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1 Abstract

The objective of this project was to develop a system and smart phone application using

iBeaconTM technology to determine location and parking availability in parking garages

and lots. This task was achieved with the use of localization algorithms and probabilistic

models to accurately determine a user’s location in comparison to any empty parking

spaces and alert the user of the spot’s vacancy. The first phase of this process was

determining the market space for such technology, as well as a potential customer

for the system. Upon completion of this phase, a path-loss model was determined

based on the received signal strength from the iBeacon devices inside a test parking

garage located at Worcester Polytechnic Institute. The information from this path-loss

model helped create some probabilistic models utilizing the Cramér-Rao Lower Bound

for accuracy and precision, which were later used to compare with the localization

algorithms implemented in the smart phone application.
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3 Executive Summary

The goal of this project was the development of a location sensing network utilizing

Apple’s iBeaconTM technology to determine both location and parking availability in

parking garages and lots. The primary interface that a potential customer would interact

with would be a smart phone application, which depicts any available parking spaces in

a given garage or lot. The application contains the majority of the processing power,

as it runs localization algorithms in the background while the user interface depicts a

layout of the garage. The application communicates with iBeacon devices in front of

each spot in the garage. The information coming from the beacon serves two purposes:

the readings from the on-board magnetometer, which detects the presence of a metal

object, or more specifically a vehicle, as well as allowing the application to determine the

proximity to each individual beacon. The application reads the received signal strength

from the surrounding beacons, and uses the aforementioned localization algorithms

to calculate the relative location of the user, while the magnetometer determines if the

spot is available.

The purpose of designing such an application is to help reduce the time and frustra-

tion of finding available parking in densely crowded, urban environments. The main

scenario that this application could be used for is in an environment similar to General

Edward Lawrence Logan International Airport, located in Boston, Massachusetts. The

large parking garage at Logan International is infamously difficult to navigate, and is

often overcrowded, causing frustration and traffic jams when searching for empty spots.

With the use of this application and system architecture, delays and difficulties to find

parking could be drastically reduced if not eliminated.

The completion of this project was a multifaceted, complex challenge that required

various pieces to build off of one another. The first phase of this process was determin-

ing the market space for the overall system, as well as a potential customer. Market

analysis determined that the market for parking applications had high desirability with

little product or innovation. Upon completion of this initial phase, it was determined

that a path-loss model would need to be created to determine the overall accuracy

and strength of the supplied iBeacon Estimote devices. This step was critical in de-

veloping a path-loss model for analyzing the effectiveness of the specific bluetooth
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beacons used, as each location would require a slightly different architecture, based

on the wireless conduciveness of the environment. Using the Estimote smart phone

application, various readings of the received signal strength from the beacons were

taken, both in an outdoor and indoor environment. Based on these readings, a path-loss

model was constructed, which compared the received signal strength to the distance,

both actual distance and the distance the Estimote application perceived the beacon

to be at. From this model, it was evident that the Estimote beacons were highly inac-

curate, particularly in the parking garage, where the heavy concrete pitched ceilings

created a very poor wireless environment. This model also helped create the baseline

parameters from some initial probabilistic models, particularly the Cramér-Rao Lower

Bound (CRLB) simulations. The calculated signal-to-noise ratio and standard deviation

of the received signal strength were used as factors in the CRLB simulations, which gave

insight into how effective the beacons would be at not only transmitting around the

entire space, but also how accurate the measurements would be, based on the layout of

the beacons. The results from the CRLB simulations acted as perfect scenario baselines

for the accuracy of the localization algorithm. The first algorithm discussed briefly

was trilateration, but this idea was quickly discarded, as trilateration would be highly

inaccurate compared to more sophisticated algorithms. The second algorithm explored

was Maximum likelihood, which determines which beacons are closest to the user, and

estimates the location of the user based on those readings. The third algorithm explored

was Least Mean Squared, which is a more powerful version of trilateration, in that it

creates several expectation regions for the location of the user, and pinpoints the user

where the expectation regions overlap. These two algorithms were both implemented

in the smart phone application, and their accuracies were compared with the perfect

prediction of the CRLB simulations. The calculations and comparisons demonstrated

that the Maximum Likelihood algorithm was slightly more accurate than the Least Mean

Squared, though both could be used reliably to achieve an accuracy of error of approxi-

mately a meter. This error is acceptable, as the dimensions of a typical parking spot is six

meters by three meters, and thus the localization does not necessarily have to be perfect.

Towards the end of the project, some tests were done with different iBeaconTM

devices, and it was discovered that the original Estimote iBeacon devices were of low

quality, inaccurate, and practically unusable when compared to the new devices. It is

recommended that future projects simply begin testing with higher quality devices.
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5 INTRODUCTION

This project was started with the goal of fixing a common problem that most people

who commute face on a daily basis: parking availability. The issue that was identified

was that when people wanted to park they often would have issues finding an open spot

especially in crowded parking garages with multiple levels. With the issue determined

the next step was to design a system that could make finding parking spots in a crowded

garage quick and easy. To achieve this goal a system was developed with the use of

Estimote iBeacons and the built in magnetometer. This system could detect open spots

using the magnetometer in the parking garage and navigate the user to the open spot

through the use of a smart phone application.

5.1 Project Motivation

The motivation for this project was derived from direct observations on the difficulty

and frustration of finding parking in busy urban parking lot and garages. In particular,

the various parking lots across the Worcester Polytechnic Institute campus generally fill

rapidly in the morning, causing commuter students and professors to find alternative

street parking, risking scratches or dents to their vehicles, or the potential of having their

vehicle towed. This challenge of parking was also evident in a case study of the Logan

International Airport garage, which is infamously difficult to navigate and find available

parking spaces. From this motivation, the team decided an interesting application for

the iBeaconTM technology would be the development of a smart phone application

that could both determine whether a parking space was available, and illustrate the

vacancy to a user. The creation of such an application could allow drivers to check the

availability of the parking lot before entering, as well as determine the fastest route to

available spots instead of slowly scanning each space.

5.2 Report Outline

This report includes a complete summary of all aspects of this project, including the

fundamental background information and technology of the project, the methodology

followed for the completion of the project, and the results discovered throughout the

entirety of the project. The Background Information section serves as an introduction

to Bluetooth Low Energy, Apple’s iBeaconTM technology, several localization algorithms,
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and to magnetometers. The Design and Implementation Methodology section dis-

cusses the various stages in research and development of the localization algorithms

and smart phone application. The Results and Discussion section depicts all of the

results from this project, beginning with the initial path-loss models, and continuing

through the Cramér-Rao Lower Bound simulations and localization algorithms, and

concluding with a comparison of accuracy between the probabilistic models created by

Cramér-Rao Lower Bound and the implemented algorithms. This section also includes

readings from the magnetometers and a discussion of the results. The Conclusion and

Future Recommendations section summarizes the project in its entirety, and provides

recommendations to future project groups that may choose to develop an application

similar to the one detailed in the project, or choose to use a similar system architecture.

Several appendices are also added to the end of this report. These appendices include

the MATLAB code used to generate the path-loss model diagrams, as well as the code

to generate the various Cramér-Rao Lower Bound simulations. Additional appendices

include the C.# and MATLAB code for the construction of the localization algorithms in

the smart phone application.
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6 BACKGROUND INFORMATION

This project focuses on three main aspects, each of which are key components to the

overall success of the smart phone application and therefore the project. The first

component is the use of Bluetooth Low Energy (BLE) technology, a wireless network

connection which is used to exchange tiny and static radio signals within short dis-

tances. The BLE standard for this project is Apple’s iBeacon TM technology. The physical

foundation of this project is the use of Estimote iBeacon TM devices to create the wire-

less network. The second component is the localization algorithms and comparative

probabilistic models created by Cramér-Rao Lower Bound simulations. The localization

algorithms are used to determine a users’ relative distance from a iBeacon TM device,

and calculate the users location based on the response from several devices simultane-

ously. The accuracy of the algorithms were compared against the ideal errors illustrated

by the Cramér-Rao Lower Bound simulations. The third and final component of this

project are the internal magnetometers embedded in the Estimote devices, which can

be calibrated to determine the presence of a large metallic object in front of the device.

The magnetometers are crucial in determining the availability of the parking space in a

garage. The final section of this background section analysis the market space for the

proposed system architecture and smart phone application.

6.1 Foundations of Bluetooth Low Energy Technology

Bluetooth Low Energy (BLE) is a wireless network connection used to send static radio

signals within local areas, up to approximately 200 meters, depending on the device.

BLE was first introduced by Bluetooth Special Interest Group (SIG) in 2009 [1]. BLE was

later re-branded as Bluetooth Smart, though the terms are interchangeable. The goal of

creating BLE was to create a standard that would allow devices to run for long spans of

time with low energy consumption. Depending on the device, a BLE device’s battery

can last two-three years.

Both BLE and classic Bluetooth utilize the 2.4 GHz ISM band, though they are not

compatible. Both technologies use frequency hopping spread spectrum to spread their

RF energy. Classic Bluetooth uses seventy-nine 1 MHz-wide channels, while BLE uses

forty 2 MHz-wide channels[2]. This spectrum can be seen below in Figure 1, which

depicts not only the forty 2 MHz-wide channels, but differentiates three “advertising”
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channels, which are used by a device to send advertising packets with information

about the device so other BLE devices can connect [3][4]. These three channels are

selected in the lower, middle, and upper regions to avoid interference that may interfere

with multiple channels at once.

Figure 1: BLE’s utilization on 2.4 GHz band, using forty 2 MHz-wide channels. [Argenox Tech-
nologies]

6.1.1 iBeaconTM Technology

iBeaconTM is a version of BLE created by Apple to provide local area geolocation, and

was intended for indoor environments. This technology was first implemented through

Apple’s operating system for iPhones and iPads, iOS, and has been available since iOS 7.

A device with iBeacon technology can be used to establish a region around an object,

allowing any iOS device to determine a proximity estimation to said device, as well as

determine if the iOS device has entered or left the created region[5]. It is important

to note that iBeacon is omni-directional, meaning a transmitter device will broadcast

its information, but does not receive signals. The transmitting device broadcasts its

information using three-part identifier packets which contain a Universal Unique Iden-

tifier (a 16-byte string), a 2-byte Major number, and a 2-byte Minor number[5]. Table 1

illustrates an example of how these values might be used for an east coast retail store.

The UUID is shared by all three locations, while each store is assigned a unique Major

value, allowing an iOS device to identify which store it is in. Inside each store, different

departments are assigned a unique Minor value.
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Store Location Boston New York Worcester
UUID 23DF590C-0DAB-767E-DEA6-2AC2FD4211AC
Major 1 2 3

Minor
Automotive 10 10 10

Toys 20 20 20
Shoes 30 30 30

Table 1: An example of iBeacon packet identification, depicting the UUID, Major, and Minor
values.

6.1.2 Estimote Beacons and Virtual Beacons

For this project, a combination of Estimote Proximity Beacons and Virtual Beacons were

be analyzed, as they incorporate BLE through iBeaconTM for localization. The Estimote

Proximity Beacon is developed by Estimote Inc., and can be configured via an Estimote

mobile application. Utilizing the Estimote application, the transmitted power can be

altered from 4 dBm to -30 dBm. The beacons themselves are approximately 55mm

by 38mm by 18mm, and are equipped with built in motion, light, and temperature

sensors[6]. Figure 2 illustrates several Estimote Proximity Beacons, as well as the main

interface of the Estimote mobile application.

Figure 2: Three Estimote Proximity Beacons and the main user interface of the Estimote mobile
application. [Estimote]

All of the Estimote Proximity Beacons have a default UUID, while the Major and

Minor codes are randomized. The UUID B9407F30-F5F8-466E-AFF9-25556B57FE6D

default can be changed by the user. Figure 3 depicts an example of the default UUID, as
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well as randomized Major and Minor codes, as seen on the Estimote mobile application.

Note that the UUID could be changed from this screen, and the transmit power can also

be altered from this screen.

Figure 3: Estimote mobile application screen depicting the UUID, Major, and Minor codes, as
well as the transmit power. [Estimote]

6.2 Magnetometer Theory

One of the built in sensors in the Estimote iBeaconTM device is a magnetometer, an

instrument that can measure magnetism or the change of a magnetic field at a particular

location. When a chunk of magnetic material is introduced to the sensors location a

change in the magnetic field can be detected by the magnetometer. However this will

only happen if a magnetic metal is introduced into the sensor’s field of view. This is

the key difference between metal detectors which can detect all metals compared to

magnetometers which can only detect a special group of metals “magnetic metals” such

as iron, nickel, cobalt or their alloys like steel. Magnetometers work by measuring the

magnetic flux density at the point in space where the sensor is located. Materials that
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are magnetic can distort the magnetic flux that is flowing around them, a distortion that

magnetometers can detect. An example of a magnetic material disrupting the magnetic

flux can be seen below in Figure 4.

Figure 4: Magnetic field disruption caused by a vehicle, with magnetometers in place to record
the magnetic field.[NXP Semiconductors]

In reference to the previous figure before the car approaches the sensor, the mag-

netometer would experience a uniform field due to no interference from magnetic

materials. However, as the vehicle passes over the sensor it would distort the earth’s

magnetic field and create regions of decreased flux and increased flux line concentration.

This distortion can be measured and graphed as seen in below in Figure 5.

Figure 5: Magnetic Field Strength with respect to time
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There are multiple types of magnetometers with the simplest example being a

compass that only measures the direction of an ambient magnetic field. Other magne-

tometers can be used to detect the direction, strength and relative change of a magnetic

field at a particular location. In our testing case the magnetometer was used as a metal

detector, magnetometers can detect large objects such as cars up to around 10 me-

ters. The two basic types of magnetometers can be classified as vector magnetometers

and scalar magnetometers. Vector magnetometers measure the vector components

of a magnetic field as the name suggests while scalar magnetometers measure the

magnitude of the vector magnetic field.

The performance and strength of magnetometers can be measured through their

technical specifications which include; Sample Rate, Bandwidth, Resolution, Absolute

error, and Thermal stability. The sample rate of a magnetometer is the amount of

measurements taken every second, this is one of the most important specifications

because a high sample rate allows you to measure quick changes in the magnetic field.

The bandwidth characterizes how well a magnetometer can measure quick changes in

the magnetic field. The resolution is the smallest change in the magnetic field that the

magnetometer can measure which is measured in teslas. Absolute error is difference

between the measured magnetic field and the actual value. The thermal stability of a

magnetometer is how its measurements and accuracy are affected by variations of the

temperature surrounding the sensor. Combining all of these technical specifications

together can determine the capabilities of the given magnetometer.

6.3 Cramér-Rao Lower Bound

A crucial tool in comparing the accuracy of the localization algorithms was through

comparing the ranges of accuracy with the contour of location error standard deviation

created by a mathematical approximation called Cramer-Rao Lower Bound (CRLB).

This approximation allows for a contour mapping of location error based on a set of

predetermined access points. The purpose of these models is to determine the most

effective locations for the iBeacon crystals, such that not only the entire space was

mapped by the beacons, but that the localization accuracy has a low error rate.
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6.4 Localization Algorithms

In order to achieve a successful application for localization, a localization algorithm

is required to calculate location. There are numerous algorithms that can be utilized

for localization, each with some advantages and disadvantages. In the scope of this

project, three localization algorithms were analyzed and compared, with a heavy focus

on accuracy. These three algorithms include trilateration, least mean squared, and

maximum likelihood.

6.4.1 Trilateration

The initial algorithm that was analyzed is a fairly simple algorithm called trilateration.

This algorithm is very similar to LMS but it uses spheres to determine distances and

locations in three dimension and uses circles to determine distances and locations in

one and two dimensions configuration[7].

Trilateration calculations use distance measurements to determine the three dimen-

sional coordinates of unknown positions[8]. This algorithm is very similar to LMS but it

uses spheres to determine distances and locations in three dimension and uses circles

to determine distances and locations in one and two dimensions configuration. This is

done by creating a radius around different access points and determining where the

circle radii intersect. A basic example of trilateration can be seen in figure 6.

Figure 6: Example of trilateration. Each point has a radius, and the Intersection point of the
radii is the location.
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6.4.2 Least Square Method

This algorithm estimates the location of an access point (AP) in x and y coordinates as

the minimizer of the sum of error functions:

E =
n∑

i=1
f i 2 (1)

Where (xi ,yi ) is the location of of the i th base station and fi is the error function of each

base station. Note that the choice of fi can be varied. In this case, there are two options

for error functions to be considered:

f1i (x, y) =
√

(xi −x2)+ (yi − y2)−d 2
i (2)

f2i (x, y) = (xi −x2)+ (yi − y2)−d 2
i (3)

These two options for error function will be describe more in depth in the Methodology

section. In order to solve the minimization problem, an iterative approach is required.

Thus, Newton’s method and Gauss-Newton’s method are compared [9][10]. Newton’s

method is an iterative method for finding the roots of a differentiable function. Gauss-

Newton’s method is a particular case of Newton’s method and it is used to solve nonlinear

least squares to minimize least square residuals.

6.4.3 Maximum Likelihood

Maximum likelihood algorithm is similar to and based on LMS and trilateration algo-

rithms but with much more accuracy. This algorithm provides a method of estimating

distances, locations, and parameters of a statistical model based on observations and

estimations. The algorithm makes an estimation of parameter θ based on the input

value of θ̂ that would provide a maximum likelihood function. Maximum Likelihood

uses bounds to create zones of possible maxima that would allow the function to con-

verge on a single point[11]. Using the derived path-loss model (discussed in Section 7.1)

would give:

d(pr ) = 10
pr −(p0+x)

10α (4)
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Based on the above equation and using a computed distance from a single base station

an inner and outer radius would be determined by:

ri nner = d
(
pav g +2σ

)
(5)

router = d
(
pav g −2σ

)
(6)

Using two or more base-station distances would allow the algorithm to have a densely

populated region between the inner and outer radii from each function, thus providing

an estimate localization. To increase search space in non-line of sight conditions the

parameter σ can be changed to create larger overlapping regions based on the path-loss

model[10] . An example of maximum likelihood can be seen in Figure 7.

Figure 7: Example of results from maximum likelihood algorithm

This process can be accomplished by determining the parameters that would maxi-

mize the probability of making the observations or guesses given the parameters. Out
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of the three algorithms, this one provides maximum accuracy for estimating distances,

locations, and parameters.

6.5 Market Research and Analysis

The project’s objectives have solutions that cover many entities including airports, con-

cessions, universities, malls, stadiums, and municipal, all of which have parking lots or

garages. However, for the scope of this project, one entity in particular was chosen to

model the objectives and solutions. Massport, The Massachusetts Port Authority, main-

tains and owns various parking areas throughout the state of Massachusetts mainly for

use in public facilities; these locations consist of Worcester Regional Airport, Hanscom

Field, Flynn Cruiseport Boston, Conley Terminal, and Boston Logan [12]. Most of these

locations have “dummy” parking which does not have metrics on the amount of spaces

available or smart pay systems. At Worcester Airport for example, parking is charged by

a legacy gate ticketing system. The processes of parking looks like the following:

• Enter parking lot, receive ticket at entrance

• Find open parking spot

• Pay for parking inside at box

• Place receipt into ticketing machine upon exit

This parking architecture introduces many issues such as congestion, unknown parking

availability, and confusion of payment. Especially at peak rush hour times congestion

can become an issue at both exiting the parking lot as well as the ticket payment boxes.

To relieve the bottlenecks of parking, many systems can be automated thus eliminating

a lot of the existing parking infrastructure.

Many universities and companies are spending resources on bringing parking so-

lutions into the twenty first century with IoT (Internet of Things) applications. These

solutions are looking to provide both parking availability metrics and payments systems.

The overall goal of the research is to replace legacy parking infrastructure, such as tick-

eting, with more advanced “smart” parking architecture. Some of the solutions found

during the research of this project include license plate tracking, vehicle transponders,

phone applications, pre-registration techniques, state sanctioned billing, among many

others. Needless to say, the area of parking research is growing as the need for smarter

12
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parking systems grows. One specific example is Beijing where parking garages can hold

upwards of thousands of vehicles; these congestion issues are outlined in a report from

Beijing Technical University students where they report that parking need is growing

exponentially while solutions to maintain this parking are non-existent[13]. In 2014,

Beijing had “5 million vehicles in Beijing with only 2 million parking lots,” which further

shows the need for parking and smarter systems to control the parking[13]. As parking

lots grow in their number of spots, congestion and related parking issues will grow as

well.

Some parking garages have started to include systems that would make “semi-smart”

infrastructures that output information about the parking statistics of the garage. One

company innovating in this field is AllTrafficSolutions, which has implemented their

ParkTrak systems at the Natick Mall in Massachusetts, seen in Figure 2.5. ParkTrak is a

devices that uses lidar and laser to detect vehicles.

Figure 8: ParkTrak device and LED Signage

Their system counts the number of vehicles entering and exiting the garage and is

able to display an available parking sign that integrates the remaining parking available.

The architecture of this solutions is only “semi-smart” because it cannot determine

where the open parking spots are located, only that the garage has a certain amount of

vehicles parked. ParkTrak also does not address the ticketing and payment for parking

inside the garage, this is left to legacy systems. AllTrafficSolutions claims that their

ParkTrak has been implemented into over 5000 commercial and municipal parking

garages[14]. The price tag for the system, LED Signs, and implementation costs around

$50,000 depending upon the size and amount of entrances to a garage[15]. This was the

associated cost that Miami Beach, Florida had incurred to implement the system into

their municipal parking lot.

A more encompassing system is OmniPark, which has solutions for enforcement,

payment, and tracking of vehicles within its parking area[16]. While their system has
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significantly more cost and implementation requirements, it has almost all features

that a “smart” enabled parking garage would have; their product is referred to as a

“fully integrated parking management solution.” Users pay for parking in a pay-by-plate

model where bills are mailed based on vehicle registration or paid online for a cheaper

fee. The downside to this system is that enforcement is still done manually where an

attendant would be required to travel the lot and record license plates and call for

vehicle towing when a violator has parked in the lot. OmniPark does not release pricing

on their systems, but their charing model does including both implementation and

monthly recurring costs.

There are many solutions being researched today that are enabling parking lots to

become more involved and smarter with the end users. In the case of Beijing it will help

offset the city’s 5+ million vehicle parking requirement and in other implementations

will reduce parking congestion and improve overall user experience. The field of re-

search around parking is a new and growing field that will be innovating for decades to

come, especially as self driving vehicles are slowly finding their way to market.
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7 DESIGN AND IMPLEMENTATION METHODOLOGY

When members of WPI community such as students, faculty, and staff commute to

campus and try to park their cars at a parking garage, they often do not find an available

parking spot right away and have to keep driving around in the parking garage to find a

parking spot that is available. This process might take seconds or even up to an hour.

One possible solutions to use iBeacons to create a wireless network that can detect

open spaces. iBeaconTM devices can be used to do localization and help people to find

available parking spaces without losing much time and energy, and therefore to localize

or detect where are cars located and can also be an assistance to find available parking

spaces. The mission of this project is to use wireless technologies to make applications

for parking garages to guide cars to open parking spots and to approximate the total

time a car has been park at parking spot in order to replace the legacy ticketing system

and ease the congestion. In order to achieve the mission of this project, the objectives

of this project are as following:

1. Determine and develop a path-loss model based on IEEE standards and Estimote

iBeaconTM devices

2. Apply the derivation of the path-loss model to the location algorithms and deter-

mine accuracy using comparisons to Cramér-Rao Lower Bound

3. Develop magnetometer baseline readings and determine bounds to detect all

sizes of vehicles

4. Implement a smart phone application for users to gather data from iBeacon

devices

7.1 Development of Path-Loss Models

A major portion of the project is dependent upon path loss models, as they are a basis

for trilateration and localization. Path loss models in general determine the reduc-

tion in power density as radio waves travel through space. By using the general Friis

transmission equation, and applying a determinant path loss model an approximate

distance can be calculated between a wireless transmitter and receiver. Applying these

approximated distances to localization algorithms, a beacon’s general location can be
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determined; this is the basis of trilateration, which is a method of determining a two

dimensional location using received signal strength measurements.

The team’s initial goal was to calculate path loss models for existing iBeaconTM

localization applications, specifically that of Estimote. In doing so, an application

specific path loss model can be formulated for the project. One of the many goals of

the project is to be able to determine a beacon’s general location within a parking lot

or parking garage. To understand the difference in the parking environments path

loss models will be evaluated for both structure and outside variations of parking lots.

The team took measurements of both hardware beacons, Estimote Crystal, and virtual

beacons, an Android application broadcasting as a beacon. The overall architecture of

the project depends on the results from these measurements as the accuracy of each

device will better determine parking locations.

The inputs for the Path-loss model are determined by collecting measurements of

received signal strength (RSSI) in dBm at different distances between a smart phone

and an iBeaconTM device. The measurements are collected at the WPI parking garage

below the rooftop field. A measurement tape was used to measure the parking stall in

order to get the exact dimension. One parking space is 9 ft. wide and 18 ft. long or 2.7 m

wide and 5.5 m long, then the Estimote application was used to obtain the RSSI reading

at a every parking space away from the iBeacons. In other words, a smart phone with

Estimote application is at the line of the first parking stall and that would indicate a

distance of zero meter between the smart phone and the iBeacon. The smart phone

and the iBeaconTM device was then moved one parking spot away from each other, then

the RSSI at the location is obtained. The process was repeated until the RSSI can no

longer be read. The collected data was used to develop a Path-loss model based upon

the Estimote application[17].

A statistical path loss model is characterized by Equation 7, which is the derived

received signal strength from the Friis Transmission Equation.

Pr = P0 −10αlog (d)+X (7)

where power received is in dBm. To convert between mW received and dBm, the

following Equation 8 was used.
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p [dBm] = 10log10
x

1mW
[mW ] (8)

In the equation, alpha (α) denotes the distance power gradient, distance (d) repre-

sents the actual distance between the bluetooth receiver and the iBeacon, and lastly σSF

is the standard deviation of the shadow fading. Using this path loss equation the team

will be able to calculate approximate distances using an alternative form in Equation 9.

d(Pr ) = 10
Pr −(P0+X )

10α (9)

7.2 Comparison between Cramér-Rao Lower Bound Simulations and

Implemented Algorithms

The key focus of the comparison between the accuracy of the implemented algorithms

is how close they compare to the probabilistic models created by the Cramér-Rao

Lower Bound simulations. This portion of the project is crucial in understanding how

effective the algorithms are, and having the ability to tweek them as necessary. The

first phase of this process was to develop the CRLB models based on various proposed

architectures. Then, the algorithms were developed and compared with results from

the CRLB simulations various times to attempt to improve their accuracy.

7.3 Magnetometer Magnetic Field Analysis

One of the architecture topologies involved with the project will consist of iBeaconTM

devices utilizing magnetometers to detect cars in parking spaces throughout a proposed

parking garage. With Estimote iBeacons in every spot in a proposed parking garage

open spots can be tracked through the use of the built in magnetometer which can

then feed data to a map on a smart phone application which can direct the driver to

any open spots. An example of this proposed architecture with Estimote iBeacons and

smart phone application can be seen in Figure 9 below.

In order to set up this system each iBeacon would have to be calibrated when placed

to have a baseline for the magnetic field. Determining the baseline is important because

any on site interference can interfere with the detection of cars.This system would work

by having magnetometer telemetry from the iBeacon sent to a server on site that would

then relay the information to a display on a customer’s smart phone.
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Figure 9: Example communication between Estimote Magnetometer and a smart phone appli-
cation [Estimote]

Figure 10 demonstrates a simple equation that will be tested in this section. On

the left side of the equation we see a ferrous metal and the earth’s magnetic field

uninterrupted. On the right side of the equation we see the ferrous metal introduced

into the field which causes disruptions in the earth’s magnetic field. In the situation

that will be tested the ferrous metal acts as the vehicle and the magnetometer from the

Estimote iBeaconTM device will measure the magnetic field which can be seen as the

red lines in Figure 10.

Figure 10: Ferrous Metal in a magnetic field

To collect data about magnetometers and how they interact with the goal of vehicle

detection, a test would needed to be setup involving a car and one of the built-in

Estimote iBeaconsTM device magnetometers. This test was done by first deploying and

setting an Estimote iBeaconTM devices and taking a baseline reading for the earth’s

magnetic field at that location. Figure 11 illustrates the setup can be seen below with

the vehicle and magnetometer.

With the above setup in place, a vehicle can be driven over the magnetometer while
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Figure 11

taking readings and the resulting data can give insight on how vehicles interact with the

earth’s magnetic field. For more data about different cars multiple test can be done with

vehicles of varying size such as buses, trucks and vans.

7.4 Application Development and Proposed Architecture

The overall architecture of the team’s project is incorporated into a cell phone applica-

tion. This app is responsible for collecting and displaying information to the user; it

calculates distances using the algorithms derived during the course of the project and

can accurately locate itself within a parking garage. Furthermore the app collects data

from the iBeacon transmissions which contains the magnetometer data.

After collecting and calculating data, the phone application transmits it’s data array

to a web server which can broadcast all data to phones even the ones out of range of

certain beacons. This comes into use when a particular phone is on one side of the

garage and therefore out of range of beacons on the opposing side. Using this network

of information the entire garage’s status can be transmitted to each phone. The web

server takes data from each phone and calculates various metrics that help to determine

the garage’s overall status.

The structure of the app is an MVVM (Model View View-Model) design pattern

where updates in the system thread will not block the UI (User Interface), this is done

because the cost of calculating the algorithms continuously strains the application’s

main thread. By using MVVM the application can accurately calculate and display data

simultaneously without obstructing the user’s available information. The RSSI from

the iBeacons is obtained in lower level Bluetooth frameworks that the phone provides

through an API. What is received by the application is a value in dBm which is passed to
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the path loss model equation that determines an approximate distance.

The application opens in scan mode, where it’s continuously scanning for BLE

(Bluetooth Low Energy) devices. Using a list of known devices, those that were installed

in the garage, it can rapidly filter and log the incoming RSSI values from the phone’s

API. While the application has three of many recently updated RSSI values it can run the

algorithm routine which determines the user’s location within the garage. The three-of-

many terminology here describes that the devices needs up to date information from at

least three of the many iBeacons that are installed in the garage. The phone applications

database contains values of RSSI values and time stamps to be able to identify and use

the most recent data.

Due to multipath fading, noise, and interference from other signals, wireless signals

can be corrupted or distorted, causing the RSSI values received by the smart phone to

“jump.” This jump is due to a single iBeacon packets being received at different times

and from different angles/locations. In order to deal with the fluctuations of power

strength levels an averaging algorithm is required to smooth the data and obtain a more

constant result.

Lastly is the collection of data from the iBeacons pertaining to telemetry. The team

is only using the magnetometer telemetry from the devices which is contained within

the ServiceData bytes of the advertising packet. This data is parsed using byte match-

ing where the packet is identified and split into sections based on the specifications

provided by Estimote for location data within the byte stream.
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8 RESULTS AND DISCUSSION

The following sections and subsections include the results and findings of the project.

Data results include path-loss modeling, Cramér-Rao Lower Bound, localization algo-

rithms and magnetometer findings. The path-loss model section determines a suitable

path-loss model for the projects selected testing environment. The following section

on Cramér-Rao Lower Bound includes the findings of how the localization algorithms

fared in terms of accuracy. The final section goes over how the magnetometer was used

for vehicle detection in a parking garage.

8.1 Path-Loss Models

The first step before creating a path loss model was determining an appropriate testing

environment. The team chose three parking environments to test for the determination

of path loss models. The Worcester Polytechnic Parking Garage and the Higgins House

parking lots were selected along with the library parking lot.The Higgins House and

Library lots depict outside parking environments as there are very few obstructions for

radio waves, meanwhile the parking garage represents an inside parking environment

Figure 12: Parking Garage and Higgins House Lot
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because there are concrete structures and other confounding variables that would affect

the propagation of radio waves. Figure 12 shows the parking garage and Higgins House

lots overlayed on Google Maps with approximated maximum measurement distances,

while Figure 13 shows the same for the library lot.

Figure 13: Library lot

The maximum distance measurements depicted by the red lines on each figure

represent the maximum distance measurements achievable from each lot. For the

Parking Garage the maximum distance is 183 meters, Higgins House Lot is 49 meters,

and lastly the Boyton Street Lot is 176 meters. These parking lots were chosen for their

space and difference in environments, the Parking Garage representing a congested

space with obstructions, the Boynton Lot as a moving environment, and the Higgins

House lot as a mostly static environment with very little car movement. The team

researched standards on parking spaces and regulations, it was determined that there is
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no specific standard on spacing for parking lots but states do release guidelines on how

far apart spacing should be for various vehicles. The state of Massachusetts parking

bylaws outline:

“For the purposes of this bylaw, minimum parking space width shall be measured

perpendicular to the center line of the parking space. For standard cars the minimum

parking space width shall be nine (9) feet.”

After measuring the WPI parking lots, all three were found to be within these specifi-

cations of a nine foot parking space, visualized in Figure 14. However not all parking

lots having a standard parking space which will make localization metrics a little bit

more difficult as there are no specific “bounds” that would determine if a vehicle was in

a spot or not. This might be an argument for further use of the magnetometer which

would distinguish the specific spots that were open. Using this info the team could take

both approximate locations provided by the application and exact measures calculated

by counting the spaces.

Figure 14: Standard parking space size, of eighteen feet by nine feet

Using the collected and calculated data the team came to a few conclusions about

iBeaconTM accuracy as well as the applied path loss models from the generic Beacon

Scanning and Estimote applications. The data was compared to actual distance vs

application calculated difference which resulted in a perfect difference calculation. In

general the virtual iBeacon broadcaster was more accurate with a percent difference of

28.71% for the garage and 24.25% difference for the outside parking lot. The Estimote

iBeacon crystal had difference percentages of 33.28% and 27.01% for the garage and

outside lots respectively. Based on the calculated power gradients the group came to the

conclusion that the Beacon Scanning app was using a distance power gradient between

2 and 3 for its path loss model. The alphas calculated were 2.45, 2.77, 2.68, and 2.65
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with an average alpha of 2.63. While the IEEE802.11 specification calls for an alpha of

2, the results collected could be the result of constant moving interference as well as a

custom power gradient using in the library of the Beacon Scanning application which is

developed by a third party team.

Comparing the outside lot and inside garage environments it is apparent that the

garage introduces more multipath obscurities and has a direct effect on the accuracy of

determining distance. The WPI parking garage has bellow like structures on the ceiling,

including concrete poles and tight rows between parking rows. This garage is a good

example of a challenging environment in which to determine distances based on RSS

values. The Estimote iBeacon crystal had a different of 6.26% in percent error between

the garage and lot while the virtual iBeacon had a difference of 4.46%. This shows that

there’s a consistent difference in accuracy between the two environments.

The first meter path loss was calculated using Estimote’s specifications for transmit-

ter gain, and the distance power gradient from the collected data can be averaged to

around 2.5 (rounding down from 2.68 of the actual mean calculated). The various mea-

surements between the different testing environments and beacons can be seen both

tabulated and graphically in Tables 2-5, as well as in Figures 15-18. The tables include

the RSSI values and distances used to determine the value of alpha and shadow fading,

as well as the percent difference in the distance calculation. The graphs accompanying

each table is a visualization of the path loss model for each case, relating the RSSI to the

distance, in log-log scale.
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Parking Garage
Estimote iBeacon Crystal

RSS
(dBm)

Measured
Distance

(m)

Calculated
Distance

(m)

Actual
Distance

(ft)

Percent
Difference

(%)
-62 0.6 0.91 3 -34.40
-70 2.5 1.83 6 36.67
-73 3.69 2.74 9 34.48
-90 7.41 5.49 18 35.03
-84 10.05 8.23 27 22.09
-94 14.23 16.46 54 -13.02

-101 18.7 19.21 63 -2.64
alpha = 2.45

Standard Deviation of Shadow Fading = 7.33

Table 2: Path loss measurement table for the Estimote Beacon in a parking garage environment.

Figure 15: Path Loss Model for the Estimote Beacon in a parking garage environment.
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Parking Garage
Estimote Virtual Beacon

RSS
(dBm)

Measured
Distance

(m)

Calculated
Distance

(m)

Actual
Distance

(ft)

Percent
Difference

(%)
-61 0.8 0.91 3 -12.5
-65 2.85 2.74 9 3.87
-68 5.1 5.49 18 -7.07
-93 15 8.23 27 82.22
-98 17.64 16.46 45 7.15

-101 23.71 19.21 63 23.44
alpha = 2.77

Standard Deviation of Shadow Fading = 7.39

Table 3: Path loss measurement table for the Estimote Virtual Beacon in a parking garage
environment.

Figure 16: Path Loss Model for the Estimote Virtual Beacon in a parking garage environment.
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Parking Garage
Estimote Virtual Beacon

RSS
(dBm)

Measured
Distance

(m)

Calculated
Distance

(m)

Actual
Distance

(ft)

Percent
Difference

(%)
-65 1.25 0.91 3 36.67
-79 4.6 2.74 9 67.64
-81 6.11 5.49 18 11.34
-87 9.13 8.23 27 10.91
-92 16.68 16.46 45 1.32
-98 25.77 19.21 63 34.17

alpha = 2.77
Standard Deviation of Shadow Fading = 7.39

Table 4: Path loss measurement table for the Estimote Beacon in an open parking lot environ-
ment.

Figure 17: Path Loss Model for the Estimote Beacon in an open parking lot environment.
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Parking Garage
Estimote Virtual Beacon

RSS
(dBm)

Measured
Distance

(m)

Calculated
Distance

(m)

Actual
Distance

(ft)

Percent
Difference

(%)
-63 0.85 0.91 3 -7.07
-69 3.09 2.74 9 16.61
-83 5.99 5.49 18 9.15
-93 15.44 8.23 27 87.57
-97 19.3 16.46 45 17.23
-99 24.2 19.21 63 25.99

alpha = 2.77
Standard Deviation of Shadow Fading = 7.39

Table 5: Path Loss Model for the Estimote Virtual Beacon in an open parking lot environment.

Figure 18: Path Loss Model for the Estimote Virtual Beacon in an open parking lot environment.
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8.2 Cramér-Rao Lower Bound Approximations and Algorithm Imple-

mentations

8.2.1 Cramér-Rao Lower Bound Simulations

As briefly discussed previously, a crucial tool in comparing the accuracy of the local-

ization algorithms was through comparing the ranges of accuracy with the contour

of location error standard deviation created by a mathematical approximation called

Cramér-Rao Lower Bound (CRLB). This approximation allows for a contour mapping

of location error based on a set of predetermined access points. The purpose of these

models was to determine the most effective locations for the iBeacon crystals, such that

not only the entire space was mapped by the beacons, but that the localization accuracy

had a low error rate.

The primary purpose of CRLB is determining the lowest value of variance of an

estimator. This ranging approximation can be calculated using the inverse Fisher

Information Matrix. The first step of this calculation is to recall the path-loss model

equation:

Obs = Pr = P0 −10αlog (d)+X (10)

Where “Obs” is the observed received signal strength reading for a single beacon, and

equals the received power, Pr. The probability distribution of the observation Obs was

taken given some distance d, resulting in:

f (Obs|d) = (
1p

2πσ
)e

(Pr −P0+10αl og (d))2

2σ2 (11)

The probability distribution function of the observation point was used to find to find

the Fisher matrix, which is shown in Equation 12.

−E

[
δ2ln( f (Obs|d))

δd 2

]
= E

[
δl n( f (Obs|d))

δd

]2

=
[

10α

l n(10)σd

]2

(12)

As mentioned previously, CRLB is equivalent to the inverse of the Fisher equation,

and is also equivalent to the variance estimation, 2. This is shown in Equation 13.
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C RLB =
[

ln(10)σd

10α

]2

=σ2 (13)

The use of CRLB can be applied to localization in a two-dimensional space, based

on the location of the reference points (xi , yi ) and the access points (x,y). These points

are used to estimate location based on the received power, dP, as seen in Equation 14.

dPi =− 10αi

l n(10)α
(

x −xi

r 2
i

d x + y − yi

r 2
i

d y) · · · i = 1,2..., N (14)

The covariance of the location estimate was used due to the shadow fading being a

zero Gaussian random variable as shown in Equation 15.

cov(dPi ,dP j ) =
{
σ2, i = j

0, i 6= j
· · · i , j = 1,2..., N (15)

Which yields:

σr =
√
σ2

x +σ2
y (16)

Utilizing these mathematics, a MATLAB script was created to draw a heat-map of

the distance error approximations. The MATLAB code for these scripts can be found

in Appendix B. These models were created using a thirty meter by thirty meter parking

lot design, where the test dimensions were selected to incorporate a total of twenty

parking spaces, each eighteen feet by nine feet, as well as a strip of road for traffic to

drive down in between the two sets of spaces. The models also used a shadow fading

value of three, as that value corresponds to the shadow fading value calculated from the

original path loss models. The first simulation was creating with the beacons placed

directly in the center of each parking space, creating a network of twenty access points.

The heat-map of this architecture can be seen below in Figure 19, with the highest

accuracy of half a meter occurring close to the access points, and the lowest accuracy of

3 meters occurring in the driving lane.
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Figure 19: CRLB heat-map for every space architecture. In this configuration, a beacon is placed
in the center of each parking space. Note that the scale of accuracy ranges from 0.5 meters to 3
meters, with a majority of the error in the 1-2.5 meter error range.
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Another possible beacon architecture was explored to examine the effect of using

fewer beacons in an attempt to reduce potential purchasing costs. This implementation,

shown in Figure 20, deploys a beacon in every other space. When compared to the first

implementation shown in Figure 19, it is evident that this deployment suffers a severe

drop in accuracy, with the a majority of the accuracy occurring in the range of 2-3.5

meters, even approaching closer to the beacons. This accuracy is unacceptable, as the

previous implementation had a maximum error of 3 meters, which only occurred at

the extremities of the layout: between the beacons (due to the pseudo-omnidirectional

nature of the antenna on the iBeaconTM devices, the beacons only transmit in hemi-

spheres, and do not transmit parallel to the other beacons).

Figure 20: CRLB heat-map for every other space architecture. In this configuration, a beacon is
placed in the center of every other parking space. Note that the scale of accuracy ranges from
0.5 meters to 5 meters, with a majority of the error in the 2-3.5 meter error range.
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The final beacon configuration examined was an implementation that took into

account the use of the iBeaconTM devices as magnetometers as well. In the configu-

ration shown in Figure 21, the devices were placed at the back of every spot, as that

location is ideal for the magnetometer to sense if a vehicle is present, as discussed in

the Magnetometer Results and Discussion section. Similar to the first configuration in

Figure 19, the accuracy of this model ranges from 0.5 meters to 3 meters, and is primarily

in the range of 1-2.5 meters, which is acceptable for this application, as a vehicle is

typically at least 2 meters long and wide.

Figure 21: CRLB heat-map for every other space, at the back of each space architecture. In this
configuration, a beacon is placed at the back of every parking space, on the wall in front of the
space. Note that the scale of accuracy ranges from 0.5 meters to 3 meters, with a majority of the
error in the 1-2.5 meter error range.
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8.2.2 Localization Algorithms Implementations

The two algorithms that have been implemented as of thus far are least means squared

and maximum likelihood. During B term, the team was provided with basic implemen-

tations of both algorithms in MATLAB code. The bulk of implementation was spent

re-coding and analyzing the algorithms into something that could be functional on a

mobile device. Appendix C demonstrates the Least Means Squared algorithm and the

maximum Likelihood algorithm. Both implementations have worked successfully using

randomized values provided to it; below is a set of test cases based on problem 15.2 from

Professor Kaveh Pahlavan’s book Principles of Wireless Access and Localization. The

test case parameters are listed in the tables below, while the solution from the groups

implementation of Maximum Likelihood is listed below each table.

Access Point
Coordinates

(m)

Access Point Distance
to Reference

(m)
(0,0) 15

(0,15) 16
(-5,5) 5

Table 6: Localization Test Case 1

Figure 22: Localization Test Case 1 Results
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Access Point
Coordinates

(m)

Access Point Distance
to Reference

(m)
(0,0) 21.21

(0,15) 15
(15,0) 15

Table 7: Localization Test Case 2

Figure 23: Localization Test Case 2 Results
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Access Point
Coordinates

(m)

Access Point Distance
to Reference

(m)
(0,0) 30

(0,15) 90
(-5,5) 5

Table 8: Localization Test Case 3

Figure 24: Localization Test Case 3 Results

Doing localization in real-time can be inaccurate due to the sporadic signal strength

values (RSSI) received from the iBeacon devices. RSSI values can range because of multi

path fading and the general radiation of RF signals, and thus must be “smoothed” to be

used for accurate calculations. The team came up with an averaging slide algorithm that

would help keep consistent RSSI values for the use of calculating distance from path

loss. The most recent 10 values of RSSI are kept in an array; when a new value is received

all previous values are shifted right by one place and the oldest value is dropped. The

newest value is placed at the front of the array and the average of the 10 values it taken

and provided to the path loss model for further calculation.
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Putting the two pieces together achieved an accurate and fast result. Doing time

lapse testing on the algorithm, averaging, and scanning resulted in the following table

of benchmarks. Table 9 demonstrates that calculating the algorithm in real-time on a

user’s device is both possible and fast. It displays concurrent iterations of simultaneous

localization calculations, and the timer per iteration until complete.

Concurrent Iterations
Time per Iteration

(ms)
1 10

10 13
100 38

1000 67

Table 9: Concurrent iterations of simultaneous localization calculations, and the timer per
iteration until complete.

8.2.3 Comparison between Algorithms and CRLB simulations

The team decided to do data collection with two different iBeacon devices from two

different manufacturers. Using two different beacons would give a larger dataset based

on variables that were not considered during the project such as antenna radiation

pattern, spread, and actual vs claim device transmit power. The first type of beacon used

was Estimote’s which had configurable transmit settings. The packets from the Estimote

beacons were set to transmit packets at a 100ms interval and at a power level of 4dBm

( 2.5mW). The second contender was Varatio’s beacon which likewise had configurable

settings and transmit intervals. The settings for this test were set to 100ms transmit

time with an 8 dBm ( 6.2mW) transmit power. The different power level would help

to determine if the transmitted power had an effect on the accuracy of the algorithms.

Below are two figures from the test compared to the respective beacon’s CRLB data.

Figure 25 is Estimote’s location beacon, while Figure 26 was Varatio’s beacon. Both tests

evaluated the Maximum likelihood and Least Means Squares algorithms with the sliding

averaging smoothing technique.
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Figure 25: Comparison between the CRLB, ML, and LMS for Estimote beacon. Note that the ML
more accurately maps to the CRLB simulation than the LMS.

To support the data collection a root mean square deviation was built to compare

the variance between the algorithms and performance over different sample spaces of

iterations. Figure 27 shows the Estimote location beacon’s RMSE sample points vs error.
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Figure 26: Comparison between the CRLB, ML, and LMS for Varatio beacon. Note that the
accuracy of the exact same algorithms was higher on the higher quality beacons.
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Figure 27: Estimote beacon RSME sample points vs. error.

8.3 Magnetometer Readings and Observations

The goal of implementing a magnetometer in the project was to be able to use it for

vehicle detection. Vehicle detection was accomplished through the built in magnetome-

ter of the estimote iBeacon. The built in magnetometer can take readings of the earth’s

magnetic field at a deployed location after determining a baseline for the set location.

Once a baseline for the earth’s magnetic field at a set location is determined the data

collection can begin. Collecting data involves driving a car in the range of the sensor

and collecting readings on the X,Y, and Z axis. The magnetic disturbances caused by the

vehicle can be used to classify different types of vehicles like cars, trucks, vans, buses

and more.

Testing for the project began with an average 4 door sedan in an area with a deter-

mined baseline for the earth’s magnetic field being around -7.5µT (micro-teslas). With

the car the driving past the sensor a dip can be seen down to -30µT with the reading

returning back to the baseline after the car has past. From this data it can be extrapo-

lated that a change of more than 20µT can signal that a car has entered the range of the

magnetometer. For larger vehicles such as trucks, buses and vans a larger change can
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be expected in the earth’s magnetic field because of the larger amount of ferrous metal.

The graph seen below demonstrates the collection of data from the magnetometer.

The graph below in Figure 28 only shows one instant of testing with a single vehicle

to further explore how vehicles interact with the earth’s magnetic field more types of

vehicles can be tested such as vans, trucks and buses. These different vehicles would all

have different magnetic signatures and distort the magnetic field differently leading to

a different graph for every type of different vehicle.

Figure 28: Magnetometer magnet field detection. The large increase in magnetic field is caused
by approaching a large metallic object, such as a vehicle.

Figure 29 demonstrates the testing done with the addition of tracking the vehicle’s

direction and how that affects the magnetic field. It demonstrates that when reversing

the direction the car moves past the sensor it also reverses the magnetic field in the

chart. This can be helpful in identifying cars by their magnetic signature.

To conclude, testing for magnetometers found that fluctuations more than 20µT in

the earth’s magnetic field signaled that a car had entered the range of the magnetometer.

To further test and validate this data more testing will need to be done with a wide

variety of vehicles including but not limited to buses, trucks, vans and electric cars such

as Tesla’s.
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Figure 29: Observing magnetic fields in opposite directions.
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9 PROPOSED ARCHITECTURE

The project architecture will consist of three separate topologies that will supplement

each other in order to achieve the project objectives. Trilateration is the first architecture

that will be implemented and mainly deals with the ticketing portion of the project; The

second topology is made up of magnetometer capable iBeaconTM devices which will

handle the function of determining open spaces. Lastly a phone application will be the

result of the end user experience and will tie together the information collected from

trilateration and the magnetometer sensors. Users will have a phone application that

receives data from the iBeaconTM devices and will transmit the data to a web application

where it will track the user as it enters and exits the parking area as well as the open

spots. When a user of the application is looking for a spot, the magnetometer sensor

system will be able to determine the spots already taken and relay that information back

to the user.

The complete system architecture will consist of the following:

1. End user phone application that collects/displays information and broadcasts

collected data to a web server

2. Magnetometers in parking spots

3. Processing Server that collects the information and hosts Web Application
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10 CONCLUSION AND FUTURE RECOMMENDATIONS

The goal of this project was to create a system that could not only detect cars in parking

spots but also direct a user via a smart phone application to any open spots in a crowded

parking garage. The overarching architecture of this project was divided into several

interconnected, interwoven sections, each of which were dependent on the previous

section. The first section focused on analyzing the wireless capabilities of the Estimote

iBeaconTM devices by creating various path-loss models for two different testing envi-

ronments, an open parking lot and a roofed parking garage. The results were compared

with ideal path-loss models created by the use of a virtual beacon from the Estimote

smart phone application. The second section was creating a layout for the iBeaconTM

devices to not only cover the entire test space, but to receive an an acceptable accuracy

of approximately a meter. Several different layouts were examined using the Cramér-

Rao Lower Bound, which generated heat maps to distinguish which regions had the

highest ideal accuracy, as well as a value of that accuracy. Once a configuration had

been agreed on, the implementation and testing of the localization algorithms began,

resulting in the implementation of the Least Mean Squared and Maximum Likelihood

algorithms. These algorithms were then compared with the ideal cases presented by the

Cramér-Rao Lower Bound simulations, and adjusted based on their precision. The final

crucial component of this project was the addition of a method to detect the vacancy

of each parking space through the use of an on-board magnetometer in each Estimote

iBeaconTM device. Overall, this project was a successful proof of concept for the applica-

tion of parking space monitoring, as the algorithms performed as expected, and where

relatively accurate when compared with the Cramér-Rao Lower Bound simulations.

To further this project in the future more steps could be taken with the research of

magnetometers and application development. For example, more vehicles of a wider

variety could be tested to see the effect different vehicle types has on the magnetic

field. An interesting investigation would be to explore the variation between a small

motorcycle compared to a large SUV, and determine a proper magnetometer threshold

based on the received readings. In terms of the application development, a full fledged

application could be developed with an intuitive user interface to streamline the pro-

cess of finding open spots in a parking garage, including the construction of a basic

navigation feature to direct a user how to reach a parking space. Unfortunately, this

high level of an application may be outside of the scope of this project, as well as outside
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the possibilities of the Estimote iBeaconTM devices. One final steps could also include

measuring the radiation patterns from the antennas to understand what orientation

best fits these beacons.

A key point of advice for any project groups that may follow this group is to invest is

higher quality devices that the Estimote iBeaconTM devices. The team initially struggled

with the Estimote devices, as their low cost is a byproduct of their low accuracy and

overall usefulness. A major part of localization using iBeacon devices is selecting the

right hardware. Also, iBeacon devices with a stronger transmit power level perform

consistently better and likewise with transmit interval where a faster transmit interval

far out-performed the slower intervals.

Additional MQP References can be found in: [18][19]
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APPENDIX A: MATLAB CODE FOR PATH-LOSS MODELING

clc;clear all;close all;

d=[0.85;3.09;5.99;15.44;19.3;24.2];

Pr=[ -63; -69; -83; -93; -97; -99];

d_dB =10* log10(d);

F1=fit(d_dB ,Pr,'poly1');

plot(F1, d,Pr , 'x' );

grid on

xlabel('Distance (m)');

ylabel('Received Signal Strength[dBm]');

disp(F1);

disp('Mean value of shadow fading is:');

disp(mean(Pr +20+2* d_dB));

disp('Standard Deviation of shadow fading is:');

disp(std(Pr +40+2* d_dB));
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APPENDIX B: MATLAB CODE FOR CRAMé R-RAO LOWER BOUND

SIMULATIONS

MATLAB CODE FOR CRLB SIMULATIONS WITH BEACON IN EVERY

SPACE

clc; clear all; close all;

APx (1) = 1.5; APy(1) = 12.25; APx(2) = 4.5; APy (2) =

12.25; APx(3) = 7.5; APy(3) = 12.25;

APx (4) = 10.5; APy(4) = 12.25; APx(5) = 13.5; APy(5) =

12.25;

APx (6) = -1.5; APy(6) = 12.25; APx(7) = -4.5; APy(7) =

12.25; APx(8) = -7.5; APy(8) = 12.25;

APx (9) = -10.5; APy (9) = 12.25; APx (10) = -13.5; APy (10)

= 12.25;

APx (11) = 1.5; APy (11) = -12.25; APx (12) = 4.5; APy (12) =

-12.25; APx (13) = 7.5; APy (13) = -12.25;

APx (14) = 10.5; APy (14) = -12.25; APx (15) = 13.5; APy (15)

= -12.25;

APx (16) = -1.5; APy (16) = -12.25; APx (17) = -4.5; APy (17)

= -12.25; APx (18) = -7.5; APy (18) = -12.25;

APx (19) = -10.5; APy (19) = -12.25; APx (20) = -13.5; APy

(20) = -12.25;

SD = 3;

NUM = 20;

mx = -15:0.1:15;

my = -15:0.1:15;

nxy = length(mx);

for yi = 1:nxy

for xi = 1:nxy

for i1 = 1:NUM

alpha(i1) = 2.5;

r(i1,xi,yi) = sqrt((mx(xi)-APx(i1))^2+(my(yi)- APy(i1))
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^2);

H1(i1,xi ,yi) = -10*alpha(i1)/(log (10))*(mx(xi)- APx(i1))/

r(i1,xi,yi)^2;

H2(i1,xi ,yi) = -10*alpha(i1)/(log (10))*(my(yi)- APy(i1))/

r(i1,xi,yi)^2;

end

H(:,:,xi,yi) = [H1(:,xi ,yi) H2(:,xi,yi)];

Covv(:,:,xi ,yi) = SD ^2*((H(:,:,xi,yi)'*H(:,:,xi ,yi))^(-1)

);

SDr(xi,yi) = sqrt(Covv(1,1,xi,yi)+Covv(2,2,xi ,yi));

end

end

SDr = SDr ';

contourf(mx,my,SDr ,20);

colormap(hot);

colorbar;

xlabel('X-axis(meter)');

ylabel('Y-axis(meter)');

title('Contour of Location Error Standard Deviation (

meter)');
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MATLAB CODE FOR CRLB SIMULATIONS WITH BEACON IN EVERY

OTHER SPACE

clc; clear all; close all;

APx (1) = 1.5; APy(1) = 12.25; APx(2) = 7.5; APy (2) =

12.25;

APx (3) = 13.5; APy(3) = 12.25; APx(4) = -4.5; APy(4) =

12.25;

APx (5) = -10.5; APy (5) = 12.25; APx(6) = 1.5; APy(6) =

-12.25;

APx (7) = 7.5; APy(7) = -12.25; APx(8) = 13.5; APy(8) =

-12.25;

APx (9) = -4.5; APy(9) = -12.25; APx (10) = -10.5; APy (10)

= -12.25;

SD = 3;

NUM = 10;

mx = -15:0.1:15;

my = -15:0.1:15;

nxy = length(mx);

for yi = 1:nxy

for xi = 1:nxy

for i1 = 1:NUM

alpha(i1) = 2.5;

r(i1,xi,yi) = sqrt((mx(xi)-APx(i1))^2+(my(yi)- APy(i1))

^2);

H1(i1,xi ,yi) = -10*alpha(i1)/(log (10))*(mx(xi)- APx(i1))/

r(i1,xi,yi)^2;

H2(i1,xi ,yi) = -10*alpha(i1)/(log (10))*(my(yi)- APy(i1))/

r(i1,xi,yi)^2;

end

H(:,:,xi,yi) = [H1(:,xi ,yi) H2(:,xi,yi)];

Covv(:,:,xi ,yi) = SD ^2*((H(:,:,xi,yi)'*H(:,:,xi ,yi))^(-1)

);

SDr(xi,yi) = sqrt(Covv(1,1,xi,yi)+Covv(2,2,xi ,yi));
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end

end

SDr = SDr ';

contourf(mx,my,SDr ,20);

colormap(hot);

colorbar;

xlabel('X-axis(meter)');

ylabel('Y-axis(meter)');

title('Contour of Location Error Standard Deviation (

meter)');
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MATLAB CODE FOR CRLB SIMULATIONS WITH BEACON AT BACK OF

EVERY SPACE

clc; clear all; close all;

APx (1) = 1.5; APy(1) = 14.5; APx(2) = 4.5; APy (2) = 14.5;

APx (3) = 7.5; APy(3) = 14.5;

APx (4) = 10.5; APy(4) = 14.5; APx(5) = 13.5; APy(5) =

14.5;

APx (6) = - 1.5; APy(6) = 14.5; APx (7) = - 4.5; APy(7) =

14.5; APx (8) = - 7.5; APy(8) = 14.5;

APx (9) = - 10.5; APy(9) = 14.5; APx (10) = - 13.5; APy (10)

= 14.5;

APx (11) = 1.5; APy (11) = - 14.5; APx (12) = 4.5; APy (12) =

- 14.5; APx (13) = 7.5; APy (13) = - 14.5;

APx (14) = 10.5; APy (14) = - 14.5; APx (15) = 13.5; APy (15)

= - 14.5;

APx (16) = - 1.5; APy (16) = - 14.5; APx (17) = - 4.5; APy

(17) = - 14.5; APx (18) = - 7.5; APy (18) = - 14.5;

APx (19) = - 10.5; APy (19) = - 14.5; APx (20) = - 13.5; APy

(20) = - 14.5;

SD = 3;

NUM = 20;

mx = - 15:0.1:15;

my = - 15:0.1:15;

nxy = length(mx);

for yi = 1:nxy

for xi = 1:nxy

for i1 = 1:NUM

alpha(i1) = 2.5;

r(i1, xi, yi) = sqrt((mx(xi) - APx(i1)) ^ 2 +

(my(yi) - APy(i1)) ^ 2);

H1(i1, xi, yi) = - 10 * alpha(i1) / (log (10))

* (mx(xi) - APx(i1)) / r(i1 , xi, yi) ^ 2;

H2(i1, xi, yi) = - 10 * alpha(i1) / (log (10))
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* (my(yi) - APy(i1)) / r(i1 , xi, yi) ^ 2;

end

H(:, :, xi , yi) = [H1(:, xi, yi) H2(:, xi , yi)];

Covv(:, :, xi, yi) = SD ^ 2 * ((H(:, :, xi , yi) '*

H(:,:,xi,yi))^(-1));

SDr(xi, yi) = sqrt(Covv(1, 1, xi, yi) + Covv(2,

2, xi , yi));

end

end

SDr = SDr ';

contourf(mx, my, SDr , 20);

colormap(hot);

colorbar;

xlabel('X-axis(meter)');

ylabel('Y-axis(meter)');

title('Contour of Location Error Standard Deviation (

meter)');
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APPENDIX C: MATLAB CODE FOR LOCALIZATION ALGORITHMS

clc;clear all;close all;

CertainRange =0.2;

sigma =8;dbp=5;

Pt=13;

fc=2.4e9;

c=3e8;

L0=-20* log10(c/4/pi/fc);

known_references = [10 ,10;0 ,15; -5 ,5];

distances = [15 ,16 ,5];

FadeMargin=sigma*sqrt (2)*erfcinv (1+ CertainRange);

Lp=L0+20* log10(dbp)+35* log10(distances ./dbp);

Bound=[dbp .*10.^(( Lp+FadeMargin -L0 -20* log10(dbp))./35);

dbp *10.^((Lp -FadeMargin -L0 -20* log10(dbp))./35) ];

pace =1;

x=-100: pace :100;y= -100: pace :100;

l1=length(x);

k=0;

for i=1:l1

for j=1:l1

circle1 = (x(i)-known_references (1,1))^2+(y(j)-

known_references (1,2))^2 >= (Bound (1,1))^2;

circle2 = (x(i)-known_references (1,1))^2+(y(j)-

known_references (1,2))^2 <= (Bound (2,1))^2;

circle3 = (x(i)-known_references (2,1))^2+(y(j)-

known_references (2,2))^2 >= (Bound (1,2))^2;

circle4 = (x(i)-known_references (2,1))^2+(y(j)-

known_references (2,2))^2 <= (Bound (2,2))^2;

circle5 = (x(i)-known_references (3,1))^2+(y(j)-

known_references (3,2))^2 >= (Bound (1,3))^2;

circle6 = (x(i)-known_references (3,1))^2+(y(j)-

known_references (3,2))^2 <= (Bound (2,3))^2;

if circle1 && circle2 && circle3 && circle4 &&

55



iBeacon Localization Application for Garages and Parking Lots

circle5 && circle6

k=k+1;

sol(k,1)=x(i);

sol(k,2)=y(j);

end

end

end

figure (1)

angle =0:0.5:360;

hold on

plot(Bound (1,1).*cosd(angle)+known_references (1,1),Bound

(1,1).*sind(angle)+known_references (1,2),'r.')

plot(Bound (2,1).*cosd(angle)+known_references (1,1),Bound

(2,1).*sind(angle)+known_references (1,2),'r.')

plot(Bound (1,2).*cosd(angle)+known_references (2,1),Bound

(1,2).*sind(angle)+known_references (2,2),'b.')

plot(Bound (2,2).*cosd(angle)+known_references (2,1),Bound

(2,2).*sind(angle)+known_references (2,2),'b.')

plot(Bound (1,3).*cosd(angle)+known_references (3,1),Bound

(1,3).*sind(angle)+known_references (3,2),'g.')

plot(Bound (2,3).*cosd(angle)+known_references (3,1),Bound

(2,3).*sind(angle)+known_references (3,2),'g.')

for i=1:k

plot(sol(i,1),sol(i,2),'k.');

end

ex=mean(sol(:,1));ey=mean(sol(:,2));

plot(ex,ey ,'m.','MarkerSize ' ,30);

hold off

disp(['The estimated location is: ','[',num2str(ex),',',

num2str(ey),']']);
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APPENDIX D: C# CODE FOR LOCALIZATION ALGORITHMS

public s t a t i c void maxLH( L i s t < Beacon > beacons , double c e r t a i n t y ) {

L i s t < double [ ] > bounds = new L i s t < double [ ] > ( ) ;

// L i s t of array s i z e 2 for bounds calculat ion

L i s t < double > Lp = new L i s t < double > ( ) ;

//Lp for each distance bounds

L i s t < i n t > x_sol = new L i s t < i n t > ( ) ;

L i s t < i n t > y_sol = new L i s t < i n t > ( ) ;

double solution_x = 0 , solution_y = 0 ;

var x = Enumerable . Range(−100 , 200) . ToList ( ) ;

var y = Enumerable . Range(−100 , 200) . ToList ( ) ;

var CertainRange = c e r t a i n t y ; // Certainty Range

//Use 802.11 channel model C to find bound for c e r t a i n t y range

i n t sigma = 8 ; //Shadow Fading

double dbp = 5 ; / / ? ?

i n t Pt = 13; // Transmit Power

double fc = 2.4 e9 ; //Frequency

double c = 3e8 ; //Speed of Light

var L0 = −20 * Math . Log10 ( c / 4 / Math . PI / fc ) ;

double FadeMargin = sigma * Math . Sqrt ( 2 ) * SpecialFunctions . ErfcInv (1 + CertainRange ) ;

foreach ( var b in beacons ) {

i n t i = 0 ;

Lp . Add( L0 + 20 * Math . Log10 (dbp) + 35 * Math . Log10 (b . Distance / dbp ) ) ;

i ++;
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}

i n t t = 0 ;

foreach ( var l in Lp) {

double [ ] temp = new double [ ] {

dbp * Math .Pow(10 , ( ( Lp[ t ] + FadeMargin − L0 − 20 * Math . Log10 (dbp ) ) / 3 5 ) ) ,

dbp * Math .Pow(10 , ( ( Lp[ t ] − FadeMargin − L0 − 20 * Math . Log10 (dbp ) ) / 35))

} ;

bounds . Add(temp ) ;

t ++;

}

i n t k = 0 ;

for ( i n t i = 0 ; i < x . Count ( ) ; i ++) {

for ( i n t j = 0 ; j < y . Count ( ) ; j ++) {

bool c i r 1 = TestRange ( ( Math .Pow( x [ i ] − beacons [ 0 ] . Location [ 0 ] , 2) + System . Math .Pow( y [ j ] − beacons [ 0 ] . Location [ 1 ] , 2 ) ) , System . Math .Pow( bounds [ 0 ] [ 0 ] , 2 ) , System . Math .Pow( bounds [ 0 ] [ 1 ] , 2 ) ) ;

bool c i r 2 = TestRange ( ( Math .Pow( x [ i ] − beacons [ 1 ] . Location [ 0 ] , 2) + System . Math .Pow( y [ j ] − beacons [ 1 ] . Location [ 1 ] , 2 ) ) , System . Math .Pow( bounds [ 1 ] [ 0 ] , 2 ) , System . Math .Pow( bounds [ 1 ] [ 1 ] , 2 ) ) ;

bool c i r 3 = TestRange ( ( Math .Pow( x [ i ] − beacons [ 2 ] . Location [ 0 ] , 2) + System . Math .Pow( y [ j ] − beacons [ 2 ] . Location [ 1 ] , 2 ) ) , System . Math .Pow( bounds [ 2 ] [ 0 ] , 2 ) , System . Math .Pow( bounds [ 2 ] [ 1 ] , 2 ) ) ;

i f ( c i r 1 && c i r 2 && c i r 3 ) {

k = k + 1 ;

x_sol . Add( x [ i ] ) ;

y_sol . Add( y [ j ] ) ;

}

}

}

t r y {

solution_x = x_sol . Average ( ) ;

solution_y = y_sol . Average ( ) ;

} catch {

58



iBeacon Localization Application for Garages and Parking Lots

Console . WriteLine ( " \n ERROR NO CONVERGENCE" ) ;

}

}

public s t a t i c bool TestRange ( double numberToCheck , double bottom , double top ) {

return (numberToCheck >= bottom && numberToCheck <= top ) ;

}
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