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Laparoscopic Surgeries

• Surgeries through small 
incisions using 
laparoscope/endoscope to 
view on monitor

• Have two surgeons –
operating and assisting

• Assisting surgeon 
operates the camera
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Schematic showing how laparoscopic surgeries are 

performed. 

Source: [https://medium.com/@rahulsinghh/how-is-

laparoscopic-surgery-done-90967cfe2b32]
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Robotic Surgeries
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Laparoscopic surgeries performed using the daVinci surgical system.

Source: [Intuitive Surgical, Inc.]

• Surgeons 
teleoperate on the 
patient

• Uses master-slave 
system of robots

• Better ergonomics 
for surgeons, wristed 
instruments, smaller 
incisions

• Camera controlled by 
operating surgeon
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Goals

• Detect intent of the operating surgeon by 
classifying task into subtasks.

• Learn optimal camera viewpoints based on this 
intent for a pick and place task.
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CONTRIBUTIONS

• Developed a 3D simulated virtual reality environment to pick and 
place a ring on a peg.

• Interfaced the Oculus Rift CV1 with the simulated environment to 
give an immersive experience.

• Performed a user study to collect an open source dataset recording 
desired camera movements (using Oculus Rift) with the 
movements of the master tool manipulator.

• Developing machine learning models for classifying subtask of the 
task to know the intent of the user.

• Using inverse reinforcement learning to learn a desired behavior to 
automate endoscope based on the demonstrations obtained from 
the user study.

• Validating the learned behaviors by comparing the obtained 
automated camera trajectory with a human trajectory from the 
user study.
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Related Work
- Automation for surgical robots

- Control of endoscopic camera

- Inverse Reinforcement Learning (IRL)
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Automation for surgical robots
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Smart Tissue Autonomous Robot(STAR) [1],[2] Learning by observation for surgical subtasks [3], [4]

• Supervised autonomous 
suturing algorithm

• Has near-infrared 
fluorescent (NIRF) imaging 
system

• Uses deep reinforcement learning to 
learn instrument positions for 
desired tensions
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Control of endoscopic camera

• Most common methods of camera automation 
include instrument tracking in the video feed [5], 
[6], [7]

• In [8], [9], authors use the information of entry 
ports and shapes to detect instrument and track 
them

• Camera moves according to "rules" by keeping 
the centroid of the instruments as its viewpoints 
[10], [11]. This work was performed using the 
daVinci Research Kit
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Control of endoscopic camera

• Eye gaze tracking was used to infer surgeon's attention and 
used to move the camera view point to where the surgeon is 
gazing [12] for the AESOP endoscope system which can also be 
controlled using joysticks or voice commands [13].

• [14] describes a novel bending endoscope that takes the state 
of surgery, tools being used into account and decides whether 
to follow tools or stay still.

• For camera to be truly intelligent, it needs to be combination of 
proactive and reactive elements and needs to know the intent 
of the surgeon and react differently according to each intent 
[15].
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Inverse Reinforcement Learning 
(IRL)

• Introduced by Ng. et. al. learns the rewards using 
expert policies or expert trajectories [16].

• Most of the papers in this field validate their 
algorithms in two environments: gridworld and 
autonomous driving (can be seen from survey in 
[17]).

• Parallels can be drawn from autonomous driving 
to automating endoscope.
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Different rewards for different driving behaviors [18]



Algorithms used
- Recurrent Neural Networks – LSTM

- Reinforcement Learning

- Markov Decision Process

- Reinforcement Leaning Algorithm

- Inverse Reinforcement Learning

- IRL- Algorithm

- Integrated Algorithm
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Recurrent Neural Networks - LSTM

• Long short term memory (LSTM) [19] networks 
are used in sequential data for 
classification/prediction.

• Generally used for speech recognition [20].
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Reinforcement Learning

• Reinforcement learning – Learning by experience

• Autonomous agents learn actions for 
different situations based on rewards/penalties 
received

• Based on Markov Decision Process

• Markov Property – Memoryless property
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Markov Decision Process
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Reinforcement Learning -
Algorithm
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Inverse Reinforcement Learning

• Sometimes rewards are not easy to define for desired 
behaviors

• Trajectories defining behaviors are easily obtainable

• IRL can calculate reward function for given set of expert 
trajectories

• Reward function for the given trajectories may not be 
unique

• Reward function is written as a linear combination 
of feature functions
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Inverse Reinforcement Learning

• Maximizes the likelihood of the given expert 
trajectories
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IRL - Algorithm
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Integrated Algorithm
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Simulation
- Endoscopic Kinematics

- Gazebo Simulation

- CHAI-3D

- Simulation Environment

- Oculus Interface

- Distortion due to Oculus Lenses
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Endoscope Kinematics
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• Has 4 degrees of freedom – yaw, pitch, insert and roll.
• Has a remote center of motion mechanism.
• Modified D-H convention used to define forward and inverse 

kinematics.
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Gazebo Simulation
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• Developed closed loop kinematic 
models for Gazebo simulation

• Accurate representation of 
the daVinci system

• Used ROS for communications
• Camera plug-ins for the stereo 

endoscope feed
• Models were not stable enough 

during teleoperation
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CHAI-3D

• Open source C++ libraries using OpenGL for 
graphics [21].

• Can interface with a variety of haptic devices.

• daVinci Master Tool Manipulator (MTM) interface 
for CHAI-3D was written by Adnan Munawar [22].

• Uses BULLET as the physics engine.
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Simulation Environment

MS Thesis Presentation – Ankur Agrawal26



Worcester Polytechnic Institute

Oculus Interface
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• Head tracking data is obtained from IDU and accelerometer data on 

the Oculus.
• These give the current orientation of the head orientation of the user.

• Mapped to endoscope motion as shown above.
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Distortion due to Oculus lenses
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• Lenses in Oculus causes distortion in the video feed.

• An inverse distorted video feed should be given to counter this.



User Study
- User study

- Data Recorded

- Subtasks
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User Study
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• 9 people participated in the study 

– 6 male , 3 female
• Most participants had little 

exposure to robotic surgery

• They were asked to wear Oculus 
Rift and perform a pick and place 

task
• The task was to pick up the ring 

and place it on the flashing yellow 

peg
• During one exercise, the task was 

to be completed 5 times
• Data for 5 exercises was recorded 

for each participant
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Data Recorded
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• Data recorded is shown 
here.

• Objective was to record at 1 
KHz, but was recorded at a 
mean frequency of 723 Hz.

• Video for each were 
recorded in .mkv format at 
30 fps

• ROS bags were recorded to 
enable replaying the data
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Subtasks

• Approaching to pick up ring

• Picking up ring

• Approaching to place ring

• Placing the ring on the peg
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Implementation
- Learning camera view points

- Learning camera view points

- Features

- Validation of Learned Rewards
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Learning camera view points -
State
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• State was the gripper 

position in the image 
frame

• Image frame was scaled to 

[-1,1] in x and y axes
• Other state variables were 

the velocity represented in 
polar coordinates

• State were discretized in 

200 grid blocks for x and y 
axis

• Speed was discretized in 
steps of 0.01

• Direction was discretized 

for every 10 degrees
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Learning Camera View Points -
Actions

• Actions were the change in joint angles of the 
endoscope

• 27 total actions :

─ J1 : {-0.01, 0, 0.01}

─ J2 : {-0.01, 0, 0.01}

─ J3 : {-0.001, 0, 0.01}

• Roll was kept constant due to distortion.

• These were decided based on the data obtained 
from the user study.
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Learning Camera View Points -
Trajectories

• Trajectories were obtained by down sampling the 
data at 100 Hz

• 274 trajectories for subtask 1 and 2, and 246 
for subtask 3 and 4

• Approximately 80% for training and 20% for 
validation were used.
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Features

• Total of 12 feature basis functions were used

• 9 were based on the position of the gripper –
Gaussians centered at {-0.5,0,0.5}

• 3 included position, speed and direction of the 
gripper
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Validation of Learned Rewards

• A metric to compare expert trajectories with 
automated trajectories was needed.

• A similarity function was defined as:
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Results
- Classification – LSTM

- Confusion Matrix

- IRL – Convergence

- Reward Function

- Value Function

- Similarity

- Automated camera control
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Classification - LSTM

• LSTM layer with 10 neurons were used

• Inputs were: gripper position, rotation and jaw 
angle

• Training accuracy of 74.5% for classification was 
obtained.

• Test accuracy 71.3%

• Results show no overfitting and good 
generalization
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Classification - LSTM
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Confusion Matrix
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Confusion Matrix
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IRL - Convergence
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Subtask 1 Subtask 2

Subtask 3 Subtask 4
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Reward Function
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Value Function
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Value Function – Varying Speed
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Value Function – Varying Direction
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Similarity
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Joint 1 Joint 2

Joint 3 Joint 4

Automated Trajectory
Expert Trajectory

• Similarity between 

automated and 
expert trajectories

• Unseen files by the 

algorithm
• Similarity metric 

defined earlier.
• Mean Similarity : 

94.68%



Worcester Polytechnic Institute

Automated Camera Control
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Conclusion
- Conclusion

- Future Work
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Conclusion

• The approach presented in this thesis successfully 
automated endoscopic camera motion.

• Surgeon's intent was obtained from identifying 
the subtask.

• Automated camera motion was dependent on this 
subtask and the motion of the gripper.

• The camera did not only track the gripper 
motion but also was able to look ahead and show 
objects of importance in the environment.

• In conclusion, the thesis presented an approach 
in achieving an intelligent camera control.
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Future Work

• Increase the accuracy of classification.

• Implement the algorithm on the hardware.

• Extend the approach presented to other tasks 
such as suturing, needle passing which are more 
dependent on camera views.

• Collect data from expert surgeons in a more 
realistic environment of surgery.

• If same approach can be extended to other tasks, 
these tasks then can be combined to achieve 
automation for the whole surgical procedure.
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