
Explaining Deep Time Series Classifiers

by

Prathyush S Parvatharaju

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Data Science

by

December 2021

APPROVED:

Professor Elke A. Rundensteiner, Thesis Advisor

Professor Xiangnan Kong, Thesis Reader

Abstract

Deep neural networks are being used to build autonomous systems that will perceive,

learn, decide, and act on their own. However, state-of-the-art deep learning models

lack transparency in how they make their predictions. Explainable classification is

essential to high-impact settings where practitioners require evidence to support their

decisions. Various saliency methods have been developed to summarize where the

deep neural networks "look" in the provided input as evidence for the predictions.

One increasingly popular solution is attribution-based explainability, which finds

the impact of input features on the model’s predictions. While these methods are

designed for images, while very little has been done to explain deep time series

classifiers. Unlike images, where a pixel has a predefined scale and representation i.e,

0 (black) - 255 (white) and the same is followed across all the image datasets, the

distribution of timeseries vary vastly amongst datasets. Also, during classification,

short contiguous subsequences often contain much of the discriminative information.

However, existing explainability methods treat all input features independently,

ignoring correlations and possibly disrupting discriminative subsequences.

In this work, we study this problem and propose PERT, a novel perturbation-

based explainability method designed to explain deep classifiers’ decisions on time

series. PERT extends beyond recent perturbation methods to generate a saliency

map that assigns importance values to the timesteps of the instance-of-interest.

First, PERT uses Prioritized Replacement Selector to learn to sample a replace-

ment time series from a large dataset, to perform meaningful perturbations and avoid

creating network artifacts Second, PERT mixes the instance with the replacements

using a Guided Perturbation Strategy, which learns to what degree each timestep

can be perturbed without altering the classifier’s final prediction. These two steps

jointly learn to identify the fewest and most impactful timesteps that explain the

classifier’s prediction.

We evaluate PERT using three metrics on nine popular datasets with two black-

box models - Fully Connected Network and Recurrent Neural Network. The chosen

datasets varies from instances having sequence length of 96 to 720. We find that

PERT consistently outperforms all five state-of-the-art methods by a margin of 26%.

Using case studies, we also demonstrate that PERT succeeds in finding the relevant

regions of the input time series.

2

Acknowledgements

I have taken efforts in this project. However, it would not have been possible

without the kind support and help of many individuals. I would like to extend my

sincere thanks to all of them.

I am highly indebted to my professor Dr. Elke A. Rundensteiner for her motivation

and support as my Thesis Advisor. Her insights and critical comments on my research

have helped channelise my thoughts and energy towards fruitful research. I owe my

deep gratitude to Professor Dr. Xiangnan Kong for his generous time spent being

my thesis reader. I appreciate the keen interest taken by him in my project and for

guiding me within the limited time frame.

I heartily thank Dr. Tom Hartvigsen for guiding me all the way through; right from

defining a problem, designing experiments to assisting in writing and articulation. I’m

obliged for having received his mentorship till the successful completion of this work.

I’m courteous towards Ramesh Doddaiah, Ph.D. candidate at WPI his collaboration.

I am thankful and fortunate enough to get constant support and encouragement

from Academic and Research Computing group at Worcester Polytechnic Institute.

They supported us with the computational resources. We used Weights Biases [4]

for experiment tracking and visualisation.

This research was supported by the U.S. Dept. of Education grant P200A180088,

NSF grant 1910880, NSF CSSI: FAIN: 2103832, Oak Ridge Associated Universities

CA W911NF-16-2-0008 and W911NF20-2-0232.

Last but not the least, I would like to express my profound gratitude towards my

family for their kind co-operation and encouragement throughout my years of study

and research, which helped me in the successful completion of this project.

i

Contents

1 Introduction 1

1.1 Background . 1

1.2 Motivating Example . 2

1.3 State-of-the-Art . 3

1.4 Problem Definition . 3

1.5 Challenges . 4

1.6 Proposed Solution . 4

1.7 Contributions . 5

2 Related Works 6

2.1 Randomized Input Sampling (RISE) 6

2.2 Local and Surrogate Models . 7

2.3 Learning to Perturb . 8

3 Methodology 10

3.1 Problem Definition . 10

3.2 Proposed Method: PERT . 11

3.3 Prioritized Replacement Selector . 12

3.4 Guided Perturbation Function . 14

3.5 Optimizing PERT . 16

ii

4 Experiments 19

4.1 Datasets . 19

4.2 Compared Methods . 20

4.3 Implementation Details . 21

4.4 Metrics . 21

4.5 Experimental Results . 24

4.5.1 PERT successfully finds the most-important timesteps. 24

4.5.2 Ablation Study . 26

4.5.3 Hyperparameter Study . 29

4.5.4 Case Study . 31

5 Conclusion 34

6 Future Work 35

6.1 Incorporating distance metrics . 35

6.2 Extending to Multi-variate, Multi-class problems 36

6.3 Shared Saliencies . 38

iii

List of Figures

1.1 Example of Time Series Saliency Map highlighting input time steps

contributing to classification result. 2

2.1 The intuition behind SHAP. The original model f is probed in the

vicinity of the specimen, resulting in a linear explanation model g[26] 7

2.2 TSNE visualization of instance perturbations in LIME[32] 9

2.3 TSNE visualization of instance perturbations in MP[9] 9

3.1 PERT Architecture . 12

4.1 Deletion and Insertion Metrics . 23

4.2 Ablation Study. 26

4.3 PERT Hyperparameter Study . 30

4.4 Blip Case Study. 31

4.5 CricketX “No-Ball” Class Case Study 32

6.1 TSNE visualization of instance perturbations in LIME[32] 35

6.2 TSNE visualization of instance perturbations in PERT[9] 35

6.3 Learnable Multi-variate Multi-class Mask 37

iv

List of Tables

4.1 Summary statistics for the real-world datasets and the Accuracy of

our corresponding FCN and RNN models. 19

4.2 Performance of the AUC-difference metric with the FCN black-box

model. Parentheses indicate σ. Compared methods are separated

into four groups: Random perturbation, linear surrogate model, game

theory method, and learned perturbations. 25

4.3 Average performance of the AUC-difference metric with the RNN

black-box model. 26

4.4 Confidence suppression metric performance for seven key datasets

with the FCN black-box model. Lower values are better for Saliency

sum and Confidence suppression game, Higher values are better for

Saliency variance. ↓ indicates the lower the better. ↑ indicates the

higher the better. 27

4.5 Confidence-Suppression Metric performance for two key datasets with

the RNN black-box model. Lower values are better for Saliency sum

and Confidence suppression game, Higher values are better for saliency

variance. 28

v

Chapter 1

Introduction

1.1 Background

Deep neural networks are the state-of-the-art solution to many time series classifi-

cation problems across important domains such as healthcare [26, 48] and finance

[22, 45]. In such high-risk domains, errors in the predictions by deep neural network

models can be catastrophic. However, when developing these deep solutions, it is

rarely considered that users rarely trust predictions from “black box” that they do

not understand [39].

Meanwhile, model complexity has recently skyrocketed, making these models and

their predictions challenging to comprehend. To address this problem, recent works

have shown that users are more likely to trust a model’s predictions if they are shown

what evidence the model used the most [9]. Attribution-based explainability methods

thus aim to discover to what degree a classifier used each of its input features.

1

1.2 Motivating Example

Figure 1.1: Example of Time Series Saliency Map highlighting input time steps
contributing to classification result.

Consider a black-box deep time series classifier that detects abnormal heartbeats,

or arrhythmia, in ECG data [13, 31]. Without knowing whether or not the model

looked at the proper region of the heartbeat, a doctor will not trust its prediction.

As shown in Figure 1.1, one solution is to attribute the prediction to the evidence

that the model used the most to make its decision. In this example, wave-like shapes

are shown in the input ECG time series, one of which is labeled as abnormal. These

shapes are all part of a single cardiac cycle. The classifier accurately predicted the

ECG is part of a Heart attack due to the presence of unexpected spike in the middle

of the cycle. Shown in orange, the explainability method finds that the black-box

classifier indeed found the unexpected spike as the evidence for this classification, as

shown in red. The expected shapes are reported as green bars.

2

1.3 State-of-the-Art

Recently, attribution-based explainable AI (XAI) has rapidly become popular in

the literature [32, 25, 7, 44, 14, 34, 33, 45, 41, 16, 38]. However, most of these XAI

methods are designed for images [19, 9, 32, 29, 8, 47, 40, 43] and text [20, 37, 1, 18].

while very little has been done for time series. Time series values are unidirectionally

correlated. Also, during classification, short contiguous subsequences often contain

much of the discriminative information [46]. However, existing explainability methods

treat all input features independently, ignoring correlations and possibly disrupting

discriminative subsequences.

Some of the most recent and promising explainability methods have begun to

derive attribution-based explanations by perturbing inputs and then observing the

effects on the black-box model’s predictions. However, current perturbation strategies

are developed specifically for computer vision where images are transformed into the

same space (meaning, values ranging from [0 to 255]). By darkening pixels of an

image or altering their hues, different qualities of a black-box model can be tested.

Unfortunately, these approaches do not have clear analogies for time series where

the range of a series’ values depends entirely on its domain. Some very recent works

[12, 25, 3, 15, 10] have only just begun to fill this gap by adapting image and text

approaches for time series.

1.4 Problem Definition

In this work, we study the problem of Learning Perturbations to produce attribution-

based explanations for a black-box classifier’s prediction for a given time series

instance. Our goal is to generate a saliency map, or one value per time step of an

input time series, where higher values indicate stronger dependence of the model on

3

the time step. A good explanation method must adapt to the specific input instance.

This is a multi-objective optimization problem. Namely, a good saliency map must

accurately highlight the most relevant time steps while remaining intuitive to the

end-user by finding the fewest possible time steps.

1.5 Challenges

Despite the importance of explaining deep time series classifiers, three open challenges

remain:

• Heterogeneous series: Time series within the same dataset can be highly

variable, even within the same class. To best explain a classifier’s prediction

for a given series, a perturbation strategy must be adaptive across both time

series and classes.

• Perturbing long series: Perturbation methods rely on generating perturbed

versions of input time series. As the series length increases, the range of possible

perturbations grows high. It makes finding perturbations computationally long.

• Conflicting objectives : Meaningful explanations are often made at the expense

of their accuracy. An explanation highlighting only a few key inputs is intuitive

but might fail to explain the model if the black-box actually distributes its

focus across many inputs.

1.6 Proposed Solution

To derive attribution-based explanations I propose a model-agnostic, perturbation-

based time series explainer - PErturbation by Prioritized ReplacemenT (PERT).

PERT uses a gradient-based search algorithm to discover the impact of perturbing

4

each time step on the black-box model’s predictions, producing a learned saliency map.

It jointly learns to sample a replacement time-series from an available background

dataset containing many time series using a prioritized replacement selector. It

regularizes the perturbations to ensure perturbations remain similar to other series

the model has seen before. As a result, it this way adapts to the given dataset and

better yet to each time step of the instance-of-interest.

1.7 Contributions

Our main contributions are as follows:

• Identify and characterize the open problem of Learning Perturbations for deep

time series classifiers.

• Propose the first Learning Perturbations solution to this open problem which

integrates two novel components, jointly learning to solve two tasks: gathering

the appropriate time series to aid in perturbation of a specific interest, and

how to perturb each timestep to best tease out its impact on the model’s

predictions.

• Using nine popular real-world publicly-available datasets, we conclusively

demonstrate that our proposed method performs better on all three proposed

metrics compared to five state-of-the-art explainability methods for different

types of black-box time series classifiers, for multiple key metrics.

5

Chapter 2

Related Works

2.1 Randomized Input Sampling (RISE)

In RISE[29], the authors estimate the importance of pixels by dimming the pixels

in random combinations and reducing their intensities down to zero. The method

uses a binary mask [0,1] to perturb the instance. Using Monte-Carlo sampling,

the importance maps are generate empirically by estimating the sum in equation

2.1. A sample set of masks M1,,MN are used to probe the model by running

it on the masked images I �Mi, i = 1,, N . The weighted average of the masks

are considered where the weights represents the normalized confidence scores of

f(I �Mi).

SI,f (λ)
MC
≈ 1

E[M].N

N∑
i=1

f(I �M) ·Mi(λ) (2.1)

The approach faces several challenges when operating on time series data. The

number of perturbations is directly proportional to the length of the time-series,

due to the use of Monte-Carlo sampling and hence does not scale well. The use of

binary mask limits the method to work with coarse-grained perturbations which

in-turn fails to constrain the search space and the perturbations are created using

6

zero replacement, hence the method is prone to having network artifacts.

2.2 Local and Surrogate Models

To generate a location explanation, the model-agnostic approaches make use of

perturbations to understand the learning function in the vicinity of the input to

be reasoned. The input is called a specimen and newly generated nearby samples

are known as perturbations. For perturbations based on an algorithm, one needs to

define a mapping function describing the ways to perturb the specimen. In LIME[32]

introduced mappings for images, text, and tabular data. The timeExplain[26] authors

develop domain mappings for SHAP[21] specific to its model-agnostic explanation

tool - Kernel SHAP.

Figure 2.1: The intuition behind SHAP. The original model f is probed in the vicinity
of the specimen, resulting in a linear explanation model g[26]

Kernel SHAP the black-box model is a function that maps input space to the

classification space, function f : I → R disables portions of specimen resulting in

perturbed instances and then compute the marginal contributions f(z). On multiple

iterations with different perturbation allows the method to explore the behavior of the

prediction function f in the vicinity of the specimen. With the newfound knowledge,

an interpretable linear model is used to approximate the original model near x.

The coefficients for each of the timesteps can be extracted from the interpretable

linear models which describe the impact of each time step of x has on the prediction

7

f(x). However, the approach fails to scale to lengthy time-series instances due to an

exponential increase in the number of perturbations required. It simply does not

make use of the state of the previous perturbation and the network’s response to

create a new perturbation.

2.3 Learning to Perturb

Simonyan et.al pioneered saliency maps [39] for visualizing image classification models.

The method computes the gradient of the class score concerning the input image.

Many approaches have utilized saliency maps to enhance visual explanations. These

methods examine the correlation between the inputs and the outputs by perturbing

the input instance x and observing the changes in the classifier’s sensitivity f(x).

They are gradient-based methods, which back-propagates the gradient for a class

label to the input layer. Some are not model-agnostic [50, 36, 49] with the exception

of [39, 9, 2], many requires network architectural modification [50, 42, 48] and in

some cases access to intermediate layers [2, 50, 36, 49].

Meaningful Perturbations The authors of MP[9] has developed a framework

to find the part of an image most responsible for a classifier’s decision. The image

specific method aptly named as deletion game, is model-agnostic and works by

deleting regions of input image that are maximally informative in order to explain

the behaviour of the blackbox. The goal is to find the smallest deletion mask m that

cause the prediction f(x) to drop significantly. The process is formulated as,

m∗ = argmin
m∈[0,1]

λ ‖1−m‖+ fc(φ(x;m)) (2.2)

where λ incentivizes the objective function to turn of most of the mask i.e, to delete

8

a small subset of the input image x. The deletion game removes enough evidence to

prevent the network from recognizing the object in the image. Figures 6.1 and 6.2

showcases the stark contrasts between random perturbations (LIME[32]) and learning

to perturb (MP [9]). Each of the figures is the visual representation of perturbations

across iterations. LIME perturbs the data 5000 times to derive the explanation

whereas MP derives the reason in under 500 perturbations. Each n dimensional

perturbated input is mapped to corresponding two-dimensional representation using

TSNE[22], a pair-wise distance ranking metric. In MP, the perturbations trace a

concise path initially and show variations during the last few iterations denoting

the learning capabilities. On the other-hand LIME is agnostic to the progress of

iteration indicating the random nature of the perturbations. However, the method

uses an image-specific deletion process i.e, replace the deleted part with zeros which

do not fare well in the time-series domain. Also, it suffers from explanation bias as a

human-centric evaluation metric is used to measure the quality of the explanations.

Figure 2.2: TSNE visualization of in-
stance perturbations in LIME[32]

Figure 2.3: TSNE visualization of in-
stance perturbations in MP[9]

9

Chapter 3

Methodology

3.1 Problem Definition

Assume we are given a set of N time series D = {X1, . . . , XN} and a black-box

classifier fc : X→ Y , where X ∈ RT is the T -dimensional feature space and Y is the

label space. Let us consider one instance-of-interest X ∈ D where X = [x1, . . . , xT]

along with a class-of-interest C, the prediction for which we would like an explanation.

Our goal is to learn a saliency map θ = [θ1, . . . , θT] where θt ∈ [−1, 1] indicates

the importance of time step t based on their influence on the predicted probability

P (C|X) of class C by black-box fc. The scale of the real-valued θt reflects the

importance of the corresponding time step xt.

While the notion of importance is challenging to quantify, we follow the lead of

recent work on perturbation-based explainability [9, 8] and assume that the aim of

saliency is to identify which timesteps of a time series instance X are used by the

black box fc to produce the output value P (C|X). We can do so by observing how

the value of P (C|X) changes as X is perturbed. Naturally, the perturbation-based

explanation problem is thus to derive a perturbation function fp(X) that can be used

to discover the impact of perturbing each time step xt on the predicted probability

10

of class C. Using this perturbation function, a saliency map θ may be derived. A

successfully learned saliency map θ will assign high values to the most-impactful

time steps, effectively ranking them by their impact on P (C|X). Intuitively, an

explanation that is simpler is often easier to understand, and so we also prefer that∑T
t=1 |θt| be small so as to encourage unimportant timesteps to go to zero.

3.2 Proposed Method: PERT

To derive an explanation for the class prediction made by a black-box model fc, we

propose a model-agnostic, perturbation-based method specific to time series that

uncovers the importance of each timestep to the model’s final prediction. We refer

to our method as PErturbation by Prioritized ReplacemenT (PERT). Perturbation

involves modifying the time steps from X. As illustrated in Figure 3.1, PERT

adaptively employs the dataset D, learning to sample a replacement time series

R which is used to mix each time step of the instance-of-interest X̂ with the

corresponding time step from R to create in-distribution perturbations. Furthermore,

by querying the black-box model’s predictions for a perturbed version of the instance-

of-interest X, PERT discovers how sensitive predictions are to perturbations in each

times step. To encode these ideas, PERT contains two components: (1) A Prioritized

Replacement Selector that learns to perform weighted sampling of the time series

in D, finding the best replacement time series R specific to instance X and (2) A

Guided Perturbation Function that learns θt to perturb X and discover the impact

of each timestep on the black-box model’s final prediction. These two steps jointly

learn to generate a saliency map with the fewest and most impactful timesteps that

explain the classifier’s prediction.

11

Figure 3.1: PERT Architecture

3.3 Prioritized Replacement Selector

To perturb the values of a time series, we must choose new values to replace them

with. However, this choice is highly impactful in time series since the shapes and

trends of the signals may be altered dramatically as we show in our Experiments

in Section 4.5.2. To avoid such massive changes, which might lead to time series

unlike any the classifier has seen before, we instead opt to replace values with those

of other time series in dataset D. Thus the task of the first component of PERT,

the Prioritized Replacement Selector, is to choose which time series is appropriate

to use from the background dataset for replacement of the timesteps of instance X.

Intuitively, the choice of best replacement time series may vary by timestep and so

we achieve this on a timestep-by-timestep basis, choosing different replacement series

and corresponding values for each timestep of X. In practice, to provide evidence

both for and against class C, the Prioritized Replacement Selector chooses two time

12

series representatives RC and RO from D where RC is a series from class C and RO

is a series not from class C. As discussed in Section 3.4, these series will be used

together to generate one final perturbation X̃.

To acquire RC and RO, we split D into two subsets: DC contains all samples

from the class-of-interest C, and DO = D −DC contains all remaining, or opposing,

instances. All instances in each set are assigned individual weights w to serve as

their priorities, similar to Prioritized Experience Replay [35]. We then sample one

replacement time series R from each set by using the softmax of the set’s respective

weights wO and wC to parameterize two independent categorical distributions:

P(Ri
C) = wiC

P(Ri
O) = wiO

where Ri
C is the i-th instance of dataset DC and wiC is its corresponding weight.

Intuitively, instances with higher weights w will have a higher likelihood of being

selected. Since w will eventually be learned (Section 3.5), the chosen representatives

will differ according to the instance X, resulting in adaptive explanations.

As proposed, values of w that are large early in training may be exploited.

Therefore, we follow the literature [23] and employ the standard ε-greedy approach

to balancing exploration and exploitation while PERT is being trained:

RC =

RC (itself) with probability 1− ε

random RC ∈ DC with probability ε
(3.1)

Thus when ε is large, replacement series are picked randomly and when ε is small,

weights w are used to select the replacement series. Selection of RO is performed the

same way. To encourage early exploration and later exploitation, ε is exponentially

13

decayed during training.

3.4 Guided Perturbation Function

Next, we compute the perturbation X̃, which is a modified version of instance X

using our Guided Perturbation Function and replacement series RC and RO. X̃ will

subsequently be fed to the black-box model fc to observe how this perturbation has

affected its prediction. To achieve this, we learn a perturbation function fp : X→ X.

The key component of fp is a vector of learnable weights θ ∈ [−1, 1]T , which will

serve as the final saliency map and be the explanation of the model’s prediction.

Higher values of θ indicate stronger evidence for class C while lower values are

evidence against class C

To take into account both evidence for and against class C, our perturbation

function fp chooses between replacing values at each timestep with those from RC and

RO adaptively. To make it so that θt < 0 indicates that its corresponding time step

Xt is evidence against class C, we replace the time step with RC , the representative

of class C. Similarly, when θt ≥ 0, Xt is replaced with the corresponding timestep of

RO. This way, PERT learns the degree of sensitivity of each time step. The function

fp generates its final perturbation X̃ by performing timestep-specific interpolation:

X̃ = θ �X + (1− θ)� (1θ<0 �RC + 1θ≥0 �RO) + g (3.2)

where 1θ<0 is a vector-wise indicator function that returns 1 for elements of θ that

are less than 0 and 1θ≥0 returns 1 for elements of θ greater than or equal to 0. �

is the Hadamard product. For readability, we refer to this operation as function

fp(X; θ). In practice, we also add a small amount of Gaussian noise g to avoid

overfitting θ to extremely specific values, similar to [9]. Using Equation 3.4, the

14

final values of X̃ are thus interpolations between the original timesteps of X and the

replacement series RC or RO according to the scale of the corresponding value in θ.

Once perturbation X̂∗ is obtained, we can compare the original prediction,

the black-box model fc’s prediction on X̂, to P (C|X̂∗), the prediction given the

perturbation as input. The intuition behind adaptive time step specific interpolation

is given by the three possible relationships between P (C|X̂∗) and P (C|X̂),

• P (C|X̂∗) < P (C|X̂). By perturbing X̂, the model’s confidence in class C

decreases. We intentionally insert authentic opposing information, different

from that of X̂ avoiding the creation of out-of-distribution perturbations (i.e,

replace the value of t with the corresponding value of time step from an instance

of opposing class RO(t)). If the original values of t were crucial to the prediction

P (C|X̂), replacing it with RO(t) must result in a drop in P (C|X̂).

• P (C|X̂∗) = P (C|X̂). Perturbing X̂ has no impact on P (C|X̂), indicating

independence between the input features and the output prediction accord-

ing to fc. Finding these two predictions to be exactly equal is expected to

be exceedingly rare, depending on computation precision, but as these two

quantities approach one another, the intuition holds.

• P (C|X̂∗) > P (C|X̂). Perturbing X̂ causes the predicted likelihood of class

C to increase. This indicates that the original values of X̂ are negatively

correlated to the prediction of class C. We purposefully replace the value of

t with the corresponding value of sampled timeseries instance from the same

class RC(t). This is done to ensure that the P (C|X̂) is preserved in order to

derive a local explanation for X̂, as inserting authentic opposing information

leads to an increase in P (C|X̂), thereby failing to explain X̂ for the given

P (C|X̂).

15

We initialize the values of θ uniformly between −1e−2 and 1e−2 to encode no prior

assumptions on which time steps are most important and are iteratively updated

throughout the training. We start with small values for θ and thus perform forward

selection, steadily inserting only the most crucial timesteps to the prediction P (C|X̂).

This way, we encourage the system to provide simpler explanations, as the default

sum of θ is small. Alternatively, θ can be initialized to be close to 1 and followed by

backward selection. However, we show in our experiments 4.2 that this approach is

inferior.

3.5 Optimizing PERT

A major benefit of learning to perturb for explainability is that many behaviors of

good explanations can be encouraged during optimization via a loss function. In this

work, we learn the saliency values θ iteratively with respect to a novel loss function

(Equation 3.6) that contains three key components, each of which works together

to provide accurate and simple explanations for a black-box time series classifier.

There are three components in our loss function: Lpreservation , Lbudget , and LTV.

The first component, Lpreservation encourages the perturbation function fp to produce

perturbations for which the black-box classifier makes the same prediction as it did

for the instance-of-interest X̂:

Lpreservation = λ1

 1∥∥∥X̂∥∥∥
T∑
t=0

(fc(X̂)− fc(fp(X̂; θ)))2

 (3.3)

where fc(X̂) is black-box classifier’s predicted probability for the instance-of-

interest X̂ and fc(X̂∗) is black-box classifier’s prediction for the perturbed instance

X∗. By minimizing the squared difference between these terms, we encourage fp

16

to preserve the prediction made on X̂. To balance the goal of explainability and

simplicity, we incorporate a Lbudget on the saliency values, it encourages the final

saliency values θ to be small with fewest possible timesteps:

Lbudget = λ2

(
1

‖θ‖

T∑
t=0

|θt|

)
(3.4)

Third, we add the intuition that neighboring timesteps and short contiguous

subsequences should be roughly equal in importance. We achieve this through Total

Variance Normalization [9], minimizing the squared difference between neighboring

saliency values:

LTV = λ3

(
1

‖θ‖

T−1∑
t=0

(θt − θt+1)
2

)
(3.5)

Finally, the loss terms are summed and each is associated with a coefficient to

allow for re-scaling depending on task-specific preferences in explanation behavior.

We scale the final loss function according to the sampling weights wO and wC .

The final loss for PERT is shown in Equation 3.6.

L(P (X̂); θ) = (Lpreservation + Lbudget + LTV) ∗
1

2
(wO + wC) (3.6)

We jointly optimize θ and w by minimizing L(P (X̂); θ). To prioritize the replacement

time series RC and RO which help minimize L(P (X̂); θ), we use L(P (X̂); θ)−1 to

update the corresponding replacement sample weights wO and wC .

17

Algorithm 1 PERT
Input: X̂, fc, D

Result: Saliency map Ŝ

θ ← random_uniform(low = −1e− 2, high = 1e− 2)

for epoch in range(epochs); do

RO, RC , wO, wC ← Prioritized Replacement Selector(X̂,D)

X∗ ← θ �X + (1− θ)� (1θ<0 �RC + 1θ≥0 �RO) + gn

Lpreservation ← λ1

(
1

‖X̂‖
∑T

t=0(fc(X̂)− fc(X∗))2
)

Lbudget ← λ2

(
1
‖θ‖
∑T

t=0 |θt|
)

LTV ← λ3

(
1
‖θ‖
∑T−1

t=0 (θt − θt+1)
2
)

L(P (X̂); θ)← (Lpreservation + Lbudget + LTV) ∗ 1
2
(wO + wC)

θ ← θ − η∇J(θ)

update_priorities(L(P (X̂); θ)−1)

clamp(θ, low = −1, high = 1)

end

18

Chapter 4

Experiments

4.1 Datasets

We evaluate our method on nine real-world time-series datasets: Wafer [27],

GunPoint [30], Computers [6], Earthquakes [6], FordA [6], FordB [6],

CricketX [6], PTB [11], ECG [27].

Each is a popular and publicly-available dataset for time series classification,

and the summary statistics are provided in Table 4.1. For each dataset, we train a

three-layered Fully-Connected Network (FCN) and a multi-node Recurrent Neural

Network (RNN) to serve as black-box classifiers in need of explanations. Both models

achieve nearly state-of-the-art performance for each task. Each dataset comes with

default train and test splits.

Dataset Wafer GunPoint Computers Earthquakes FordA FordB CricketX PTB ECG

Num. Train Instances 1000 50 250 322 3601 3636 390 1456 100
Num. Test Instances 6164 150 250 139 1320 810 390 1456 100
Num. Timesteps 152 150 720 512 500 500 300 187 96
FCN Accuracy (%) 99 99 80 75 96 92 81 98 98
RNN Accuracy (%) 99 99 79 75 96 92 80 98 98

Table 4.1: Summary statistics for the real-world datasets and the Accuracy of our
corresponding FCN and RNN models.

19

4.2 Compared Methods

We compare our proposed method, PERT, to one baseline and five state-of-the-art

explanation methods for both FCN and RNN black-box models.

• Random. Each time step is assigned a random saliency value between -1 to 1

from a uniform distribution. This approach serves as a baseline for all methods.

• RISE [29]. The partial derivative of the black-box model’s prediction P (C|X̂)

with respect to each time step is estimated empirically by randomly setting

timesteps to zero and summarizing its impact on the P (C|X̂).

• LEFTIST [12]. The partial derivative of P (C|X̂) with respect to each time

step is estimated empirically by randomly replacing the timestep with a cor-

responding value from a random instance from the background dataset and

summarizing its impact on P (C|X̂).

• LIME [32]. Saliency values are derived from the coefficients of a linear

surrogate model, trained to mimic the behavior of the black-box model in the

feature space surrounding X̂. The success of this approach relies on the model

behaving linear locally, which is rarely guaranteed in practice.

• SHAP [19]. SHAP assigns Shapley values [5] to each time step, thus computing

their contributions to P (C|X̂). Each time step is replaced by every value

observed at the corresponding time step across all other instances in the

background dataset.

• Meaningful Perturbation (MP) [9]. MP learns to perturb each time step

such that P (C|X̂) decreases. Perturbation is achieved by combining squared

20

exponential smoothing with additive gaussian noise. Saliency values are then

learned iteratively and are ultimately used as the final explanation.

4.3 Implementation Details

For each dataset, we train a three-layer FCN and a 10-node single layer RNN with

GRU cells to serve as black-box time series classifiers in need of explanations. We

train each model only on the training data, then explain their predictions for all

testing instances using each compared explainability method. All reported metrics

are the result of averaging over five runs to estimate the variance of the explainability

methods.

We optimize our proposed method using Adam [17] with a learning rate of

1e−3 and train for 5000 epochs, which empirically achieves convergence. We used

Weights & Biases [4] for experiment tracking and visualization. Our proposed

method is implemented in PyTorch [28] and our code is publicly-available at https:

//github.com/kingspp/timeseries-explain

4.4 Metrics

Careful selection of evaluation metrics plays a crucial role in our research. It is

extremely difficult to judge the quality of the explanation due to the absence of

standardized models and the unintuitive nature of time-series data. It is an arduous

task to debug and conclude whether the error is due to the proposed solution, the

chosen model, or the classifier design. The presence of multiple dynamic probabilistic

components makes it a challenge to evaluate the quality of the solution from the

perspective of model interpretation. We plan to use causal metrics for evaluation.

Explanation methods evaluated in a human-centered way, where there exists "ground

21

https://github.com/kingspp/timeseries-explain
https://github.com/kingspp/timeseries-explain

truth" regions or bounding boxes drawn by humans and the generated saliency maps

are compared against, are laborious and biased. The deeplearning models are capable

of constructing meaningful representations that are non-intuitive to humans. Thus,

having human-out-of-the-loop metric for evaluation makes it fair and true to the

classifier’s view on the problem.

We use three key metrics to evaluate saliency maps for time series under the

intuition that a prediction is well-explained if it accurately ranks the timesteps

by their importance, as defined by changes in P (C|X̂) and returns only the most-

important timesteps.

AUC Difference. Saliency maps can be evaluated by “inserting” or “deleting”

timesteps from the time-series instance based on the derived importance map and

observing the changes in the black-box model’s predictions [29].

Intuitively, a good saliency map is one that has ranked timesteps such that when

the most important timesteps are deleted, there is a sharp drop in the confidence

of the model’s prediction. This can be measured by computing the area under the

deletion curve (AUDC) as timesteps are deleted one by one. A lower value for

this area naturally indicates a better explanation. Analogously, insertion of a few

important timesteps should result in the largest possible increase in the confidence

of the model’s prediction, thereby creating a large area under the insertion curve

(AUIC). To ease comparisons, we merge these two measures into one metric by

computing the difference, AUC-Difference = AUIC− AUDC. Ideally, the difference

should be large (1.0), implying the saliency maps having a high AUIC (1.0) and a

low AUDC (0.0) is a good explanation. This metric alleviates the need for human

evaluation and annotation and makes it more fair and true to the classifier’s own view

on the problem. To achieve deletion during evaluation we replace a to-be-deleted

22

timestep with the corresponding timestep from the opposing class’s mean. Conversely,

for insertion, we iteratively replace the mean time series from the opposing class

with the original inputs of the instance-of-interest. Figure 4.1 describes the ideal

case of an explanation with an AUIC score of 0.84 and AUDC score of 0.05 resulting

in AUDC score of 0.79.

Figure 4.1: Deletion and Insertion Metrics

Confidence Suppression Game. Another popular approach to evaluating

saliency maps is to find the smallest number of timesteps required to suppress the

confidence of the black-box model by a given percentage [9]. We thus ask each

explanation to play this Confidence Suppression Game and return the proportion

of timesteps that must be deleted to reduce P (C|X̂) by each value in a set of

percentages. To achieve deletion, we once again replace timesteps with corresponding

values from the opposing class mean.

Minimality of Saliency Maps. A good explanation returns only the most

important timesteps, thus allowing a user to consider only a few regions of the input.

Thus we compute the sum of a saliency map, under the intuition that it should be

small, as the goals of explainability and simplicity are jointly optimized, we expect

importance of unimportant timesteps to go to zero leading to simpler explanations

with fewest possible timesteps. To avoid naive solutions with very small and equally

distributed saliency values, we report the normalized variance of the saliency map.

A high variance indicates a larger difference between the minimum and maximum

saliency values.

23

4.5 Experimental Results

4.5.1 PERT successfully finds the most-important timesteps.

First, we measure how well all compared explainability methods have ranked the

timesteps by their importance via the AUC-Difference metric discussed in Section 4.4.

Our results using Fully-Connected Network and Recurrent Neural Network can be

found in Tables 4.2 and 4.3 respectively. In all cases, PERT significantly outperforms

all other methods, with the largest improvement seen in the Wafer, Gun-Point,

Computers, FordA, FordB, and CricketX datasets. This strongly indicates

that the saliency maps produced by PERT have indeed ranked the timesteps far more

accurately in terms of their individual effect on the black-box model’s prediction

confidence P (C|X̂). We also note that in general, learning to perturb (PERT and

MP) outperforms the random-replacement methods (Random, RISE, LEFTIST),

linear surrogate method (LIME) and game theory method (SHAP), demonstrating

the value in this class of perturbation-based explainability methods. When time

series instances are short, such as for the GunPoint and Wafer datasets, RISE

and SHAP produce comparable results to PERT as they rely on a densely-sampled

feature space surrounding each instance-of-interest. For longer series, covering this

space efficiently becomes extremely challenging, motivating learned perturbation [9].

We can see a similar pattern in results with FCN and RNN networks on the same

datasets.

Next, we use the Confidence Suppression Game to measure the smallest number

of timesteps that must be deleted to have the black-box model’s prediction drop by

a set of percentages. We report our findings for the Wafer, ECG, Computers,

Earthquakes, Ford-A, Ford-B, and CriketX datasets in Table 4.4, and due to

the space constraints the remainder of the results for PTB and GunPoint datasets

24

are included with our publicly-available code, where we find the same trends. Overall,

PERT successfully achieves the desired suppression levels by deleting far fewer

timesteps than the compared methods. This indicates that PERT indeed finds the

fewest and most important timesteps. As expected, all methods also outperform the

Random baseline with very few exceptions. We also find the same trend to be true

for the RNN classifier, the results for which are included with our publicly-available

code.

Finally, we use Minimality of Saliency as a measure of simplicity of the derived

saliency map. The results in Table 4.4 indicates that the saliency maps derived

by PERT indeed highlight the fewest possible timesteps necessary to maintain fc’s

prediction of P (C|X̂) compared to state-of-the-art methods. The high variance

of saliency maps demonstrates PERT’s ability to avoid naive solutions with small

saliency values.

Methods
Datasets

Wafer GunPoint Computers Earthquakes FordA FordB CricketX PTB ECG

Random -0.02 (.01) 0.02 (.01) 0.01 (.01) -0.01 (.01) -0.03 (.01) -0.01(.01) -0.01 (.01) 0.06 (.04) 0.01 (.06)
RISE [29] 0.22 (.01) 0.16 (.01) -0.01 (.02) 0.23 (.05) 0.15 (.02) 0.11 (.01) 0.42 (.01) 0.07 (.05) 0.14 (.07)
LEFTIST [12] 0.53 (.02) 0.15 (.03) -0.16 (.01) 0.15 (.03) 0.16 (.01) 0.15 (.01) -0.01 (.01) 0.51 (.01) 0.55 (.01)

LIME [32] 0.06 (.01) 0.10 (.01) 0.06 (.03) -0.01 (.01) 0.01 (.02) 0.01 (.01) -0.01 (.01) 0.18 (.07) 0.09 (.06)

SHAP [19] -0.19 (.01) -0.01 (.01) 0.10 (.01) 0.71 (.03) 0.23 (.01) -0.17 (.01) 0.09 (.01) -0.15 (.01) -0.11 (.09)

MP [9] 0.49 (.01) 0.03 (.01) 0.15 (.01) 0.33 (.01) 0.48 (.01) 0.37 (.01) 0.43 (.01) 0.33 (.01) -0.16 (.00)
PERT 0.74 (.01) 0.56 (.01) 0.95 (.01) 0.93 (.01) 0.83 (.01) 0.82 (.01) 0.69 (.01) 0.58 (.01) 0.60 (.01)

Table 4.2: Performance of the AUC-difference metric with the FCN black-box
model. Parentheses indicate σ. Compared methods are separated into four groups:
Random perturbation, linear surrogate model, game theory method, and learned
perturbations.

25

Methods
Datasets

Wafer GunPoint Computers Earthquakes FordA FordB CricketX PTB ECG

Random 0.01 (.01) 0.03 (.01) 0.01 (.01) 0.04 (.01) 0.01 (.01) 0.01(.01) -0.01 (.01) 0.07 (.04) 0.01 (.06)
RISE [29] 0.13 (.01) 0.10 (.01) -0.01 (.02) 0.23 (.05) 0.15 (.01) 0.11 (.02) 0.42 (.01) 0.10 (.05) 0.19 (.07)
LEFTIST [12] 0.16 (.01) 0.15 (.03) -0.16 (.01) 0.53 (.03) 0.15 (.02) 0.15 (.01) -0.10 (.01) 0.42 (.01) 0.51 (.01)

LIME [32] 0.07 (.01) 0.02 (.01) 0.05 (.03) -0.02 (.01) 0.01 (.01) 0.01 (.01) 0.03 (.01) 0.12 (.07) 0.09 (.06)

SHAP [19] -0.15 (.01) -0.01 (.01) 0.10 (.01) 0.80 (.03) 0.23 (.01) -0.17 (.01) 0.30 (.01) -0.14 (.01) 0.08 (.09)

MP [9] 0.55 (.01) 0.02 (.01) 0.16 (.01) 0.30 (.01) 0.47 (.01) 0.39 (.01) 0.23 (.01) 0.30 (.01) -0.15 (.01)
PERT 0.78 (.01) 0.48 (.01) 0.92 (.01) 0.82 (.01) 0.70 (.01) 0.70 (.01) 0.68 (.01) 0.52 (.01) 0.57 (.01)

Table 4.3: Average performance of the AUC-difference metric with the RNN black-box
model.

4.5.2 Ablation Study

We next compare alternative approaches to some of PERT’s key components with

respect to the AUC-Difference metric, the results for which are shown in Figure

4.2. We target this study at three categories: loss components, selection criteria,

and replacement strategies. First, we compare PERT’s performance while removing

different components of the loss function. As expected, Lpreservation clearly has the

largest impact on the final AUC-Difference, as without this component, there is no

relationship between the saliency map and the model’s prediction. The remaining

components gn, LBudget and LTV Norm have less of an impact but still contribute to

PERT’s state-of-the-art performance.

0.1

0.2

0.8

0.7

0.6

0.5

0.4

0.3

Loss Components Selection Replacement Strategy

A
U

C
-D

iff
er

en
ce

Backward Selection
Random R

Worst R

Forward Selection

TS Specific R

Prioritized TS Specific R

PERT

Best R

Figure 4.2: Ablation Study.

Second, PERT uses Forward Selection, starting with small saliency values and

26

Confidence suppression game ↓ Minimality of Saliency
Dataset Method 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% Sum (%) ↓ ‖V ariance‖ ↑

Random 0.79 0.82 0.86 0.87 0.87 0.88 0.89 0.91 0.91 0.92 50 0.0016
RISE [29] 0.57 0.57 0.58 0.59 0.59 0.59 0.61 0.61 0.61 0.61 82 0.0001
LEFTIST [12] 0.56 0.57 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.59 78 0.0001

Wafer [27] LIME [32] 0.69 0.73 0.82 0.82 0.83 0.84 0.84 0.86 0.86 0.88 42 0.0001
SHAP [19] 0.78 0.78 0.78 0.78 0.78 0.78 0.79 0.79 0.79 0.79 52 0.0004
MP [9] 0.41 0.47 0.53 0.54 0.55 0.56 0.57 0.58 0.68 0.73 6 0.0041
PERT 0.40 0.40 0.46 0.47 0.48 0.49 0.51 0.53 0.55 0.59 1 0.0153

Random 0.40 0.41 0.41 0.43 0.43 0.43 0.44 0.45 0.45 0.45 50 0.0001
RISE [29] 0.40 0.40 0.40 0.40 0.40 0.41 0.41 0.41 0.41 0.41 76 0.0001

ECG [6] LEFTIST [12] 0.30 0.30 0.30 0.30 0.30 0.31 0.31 0.31 0.31 0.31 60 0.0001
LIME [32] 0.71 0.72 0.74 0.77 0.79 0.81 0.81 0.84 0.85 0.64 42 0.0001
SHAP [19] 0.62 0.62 0.62 0.63 0.63 0.63 0.63 0.64 0.64 0.64 64 0.0001
MP [9] 0.51 0.51 0.51 0.52 0.52 0.52 0.52 0.52 0.53 0.53 3 0.0005
PERT 0.21 0.21 0.21 0.21 0.21 0.22 0.22 0.22 0.22 0.22 2 0.0034

Random 0.69 0.73 0.75 0.77 0.79 0.81 0.83 0.85 0.90 0.95 50 0.0001
RISE [29] 0.92 0.92 0.93 0.93 0.93 0.94 0.94 0.94 0.94 0.94 46 0.0001

Computers [6] LEFTIST [12] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 49 0.0001
LIME [32] 0.60 0.62 0.65 0.68 0.7 0.71 0.73 0.75 0.78 0.82 23 0.0001
SHAP [19] 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 51 0.0001
MP [9] 0.75 0.76 0.78 0.81 0.81 0.82 0.82 0.83 0.84 0.88 4 0.0005
PERT 0.50 0.50 0.50 0.51 0.51 0.51 0.51 0.51 0.51 0.51 2 0.0017

Random 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.99 1.00 1.00 50 0.0001
RISE [29] 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 74 0.0001

Earthquakes [6] LEFTIST [12] 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 61 0.0001
LIME [32] 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99 43 0.0001
SHAP [19] 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 51 0.0001
MP [9] 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 4 0.0001
PERT 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 2 0.0039

Random 0.75 0.78 0.82 0.84 0.86 0.88 0.89 0.91 0.92 0.95 50 0.0001
RISE [29] 0.76 0.76 0.76 0.76 0.76 0.76 0.77 0.77 0.77 0.78 55 0.0001

Ford-A [6] LEFTIST [12] 0.78 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.84 0.85 49 0.0001
LIME [32] 0.71 0.75 0.78 0.81 0.83 0.84 0.86 0.87 0.89 0.92 44 0.0001
SHAP [19] 0.93 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 47 0.0001
MP [9] 0.66 0.67 0.70 0.72 0.75 0.77 0.78 0.81 0.83 0.87 3 0.0010
PERT 0.63 0.64 0.65 0.66 0.66 0.67 0.67 0.68 0.69 0.72 2 0.0012

Random 0.73 0.74 0.77 0.79 0.81 0.83 0.84 0.85 0.86 0.88 50 0.0001
RISE [29] 0.73 0.81 0.85 0.86 0.86 0.86 0.86 0.86 0.87 0.87 48 0.0001

Ford-B [6] LEFTIST [12] 0.72 0.73 0.75 0.77 0.80 0.82 0.83 0.84 0.85 0.86 49 0.0001
LIME [32] 0.71 0.72 0.74 0.77 0.79 0.81 0.81 0.84 0.85 0.87 30 0.0001
SHAP [19] 0.71 0.72 0.74 0.75 0.77 0.81 0.81 0.82 0.83 0.84 40 0.0009
MP [9] 0.71 0.71 0.73 0.74 0.76 0.77 0.78 0.79 0.82 0.83 4 0.0008
PERT 0.70 0.71 0.71 0.72 0.73 0.73 0.74 0.74 0.76 0.77 2 0.0010

Random 0.21 0.27 0.35 0.41 0.49 0.61 0.72 0.89 0.93 1.00 50 0.0001
RISE [29] 0.15 0.15 0.26 0.35 0.45 0.55 0.63 0.91 0.91 0.95 74 0.0001

CricketX [24] LEFTIST [12] 0.20 0.26 0.29 0.29 0.30 0.50 0.50 0.50 0.50 0.50 51 0.0001
LIME [32] 0.14 0.19 0.23 0.26 0.29 0.31 0.34 0.37 0.41 0.48 39 0.0001
SHAP [19] 0.19 0.29 0.33 0.36 0.38 0.39 0.40 0.41 0.43 0.45 33 0.0005
MP [9] 0.09 0.11 0.12 0.15 0.17 0.18 0.19 0.21 0.21 0.25 2 0.0040
PERT 0.06 0.07 0.07 0.08 0.08 0.09 0.10 0.11 0.12 0.15 1 0.0037

Table 4.4: Confidence suppression metric performance for seven key datasets with
the FCN black-box model. Lower values are better for Saliency sum and Confidence
suppression game, Higher values are better for Saliency variance. ↓ indicates the
lower the better. ↑ indicates the higher the better.

27

Confidence suppression game ↓ Minimality of Saliency
Dataset Method 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% Sum (%) ↓ ‖V ariance‖ ↑

Random 0.75 0.78 0.82 0.83 0.83 0.84 0.85 0.87 0.87 0.88 50 0.0001
RISE [29] 0.63 0.63 0.64 0.65 0.65 0.65 0.67 0.67 0.67 0.67 82 0.0001
LEFTIST [12] 0.83 0.84 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.86 76 0.0001

Wafer [27] LIME [32] 0.62 0.66 0.75 0.75 0.76 0.77 0.77 0.79 0.79 0.81 44 0.0001
SHAP [19] 0.74 0.74 0.74 0.74 0.74 0.74 0.75 0.75 0.75 0.75 51 0.0004
MP [9] 0.41 0.47 0.53 0.54 0.55 0.56 0.57 0.58 0.68 0.73 6 0.0041
PERT 0.37 0.40 0.43 0.44 0.45 0.46 0.48 0.52 0.52 0.56 3 0.0062

Random 0.40 0.41 0.41 0.43 0.43 0.43 0.44 0.45 0.45 0.45 50 0.0001
RISE [29] 0.49 0.49 0.49 0.49 0.49 0.50 0.50 0.50 0.50 0.50 69 0.0001

ECG [6] LEFTIST [12] 0.65 0.65 0.65 0.65 0.65 0.66 0.66 0.66 0.66 0.66 62 0.0001
LIME [32] 0.71 0.72 0.74 0.77 0.79 0.81 0.81 0.84 0.85 0.64 40 0.0001
SHAP [19] 0.64 0.65 0.67 0.70 0.72 0.74 0.74 0.77 0.78 0.57 61 0.0001
MP [9] 0.45 0.45 0.45 0.46 0.46 0.46 0.46 0.46 0.47 0.47 4 0.0005
PERT 0.15 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.16 0.16 2 0.0033

Random 0.67 0.71 0.73 0.75 0.77 0.79 0.81 0.83 0.88 0.93 50 0.0001
RISE [29] 0.73 0.73 0.74 0.74 0.74 0.75 0.75 0.75 0.75 0.75 48 0.0001

Computers [6] LEFTIST [12] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 45 0.0001
LIME [32] 0.55 0.57 0.60 0.63 0.65 0.66 0.68 0.70 0.73 0.77 24 0.0001
SHAP [19] 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 51 0.0001
MP [9] 0.60 0.61 0.63 0.66 0.66 0.67 0.67 0.68 0.69 0.73 6 0.0005
PERT 0.13 0.16 0.16 0.17 0.17 0.17 0.17 0.17 0.17 0.17 3 0.0013

Random 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 50 0.0001
RISE [29] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 79 0.0001

Earthquakes [6] LEFTIST [12] 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 61 0.0001
LIME [32] 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.93 45 0.0001
SHAP [19] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 50 0.0001
MP [9] 0.83 0.83 0.83 0.83 0.83 0.84 0.87 0.87 0.87 0.89 4 0.0001
PERT 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 2 0.0033

Random 0.77 0.80 0.84 0.86 0.88 0.9 0.91 0.93 0.94 0.97 50 0.0001
RISE [29] 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.76 0.76 0.77 53 0.0001

Ford-A [6] LEFTIST [12] 0.58 0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.64 0.65 49 0.0001
LIME [32] 0.62 0.66 0.69 0.72 0.74 0.75 0.77 0.78 0.80 0.83 41 0.0001
SHAP [19] 0.90 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 50 0.0001
MP [9] 0.68 0.69 0.72 0.74 0.77 0.79 0.80 0.83 0.85 0.89 4 0.0018
PERT 0.43 0.44 0.45 0.46 0.46 0.47 0.47 0.48 0.49 0.52 3 0.0024

Random 0.73 0.74 0.77 0.79 0.81 0.83 0.84 0.85 0.86 0.88 50 0.0001
RISE [29] 0.69 0.77 0.81 0.82 0.82 0.82 0.82 0.82 0.83 0.83 49 0.0001

Ford-B [6] LEFTIST [12] 0.69 0.70 0.72 0.74 0.77 0.79 0.80 0.81 0.82 0.83 49 0.0001
LIME [32] 0.66 0.67 0.69 0.72 0.74 0.76 0.76 0.79 0.80 0.82 33 0.0001
SHAP [19] 0.54 0.55 0.57 0.58 0.60 0.64 0.64 0.65 0.66 0.67 42 0.0009
MP [9] 0.43 0.43 0.45 0.46 0.48 0.49 0.50 0.51 0.54 0.55 5 0.0008
PERT 0.33 0.34 0.34 0.35 0.36 0.36 0.37 0.37 0.39 0.40 3 0.0011

Random 0.22 0.28 0.36 0.42 0.50 0.62 0.73 0.90 0.94 1.00 50 0.0001
RISE [29] 0.12 0.12 0.23 0.32 0.42 0.52 0.6 0.88 0.88 0.92 73 0.0001

CricketX [24] LEFTIST [12] 0.27 0.21 0.18 0.18 0.17 0.03 0.03 0.03 0.03 0.03 51 0.0001
LIME [32] 0.13 0.18 0.22 0.25 0.28 0.30 0.33 0.36 0.40 0.47 33 0.0001
SHAP [19] 0.23 0.33 0.37 0.40 0.42 0.43 0.44 0.45 0.47 0.48 34 0.0005
MP [9] 0.07 0.09 0.09 0.13 0.15 0.16 0.17 0.19 0.19 0.23 2 0.0040
PERT 0.06 0.07 0.07 0.08 0.08 0.09 0.10 0.11 0.12 0.15 1 0.0048

Table 4.5: Confidence-Suppression Metric performance for two key datasets with the
RNN black-box model. Lower values are better for Saliency sum and Confidence
suppression game, Higher values are better for saliency variance.

28

progressively increasing them during training. However, another option is Backward

Selection, where saliency values are initially large and are decreased during training.

Interestingly, the Forward Selection is significantly better than Backward Selection,

indicating that carefully adding time steps produces a better ranking whilst preserving

the fewest possible timesteps. Third, we experiment with five alternative time series

replacement strategies to test the importance of the choice of replacement time series

R’s impact on black-box model fc’s prediction P (C|X̂). Initially we consider an

exhaustive search to find a single best (and worst) R from the background dataset

D. From this experiment, we notice that the AUC-Difference metric is sensitive to

the choice of replacement time series R. However, by observing the relationship

between the predicted confidence of fc for instance-of-interest X̂, P (C|X̂) and for the

perturbed instance X∗, P (C|X̂∗), we propose dual replacement sampling, where we

sample a replacement time series from class-of-interestRC and from opposing classRO,

and perform time step specific replacement which results in a substantial improvement

in AUC-Difference metric, and when coupled with prioritization outperforms all

other replacement strategies.

4.5.3 Hyperparameter Study

Producing explanations with PERT involves balancing the four key hyperparameters:

The mean of Gaussian noise gn and the Lpreservation, Lbudget, and LTV coefficients.

We investigate the effects of tuning the coefficients of each in isolation in Figure

4.3 on Wafer dataset, keeping all unchanged parameters at their best-found values.

As shown in Figure 4.3(a), we change the mean of the gaussian noise from -1 to 2 and

notice that the optimal value lies between 0 and 1, indicating that a small amount

of additive gaussian noise leads to the largest improvement in PERT’s performance.

This confirms the intuition behind the compared method MP [9], which employs a

29

1 0 1 2
0.11

0.22

0.33

0.44

AU
C

-D
iff

er
en

ce

(a) Mean gn

1 2 3 4 5 6 7 8 9 10
0.54
0.55
0.56
0.57
0.58
0.59

AU
C

-D
iff

er
en

ce

(b) Lpreservation coefficient (λ1)

0.2 0.4 0.6 0.8 1.0
0.51

0.54

0.57

0.60

AU
C

-D
iff

er
en

ce

(c) Lbudget coefficient (λ2)

1 2 3 4 5 6
0.61

0.62

0.63

AU
C

-D
iff

er
en

ce
(d) LTV coefficient (λ3)

Figure 4.3: PERT Hyperparameter Study

similar strategy. Next, we find a non-linear trade-off for the Lpreservation coefficient:

Too-low means not enough focus on producing good explanations, too-high begins to

ignore the other crucial parts of the loss function, as shown in Figure 4.3(b). Third,

as expected, a higher Lbudget leads to lower AUC-Difference, as shown in Figure

4.3(c). This is because there is a trade-off between the Lbudget and Lpreservation, where

the higher the coefficient on LTV forces PERT to minimize the values of the saliency

map during training, eventually ignoring the preservation task entirely. Finally, the

results for the LTV coefficient are shown in Figure 4.3(d), where we observe that the

final AUC-Difference is quite robust to these changes in the coefficient, ranging only

between 0.61 and 0.63. Compared methods use default hyperparameters.

30

4.5.4 Case Study

Blip dataset

Figure 4.4: Blip Case Study.

The 10-timestep synthetic dataset is designed by choice in order to intuitively verify

the explanation provided to showcase the black-box model’s pattern identification

capabilities. For class 0, there are 6 different variations of blip in the first five

timesteps. For class 1, there exists a single pattern i.e, a single blip in the first

five time steps. In order to test the black-box-model’s capability to ignore certain

common patterns, both the classes have a single blip in last 5 timesteps. In this

dataset there is no well-defined ground-truth for which time steps are truly the

most important. To overcome this limitation, we design a simple synthetic dataset,

where some timesteps are essential to classification success, while some timesteps are

entirely irrelevant. Specifically, we create a balanced dataset with two classes and a

total of X training time series. Examples from the Negative class having ones are

timesteps 2-4 and examples from the Positive class having any random combination

31

of ones and zeros between timesteps 2 and 4. Timesteps six and seven are always

ones and all other timesteps are always zeros. This way, to predict the class label of

a time series, all a classifier needs to look at is timesteps two, three, and four.

CricketX dataset

Figure 4.5: CricketX “No-Ball” Class Case Study
The signal is shown in black. Important time steps for the class-of-interest are

shown in bright green and while bright red indicates important time steps for the
opposing class.

CricketX dataset [24] contains length-300 time series and is a binary classifica-

tion task: An umpire wearing a sensor on their wrists calls either No Ball or Wide

Ball during a cricket match. The No Ball class has bursts of movement on the left

side, indicating the umpire raised their left hand. The Wide Ball class has left-side

and right-side bursts, indicating the umpire also raised their right hand. For this

32

case study, we choose one instance from the No Ball class, which is known to be

represented as as a spike in the left side of the time series. In Figure 4.5, we show

the raw instance in black along with the saliency map produced by PERT colored

according to the scale of the values in the saliency map. Intuitively, the brighter the

colors, the more important the corresponding time series.

First, multiple bursts only on the left-side of the time series are an indication of

strong evidence for the No Ball class, PERT accurately highlighted the highest burst

in the brightest green region. Further, evidence for the No Ball class also appears on

in the right-hand signal where there would have been a signal had it been Wide Ball.

PERT’s saliency map effectively highlights that the black-box classifier accurately

used these important regions to predict No Ball. Additionally, this example gives

us insight into the black-box model’s prediction: The end of the left-hand signal

(once the umpire’s hand is raised and stabilized) is the strongest evidence supporting

the model’s decision. Second, bright red color bars indicate strong evidence for the

opposite class had this been a Wide Ball (opposite class). This strongly indicates

that the underlying model is using the information at these two regions far more

than the others, exactly as expected for this example.

33

Chapter 5

Conclusion

In this work, we identify the need for attribution-based explanations for deep neural

network-based time series classifiers. We then design PERT, a method that learns

to highlight the timesteps that are most responsible and the degree to which they

are important for the classifier’s prediction. By adaptively learning a perturbation

function, PERT creates explanations for input time series that are catered specifically

to the dataset, time series instance, and individual timesteps, deriving evidence both

for and against the model’s prediction. This evidence, presented as one importance

value per timestep, thus allows an end-user to understand what information their

classifier was using during classification, increasing their trust in their model. In

our experiments, we conclusively demonstrate that PERT accurately discovers the

most-important timesteps as it outperforms five state-of-the-art alternatives on three

key metrics on nine datasets.

34

Chapter 6

Future Work

6.1 Incorporating distance metrics

Figure 6.1: TSNE visualization of in-
stance perturbations in LIME[32]

Figure 6.2: TSNE visualization of in-
stance perturbations in PERT[9]

Figures 6.1 and 6.2 demonstrate the differences in the distances between random

perturbations and learning to perturb methods. It is intriguing to understand the

learning process behind the perturbations. In a few of the cases, the Lpreservation

component of the loss function oscillates frequently suggesting a hypothesis - the

specimen is very close to the class-decision boundary line. Such cases pave way for

interesting ways of exploring the boundaries using distance metrics. To expand the

boundary of our perturbations, the direction of expansion plays a crucial role i.e,

35

whether to push the path of perturbation towards / away from the nearest opposing

instance. Here are a few use cases of distance metrics. First, the use of distance

metrics allows us to design a decay factor for the Lbudget component based on the

variance in the Lpreservation component (judging how close the perturbations are to

the decision boundary). Second, we can enforce decay / increase of the distance

between previous perturbation and the next perturbation based on the number of

iterations leading to closer / farther perturbed instances. Third, the distance metric

can be used to formulate an early stopping criterion. Finally, use of distance metrics

might help reduce network artifacts induced by perturbations.

6.2 Extending to Multi-variate, Multi-class problems

PERT is designed to work with uni-variate binary classification problems. In contrast,

the real-world problems are of multi-variate and multi-class types. To better adapt

PERT for real-world problems, a few changes are necessary,

Prioritized Replacement Selector. A prioritized replacement selector is used

to optimize the sampling of replacement time series from the background dataset.

PERT makes use of two priority buffers, one for sampling instances from the same

class (predicted class of instance P (C|X̂)) and the other for sampling instances

from the opposing class. In a multi-class scenario, it is non-trivial to choose the

opposing class due to the existence of > 2 classes. To support dual-sampling (same

and opposing), we need a measure of distance between the instance of interest and

respective classes. This translates to measuring the distance between a point p

(instance of interest) and a distribution d (Class-specific distributions). We plan to

make use of Mahalanobis Distance to support dual-sampling by deriving the opposing

class for the given instance-of-interest.

36

Guided Perturbation Function. The function fgp is responsible for learning

to perturb the instance-of-interest. PERT uses θ, a one-dimensional parametric

trainable vector to represent the saliency of each timestep for a uni-variate instance.

Figure 6.3: Learnable Multi-variate Multi-class Mask

Figure 6.3 showcases the necessary changes in the learnable mask θ of one

dimension representing timesteps to a three dimension vector, where classes, features

and timesteps are the dimensions of a multi-variate, multi-class setting.

Optimizing PERT. To derive instance-specific explanations, PERT uses RMSE

function to preserve the class confidence of the instance-of-interest. However, the

confidences are probabilistic measures and RMSE is not suited for probabilities,

due to the presence of power operations. Probabilities, being fractions under 1, are

significantly affected by the power operations (Square and Root). Calculating the

squares of differences of probabilities, the values that are averaged are abnormally

small, hence the model barely learns. This problem turns out to be exponentially

challenging in a multi-class setting. To derive instance-specific explanations, it is

crucial to preserve the probabilistic distribution of confidences predicted by the deep

time series classifier. To best measure the similarity between two distributions, we

plan to use Kullback-Liebler Divergence. KL Divergence is a measure of how one

probability distribution is different from another probability distribution. KL(P,Q)

is the information gain/loss when distribution Q is used instead of distribution P .

37

6.3 Shared Saliencies

In a multi-class problem, there exists saliency maps explaining respective class

confidences. In such cases, saliency maps of two or more different classes tend to

be similar to each other suggesting the presence of shared saliencies. The presence

of shared saliencies lead to an ambiguity in the derived evidences for the respective

decision. Distinct class-specific saliency maps void of shared saliencies lead to

intuitive (simple - few timesteps in the evidence and precise - unique evidence)

explanations. To derive class-specific saliency maps, we subtract saliency maps of

the other candidate classes from the saliency map of the target class.

θ∗t =
∑

c∈candidates

P (c | X̂) ∗max(θt − θc, 0)[c 6= t]

38

Bibliography

[1] Inès Arous, Ljiljana Dolamic, Jie Yang, Akansha Bhardwaj, Giuseppe Cuccu, and
Philippe Cudré-Mauroux. Marta: Leveraging human rationales for explainable
text classification. In AAAI Conference on Artificial Intelligence, 2021.

[2] S. Bach, Alexander Binder, Grégoire Montavon, F. Klauschen, K. Müller, and
W. Samek. On pixel-wise explanations for non-linear classifier decisions by
layer-wise relevance propagation. PLoS ONE, 10, 2015.

[3] J. Bento, P. Saleiro, F. Cruz, M. Figueiredo, and P. Bizarro. Timeshap: Explain-
ing recurrent models through sequence perturbations. ArXiv, abs/2012.00073,
2020.

[4] Lukas Biewald. Experiment tracking with weights and biases, 2020. Software
available from wandb.com.

[5] A. Charnes, B. Golany, M. Keane, and J. Rousseau. Extremal principle solutions
of games in characteristic function form: Core, chebychev and shapley value
generalizations. In Econometrics of Planning and Efficiency, pages 123–133.
Springer Netherlands, Dordrecht, 1988.

[6] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall,
Abdullah Mueen, and Gustavo Batista. The ucr time series classification archive,
July 2015. www.cs.ucr.edu/~eamonn/time_series_data/.

[7] Eoin Delaney, Derek Greene, and Mark T. Keane. Instance-based counterfactual
explanations for time series classification. ArXiv, abs/2009.13211, 2020.

[8] R. Fong, M. Patrick, and A. Vedaldi. Understanding deep networks via extremal
perturbations and smooth masks. In ICCV, pages 2950–2958, 2019.

[9] R. Fong and A. Vedaldi. Interpretable explanations of black boxes by meaningful
perturbation. ICCV, pages 3449–3457, 2017.

[10] Christopher Frye, Colin Rowat, and Ilya Feige. Asymmetric shapley values: incor-
porating causal knowledge into model-agnostic explainability. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural

39

www.cs.ucr.edu/~eamonn/time_series_data/

Information Processing Systems, volume 33, pages 1229–1239. Curran Associates,
Inc., 2020.

[11] A. Goldberger, L. A. Amaral, L. Glass, Jeffrey M. Hausdorff, P. Ivanov, R. Mark,
J. Mietus, G. Moody, C. Peng, and H. Stanley. Physiobank, physiotoolkit, and
physionet: components of a new research resource for complex physiologic
signals. Circulation, 101 23:E215–20, 2000.

[12] Maël Guillemé, V. Masson, Laurence Rozé, and A. Termier. Agnostic local
explanation for time series classification. ICTAI, pages 432–439, 2019.

[13] Shenda Hong, Yuxi Zhou, Junyuan Shang, Cao Xiao, and Jimeng Sun. Oppor-
tunities and challenges in deep learning methods on electrocardiogram data: A
systematic review. Computers in biology and medicine, 122:103801, 2020.

[14] A. A. Ismail, M. Gunady, H. Bravo, and S. Feizi. Benchmarking deep learning
interpretability in time series predictions. ArXiv, abs/2010.13924, 2020.

[15] Aya Abdelsalam Ismail, Mohamed Gunady, Hector Corrada Bravo, and Soheil
Feizi. Benchmarking deep learning interpretability in time series predictions.
In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 6441–6452.
Curran Associates, Inc., 2020.

[16] Deepak A Kaji, John R Zech, Jun S Kim, Samuel K Cho, Neha S Dangayach,
Anthony B Costa, and Eric K Oermann. An attention based deep learning
model of clinical events in the intensive care unit. PloS one, 14(2):e0211057,
2019.

[17] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2015.

[18] Sawan Kumar and P. Talukdar. Nile : Natural language inference with faithful
natural language explanations. In ACL, 2020.

[19] Scott L. and Su-In L. A unified approach to interpreting model predictions.
Advances in Neural Information Processing Systems 30, pages 4765–4774, 2017.

[20] Tao Lei, R. Barzilay, and T. Jaakkola. Rationalizing neural predictions. In
EMNLP, 2016.

[21] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model
predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 4765–4774. Curran Associates, Inc., 2017.

40

[22] L. V. D. Maaten and Geoffrey E. Hinton. Visualizing data using t-sne. Journal
of Machine Learning Research, 9:2579–2605, 2008.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement
learning. ArXiv, abs/1312.5602, 2013.

[24] A. Mueen, E.J. Keogh, and N E. Young. Logical-shapelets: an expressive
primitive for time series classification. In KDD, pages 1154–1162, 2011.

[25] F. Mujkanovic, V. Doskoč, M. Schirneck, P. Schäfer, and T. Friedrich. timexplain–
a framework for explaining the predictions of time series classifiers. ArXiv,
abs/2007.07606, 2020.

[26] Felix Mujkanovic, Vanja Doskoc, Martin Schirneck, P. Schäfer, and T. Friedrich.
timexplain - a framework for explaining the predictions of time series classifiers.
ArXiv, abs/2007.07606, 2020.

[27] R. Olszewski, R. Maxion, and D. Siewiorek. Generalized feature extraction for
structural pattern recognition in time-series data. PhD thesis, 2001.

[28] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[29] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling
for explanation of black-box models. CoRR, abs/1806.07421, 2018.

[30] C. Ratanamahatana and Eamonn J. Keogh. Three myths about dynamic time
warping data mining. In SDM, pages 506–510. SIAM, 2005.

[31] A. Ribeiro, M. Ribeiro, G. Paixão, D. Oliveira, P. Gomes, A. Canazart, P. Fer-
reira, C. Andersson, P. Macfarlane, and et al. Automatic diagnosis of the 12-lead
ecg using a deep neural network. Nature Communications, 11(1), Apr 2020.

[32] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust
you?": Explaining the predictions of any classifier. CoRR, abs/1602.04938,
2016.

[33] Udo S., Hiba A., Mennatallah E., Daniela O., and Daniel A.K. Towards a
rigorous evaluation of xai methods on time series. CoRR, abs/1909.07082, 2019.

41

[34] Udo S., Daniela O., Daniel A.K., and Mennatallah E. An empirical study of
explainable ai techniques on deep learning models for time series tasks. ArXiv,
abs/2012.04344.

[35] T. Schaul, John Quan, Ioannis Antonoglou, and D. Silver. Prioritized experience
replay. CoRR, abs/1511.05952, 2016.

[36] R. R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell,
D. Parikh, and Dhruv Batra. Grad-cam: Why did you say that? visual
explanations from deep networks via gradient-based localization. 2016.

[37] Cansu Sen, Thomas Hartvigsen, Biao Yin, Xiangnan Kong, and Elke Runden-
steiner. Human attention maps for text classification: Do humans and neural
networks focus on the same words? In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, 2020.

[38] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important
features through propagating activation differences. In International Conference
on Machine Learning, pages 3145–3153, 2017.

[39] K. Simonyan, A. Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. CoRR,
abs/1312.6034, 2014.

[40] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convo-
lutional networks: Visualising image classification models and saliency maps.
arXiv preprint arXiv:1312.6034, 2013.

[41] H. Song, D. Rajan, J. Thiagarajan, and A. Spanias. Attend and diagnose:
Clinical time series analysis using attention models. In 32nd AAAI Conference
on Artificial Intelligence, AAAI 2018, pages 4091–4098. AAAI press, 2018.

[42] Jost Tobias Springenberg, A. Dosovitskiy, T. Brox, and Martin A. Riedmiller.
Striving for simplicity: The all convolutional net. CoRR, abs/1412.6806, 2015.

[43] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for
deep networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 3319–3328, 2017.

[44] Sana Tonekaboni, Shalmali Joshi, David Duvenaud, and Anna Goldenberg.
What went wrong and when? instance-wise feature importance for time-series
models. Advances in Neural Information Processing Systems, 2020.

[45] Yanbo Xu, Siddharth Biswal, Shriprasad R Deshpande, Kevin O Maher, and
Jimeng Sun. Raim: Recurrent attentive and intensive model of multimodal
patient monitoring data. In Proceedings of the 24th ACM SIGKDD international
conference on Knowledge Discovery & Data Mining, pages 2565–2573, 2018.

42

[46] Lexiang Ye and Eamonn Keogh. Time series shapelets: a new primitive for
data mining. In SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 947–956. ACM, 2009.

[47] M. Zeiler and R. Fergus. Visualizing and understanding convolutional networks.
In European conference on computer vision, pages 818–833. Springer, 2014.

[48] Matthew D. Zeiler and R. Fergus. Visualizing and understanding convolutional
networks. ArXiv, abs/1311.2901, 2014.

[49] J. Zhang, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and S. Sclaroff. Top-down
neural attention by excitation backprop. International Journal of Computer
Vision, 126:1084–1102, 2017.

[50] B. Zhou, A. Khosla, Àgata Lapedriza, A. Oliva, and A. Torralba. Learning deep
features for discriminative localization. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2921–2929, 2016.

43

	Introduction
	Background
	Motivating Example
	State-of-the-Art
	Problem Definition
	Challenges
	Proposed Solution
	Contributions

	Related Works
	Randomized Input Sampling (RISE)
	Local and Surrogate Models
	Learning to Perturb

	Methodology
	Problem Definition
	Proposed Method: PERT
	Prioritized Replacement Selector
	Guided Perturbation Function
	Optimizing PERT

	Experiments
	Datasets
	Compared Methods
	Implementation Details
	Metrics
	Experimental Results
	PERT successfully finds the most-important timesteps.
	Ablation Study
	Hyperparameter Study
	Case Study

	Conclusion
	Future Work
	Incorporating distance metrics
	Extending to Multi-variate, Multi-class problems
	Shared Saliencies

