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Abstract

Recently, indoor localization becomes a hot topic no matter in industry or aca-

demic field. Smart phones are good candidates for localization since they are car-

rying various sensors such as GPS, Wi-Fi, accelerometer, barometer and etc, which

can be used to estimate the current location. But there are still many challenges

for 3D indoor geolocation using smart phones, among which the map selection and

3D performance evaluation problems are the most common and crucial.

In the indoor environment, the popular outdoor Google maps cannot be uti-

lized since we need maps showing the layout of every individual floor. Also, layout

of different floors differ from one another. Therefore, algorithms are required to

detect whether we are inside or outside a building and determine on which floor we

are located so that an appropriate map can be selected accordingly.

For Wi-Fi based indoor localization, the performance of location estimation is

closely related to the algorithms and deployment that we are using. It is difficult to

find out a general approach that can be used to evaluate any localization system.

On one hand, since the RF signal will suffer extra loss when traveling through the

ceilings between floors, its propagation property will be different from the empirical

ones and consequently we should design a new propagation model for 3D scenarios.

On the other hand, properties of sensors are unique so that corresponding models

are required before we analyze the localization scheme. In-depth investigation on

the possible hybrid are also needed in case more than one sensor is operated in the

localization system.

In this thesis, we firstly designed two algorithms to use GPS signal for detect-

ing whether the smart device is operating inside or outside a building, which is



called outdoor-indoor transition detection. We also design another algorithm to use

barometer data for determining on which floor are we located, which is considered as

a multi-floor transition detection. With three scenarios designed inside the Akwater

Kent Laboratory building (AK building) at Worcester Polytechnic Institute (WPI),

we collected raw data from an Android phone with a version of 4.3 and conducted

experimental analysis based on that. An efficient way to quantitatively evaluate

the 3D localization systems is using Cramer-Rao Lower Bound (CRLB), which is

considered as the lower bound of the estimated error for any localization system.

The characteristics of Wi-Fi and barometer signals are explored and proper models

are introduced as a foundation. Then we extended the 2D CRLB into a 3D format

so that it can fit the our 3D scenarios. A barometer-assisted CRLB is introduced as

an improvement for the existing Wi-Fi Receive Signal Strength (RSS)-only scheme

and both of the two schemes are compared with the contours in every scenario and

the statistical analysis.
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Chapter 1

Background

Smart devices have become essential parts of our daily life. Smart phone own-

ers can not only use their phones to make phone calls, but also access a wide range

of services and information. They can read breaking news, conduct transaction

through online banking, and even get information about their health condition from

the small but smart devices. Another important application of smart phones is local-

ization and navigation. With various embedded sensors, location can be estimated

by different techniques which makes smart phone a good candidate for both outdoor

and indoor geolocation. GPS is reliable and accurate in the outdoor localization. By

acquiring the Line-of-Sight from the satellites, location can be calculated by using

triangulation. Other sensors can also be utilized for indoor localization, such as Wi-

Fi, barometer, accelerometer, gyroscope and etc. Wi-Fi signal is the most popular

technique that is used in the indoor localization. From the received signal strength

(RSS) or time of arrival (ToA), distance from the access points (APs) can be cal-

culated and triangulation can be applied to acquire the estimated location as well.

Barometer is good in determine the height of the user inside the building, since alti-

tude is closely related to the air pressure measured by the barometer. Accelerometer
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is used for measuring the acceleration of the movement. By calculating the second

integral of the acceleration, distance of movement can be calculated. Gyroscope is

helpful in detecting motion and by looking into the data gathered from this sensor,

every motion can be detected so that the location can be estimated according to

that.

Although indoor geolocation has been explored for a couple of years, there are

still challenging problems in this area, among which the map selection and perfor-

mance evaluation problem are the most crucial and critical. The commonly used

Google maps have good performance in the outdoor localization and navigation. By

using Google maps, one can be guided to a place with high speed and accuracy GPS

application. However, the Google maps do not pay much attention to the indoor

environment, in which the detailed layout should be displayed. So it is crucial for

us to find out whether the smart phone is operating in the outdoor or indoor en-

vironment and the correct map can be selected accordingly. Also, in multiple-floor

buildings, layout differs from different floors. Therefore, we should also find out the

which floor the smart phone user is currently located in so that the corresponding

map can be displayed. The first part of the map selection problem can be described

as outdoor-indoor transition detection and the second part as multi-floor transition

detection. To solve these to detection problems, proper sensor selection is the very

first step, after which scenarios and algorithms can be designed and consequently

experiments can be conducted.

For any indoor geolocation problem, it equally important to evaluate the per-

formance. It is essential since a criterion is needed for designing algorithm and

deploying the APs so that we can compare different techniques that are used and

choose the one with the best performance. But there are still some challenging is-

sues related to this problem. A general and efficient way should be provided and
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we can utilize it to analyze any indoor geolocation system. The approach can also

be modified since for different localization schemes, other sensors will be fused and

the modified scheme is able to respond to any change.

This thesis investigates and presents approaches to solve the two problems de-

scribed above. Firstly we design two algorithms using Global Positioning System

(GPS) signal to detect whether the smart phone is operating inside or outside of

a building and compare these two algorithms with the performance of false alarm

and time delay. Then we introduce another algorithm using data from barometer

to detect transition between floors inside a building. Thirdly, we provide models for

the behavior of Wi-Fi Received Signal Strength (RSS) and barometric data. With

those models, the accuracy of 3D Wi-Fi localization and barometer-assisted Wi-Fi

localization can be evaluated by calculating Cramer-Rao Lower Bound (CRLB).

1.1 Related Works

Since smart phone is powerful with various embedded sensors (Barometer, Gy-

roscope, etc.) and other applications (WiFi, GPS), approach for intruder detection

can be implemented in multiple methods. Some related work has been done related

to this topic.

The work described by [7] presents an approach which detects intruder for

WLAN access. Least Mean Square (LMS) and Prioritized Maximum Power (PMP)

are used as two RSS-based matching algorithms. Their performance of accuracy are

compared in indoor and outdoor-indoor areas and PMP algorithm provides a better

performance than LMS in positioning application.

An approach using fusion of sensors, WLAN signals and building information for

3



indoor/campus localization is developed by [8]. This method shows the possibilities

of combing the measurements from different sensors and building information to

obtain accurate indoor localization as well as the possibilities that sensors can aid

in intruder detection[9].

Some indoor personal navigation applications are introduced in [6]. Map Match-

ing Algorithms are implemented, which make the Pedestrian Navigation Module

(PNM) have the capbility to provide localization results even with bad reception of

GPS signals.

Another approach is described in [7] which fuse dead reckoning (DR) algorithm,

GPS, and RFID for pedestrian positioning. This method is implemented as software

module with web-based APIs on computing systems which shows that GPS and the

active RFID tag system can seamlessly and effectively adjust estimation errors in

DR as well as possibilities for sensor fusion localization.

1.2 Contribution

This thesis includes two major chapters and the main two contributions are

listed as follows:

• Introduce the map selection problem, and explore methods to solve it. Two al-

gorithms are designed to use LoS satellite number from GPS data for detecting

the outdoor-indoor transition and another algorithm is applied to use baro-

metric data for detecting the multiple-floor transition. Detection efficiency is

evaluated from the aspects of false alarm and time delay.

• Introduce the performance evaluation problem, and find out an approach to

quantitatively analyze 3D Wi-Fi localization systems. Properties of Wi-Fi
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RSS is investigated and a 3D path loss model is designed to describe signal

propagation. Barometer is used to improve the localization performance and

modeled with a Gaussian distribution. By extending the 2D CRLB into 3D,

RSS-only localization scheme and Barometer-assisted scheme are compared.

1.3 Thesis Outline

In the following chapter, we will review some general concepts of 3D indoor

geolocation. Chapter 3 describes the methodology we use to solve the map selection

problem based on the GPS and barometer signals. The approaches for 3D indoor

localization performance evaluation are outlined in Chapter 4 while conclusion and

future work are presented in Chapter 5.
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Chapter 2

Test Bed, State Machine Design

and Sensor Selection

2.1 Introduction

In 3D indoor environment, the localization problem becomes extremely com-

plicated. The first consideration is the difference between the techniques utilized in

indoor and outdoor geolocation systems. The widely used GPS is no longer an option

for the indoor environment since it requires LOS which is blocked in most situations.

Many new techniques have been explored recently. The most used one is RF-based

technique. Since the properties of RF signals like Received Signal Strength (RSS)

and Time-of-Arrival (ToA) can be utilized to determine to the distance between

the transmitter and receiver. Then the triangulation can be applied to find out

the location of the mobile points (MPs). Recently, more sensor are introduced into

the area of indoor geolocation, such as accelerometer, gyroscope, and barometer,

which is commonly described as sensor-fusion techniques. Moreover, since most of

the building will have cameras all over the building for security purposes, the image
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processing techniques can also be applied in the indoor geolocation area. Another

consideration is the difference in the maps used in the outdoor and indoor environ-

ment. The Google map can be acquired easily when the users are in the outdoor

environment with high-accurate outdoor geolocation. But when one comes indoor,

the outdoor map is no longer accurate enough since the outdoor maps cannot show

the detailed structure of the indoor environment on different floors and the transi-

tion between floors. So indoor maps should be used instead. The last consideration

is the 3D geolocation vs 2D geolocation schemes. There have been large amount of

researches conducted for the 2D geolocation. But when it comes to 3D scenarios,

the problem becomes more complex. For example, the WiFi signal will suffer extra

loss when going through the ceilings between floors and the pass loss model should

be changed accordingly. In the 2D scenarios, every estimated location is on a cer-

tain floor. But in 3D scenarios, more information should be applied such as how to

whether the user is inside or outside the building, on which floor is the user located

and whether the user is in the elevator or on the stair.

From the considerations above, it is crucial to look deeply into the 3D indoor

geolocation problems from different aspects.

2.2 Test Bed and State Machine Design

2.2.1 Test-bed

Test-bed is inside and outside the Atwater Kent (AK) building in Worcester

Polytechnic Institute (WPI). The experiments are mainly composed two parts: the

first is mainly focusing on the spots around three doors (shown and labeled in Figure

on the first floor; the second part is mainly measuring barometric pressure on differ-

ent floors under different mode and detecting floor changing using pressure-height

7



formula.

We conducted several experiments using Android phone (version 4.3) to collect

GPS data and barometric pressure data. Matlab is used to do data analysis and

conduct various performance evaluation simulations.

2.2.2 State Machine Design

Since the map is selected according to the current state (indoor/outdoor or

different floors), a state machine model satisfies the problem perfectly. A state

machine is designed with four states according to the building structure of AK

building: outdoor and indoor (1st floor, 2nd floor and 3rd floor). Note that when

the state goes from the outdoor to the indoor state, the state machine will go to

the 1st floor state since one will be on the 1st floor when enter the building. There

are two types of transitions between the indoor states: elevator and stair, since the

user may either walk the stairs or take the elevator to go between floors.

With all the four states and triggering conditions for transition, the entire state

machine is depicted in Figure 2.1.

2.3 Sensor Selection

Now that the four states are determined, suitable sensors should be selected

from which data can be provided to predict the transition between different states.

Commonly, modern smart phones are integrated with various sensors, such as em-

bedded GPS radio, accelerometer, gyroscope, barometer, and etc. We tested all

the sensors in outdoor, indoor and multi-floor scenarios and found GPS radio the

best to determine indoor/outdoor transition while barometer the best to determine

8



Figure 2.1: State Machine

multi-floor transition.

Detection of indoor/outdoor transition will be made according to the availabil-

ity of GPS radio. It’s well recognized that GPS provides great accuracy in outdoor

localization. But the signal is lost in most indoor environments which are hostile

to GPS radio. So we can roughly determine the user is outdoor when GPS is ac-

quired and indoor when GPS is denied. But the detection is not accurate enough

in all cases, so some methods are discussed to improve the performance in the next

section.

As for detection of floor transition, we exploit the properties of barometric

pressure since it is tightly related to the altitude of each floor (can be calculated

by using certain equations). When the user is going upstairs or downstairs, he can

choose either walking the staircase or taking the elevator. These two methods show

9



different characters in the barometric pressure readings, so we should treat them

differently. More exploration will be presented in the pressure-height model.
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Chapter 3

Map Selection Problem in 3D

Indoor Environment

3.1 Introduction

In the highly-developing society, smart phones with accurate and reliable Global

Positioning System (GPS) can easily leads you to the right place. However, out-

door navigation alone cannot meets people’s needs to reach certain places, especially

when the destinations are located at some complicated indoor environments such

as schools or hospitals, where the ubiquitous GPS is challenged[1][2][3][4][5]. To im-

plement indoor navigation[6], not only new equipment and technologies should be

used, but outdoor maps should be replaced with indoor maps. Moreover, maps of

different floors in multi-floor buildings differ from each other, which makes it more

complex to choose a proper map. Then here comes the map selection problem: if

one is going from outdoors to indoors, or going between different floors inside a

building, how can the maps be selected automatically to serve the accurate and

in-time navigation.
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This map selection problem can be divided into two parts: outdoor-indoor

transition and multi-floor transition. For the first part, decision should be made to

determine whether the user is indoor or outdoor (can be viewed as intruder detec-

tion problem)and the corresponding map should be selected as soon as the current

condition changes. For the second part, detection should be made to determine

which floor is the user located at a specific time and the map should be selected to

represent the correct floor.

There exists some difficulties in making the decision precise and in-time:

• Different buildings have different geometry (doors, corridors, and windows)

and equipment (stair and elevator), which makes it extremely complex to

detect transition.

• Smart phones have various sensors, and we should decide what sensors can be

used to solve the problem and whether they can be fused for better perfor-

mance.

In this chapter, we present a standard method which can be used to solve

automated map selection problem, for either outdoor-indoor or multi-floor transition

detection. We also design several algorithms according to the data gathered from

the sensors, compare their performance, and give an general solution. We aim to

develop a simple and state-of-the-art approach which can be used into smart phone

application in the future.

3.2 Experimental Setup

The experiment is conducted on different floors inside AK building. The de-

tailed scenarios design and data collection methods will be discussed below.
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3.2.1 Scenarios Design and Data Collection for Outdoor-

Indoor Transition

Three scenarios are designed for the outdoor-indoor transition detection, each

of which is around 3 doors on the 1st floor in AK building. The location of the three

doors are shown in Figure 3.1.

• Scenario 1: Door 1 (Out, Out-In, In)

• Scenario 2: Door 2 (Out, Out-In, In)

• Scenario 3: Door 3 (Out, Out-In, In)

In each scenario, three types of movement data are included and collected,

which are walking around the door outside the building (Out), walking through the

door (Out-In) and walking around the door inside the building (In).

For this part of experiments, GPS signal data is collected from the Android

phone in every 10ms. The database is consisted with the number of LoS satellite

and location estimation in every sampling spot. Given this database, we are able

to evaluate the estimation error in every location and the performance of the GPS

in indoor geolocation. What’s more, we can also design classification algorithms to

analyze the number of LoS satellite and detect outdoor-indoor transition.

3.2.2 Scenarios Design and Data Collection for Multi-Floor

Transition

Another three scenarios are designed for the multi-floor transition detection,

which are conducted on three floors, in the elevator or on the stairs.

13



Figure 3.1: Scenarios at Three Doors

• Scenario 1: Same floor (1st, 2nd and 3rd floor)

• Scenario 2: Floor transition by stair

• Scenario 3: Floor transition by elevator

In Scenario 1, we collect barometric data

3.3 Outdoor-Indoor Transition Detection

As is mentioned above, GPS radio is considered the best for detecting outdoor-

indoor transition. From the embedded GPS radio, we can get both the Line-Of-Sight

(LOS) satellite number and the estimated location at a certain moment. From these

two types of data, we can design algorithms to realize transition detection.

The first arithmetical design is based on the availability of the GPS radio. State

is recognized as outdoor if GPS is acquired while indoor if GPS is denied. To get

a precise location estimation, more than 4 LOS satellites should be available. So

14



at the beginning of the algorithm, we should make sure that more than 4 LOS

satellites is acquired. If not, the algorithm will not work until the LOS satellite

number meets the requirement. To detect the transition, we should also consider

the building geometry. Since entrances of a building are the access between outdoor

and indoor world, we should pay special attention to the data gathered around the

door. Consequently, the location should be around the entrance before we make a

transition detection and we will ignore all the changes of the GPS status when we

are far from the entrance.

The basic structure of the algorithm is shown as Figure 3.2. It starts by re-

ceiving the GPS signal from the phone, and compares the received LOS satellites

number with 4. If the LOS satellite number is more than 4(including 4), we have

enough number of signals to estimate our current location and calculate the distance

from the door. If so, the value of distance will be updated and we will compare the

calculated distance with a predefined threshold. If the distance is within the thresh-

old, then we can go to the next step and the system attempts to make a decision to

change the state.

The state change problem is similar to the handover problem in cellular network

[10], so we design two handover algorithms for this part.

The easiest and most direct way to make a handover decision is using the avail-

ability of the GPS signal. The steps of Algorithm 1 are depicted in Figure 3.3. The

state will change if the GPS status changes. If GPS signal is available, we decide

the state as outdoor; If GPS signal is denied, we decide it as indoor.

Algorithm 1 is simple and straight, but it has great disadvantage since it will

introduce numbers of false alarms, especially when the device is around the door and

the GPS signal keeps changing frequently. We add some improvement in Algorithm

2 (shown in Figure 3.4) and the state will not change until GPS status stays the
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Figure 3.2: Basic structure of the algorithm

same for a certain period of time. The decision not only depends on the current

status of GPS signal, but the maintenance of the GPS signal.

3.4 Multi-Floor Transition Detection

Detection of floor transition should be considered in another way since the

barometric pressure readings has a different property from the satellite data. A

pressure-height model is constructed so that we can calculate the altitude of a cer-

tain location from which the floor transition can be determined. What’s more,

new algorithms are explored to eliminate the effect of some factors (noise, bias) in

the pressure-height model and analyze the transition progress. The following two

sections will discuss more about these two aspects.
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Figure 3.3: Decision algorithm 1: using only GPS access to make the decision

Pressure-height Model

Barometric pressure is exploited for detecting multi-floor transition since it is

related to the altitude of the current location. According to the International Stan-

dard Atmosphere Model formulated by International Civil Aviation Organization,

their relation can be represented and derived by equation 4.12.

p = p0 × (1− L× h
T0

)
g×M
R×L

≈ p0 × (1− g × h
cp × T0

)
cp×M
R

≈ p0 × exp(
−g ×M × h
R× T0

)

(3.1)

All the parameters used in the pressure-height equation is shown in Table 4.1.

From the equation above, altitude can be calculated from barometric pressure, which

is derived as follow:

h = −R× T0
g ×M

× ln(
p

p0
) (3.2)

Basically, we can calculate altitude from air pressure according to equation 3.2,

however, data gathered from the smart phone suffers great noise, bias, and time

difference, which will affect the precision of the transition detection. The following
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Figure 3.4: Decision algorithm 2: using GPS access and time delay to make the
decision

Table 3.1: Parameters used in pressure-height equation
Parameter Description Value

p0 Standard atmospheric pressure 101325 Pa

L Temperature lapse rate 0.0065 K/m

cp Constant pressure specific heat 1007 J/kg*K

T0 Sea level standard temperature 288.15 K

g Gravitational acceleration 9.80665 m/s2

M Molar mass of dry air 0.0289644 kg/mol

R Universal gas constant 8.31447 J/(mol*K)

three sections will have a deeper look at these three factors.

Noise causes the change of raw pressure readings in a fixed floor. This change

is slow with a small range, and after fitting it into different distributions (shown in

Figure 3.5 ), we find it an ideal Gaussian-distributed noise with zero mean (white

noise). To eliminate the effect of noise, we use a simple low-pass filter, which will

be discussed later.
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Figure 3.6: Distribution fit for bias

Figure 3.5: Distribution fit for noise

Bias is the difference of raw pressure reading caused by different devices. In

our experiment, we use two different barometers to measure the air pressure and

fit their difference with different distributions (shown in Figure 3.6). We find that

bias is also Gaussian-distributed with a certain mean value. Note that although

we can model bias between different devices, in reality we don’t need to put it into

consideration in localization. The reason is that during the navigation, the device
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is fixed and we don’t need to know the difference.

Time difference is the most uncertain part in the pressure-height model. From

equation 4.12we can see that some physical factors will affect the barometric pres-

sure, such as temperature and humidity (which will change during the time), then

at different time, we will get pressure data with extremely great difference. For

example, the barometric pressure in winter is much higher than that in summer in

a fixed place at the same time during a day.

Fortunately, when we are using the model to deal with localization, we can

assume that the time duration is so small that we don’t need to consider time dif-

ference anymore.

When noise, bias and time difference are considered, the equation should be

written as follow:

h′ = −D ×R× T0
g ×M

× ln(
p+N +B

p0
) (3.3)

Where N represents noise, B represents bias and D represents time difference.

Smoothing

Since raw pressure reading contains some noises, which may distort the result

and affect threshold value choice, and thus influence the detection of floor trans-

fer. To eliminate those noise, we adopt double exponential smoothing to produce

smoothed data. The basic idea of double exponential smoothing is to take account

of the trend estimation, this technique works as follows: xt is the raw data set, stis

the smoothed value set, btis the best estimation value of the trend. For initial value,

s1 = x1

b1 = x1 − x0
(3.4)
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And for t > 1,

st = α× xt + (1− α)× (st−1 + bt−1)

bt = β × (st − st−1) + (1− β)× bt−1
(3.5)

α is the data smoothing factor, 0 < α < 1 , and is the trend smoothing factor,

0 < β < 1. The smoothing factor means how much recent changes weights to result.

In this case, factor values close to zero have more smoothing effect and are more

responsive to recent changes. Considering the distortion and calibration, we use 0.3

for α and 0.2 for β. It effectively removes the noisy peak and showed smoothed

readings.

Algorithms for Detection

The algorithm used for transition detection is quite similar with the ones used

for intruder problem, the difference lies in that we use the pressure readings variance

as the parameter that used as the threshold to determine floor transition.

To identify whether it is a floor transition mode or not, we just need to figure

out prominently pressure variance, which can be realized by applying 1st derivation

to pressure reading and setting thresholds. After smoothing the derivative result,

there is still some noise and transient oscillation, which might cause bias and effect

detection accuracy. The main basis of floor detection is comparing derivative result

with threshold, therefore identifying the transition. According to that, we should

compare period result behavior with threshold value and avoid transient oscillation

influence. And setting a D buffer, which to store 1st derivative value in a 15

seconds period, could effectively solve our problem. The D buffer is triggered

every 5 seconds. And after analysis the result data, we find both in stair mode

and elevation mode, the threshold could be 1.3. If there are 10 data value in the
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Figure 3.7: Floor detection algorithm

buffer are larger than threshold, then transient value influence minimized and floor

transition identified. The algorithm is shown in Figure 3.7 in detail.

Figure 3.8: Histogram of the GPS signal in the database
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Figure 3.9: Error range of the estimation by using different number of satellites

3.5 Results and Analysis

3.5.1 Histogram, Error Range & CDF of Estimation Error

The histogram for different LOS GPS satellite number is shown in Figure 3.8.

We can see that three doors show different GPS signal characters in the histogram.

The difference comes from the different geometry of these doors. There are various

factor which affects the geometry: the number of doors, the opening shape and the

surroundings (especially windows).

From estimated location in a certain location, we can find the estimation error

in this position and relate the error to the LOS satellite number in the position we

can have the error range shown in Figure 3.9. From the plot we can see that when

we only get 4 or 5 LOS satellites in one position, the estimated location becomes

inaccuracy while we have more than 6 LOS satellites, the error range falls and

accuracy increases.

Plot cumulative distribution function (CDF) of the estimation error vs LOS

satellites number in Figure 3.10. We make satellite number into two groups, one

with more than 4 LOS satellites while the other only has 3 or 4 LOS satellites. We

can see in the plot that with greater LOS satellite number, we have better estimation

error performance.
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Figure 3.13: State decision when going around Door 3

3.5.2 Performance Comparison of Algorithms

Figure 3.11-3.13 show the intruder detecting progress. The first plot in every

figure shows the original data (LOS satellite number) at every position while walking

in the scenario. The second and third plots are the detection results of Algorithm

1 and 2 respectively. We can see clearly that for Algorithm 1, there are always

great number of false alarms since the GPS status changes frequently while we are

walking through a door. Algorithm 2 shows significant improvement in eliminating

the false alarms. However, it introduces some delay, which degrades the continuity

of the system.

Dirty spots in the scenario of Door 3 greatly affect the detection accuracy. We

can see in Fig. 11 that even if we are indoor, the LOS satellite number remains to

a certain scale that which brings lots of false alarms. To eliminate the effect, we

should make a large wait time to make sure that the current state is stable. As long

as the state is decided as stable, we can make a accurate detection.
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Figure 3.14: Floor decision for elevator

Figure 3.15: Floor decision for stair

Figure 3.14 and 3.15 show the multi-floor detection progress for elevator and

stairs. The first plot in every figure shows the original data (air pressure) at every

position while walking in the scenario. The second and third plots are first derivative

and its smoothing respectively. We can see clearly that after smoothing, it is more

clear for us to see the transition between two floors. The fourth plot shows the

detection results by using the algorithms described above.
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Figure 3.10: CDF plot of the estimation error by using different number of satellites

Figure 3.11: State decision when going around Door 1

Figure 3.12: State decision when going around Door 2

26



Chapter 4

Performance Evaluation Methods

for 3D Indoor Geolocation

4.1 Introduction

The patient safety and clinical risk issue have attracted increasing focus and

one of the best ways to manage them is to let the hospital staff know the precise

location of the in-patients. People have developed many approaches and systems to

track and identify the in-patients so that the health care can be offered immediately.

Received Signal Strength (RSS) is most widely used in the indoor geolocation

since it can be measured by various applications and consequently data set is easily

set up. But the RSS-based method cannot provide as accurate estimation as TOA-

based technique does since the indoor radio channel suffers from severe multi-path

propagation and shadow fading [15–17]. RFId provides another approach that can

be used for tracking and identifying patients [4, 5]. Sensor-fusion is also frequently

explored to assist the existing geolocation systems and brings in improvement to

the performance [6, 7]. Recently, researches have been conducted by using the hot

27



iBeacon technique for in-room newborns localization in hospital which opens a new

world for accurate localization in Line-of-Sight (LOS) small areas [8].

In this chapter, we are trying to explore how barometer can assist the existing

2D RSS-based geolocation system so that the inaccurate vertical estimation is elim-

inated and a better 3D localization system is created. Then we design scenarios and

calculate 3D CRLB in these situations to evaluate their performance. The general

idea of the 3D CRLB is similar to some previous researches [8, 9], but the focus

of our study is on the entire building which has the widest range while others are

focusing on the in-body or in-room localization, which have a smaller range.

The patient safety and clinical risk issue have attracted increasing focus and one

of the best ways to manage them is to let the hospital staff know the precise lo-

cation of the in-patients. People have developed many approaches and systems to

track and identify the in-patients so that the health care can be offered immediately.

4.2 Experimental Setup

4.2.1 Scenarios Design

To compare different geolocation systems, the very first step is to design test

scenarios so that their performance can be evaluated in a same way.

We have designed 3 scenarios in which APs are deployed in multiple floors:

• 5 APs are placed on the ceiling of the same floor (4 at each corner and 1 in

the middle).

• Another 5 APs are placed on the 2nd floor in the same way and we have signals

from 10 APs in total.
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• Extra 5 APs are placed on the 3rd floor in the same way and we have signals

from 15 APs in total.

We assume that every floor has a space of 30m×30m and a height of 5 meter.

Every floor is sampled in every 0.1 meter (the 4 edges are not includes), so we have

299× 299 = 89401 samples in total.

4.3 RSS-Only CRLB Calculation

As mentioned before, 2D indoor geolocation has been well researched and var-

ious signals have been used to obtain the current location, among which RSS is the

most widely used one. To characterize the signal, a suitable path-loss model should

be chosen. The empirical 2D path-loss [10] is shown as follow

Pr(r) = P0 − 10α log10 r (4.1)

Where α is the gradient indicating the relation between distance and power and r

is the distance from the transmitter to the receiver. In the environment of a hos-

pital, the materials of the buildings are brick, wood, metal, and other composites.

These materials have different gradients from 2 to 6. It’s crucial to use a suitable α

according to different environment.

The RSS will suffer extra loss while going through the ceilings in 3D environ-

ment, we should add penalty to the empirical 2D path-loss model. We define Pf (n)

as the path loss when signal is going through the ceilings. Shadow fading should

also be considered, which is defined as D(f) and can be modeled as a white noise,

where f represents the transmitting frequency. Then the modified path-loss model
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can be written as:

Pr(r) = P0 − 10α(r) log10 r − Pf (n) +D(f) (4.2)

In the simulation with the IEEE 802.11b,g standard, we operate the transmit-

ting frequency as 2.4GHz, the power of transmitter as 20dBm (100mW) and P0 is

approximately -20dBm. We also adopt the well-known distance-partitioned path

loss model to determine the power gradient α, which is simply related to the dis-

tance. If r is less than 10 meters, we make α = 2; If r is more than 10 meters but

less than 20 meters, α becomes 3; If r is larger than 20 meters, then α is 6. For the

function of Pf (n), the JTC model is applied, which is given as 15 + 4(n− 1), where

n indicates the number of ceilings. Both models are well described in [10]

Then the 3D path-loss model for every floor of three scenarios is given as:

Pr(r) = −20−


20log10r − Pf (n) (10 ≥ r ≥ 0)

30log10r − Pf (n) (20 ≥ r > 10)

60log10r − Pf (n) (r > 20)

(4.3)

As long as we have the path loss model, we can explore the characteristic

of the received signal strength. Since we can easily get power observations from

different Access Points (APs), a received power matrix P can be generated, with

an assumption of N deployed APs and m observations from each AP [12]. In this

3D path loss model, the distance between the transmitter and receiver should be

calculated in a 3D way, which is ri =
√

(x− xi)2 + (y − yi)2 + (z − zi)2, where

(x, y, z) and (xi, yi, zi) represent the location of the AP and ith receiver respectively,
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i = 1, 2, 3, ...,m. We can use the equation below for illustration:

P = Gβ (4.4)

Where

P =



P (r1)

P (r2)

...

P (rm)


,G =



1 α(r1)log(r1) Pf (n)

1 α(r2)log(r2) Pf (n)

...
...

...

1 α(rm)log(rm) Pf (n)


,β =


P0

−10

−1



The matrix of G and β should be modified from the original equation [12]

since the JTC model have been applied to the modified path loss model.

The least-square estimate of the unknown parameter vector β̂ is given by

β̂ = (G′G)−1G′P (4.5)

The standard deviation of the received power σp is written as follow

σp =

√
1

m
(P ′ − β̂′G′)P (4.6)

To analyze the relation between RSS and the least location error (CRLB), we

can apply partial differential to Equation (4.1) [8, 9]. Then we have

dPi(x, y, z) = − 10α

ln10
(
x− xi
r2i

dx+
y − yi
r2i

dy +
z − zi
r2i

dz) (4.7)

We can also write this equation in a matrix format, which is

dP = H · dr (4.8)
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where

dr =


dx

dy

dz

 ,H =



− 10α
ln10

x−x1
r21

− 10α
ln10

y−y1
r21

− 10α
ln10

z−z1
r21

− 10α
ln10

x−x2
r22

− 10α
ln10

y−y2
r22

− 10α
ln10

z−z2
r22

...
...

...

− 10α
ln10

x−xN
r2N

− 10α
ln10

y−yN
r2N

− 10α
ln10

z−zN
r2N


By using the same least-square estimation method we mentioned before, estimation

of the location error can be evaluated:

dr = (H ′H)−1H ′dP (4.9)

and the covariance matrix of the location error is

cov(dr) = σ2
P (H ′H)−1 =


σ2
x σ2

xy σ2
xz

σ2
xy σ2

y σ2
yz

σ2
xz σ2

yz σ2
z

 (4.10)

Then the CRLB can be calculated as follow:

σr =
√
σ2
x + σ2

y + σ2
z (4.11)

4.4 Barometer-Assisted CRLB Calculation

For 3D localization, more information is needed since the RSS signal suffered

great loss when going through the ceilings between floors. With the assistance of

barometer, we can collect air pressure of the current location which relates closely

to the altitude. The relation is called Pressure-Height physical law and can be
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Table 4.1: Parameters used in pressure-height equation
Parameter Description Value

p0 Standard atmospheric pressure 101325 Pa

L Temperature lapse rate 0.0065 K/m

cp Constant pressure specific heat 1007 J/kg*K

T0 Sea level standard temperature 288.15 K

g Gravitational acceleration 9.80665 m/s2

M Molar mass of dry air 0.0289644 kg/mol

R Universal gas constant 8.31447 J/(mol*K)

expressed as follow [13]:

p = p0 · (1−
L · h
T0

)
g·M
R·L

≈ p0 · (1−
g · h
cp · T0

)
cp·M
R

≈ p0 · e
−g·M·h
R·T0

(4.12)

Where p represents the air pressure and h the altitude. All the parameters used

in the pressure-height equation is shown in Table 4.1.

We use the embedded barometer in smart phone and record its measurements

while going round the floor, which is shown in Figure 1(A). Then we find that the

CDF of barometric data is perfectly fit to a normal distribution (see in Figure 1(B))

with a standard deviation of σb = 4.1424Pa with which we can estimate the alti-

tude.

In this case, assume that we have a parameter of height h and the function

of p(h). We can also obtain observations of air pressure O. In the observation, a

Gaussian noise will be included with a zero mean as well as a variance of σb
2.

O = p(h) +N (4.13)
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So the probability distribution function of the observation can be written as

f(O|h) =
1√

2πσb
e

(O−p(h))2

2σb
2 (4.14)

To calculate the CRLB of parameter in a function, the Fishers information ma-

trix should be calculated, which can be written as follow:

F = E[
∂

∂h
{lnf(O|h)}]2

= E[
∂

∂h
{−ln

√
2πσb −

(O − p(h)2)

2σ2
b

}]2

= E[
(O − p(h)) · p′(h)

σ2
b

]2

=
p′(h)2

σ4
b

· E[O2 − 2Op(h) + p(h)2]

=
p′(h)2

σ4
b

· {E[O2]− 2E[O] · p(h) + p(h)2}

(4.15)

Since E[O] = p(h) and E[O2] = E[O]2 + σ2
b = p(h)2 + σ2

b , then the equation

comes to:

F =
p′(h)2

σ2
b

(4.16)

Moreover, we have:

p′(h) =
∂

∂h
{p0 · e

−g·M·h
R·T0 }

= −g ·M · p0
R · T0

e
−g·M·h
R·T0

(4.17)

And − g·M
R·T0 can be denoted as K.Then the Cramer-Rao Lower Bound of the barom-

eter can be calculated as follow:

σ2
h = F−1 =

σ2
b

p′(h)2
=

σ2
b

Kp0 · eKh
(4.18)
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Figure 4.1: Barometer Measurements (A) & Normal Fit of CDF (B)

Since σb = 4.1424Pa and we also have the value of all the parameters, we can

calculate σh in different height. But in reality, σh does not change much when the

altitude is less than 1000 meters. With a σb of 4.1424, σh is approximately 0.3469

meter, which is much smaller than the vertical one in the RSS-only covariance matrix

(in an order of several meters). Consequently, it is reasonable if we replace the

original σz with σh, which will definitely increase the accuracy. Then the barometer-

assisted CRLB is derived as:

σr =
√
σ2
x + σ2

y + σ2
h (4.19)

4.5 Results and Analysis

In this section, we will present the results and give our analysis from which

conclusions can be made.

4.5.1 Contours of CRLB in Three Scenarios

We illustrate the contours of CRLB for the three Scenarios in Figure 2-4. In

the figures, characteristic of error performance is clearly presented.
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Note that although the space is 30m × 30m, we do not include the observations

on the edges. Consequently, the contour shows a 29.9m× 29.9m space instead of a

30m× 30m one.

4.5.2 CDFs of Different Scenarios

When we explore more about the statistical characteristic of the performance,

we illustrate the CDFs of different scenarios under both RSS-only and Barometer-

assisted CRLB, which is shown in Figure 5.

Figure 4.2: Contour of CRLB in Scenario 1

From the figure, we can see that the location error is decreased when more

information from other floors is applied. Moreover, if the barometer assist the cal-

culation of the CRLB, the performance is greatly improved.
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Figure 4.3: Contour of CRLB in Scenario 2

4.5.3 Barometer-Assisted Method vs. RSS-Only Method

Maximum, minimum, and mean CRLB value of the three scenarios using these

two methods are listed in Table II. From the table, we can find that by adopting

the barometer-assisted method, a 41.67%, 29.29%, and 19.20% improvement can be

achieved under the Scenarios 1, 2, and 3 respectively.

Table 4.2: Barometer-Assisted Method vs. RSS-Only Method in Error Performance
CRLB (m) Maximum Minimum Mean

Scenario 1 (Baro) 3.4641 2.1274 2.8113

Scenario 1 (RSS) 7.2791 2.5492 4.8193

Scenario 2 (Baro) 2.5254 1.6267 2.0658

Scenario 2 (RSS) 4.2394 1.9236 2.9214

Scenario 3 (Baro) 2.1120 1.3761 1.7286

Scenario 3 (RSS) 2.9488 1.5440 2.1393
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Figure 4.4: Contour of CRLB in Scenario 3

Figure 4.5: CDFs for Three Scenarios
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Chapter 5

Performance Evaluation Methods

Concerning Coverage Probability

and Variable Shadow Fading

5.1 Introduction

As described in the previous chapter, CRLB gives a bound of the estimated

location error, which can be used for evaluating the performance of geolocation

systems. But in the procedure of signal transmission, other factors should also be

considered, one of which is the coverage certainty. When the signal is transmitted,

it is possible that its power may go below the sensitivity of the receiver. When

the noise it suffers has the opposite angle and degrades the power of the signal,

the power reaches the receiver may go below the device sensibility. In this case,

we should consider the effect In the evaluation of geolocation systems, other factors

also play an important role to determine the performance of various systems, no

matter what technologies or algorithms they’ve used. In this chapter, probability of
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coverage will be considered into the previously-discussed RSS-based CRLB. We all

know that the signal reaching the receiver is not a hundred percent readable since

it suffers from shadow fading during the transmission. According to the path loss

model defined in the previous chapter, we can derive the probability of coverage of

certain transmission and with which a weighted CRLB can be calculated to evaluate

the performance of scenarios concerning the matter of coverage probability.

5.2 Experimental Setups

To compare different geolocation systems, the very first step is to design test

scenarios so that their performance can be evaluated in a same way.

We have designed 5 scenarios which can be divided into two types, 2D scenarios

and 3D scenarios. The first 3 scenarios are designed on the same floor and we can

compare these 3 scenarios for the effects of AP number. In Scenario 4 and 5, APs

are deployed in multiple floors, and we can compare the effect of 3D scenarios. The

detailed scenario description is given as follow:

• Scenario 1: 3 APs are placed on the ceiling of the same floor (at 3 of the 4

corners).

• Scenario 2: 4 APs are placed on the ceiling of the same floor (at the 4 corners).

• Scenario 3: 5 APs are placed on the ceiling of the same floor (at the 4 corners

and the middle).

• Scenario 4: 4 APs are placed on the ceiling of the 3rd floor (at the 4 corners),

and we calculate the total CRLBs of the three floors.

• Scenario 5: 4 APs are placed on the ceiling of every floor (at the 4 corners, 12

APs in total), and we calculate the total CRLBs of the three floors.
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We assume that every floor has a space of 30m×30m and a height of 5 meter. Ev-

ery floor is sampled in every 0.1 meter (the 4 edges are not includes), so we have

299× 299 = 89401 samples in total for every scenario.

5.3 Probability of Coverage

To analyze the coverage certainty, we should start from the commonly used

path loss model in decibels, which is given by:

Lp = L0 + 10α log10 r (5.1)

Where Lp is the total path loss from the transmitter to receiver. L0 is the normalized

path loss, which is the power loss at 1 m. α is the gradient indicating the relation

between distance and power. In the environment of office buildings, the materials

of the buildings are brick, wood, metal, and other composites. These materials have

different gradients from 2 to 6. In large office area, α is changeable according to

different r, which indicates the distance from the transmitter to the receiver.

The transmitted signal is also expected to have different path losses in differ-

ent directions, causing power variation when it reaches to receiver. This variation

is commonly called shadow fading or large-scale fading since its cause is obstruc-

tion by objects around the receiver. It is not feasible to model shadow fading in

a deterministic way, and therefore we usually use statistical models instead. We

define l as the shadow fading in the radio propagation, which is a zero mean nor-

mally distributed random variable with a standard deviation of σ. The probability
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distribution function (PDF) for shadow fading can be written as:

f(l) =
1√
2πσ

e−l
2/2σ2

(5.2)

Every receiver has its own sensitivity, which is the minimum RSS that it can

recognize. Given the PDF of the shadow fading, we can calculate the probability

that the RSS in one location will be lower that the sensitivity (Outage) as well as

the probability that it is higher than the sensitivity (Coverage). It is obvious that

the sum of the two will be one and we only need calculate one of them. We denote s

as the difference between transmitted power and the sensitivity, which indicates the

maximum power loss for effective transmission. Then the probability of coverage

can be derived as follow:

Prob(Coverage) = Prob(Lp + l < s) = Prob(l < s− Lp)

= 1−
∫ ∞
s−Lp

f(l)dl

= 1−
∫ ∞
s−Lp

1√
2πσ

e−l
2/2σ2

dl

= 1− 1

2
erfc(

s− Lp√
2σ

)

(5.3)

Where erfc() is the complementary error function, and erfc(x) = 2√
π

∫∞
x
e−t

2
dt.

Then we can replace Lp with Equation (1), and the coverage probability is written

as:

Prob(Coverage) = 1− 1

2
erfc(

s− L0 − 10α log10 r√
2σ

) (5.4)

From Equation (5.4), we can see that all the factors are constant except d,
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which means that the probability is a function of the distance between the trans-

mitter and receiver.

5.4 Weighted CRLB Calculation

5.4.1 Cramer-Rao Lower Bound

Cramer-Rao Lower Bound (CRLB) indicates the smallest estimation error un-

der given observations and is frequently used in evaluating the performance of lo-

calization systems. In order to investigate the relation between the location error

and signal strength error, we apply a differential operation to both sides of Equation

(5.1) with respect to two coordinates x and y, then we have:

dLpi(x, y) =
10αi
ln10

(
x− xi
r2i

dx+
y − yi
r2i

dy), i = 1, 2, ..., N (5.5)

where Lpi is the total path loss from APi to the location of (x, y); (xi, yi) is the

coordinate of APi; αi is the power-distance gradient for signal coming from APi; ri

is the distance between the receiver and APi, and ri =
√

(x− xi)2 + (y − yi)2; N is

the number of APs.

The set of Equation (5.5) can be written in matrix form as:

dLp = H · dr (5.6)
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Where

dLp =



dLp1

dLp2

...

dLpi


, dr =

 dx

dy

 ,H =



10α
ln10

x−x1
r21

10α
ln10

y−y1
r21

10α
ln10

x−x2
r22

10α
ln10

y−y2
r22

...
...

10α
ln10

x−xN
r2N

10α
ln10

y−yN
r2N


From Equation (5.6), we can estimate the location error.

dr = (H ′H)−1H ′dLp (5.7)

Since the path loss estimation error is identical to the error caused by shadow

fading, which has zero mean and variance of σ2, and these errors for different APs

are independent with each other, then we can have the two equations as follow:

E[dLpi] = 0, cov(dLpi, dLpj) =


σ2, i = j

0, i 6= j

i, j = 1, 2, ..., N (5.8)

Then the covariance matrix of the location error dr is given by

cov(dr) = σ2(H ′H) =

σ2
x σ2

xy

σ2
xy σ2

y

 (5.9)

The standard deviation of location error is finally derived as

σr =
√
σ2
x + σ2

y (5.10)

From Equation (5.10), we can see that if the transmission environment is given,

the location error only relies on the coordination of the receiver (x, y), and we can

calculate the CRLB at any location according to that.
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The usage of matrix only fits the condition that there are more than 2 APs. If

only one AP is available, another method should be applied instead.

In this case, the partial differential equation should be:

dLpi(r) =
10αi
ln10

dr

r
, i = 1, 2, ..., N (5.11)

Then the location error can be estimated as follow:

dr =
ln10 · r

10αi
dLpi(r), i = 1, 2, ..., N (5.12)

And covariance of dr can be derived:

cov(dr) = (
ln10 · r

10αi
)2cov(dLpi(r))

= σ2(
ln10 · r

10αi
)2, i = 1, 2, ..., N

(5.13)

which is also the variance of dr, so the CRLB in this case is

σr =
ln10 · r

10αi
σ, i = 1, 2, ..., N (5.14)

5.4.2 2D CRLB Concerning Coverage Certainty

From the previous section, we can calculate the probability that a location can

be covered by a AP as well as the CRLB which shows the minimum location error

under this condition. It is reasonable for us that calculate the CRLB concerning

the effect of coverage certainty, so that the total CRLB will be more reliable and

accurate.

We denote pi as the probability that a certain location can be covered by APi,

which can be calculated by Equation (5.4). Suppose there are N APs in total, the
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probability that k APs are covered can be calculated according to the probabilities

we calculated before. The number of combinations C of selecting k elements out of

N can be calculated as

C =

N

k

 =
N !

k!(N − k)!
=
N(N − 1) · · · (N − k + 1)

k(k − 1) · · · 1

To calculated the CRLB concerning coverage certainty, all the probabilities for

the combinations should be explored and the total CRLB should be the summation

of every individual CRLB times its corresponding probability. For example, if only

1 AP is covered, then there are N combinations (C = N) in this case. Suppose AP1

is the one that is covered, then the probability for this condition is given from the

concept of probability theory

Prob1 = p1(1− p2)(1− p3) · · · (1− pN) (5.15)

Where Pron1 is the probability that only AP1 is covered while others are not. Note

that we should skip the situation when all the APs are not covered. In this con-

dition, no location estimation can be made, since no information can be used to

determine the location of the receiver. Therefore, it is useless to discuss this situa-

tion.

Similarly, we can calculate the probabilities for all the other conditions (Prob2, P rob3, · · · , P robN).

Then the total CRLB can be calculated as follow

CRLBtotal =
N∑
i=1

CRLBi · Probi (5.16)

In this way, we can calculate the total CRLB no matter how many APs are covered.
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5.4.3 3D CRLB Concerning Coverage Certainty

In the previous sections, all we have discussed are focused on the analysis in

2D condition. But in reality, 3D geolocation schemes are more important in indoor

environment. Therefore, we should have a deeper look at how to expand our methods

to 3D environment.

The empirical path loss model is no longer fit for 3D environment. In multistory

building, the power-distance gradient α will change according to different distances,

so the commonly used path loss model is given:

Lp = L0 +



20log10r, (10 ≥ r ≥ 1m)

20 + 30log10
r

10
, (20 ≥ r > 10m)

29 + 60log10
r

20
, (40 ≥ r > 20m)

47 + 120log10
r

40
, (r > 40m)

(5.17)

From Equation (5.17), it is clear that path loss becomes greater when the distance

between the transmitter and receiver becomes larger. But the method that we use

to calculate coverage certainty stay the same. Equation (5.3) can still be used in 3D

scenarios and the only difference is that we should replace the empirical path loss

model with the 3D distance-partitioned model, which creates a different Lp.

The calculation for CRLB needs more expansion since the coordinate of every

location becomes three dimensional. In 3D environment, we use similar method to

start the derivation of CRLB.

To analyze the relation between RSS and the least location error (CRLB), we

can apply partial differential to Equation (4.1) [8, 9]. Then we have

dPi(x, y, z) = − 10α

ln10
(
x− xi
r2i

dx+
y − yi
r2i

dy +
z − zi
r2i

dz) (5.18)
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In this case, the matrix form should also be expanded to three dimension, where

dr =


dx

dy

dz

 ,H =



10α1
ln10

x−x1
r21

10α1
ln10

y−y1
r21

10α1
ln10

z−z1
r21

10α2
ln10

x−x2
r22

10α2
ln10

y−y2
r22

10α2
ln10

z−z2
r22

...
...

...

10αN
ln10

x−xN
r2N

10αN
ln10

y−yN
r2N

10αN
ln10

z−zN
r2N


By using the same least-square estimation method we mentioned before, estimation

of the location error can be evaluated:

dr = (H ′H)−1H ′dP (5.19)

and the covariance matrix of the location error is

cov(dr) = σ2(H ′H) =


σ2
x σ2

xy σ2
xz

σ2
xy σ2

y σ2
yz

σ2
xz σ2

yz σ2
z

 (5.20)

Then the CRLB can be calculated as follow:

σr =
√
σ2
x + σ2

y + σ2
z (5.21)

Since every coverage probability and CRLB is redefined here, the 3D CRLB can be

calculated in the same way which is described in Equation (5.16).
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5.5 Results and Analysis

5.5.1 Effect of 2D AP Deployment

In this section, we evaluate the impact of different AP deployment on local-

ization accuracy. From Equation (5.1) and designed scenarios for 2D localization,

we can calculate the path loss for all the locations in these scenarios, which is de-

picted in Figure 5.1 And we can calculate the corresponding coverage probability

Figure 5.1: Path Loss from 4 APs in 2D Scenarios

by applying Equation (5.4), which is shown as follow.

We can also calculate CRLB for the 2D Scenarios and by applying Equation.

Contours of the three scenarios are shown in Figure 5.2, 5.3 and 5.4. From these
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figures, we can see that different types of deployment affect the localization accu-

racy in different patterns. CDFs for the three scenarios are given in Figure 5.5. It

is obvious that, location accuracy improves as more APs are used. Error range of

these three scenarios are shown in Table.

Figure 5.2: Contour for Scenario 1

Figure 5.3: Contour for Scenario 2
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Figure 5.4: Contour for Scenario 3

Figure 5.5: CDFs for 3 Scenarios in 2D

5.5.2 Effect of 3D AP Deployment

In 3D scenarios, if APs are deployed in a multistory building, the height of

every story should be also considered when we are calculating the distance from the

transmitter and the receiver.
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Figure 5.6: Coverage in 3D Scenarios

Figure 5.7: CDF of Coverage in 3D Scenarios
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Chapter 6

Conclusion and Future Work

In this thesis, we present an approach to make intruder detection by analyzing

GPS data and make multi-floor detection by using barometer in smart devices. We

design scenarios on different floors in Atwater Kent laboratory and conduct series

of experiments to collect data. By relating the estimation error with the LOA satel-

lite number, it shows that estimation becomes more accurate as the LOS satellite

number becomes greater. Based on the pressure-height physical law, we take the

first derivative of the barometer and use pressure variance to detect floor transition.

The handover algorithms are used to automatically detect intruder and multi-floor

transition, and the experiment show that the algorithm performs well in indoor

building and for any type of transport modes(stairs and elevators). To precisely

identify which floor, we also consider noise, device bias and time difference in our

pressure-height model.

We also present an approach to improve the performance of a 3D RSS-based

geolocation system by using barometer in smart devices. A modified 3D path loss

model is presented which brings penalty of ceilings into consideration. Based on the

pressure-height physical law, we characterize the vertical estimation and fit it into a
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Gaussian Distribution. Calculation of 3D CRLB is provided as an expansion of the

original 2D CRLB for performance evaluation. Moreover, We design 3 scenarios of

different floors with various AP deployment strategies and conduct series of experi-

ments for comparison. The improvement is specified with contour and CDFs of the

scenarios and quantified from a comparison table.

Future work includes: To expand our system to other kind of building, such

as hospital, shopping mall, airport, and develop a more general solution. Fully

combining the intruder detection, floor transition detection and floor identification

technique, and try to provide a continuous indoor map selection system. Refine our

pressure-height model, and bring up a precise time difference model. Integrate our

technique into 2D indoor localization system to provide 3D localization. To expand

our system to buildings with more complicated architecture, which will make the

research more related to the real world. Fully combining the barometer and RSS

signal should also be explored, so that smaller error can be reached. It is also feasi-

ble if we integrate our technique with other sensors in smart phones to find if more

improvement can be reached.
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Chapter 7

Appendix

7.1 Selected Matlab Code

c l e a r a l l ; c l o s e a l l ;

%% bas i c path l o s s model

alpha1 =4; % power g r i d i a n t

lpmax=108; % max path l o s s in dB

sigma1 =8; % standard dev i a t i on o f shadow fad ing

f =2.4 e9 ; % t ransmi t t i ng f requency

c=3e8 ; % speed o f l i g h t

lamda=c/ f ; % wave length

l 0 =40; % 1 s t meter path l o s s

pace =1;

x1=0;y1=0;

x2=0;y2=30;

x3=30;y3=30;

x4=30;y4=0;
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x=0: pace : 3 0 ; y=0: pace : 3 0 ;

l 1=length ( x)−2;

r1=ze ro s ( l1 , l 1 ) ;

r2=ze ro s ( l1 , l 1 ) ;

r3=ze ro s ( l1 , l 1 ) ;

f o r i =1:1 : l 1

f o r j =1:1 : l 1

r1 ( i , j )= s q r t ( ( x ( i +1)−x1)ˆ2+(y ( j+1)−y1 ) ˆ 2 ) ;

r2 ( i , j )= s q r t ( ( x ( i +1)−x2)ˆ2+(y ( j+1)−y2 ) ˆ 2 ) ;

r3 ( i , j )= s q r t ( ( x ( i +1)−x3)ˆ2+(y ( j+1)−y3 ) ˆ 2 ) ;

end

end

lp1=l 0+max(10∗ alpha1∗ l og10 ( r1 ) ,− l 0 ) ;

lp2=l 0+max(10∗ alpha1∗ l og10 ( r2 ) ,− l 0 ) ;

lp3=l 0+max(10∗ alpha1∗ l og10 ( r3 ) ,− l 0 ) ;

pc1=1−0.5∗ e r f c ( ( lpmax−lp1 )/ s q r t (2)/ sigma1 ) ;

pc2=1−0.5∗ e r f c ( ( lpmax−lp2 )/ s q r t (2)/ sigma1 ) ;

pc3=1−0.5∗ e r f c ( ( lpmax−lp3 )/ s q r t (2)/ sigma1 ) ;

%% Coverage Proba b i l i t y

% 0 AP i s covered

p0=(1−pc1 ).∗(1− pc2 ).∗(1− pc3 ) ;

% 1 a c c e s s po int i s covered

p11=pc1 .∗(1−pc2 ).∗(1− pc3 ) ;

p12=pc2 .∗(1−pc1 ).∗(1− pc3 ) ;

p13=pc3 .∗(1−pc1 ).∗(1− pc2 ) ;

p1=p11+p12+p13 ;
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% 2 a c c e s s po in t s are covered

p21=pc1 .∗ pc2 .∗(1−pc3 ) ;

p22=pc2 .∗ pc3 .∗(1−pc1 ) ;

p23=pc1 .∗ pc3 .∗(1−pc2 ) ;

p2=p21+p22+p23 ;

% 3 a c c e s s po in t s are covered

p3=pc1 .∗ pc2 .∗ pc3 ;

pcheck=p0+p1+p2+p3 ;

%% Cramer Rao Lower Bound f o r 2 APs

CRLB21=ze ro s ( l1 , l 1 ) ;

CRLB22=ze ro s ( l1 , l 1 ) ;

f o r i =1:1 : l 1

f o r j =1:1 : l 1

H21=[(x ( i +1)−x1 )/ r1 ( i , j ) ˆ2 , ( y ( j+1)−y1 )/ r1 ( i , j ) ˆ 2 ;

( x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H22=[(x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j ) ˆ 2 ;

( x ( i +1)−x3 )/ r3 ( i , j ) ˆ2 , ( y ( j+1)−y3 )/ r3 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

covr21=(sigma1 ˆ2)∗ (H21 ’∗H21)ˆ−1;

covr22=(sigma1 ˆ2)∗ (H22 ’∗H22)ˆ−1;

CRLB21( i , j )= s q r t ( covr21 (1 ,1)+ covr21 ( 2 , 2 ) ) ;

CRLB22( i , j )= s q r t ( covr22 (1 ,1)+ covr22 ( 2 , 2 ) ) ;

end

end

CRLB2=(CRLB21+CRLB22) . ∗ pace . / 2 ;

% f i g u r e (1 )
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% [C, h]= contour f ( x ( 2 : l 1 +1) ,y ( 2 : l 1 +1) ,CRLB21 , 8 ) ;

% c l a b e l (C, h ) ;

%% Cramer Rao Lower Bound f o r 4 APs

CRLB3=ze ro s ( l1 , l 1 ) ;

f o r i =1:1 : l 1

f o r j =1:1 : l 1

H31=[(x ( i +1)−x1 )/ r1 ( i , j ) ˆ2 , ( y ( j+1)−y1 )/ r1 ( i , j ) ˆ 2 ;

( x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j ) ˆ 2 ;

( x ( i +1)−x3 )/ r3 ( i , j ) ˆ2 , ( y ( j+1)−y3 )/ r3 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

covr31=sigma1 ˆ2∗(H31 ’∗H31)ˆ−1;

CRLB3( i , j )= s q r t ( covr31 (1 ,1)+ covr31 ( 2 , 2 ) ) ;

end

end

% f i g u r e (2 )

% [C, h]= contour f ( x ( 2 : l 1 +1) ,y ( 2 : l 1 +1) ,CRLB3, 8 ) ;

% c l a b e l (C, h ) ;

CRLB total 3=CRLB2.∗ p2+CRLB3.∗ p3 ;

f i g u r e (1 )

[C, h]= contour f ( x ( 2 : l 1 +1) ,y ( 2 : l 1 +1) , CRLB total 3 , 8 ) ;

c l a b e l (C, h ) ;

CRLB total 3 re=reshape ( CRLB total 3 , 1 , l 1 ∗ l 1 ) ;

%% Four

%% bas i c path l o s s model

alpha1 =4; % power g r i d i a n t

lpmax=108; % max path l o s s in dB

sigma1 =8; % standard dev i a t i on o f shadow fad ing
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f =2.4 e9 ; % t ransmi t t i ng f requency

c=3e8 ; % speed o f l i g h t

lamda=c/ f ; % wave length

l 0 =40; % 1 s t meter path l o s s

x1=0;y1=0;

x2=0;y2=30;

x3=30;y3=30;

x4=30;y4=0;

x=0: pace : 3 0 ; y=0: pace : 3 0 ;

l 1=length ( x)−2;

r1=ze ro s ( l1 , l 1 ) ;

r2=ze ro s ( l1 , l 1 ) ;

r3=ze ro s ( l1 , l 1 ) ;

r4=ze ro s ( l1 , l 1 ) ;

f o r i =1:1 : l 1

f o r j =1:1 : l 1

r1 ( i , j )= s q r t ( ( x ( i +1)−x1)ˆ2+(y ( j+1)−y1 ) ˆ 2 ) ;

r2 ( i , j )= s q r t ( ( x ( i +1)−x2)ˆ2+(y ( j+1)−y2 ) ˆ 2 ) ;

r3 ( i , j )= s q r t ( ( x ( i +1)−x3)ˆ2+(y ( j+1)−y3 ) ˆ 2 ) ;

r4 ( i , j )= s q r t ( ( x ( i +1)−x4)ˆ2+(y ( j+1)−y4 ) ˆ 2 ) ;

end

end

lp1=l 0+max(10∗ alpha1∗ l og10 ( r1 ) ,− l 0 ) ;

lp2=l 0+max(10∗ alpha1∗ l og10 ( r2 ) ,− l 0 ) ;

lp3=l 0+max(10∗ alpha1∗ l og10 ( r3 ) ,− l 0 ) ;

lp4=l 0+max(10∗ alpha1∗ l og10 ( r4 ) ,− l 0 ) ;
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pc1=1−0.5∗ e r f c ( ( lpmax−lp1 )/ s q r t (2)/ sigma1 ) ;

pc2=1−0.5∗ e r f c ( ( lpmax−lp2 )/ s q r t (2)/ sigma1 ) ;

pc3=1−0.5∗ e r f c ( ( lpmax−lp3 )/ s q r t (2)/ sigma1 ) ;

pc4=1−0.5∗ e r f c ( ( lpmax−lp4 )/ s q r t (2)/ sigma1 ) ;

%% Coverage Proba b i l i t y

% 0 AP i s covered

p0=(1−pc1 ).∗(1− pc2 ).∗(1− pc3 ).∗(1− pc4 ) ;

% 1 a c c e s s po int i s covered

p11=pc1 .∗(1−pc2 ).∗(1− pc3 ).∗(1− pc4 ) ;

p12=pc2 .∗(1−pc1 ).∗(1− pc3 ).∗(1− pc4 ) ;

p13=pc3 .∗(1−pc1 ).∗(1− pc2 ).∗(1− pc4 ) ;

p14=pc4 .∗(1−pc1 ).∗(1− pc2 ).∗(1− pc3 ) ;

p1=p11+p12+p13+p14 ;

% 2 a c c e s s po in t s are covered

p21=pc1 .∗ pc2 .∗(1−pc3 ).∗(1− pc4 ) ;

p22=pc1 .∗ pc3 .∗(1−pc2 ).∗(1− pc4 ) ;

p23=pc1 .∗ pc4 .∗(1−pc2 ).∗(1− pc3 ) ;

p24=pc2 .∗ pc3 .∗(1−pc1 ).∗(1− pc4 ) ;

p25=pc2 .∗ pc4 .∗(1−pc1 ).∗(1− pc3 ) ;

p26=pc3 .∗ pc4 .∗(1−pc1 ).∗(1− pc2 ) ;

p2=p21+p22+p23+p24+p25+p26 ;

% 3 a c c e s s po in t s are covered

p34=pc1 .∗ pc2 .∗ pc3 .∗(1−pc4 ) ;

p33=pc1 .∗ pc2 .∗ pc4 .∗(1−pc3 ) ;

p32=pc1 .∗ pc3 .∗ pc4 .∗(1−pc2 ) ;

p31=pc2 .∗ pc3 .∗ pc4 .∗(1−pc1 ) ;
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p3=p31+p32+p33+p34 ;

% 4 a c c e s s po in t s are covered

p4=pc1 .∗ pc2 .∗ pc3 .∗ pc4 ;

%% Cramer Rao Lower Bound f o r 1 AP

% CRLB11=( log (10)∗ sigma1 /(10∗ alpha1 ) )∗ r1 ;

% CRLB12=log (10)∗ sigma1 /(10∗ alpha1 )∗ r2 ;

% CRLB13=log (10)∗ sigma1 /(10∗ alpha1 )∗ r3 ; ;

% CRLB14=log (10)∗ sigma1 /(10∗ alpha1 )∗ r4 ;

% CRLB1=(CRLB11+CRLB12+CRLB13+CRLB14 ) . / 4 ;

% f i g u r e (1 )

% [C, h]= contour f ( x ( 2 : l 1 +1) ,y ( 2 : l 1 +1) ,CRLB1, 8 ) ;

% c l a b e l (C, h ) ;

%% Cramer Rao Lower Bound f o r 2 APs

CRLB21=ze ro s ( l1 , l 1 ) ;

CRLB22=ze ro s ( l1 , l 1 ) ;

CRLB23=ze ro s ( l1 , l 1 ) ;

CRLB24=ze ro s ( l1 , l 1 ) ;

f o r i =1:1 : l 1

f o r j =1:1 : l 1

H21=[(x ( i +1)−x1 )/ r1 ( i , j ) ˆ2 , ( y ( j+1)−y1 )/ r1 ( i , j ) ˆ 2 ;

( x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H22=[(x ( i +1)−x1 )/ r1 ( i , j ) ˆ2 , ( y ( j+1)−y1 )/ r1 ( i , j ) ˆ 2 ;

( x ( i +1)−x4 )/ r4 ( i , j ) ˆ2 , ( y ( j+1)−y4 )/ r4 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H23=[(x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j ) ˆ 2 ;
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( x ( i +1)−x3 )/ r3 ( i , j ) ˆ2 , ( y ( j+1)−y3 )/ r3 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H24=[(x ( i +1)−x3 )/ r3 ( i , j ) ˆ2 , ( y ( j+1)−y3 )/ r3 ( i , j ) ˆ 2 ;

( x ( i +1)−x4 )/ r4 ( i , j ) ˆ2 , ( y ( j+1)−y4 )/ r4 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

covr21=(sigma1 ˆ2)∗ (H21 ’∗H21)ˆ−1;

covr22=(sigma1 ˆ2)∗ (H22 ’∗H22)ˆ−1;

covr23=(sigma1 ˆ2)∗ (H23 ’∗H23)ˆ−1;

covr24=(sigma1 ˆ2)∗ (H24 ’∗H24)ˆ−1;

CRLB21( i , j )= s q r t ( covr21 (1 ,1)+ covr21 ( 2 , 2 ) ) ;

CRLB22( i , j )= s q r t ( covr22 (1 ,1)+ covr22 ( 2 , 2 ) ) ;

CRLB23( i , j )= s q r t ( covr23 (1 ,1)+ covr23 ( 2 , 2 ) ) ;

CRLB24( i , j )= s q r t ( covr24 (1 ,1)+ covr24 ( 2 , 2 ) ) ;

end

end

CRLB2=(CRLB21+CRLB22+CRLB23+CRLB24) . ∗ pace . / 4 ;

% f i g u r e (1 )

% [C, h]= contour f ( x ( 2 : l 1 +1) ,y ( 2 : l 1 +1) ,CRLB21 , 8 ) ;

% c l a b e l (C, h ) ;

%% Cramer Rao Lower Bound f o r 3 APs

CRLB31=ze ro s ( l1 , l 1 ) ;

CRLB32=ze ro s ( l1 , l 1 ) ;

CRLB33=ze ro s ( l1 , l 1 ) ;

CRLB34=ze ro s ( l1 , l 1 ) ;

f o r i =1:1 : l 1

f o r j =1:1 : l 1

H31=[(x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j ) ˆ 2 ;

( x ( i +1)−x3 )/ r3 ( i , j ) ˆ2 , ( y ( j+1)−y3 )/ r3 ( i , j ) ˆ 2 ;
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( x ( i +1)−x4 )/ r4 ( i , j ) ˆ2 , ( y ( j+1)−y4 )/ r4 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H32=[(x ( i +1)−x1 )/ r1 ( i , j ) ˆ2 , ( y ( j+1)−y1 )/ r1 ( i , j ) ˆ 2 ;

( x ( i +1)−x3 )/ r3 ( i , j ) ˆ2 , ( y ( j+1)−y3 )/ r3 ( i , j ) ˆ 2 ;

( x ( i +1)−x4 )/ r4 ( i , j ) ˆ2 , ( y ( j+1)−y4 )/ r4 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H33=[(x ( i +1)−x1 )/ r1 ( i , j ) ˆ2 , ( y ( j+1)−y1 )/ r1 ( i , j ) ˆ 2 ;

( x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j ) ˆ 2 ;

( x ( i +1)−x4 )/ r4 ( i , j ) ˆ2 , ( y ( j+1)−y4 )/ r4 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H34=[(x ( i +1)−x1 )/ r1 ( i , j ) ˆ2 , ( y ( j+1)−y1 )/ r1 ( i , j ) ˆ 2 ;

( x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j ) ˆ 2 ;

( x ( i +1)−x3 )/ r3 ( i , j ) ˆ2 , ( y ( j+1)−y3 )/ r3 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

covr31=sigma1 ˆ2∗(H31 ’∗H31)ˆ−1;

covr32=sigma1 ˆ2∗(H32 ’∗H32)ˆ−1;

covr33=sigma1 ˆ2∗(H33 ’∗H33)ˆ−1;

covr34=sigma1 ˆ2∗(H34 ’∗H34)ˆ−1;

CRLB31( i , j )= s q r t ( covr31 (1 ,1)+ covr31 ( 2 , 2 ) ) ;

CRLB32( i , j )= s q r t ( covr32 (1 ,1)+ covr32 ( 2 , 2 ) ) ;

CRLB33( i , j )= s q r t ( covr33 (1 ,1)+ covr33 ( 2 , 2 ) ) ;

CRLB34( i , j )= s q r t ( covr34 (1 ,1)+ covr34 ( 2 , 2 ) ) ;

end

end

CRLB3=(CRLB31+CRLB32+CRLB33+CRLB34 ) . / 4 ;

% f i g u r e (2 )

% [C, h]= contour f ( x ( 2 : l 1 +1) ,y ( 2 : l 1 +1) ,CRLB3, 8 ) ;

% c l a b e l (C, h ) ;

%% Cramer Rao Lower Bound f o r 4 APs

CRLB4=ze ro s ( l1 , l 1 ) ;
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f o r i =1:1 : l 1

f o r j =1:1 : l 1

H4=[(x ( i +1)−x1 )/ r1 ( i , j ) ˆ2 , ( y ( j+1)−y1 )/ r1 ( i , j ) ˆ 2 ;

( x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j ) ˆ 2 ;

( x ( i +1)−x3 )/ r3 ( i , j ) ˆ2 , ( y ( j+1)−y3 )/ r3 ( i , j ) ˆ 2 ;

( x ( i +1)−x4 )/ r4 ( i , j ) ˆ2 , ( y ( j+1)−y4 )/ r4 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

covr4=sigma1 ˆ2∗(H4’∗H4)ˆ−1;

CRLB4( i , j )= s q r t ( covr4 (1 ,1)+ covr4 ( 2 , 2 ) ) ;

end

end

% f i g u r e (3 )

% [C, h]= contour f ( x ( 2 : l 1 +1) ,y ( 2 : l 1 +1) ,CRLB4, 8 ) ;

% c l a b e l (C, h ) ;

CRLB total 4=CRLB2.∗ p2+CRLB3.∗ p3+CRLB4.∗ p4 ;

f i g u r e (2 )

[C, h]= contour f ( x ( 2 : l 1 +1) ,y ( 2 : l 1 +1) , CRLB total 4 , 8 ) ;

c l a b e l (C, h ) ;

CRLB total 4 re=reshape ( CRLB total 4 , 1 , l 1 ∗ l 1 ) ;

%% Five

%% bas i c path l o s s model

alpha1 =4; % power g r i d i a n t

lpmax=108; % max path l o s s in dB

sigma1 =8; % standard dev i a t i on o f shadow fad ing

f =2.4 e9 ; % t ransmi t t i ng f requency

c=3e8 ; % speed o f l i g h t

lamda=c/ f ; % wave length
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l 0 =40; % 1 s t meter path l o s s

x1=0;y1=0;

x2=0;y2=30;

x3=30;y3=30;

x4=30;y4=0;

x5=15;y5=15;

x=0: pace : 3 0 ; y=0: pace : 3 0 ;

l 1=length ( x)−2;

r1=ze ro s ( l1 , l 1 ) ;

r2=ze ro s ( l1 , l 1 ) ;

r3=ze ro s ( l1 , l 1 ) ;

r4=ze ro s ( l1 , l 1 ) ;

r5=ze ro s ( l1 , l 1 ) ;

f o r i =1:1 : l 1

f o r j =1:1 : l 1

r1 ( i , j )= s q r t ( ( x ( i +1)−x1)ˆ2+(y ( j+1)−y1 ) ˆ 2 ) ;

r2 ( i , j )= s q r t ( ( x ( i +1)−x2)ˆ2+(y ( j+1)−y2 ) ˆ 2 ) ;

r3 ( i , j )= s q r t ( ( x ( i +1)−x3)ˆ2+(y ( j+1)−y3 ) ˆ 2 ) ;

r4 ( i , j )= s q r t ( ( x ( i +1)−x4)ˆ2+(y ( j+1)−y4 ) ˆ 2 ) ;

r5 ( i , j )= s q r t ( ( x ( i +1)−x5)ˆ2+(y ( j+1)−y5 ) ˆ 2 ) ;

i f r5 ( i , j )==0

r5 ( i , j )=1;

end

end

end

lp1=l 0+max(10∗ alpha1∗ l og10 ( r1 ) ,− l 0 ) ;
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lp2=l 0+max(10∗ alpha1∗ l og10 ( r2 ) ,− l 0 ) ;

lp3=l 0+max(10∗ alpha1∗ l og10 ( r3 ) ,− l 0 ) ;

lp4=l 0+max(10∗ alpha1∗ l og10 ( r4 ) ,− l 0 ) ;

lp5=l 0+max(10∗ alpha1∗ l og10 ( r5 ) ,− l 0 ) ;

pc1=1−0.5∗ e r f c ( ( lpmax−lp1 )/ s q r t (2)/ sigma1 ) ;

pc2=1−0.5∗ e r f c ( ( lpmax−lp2 )/ s q r t (2)/ sigma1 ) ;

pc3=1−0.5∗ e r f c ( ( lpmax−lp3 )/ s q r t (2)/ sigma1 ) ;

pc4=1−0.5∗ e r f c ( ( lpmax−lp4 )/ s q r t (2)/ sigma1 ) ;

pc5=1−0.5∗ e r f c ( ( lpmax−lp5 )/ s q r t (2)/ sigma1 ) ;

%% Coverage Proba b i l i t y

% 0 AP i s covered

p0=(1−pc1 ).∗(1− pc2 ).∗(1− pc3 ).∗(1− pc4 ).∗(1− pc5 ) ;

% 1 a c c e s s po int i s covered

p11=pc1 .∗(1−pc2 ).∗(1− pc3 ).∗(1− pc4 ).∗(1− pc5 ) ;

p12=pc2 .∗(1−pc1 ).∗(1− pc3 ).∗(1− pc4 ).∗(1− pc5 ) ;

p13=pc3 .∗(1−pc1 ).∗(1− pc2 ).∗(1− pc4 ).∗(1− pc5 ) ;

p14=pc4 .∗(1−pc1 ).∗(1− pc2 ).∗(1− pc3 ).∗(1− pc5 ) ;

p15=pc5 .∗(1−pc1 ).∗(1− pc2 ).∗(1− pc3 ).∗(1− pc4 ) ;

p1=p11+p12+p13+p14+p15 ;

% 2 a c c e s s po in t s are covered

p21=pc1 .∗ pc2 .∗(1−pc3 ).∗(1− pc4 ).∗(1− pc5 ) ;

p22=pc1 .∗ pc3 .∗(1−pc2 ).∗(1− pc4 ).∗(1− pc5 ) ;

p23=pc1 .∗ pc4 .∗(1−pc2 ).∗(1− pc3 ).∗(1− pc5 ) ;

p24=pc1 .∗ pc5 .∗(1−pc2 ).∗(1− pc3 ).∗(1− pc4 ) ;

p25=pc2 .∗ pc3 .∗(1−pc1 ).∗(1− pc4 ).∗(1− pc5 ) ;

p26=pc2 .∗ pc4 .∗(1−pc1 ).∗(1− pc3 ).∗(1− pc5 ) ;
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p27=pc2 .∗ pc5 .∗(1−pc1 ).∗(1− pc3 ).∗(1− pc4 ) ;

p28=pc3 .∗ pc4 .∗(1−pc1 ).∗(1− pc2 ).∗(1− pc5 ) ;

p29=pc3 .∗ pc5 .∗(1−pc1 ).∗(1− pc2 ).∗(1− pc4 ) ;

p210=pc4 .∗ pc5 .∗(1−pc1 ).∗(1− pc2 ).∗(1− pc3 ) ;

p2=p21+p22+p23+p24+p25+p26+p27+p28+p29+p210 ;

% 3 a c c e s s po in t s are covered

p31=pc1 .∗ pc2 .∗ pc3 .∗(1−pc4 ).∗(1− pc5 ) ;

p32=pc1 .∗ pc2 .∗ pc4 .∗(1−pc3 ).∗(1− pc5 ) ;

p33=pc1 .∗ pc2 .∗ pc5 .∗(1−pc3 ).∗(1− pc4 ) ;

p34=pc1 .∗ pc3 .∗ pc4 .∗(1−pc2 ).∗(1− pc5 ) ;

p35=pc1 .∗ pc3 .∗ pc5 .∗(1−pc2 ).∗(1− pc4 ) ;

p36=pc1 .∗ pc4 .∗ pc5 .∗(1−pc2 ).∗(1− pc3 ) ;

p37=pc2 .∗ pc3 .∗ pc4 .∗(1−pc1 ).∗(1− pc5 ) ;

p38=pc2 .∗ pc3 .∗ pc5 .∗(1−pc1 ).∗(1− pc4 ) ;

p39=pc2 .∗ pc4 .∗ pc5 .∗(1−pc1 ).∗(1− pc3 ) ;

p310=pc3 .∗ pc4 .∗ pc5 .∗(1−pc1 ).∗(1− pc2 ) ;

p3=p31+p32+p33+p34+p35+p36+p37+p38+p39+p310 ;

% 4 a c c e s s po in t s are covered

p41=pc2 .∗ pc3 .∗ pc4 .∗ pc5 .∗(1−pc1 ) ;

p42=pc1 .∗ pc3 .∗ pc4 .∗ pc5 .∗(1−pc2 ) ;

p43=pc1 .∗ pc2 .∗ pc4 .∗ pc5 .∗(1−pc3 ) ;

p44=pc1 .∗ pc2 .∗ pc3 .∗ pc5 .∗(1−pc4 ) ;

p45=pc1 .∗ pc2 .∗ pc3 .∗ pc4 .∗(1−pc5 ) ;

p4=p41+p42+p43+p44+p45 ;

% 5 a c c e s s po in t s are covered

p5=pc1 .∗ pc2 .∗ pc3 .∗ pc4 .∗ pc5 ;
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pcheck=p0+p1+p2+p3+p4+p5 ;

%% Cramer Rao Lower Bound f o r 1 AP

% CRLB11=( log (10)∗ sigma1 /(10∗ alpha1 ) )∗ r1 ;

% CRLB12=log (10)∗ sigma1 /(10∗ alpha1 )∗ r2 ;

% CRLB13=log (10)∗ sigma1 /(10∗ alpha1 )∗ r3 ; ;

% CRLB14=log (10)∗ sigma1 /(10∗ alpha1 )∗ r4 ;

% CRLB1=(CRLB11+CRLB12+CRLB13+CRLB14 ) . / 4 ;

% f i g u r e (1 )

% [C, h]= contour f ( x ( 2 : l 1 +1) ,y ( 2 : l 1 +1) ,CRLB1, 8 ) ;

% c l a b e l (C, h ) ;

%% Cramer Rao Lower Bound f o r 2 APs

CRLB21=ze ro s ( l1 , l 1 ) ;

CRLB23=ze ro s ( l1 , l 1 ) ;

CRLB25=ze ro s ( l1 , l 1 ) ;

CRLB28=ze ro s ( l1 , l 1 ) ;

f o r i =1:1 : l 1

f o r j =1:1 : l 1

H21=[(x ( i +1)−x1 )/ r1 ( i , j ) ˆ2 , ( y ( j+1)−y1 )/ r1 ( i , j ) ˆ 2 ;

( x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H23=[(x ( i +1)−x1 )/ r1 ( i , j ) ˆ2 , ( y ( j+1)−y1 )/ r1 ( i , j ) ˆ 2 ;

( x ( i +1)−x4 )/ r4 ( i , j ) ˆ2 , ( y ( j+1)−y4 )/ r4 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H25=[(x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j ) ˆ 2 ;

( x ( i +1)−x3 )/ r3 ( i , j ) ˆ2 , ( y ( j+1)−y3 )/ r3 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H28=[(x ( i +1)−x3 )/ r3 ( i , j ) ˆ2 , ( y ( j+1)−y3 )/ r3 ( i , j ) ˆ 2 ;

68



( x ( i +1)−x4 )/ r4 ( i , j ) ˆ2 , ( y ( j+1)−y4 )/ r4 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

covr21=(sigma1 ˆ2)∗ (H21 ’∗H21)ˆ−1;

covr23=(sigma1 ˆ2)∗ (H23 ’∗H23)ˆ−1;

covr25=(sigma1 ˆ2)∗ (H25 ’∗H25)ˆ−1;

covr28=(sigma1 ˆ2)∗ (H28 ’∗H28)ˆ−1;

CRLB21( i , j )= s q r t ( covr21 (1 ,1)+ covr21 ( 2 , 2 ) ) ;

CRLB23( i , j )= s q r t ( covr23 (1 ,1)+ covr23 ( 2 , 2 ) ) ;

CRLB25( i , j )= s q r t ( covr25 (1 ,1)+ covr25 ( 2 , 2 ) ) ;

CRLB28( i , j )= s q r t ( covr28 (1 ,1)+ covr28 ( 2 , 2 ) ) ;

end

end

CRLB2=(CRLB21+CRLB23+CRLB25+CRLB28) . ∗ pace . / 4 ;

% f i g u r e (1 )

% [C, h]= contour f ( x ( 2 : l 1 +1) ,y ( 2 : l 1 +1) ,CRLB2, 8 ) ;

% c l a b e l (C, h ) ;

%% Cramer Rao Lower Bound f o r 3 APs

CRLB31=ze ro s ( l1 , l 1 ) ;

CRLB32=ze ro s ( l1 , l 1 ) ;

CRLB33=ze ro s ( l1 , l 1 ) ;

CRLB34=ze ro s ( l1 , l 1 ) ;

CRLB36=ze ro s ( l1 , l 1 ) ;

CRLB37=ze ro s ( l1 , l 1 ) ;

CRLB38=ze ro s ( l1 , l 1 ) ;

CRLB310=ze ro s ( l1 , l 1 ) ;

f o r i =1:1 : l 1

f o r j =1:1 : l 1
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H31=[(x ( i +1)−x1 )/ r1 ( i , j ) ˆ2 , ( y ( j+1)−y1 )/ r1 ( i , j ) ˆ 2 ;

( x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j ) ˆ 2 ;

( x ( i +1)−x3 )/ r3 ( i , j ) ˆ2 , ( y ( j+1)−y3 )/ r3 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H32=[(x ( i +1)−x1 )/ r1 ( i , j ) ˆ2 , ( y ( j+1)−y1 )/ r1 ( i , j ) ˆ 2 ;

( x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j ) ˆ 2 ;

( x ( i +1)−x4 )/ r4 ( i , j ) ˆ2 , ( y ( j+1)−y4 )/ r4 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H33=[(x ( i +1)−x1 )/ r1 ( i , j ) ˆ2 , ( y ( j+1)−y1 )/ r1 ( i , j ) ˆ 2 ;

( x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j ) ˆ 2 ;

( x ( i +1)−x5 )/ r5 ( i , j ) ˆ2 , ( y ( j+1)−y5 )/ r5 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H34=[(x ( i +1)−x1 )/ r1 ( i , j ) ˆ2 , ( y ( j+1)−y1 )/ r1 ( i , j ) ˆ 2 ;

( x ( i +1)−x3 )/ r3 ( i , j ) ˆ2 , ( y ( j+1)−y3 )/ r3 ( i , j ) ˆ 2 ;

( x ( i +1)−x4 )/ r4 ( i , j ) ˆ2 , ( y ( j+1)−y4 )/ r4 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H36=[(x ( i +1)−x1 )/ r1 ( i , j ) ˆ2 , ( y ( j+1)−y1 )/ r1 ( i , j ) ˆ 2 ;

( x ( i +1)−x4 )/ r4 ( i , j ) ˆ2 , ( y ( j+1)−y4 )/ r4 ( i , j ) ˆ 2 ;

( x ( i +1)−x5 )/ r5 ( i , j ) ˆ2 , ( y ( j+1)−y5 )/ r5 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H37=[(x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j ) ˆ 2 ;

( x ( i +1)−x3 )/ r3 ( i , j ) ˆ2 , ( y ( j+1)−y3 )/ r3 ( i , j ) ˆ 2 ;

( x ( i +1)−x4 )/ r4 ( i , j ) ˆ2 , ( y ( j+1)−y4 )/ r4 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H38=[(x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j ) ˆ 2 ;

( x ( i +1)−x3 )/ r3 ( i , j ) ˆ2 , ( y ( j+1)−y3 )/ r3 ( i , j ) ˆ 2 ;

( x ( i +1)−x5 )/ r5 ( i , j ) ˆ2 , ( y ( j+1)−y5 )/ r5 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H310=[(x ( i +1)−x3 )/ r3 ( i , j ) ˆ2 , ( y ( j+1)−y3 )/ r3 ( i , j ) ˆ 2 ;

( x ( i +1)−x4 )/ r4 ( i , j ) ˆ2 , ( y ( j+1)−y4 )/ r4 ( i , j ) ˆ 2 ;

( x ( i +1)−x5 )/ r5 ( i , j ) ˆ2 , ( y ( j+1)−y5 )/ r5 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

covr31=sigma1 ˆ2∗(H31 ’∗H31)ˆ−1;

covr32=sigma1 ˆ2∗(H32 ’∗H32)ˆ−1;
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covr33=sigma1 ˆ2∗(H33 ’∗H33)ˆ−1;

covr34=sigma1 ˆ2∗(H34 ’∗H34)ˆ−1;

covr36=sigma1 ˆ2∗(H36 ’∗H36)ˆ−1;

covr37=sigma1 ˆ2∗(H37 ’∗H37)ˆ−1;

covr38=sigma1 ˆ2∗(H38 ’∗H38)ˆ−1;

covr310=sigma1 ˆ2∗(H310 ’∗H310)ˆ−1;

CRLB31( i , j )= s q r t ( covr31 (1 ,1)+ covr31 ( 2 , 2 ) ) ;

CRLB32( i , j )= s q r t ( covr32 (1 ,1)+ covr32 ( 2 , 2 ) ) ;

CRLB33( i , j )= s q r t ( covr33 (1 ,1)+ covr33 ( 2 , 2 ) ) ;

CRLB34( i , j )= s q r t ( covr34 (1 ,1)+ covr34 ( 2 , 2 ) ) ;

CRLB36( i , j )= s q r t ( covr36 (1 ,1)+ covr36 ( 2 , 2 ) ) ;

CRLB37( i , j )= s q r t ( covr37 (1 ,1)+ covr37 ( 2 , 2 ) ) ;

CRLB38( i , j )= s q r t ( covr38 (1 ,1)+ covr38 ( 2 , 2 ) ) ;

CRLB310( i , j )= s q r t ( covr310 (1 ,1)+ covr310 ( 2 , 2 ) ) ;

end

end

CRLB3=(CRLB31+CRLB32+CRLB33+CRLB34+CRLB36+CRLB37+CRLB38+CRLB310 ) . / 8 ;

% f i g u r e (2 )

% [C, h]= contour f ( x ( 2 : l 1 +1) ,y ( 2 : l 1 +1) ,CRLB3, 8 ) ;

% c l a b e l (C, h ) ;

%% Cramer Rao Lower Bound f o r 4 APs

CRLB41=ze ro s ( l1 , l 1 ) ;

CRLB42=ze ro s ( l1 , l 1 ) ;

CRLB43=ze ro s ( l1 , l 1 ) ;

CRLB44=ze ro s ( l1 , l 1 ) ;

CRLB45=ze ro s ( l1 , l 1 ) ;
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f o r i =1:1 : l 1

f o r j =1:1 : l 1

H41=[(x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j ) ˆ 2 ;

( x ( i +1)−x3 )/ r3 ( i , j ) ˆ2 , ( y ( j+1)−y3 )/ r3 ( i , j ) ˆ 2 ;

( x ( i +1)−x4 )/ r4 ( i , j ) ˆ2 , ( y ( j+1)−y4 )/ r4 ( i , j )ˆ2

( x ( i +1)−x5 )/ r5 ( i , j ) ˆ2 , ( y ( j+1)−y5 )/ r5 ( i , j )ˆ2 ; ]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H42=[(x ( i +1)−x1 )/ r1 ( i , j ) ˆ2 , ( y ( j+1)−y1 )/ r1 ( i , j ) ˆ 2 ;

( x ( i +1)−x3 )/ r3 ( i , j ) ˆ2 , ( y ( j+1)−y3 )/ r3 ( i , j ) ˆ 2 ;

( x ( i +1)−x4 )/ r4 ( i , j ) ˆ2 , ( y ( j+1)−y4 )/ r4 ( i , j ) ˆ 2 ;

( x ( i +1)−x5 )/ r5 ( i , j ) ˆ2 , ( y ( j+1)−y5 )/ r5 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H43=[(x ( i +1)−x1 )/ r1 ( i , j ) ˆ2 , ( y ( j+1)−y1 )/ r1 ( i , j ) ˆ 2 ;

( x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j ) ˆ 2 ;

( x ( i +1)−x4 )/ r4 ( i , j ) ˆ2 , ( y ( j+1)−y4 )/ r4 ( i , j ) ˆ 2 ;

( x ( i +1)−x5 )/ r5 ( i , j ) ˆ2 , ( y ( j+1)−y5 )/ r5 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H44=[(x ( i +1)−x1 )/ r1 ( i , j ) ˆ2 , ( y ( j+1)−y1 )/ r1 ( i , j ) ˆ 2 ;

( x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j ) ˆ 2 ;

( x ( i +1)−x3 )/ r3 ( i , j ) ˆ2 , ( y ( j+1)−y3 )/ r3 ( i , j ) ˆ 2 ;

( x ( i +1)−x5 )/ r5 ( i , j ) ˆ2 , ( y ( j+1)−y5 )/ r5 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

H45=[(x ( i +1)−x1 )/ r1 ( i , j ) ˆ2 , ( y ( j+1)−y1 )/ r1 ( i , j ) ˆ 2 ;

( x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j ) ˆ 2 ;

( x ( i +1)−x3 )/ r3 ( i , j ) ˆ2 , ( y ( j+1)−y3 )/ r3 ( i , j ) ˆ 2 ;

( x ( i +1)−x4 )/ r4 ( i , j ) ˆ2 , ( y ( j+1)−y4 )/ r4 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

covr41=sigma1 ˆ2∗(H41 ’∗H41)ˆ−1;

covr42=sigma1 ˆ2∗(H42 ’∗H42)ˆ−1;

covr43=sigma1 ˆ2∗(H43 ’∗H43)ˆ−1;

covr44=sigma1 ˆ2∗(H44 ’∗H44)ˆ−1;
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covr45=sigma1 ˆ2∗(H45 ’∗H45)ˆ−1;

CRLB41( i , j )= s q r t ( covr41 (1 ,1)+ covr41 ( 2 , 2 ) ) ;

CRLB42( i , j )= s q r t ( covr42 (1 ,1)+ covr42 ( 2 , 2 ) ) ;

CRLB43( i , j )= s q r t ( covr43 (1 ,1)+ covr43 ( 2 , 2 ) ) ;

CRLB44( i , j )= s q r t ( covr44 (1 ,1)+ covr44 ( 2 , 2 ) ) ;

CRLB45( i , j )= s q r t ( covr45 (1 ,1)+ covr45 ( 2 , 2 ) ) ;

end

end

CRLB4=(CRLB41+CRLB42+CRLB43+CRLB44+CRLB45 ) . / 5 ;

% f i g u r e (3 )

% [C, h]= contour f ( x ( 2 : l 1 +1) ,y ( 2 : l 1 +1) ,CRLB4, 8 ) ;

% c l a b e l (C, h ) ;

% CRLB total=CRLB2+CRLB3+CRLB4;

% f i g u r e (4 )

% [C, h]= contour f ( x ( 2 : l 1 +1) ,y ( 2 : l 1 +1) , CRLB total , 8 ) ;

% c l a b e l (C, h ) ;

%% Cramer Rao Lower Bound f o r 5 APs

CRLB5=ze ro s ( l1 , l 1 ) ;

f o r i =1:1 : l 1

f o r j =1:1 : l 1

H5=[(x ( i +1)−x1 )/ r1 ( i , j ) ˆ2 , ( y ( j+1)−y1 )/ r1 ( i , j ) ˆ 2 ;

( x ( i +1)−x2 )/ r2 ( i , j ) ˆ2 , ( y ( j+1)−y2 )/ r2 ( i , j ) ˆ 2 ;

( x ( i +1)−x3 )/ r3 ( i , j ) ˆ2 , ( y ( j+1)−y3 )/ r3 ( i , j ) ˆ 2 ;

( x ( i +1)−x4 )/ r4 ( i , j ) ˆ2 , ( y ( j+1)−y4 )/ r4 ( i , j ) ˆ 2 ;

( x ( i +1)−x5 )/ r5 ( i , j ) ˆ2 , ( y ( j+1)−y5 )/ r5 ( i , j )ˆ2]∗(− alpha1 ∗10/( l og ( 1 0 ) ) ) ;

covr5=sigma1 ˆ2∗(H5’∗H5)ˆ−1;
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CRLB5( i , j )= s q r t ( covr5 (1 ,1)+ covr5 ( 2 , 2 ) ) ;

end

end

CRLB total 5=CRLB2.∗ p2+CRLB3.∗ p3+CRLB4.∗ p4+CRLB5.∗ p5 ;

f i g u r e (3 )

[C, h]= contour f ( x ( 2 : l 1 +1) ,y ( 2 : l 1 +1) , CRLB total 5 , 8 ) ;

c l a b e l (C, h ) ;

% CRLB total=CRLB2+CRLB3+CRLB4;

% f i g u r e (4 )

% [C, h]= contour f ( x ( 2 : l 1 +1) ,y ( 2 : l 1 +1) , CRLB total , 8 ) ;

% c l a b e l (C, h ) ;

CRLB total 5 re=reshape ( CRLB total 5 , 1 , l 1 ∗ l 1 ) ;
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