bag-of-words models where the word
order is ignored.

For the most popular topic model, latent Dirichlet allocation (LDA) [16], its generative
process of a document wy.7 is:

The marginal likelihood of a document w;.r is:
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Figure 25: Plate notation for LDA with Dirichlet-distributed topic-word distributions. D denotes
the number of documents in a corpus, N is the number of words in a document and K is the
specified number of topics.

for each document wy.T do
Draw topic distribution 6 ~ Dirichlet(«)

for each word w; do
Draw topic assignment z; ~ Multinomial(1,0)
Draw word w; ~ Multinomial(1,5.,)
end
end

T K
pwnirla,8) = [ (]S pturlee, 8))oaloyi. 22)
0 " i=12z=1

Posterior inference over the hidden variables § and z is intractable due to the coupling
between 6 and 3 under the multinomial assumption. A popular approximation for efficient
inference is mean field variational inference [15] which sidesteps this issue by introducing
free variational parameters - over 6 and ¢ over z and dropping the edge between them.
This results in an approximate variational posterior ¢(0, z|v, ¢) = ¢,(8) [[; g4(2:), which
is optimized to best approximate the true posterior p(6, z|wi.r, @, 3). The optimization
problem is to minimize the evidence lower bound (ELBO):

L(y, ¢la, B) = =Dkrq(0, 2|7, 9)lIp(0, 2|e) ]+

(23)
Eq(9,2)v,¢)[l0g p(wr.T|2, 0, o, B)].

The first term in Equation 23 tries to match the variational posterior over latent variables
to the prior on the latent variables, while the second term ensures that the variational pos-

terior favors values of the latent variable that are good at explaining the data. Recently,
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several methods are proposed to “black box” the inference by using the variational au-
toencoder framework [56]. The variational parameters are computed by using a neural
network called an inference network that takes the observed data as input. The second
term in Equation 23 is referred to as a reconstruction term in the autoencoder network. The
expectation w.r.t. ¢ is computed by using a Monte Carlo estimator, called reparameterization
trick.

Supervised topic models (sTMs) [13] are a group of topic models for incorporating side
information. They can be categorized into two classes, namely, downstream supervised topic
(DsTM) and upstream supervised topic model (UsTM). In a DsTM such as [34, 113, 114, 79, 14],
meta-information, a.k.a. the response, is predicted based on the latent representation of
the document, whereas in a UsTM such as [96, 72, 77, 78, 30] the response variable is being
conditioned on to generate the latent representation.

4.3 The Proposed Approach

Next, we describe our proposed supervised topic compositional neural language model
(MeTRNN). The realization of MeTRNN is a deep learning framework that integrates a
sIM like component into a cRNN for improving the language modeling capacity. First,
we introduce the general principle of how we utilize the meta-information in our model.
Second, we formally define the MeTRNN model. Third, we propose an inference method
for MeTRNN. Finally, we discuss our strategy for training MeTRNN.

4.3.1 Document Meta-Information.

Document meta-information, as motivated in the clinical narrative scenario, provides the
central ingredients of the narrative text as well as a clue in semantic structure of the entire
narrative. Based on this observation, we design our model such that meta-information
has both explicit and implicit influence on language modeling. For explicit influence, we
add a feature layer similar to [75] that takes meta-information directly connected to the
recurrent unit in RNN. For implicit influence, we introduce a sTM like component where
the meta-information is used as a response to produce relevant topic information. In this
study, we adopt the idea of UsTM approach where meta-information is being conditioned
on to generate the topic information of the narrative. The widely used UsTM approach is
considered closer to the the generative process [78] in the clinical narrative scenario where
all meta-information is pre-defined and is used for defining the topics. MeTRNN works
with arbitrary meta-information as long as there exists a vector representation of such

information. The exact computation of explicit and implicit influence is formalized next.
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4.3.2 MeTRNN Model.

We define MeTRNN as a generative probabilistic model of an EHR corpus. The idea is
that the semantic structure of a document is represented as a random mixture of latent
topics conditioned on some document meta-information. Each topic is characterized by a
distribution over words. The distribution of a word in the text narrative is then estimated
given all the preceding words, latent topics and the document meta-information. For each
document d = (x4, wi.7) where x4 is a vector that encodes the meta-information of d, e.g.
representation of the structured information in an EHR, and w7 is the associated narrative

text, the generation process of wy.r is defined as follows:

for each document d = (x4, w1.7) do
I. Draw a topic proportion vector 6 ~ p(6|x)
for each word w; do
II. Compute the hidden state hy = f(wi—1, hi—1)
IIL. Draw word w; ~ p(wq|hy, 0, 14) where p(wi=i|hs, 0, 24) o< exp(v, hi+b; 0+c z4)
end
end

¢ is drawn from a Dirichlet distribution over 6 conditioned on the document meta-
information x4. 6 is the topic proportions influenced by the document meta-information
which encodes the semantic structure of the document d. f computes the hidden state of
the RNN (Equation 20) based on the previous word and hidden state. The current hidden
state h; encodes the local dynamics of the composed word sequence up to time ¢t — 1. Fi-
nally, the next word w; is decided based on the hidden state h, topic proportions 6 and
document meta-information z4 through an additive procedure. In [75], 4 and 0 are re-
ferred as additional side information to affect the word choices in the language model.
Following [29], instead of passing them into the hidden state of the RNN, they are used as
bias to have their global semantic contributions to the word choices clearly separated from
those of local dynamics. The contextual contribution is measured by the summation of the
dot products between 6, x4 and respective latent word vectors b; € Wy, and ¢; € Wiy, for

the ith vocabulary word.

The unrolled graphical representation of MeTRNN is depicted in Figure 26. The log

marginal likelihood of the word sequence w;.7 composing a document d is:

T
log p(wi.|z4) = log/p(9|xd)Hp(wt]ht,9,wd)d9 (24)

t=1
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Figure 26: The unrolled MeTRNN architecture: wy, - - - , w4 are words in the document, h, is the
state of the RNN at time step ¢, § is the latent representation of the EHR and x4 is the meta-
information.
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E —O— matrix mult. Network E E Network é i
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Figure 27: An example of MeTRNN inference network with a vanilla recurrent neural network cell.
The input of the recognition network are @w;.r (or wi.+) the bag-of-words representation of the text
and z4 the vector representation of the meta-information. The input of the generation network at
time ¢ includes the hidden state h from the previous time stamp, current word w;, topic vector
and meta-information z.

4.4 The Model Inference.

Since directly optimizing Equation 24 is intractable, we use variational inference for ap-
proximating this marginal. Let ¢(6) be the variational distribution on the marginalized 6.

The variational lower bound of the model is written as follows:

log p(wi.r|ra) > —Drr(q(0w17, z4)|[p(0]7a))+ (25)

EQ(9|7~U1:T,Zd) [log p(w1.7]0, z4)].
ELBO is written as:

L(zg,w1.r) £ —Dir(q(01 011, 24)||p(0]za))+

ET: (26)
Eq(e‘wltTﬂ?d) [ log p(wt‘ht, 0, xd)] .
t=1
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Following the proposed conditional variational autoencoder (CVAE) [103], we choose the
form of ¢(#) to be a “black box” inference network using a feed-forward neural network.
Specifically, the MeTRNN inference network consists of a recognition network ¢(8|w.7, z4)
where wi.r € d is a bag-of-words representation of w;.7, a prior network p(6|z4) and a
generation network p(w;.7|0, z4) that reconstructs the word sequence. In our formulation,
the prior of the latent variable 6 is modulated by the meta-information. This can be relaxed
to make the latent variables statistically independent of =, [55], i.e., p(0|z4) = p(0). We
show the graphical representation of MeTRNN inference network in Figure 27.

q(0) is reparameterized with a deterministic, differentiable function g(-, -, -), whose ar-
guments are meta-information x4, words .7 and the noise variable e¢. This, known as
reparameterization trick [56], allows for error backpropagation through the latent variables,
essential in variational autoencoder training. In MeTRNN, the latent variable 6 follows
a Dirichlet distribution as suggested by the classical topic models [16] due to its flexi-
bility. However, Dirichlet distribution does not belong to the location-scale family which
makes reparameterization trick difficult to use. We solve this by constructing a Laplace
approximation to the Dirichlet prior [105]. We approximate the prior distribution with
p(0|p1,X1) = LN (0|1, 21) where LN is a logistic normal distribution,

1
wir = logay, — e Zl:logai,
1 2 1 1
Swem L1 2) ¢ Ly L
Lk (6757 K +K2;O¢i

with a = (a1, - -+ , ak) being the parameter of the Dirichlet prior and K the dimension of

(27)

the hidden space, a.k.a. specified number of topics. Finally, 0 = g(z4, wi.1,€), € ~ N(0,I).
According to the defined prior network, the input of the recognition network ;.7 and
the meta-information vector z is first projected into a K-dimensional latent space. Specif-

ically, we have:

q(0l@r., xa) = LN (0| (D17, a), diag(o” (G171, 24))),
M(wl:Ta l‘d) = qug(wl:T) + Wmug(xd) + b,uy (28)
IOgO'(ZP[}l:T, l‘d) = Wwog(wl:T) + Wmag(xd) + bo;

where g(-) denotes the feed-forward neural network. The weight matrices
Wowws Winps Wwe s Wime and biases by, b, are shared across documents. Each document has
its own parameter setting p (1.7, zq4) and o (.7, z4) resulting in a unique distribution
q(0|w1.7, z4) for each document. The output of the inference network is a topic proportion
vector § that represents the global semantics of the document.

The generation network is in the form of a recurrent neural network. It learns the local
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dynamics of the word sequence for each topic proportion vector 6. Here we show the
specification with a vanilla RNN cell and it can be easily extended to other structures such
as a GRU or LSTM cell:

he = op(Wynwi—1 + Whnhe—1 + bp),

(29)
W = O'w(thht + W9w9 + mexd + bw)a

where o(-) denotes the activation functions. The weight matrices
W, Wats Whas, Wow, Wi and biases by, b, are shared across words. The hidden state of
the recurrent unit, the topic proportion vector § and the document meta-information z,
affect the output through an additive procedure.

During training, the parameters of the inference network and the model are jointly
learned and updated via truncated backpropagation throughout time using the AdaGrad
algorithm [32].

441 Training MeTRNN.

Each training instance for MeTRNN consists of (1) the meta-information, (2) the words
in bag-of-words representation and (3) word sequence. Following [29], we truncate the
document into shorter subsequences for RNN training. However, (1) and (2) still carry the
information about the entire document for the subsequence.

Similar to [17], we find that using RNN as a decoder under the conditional variational
autoencoder framework fails to produce meaningful information in  due to the vanishing
latent variable problem. Following [17], we apply a small weight on the Dy term and
gradually increase it during training. The idea of having a constrained D, cost in VAE to
obtain better latent representations is studied in [46]. Specifically, we have:

L(zq, wi.r) £ —BDi(q(0d1.7,24)||p(0)z4))+

- (30)
Eq(01w1.r,0) [Z log p(wi|hs, 0, xd)} :
t=1

where 3 is a hyper-parameter that balances the latent channel capacity and independence
constraints.

Word Prediction. In word prediction task, MeTRNN is given the preceding word se-
quence wiy—1 and the meta-information x4 from which MeTRNN has an estimation of
q(0|W1:4—1,z4). To predict the next word w;, MeTRNN computes the probability distribu-
tion of w; incrementally. After the predicted word w, being sampled from the predictive
distribution, MeTRNN update ¢(#) by including w;. MeTRNN is then go on to predict the

next word wy4 1.
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4.5 Experimental Evaluation
4.6 Experimental Setup & Methodology

We evaluate our proposed MeTRNN model with publicly available text datasets as well as
EHRs by comparing its performance on word prediction tasks against other baselines. We
also conduct a case study on EHRs that shows the effectiveness of MeTRNN for learning
meaningful and useful topics. All methods are implemented in PyTorch [86] and trained
on an Ubuntu server with Intel Xeon E-5 2680v2 @2.8GHz CPUs and Nvidia Tesla K40m
GPUs. We have released the source code ! of the models described in this paper.

Table 5: Size in number of words. M=million, K=thousand.

DatasetTrain ~ Valid = Test Vocabulary

20NG 2M 248K 266K 10K
R52 465K 90K 77K 10K
MADE 306K 53K 53K 11K

4.6.1 Datasets.

For reproducibility, we use two well known labeled datasets, namely 20 Newsgroups
(20NG) [58] and Reuters-21578 (R52) [63] for word prediction task. The category informa-
tion of each document is used as the document meta-information. We also use a labeled
EHR dataset MADE for an adverse drug event detection competition 2. MADE consists of
total of 1089 de-identified EHR narratives from 21 cancer patients. Each EHR comes with
annotations such as medication name, adverse events, indications and other signs and
symptoms. Basic statistics of the datasets are summarized in Table 5. We partition each
document into tumbling windows with length of 50. 20NG and R52 datasets are prepro-
cessed with stopword removal and stemming. MADE corpus is preprocessed with stopword
removal.

4.6.2 Baselines.

For word prediction tasks, we compare our MeTRNN with GRU and LSTM cells denoted
as MeTGRU and MeTLSTM respectively against:

e RNNs. LSTM and GRU, commonly used in language modeling, are proved to be supe-
rior than vanilla RNN for long documents. Therefore, we include these two as baselines.

![undisclosed for review policy, repository is not visible.]
’http://bio-nlp.org/index.php/announcements/39-nlp-challenges
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Table 6: Test perplexities of different models by varying the number of neurons. The lower the
perplexity the better the performance. (- - -) after each perplexity indicates the ranking of the method
w.r.t. the specific setting. “T” denotes the topic feature obtained from ProdLDA trained separately
using AVITM and “F” denotes the document meta-information. { or  indicates that the baseline is
implemented by others or ourselves.

20NG R52 MADE
Methods n=128  n=256 n=512  n=64 n=128  n=25  n=16 n=32 n=64
GRUY 360.76(12) 352.79(12) 345.68(12) 163.04(15) 151.70(15) 149.20(15) 174.17(12) 122.57(12) 99.42(12)
LSTM} 352.15(11) 337.15(11) 333.95(11) 154.26(14) 145.62(14) 143.29(14) 170.81(11) 115.97(11) 98.28(11)
cRNN(T)* 370.26(14) 365.47(15) 353.64(15) 146.36(13) 143.13(13) 142.56(13) 177.40(14) 130.99(13) 109.18(13)
cRNN(F)x 363.59(13) 362.43(13) 352.12(13) 13457(11) 134.20(11) 132.35(11) 186.87(15) 137.06(15) 110.83(14)
cRNN(T+F)x  371.81(15) 364.28(14) 353.37(14) 137.22(12) 134.30(12) 133.98(12) 175.90(13) 132.46(14) 113.23(15)
cGRU(T)x 316.93(6) 299.99(10) 280.53(5) 118.79(6) 110.20(8) 104.74(5) 151.66(8) 108.44(4) 90.87(8)
cGRU(F)« 314.69(3) 297.79(8) 279.21(4) 11538(3) 109.70(6) 106.96(8) 159.96(10) 114.58(10) 93.29(10)

cGRU(T+F)  320.49(7) 298.12(9) 281.78(7) 11834(5) 111.30(9) 105.76(6) 147.36(6) 112.25(9) 92.89(9)
cLSTM(T)x  322.13(9) 289.54(5) 284.58(10) 119.46(7) 109.96(7) 108.42(9) 144.89(4) 108.72(5) 88.30(3)
cLSTM(F)* 31536(5) 293.77(6) 281.74(6) 117.58(4) 108.56(4) 10650(7) 158.88(9) 111.69(8) 89.52(4)
CLSTM(T+F)x  321.63(8) 289.14(4) 282.89(9) 127.09(8) 116.85(10) 113.63(10) 145.79(5) 108.93(6) 90.86(7)

TopicGRUx  31528(4) 296.31(7) 278.13(3) 117.32(9) 108.72(5) 103.79(3) 148.66(7) 111.32(7) 90.45(6)
TopicLSTMx  323.31(10) 286.30(3) 282.38(8) 121.29(10) 107.72(3) 104.02(4) 144.13(3) 108.05(3) 90.20(5)

MeTGRU* 309.30(1) 283.90(2) 273.60(2) 108.29(2) 96.34(1) 90.34(1)  139.10(1) 101.93(2) 82.48(2)
MeTLSTMx  309.98(2) 281.59(1) 272.29(1) 107.25(1) 98.34(2) 95.13(2) 141.0522) 99.84(1)  80.73(1)

e Contextual RNNs. We implemented the contextual RNN (cRNN) from [75] and
extended it using LSTM and GRU cells denoted as ¢cLSTM and cGRU respectively.
We consider three features for cRNNs: (1) topic information obtained separately
from ProdLDA [105] (with an existing Pytorch implementation3); (2) document meta-
information; (3) combination of (1) and (2). Topic information is inferred from the text.

e TopicRNNs. We implemented TopicRNNs with LSTM and GRU cells as they have been
shown to achieve better performance than the ones with vanilla RNN cell [29]. Since stop-
words are excluded from our datasets, the mechanism that explicitly models stopwords is

ignored. Topic information is inferred from the text.

4.6.3 Metric.

For word prediction, we measure the word perplexity (PPL) typical metric for language
model evaluation:

T
PPL = exp (— 7= 3 log(plurhuna 1)), (31)
t=1

where 7' is the length of the test document. Lower PPL indicates better prediction perfor-

mance.

*https://github.com/hygneuron/pytorch-avitm
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4.6.4 Word Prediction on 20NG and R52.

We evaluate MeTRNN against other baselines on the word prediction task by varying the
complexity of the models in the number of neurons used in each layer. We use 1 RNN
layer for all methods and do not apply dropout for comparison purpose. For TopicRNNs
and MeTRNNSs, we use a multilayer perception with 2 hidden layers for the inference net-
work. For comparability, we specify the number of topics for TopicRNNs and MeTRNNs
to be equal to the number of categories in 20NG and R52 respectively. The validation
set is used for early stopping. Hyperparameters including learning rate, batch size, o (pa-
rameter of Dirichlet prior) and /5 (scaling parameter for D) are properly tuned for each
method with different complexities. The specific hyperparameter settings are reported in
Section ??2.

As shown in Table 6, MeTRNN consistently outperforms all other baselines. In general,
the models with the capability of incorporating extra context information perform better
than the ones that do not account for such information. Specifically, GRU and LSTM cannot
achieve lower PPL than others with the same type of recurrent units. In the experiments
with R52, cRNNs conditioned on various combinations of features achieve lower PPL than
GRU and LSTM. When testing cRNNs, cGRUs and cLSTMs, we find that the document
meta-information can better help the model as compared to the topic features obtained
from ProdLDA. The reason is the category label in these two datasets can be seen as a
better representation of the semantic structure of the document. It uniquely identifies the

theme of the document and the underlying vocabulary used for the content.

As opposed to using the topic information obtained separately, TopicGRU and Top-
icLSTM learn the latent topics simultaneously during language modeling. Although
they outperform their comparable methods cGRU(T) and cGRU(T) in a few experiments,
the performances are not consistent across different settings. The closest methods to
MeTRNN in context information leveraged in the model are cRNN(T+F), cGRU(T+F) and
cLSTM(T+F). Interestingly, these methods which take both features by simple feature con-
catenation do not outperform the ones that consider only one feature. Worse yet, in some
cases, their PPLs are higher than all of those which take a single feature. The reason is
that the topic proportions 6 obtained separately from ProdLDA and the meta-information
associated with the document may not entirely “agree” on each other. In an extreme case,
a topic representing some common words used in corpus may not be helpful for language
modeling, worse yet, may diminish the contribution of the meta-information which en-
codes the central ingredients of the narrative. One naive solution is to obtain topic pro-
portions 6 from a supervised topic model so that the learned topics information balance

the information from the text itself as well as the meta-information. MeTRNN extends
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this idea by combining a supervised topic model components with the language model to
make sure that the learned semantic structure is helpful for word prediction.

4.6.5 Case Study: EHR Narrative Modeling and Generation

Next we will take a deep dive into experiments on a real EHR dataset to demonstrate how
MeTRNN can learn meaningful and useful topics. Besides the structured information pro-
vided with an EHR (See Introduction), the narrative text provides a full story about the
medical events of a patient. Modeling such narrative text is a fundamental task for many
applications in healthcare systems [27]. We conduct a case study using MADE - a labeled
EHR dataset that reports adverse drug reactions. An adverse drug reaction corresponds to
an unwanted and often dangerous effect caused by the administration of a drug. MADE's
labels include drug name, indication, adverse reactions, etc. In this study, we use the indi-
cation as the meta-information of the narrative. In medicine, an indication is a valid reason
to use a certain medication. An indication can correspond to a certain type of medication
which may trigger specific reactions commonly associated with these drugs. The indica-
tion can reveal the semantics of the narrative. We include 102 unique indications in this
dataset to encode a narrative’s meta-information vector.

For the word prediction task on this dataset, words are not stemmed in order to gen-
erate interpretable topics. Comparing to the meta-information used for 20NG and R52,
indication can capture partial or different semantics from the topic information learned
from the narrative itself as confirmed by the results shown in Table 6. The cRNNs con-
ditioned on topic feature achieves lower PPL than those conditioned on the indication
feature. However, it remains true that cRNNs is not further improved by simply concate-
nating those features. MeTRNN outperforms all other baselines while incorporating both
self generated feature and indication information into consideration.

Next, we show the vocabulary for different indication types obtained from the weight
matrix W, learned by MeTLSTM. We randomly select 5 indications from MADE in
Table 8. We observe that the vocabulary is closely related to the corresponding indi-
cation type. For example, the learned vocabulary for Hodgkin’s Lymphoma includes
“Hodgkins”, “ABVD” (ABVD is a chemotherapy regimen used in the first-line treatment of
Hodgkin lymphoma), etc. Later we show that the topics learned by MeTRNN are indeed
influenced by the indication feature.

Table 7 shows the vocabulary of randomly selected topics generated by ProdLDA, Top-
icLSTM and MeTLSTM. Topics learned by ProdLDA and TopicLSTM are similar as they
exhibit similar diversity in types of words across topics. Within each topic, we observe

more common word, e.g., “deal”, “upward” and “med”, from ProfLDA and TopicLSTM
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Table 7: Top 10 words of 5 topics (randomly selected out of 20) learned by 3 methods. The original
words are all in lowercase. Letters are manually capitalized for better interpretation.  or x indicates
that the baseline is implemented by others or ourselves.

Methods Topic Vocabulary
1 AbdPelvis, Island, Oxymizer, Aids, Acidophilus, Hotline, Things, Greens, CCU, Hypoxemia ...
2 Laparotomy, Excercize, Striae, Reduce, Cecectomy, Noninflamed, Dipstick Counseled,
Transaminitis, DOs ...
ProdLDA} 3 Nephrectomy, Amplitudes, Hysterectomy, Stinging, Amplitude, Unimproved, Crease, Prepped,
Flexed, Pasty ...
4 Nonsteroidals, Onethird, Ascertain, Upward, NP, Advancing, Excess, Leaflet, Twothirds,
Outflow ...
5 Deal, Clustered, Proves, Demonstration, Desire, Thinned, Extent, Familysocial, Lobulated,
Exclude ...
1 Autoimmune, Splenectomy, Marginal, Folic, Reticulocyte, Elbow, Furosemide Calcitonin,
Celexa, Losartan ...
5 Comments, Modified, PO, Medicalsurgical, Laboratorystudies, Communication, SOB,

Agree, Temp, Reclast ...

Pediatric, Amitriptyline, Burkitt, Wound, Med, PO, Broviac, Community Headache,

TopicLSTMx 3 Mom

Plasmacytoid, Impacted, Badly, Ideal, Priority, Reviews, Fremitus, Expiratory, Accessory,

4 Tactile ...
5 Testosterone, Lymphoplasmacytoid, Androderm, Bendamustine, Hypogonadism,
Acknowledgement, Diltiazem, Kyphoplasties, Alprazolam, Salmonella ...

1 eGFR, Antiresorptive, Well, Leery, Equation, MDRDs, SQ, Velcade, Performing, Injuries ...

2 NP, Amitriptyline, Reports, Pediatric, Burkitt, Palpated, CKD, Kidney, Supervising, Comments ...
MeTLSTMx 3 Sinuses, Infectious, Transplant, ABVD, Autglogous, Acyclovir, Natural, Nasal, Hodgkins,

Patient ...
4 Underwent, Laminectomy, Brachial, Radiation, Intrathecal, Vertebral, Compression,

Shoulder, Spondylolisthesis, Insurance ...

5 Quite, Actually, Breaths, Panic, Attacks, Anxiety, Well, Velcade, Increase, Twice ...
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Table 8: Top 10 words of 5 (out of 102) indication types learned by MeTRNN (obtained from weight
matrix W,,.,). The original words are all in lowercase. Letters are manually capitalized for better
interpretation.

Indications Vocabulary
Hodgkin's Lymphoma Hodgkins, ABVD, Chest, Omeprazole, Chemotherapy, MD, FI, MR,
Told, Port ...
Peripheral Neuropathy Transplant, Peripheral, P, Leéels, Neurontin, Marrow, Therapy, Done,
opay, MR ...
Mantle Cell Lymphoma Cycles, Velcade, Mantel, Location, ("lz"l;celr:py, Allogeneic, MD, Positive, Status,
Cellulitis Cellulitis, Currently, Doxycycline, Redness, Foot, Lymph, Ankle, Anxiety, Rule,

Doxazosin ...

Continues, Hypercalcemic, Pamidronate, Radiation, Due, Hospitalization, Weekly, Taking,

Hypercalcemia Schedule, Potassium ...

than from MeTLSTM which is not ideal for capturing unique topics. The topics learned
by MeTLSTM emphasize more on different diseases and symptoms as they are influenced
by the indication feature. More importantly, such influence mechanized by our proposed
MeTRNN improves the modeling performance confirmed by the previous word prediction
results.

4.7 Related Work

Context Dependent Neural Language Models. [75] augments contextual information into
a conventional RNNLM [74] by adding an extra layer connected to the recurrent unit. The
contextual information in this work is obtained by using LDA from a block of proceed-
ing text. TopicRNN [29] extends this idea by integrating a topic model like unit to model
the contextual information and the word sequence simultaneously. The topic information
is inferred from the document in the bag-of-words representation and is then fed to the
recurrent unit to regulate the language modeling in every time step. It uses a variational
autoencoder for model inference. [60] introduces an attention-based convolutional neural
network to extract semantic topics. [112] incorporates global context of the document ob-
tained from a topic model like unit through a Mixture-of-Experts model design. However,
these model do not account for document meta-information for either topic inference or
language modeling.

Supervised Topic Models. Author-Topic model [96] assumes words are generated by an
author uniformly selected from an observed author list and then a topic selected from a dis-
tribution over topics that is specific to that author. [77] models expertise by multiple topi-

cal mixtures associated with each individual author. Supervised LDA (sLDA) [71] models
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document with single label by learning a generalized linear model with an appropriate
link function and exponential family dispersion function. Labelled LDA (LLDA) [93] as-
sumes a multi-label document such that each label has a corresponding topic and a docu-
ment is generated by a mixture of the topics. As an extension to LLDA, Partially Labelled
LDA (PLLDA) [94] assigns multiple topics to a label. The Dirichlet Multinomial Regres-
sion (DMR) [78] incorporates document meta-information on the prior of the topic distri-
butions with the logistic-normal transformation. [49] introduces a Poisson factorization
model with hierarchical document labels. However, these models are bag-of-words models
that do not consider word ordering.

5 Conclusion

The application scenario and motivation of my dissertation studies are mostly based on the
post-market drug surveillance problem. My dissertation studies the problem of exploring,
analyzing and modeling various types of sequential data.

Temporal Assertion Analytics. We present the first framework for interactive tem-
poral association analytics. Our TARA framework employs a novel evolving parameter
space model for pre-generating rules such that near real-time performance is guaranteed
for online mining. In a variety of tested cases, TARA outperforms the three state-of-the-
art competitor techniques, each by several orders of magnitude, while offering a holistic
exploration experience supporting new classes of time-variant rule analytics.

In this work we have designed the MARAS technology that signals interesting MDAR
using contextual information. We defined the non-spurious association that is appropriate
for MDAR signals, and proposed the contrast measure to find the most severe MDAR sig-
nals. When compared with state-of-the-art methods, MARAS clearly detects an accurate
and diverse set of non-spurious MDAR signals, as confirmed by our case study on FAERS
ADR reports data.

Temporal Local Outlier Detection. We present KELOS - the first solution for continu-
ously monitoring top-N KDE-based local outliers over sliding window streams. First, we
propose the KLOME semantics to continuously capture the n points that have the highest
outlierness scores in the streaming data. Second, a continuous detection strategy is de-
signed that efficiently supports the KLOME semantics by leveraging the key properties
of KDE. Using real world datasets we demonstrate that KELOS is 2-6 orders of magni-
tude faster than the baselines, while being highly effective in detecting outliers from data
streams.

Text Modeling and Generation. We propose MeTRNN which is a supervised topic
compositional neural language model for modeling clinical narratives supported by meta-
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information. The main idea is to leverage meta-information which hints the semantics
of the entire document to regulate the RNN-based language model. We integrate a su-
pervised topic model-like component to allow meta-information to make implicit impact
on language modeling via hidden topics. We also propose a black box deep Bayesian in-
ference network for MeTRNN which is easily extendable to new models. Through our
extensive experiments with several datasets, we show the effectiveness of MeTRNN on
language modeling as well as the ability of generating useful and meaningful topics.

6 Future Work

I plan to continue my research in the field of data mining and management with a focus
on processing and making sense of large scale sequential data presented in real world
scenarios. Besides extending and building upon my previous studies, I am also interested

in expanding my research into the following directions:

Complex Sequence Modeling. As opposed to word sequence, data sequence in other
applications can be complex where each instance is associated with a set of attributes.
For example, in a sequence of electronic health records (EHRs) that describes a patient’s
medical conditions over time, each record is also accompanied by other information such
as the patient’s demographics, lab test results, admission time, etc. These attributes not
only characterize each instance but also encode important behaviour dynamics of the
entire sequence. The bipartite structure of attributed sequences poses unique challenges in
the modeling tasks. There exist three types of dependencies in an attributed sequence: in-
stance dependencies, attribute dependencies and attribute-sequence dependencies. Thus,
learning and capturing these attribute-sequence dependencies are critical for attributed
sequence modeling. In addition, the attribute can be of different types. For example, it can
be a sequence by itself such as a lab test which is a time series data of a medical measure
over time or it can be an image such as a MRI scan of the patient during that particular
visit. Incorporating different types of attribute to learn a unified representation of the
instance for sequence modeling is also challenging. I plan to study these problems with
real world data and evaluate the proposed models in practical downstream applications

such as sequence labeling, classification and clustering.

Interpretable Sequence Modeling. In additional to answering the question — what, know-
ing why can be more valuable and critical. For example, although machine diagnosis given
by the RNNs models learned from massive EHRs may achieve high accuracy in testing

phase on historical data, it lacks trustworthiness since the reasoning is a black-box process
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and is not human interpretable which brings many safety and ethical concerns. Moreover,
we as humans cannot benefit or learn from these models to enrich our own knowledge on
the subjects. Traditional machine learning algorithms such as association rule learning and
decision tree can give explanation of the decision process via rules applied on the original
feature space. Deep sequence models with superior modeling performance by its nature
do no provide such reasoning insights. Making sense of these models” internal structures
and learned parameters can be challenging. I plan to investigate attention mechanism for
various RNNs to enable self-explain functionality that presents in understandable terms

to a human of how the model operates.
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