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Abstract

Around every corner, more and more companies and organizations are utilizing the cloud
to store and perform expensive computations remotely; all the more noticing the numerous
advantages in costs and functionality. However, it is most commonly the case that data
stored on the cloud is not safe from snooping and while much of what is stored is riddled
with sensitive information this raises grave questions of confidentiality. In order to remove
this vulnerability, users must encrypt their data before sending it to the cloud, thus losing
the functionality of performing computations. Due to recent advances in fully homomorphic
encryption (FHE) it is found to be possible to perform arbitrary computations on this en-
crypted data, thus enabling the prospect of personal computers as trusted but weak interfaces
to the powerful but untrusted cloud on which the bulk of computing can be performed.

Proposed at the Symposium on Theory of Computing (STOC) in 2012, Adriana López-
Alt, Eran Tromer and Vinod Vaikuntanathan developed a new notion of secure multiparty
computation aided by a computationally-powerful but untrusted cloud server. All users input
data and intermediate results are protected from snooping by the cloud, as well by other
users. The construction of the López-Alt-Tromer-Vaikuntanathan (LTV) scheme is based on
the NTRU encryption scheme originally proposed by Hoffstein, Pipher and Silverman; more
precisely, based off the slightly modified version due to Stehlé and Steinfield. NTRU is one
of the earliest lattice-based public-key encryption schemes and threatens to replace RSA and
elliptic curve cryptosystems in applications where computational efficiency is at a premium.

We present a careful rewrite of the FHE LTV scheme which specializes to the traditional
single-key approach. Simplifying notation and filling in gaps, this rewrite will make the
information portrayed in the LTV scheme accessible to non-experts. As this construction
was one of the authors main contributions, we believe it to be of independent interest.
Particularly since the NTRU scheme, when compared to other public key cryptosystems at
roughly equivalent levels of security, offers more efficient encryption and decryption as well
as much faster key generation. Although some of the efficiency of NTRU was lost during the
transformation to a fully homomorphic system, we believe that this system is still a leading
candidate for a practical FHE scheme.
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1 Introduction

In a digital era in which we store our data and perform our expensive computations remotely,
on powerful servers, commonly referred to as the “cloud,” we notice numerous advantages in
costs and functionality. However, the cloud raises grave questions of confidentiality since the
data stored on its servers is often riddled with sensitive information. As this data could be
vulnerable to snooping by the cloud provider or even by other cloud clients, it is necessary
for the users to encrypt their data before storing it on the cloud. Due to recent advances
in fully homomorphic encryption (FHE) it is possible to perform arbitrary computations on
this encrypted data, thus enabling the prospect of personal computers and mobile devices as
trusted but weak interfaces to powerful but untrusted cloud on which the bulk of computing
is performed.

Traditional FHE schemes are single-key in the sense that they can perform arbitrarily com-
plex computations on inputs encrypted under the same key. However, there are scenarios
where users, who have uploaded their data stores to the cloud in encrypted form, decide to
compute some joint function of their collective data. This multiparty scenario is significantly
more complex, and comes with a set of natural, yet strict, requirements.

Proposed at the Symposium on Theory of Computing (STOC) in 2012, Adriana López-
Alt, Eran Tromer and Vinod Vaikuntanathan developed a new notion of secure multiparty
computation aided by a computationally-powerful but untrusted cloud server. In the notion
that they call on-the-fly multiparty computation (MPC), the cloud can non-interactively
perform arbitrary, dynamically chosen computations on data belonging to arbitrary sets of
users chosen on-the-fly. All users’ input data and intermediate results are protected from
snooping by the cloud, as well by other users. This extends the standard notion of fully
homomorphic encryption, where users can only enlist the cloud’s help in evaluating functions
on their own encrypted data.

In the López-Alt-Tromer-Vaikuntanathan (LTV) scheme, we assume the parties do not trust
each other and so they will most certainly not want to encrypt their inputs using each oth-
ers keys. Nevertheless, Gentry proposed a way of using single-key FHE schemes in order
to do multiparty computation utilizing a (short) MPC protocol to compute a joint public
key and a matching secret key which is secret-shared among the parties. Asharov, Jain,
López-Alt, Tromer, Vaikuntanathan and Wichs extended Gentry’s scheme in recent work
making it efficient in terms of the concrete round, communication and computational com-
plexity. [LATV12]

However, this line of work does not address the dynamic and non-interactive nature of an on-
the-fly MPC. In particular, once a subset of parties and a function are chosen, the protocols
of Gentry and Asharov et al require the parties to be online and run an interactive MPC
protocol to generate a joint public key. Thus, even the feasibility of on-the-fly MPC is not
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addressed by previously existing techniques.

In the LTV scheme, each user is involved only when initially uploading his (encrypted)
data to the cloud, and in a final output decryption phase when outputs are revealed; the
complexity of both is independent to the function being computed and the total number
of users in the system. In addition, when users upload their data, they need not decide in
advance which function will be computed, nor who they will compute with; they need only
retroactively approve the eventually-chosen functions and on whose data the functions were
evaluated. [LATV12]

We present a rewrite of the FHE LTV scheme which utilizes the traditional single-key ap-
proach. Our construction, like that of the LTV scheme, is based on the NTRU encryp-
tion scheme, originally proposed by Hoffstein, Pipher and Silverman; more precisely, the
slightly modified version due to Stehlé and Steinfield. NTRU is one of the earliest lattice-
based public-key encryption schemes, together with the Atjai-Dwork cryptosystem and the
Goldreich-Goldwasser-Halevi cryptosystem. We observe that NTRU can be make single-key
fully homomorphic, using relinearization and modulus reduction to create a bootstrappable
scheme.

This construction is one of the authors’ main contributions and we believe it to be of in-
dependent interest. Our construction is particularly interesting since the NTRU scheme
was originally proposed as an efficient public-key encryption scheme, meant to replace RSA
and elliptic curve cryptosystems in applications where computational efficiency is at a pre-
mium. [HPS98] Although the transform to a fully homomorphic system deteriorates the
efficiency of NTRU slightly, we believe that this system is a leading candidate for a practi-
cal FHE scheme. What’s more, as we show, the scheme supports homomorphic operations
utilizing modulus reduction to create a bootstrappable scheme.

1.1 Traditional Single-Key Approach to LTV

In our paper, we present a simplification of the LTV scheme to the traditional single-key
approach. Similar to the original LTV scheme, we based our scheme off of the NTRU
encryption scheme. We observe that NTRU can be made single-key fully homomorphic
using the recent techniques of Stehlé and Steinfield. [SS11]

Simplifying notation and filling in gaps, this rewrite will make the information portrayed
in the LTV scheme accessible to non-experts. As this construction was one of the authors’
main contributions, we believe it to be of independent interest. Particularly since the NTRU
scheme, when compared to other public key cryptosystems at roughly equivalent levels of
security, offers more efficient encryption and decryption as well as much faster key generation.
Although some of the efficiency of NTRU was lost during the transformation to a fully
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homomorphic system, we believe that this system is still a leading candidate for a practical
FHE scheme. [LATV12]

1.2 Organization

In Section 3 we review a broad range of mathematical topics relevant to the rest of the
paper as well as describe the NTRU encryption scheme developed by Hoffstein, Pipher and
Silverman [HPS98]. Then in Section 4, we formally present our scheme, showing how to
instantiate somewhat homomorphic encryption from the NTRU encryption scheme. Also in
Section 4 we show how to achieve full homomorphism, using relinearization and demonstrat-
ing that the scheme can be made bootstrappable by modulus reduction. Lastly, we present
our conclusions in Section 5.
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2 Mathematical Preliminaries

This section reviews a broad range of mathematical topics relevant to the rest of the paper.
We begin with a brief discussion of algebra, paying special attention to modular arithmetic
and the Euclidean algorithm, followed by a brief review of ring theory. In addition, we will
introduce a brief summary of circuits and their importance in cryptography.

2.1 Algebra

In this section we will discuss briefly the necessary algebra background, more specifically
modular arithmetic, Euclid’s algorithm and ring theory, required for our scheme which we
will describe in Section 4.

2.1.1 Modular Arithmetic

Modular arithmetic is an abstraction of a method of counting that we often use. For example,
if it is now September, what month will it be 25 months from now? Of course, the answer
is October, but the interesting fact is that you didnt arrive at the answer by starting with
September and counting off 25 months. Instead, without even thinking about it, you simply
observed that 25 = 2 × 12 + 1, and you added 1 month to September. Surprisingly, this
simple idea has numerous important applications in mathematics and computer science. You
will see a few of them in this paper. The following notation is convenient. [Gal94]

When a = qn + r, where q is the quotient and r is the remainder upon dividing a by n, we
write a mod n = r. Thus,

3 (mod 2) = 1 since 3 = 1× 2 + 1,
6 (mod 2) = 0 since 6 = 3× 2 + 0,
11 (mod 3) = 2 since 11 = 3× 3 + 2,

62 (mod 85) = 62 since 62 = 0× 85 + 62,
−2 (mod 15) = 13 since −2 = −1× 15 + 13.

In general, if a and b are integers and n is a positive integer, then a (mod n) = b (mod n)
if and only if n divides a− b.

In our applications we will use addition and multiplication modulo n. When you wish to
compute ab mod n or (a + b) mod n, and a or b is greater than n, it is easier to mod
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first. For example, to compute (25 × 36) mod 11, we note that 27 mod 11 = 5 and 36
mod 11 = 3, so (27× 36) mod 11 = (5× 3) mod 11 = 4.

2.1.2 Euclidean Algorithm

The Euclidean algorithm is an efficient method for computing the greatest common divisor
of two positive integers.
Definition 2.1 (Euclidean algorithm). Let a, b ∈ Z with b > 0. If b | a, then gcd(a, b) = d;
otherwise there are integers q1, r1, q2, r2, ..., qn, rn, qn+1 such that:

a = bq1 + r1, 0 < r1 ≤ (b− 1),

b = r1q2 + r2 0 < r2 ≤ (r1 − 1),

r1 = r2q3 + r3, 0 < r3 ≤ (r2 − 1),...
rn−3 = rn−2qn−1, 0 < rn−1 ≤ (rn−2 − 1),

rn−2 = rn−1qn + rn, 0 < rn ≤ (rn−1 − 1),

rn−1 = rnqn+1,

and gcd(a, b) = rn.

Extended Euclidean Algorithm

By reversing the steps in the Euclidean Algorithm previously discussed, it is possible to find
the inverse of a number modulo n. As we carry out each step of the Euclidean algorithm, we
will also calcuate an auxiallry number, pi = pi−2 − pi−2qi−2 (mod n). Continuing one step
beyond the last step of the Euclidean algorithm. If the last non-zero remainder occurs at
step n − 2 and rn−2 = 1 then the inverse of pn is the inverse of a (mod n). However, if a
remainder of 1 is never reached, then a does not have an inverse modulo n.

n = aq1 + r1, p0 = 0,

a = r1q2 + r2 p1 = 1,

r1 = r2q3 + r3, p2 = p0 − p1q0 (mod n),...
rn−3 = rn−2qn−1, pn−2 = pn−4 − pn−3qn−4 (mod n),

rn−2 = rn−1qn + rn, pn−1 = pn−3 − pn−2qn−3 (mod n),

rn−1 = rnqn+1, pn = pn−2 − pn−1qn−2 (mod n),

Concluding with, the inverse of a as follows

pn = pn−1 − pnqn−1 (mod n).
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2.1.3 Rings

Many sets are naturally endowed with two binary operations: addition and multiplication.
Examples that quickly come to mind are the integers, the integers modulo n, the real num-
bers, matrices, and polynomials. When considering these sets as groups, we simply used
addition and ignored multiplication. In many instances, however, one wishes to take into
account both addition and multiplication. One abstract concept that does this is the concept
of a ring. [Gal94]
Definition 2.2 (Ring). A ring R is a set with two binary operations, addition (denoted by
a+ b) and multiplication (denoted by ab), such that for all a, b, c in R:

1. a+ b = b+ a

2. (a+ b) + c = a+ (b+ c)

3. There is an additive identity 0. That is, there is an element 0 in such that a+ 0 = a
for all ain R.

4. There is an element a in R such that a+ (−a) = 0.

5. a(bc) = (ab)c

6. a(b+ c) = ab+ ac and (b+ c)a = ba+ ca

So, a ring is an Abelian group under addition, also having an associative multiplication that is
left and right distributive over addition. Note that multiplication need not be commutative.
When it is, we say that the ring is commutative. Also, a ring need not have an identity
under multiplication.

The following terminology and notation are convenient. If a and b belong to a commutative
ring R and a is nonzero, we say that a divides b (or that a is a factor of b) and write a | b,
if there exists an element c in R such that b = ac. If a does not divide b, we write a - b.

Recall that if a is an element from a group under the operation of addition and n is a
positive integer, na means a + a + ... + a, where there are n summands. When dealing
with rings, this notation can cause confusion, since we also use juxtaposition for the ring
multiplication. When there is a potential for confusion, we will use n ·a to mean a+a+ ...+a
(n summands).[Gal94]
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2.2 Circuits

Definition 2.3. A circuit is a directed acyclic graph (DAG) of straight-line programs.
Where

• vertices are associated with program steps and

• edges identify dependencies between steps.

In this paper we will focus on logic circuits, where all operations are Boolean.

2.2.1 Boolean Operators

Boolean operators are simple words (AND, OR, NOT or XOR) used as conjunctions to combine
logical expressions. Utilizing truth tables, we can describe the functions of each of these
statements concisely.

For our truth tables we will use the

AND

From the truth table below we can see that the Boolean algebra between p and q is multi-
plication, represented as p · q.

Table 1: AND Truth Table
p q p AND q

1 1 1
1 0 0
0 1 0
0 0 0

OR

From the truth table below we can see that the Boolean algebra between p and q is addition,
represented as p+ q.
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Table 2: OR Truth Table
p q p OR q

1 1 1
1 0 1
0 1 1
0 0 0

NOT

From the truth table below we can see that the Boolean algebra between NOT and p is often
written p̄ or the converse of p. We can compute p̄ as 1 + p (mod 2).

Table 3: NOT Truth Table
p q NOT p NOT q

1 1 0 0
1 0 0 1
0 1 1 0
0 0 1 1

XOR

XOR, or as exclusive or, and is thought of as “p or q but not both. From the truth table
below we can see that the Boolean algebra between p and q is subtraction, represented by
p− q (mod 2).

Table 4: XOR Truth Table
p q p XOR q

1 1 0
1 0 1
0 1 1
0 0 0

Using these four Boolean operators we can create any necessary algebraic expression possible,
including NAND, NOR and XNOR.
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3 A Brief History of Homomorphic Encryption

This section presents a brief history of homomorphic encryption. We begin by describing
what homomorphic encryption is and the specialized types of homomorphic encryption which
exist. In addition, we will take a look at the RSA encyrtpion scheme developed by Rivest,
Shamir and Adleman [RSA83], which is the most commonly used encryption scheme in
practice today. WE will then briefly discuss Gentry’s new notions creating the first fully
homomorphic scheme. Lastly, we will describe the NTRU encryption scheme developed by
Hoffstein, Pipher and Silverman [HPS98] of which our scheme is based.

3.1 Definitions

In order to fully understand this paper, we must first understand the concept of homomorphic
encryption. Breaking the term down, we can first define the term homomorphic from it the
algebraic term homomorphism.
Definition 3.1 (Group Homomorophism, See [Gal94]). If (G, ∗) and (H, ◦) are groups,
then there exists a mapping ϕ : G→ H that is a homomorphism if

ϕ(a ∗ b) = ϕ(a) ◦ ϕ(b)

for all x, y ∈ G and ϕ(a), ϕ(b) ∈ H.

We can extend this notion to rings as follows.
Definition 3.2 (Ring Homomorphism, See [Gal94]). If R and S are two rings, then there
exists a mapping ϕ : R→ S that is a homomorphism if

1. ϕ(a+ b) = ϕ(a) + ϕ(b) and

2. ϕ(ab) = ϕ(a)ϕ(b).

Thus preserving the ring operations of addition and multiplication.

We must now define the latter part of the term, encryption, as follows.
Definition 3.3 (Encryption Scheme). If E is an encryption scheme with a ring of plaintexts,
(P ,+, ·), and a ring of ciphertexts (C,⊕,⊗) then we have the following two mappings.

1. Enc : P → C

2. Dec : C → P

Applying the above definition to encryption schemes, we have the following definition.
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Definition 3.4 (Homomorphic Encryption Scheme). If E is an encryption scheme with and
an operation ?, then E is homomorphic with respect to ? on P if and only if

Dec(Enc(m1) ∗ Enc(m2)) = Dec(Enc(m1 ? m2)) = m1 ? m2

for some operation ∗ on C.

For the context of our paper, and what is generally accepted in the cryptographic com-
munity, we will consider a scheme somewhat homomorphic if it can properly evaluate on a
circuit of limited depth, yet no further due to noise introduced by the operations performed.
In addition we will consider a scheme to be additively homomorphic if it can perform an
unlimited number of operations, regardless of the depth of the circuit, on the ciphertexts
that correspond exactly to an unlimited number of additions with the plaintexts. We can
easily see that we could manipulate the previous definition by replacing addition with mul-
tiplication to describe a scheme which we will consider to be multiplicatively homomorphic.
Finally, we will consider a scheme to be fully homomorphic if it can perform an unlimited
number of both additive and multiplicative operations.

3.2 RSA

Developed in 1978, Ron Rivest, Adi Shamir and Leonard Adleman introduced a public
key encryption scheme called RSA, which is currently the most commonly used encryption
algorithm utilized today. The RSA scheme is based on the difficultly to factor large numbers
and works as such. [RSA83]

3.2.1 Key Creation

Bob begins by chooses two large prime numbers p and q and keeps them secret. He will then
multiply the two keys creating N = pq.
Note. Assumbing Bob choose p and q large enough, while it is relatively easy for Bob to
compute N , it is basically impossible for us, or anyone else, to find p and q as we would
need to factor N . For example, suppose N is 400 digits long. As most computers use a
blunt force method of checking of something that is the order of the size of the square-root
of the number to be factored; thus in this case it would be necessary to check a 200 digit
number. Now, the lifetime of the universe is approximately 1018 second. Let’s assume that
a computer could test one million factorizations per second, in the lifetime of the universe
that would equate to checking 1024 possibilities. However, for our 400 digit product recall
that there are 10200 possibilities to check, an impossibility using today’s computing abilities.

Bob must also calculate t = (p − q)(q − 1) and choose a prime number e such that e is
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relatively prime to t. In other words, e - t. Lastly, Bob will need to compute d · e = 1
(mod t). Bob will define his public and secret keys

pk := (N, e) and sk := (N, d),

respectively.

3.2.2 Encryption

Alice can now encrypt a plaintext message m for Bob utilizing his public key as follows.

c = me (mod N)

She will then send the encrypted message c to Bob.

3.2.3 Decryption

Utilizing his private key, Bob can decrypt the message sent to him by Alice using the fol-
lowing.

m = cd (mod N)

3.2.4 Why Decryption Works

We can see that decryption works, since

cd = (me)d mod N

= (me)e
−1

mod N

= (me·e−1

) mod N

= m mod N.

3.2.5 Homomorphic Properties

The RSA encryption scheme is know to be multiplicatively homomorphic, which we can
show below. Given two ciphertexts, c1 and c2 as defined,

c1 := me
2 (mod N) and c2 := me

1 (mod N)
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We can compute,

c1 · c2 = me
1 ·me

2 (mod N)

= (m1 ·m2)
e (mod N)

= Enc(m1 ·m2).

Yielding an encryption of the product of our original plaintexts, showing that the RSA
scheme is indeed multiplicately homomorphic. Now, let’s look to see if the scheme is also
additively homomorphic. We can compute,

c1 + c2 = me
1 +me

2 (mod N)

6= (m1 +m2)
e (mod N)

6= Enc(m1 +m2).

Therefore, we can easily see the scheme is not additively homomorphic.

3.3 Gentry’s New Notion of Bootstrapping

Proposed in 2008, Craig Gentry, Ph.D. candidate at Stanford University proposed a new
scheme that was first to be fully homomorphic. Gentry suggested an alternative approach
to fully homomorphic encryption, where instead of relaying on the structure of the encryp-
tion scheme he suggested to periodically refresh the ciphertext. His new idea allowed for
scheme with a limited number of operations to be promoted to one that allows an unlimited
number. [Gen09a] We will discuss this notion later on in Section 4.5.1.

However, this result is not so simple, requiring the use of a key that grows substantially in
length as the number of operations to be evaluated increases and creating ciphertexts that
are in the order of 106 times larger than their corresponding plaintext counterparts.

We refer the reader to Rebecca Meissen’s, a graduate of Worcester Polytechnic Institute,
paper for an in depth discussion of Gentry’s work. [Mei12]
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3.4 NTRU: A Public Key Cryptosystem

NTRU is a public key cryptosystem developed by Jeffrey Hoffstein, Jill Pipher, Joseph H.
Silverman. Featuring reasonably short, easily created keys, high speed and low memory re-
quirements, the NTRU scheme was originally proposed as an efficient public-key encryption
scheme, meant to replace RSA and elliptic curve cryptosystems in applications where com-
putational efficiency is at a premium. The encryption and decryption use a mixing system
suggested by polynomial algebra combined with a clustering principle based on elementary
probability theory. [HPS98]

3.4.1 Preliminaries for the NTRU Instantiation

The following are all part of the domain parameters for an implementation of NTRU.

n The dimension of the polynomial ring used in NTRU. Note: The polynomials will have
degree n− 1.

p A positive integer specifying a ring Z/pZ over which the coefficients of a certain product
of polynomials will be reduced during the encryption and encryption processes.

q A positive integer specifying a ring Z/qZ over which the coefficients of a certain product
of polynomials will be reduced during the encryption and decryption processes; also
used in the construction of the public key.

We will also use the following notation.

f A polynomial in Z[X]/ 〈xn − 1〉.
fp A polynomial in Z[X]/ 〈p,Xn − 1〉 (this is part of the private key). This polynomial

is obtained by reducing the coefficients of f modulo p.
fq A polynomial in Z[X]/ 〈q,Xn − 1〉. this polynomial is obtained by reducing the

coefficients of f modulo q.
Lf The set of polynomials in Z[X]/ 〈xn − 1〉 who coefficients satisfy df .
g A polynomial in Z[X]/ 〈q,Xn − 1〉 (used with fq to construct the public key).
Lg The set of polynomials in Z[X]/ 〈xn − 1〉 whose coefficients satisfy dg.
Lr The set of polynomials in Z[X]/ 〈xn − 1〉 whose coefficients satisfy dr.
f−1p The inverse of fp in Z[X]/ 〈p,Xn − 1〉.
f−1q The inverse of fq in Z[X]/ 〈q,Xn − 1〉.
h The public key, a polynomial in Z[X]/ 〈q,Xn − 1〉.
r A polynomial in Z[X]/ 〈q,Xn − 1〉 (used with h to encode a message).
m The plaintext message, a polynomial in Z[X]/ 〈p,Xn − 1〉.
c The encrypted message, a polynomial in Z[X]/ 〈q,Xn − 1〉.
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Throughout the NTRU scheme, we work in the ring R = Z[X]/ 〈xn − 1〉. An element f ∈ R
will be written as a polynomial of a vector,

f =
n−1∑
i=0

fix
i = [f0, f1, ..., fn−1].

We write ~ to denote multiplication in R. This star multiplication is given explicitly as a
cyclic convolution product,

f ~ g = h with hk =
∑k

i=0 figk−i +
∑n−1

i=k+1 fign+k−1 =
∑

i+j≡k mod n figj.

When we do a multiplication modulo (say) q, we mean to reduce the coefficients modulo q,
so the result lies in Z[X]/ 〈xn − 1〉.

3.4.2 Parameters

More specificaly, the NTRU cryptosystem depends mainly on three integer parameters
(N, p, q) satisfying the following conditions,

(i) p and q are relatively prime and

(ii) q will always be considerably larger than p.

In addition, it depends on four sets Lf , Lg, Lφ, Lm of polynomials of degree N − 1 with
integer coefficients. This cryptosystem works in the ring R = Z[X]/

〈
XN − 1

〉
.

3.4.3 Key Creation

To create an NTRU key, Bob randomly chooses 2 polynomials f ,g ∈ Lg, such that the
polynomial f has inverses modulo q and modulo p. We will denotes these inverses as follows,

Fq ~ f = 1 (mod q) (1)

and
Fp ~ f = 1 (mod p). (2)

This will be true for most choices of f when using suitable parameter choices and the actual
computation of these inverses is easy using a modification of the Euclidean algorithm. The
polynomial f is Bob’s private key, however in practice he will also want to store Fp.
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Bob can then compute the public key, the polynomial h as defined as

h = Fq ~ g (mod q). (3)

3.4.4 Encryption

Suppose that Alice, the encrypter, wants to send a message to Bob, the decrypter. She
begins by selecting a one-bit message m from the set of plaintexts Lm. Next she randomly
chooses a polynomial s ∈ Lφ and use the previously published public key h to compute

c = ps~ h+m (mod q). (4)

This is the encrypted message which Alice will send.

3.4.5 Decryption

Suppose Bob has now received the transmitted encrypted message e from Alice and wants
to decrypt it using his private key f . In order to decrypt c, Bob now computes

a = f ~ c (mod q), (5)

where he chooses the coefficients of a such that they lie in the interval (−bq/2c, bq/2c] in
order to avoid wrap-around errors. Now treating a as a polynomial with integer coefficients,
Bob recovers the message by computing

m = Fp ~ a (mod p). (6)

3.4.6 Why Decryption Works

Utilizing equation 5, we recall
a = f ~ e (mod q).

Substituting for e using equation (4), we find

a = f ~ pφ~ h+ f ~m (mod q).

Substituting for h using equation (3), we find

a = f ~ pφ~ Fq ~ g + f ~m (mod q).
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Rearranging, we have

a = (f ~ Fq) ~ pφ~ g + f ~m (mod q).

Using equation (1), we can then simply the expression and have

a = pφ~ g + f ~m (mod q).

Since a ∈ R we then reduce modulo p and find

a = f ~m (mod p).

Multiplying both sides of the equation on the left by Fp, we have

Fp ~ a = Fp ~ f ~m (mod p).

Finally, using equation (2) we have

Fp ~ a = m (mod p).

Which recovers the message m (mod p).

3.4.7 Decryption Criterion

To ease notation, we let

m′ =
[
m+H(m, [r ~ h]p)X

n−k +G([r ~ h]p)
]
p

be the polynomial used by Alice for encryption. (That is, e = r ~ h+m′ mod q.) In order
for the decryption process to work, it is necessary that

|f ~m′pr ~ g|∞ < q.

We have found that this will virtually always be true if we choose parameters so that

|f ~m′|∞ ≤
q

4
and |pr ~ g|∞ ≤

q

4
.

Proposition 3.1. For any ε > 0 there are constants γ1, γ2 > 0, depending on ε and N , such
that for randomly chosen polynomials f , g ∈ R, the probability is greater than 1− ε that they
satisfy

γ1|f |2|g|2 ≤ |f ~ g|∞ ≤ γ2|f |2|g|2.
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Of course, this proposition would be useless from the practical viewpoint if the ratio γ2/γ1
were very large for small ε’s. However, it turns out that even for moderately large values of
N and very small values of ε, the constants γ1, γ2 are not at all extreme. We have verified
this experimentally for a large number of parameter values.

In view of the above Proposition, this suggests that we take

|f |2|m|2 ≈
q

4
γ2 and |r|2|g|2 ≈

q

4
γ2

for a γ2 corresponding to a small value for ε. For example, experimental evidence suggests
that for N = 167 and N = 503, appropriate values for γ2 are 0.27 and 0.17 respectively.

3.4.8 Homomorphic Properties

The multiple operation homomorphic properties of the scheme are best seen through the
lens of the decryption equation. In particular, consider ciphertexts

c1 := ps1 ~ h+m1 (mod q) (7)

and
c2 := ps2 ~ h+m2 (mod q). (8)

that encrypt messages m1 and m2 under public key h, with noise terms s1 and s2. A little
algebraic manipulation shows that cadd := c1 + c2 and cmult := c1c2 are ciphertexts that
encrypt the sum and product of m1 and m2, respectively, albeit with larger error terms.

Addition

Namely, decrypting c1 + c2 with the secret key f in the ring Rq gives us:

µadd = f(c1 + c2) by (7) and (8)

= fc1 + fc2

= f(ps1 ~ h+m1) + f(ps2 ~ h+m2)

= ps1 ~ h+ fm1 + ps2 ~ h+ fm2

Reducing µadd modulo p, we find

µadd (mod p) = fm1 + fm2 (mod p)
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We can now compute the last step in the decryption scheme and multiply by fp as follows.

madd = fp(fm1 + fm2) (mod p)

= fp · fm1 + fp · fm2 (mod p)

= m1 +m2

This shows that decrypting c1 + c2 using the secret key f results in the sum of the two
messages, assuming the error does not grow to be too large.

Multiplication

Namely, decrypting c1c2 with the secret key f in the ring Rq gives us:

µmult = f 2c1c2 by (7) and (8)

= fc1 · fc2

= f(ps1 ~ h+m1) · f(ps2 ~ h+m2)

= (ps1 ~ h+ fm1) · (ps2 ~ h+ fm2)

= (ps1 ~ h)(ps2 ~ h+ fm2) + (ps2 ~ h)(fm1) + f 2m1m2

Reducing µmult modulo p, we find

µmult (mod p) = f 2m1m2 (mod p)

We can now compute the last step in the decryption scheme and multiply by f 2
p as follows.

madd = f 2
p · f 2m1m2 (mod p)

= m1m2

This shows that decrypting c1c2 using the secret key f results in the sum of the two messages,
again assuming the error does not grow to be too large.
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4 Our Results and Techniques

We show how to construct a single key somewhat homomorphic encryption scheme based on
the NTRU encryption system first proposed by Hoffstein, Pipher and Silverman. [HPS98]
More precisely, we rely on a variant of the NTRU scheme proposed by Stehlé and Stein-
feld. [SS11]

In Section 4.1, we first review definitions and facts form the literature that we use extensively.
In Section 4.2, we describe the our single-key encryption scheme. In Section 4.3, we discuss
its correctness, and in Section 4.4 show that is single-key somewhat homomorphic. We
conclude this chapter showing that our scheme can be made fully homormophic utilizing
relinearization and modulus reduction to create a bootstrappable scheme in Section 4.5.

4.1 Slightly Modified Version of NTRU

NTRU is the fastest known lattice-based encryption scheme and it’s moderate key-sizes,
excellent asymptotic performance and conjectured resistance to quantum computers make it
a desirable alternative to factorization and discrete=log based encryption schemes. However,
since it’s introduction, doubts have regularly arisen on its security and that of its more
recent digital signature counterpart, NTRUSign. Stelhé and Steinfeld presented a rewrite of
the NTRU scheme in 2011, modifying NTRUEncyrpt and NTRUSign to make them provably
secure in the standard model, under the assumed quantum hardness of standard worst-case
lattice problems, restricted to a family of lattices related to some cyclotomic fields. Their
main contribution was to show that if the secret key polynomials of the encryption scheme
are selected by rejection from discrete Gaussians, then the public key, which is their ratio,
is statistically indistinguishable from uniform over its domain. [SS11]

Brief comparison between NTRUEncrypt and its provably secure variant Let
RNTRU be the ring Z[x]/ 〈xn1〉 with n prime. Let q be a medium-size integer, typically
a power of 2 of the same order of magnitude as n. Finally, let p ∈ RNTRU with small
coefficients, co-prime with q and such that the plaintext space RNTRU/p is large. E.g, if q is
chosen as above, one may take p = 3 or p = x+ 2.

The NTRUEncrypt secret key is a pair of polynomials (f, g) ∈ R2
NTRU that are sampled ran-

domly with large prescribed proportions of zeros, and with their other coefficients belonging
to {1, 1}. For improved decryption efficiency, one may choose f such that f = 1 mod p.
With high probability, the polynomial f is invertible modulo q and modulo p, and if that
is the case the public-key is h = pg/f mod q (otherwise, the key generation process is
restarted). To encrypt a message m ∈ RNTRU/p, one samples a random element s ∈ Rq. The
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following procedure allows the owner of the secret key to decrypt:

• Compute fc and reduce the result modulo q. If the ciphertext was properly generated,
this gives pgs+fm mod q. Since the five involved ring elements have small coefficients,
it can be expected that after reduction modulo q the obtained representative is exactly
pgs+ fm (in RNTRU).

• Reduce the result of the previous step modulo p. This should provide fm mod p.

• Multiply the result of the previous step by the inverse of f modulo p (this step becomes
vacuous if f = 1 mod p).

Note that the encryption process is probabilistic, and that decryption errors can occur for
some sets of parameters. However, it is possible to arbitrarily decrease the decryption error
probability, and even to prevent them from occurring, by setting the parameters carefully.

In order to achieve CPA-security under the assumption that standard lattice problems are
(quantumly) hard to solve in the worst-case for the family of ideal lattices, we make a few
modifications to the original NTRU scheme (which preserve its quasi-linear computation and
space complexity):

1. We replace RNTRU by R = Z[x]/ 〈xn + 1〉 with n a power of 2. We will exploit the
irreducibility of xn+1 and the fact that R is the ring of integers of a cyclotomic number
field.

2. We choose q ≤ poly(n) as a prime integer such that f = xn + 1 splits into n distinct
linear factors modulo q. This allows us to use the search to decision reduction for
R-LWE with ring Rq := R/q. This also allows us to take p = 2.

3. We sample f and g from discrete Gaussian distributions over the set of elements of R,
rejecting the samples that are not invertible modulo q. We show that f/g mod q is
essentially uniformly distributed over the set of invertible elements of Rq. We may also
choose f = pu+ 1 with u sampled from a discrete Gaussian, to simplify decryption.

4. We add a small error term e in the encryption: c = hs+ pe+m mod q, with s and e
sampled from the Gaussian error distribution. [SS11]

4.2 The Scheme

We sketch here our variant of the LTV encryption scheme.
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The main differences between the original NTRU scheme and our variant are threefold:

• Whereas the original NTRU scheme adds a deterministic noise to the ciphertext, the
variant considered here adds noise chosen from a distribution with bounded support
(specifically, a discrete Gaussian distribution), a modification recently introduced by
Stehlé and Steinfeld [SS11]. It seems that this could only improve security; indeed,
the purpose of the Stehlé-Steinfeld work was to prove the security of NTRU based on
worst case hardness assumptions on ideal lattices,

• We do all our operations modulo xn+1 where n is a power of 2 as in [SS11], as opposed
to xn − 1 in the original NTRU.

• Our parameters are more aggressive than in [HPS98] and [SS11] to support homo-
morphisms. As a result, the worst-case to average-case connection shown by [SS11]
does not carry over to our setting of parameters.

The scheme is parametrized by the following quantities:

• an integer n

• a prime number q and

• a B-bounded error distribution χ over the ring R = Z[x]/ 〈xn + 1〉 (i.e., χ is a distri-
bution over polynomials whose coefficients are all at most B(χ) in absolute value).

The parameters n, q and χ are public. We show how to encrypt bits using the scheme. All
operations in the scheme take place in the ring Rq = R/qR.

4.2.1 Preliminaries

We work over the rings R = Z/ 〈φ(x)〉 and Rq = R/qR for some degree n integer polynomial
φ(x) ∈ Z/ 〈φ(x)〉, i.e., the ring of degree n polynomials modulo φ(x) with coefficients in Zq.
Addition in these rings is done component-wise in their coefficients (thus, their additive group
is isomorphic to Zn and Znq respectively). Multiplication is simply polynomial multiplication
modulo φ(x) (and also q, in the case of the ring Rq). Thus an element in R (or Rq) can be
viewed as a degree n polynomial over Z (or Zq). We represent such an element using the
vector of its n coefficients, each in the range {−bq/2c, ..., bq/2c}. For an element a(x) =
a0 + a1x+ ...+ an−1x

n−1 ∈ R, we let ‖a‖∞ = max |ai| denote its `∞ norm.

In this work, we set φ(x) = xn+1 to be in the nth cyclotomic polynomial, where n is a power
of two. We use distributions over the ring R = Z[x]/ 〈xn + 1〉. To show the homomorphic
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properties of the scheme, the only property of these distributions we use is the magnitude of
the polynomials’ coefficients. Hence, we define a B-bounded distribution to be a distribution
over R where `∞-norm of a sample is bounded.
Definition 4.1 (B-Bounded Polynomial). A polynomial e ∈ R is called B-bounded if
‖e‖∞ ≤ B.
Definition 4.2 (B-Bounded Distribution). A distribution ensemble {χn}n∈N , supported
over R, is called B-bounded (for B = B(n)) if for all e in the support of χn, we have ‖e‖∞ <
B. In other words, a B-bounded distribution over R outputs a B-bounded polynomial.

We present some elementary facts about the Gaussian distribution and multiplication over
the ring R. The first fact shows that the Gaussian distribution over Zn with standard
deviation r, denoted by DZn,r, outputs a (r

√
n)-bounded and statistically close to the discrete

Gaussian. The second says that multiplication in the ring R increases the norm of the
constituent elements only by a small amount.
Lemma 4.1 (See [MR07], Theorem 4.4). Let n ∈ N. For any real number r > ω(

√
log n),

we have

Pr
x←DZn,r [‖x‖ > r

√
n] ≤ 2−n+1

Define the truncated discrete Gaussian distribution to be one that samples a polynomial
according to the discrete Gaussian DZn,r and repeat the sampling if the polynomial is not
(r
√
n)-bounded. By Lemma 4.1, this distribution is statistically close to the discrete Gaus-

sian.
Lemma 4.2 (See [MR07], Theorem 4.4). Let n ∈ N, let φ(x) = xn + 1 and let R =
Z[x]/ 〈φ(x)〉. For any s, t ∈ R,

‖s · t (mod φ(x))‖ ≤
√
n · ‖s‖ · ‖t‖

‖s · t (mod φ(x))‖∞ ≤
√
n · ‖s‖∞ · ‖t‖∞

Lemma 4.2 yields the following corollary.
Corollary 4.1. Let n ∈ N, φ(x) = xn + 1 and R = Z[x]/ 〈φ(x)〉. Let χ be a B-bounded

distribution over the ring R and let s1, ...sk ← χ. Then
k∏
i=1

si is (nk−1Bk)-bounded.

Utilizing Corollary 4.1, we can then expand to elaborate on the bounds of our encryption
scheme’s message, m.
Corollary 4.2. Let n ∈ N, φ(x) = xn + 1, R = Z[x]/ 〈φ(x)〉 and every other symbol as
defined in the basic scheme. Then fc is (6nBn + 2nB +B + 1)-bounded.

Proof. Let n ∈ N, φ(x) = xn + 1, R = Z[x]/ 〈φ(x)〉 and every other symbol as defined in the
basic scheme. By setting φ(x) as such, the parameters used in the basic scheme are bounded
as shown in Table 5.
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Table 5: Parameter Bounds
Parameter Bound

g B-bounded by definition
u B-bounded by definition
s B-bounded by definition
e B-bounded by definition
m 1-bounded by definition

Utilizing equation (12), we recall

f := 2u+ 1

Therefore, we can express f as 2B + 1-bounded. Similarly, using this result with equation
(13), we recall

h := 2gu

Therefore, we can express h as 4B2 + 2B-bounded. Then, from Lemma 4.2, we have

‖gs (mod φ(x))‖∞ ≤
√
n‖g‖∞ · ‖s‖∞ =

√
nB2 (9)

and

‖fe (mod φ(x))‖∞ ≤
√
n‖f‖∞ · ‖e‖∞ =

√
n(2B + 1)(B) =

√
n(2B2 +B). (10)

Using equations (9) and (10), we see
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‖µ (mod φ(x))‖∞ = ‖fc (mod φ(x))‖

= ‖f(hs+ 2e+m) (mod φ(x))‖∞

= ‖f [(2gf−1)s+ 2e+m] (mod φ(x))‖∞

= ‖2gs+ 2fe+ (2u+ 1)m (mod φ(x))‖∞

= ‖2gs+ 2fe+ 2um+m (mod φ(x))‖∞

= 2‖gs (mod φ(x))‖∞ + 2‖fe (mod φ(x))‖∞

+ 2‖um (mod φ(x))‖∞ + ‖m (mod φ(x))‖∞

= 2
√
nB2 + 2

√
n(2B2 +B) +B + 1

= 6
√
nB2 + (2

√
n+ 1)B + 1

‖µ (mod φ(x))‖∞ ≤ 6nB2 + 2nB +B + 1

We need to choose a prime q large enough to guarantee that

q/2 > ‖µ‖∞

Ensuring this inequality holds eliminates wrap-around.

We can then describe the bounds needed in order to ensure our scheme is homomorphic as
follows.
Corollary 4.3. Let n ∈ N, let φ(x) = xn + 1 and R = Z[x]/ 〈φ(x)〉, and every other symbol
as defined in the basic scheme. Then f 2(c1 + c2) is (37n2)-bounded.

Proof. Let n ∈ N, let φ(x) = xn+1 and R = Z[x]/ 〈φ(x)〉, and every other symbol as defined
in the basic scheme. By setting φ(x) as such, the parameters used in the basic scheme are
bounded as above in the proof of Corollary 4.2.
Then, from Lemma 4.2, we have
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‖c (mod φ(x))‖∞ = ‖hs+ 2e+m (mod φ(x))‖∞

= ‖hs (mod φ(x))‖∞ + 2‖e (mod φ(x))‖∞

+ ‖m (mod φ(x))‖∞
=
√
n‖h‖∞ · ‖s‖∞ + 2B + 1

=
√
n(4B2 + 2B)(B) + 2B + 1

=
√
n(4B3 + 2B2) + 2B + 1

≤ n(4B3 + 2B2) + 2B + 1

‖c (mod φ(x))‖∞ = 4nB3 + 2nB2 + 2B + 1 (11)

Now for two ciphertexts, c1 and c2, as described in equations (19) and (20) we have

f(c1 + c2) = fc1 + fc2
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Continuing using equation (11) we see

‖f(c1c2) (mod φ(x))‖∞ = ‖fc1 + fc2 (mod φ(x))‖∞

= ‖fc1 (mod φ(x))‖∞ + ‖fc2 (mod φ(x))‖∞

=
√
n‖f‖∞ · ‖c1‖∞ +

√
n‖f‖∞ · ‖c2‖∞

=
√
n(2B + 1)

{
2(4nB3 + 2nB2 + 2B + 1)

}
=
√
n
{

16nB4 + 16nB3 + (4n+ 8)B2 + 8B + 2
}

≤ n
{

16nB4 + 16nB3 + (4n+ 8)B2 + 8B + 2
}

= 16n2B4 + 16n2B3 + (4n2 + 8n)B2 + 8nB + 2n

≤ 16n2 + 16n2 + 4n2 + 8n+ 8n+ 2n

= 36n2 + 18n

‖f(c1 + c2) (mod φ(x))‖∞ ≤ 37n2

Therefore we have shown f 2(c1 + c2) is (37n2)-bounded.

Corollary 4.4. Let n ∈ N, let φ(x) = xn + 1 and R = Z[x]/ 〈φ(x)〉, and every other symbol
as defined in the basic scheme. Then f(c1c2) is (324n5)-bounded.

Proof. Let n ∈ N, let φ(x) = xn+1 and R = Z[x]/ 〈φ(x)〉, and every other symbol as defined
in the basic scheme. By setting φ(x) as such, the parameters used in the basic scheme are
bounded as above in the proff of Corollary 4.2.
Now for two ciphertexts, c1 and c2, as described in equations (19) and (20), both bounded
as described in equation (11), we have

f 2(c1c2) = fc1 · fc2
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Continuing using equation (11) we see

‖f 2(c1c2) (mod φ(x))‖∞ = ‖f 2c1c2 (mod φ(x))‖∞

=
√
n‖fc1 (mod φ(x))‖∞ · ‖fc2 (mod φ(x))‖∞

= n3/2‖f‖∞2 · ‖c1‖∞ · ‖c2‖∞

= n3/2‖f‖∞2 · (‖c1‖∞)2

= n3/2(2B + 1)2(4nB3 + 2nB2 + 2B + 1)2

= n3/2(4B2 + 4B + 1)(16n2B6 + 16n2B5

+ 4n2B4 + 16nB4 + 16nB3

+ 4nB2 + 4B2 + 4B + 1)

= n3/2(64n2B8 + 128n2B7 + 96n2B6 + 64nB6

+ 32n2B5 + 128nB5 + 4n2B4 + 96nB4

+ 16B4 + 32nB3 + 32B3 + 4nB2 + 24B2

+ 8B + 1)

= 64n7/2B8 + 128n7/2B7 + 96n7/2B6 + 64n5/2B6

+ 32n7/2B5 + 128n5/2B5 + 4n7/2B4 + 96n5/2B4

+ 16B4 + 32n5/2B3 + 32B3 + 4n5/2B2 + 24B2

+ 8B + 1

≤ 324n7/2 + 324n5/2 + 81

≤ 324n4 + 324n3 + 81‖f(c1c2) (mod φ(x))‖∞ ≤ 324n5.

Therefore we have shown f(c1c2) is (324n5)-bounded.
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4.2.2 Key Generation

Keygen: Sample bounded polynomials u, g ← χ and set

f := 2u+ 1, (12)

so that f = 1 (mod 2). Define h to be

h := 2gf−1 ∈ Rq, (13)

We will now define the public key as the tuple

pk := (h, q) (14)

and the secret key as the tuple
sk := (f, q). (15)

If f is not invertible over Rq, resample u.

4.2.3 Encryption

Enc: Sample bounded polynomials s, e← χ. Output the ciphertext

c := hs+ 2e+m ∈ Rq (16)

Here we adopt the notation the element “∈ Rq” such that all operations are done modulo
φ(x) and reducing Z.

4.2.4 Decryption

Dec: Let
µ := fc ∈ Rq, (17)

We then output µ (mod 2) as the message.
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4.2.5 Example of Our Scheme

Now, let us look at a small example of our scheme.

Our small example will be parametrized by the following quantities:

• n = 4

• q = 89

• φ(x) = x4 + 1

• B = 1, thus our sampled polynomials from χ will be 1-bounded. In other words, all
coefficients for any polynomial p← χ lie in the range [−1, 1].

We will do all operations modulo 89 and x4 + 1 and define

R := Z[x]/
〈
x4 + 1

〉
and Rq := R/89R

Keygen: We sampled u, g ← χ and have

u = x2 and g = x+ x2.

Computing f as described in Section 4.2, we find

f = 2u+ 1

= 2(x2) + 1

= 1 + 2x2.

Now we apply the Extended Euclidean Algorithm, as previously discussed in Section 2.1.2,
to ensure f is invertible in the Rq. In other words, that is there exists some f−1 such that
ff−1 = 1 ∈ Rq.

(x4 + 1) = (2x2 + 1)(16x2 + 8) + 9

(16x2 + 8) = (9)(19x2 + 25) + 0
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Therefore, we have

9 = (x4 + 1)− (2x2 − 1)(16x2 + 8)

1 = (7)(x4 + 1)− (2x2 − 1)(112x2 + 56)

Thus, we have found the inverse of f as

f−1 = −112x2 − 56

= 12x2 + 6 (mod 89).

Using f−1 and the definition of h, as described in Section 4.2, we find

h = 2(x+ x2)(12x2 + 6)

= 12x+ 12x2 + 24x3 + 24x3

= −24 + 12x+ 12x2 + 24x3 (mod x4 + 1)

= 7 + 12x+ 122 − 7x3 (mod 89).

Thus, we define our public and secret keys as

pk := (7 + 12x+ 122 − 7x3, 89) and sk := (−1 + 2x2, 89),

respectively.

Enc: Assume we would like to encrypt to message m = 1. We begun by sampling s, e ← χ
and have

s = 1 + x+ x3 and e = x3.

We can now compute of ciphertext of m as follows.

c = (7 + 12x+ 122 − 7x3)(1 + x+ x3) + 2(x3) + 1

= 8 + 19x+ 24x2 + 14x3 + 5x4 + 12x5 − 7x6

= 3 + 7x+ 31x2 + 14x3 (mod x4 + 1)

= 3 + 7x+ 14x3 (mod 89)
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Dec: Suppose we would now like to decrypt our message. We proceed by comping µ as
defined in Section 4.2.

µ = fc

= (−1 + 2x2)(3 + 7x+ 14x3)

= −3− 7x+ 6x2 + 28x5

= −3− 35x+ 6x2 (mod x4 + 1)

= −3− 4x+ 6x2 (mod 89)

Reducing µ modulo 2 we see,

µ (mod 2) = 1

= m.

Thus, we have successfully encrypted and decrypted our message without any disruption.
Later on in Section 4.2.6, we will show an example where wrap around error can occur.

4.2.6 Example of Wrap Around Error

Now, let us look at a small example of our scheme which causes wrap around error.
Example 4.1. This small example will be parametrized by the following quantities:

• n = 4

• q = 7

• φ(x) = x4 + 1

• B = 1, thus our sampled polynomials from χ will be 1-bounded. In other words, all
coefficients for any polynomial p← χ lie in the range [−1, 1].

Note. Notice that the only value we have changed in this example from the last is reducing
q from 31 to 7. Thus reducing to a prime integer much smaller than the bound on q as
described in Section 4.2.1.
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We will do all operations modulo 7 and x4 + 1 and define

R := Z[x]/
〈
x4 + 1

〉
and Rq := R/7R

Keygen: We will use the same parameters for generating our keys as described in the previous
example.

u = −1 + x2, g = x+ x2 and f = −1 + 2x2

Since we have changed the ring in which we are doing computations, we must recompute
f−1.

(1 + x4) = (−1 + 2x2)(2 + 4x2) + 3

(−1 + 2x2) = (3)(2 + 3x2) + 0

Therefore, we have

3 = (x4 + 1)− (2x2 − 1)(4x2 + 2)

1 = (5)(x4 + 1)− (2x2 − 1)(20x2 + 10)

Thus, we have found the inverse of f as

f−1 = −20x2 − 10

= −3 + x2 (mod 7).

Using f−1 and the definition of h, as described in Section 4.2, we find

h = 2(x+ x2)(x2 − 3)

= −6x− 6x2 + 2x3 + 2x4

= −2− 6x− 6x2 + 2x3 (mod x4 + 1)

= −2 + x+ x2 + 2x3 (mod 7).

Thus, we define our new public and secret keys as

pk := (−2 + x+ x2 + 2x3, 7) and sk := (−1 + 2x2, 7),
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respectively.

Enc: We would still like to encrypt to message m = 1. Utilizing the same s and e as the
previous example, we have

s = 1 + x+ x3 and e = x3.

We can now compute of ciphertext of m as follows.

c = (−2 + x+ x2 + 2x3)(1 + x+ x3) + 2(x3) + 1

= −1− x+ 2x2 + 3x3 + 3x4 + x5 + 2x6

= −4− 2x+ 3x3 (mod x4 + 1)

= 3− 2x+ 3x3 (mod 7)

Dec: Suppose we would now like to decrypt our message. We proceed by comping µ as
defined in Section 4.2.

µ = fc

= (−1 + 2x2)(3− 2x+ 3x3)

= −3 + 2x+ 6x2 − 7x3 + 6x5

= −3− 4x+ 6x2 − 7x3 (mod x4 + 1)

= −3 + 3x− 1x3 (mod 7)

Reducing µ modulo 2 we see,

µ (mod 2) = 1 + x2 + x3

m.

Notice we cannot recover m from µ because a wrap-around error had occurred in both the
x and x2 terms’ coefficients.
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4.3 Why Decryption Works

We can show decryption works, assuming there is no overflow or wrap around error, by the
following. All operations are done in the ring Rq.

µ = fc by (17)

= f(hs+ 2e+m) by (16)

= fhs+ 2fe+ fm

= f(2gf−1s+ 2fe+ fm by (13)

= 2g(ff−1)s+ 2fe+ fm

= 2gs+ 2fe+ fm since ff−1 = 1 ∈ Rq

= 2(gs+ ef) + fm

= 2(gs+ ef) + (2u+ 1)m by (12)

= 2(gs+ ef + um) +m

µ = m (mod 2) (18)

4.4 Homomorphic Properties

The multiple operation homomorphic properties of the scheme are best seen through the
lens of the decryption equation. In particular, consider ciphertexts

c1 := hs1 + 2e1 +m1 ∈ Rq (19)

and
c2 := hs2 + 2e2 +m2 ∈ Rq. (20)

that encrypt messages m1 and m2 under public key pk := (h, q), with noise terms e1 and e2.
A little algebraic manipulation shows that cadd := c1 + c2 and cmult := c1c2 are ciphertexts
that encrypt the sum and product of m1 and m2, respectively, albeit with larger error terms.
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Later on we will go on to show that modulus reduction may not be needed in the case of
addition, however it will almost always be necessary when multiple multiplications are to be
used in the circuit.

Extending this to circuits, we observe that the effective secret key required to decrypt the
ciphertext c resulting from evaluating a multivariate polynomial function on the inputs is
fd where d is the degree of the polynomial function. This makes the secret key required
to decrypt c dependent on the circuit evaluated, which is unacceptable even for somewhat
homomorphic encryption. We use the relinearization technique from [11] to transform the
ciphertext into one that can be decrypted using the secret key f (namely, reduce all the
exponents from d to 1), after every operation. In effect, this ensures that the secret key is no
longer dependent on the function involved in the computation. With the use of relineariza-
tion, one can show that the scheme is somewhat homomorphic, i.e., capable of evaluating
circuits of depth ε log n for some small constant ε < 1. [LATV12]

To turn this into a fully homomorphic encryption scheme we use the technique of modulus
reduction from the work of Brakerski and Vaikuntanathan [BV11a], later refined in [BV11b].
Modulus reduction shows how to reduce the magnitude of the error (while simultaneously
reducing the size of the modulus). This technique works transparently in the single key
setting, giving us a leveled FHE scheme. Finally, to turn this into a full-fledged FHE scheme
(whose complexity is independent of the complexity of the function being computed), we
show that we can reach a bootstrappable scheme utilizing modulus reduction.

4.4.1 Addition

Namely, decrypting c1 + c2 with the secret key sk := (f, q) in the ring Rq gives us:

f(c1 + c2) = fc1 + fc2 by (19) and (20)

= f(hs1 + 2e1 +m1) + f(hs2 + 2e2 +m2)

= fhs1 + 2fe1 + fm1 + fhs2 + 2fe2 + fm2

= f(2gf−1)s1 + 2fe1 + fm1 + f(2gf−1)s2 + 2fe2 + fm2 by (13)

= 2g(ff−1)s1 + 2fe1 + fm1 + 2g(ff−1)s2 + 2fe2 + fm2

= 2gs1 + 2fe1 + fm1 + 2gs2 + 2fe2 + fm2 since ff−1 = 1 ∈ Rq

f(c1 + c2) = 2(gs1 + fe1 + gs2 + fe2) + fm1 + fm2
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From this point on we will consider the error due to addition

Eadd = gs1 + fe1 + gs2 + fe2. (21)

Continuing with our previous results we have:

f(c1 + c2) = 2Eadd + f(m1 +m2) ∈ Rq. (22)

Reducing this result modulo 2, we find:

f(c1 + c2) = 2Eadd + f(m1 +m2) (mod 2)

= 2Eadd + (2u+ 1)(m1 +m2) (mod 2) by (12)

= 2[Eadd + u(m1 +m2)] +m1 +m2 (mod 2)

f(c1 + c2) = m1 +m2 (mod 2) (23)

This shows that decrypting c1 + c2 using f results in the sum of the two messages, assuming
the error does not grow to be too large.

4.4.2 Multiplication

Likewise, decrypting c1c2 with the secret key sk := (f, q) in the ring Rq we have:

f 2(c1c2) = fc1 · fc2

= f(hs1 + 2e1 +m1) · f(hs2 + 2e2 +m2) by (19) and (20)

= (fhs1 + 2fe1 + fm1) · (fhs2 + 2fe2 + fm2)

= (f(2gf−1)s1 + 2fe1 + fm1) · (f(2gf−1)s2 + 2fe2 + fm2) by (13)

= (2g(ff−1)s1 + 2fe1 + fm1) · (2g(ff−1)s2 + 2fe2 + fm2)

= (2gs1 + 2fe1 + fm1) · (2gs2 + 2fe2 + fm2) since ff−1 = 1 ∈ Rq

= 4g2s1s2 + 4gs1fe2 + 2gs1fm2 + 4gs2fe+ 4f 2e1e2 + 2fe1fm2 + f 2m1m2

= 2(2g2s1s2 + 2gs1fe2 + gs1fm2 + 2gs2fe+ 2f 2e1e2 + 1fe1fm2) + f 2m1m2
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From this point on we will consider the error due to multiplication

Emult = 2g2s1s2 + 2gs1fe2 + gs1fm2 + 2gs2fe+ 2f 2e1e2 + 1fe1fm2 (24)

Continuing with our previous results, we have:

f(c1c2) = 2Emult + f(m1m2) ∈ Rq (25)

Reducing this result modulo 2 we find:

f 2(c1c2) = 2Emult + f(m1m2) (mod 2)

= 2Emult + (2u+ 1)(m1m2) (mod 2) by (12)

= 2[Emult + u(m1m2)] +m1m2 (mod 2)

f 2(c1c2) = m1m2 (mod 2) (26)

This shows that decrypting c1c2 using f 2 results in the product of the two messages, assuming
that the error does not grow to be too large. We will show later on in Section 4.5.2 that
we can indeed remove the need to decrypt the multiplication of d ciphertexts using fd and
instead utilize a single multiplication of f .

4.5 From Somewhat to Fully Homomorphic Encryption

We use Gentry’s bootstrapping theorem [Gen09a, Gen09b] to convert our single-key some-
what homomorphic scheme into a single-key fully homomorophic one. Unfortunately, as
is described in Section 4.5.1, we can not simply apply the bootstrapping theorem directly
to the somewhat homomorphic encryption scheme from Section 4.2. We therefore turn to
modulus reduction, a technique introduced by [BV11a, BV11b], which can later be applied
to convert our somewhat homomorphic scheme into a bootstrappable scheme. We will first
describe the bootstrapping theorem, relinearization and then present the modulus reduction
technique and how we can apply it in our case.
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4.5.1 Bootstrapping

We remind the reader of the definition of a bootstrappable encryption scheme and present
Gentry’s bootstrapping theorem [Gen09a, Gen09b] that states a bootstrappable scheme can
be converted into a fully homomorphic one. We modify the theorem and the corresponding
definitions from their original presentation. Taking N = 1 yields the theorem and the
definitions from [Gen09a, Gen09b].
Definition 4.3 (Bootstrappable Scheme). Let E =

{
E (N) = (Keygen,Enc,Dec,Eval)

}
N>0

be
a family of single-key C-homomorphic encryption schemes, and let fadd and fmult be the
augmented decryption functions of the scheme defined as

fadd(c1, c2) = Dec(c1) XOR Dec(c2) and fmult(c1, c2) = Dec(c1) AND Dec(c2)

Then E is bootstrappable if1

{fadd(c1, c2), fmult(c1, c2)}c1,c2 ⊆ C

Namely, the scheme can homomorphically evaluate fadd and fmult.

In other words, we consider a scheme bootstrappable if it can homomorphically evaluate its
own decryption circuit. Thus, the scheme must be homomorphic with respect to any gates
that appear in the decryption circuit and must be able to evaluate the entire decryption
circuit without creating an excess of noise.

Unfortunately, the somewhat homomorphic scheme that we described in Section 4.2 is not
bootstrappable. We therefore turn to modulus reduction, which will allow us to convert our
somewhat homomorphic encryption scheme into a bootstrappable scheme.

4.5.2 Relinearization

Recall from Section 4.4 that in the somewhat homomorphic LTV scheme, we find it necessary
that in order to decrypt a product of d ciphertexts, we will need to multiply cmult by fd.
We can easily see that is undesirable as with added multiplications our error terms grow
exponentially.

We utilize relinearization to grant us the power to decrypt any combination of ciphertexts
using only one multiplication of f . In order to do this, we introduce an evaluation phase
into our encryption scheme which is now described as follows.

1Recall, in Section 3.1 that we define C to be the ring of ciphertexts created by the encryption scheme E .
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Key Creation

Again, let φ(x) = xn + 1 for some n ∈ N, let R = Z[x]/ 〈φ(x)〉 and let χ be a probability
distribution that is B-bounded, where B ∈ Z. We will also define the ring Rq = R/qR.

First we will sample g, u← χ and set f := 2u+ 1 so that f ≡ 1(mod2). If f is not invertible
in the ring Rq, resample u. Let h := 2gf−1 ∈ Rq, and set

pk := (h, q) and sk := (f, q)

as our public and secret keys, respectively.

For τ ∈ {0, ..., blog qi−1c}, sample sτ , eτ ← χ and compute

γτ := hsτ + 2eτ + 2τf ∈ Rq.

Define the evaluation key ek as

ek :=
{
γ0, γblog qc

}
∈ Rblog qcq .

Encryption

Sample s, e← χ. Output the ciphertext

c := hs+ 2e+m ∈ Rq

to encrypt our single bit message m ∈ {0, 1}.

Decryption

Given c and a secret key sk = (f, q), we can decrypt the ciphertext by computing

µ := fc ∈ Rq.

We must then compute
m′ := µ (mod 2).

We will output m′ as the decrypted message.
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Evaluation

We show how to evaluate a t-input circuit C. We assume w.l.o.g. that the circuit C is leveled
in that it is composed of alternating XOR and AND levels.

We show how to homomorphically add and multiply two elements in {0, 1}. Given two
ciphertexts c1 and c2, defined previously, we assume we also encrypted using a single distinct
public key and secret key tuple.

Addition We can continue to do homomorphic addition as we have previous defined, as
we can always decrypt any sum of d ciphertexts by utilizng a single f multiplication.

Multiplication Given two ciphertexts c1, c2 ∈ Rq, we first let

c0 := c1 · c2 ∈ Rq.

Then we can find the binary representation of c0 by generating c̃τ such that

c̃0 =

blog qc∑
τ=0

c̃τ2
τ .

Next, we define

c̃mult :=

blog qc∑
τ=0

c̃τγτ ,

Which we will output as our ciphertext.

4.5.3 Modulus Reduction

Modulus reduction [BV11a, BV11b] is a noise-management technique that provides an
exponential gain on the depth of the circuits that can be evaluated, while keeping the depth
of the decryption circuit unchanged. Informally, if ddec is the depth of the decryption circuit
of the scheme described in Section 3.4, then we modify the scheme so that that its decryption
circuit is unchanged but the scheme can now evaluate its own decryption circuit, making it
bootstrappable. Details follow.
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We let [·]q denote the corresponding element in Rq (ie. Reducing modulo φ(x) and q), as
in [BV11a]. Then, if (h, f) is a key pair and c is a ciphertext under public key h, [fe]q
corresponds to the noise in c. Recall that for decryption to be successful, we need [fc]q
to be equal to fc over the integers. However, each homomorphic operation increases this
noise. Modulus reduction allows us to keep the noise magnitude small by simply scaling the
ciphertext after each operation. The key idea is to exploit the difference in how the noise
affects security and homomorphisms:

• The growth of the noise upon homomorphic multiplication is governed by the magnitude
of the noise.

• Security is governed by the ratio between the magnitude of the noise and the modulus
q.

This suggest a method of reducing the magnitude of the noise and the modulus by roughly
the same factor, thus preserving security while at the same time making homomorphic mul-
tiplications easier.
In particular, modulus reduction gives us a way to transform a ciphertext c ∈ Rq1 into a
different ciphertext c′ ∈ Rq0 (where q0 is smaller than q1) while preserving correctness: for
the secret key f . The transformation from c to c′ involves simply scaling by q0

q1
and rounding

appropriately.
Lemma 4.3 (Modulus Reduction, See [BV11a, BV11b]). Let q0 and q1 be two odd moduli
and let c ∈ Zn. Let c′ ∈ Zn be the integer vector closest to q1

q0
· c. Then for any f ∈ Rn, with

|fc mod q0| <
q0
2
− q1
q0
‖f‖1 (27)

we have,

|fc′ mod q1| ≡ |fc mod q0| (mod 2) (28)

|fc′ mod q1| <
q1
q0
|fc mod q0|+ ‖f‖1 (29)

The beauty of Lemma 4.3 is that if we know the depth d of the circuit we want to evaluate (in
our case, d = ddec, the depth of the augmented decryption circuit), then we can construct a
ladder of decreasing moduli q0, ..., qd and preform the modulus reduction after each operation
so that at level i all ciphertexts reside in Rqi and the magnitude of the noise at each level
is small. In particular, this is true at level d so that once the evaluation is complete, it is
possible to decrypt the resulting ciphertext without decryption errors. We will prove this
lemma in Section 4.5.3.
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Bootstrappable Scheme

We change the scheme so that it uses modulus reduction during ab evaluation phase. Keygen
will now sample a ladder of decreasing moduli q0, ..., qddec , where ddec is the depth of the circuit
we are looking to evaluate. We will choose the distribution χ in order to guarantee that any
sample is B-bounded, where B � qddec . The modified, bootstrappable, scheme is as below.

Key Creation

Again, let φ(x) = xn + 1 for some n ∈ N, let R = Z[x]/ 〈φ(x)〉 and let χ be a probability
distribution that is B-bounded, where B � qddec . We will now sample a ladder of decreasing
moduli q0, ..., qddec .

For every i ∈ {0, ..., ddec}, sample g(i), u(i) ← χ and set f (i) := 2u(i)+1 so that f (i) ≡ 1(mod2).
If f (i) is not invertible in the ring Rqi , resample u(i). Let h(i) := 2g(i)(f (i))−1 ∈ Rqi−1

, and set

pk := (h(0), q0) and sk := (f (ddec), qddec)

as our public and secret keys, respectively.

For all i ∈ [ddec] := {1, 2, ..., ddec} and τ ∈ {0, ..., blog qi−1c}, sample s
(i)
τ , e

(i)
τ ← χ and

compute

γ(i)τ := h(i)s(i)τ + 2e(i)τ + 2τf (i−1) ∈ Rqi−1
andζ(i)τ := h(i)s(i)τ + 2e(i)τ + 2τ (f (i−1))2 ∈ Rqi−1

Define the evaluation key ek as

ek :=
{
γ(i)τ , ζ

(i)
τ

}
i∈[ddec],τ∈{0,...,blog qic}

.

Encryption

Sample s, e← χ. Output the ciphertext

c := hs+ 2e+m ∈ Rq0

to encrypt our single bit message m ∈ {0, 1}.
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Decryption

Assume w.l.o.g that c ∈ Rqddec
. Given c and a secret key sk = (f (ddec), qddec), we can decrypt

the ciphertext by computing
µ := fddecc ∈ Rq.

We must then compute
m′ := µ (mod 2).

We will output m′ as the decrypted message.

Evaluation

We show how to evaluate a t-input circuit C. We assume w.l.o.g. that the circuit C is leveled
in that it is composed of alternating XOR and AND levels.

We show how to homomorphically add and multiply two elements in {0, 1}. Given two
ciphertexts c1 and c2, defined previously, we assume we also encrypted using a single distinct
public key and secret key tuple.

Addition Given two ciphertexts c1, c2 ∈ Rqi , we first compute c̃0 = c1 + c2. For τ ∈
{0, ..., blog qic}, define c̃0,τ such that

c̃0 =

blog qic∑
τ=0

2τ c̃0,τ .

Next, we define

c̃1 :=

blog qic∑
τ=0

c̃0,τγ
(i)
τ ∈ Rqi

Finally, reduce the modulus: let cadd be the integer vector closest to (qi+1/qi) · c̃1 such that
cadd ≡ c̃1 (mod 2). Output cadd ∈ Rqi+1

as an encryption of the sum of the underlying
messages.
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Multiplication Given two ciphertexts c1, c2 ∈ Rqi , we first compute c̃0 = c1 · c2. For
τ ∈ {0, ..., blog qic}, define c̃0,τ such that

c̃0 =

blog qic∑
τ=0

2τ c̃0,τ .

Next, we define

c̃1 :=

blog qic∑
τ=0

c̃0,τζ
(i+1)
τ ∈ Rqi

Finally, reduce the modulus: let cmult be the integer vector closest to (qi+1/qi) · c̃1 such that
cadd ≡ c̃1 (mod 2). Output cadd ∈ Rqi+1

as an encryption of the sum of the underlying
messages.

Proof of Modulus Reduction

We will now present the proof that modulus reduction does indeed work. Recall the definition
of modulus reduction from Lemma 4.3 in Section 4.5.3.

Proof. We can write

fc mod q0 = fc− kq0 (30)

for some k ∈ Z. We will define
n1 = fc′ − kq1 (31)

From (30) and (31)
c ≡ c′ (mod 2)andq0 ≡ q1 (mod 2).

So
|fc mod q0| ≡ n1 (mod 2),

moreover
|fc mod q0| ≡ |n1| (mod 2).

We need to prove that n1 = fc′ mod q. Since fc = (fc mod q0) + kq0, we have

q1
q0
fc =

q1
q0

(fc mod q) + fc′ − q1
q0

(fc).
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So, we may write

n1 = fc′ − kq1
=
q1
q0

(fc mod q0) + fc′ − q1
q0

(fc)

=
q1
q0

(fc mod q0) + fd

where d = c′ − q1
q0
c.

Since for any element e ∈ d we know e ∈ [−1, 1],

|fd| < ‖f‖1

So by the triangle inequality, we have

|n1| <
q1
q0
|fc mod q0|+ ‖f‖1.

Therefore by hypothesis, we have

|fc mod q0| < q0/2−
q0
q1
‖f‖1

q1
q0
|fc mod q0| < q1/2− |f |1

|n1| <
q1
2
.

Thus, n1 must be closer to zero than any other integer i satisfying fc′ − iq1. So,

n1 = fc′ mod q1 and |fc′ mod q1| <
q1
q0
|fc mod q0|+ ‖f‖1.

Thus showing we can recover the same message in two distinct rings defined as

Rq0 := R/q0R and Rq1 := R/q1R.

after modulus reduction.
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5 Conclusions

When published there were many oversights presented in the context of the LTV scheme and
we successfully presented a rewrite of the FHE LTV scheme which utilizes the traditional
single-key approach. Simplifying notation and filling in gaps, this rewrite will make the
information portrayed in the LTV scheme accessible to non-experts as well as serve as proof
that many of the claims in the original LTV paper were justified.

Based off of the NTRU cryptosystem, developed by Hoffstein, Pipher and Silverman, our
scheme utilizes ring theory and sampling from elementary probability theory to create a
somewhat homomorphic system. Whats more, as we have shown, the scheme supports
homomorphic operations utilizing Gentrys bootstapping theorem and modulus reduction
and relinearization.

The authors’ construction is particularly interesting since the NTRU scheme was originally
proposed as an efficient public-key encryption scheme, meant to replace RSA and elliptic
curve cryptosystems in applications where computational efficiency is at a premium. Al-
though the transform to a fully homomorphic system deteriorates the efficiency of NTRU
slightly, we believe that this system is a leading candidate for a practical FHE scheme.
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