
ASSISTments Cross-Platform Mobile
Application

An Interactive Qualifying Project
Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by
Ben Emrick and Adam Goldsmith

Date:
March 1, 2019

Submitted to:

Professor Neil Heffernan
Worcester Polytechnic Institute

Abstract

This Interactive Qualifying Project (IQP) delivers the ASSISTments web-based system to a
mobile context through the creation of a cross-platform mobile application available for both
Android and iOS devices. This improved mobile app serves as a replacement to the existing
native ASSISTments apps that currently exist in the respective application distribution
services. This cross-platform mobile solution significantly consolidates the size of the app by
providing a single code base that deploys to both Android and iOS. While written utilizing
an intermediary framework, the app maintains truly native app components in order to
maintain user interface (UI) familiarity and deliver a seamless experience. Furthermore,
this project structure unifies the mobile experience across different operating systems. The
improved ASSISTments app includes a feature set in parallel with the existing applications
while fixing prominent issues and making notable enhancements to UI appearance and user
experience (UX) work flows.

i

Acknowledgments

We would like the thank Professor Neil Heffernan for offering the opportunity to build a
revised ASSISTments mobile application. As the advisor of this IQP, he offered insight and
guidance into the design and functionality of the application. Professor Heffernan orches-
trated a collaboration with Oak Middle School in Shrewsbury, Massachusetts, in order to
conduct user testing to evaluate the effectiveness of the system.

Thank you to Anthony Botelho, a PhD Candidate at WPI, who worked supervised this
project and worked very closely with us throughout the IQP to offer feedback and ensure
that the application follow ASSISTments standards. Anthony performed numerous admin-
istrative tasks such as granting us access to existing source code, distribution platforms, and
connecting us with valuable development resources.

Cristina Heffernan and Cindy Starks were crucial in defining the user experience and
providing direction for the overall UI.

Thank you to Chris Donnelly and David Magid for their contributions consisting of
software development advice related to web technologies, and best practices within the AS-
SISTments system.

Thank you to Courtney Mulcahy, a teacher at Oak Middle School, for allowing us to visit
and conduct user testing with her students.

ii

Authorship

The sole authorship of this paper and the associated ASSISTments mobile app belong to
Adam Goldsmith and Benjamin Emrick. The development of this application was completed
exclusively at Worcester Polytechnic Institute (WPI) for ASSISTments, a free public service
of Worcester Polytechnic Institute created by Neil and Cristina Heffernan.

iii

List of Figures

1 Navigation Flow . 8
2 Fabric Dashboard . 23
3 Firebase Dashboard . 24
4 Firebase Crashlytics . 25
5 Stack Trace . 26
6 Firebase Device . 26
7 Firebase Events . 27
8 Comparison of Old and New Android Apps 28
9 Comparison of Old and New iOS Apps . 29
10 Comparison of Login Screens . 32
11 Settings . 33
12 Comparison of Login Screens . 33

List of Tables

1 Comparison of Cross-Platform Mobile Frameworks 3
2 LoC of Old Android App (client/android/assistments/app/src) 27
3 LoC of Old iOS App (client/iOS/ASSISTments/current/{Assistments,*.swift}) 28
4 LoC of Unified App (all tracked files except package-lock.json) 29
5 LoC of Unified App (just app folder) . 29

List of Listings

1 Project Structure . 7
2 IconButton Definition . 9
3 IconButton as a Template Component . 10
4 Login with Injected JS . 11
5 Login with Cookie Syncing . 12
6 Cookie Syncing on Android . 13
7 Cookie Syncing Code on iOS with patch . 14
8 Cookie Syncing Code on iOS . 14
9 Android Application Cache Configuration 15
10 Network Connectivity Mixin . 16
11 Getting Stored Credentials with SecureStorage 17
12 Saving Login Information with SecureStorage 17
13 Android JS Dialogs . 18
14 iOS JS Dialogs . 19
15 Android Zoom Settings . 19
16 Disabling viewport injection in WebViewExt on iOS with patch 20
17 Webview Navigation Buttons . 20
18 RadSideDrawer Implementation . 21
19 SideDrawer Contents . 22

iv

20 Firebase Initialization . 24
21 Tutor Event . 26

Contents

1 Introduction 1
1.1 Existing Apps and Infrastructure . 1
1.2 Features . 2
1.3 Tools and Technology . 2

2 Methodology 4
2.1 Version Control . 4
2.2 Development Life Cycle . 4
2.3 User Testing Procedure . 4

3 Implementation 6
3.1 Overall Structure . 6

3.1.1 Single File Components . 6
3.1.2 Code Style . 8

3.2 Login and Cookie Syncing . 11
3.2.1 Offline . 15
3.2.2 Login Saving . 15

3.3 Webview Specifics . 17
3.3.1 JS Dialogs . 17
3.3.2 Page Scaling . 17
3.3.3 Webview Navigation Buttons . 18

3.4 SideDrawer . 18
3.5 Firebase and Crashlytics . 21

4 Results and Discussion 27
4.1 Code size . 27
4.2 User Test Analysis . 27

4.2.1 Oak Middle School . 31
4.3 NativeScript . 33

5 Conclusion 34

6 Future Work 35
6.1 Known Issues . 35

7 References 36

Appendices 37

v

A User Tests 37
A.1 User Interview 1 on 02/19 . 37

A.1.1 Round 1 . 37
A.1.2 Round 2 . 37
A.1.3 Round 3 . 39

A.2 Oak Middle School 2/25 . 39
A.2.1 Tasks . 39
A.2.2 User Interview 1 . 40
A.2.3 User Interview 2 . 40
A.2.4 Other students . 41

B User Survey 41

C User Survey Results 43

D User Guide 62

E GitHub Project Task Management 68
E.1 Wontfix . 68
E.2 TODO . 70
E.3 In Progress . 70
E.4 Needs Testing . 70
E.5 Done . 70

F README 73

G Building/Development 73
G.1 Building for Distribution . 73

G.1.1 Setting the version . 73
G.1.2 Build/Publish for iOS . 74
G.1.3 Build/Publish for Android . 74

H Code structure 74

I Authors 75

vi

1 Introduction

ASSISTments is a free homework and student tutoring service offered by WPI, primarily tar-
geted at elementary and middle school students. It is primarily accessed via a web interface
that that aims to intelligently replicate the behavior of human tutors in assisting student
comprehension. The ASSISTments Tutor utilizes immediate feedback on assessments and
other features to promote timely and calculated student-teacher interactions. This informa-
tion streamlines the decision making process for teachers interested in adjusting educational
strategies in order to accelerate student learning. ASSISTments leverages data and advanced
metrics to equip teachers with actionable intelligence about the classroom environment. This
computerized approach to education allows teachers and administrators to perform highly
granular analysis that increases the efficiency and accuracy of instructional methodologies
and assessment techniques. ASSISTments continues to research how emerging technologies
and computing advancements can benefit the modern academic system.

Due to the increasing prominence of mobile devices in a highly digital society, ASSIST-
ments plans to increase the accessibility of their platform through the delivery of an app.
Several iterations of mobile apps were written in previous years to allow for several “na-
tive” features that could not be implemented entirely in the web interface. Features that
are well-suited for mobile devices include a drawing pad for work submission, auto-login
with stored credentials, and “offline mode”. Offline mode enables students to download as-
signments within the Tutor and complete them without network connectivity. Optimizing
ASSISTments for the mobile domain increases the potential of this educational tool through
the platform’s ability to garner attention and engagement.

1.1 Existing Apps and Infrastructure

Prior to this project, there were two separate apps for each platform, with different codebases
but similar features. Each app was written using native iOS and Android development stacks,
respectively. However, the Android app had been de-listed from the app store due to updated
policies, while the iOS app had not been updated for approximately a year. After correcting
the violation of the Google Developer Program Policy, the Android version was reinstated
on the Play Store. The previously active Android app possesses several shortcomings. The
login functionality is broken and always displays a ”Login failed” alert with valid credentials.
Therefore, the only method to enter the app includes circumventing the proper login work
flow by selecting the ”Register” label while already logged in. This will grant access to
within the app with the desired account. Furthermore, Offline Mode, which allows students
to download assignments to their device, complete them offline and then submit them once
they regain connectivity, is non-functional. Once Offline mode is invoked on Android the
app enters a seemingly infinite hanging phase that persists throughout the session. This
loading state, which prevents user activity, often extends beyond the immediate session and
interferes with successive app launches. Offline Mode renders the entire ASSISTments app
deadlocked.

Additionally, several of the features of the iOS app were non-functional. There are
numerous UI inconsistencies across Apple devices and the app frequently encounters a state
that forces unexpected crashes. The most unsatisfactory element of both the Android and

1

iOS app is the inability to save the user’s login credentials. While both apps contain a UI
element for remembering the account credentials on the login screen, this feature continuously
fails. Due to this defect, users must enter their username and password every time the app
launches, which significantly thwarts a positive user experience.

After completing a discovery of the existing ASSISTments apps, we identified multiple
areas of improvement. Through a series of consultations with Professor Heffernan and An-
thony Botelho, we collectively defined a direction for design and development. The foremost
priority was to enhance the general performance of the app through minimizing crashes and
unexpected conditions that renders the interface inoperative. This requires an emphasis on
reliability and stability. Additionally, we aim to develop a more reactive system that behaves
faster and reduces latency. A major benefit of a cross-platform app is the improvement in
maintainability. A single codebase requires far fewer resources and knowledge to service and
than independent native applications. These non-functional requirements guided the UX
design process and directly impacted the implementation of presentation and backend logic.

1.2 Features

The designated feature set for the cross-platform app parallels that of the existing app. Ad-
justments to previous logic will be necessary in order to achieve a more performant and stable
foundation. We will introduce complementary features to support the primary functionality.
There were several high-level features that were required for the app to be useful:

• basic webview functionality

• login credential saving

• offline mode: There must be an interface for users to download a problem, access the
tutor while offline, and submit assignments once they return online

• image upload: submit images from the device photo library on assignment questions
with a show work option

• scratch pad: upload work from an in-app scratch pad on assignment questions with a
show work option

• crash and custom event logging with notifications

1.3 Tools and Technology

There are a number of cross platform mobile frameworks available. These can generally be
separated into three categories: JavaScript in a WebView (ie non-Native JavaScript), Native
JavaScript, and other languages. The most popular options are shown in Table 1.

The considered cross-platform frameworks featured a variety of different base languages.
Since JavaScript is used throughout the web app, we contend that consistency with existing
technologies is preferable. Through a JavaScript framework, we are also able to utilize the
robust set of non-browser dependent JavaScript libraries. Therefore, Xamarin and Flutter
were ruled out because C# and Dart would be new languages to the project. Also, the

2

Framework Native? Language Backing JS Frameworks Release date
Cordova No JavaScript Apache 2009
PhoneGap No JavaScript Adobe 2009
Ionic No JavaScript Ionic 2013
React-Native Yes JavaScript Facebook React, Vue May 2013
Nativescript Yes JavaScript Progress Software Angular, Vue 2014
Xamarin Yes C# Microsoft N/A Feb 2013
Flutter Yes Dart Google N/A Dec 2018

Table 1: Comparison of Cross-Platform Mobile Frameworks

pursuit of cross-platform development should not come at the expense of form and function.
From the remaining options, React-Native and NativeScript are the only frameworks built on
native Android and iOS ecosystems (“Xamarin vs React Native”, 2018)[3]. This allows these
frameworks to avoid using a WebView-based wrapper, which frameworks such as Cordova
and its derivatives PhoneGap and Ionic require. Thus, Cordova, PhoneGap, and Ionic were
ruled out due to the complexity of the ecosystem, and the fact that they merely recreate
native behavior. While native rendering frameworks require more knowledge of iOS and An-
droid systems, the ability to implement platform specific UIs with familiar visual components
significantly increases user comfort and overall satisfaction of the app (Stoychev, 2017)[[1].
Native visual elements are also optimized for the mobile operating system. Through an ex-
pansive set of custom UI widgets, NativeScript aims to achieve full cross-platform code reuse.
NativeScript projects share roughly 90% of the source code across platforms compared to
70% in React-Native projects (“Xamarin vs React Native”, 2018)[3]. This, in turn, demands
more effort to fashion independent visual layout’s across unique platforms. However, unison
is a priority in the ASSISTments cross-platform app. This deems a framework that advocates
for platform-specific interface generation undesirable relative to a streamlined UI implemen-
tation. NativeScript is a rapidly growing framework with an expanding community and
open-source presence. Despite its lack of maturity compared to React-Native, NativeScript
maintains a robust collection of plugins. These additives greatly facilitate development and
increase the capabilities of the app. There are several available plugins that are relevant
to the ASSISTments feature set including crashlytics support, media file picker for image
upload and secure storage for account credential security.

Lastly, we analyzed React-Native and NativeScript’s support of front-end frameworks.
Due to time constraints in a 7-week development period, we favored a lightweight framework.
Vue.js is a progressive framework that offers a powerful engine for building complex systems.
Vue.js supports single-file components, which reduces the division of code and facilitates a
simple and clean syntax that will reduce the size and complexity of the source code. This
is imperative for sustaining high readability and a serviceable application (Torkut, n.d)[2].
NativeScript includes a nativescript-vue plugin which serves as an intermediary between
Nativescript components and the Vue.js virtual DOM. This support is unparalleled in the
cross-platform mobile application community. Furthermore, this plugin permits NativeScript
projects to utilize single-file Vue components, which are well-suited for the ASSISTments
app. Ultimately, NativeScript’s advanced support for Vue.js, compatible plugins, and truly

3

https://cordova.apache.org/
https://phonegap.com/
https://ionicframework.com/
https://facebook.github.io/react-native/
https://vue-native.io/
https://nativescript.org/
https://nativescript-vue.org
https://docs.microsoft.com/en-us/xamarin/
https://flutter.io/

native ecosystem render it the most practical framework for development.

2 Methodology

Initially, development was planned to be done in a agile-like manner, with weekly sprints
resulting in a testable demo app. However, due to somewhat optimistic expectations about
the times to get a prototype functional and in the two app stores, there was not a testable
beta for Android in the Google Play Store until the fourth week.

2.1 Version Control

Git was used for version control as it allowed us to use a distributed branching development
strategy while still being able to commit back to the ASSISTments Subversion server using
‘git-svn’. Due to this, we could develop features independently while maintaining functional
code for further development. For example, this allowed us to keep the “work offline” feature
in a separate branch until it was stable enough to merge, as it required some changes that
broke other core functionality to function. A private GitHub repository was used to aid in
synchronization of the code between developers.

2.2 Development Life Cycle

We structured the requirements into GitHub “issues” and used a GitHub Project for Kanban-
style project tracking. Each of us would pick tasks to work on, ranked by perceived impor-
tance and difficulty. The tasks can be seen in Appendix E.

2.3 User Testing Procedure

User testing is a valuable component of the software development lifecycle. This process
allows for developers to gauge user experience and better understand the performance and
compatibility of the application in a realistic context. This procedure aims to uncover
information that is vital to user acceptance and likeability that may otherwise be unapparent.
It is critical to define a standardized testing procedure in order to and prevent variability
and optimize the results.

User testing will be conducted through an in-person session including a test subject, fa-
cilitator and an observer. Both the observer and facilitator assume administrative roles as
individuals with significant insight into the functionality and design of the featured applica-
tion. If there is only one administrator present for the testing session, then they may serve
as both the facilitator and observer. The test subject must possess limited knowledge of the
applications capabilities relative to the administrators. Furthermore, the subject should be
unaffiliated with the direct development and/or design of the software. The test will utilize
the subject’s preferred personal mobile device. If the subject does not possess a personal
device then they will be provided with a suitable iPad Mini with the application installed. A
beta version of the application must be downloaded to the subject’s personal device via the
respective application distribution service. Furthermore, existing ASSISTments users will

4

conduct the testing session with their personal account. The Teacher overseeing the class
is responsible for assigning a sample assignment that will be upgraded for the students to
complete. If the subject does not have a previously created account they will proceed with
the ASSISTments test account. The ASSISTments test account assumes the Student role
within the platform and will contain simple assignments for testing purposes.

It is the facilitator’s duty to first present a brief introduction of the application. They
will continuously prompt the test subject to complete desired tasks throughout the expe-
rience. Upon issuing the introductory description of the app and the testing environment,
the facilitator should encourage the subject to think aloud through the experience. This
requires the test subject to verbally announce their thought process underlying each deci-
sion and express their perception. In order to maintain the integrity and genuine nature
of the test, the facilitator must not influence or coerce the subject in any manner. The
facilitator must avoid providing explicit instructions on how to complete the assigned task.
They must refrain from offering direction concerning how to navigate or operate any aspect
of the application. They may not offer help or interfere with the test subjects instinctual
usage of the application. The facilitator’s role is to merely prompt action without offering
any form of guidance. If the administrators of the test have not selected any specific tasks
for the subject to complete, the facilitator may instead instruct the user to use the app as
freely as possible.

The role of the observer is to collect information throughout the entire duration of the
testing session. The observer is responsible for recording the sequence of clicks, movements,
and interactions with the user interface. They must take detailed notes of the overall ex-
perience and any record any alarming tendencies or behaviors. They may record comments
on the usability and general satisfaction of the application inferred from certain behaviors
or audible feedback. They are not responsible for interacting with the test subject in any
capacity. It is necessary that they are positioned such that both the device screen and user
are visible. This is crucial for understanding in-app actions and allows for analysis of the
user’s expressions, which serve as subtle indicators of judgment.

Prior to the testing session, the administrators may select specific components, features,
and/or workflows that they wish to collect information about. The granularity of such tasks
may range from testing the effect of a layout orientation to the design of an entire in-app pro-
cess. The pre-selected features of the ASSISTments mobile app that were evaluated during
user tests include login, remember user credentials, web view navigation, offline assignment
completion and submitting a bug report.

To initiate the test the observer will record the usage conditions including the mobile
phone operating system, manufacturer and the user’s ASSISTments role if the subject is
an existing ASSISTments user. The facilitator will then describe the format of the testing
session, offer a brief explanation of the platform for those unfamiliar. The facilitator will then
inform the user that they are encouraged to communicate their thought process and internal
reactions in a clear and honest manner throughout the testing. Once the user has agreed
to the conditions and understands the format, they will be asked to complete a series of
pre-determined tasks or requested to use the app freely. Meanwhile, the observer will record
all meaningful interactions with the application and note tendencies, common behaviors, and
subtle details that provide insight into the user experience. The subject will be instructed
to complete the following tasks:

5

1. On first open of the app - login with your account credentials and select for the app
to remember your username and password

2. On successful login and load of web view - force close the application

3. Re-open the app

4. Complete an assignment and explore/navigate the web view

5. Complete an assignment in offline mode

6. Upload an image for show work

7. Logout

8. Clear the username and password fields

After the completion of the assigned tasks and any other operations deemed necessary
by the administrators, the subject will be requested to share immediate feedback, although
this is not required. At the conclusion of the session, the subject will be presented with
an opportunity to complete a survey. The survey is not mandated and may be completed
outside of the testing environment at the subject’s convenience. It is suggested that the
survey is submitted within two (2) days of the testing session in order to preserve an accurate
recollection of the event.

3 Implementation

3.1 Overall Structure

The project’s structure, shown in Listing 1 All of the code for the app is found in the
app directory. The entry point for the app is app.js , which contains Nativescript plugin
registration and setup for Vue’s Devtools. Most of the app is contained in Vue single file
components (SFCs) in the components directory. There is also a mixins folder which contains
code that is used across multiple SFCs. There is a constants file at constants.js that
currently just contains a mapping of URLs. All of the code injected into the webview can be
found at local.js . Most of the common style in the app can be found in _app-common.scss ,
and the style’s colors can be set in _app_variables.scss . Each SFC can also contain its own
style.

3.1.1 Single File Components

The use of single-file components was in line with the goal of a more concise code base with
a simple logical structure. Vue offers the ability to couple related information in a single
location in order to maximize development efficiency. Through coupling an entity’s struc-
ture, style and behavior in a single location it becomes transportable across the system and
contributes to a modular project structure. This is exemplified in the implementation of
icons defined in IconButton.vue visible in Listing 2. The <script> supports the acceptance

6

./

.editorconfig

.gitignore

.prettierrc

README.md

app

App Resources

[omitted] ...

app-common.scss

app-variables.scss

app.js

app.scss

attribution.txt

components

App.vue

Attribution.vue

CreateAccount.vue

Home.vue

IconButton.vue

LoginScreen.vue

ReportBug.vue

ScratchPad.vue

Settings.vue

WebViewWrapper.vue

constants.js

fonts

FontAwesome.ttf

local.js

mixins

networkConnected.js

package.json

firebase.nativescript.json

jsconfig.json

package-lock.json

package.json

patches

@nota

nativescript-webview-ext+5.0.3.patch

webpack.config.js

Listing 1: Project Structure

7

Figure 1: Navigation Flow

of data from an external source that impacts the presentation of the icon determined in
<template> . The appearance is set in <style> which applies a default style that icons will
inherit. Appearance can be overridden elsewhere in the app depending on design require-
ments.

The IconButton component can now be used for templating in other components. The
icons nested in the RadSideDrawer in Home.vue assume the same form so they can be
efficiently implemented with individualized parameters as shown. Abstracting reusable por-
tions of code enforces consistency, limits redundancy and yields an easy to manage adaptive
structure.

The IconButton component can now be used for templating in other components. The
icons nested in the <RadSideDrawer> in Home.vue assume the same form so they can be
efficiently implemented with individualized parameters as shown Listing 3. Abstracting
reusable portions of code enforces consistency, limits redundancy and yields an easy to
manage adaptive structure.

3.1.2 Code Style

The project includes .editorconfig and .prettierrc files to define the style of code. This
aided in merging code, as it reduced the possible differences in representation of the code,

8

1 <template>

2 <Button

3 v-on="$listeners"

4 class="fa iconButton"

5 v-bind="{ 'text.decode': text }"

6 :isEnabled="!!isEnabled"

7 />

8 </template>

9

10 <script>

11 export default {

12 props: { text: String, isEnabled: { type: Boolean, default: true } },

13 };

14 </script>

15

16 <style scoped lang="scss">

17 @import '../app-variables';

18 .iconButton {

19 font-size: 25%;

20 horizontal-align: left;

21 vertical-align: center;

22 background-color: transparent;

23 z-index: 0; // fix for android button shadow

24

25 &[isEnabled='false'] {

26 color: $disabled;

27 }

28 }

29 </style>

Listing 2: IconButton Definition [from components/IconButton.vue]

9

1 <portal to="sidedrawer" tag="ScrollView">

2 <StackLayout>

3 <StackLayout class="sidedrawer-list-item hstack">

4 <Label class="label" text="Offline Mode" />

5 <Switch :isEnabled="networkConnected === offline" v-model="offline" />

6 </StackLayout>

7

8 <IconButton

9 class="sidedrawer-list-item"

10 @tap="logout"

11 text=" Log Out"

12 />

13 <IconButton

14 class="sidedrawer-list-item"

15 @tap="report"

16 text=" Report a Bug"

17 />

18 <IconButton

19 class="sidedrawer-list-item"

20 @tap="help"

21 text=" Help"

22 />

23 </StackLayout>

24 </portal>

Listing 3: IconButton as a Template Component [from components/Home.vue]

10

3.2 Login and Cookie Syncing

The first version of the login code, shown in Listing 4 tried to login by injecting code into
the login page, filling out the login form, and submitting it.

1 assistments_login(event) {

2 let webview = event.object;

3

4 // TODO: handle cases where analytics fails to load (ie adblocker)

5 webview

6 .loadUrl('https://www.assistments.org/account/login')

7 .then(e => {

8 if (e.url === 'https://www.assistments.org/account/login') {

9 // try to login

10 e.object.executeJavaScript(

11 `login.value = ${JSON.stringify(this.username)};

12 password.value = ${JSON.stringify(this.password)};

13 remember_me.checked = true;

14 document.querySelector('.login_window form').submit()`

15);

16 }

17 })

18 .catch(err => console.error(err));

19 },

Listing 4: Login with Injected JS [from components/Home.vue]

That code is ugly and slow, as it requires loading and rendering the login page. Addi-
tionally, the only way it can detect a successful/failed login is by checking the next page
navigated to in the webview, which requires keeping track of more state in Home , which was
not ideal. This was therefore replaced with the code in Listing 5. This version is located in
LoginScreen , leading to better code organization and readability, as well as more consistent
user experience. This solution is also faster and allows much better detection of failure states
(network error vs incorrect credentials, etc). Additionally, it does the login outside of the
webview, which would allow us to interact with the webapp from the same session without
injecting js, as the same session and auth cookies are set in both places. However, it does
require syncing cookies into the webview, as they are separate on both platforms.

On Android this was relatively easy, and can be seen in Listing 6. This can be done right
after first initialization of the webview, and works perfectly.

On iOS, however, there is a bug affecting cookie synchronization into a WKWebView.
Generally speaking, the bug seems to cause the callbacks of the WKWebsiteDataStore ’s cookie
storage to either return early or never return after the data store is associated with a web-
view. This manifests itself in the current code as the inability to login more than once in
a single session on iOS. The first implementation of a workaround for this bug was imple-
mented in a patch to the @nota/nativescript-webview-ext package shown in Listing 7. This
workaround simply sets all of the cookies in a new datastore before creation of the webview.
However, this implementation used a non-persistent datastore, meaning that the solution

11

1 // ... lines reformatted for readability

2 let login_response;

3 try {

4 login_response = await httpRequest({

5 url: URLS.login,

6 method: 'POST',

7 dontFollowRedirects: true, // allow us to capture the redirect

8 timeout: 2000,

9 headers: { 'Content-Type': 'application/x-www-form-urlencoded;charset=UTF-8' },

10 content: this.encodeFormBody({

11 login: this.username,

12 password: this.password,

13 remember_me: 1,

14 commit: 'Log+in',

15 }),

16 });

17 } catch (err) {

18 this.logging_in = false;

19 alert({ title: 'Login Failed!', message: err.toString(), okButtonText: 'OK' });

20 return;

21 }

22

23 // a redirect = probably sucessful login

24 // TODO: check if this assumtion always holds true. We

25 // could also check cookies instead

26 if (login_response.statusCode !== 302) {

27 this.logging_in = false;

28 alert({ title: 'Login Failed!', message: 'Username or password incorrect',

okButtonText: 'OK' });

←↩

↪→

29 return;

30 }

31 // ... some code omitted

32 this.$navigateTo(Home, {

33 clearHistory: true,

34 props: { initialURL: login_response.headers.Location, username: this.username },

35 });

Listing 5: Login with Cookie Syncing [from components/LoginScreen.vue]

12

1 // allow 3rd party cookies

2 const cookieMgr = android.webkit.CookieManager.getInstance();

3 cookieMgr.setAcceptThirdPartyCookies(webview.android, true);

4

5 // manually sync cookies

6 const cookieHandler = java.net.CookieHandler.getDefault();

7 if (cookieHandler) {

8 const cookies = cookieHandler.getCookieStore().getCookies();

9 Array.from(cookies.toArray()).forEach(c =>

10 cookieMgr.setCookie('www.assistments.org', String(c))

11);

12 cookieMgr.flush();

13 }

Listing 6: Cookie Syncing on Android [from components/WebViewWrapper.vue]

was quite incompatible with offline mode, as offline mode needs to save to the app cache and
localstorage to function.

The current implementation moves the code into the attemptLogin method of LoginScreen ,
and is shown in Listing 8. This implementation tries to force setting the cookies using
JavaScript’s Promise and async/await features to wait until all of the cookies are set, as
defaultDataStore seems to be slower than nonPersistentDataStore , probably because it needs
to save the data to the phones storage instead of just RAM. However, due to the bug the
setCookieCompletionHandler function will not ever call its callback, causing the login to hang.
This is currently “worked around” by popping up an alert on the second login, informing
users that they must close the app to login again.

13

1 --- a/node_modules/@nota/nativescript-webview-ext/webview-ext.wkwebview.js

2 +++ b/node_modules/@nota/nativescript-webview-ext/webview-ext.wkwebview.js

3 @@ -162,6 +162,20 @@ var WKWebViewWrapper = (function () {

4 configuration.setValueForKey(true, "allowUniversalAccessFromFileURLs");

5 this.wkCustomUrlSchemeHandler = new CustomUrlSchemeHandler();

6

configuration.setURLSchemeHandlerForURLScheme(this.wkCustomUrlSchemeHandler,

owner.interceptScheme);

←↩

↪→ ←↩

↪→

7 +

8 + configuration.websiteDataStore = WKWebsiteDataStore.nonPersistentDataStore();

9 + let cookies = NSHTTPCookieStorage.sharedHTTPCookieStorage.cookies;

10 +

11 + function setCookie(cookie) {

12 + return new Promise(resolve => {

13 + configuration.websiteDataStore.httpCookieStore.setCookieCompletionHandler(

14 + cookie,

15 + resolve

16 +);

17 + });

18 + }

19 + Promise.all(Array.from(cookies).map(c => setCookie(c)));

20 +

21 var webview = new WKWebView({

22 frame: CGRectZero,

23 configuration: configuration,

Listing 7: Cookie Syncing Code on iOS with patch
[from patches/@nota/nativescript-webview-ext+5.0.2.patch]

1 // Sync iOS cookies must be done before webview is created to

2 // work around a bug introduced in 11.3

3 let cookieStore = WKWebsiteDataStore.defaultDataStore().httpCookieStore;

4 let cookies = NSHTTPCookieStorage.sharedHTTPCookieStorage.cookies;

5 await Promise.all(

6 Array.from(cookies).map(

7 c => new Promise(res => cookieStore.setCookieCompletionHandler(c, res))

8)

9);

Listing 8: Cookie Syncing Code on iOS [from components/LoginScreen.vue]

14

3.2.1 Offline

Initially, the support for offline mode was just a button on the login screen and a toggle
that would bring you to the offline assignments listing page (https://www.assistments.
org/assistments/student/index.html#offlineUserAssignmentList/). After our first
user test, we decided that it would be better for it to automatically detect the network
state, and prompt the user to switch into offline mode. To this end, we wrote a mixin
(Listing 10) that provided the network state, as the Nativescript connectivity module did
not allow for multiple handlers. With this mixin in place, we could just react to changes in
the networkConnected variable. On the login screen, losing network connection disables the
login fields, and switches the “Login” button to an “Offline” button. On the Home screen
this prompts the user to switch to offline mode immediately. If the user does not switch,
they can then later switch with the toggle in the side drawer. The toggle is disabled when
the states match (ie offline with no network connection or online with a network connection)
as it otherwise seemed to only add confusion.

The other part of offline support is enabling localstorage and app cache support. On iOS,
this is enabled by default, as long as the you are using the default datastore. On Android,
this is done by setting domStorage="true" on the WebViewExt, and the code in Listing 9.

1 settings.setAppCacheEnabled(true);

2 settings.setAppCachePath(androidApp.context.getCacheDir().getAbsolutePath());

Listing 9: Android Application Cache Configuration [from components/WebViewWrapper.vue]

3.2.2 Login Saving

To save login information across app starts, we used the nativescript-secure-storage plu-
gin, which provides an abstraction around the native secure storage methods on the two
platforms. The code for this can be seen in Listing 12 and Listing 11

15

https://www.assistments.org/assistments/student/index.html#offlineUserAssignmentList/
https://www.assistments.org/assistments/student/index.html#offlineUserAssignmentList/

1 import * as connectivity from 'tns-core-modules/connectivity';

2

3 const callbacks = [];

4

5 connectivity.startMonitoring(connection => {

6 for (let callback of callbacks) {

7 callback(connection);

8 }

9 });

10

11 export default {

12 data() {

13 return {

14 networkConnected: false,

15 };

16 },

17

18 created() {

19 callbacks.push(this.checkConnected);

20 this.checkConnected(connectivity.getConnectionType());

21 },

22

23 destroyed() {

24 let index = callbacks.indexOf(this.checkConnected);

25 if (index > -1) callbacks.splice(index, 1);

26 },

27

28 methods: {

29 checkConnected(connection) {

30 switch (connection) {

31 case connectivity.connectionType.none:

32 console.error('No connection');

33 this.networkConnected = false;

34 break;

35 case connectivity.connectionType.mobile:

36 console.error('Mobile connection');

37 this.networkConnected = true;

38 break;

39 default:

40 console.error('Non-mobile connection');

41 this.networkConnected = true;

42 break;

43 }

44 },

45 },

46 };

Listing 10: Network Connectivity Mixin [from mixins/networkConnected.js]

16

1 // in created()

2 this.username = this.secureStorage.getSync({ key: 'username' }) || '';

3 this.password = this.secureStorage.getSync({ key: 'password' }) || '';

4

5 if (this.username && this.password) {

6 this.remember = true;

7 if (!this.dont_autologin && this.networkConnected) this.attemptLogin();

8 }

Listing 11: Getting Stored Credentials with SecureStorage [from LoginScreen.vue]

1 // after successful login

2 if (this.remember) {

3 this.secureStorage.setSync({ key: 'username', value: this.username });

4 this.secureStorage.setSync({ key: 'password', value: this.password });

5 }

Listing 12: Saving Login Information with SecureStorage [from LoginScreen.vue]

3.3 Webview Specifics

There are a number of things that any web browser will have, but must be implemented
manually in a webview-based app.

3.3.1 JS Dialogs

First is the JavaScript dialogs: alert() , confirm() , and prompt() . These turned out to
be relatively easy, but just another thing to implement. Additionally, Nativescript did not
provide a wrapper, so this had to be done per platform. The iOS code is shown in Listing 14,
and the Android code is shown at Listing 13.

3.3.2 Page Scaling

Another issue that is typically solved automatically is the scaling of the webpage. ASSIST-
ments’ website is very much designed for desktop use, and is not terribly reactive, with lots
of absolutely positioned elements and other elements that flow poorly.

On Android, the WebView has a number of settings that were set, as seen in Listing 15,
which set it to load zoomed out to fit all content, use a “wide” viewport instead of the
website’s viewport, and try to expand text a bit to improve readability.

On iOS, a similar setup is actually enabled by default, but was not working due to an
issue with the WebViewExt plugin. The plugin, by default, sets a viewport on every page.
This would normally be helpful, but in this case it made the site behave poorly. This was
fixed by patching the package, as shown in Listing 16.

17

1 // ... lines reformatted for readability

2 let myWebChromeClient = android.webkit.WebChromeClient.extend({

3 onJsAlert(view, url, message, result) {

4 alert({title: 'Alert', message: message, okButtonText: 'OK'})

5 .then(r => (r ? result.confirm() : result.cancel()));

6 return true;

7 },

8

9 onJsConfirm(view, url, message, result) {

10 confirm({title: 'Confirm', message: message,

11 okButtonText: 'OK', cancelButtonText: 'Cancel'})

12 .then(r => (r ? result.confirm() : result.cancel()));

13 return true;

14 },

15

16 onJsPrompt(view, url, message, defaultValue, result) {

17 prompt({message: message, okButtonText: 'OK',

18 cancelButtonText: 'Cancel', defaultText: defaultValue})

19 .then(r => (r.result ? result.confirm(r.text) : result.cancel()));

20 return true;

21 },

22 });

23 webview.android.setWebChromeClient(new myWebChromeClient());

Listing 13: Android JS Dialogs [from components/WebViewWrapper.vue]

3.3.3 Webview Navigation Buttons

The navigation buttons were originally placed in the sidedrawer, but moved into the action
bar after our first user test, as the user did not find the sidedrawer. The functions for
this were provided by Nativescript’s WebView, so this was just a matter of binding buttons
(Listing 17).

3.4 SideDrawer

A sidedrawer was implemented early on in the project due to a desire to consume less of the
screen space with buttons than the previous app. The previous app had a bottom tab bar
that switched between screens, but consumed rather a lot of space for something that was
rarely used. To this end, we put much of the functionality there, as well as some aditional
functions, into a sidedrawer that would only be present in in the Home screen. However, due
to a somewhat odd structuring requirement, it had to be present at the top level of the app.

NativeScript’s navigation is based around Frame s and Page s. A call to vm.$navigateTo

switches the Page displayed in the current Frame . Page s also contain ActionBar s and set
the statusbar’s color. A Frame can only contain Page s.

The official sidedrawer component, RadSideDrawer , displays above its children, so the
Page needs to be inside the sidedrawer. However, since Frame s can only be navigated to
Page s, there would need to be a Page both around and inside the RadSideDrawer . This
was done in an earlier implementation, but worked rather poorly due to the presence of two

18

1 // ... lines reformatted for readability

2 let myWKUIDelegate = NSObject.extend(

3 {

4 webViewRunJavaScriptAlertPanelWithMessageInitiatedByFrameCompletionHandler(

5 webView, message, frame, completionHandler) {

6 alert({title: 'Alert', message: message, okButtonText: 'OK', b})

7 .then(() => completionHandler());

8 },

9 webViewRunJavaScriptConfirmPanelWithMessageInitiatedByFrameCompletionHandler(

10 webView, message, frame, completionHandler) {

11 confirm({title: 'Confirm', message: message,

12 okButtonText: 'OK', cancelButtonText: 'Cancel'})

13 .then(completionHandler);

14 },

15 webViewRunJavaScriptTextInputPanelWithPromptDefaultTextInitiatedByFrame c
CompletionHandler(

←↩

↪→

16 webView, prompt, defaultText, frame, completionHandler) {

17 prompt({message: prompt, okButtonText: 'OK',

18 cancelButtonText: 'Cancel', defaultText: defaultText})

19 .then(result => completionHandler(result.result ? result.text : null)

20);

21 },

22 },

23 { protocols: [WKUIDelegate] }

24);

25

26 webview.ios.UIDelegate = new myWKUIDelegate();

Listing 14: iOS JS Dialogs [from components/WebViewWrapper.vue]

1 // force loading page zoomed out

2 webview.android.setInitialScale(1);

3 const settings = webview.android.getSettings();

4 settings.setLoadWithOverviewMode(true);

5 settings.setUseWideViewPort(true);

6 settings.setLayoutAlgorithm(

7 android.webkit.WebSettings.LayoutAlgorithm.TEXT_AUTOSIZING

8);

9 // disable zoom controls

10 settings.setDisplayZoomControls(false);

Listing 15: Android Zoom Settings [from components/WebViewWrapper.vue]

19

1 --- a/node_modules/@nota/nativescript-webview-ext/webview-ext.wkwebview.js

2 +++ b/node_modules/@nota/nativescript-webview-ext/webview-ext.wkwebview.js

3 @@ -346,12 +360,7 @@ var WKWebViewWrapper = (function () {

4 };

5 WKWebViewWrapper.prototype.loadWKUserScripts = function (autoInjectJSBridge) {

6 if (autoInjectJSBridge === void 0) { autoInjectJSBridge =

this.autoInjectJSBridge; }

←↩

↪→

7 - if (!this.wkUserScriptViewPortCode) {

8 - this.wkUserScriptViewPortCode =

this.makeWKUserScriptPromise(nativescript_webview_bridge_loader_1.metadataViewPort);

←↩

↪→

9 - }

10 this.wkUserContentController.removeAllUserScripts();

11 - var wkUserScriptViewPortCode = this.wkUserScriptViewPortCode;

12 - this.addUserScriptFromPromise(wkUserScriptViewPortCode);

13 if (!autoInjectJSBridge) {

14 return;

15 }

Listing 16: Disabling viewport injection in WebViewExt on iOS with patch
[from patches/@nota/nativescript-webview-ext+5.0.2.patch]

1 <IconButton

2 @tap="webview.goBack()"

3 :isEnabled="webview && webview.canGoBack"

4 text=""

5 />

6 <IconButton @tap="webview.reload()" text="" />

7 <IconButton

8 @tap="webview.goForward()"

9 :isEnabled="webview && webview.canGoForward"

10 text=""

11 />

Listing 17: Webview Navigation Buttons [from components/Home.vue]

20

Page elements. Since the top level ActionBar had to be disabled, it broke the coloring of the
statusbar, as well as causing other bugs, especially on newer iphone models without a home
button. Additionally, it meant that reusing the sidedrawer in other screens was impossible
without reimplementing large parts of it or moving things into separate but very tightly
coupled components.

The solution to this was to use a Vue plugin called Portal-Vue. This provides the ability
to render parts of the DOM elsewhere from where they were defined. In this case, it allows
the RadSideDrawer to be at the top level of the app in App.vue , as seen in Listing 18, while
the things in the sidedrawer could be placed in Home.vue , as shown in Listing 19. Since
these controls are now all in the same place as where they are used, bindings can be made
directly, which greatly simplified the code.

1 <template>

2 <RadSideDrawer ref="drawer" gesturesEnabled="false">

3 <StackLayout ~drawerContent class="sidedrawer-left">

4 <Image class="sidedrawer-header" src="res://logo" stretch="aspectFit" />

5 <portal-target name="sidedrawer" tag="ScrollView" />

6 </StackLayout>

7

8 <Frame ~mainContent>

9 <LoginScreen />

10 </Frame>

11 </RadSideDrawer>

12 </template>

13

14 <script>

15 import Vue from 'vue';

16 import LoginScreen from './LoginScreen.vue';

17

18 export default {

19 components: { LoginScreen },

20 mounted() {

21 Vue.prototype.$drawer = this.$refs.drawer.nativeView;

22 },

23 };

24 </script>

Listing 18: RadSideDrawer Implementation [from App.vue]

3.5 Firebase and Crashlytics

Crashlytics is a software development kit for crash reporting, statistical analysis and appli-
cation event logging. Insight into the status and performance of an app at a highly granular
level equips ASSISTments personnel with the necessary information to address deficiencies
in a timely and effective manner. Furthermore, they are able to better understand user
interaction and tendencies through metrics such as active users, audience engagement and
custom key performance indicators. This information is critical in gauging the effectiveness

21

1 <portal to="sidedrawer" tag="ScrollView">

2 <StackLayout>

3 <StackLayout class="sidedrawer-list-item hstack">

4 <Label class="label" text="Offline Mode" />

5 <Switch :isEnabled="networkConnected === offline" v-model="offline" />

6 </StackLayout>

7

8 <IconButton

9 class="sidedrawer-list-item"

10 @tap="logout"

11 text=" Log Out"

12 />

13 <IconButton

14 class="sidedrawer-list-item"

15 @tap="report"

16 text=" Report a Bug"

17 />

18 <IconButton

19 class="sidedrawer-list-item"

20 @tap="help"

21 text=" Help"

22 />

23 </StackLayout>

24 </portal>

Listing 19: SideDrawer Contents [from Home.vue]

22

of business and technological decisions and delivers meaningful knowledge about the exist-
ing strategy. A communicative system with accurate status reporting is crucial in building
maintainable software that engenders a knowledgeable surrounding team.

In the previous iOS app, Crashlytics was integrated and managed through Fabric, a
platform that houses a suite of tools designed to assist mobile app development teams. The
Fabric dashboard for the previous iOS app is visible in Figure 2. The old Android app was
not configured with Crashlytics or Fabric and thus possessed no external statistics reporting
mechanism. This inconsistency was addressed during the project.

Figure 2: Fabric Dashboard

Initially, Crashlytics would be configured through Fabric for both the Android and iOS.
However, at the time of implementation Google announced the eventual deprecation of
Fabric. Instead, Google encourages adopting Firebase, an updated toolset for application
metric tracking. The Firebase Spark plan is free for general commercial use and provides
a more complete analytics package than the antiquated solution, Fabric. Therefore, the
nativescript-firebase plugin was used within the cross-platform app to set up Crashlytics
and custom event logging for both Android and iOS. Firebase integration also includes de-
fault monitoring and statistical generation that is present in the Firebase Console dashboard
in Figure 3

Prior to configuring the nativescript-firebase plugin, a Firebase account was created
with a map the platform-specific AppIDs. Next, Firebase generated downloadable configu-
ration files to be imported to the project structure. Upon installing the plugin, a script was
executed that prompted user input for the setup of the initial environment parameters. Fi-
nally, the dependency was imported in app.js and initialized for activity shown in Listing 20.
This provided access to the Crashlytics and Analytics APIs.

While methods exposed in the Crashlytics API can be invoked to force crashes, there

23

Figure 3: Firebase Dashboard

1 import * as firebase from 'nativescript-plugin-firebase';

2 firebase

3 .init()

4 .then(

5 () => console.log('firebase.init done'),

6 error => console.log('firebase.init error: ' + error);

Listing 20: Firebase Initialization

24

is no further installation needed to inform the system to begin monitoring both fatal and
non-fatal app crashes. Firebase automatically collects crash information and reports data
to the developer console. This communication is not real-time but instead updates every
3-4 hours. Figure 4 shows the Crashlytics dashboard within Firebase with several reported
crashes. These crashes can be investigated further to uncover pertinent information such as
the stack trace shown in the Figure 5 and device data in Figure 6.

Figure 4: Firebase Crashlytics

In order to enhance user analytics, each screen within the app is recorded with a set
screen name (ie. “Login Screen”, “Report a Bug”, etc.). Screen information is attached
to several metrics involving activity, user engagement, and retention. Furthermore, Fire-
base automatically collects data about user events such as “screen view,” “session start,”
and “app open” where screen information is critical. An extensive list of events that are
automatically tracked by the app is visible in Figure 7.

Coupling the generic user events monitored, Firebase supports customization of unique
events that can be manually triggered throughout the app. The ASSISTments cross-platform
app is configured to report when a user enters and launches an assignment within the Tutor.
This is done examining the webview URL on page load. Every time a page loads the current
URL is checked against the previous URL. If the current URL resembles an assignment in
the tutor and the previous URL represents a page outside of the Tutor, then a tutor launch
event is emitted. A tutor exit event is triggered in the opposite scenario. The corresponding
logic is displayed in Listing 21 The event is logged with a call to LogEvent() passing the
custom event key tutor_launch or tutor_exit depending on the state of the current and
previous page.

25

Figure 5: Stack Trace

Figure 6: Firebase Device

1 // send event if we have navigated from a non-tutor page

2 // to the tutor or vice-versa

3 if (this.isTutor !== this.oldURL.startsWith(URLS.tutor)) {

4 firebase.analytics.logEvent({

5 key: this.isTutor ? 'tutor_launch' : 'tutor_exit',

6 });

7 }

8

9 this.oldURL = this.webview.src;

Listing 21: Tutor Event [from components/Home.vue]

26

Figure 7: Firebase Events

4 Results and Discussion

4.1 Code size

The unified app is uses significantly less code, with both old apps around 4K lines each
compared to around 1K lines in the new unified app. This can be seen in Table 2, Table 3,
Table 4, and Table 5. This means that it should be easier to read the code, as there is less
of it and it is less spread out.

Language files blank comment code
Java 21 858 631 3836
XML 32 138 12 866
SUM: 53 996 643 4702

Table 2: LoC of Old Android App (client/android/assistments/app/src)

4.2 User Test Analysis

We conducted the first round of user testing with a tentative feature-complete app. At this
stage, all of the desired high-level features were integrated into a single build. While we were
aware of the potential shortcoming and instability, we opted to include unpolished features in
order to receive feedback. The conditions of the test were structured in adherence to the user
testing procedure. The environment included a single test subject who was a first-time user

27

(a) Old App (b) New App

Figure 8: Comparison of Old and New Android Apps

Language files blank comment code
Objective C 21 1301 674 3109
Swift 30 274 317 1005
C/C++ Header 21 204 194 404
JSON 7 0 0 290
SUM: 79 1779 1185 4808

Table 3: LoC of Old iOS App
(client/iOS/ASSISTments/current/{Assistments,*.swift})

28

(a) Old App (b) New App

Figure 9: Comparison of Old and New iOS Apps

Language files blank comment code
Vuejs Component 10 136 27 1101
JSON 11 0 0 519
JavaScript 5 46 39 423
XML 8 14 6 94
Markdown 1 31 0 77
Sass 3 23 17 66
Gradle 2 18 8 59
SUM: 40 268 97 2339

Table 4: LoC of Unified App (all tracked files except package-lock.json)

Language files blank comment code
Vuejs Component 10 136 27 1101
JSON 8 0 0 435
JavaScript 4 27 11 175
XML 8 14 6 94
Sass 3 23 17 66
Gradle 2 18 8 59
SUM: 35 218 69 1930

Table 5: LoC of Unified App (just app folder)

29

and uninvolved in any aspect of the design or development of the product. Both a facilitator
and observer were present and served as administrative figures. The subject tested the iOS
version on an iPad and the Android version on a Google Pixel.

There were several issues uncovered through the perspective of a new user. Most no-
tably, the existing Offline Mode workflow proved unintuitive and difficult to follow. The
user located an Offline switch in the SideDrawer of the UI and immediately assumed to
interact with this component when prompted to invoke Offline Mode. However, this feature
is ineffective without the prior download of an assignment. The user struggled to determine
how to download an assignment for offline access. Instead, the subject entered Offline Mode
without any viewable assignments and continued to toggle between online and offline. The
user closed the app and attempted to log in with immediate entrance into Offline Mode.
Due to this inability, they suggested an option to enter Offline Mode from the login screen
if the device is disconnected from a network. Completion of the Offline Mode process re-
quired significant interference and instruction from the administrators. This suggested that
the workflow was not optimized for satisfactory user experience and proved too complex to
navigate.

In consideration of the noted flaws with Offline Mode, we initiated a process to re-design
the experience. We contended that the system should possess a higher level of intelligence
and interact with the user through a series of prompts based on the app’s state. Since Offline
Mode is intended exclusively for use when the device lacks a network connection, we reasoned
that monitoring and communicative device connectivity to the user is appropriate behavior.
The updated Offline Mode experience includes UI confirm dialogs informing the user of a
change in the device’s connectivity state and prompting them to enter the mode that reflects
the current state. Furthermore, the Offline Mode toggle in the SideDrawer is disabled if a
a connectivity change has not been registered by the app. If the app is online and has not
lost fallen off of the network, then the user will not be able to enter Offline Mode. It is only
until the app enters a disconnected state that the user can accept to enter Offline Mode via
the confirm dialog or toggling on the enable switch. Lastly, when the device is disconnected
and the app is launched, the Login Screen will be altered to only allow for entrance into the
app through Offline Mode. The standard login fields and button are disabled as login will
fail to complete successfully in this state.

Another alarming concern with the current design is the seemingly unrelated nature of
the native UI components of the app, such as the Action Bar and the webview. When the
user was prompted to Logout they had immense difficulty identifying the correct UI element
to invoke this action. The subject’s immediate tendency was to search the containerized
webview for a Logout element. The user neglected the hamburger icon in the top left corner
of the Action Bar to open the SideDrawer where the Logout button existed. We considered
possible re-designs to avoid this perception, yet several options involved flooding the UI with
an excess of visible icons and buttons. In order to avoid an overwhelming visual experience,
we concluded that the SideDrawer and its items should remain unchanged at the moment. If
future tests corroborated this user’s judgment and revealed similar concerns, then we would
introduce changes to correct the apparently confusing SideDrawer layout. In order to combat
this issue while maintaining a minimalistic UI layout, we replaced the title in the Action
Bar of the “Home” Screen with the webview navigation icons from the SideDrawer. This
is an effort to convey the association of the Action Bar and its native components with the

30

embedded ASSISTments webview.
Next, we observed the subject’s frustration with multiple unresponsive icon and button

taps. There appeared to be significant delays between action requests and fulfillment. Also,
the active region surrounding the area of several icons was too small. Therefore, we increased
the sensitivity of UI items with an associated tap event and incorporated an animation that
signals a registered interaction.

During the testing session, the subject was prompted the clear the username and password
fields on the on the Login Screen. Despite the presence of a single icon to perform that task,
the user failed to recognize its value and proceeded to manually erase the contents of each
text field individually. Furthermore, the subject communicated the expectation of a small
icon inside the text field position on the rightmost side to clear the respective text field
contents. From this information, we redesigned the entire Login Screen UI seen in Figure 10
in order to add a icon that routes to a Settings Screen. Within the Settings page there is an
option to clear the saved login credentials for the app. We figured that this feature should
be farther removed from the Login Screen because it should only be invoked in the case
of a shared device that should not always auto login with a single account. Since this will
be a seldom-used feature its visibility is reduced in order to avoid confusion. Furthermore,
the action button seen in Figure 11 on the Settings Screen features descriptive text and a
confirmation dialog in order to explicitly communicate its purpose.

4.2.1 Oak Middle School

In another round of user testing, we visited an 8th grade class of existing ASSISTments
users at Oak Middle School in Shrewsbury, Massachusetts. While we strived to adhere to
user testing procedure, the environment stimulated disorganized evaluation. Rather than
observing the usage of a single subject at a time, multiple user sessions had to be monitored
simultaneously due to the volume of concurrent tests. Much of the feedback generated from
this experience was received from in-class discussions and individual responses to the user
survey. A combination of observations, active vocal feedback and general questions gave us
actionable information from this interaction.

A common tendency among the students was to utilize Landscape Mode. Several subjects
conveyed their displeasure with the minimized text in portrait orientation. They reacted to
this visibility limitation by zooming in or continuing in landscape orientation. Due to the
expected high frequency of Landscape Mode we decided to make the Action Bar dynamic
and manipulate the device’s status bar. With a quick swipe up gesture the Action Bar will
hide giving rise to more available screen space for the webview to occupy. Furthermore,
when the Action Bar is hidden the webview can extend into the status bar to further utilize
available screen space. The Action Bar will return with a quick swipe down on the screen.
During the test, an incidental trigger of this event was observed. A user encountered a state
where the Action Bar disappeared unexpectedly and they were unaware of how to enforce
its visibility. Therefore, we added a Toast when the Action Bar is hidden. The Toast will
appear at the bottom of the screen for a short period of time with direction pertaining to
unhiding the Action Bar.

Also, through usage observation, a bug in the Scratch Pad became apparent. A user
uploaded their work as part of a problem and the image appeared in the TinyMCE text

31

(a) Old Login Screen (b) New Login Screen

Figure 10: Comparison of Login Screens

32

Figure 11: Settings

editor with a black background. We corrected the performance of this feature to only allow
the upload of Scratch Pad work with a white canvas background. We fixed a bug that
allowed the Scratch Pad to open when the icon was disabled on the UI. Lastly, we changed
the wording on the alert dialog that pops up on Login during the same session as a Logout
event. The user test revealed that the original phasing was too technical. This was evident
through a student interpretation of the message as requiring because a student interpreted
the directions as a necessity to uninstall the app. The wording was changed to better appeal
to a young audience as shown in Figure 12.

(a) Old Login Screen (b) New Login Screen

Figure 12: Comparison of Login Screens

4.3 NativeScript

NativeScript served to be a powerful tool that was well-suited for the development criteria
of the project. A primary goal of a cross-platform structure was to maximize code shar-
ing across the Android and iOS platforms. The framework supported this endeavor with

33

natively implemented professional UI components. This allowed for template components
such as <ActionBar> and <RadSideDrawer> to conform to the design practices of each mobile
operating system. Therefore the app follows platform-specific design paradigms through a
single codebase. Furthermore, NativeScript’s engine provides flexible development options.
The integration with Vue.js allowed for development with web technologies, which remains
consistent with the the remainder of ASSISTments software. With JavaScript support on
top of the Node.js runtime environment, we utilized the npm package manager to equip the
app with relevant plugins. Numerous plugins were integrated to extend the functionality of
the app and deliver a more performant system supported by the rapidly growing NativeScript
community.

5 Conclusion

The conclusion of the development phase of the ASSISTments app resulted in build version
1.0.0 available on both the Play Store and App Store. There were several incremental builds
(0.2.3 and 0.3.0) published to the respective distribution services throughout the duration of
the project. These builds were utilized for internal testing and established the presence of the
new app in the marketplace. This was helpful in navigating the review process mandated
for distribution approval prior to the final release. Once the initial new app request was
submitted, successive version pushes required significantly less overhead to become publicly
listed.

Despite ultimately completing multiple rounds of publication, we failed to satisfy the
intended goal of weekly app updates. We intended to operate under an agile framework and
follow an iterative regimen with rigidly defined weekly priorities. However, we adopted a
more flexible strategy due to frequent modification of expectations, functionality, and design.
While high-level features remained constant throughout the project, incoming requests im-
pacted the priority of tasks. The original development lifecycle was hindered by the inability
to gain proper access and permission to the Apple Developer Program until week 4 of the
project. This significantly delayed the app’s entrance into the App Store in any viable capac-
ity. Therefore, we were unable to properly assess the app through incremental user testing
sessions. Since official user testing was only performed within the final two weeks of the
project, some of the actionable knowledge from these experiences was not manifested in the
final version of the app. Instead of relying on validated user concerns to guide incremental
revisions, we utilized our best judgment to provide seemingly meaningful updates. Iterations
of the app were governed largely by the overall feature list determined early in the term in
combination with periodic feedback from informal internal testing.

Version 1.0.0 of the cross-platform ASSISTments mobile app includes implementation of
all the features outlined in Section 1.2 in a functional capacity. The ASSISTments cross-
platform app achieved feature parody with the previous mobile software. Additionally, the
app corrected several existing bugs and removed defects that interrupted the user experi-
ence. Furthermore, several abnormal screen navigation routines were corrected. Overlaying
the technical details of the system is a heightened sense of aesthetic appeal for the UI. Con-
structing a visually pleasing interface was a high priority. Effective design compliments the
functionality of the system by communicating its purpose and invoking a sense of appre-

34

ciation. This translates to a more favorable application that users are likely to visit and
frequently engage with.

The app in abundant with technological advances compared to the former ASSISTments
mobile solution. The app now successfully remembers the user’s account information and
will perform an automatic login every time the app launches. Coupling this feature is an
added option to clear the saved account data and reset the app’s user recognition protocol.
Numerous UI components are now located in a collapsable RadSideDrawer . This serves to
declutter the interface and compartmentalize related items, which emphasizes the role of
the embedded webview. Offline Mode, is optimized for the mobile domain through systemic
recognition of network connectivity. The offline procedure is streamlined through more in-
telligent state management communication. This replaces the previous pressure to execute
a complex sequence of decisions with an intuitive course of action. This is a major advance-
ment in the latest version of the app because Offline Mode is better suited for the mobile
context is than in the web platform. The support for image and scratch pad upload for show
work is also preferred through the use of a mobile device. Also, subtle adjustments such as
hiding the Action Bar, presenting a form for reporting a bug, allowing access to the user
guide from within the app and analytics logging increase the power of ASSISTments. An
exhaustive account of the completed work is marked as ”Done” in Appendix E.

The ASSISTments cross-platform app was built to create value by producing a highly
accessible learning assistant. The prevalence of digital consumption among the ASSISTments
target demographic substantiates the need for a mobile presence. Through correcting poor
aspects of the previous app and inserting positive additions, the mobile app now serves as
a practical complement to the the web platform. The cross-platform nature of this app
extends the scope of the project and significantly increases the reach of the technology. This
effort coincides with the ASSISTments mission to be an instrumental tool in the educational
community through the use of applied technology and research findings.

6 Future Work

This project laid the foundation for a cross-platform app, but there remains areas to improve.
The app relies heavily on interacting with the site in a way that is not well defined, or likely
to be stable. Some features require injection of JavaScript into the webview which interacts
with DOM elements. These elements are also not well defined (with class es or id s), and
so the injected JS relies on the DOM hierarchy to pick them. This is extremely fragile, as
any change in how GWT creates this hierarchy will cause the selector to fail. In the future,
it would be better to write this in a more defined, stable way so that components of the app
are are entirely dependent on the web architecture.

6.1 Known Issues

Image and scratch pad submission doesn’t work on free response, TinyMCE will break the
viewport and render the in-app webview compressed.

Due to native handling of Action Bar UI, the icons assume an inconsistent layout across
devices and screen sizes. While this does not impact performance or functionality the pre-

35

sentation it diminishes the presentation.
As explained in Section 3.2, you cannot login more than once per app launch on iOS,

due to a bug in cookie syncing.

7 References

[1] Stoychev, E. (2017, December 22). NativeScript/NativeScript. Retrieved February 28,
2019, from https://github.com/NativeScript/NativeScript/wiki/Why-NativeScript?

[2] Torkut, D. (n.d.). Choosing Between Vue.js and ReactJS in 2019: What’s Best for Your
Project? Retrieved February 28, 2019, from https://www.codica.com/blog/react-vs-vue-
2019/

[3] Xamarin vs React Native vs Ionic vs NativeScript: Cross-platform Mobile
Frameworks Comparison. (2018, October 04). Retrieved February 28, 2019,
from https://www.altexsoft.com/blog/engineering/xamarin-vs-react-native-vs-ionic-vs-
nativescript-cross-platform-mobile-frameworks-comparison/

36

Appendices

A User Tests

A.1 User Interview 1 on 02/19

A.1.1 Round 1

OS Android

Version 8.1

Device Pixel 2

Account Used Test Student

1. Observational Notes:

• Failed Login with Test Student account

– javax.net.ssl.SSLPeerUnverifiedException: hostname www.assistments.org

not verified

– Turns out to be that he was on the guest wifi

2. Immediate Feedback

• none

A.1.2 Round 2

OS iOS

Version

Device iPad Mini

Account Used Test Student

1. Observational Notes:

• Screwed up autologin? Logged is asgoldsmith instead? How even?

– Logged in with test→ force close app→ reopen autologged in as asgoldsmith
→ logout and logout screen displays test credentials. . . ???

• Log out: tried account, couldn’t find logout

– Never found side drawer, thought it was like safari, where the bar is not part
of the webapp

• Tried again, and it logged in as right account after force close (first tried to log
out in app, which obviously hung when he tried to log back in)

37

• Noticed scroll was buggy in submit work box

• Tried to use the built-in image submission for show image work, didn’t notice the
app one

• Progress sidedrawer a bit hard to find, might be just due to being unfamiliar with
normal webapp

– Tried to navigate to assignment listing when prompted to find progress

• Tried to login offline, then saw the offline button

– Suggested offline button should be login offline (and corresponding login on-
line)

– Saw download button earlier

– Offline broken again, whoops

– Still can’t logout offline

• Did see button for report bug earlier

– Role selector not obvious (is this who I am or who I am reporting to?)

– Did note that he can edit the bug email

• Thought the clear ‘x’ might be to prevent remember me, just cleared the text
fields manually

• Scratchpad missing back button, can “submit” always, even when show work is
not present

– Thought it was weird that two things in top right are disconnected from rest
of app

– No feedback on adding an image

• “Home” title not representative of content of app

• Have to draw something to cancel scratchpad

• Never discovered the hide actionbar swipe

– Tried to swipe on the actionbar itself when swipe

– Felt like it should be much more responsive and require less of a flick gesture

(a) Pt 2 - with offline!

• Sidebar Switch seems intuitive ish

• Offline doesn’t show correctness

• Tried to enter username password when going offfline from login screen

• Buttons sometimes not registering clicks, but show animations when pressed
quickly

• Did not see submit button on assignments page

– Brings you to the wrong place after submission anyway (back to offline
screen), hard to get out

– Should be highlighted or auto-pressed or something?

38

– Or prompt natively - Submit or Cancel

– Expected that once online it should auto submit

2. Immediate Feedback

• Top bar too distinct, didn’t think to look there for interacting with web app

• Didn’t know what the two top right buttons were

A.1.3 Round 3

OS Android

Version

Device LG G7

Account Used Test Student

Lots of whitespace

Rotate to landscape makes it much better, portrait requires some sort of zoom to make it
work at all

Would be nice if text looped - responsive

Assignments =¿ report similar to report a bug, should be “view report” or something

Ipad was better

Computer still better than app

• Only reason to use is probably offline

A.2 Oak Middle School 2/25

A.2.1 Tasks

1. Login with personal account

2. Go to tutor and complete a few problems

(a) Upload an image from device for submission

(b) Upload a scratchpad image

(c) Upload both on the same problem

3. Download the assignment and go offline then try to complete

4. Close the app and reopen

5. Logout then login to generate alert and observe response. Is the alert clear?

39

(a) Once back in → report a bug

Questions:

1. What did you think about offline mode?

2. Would you use the app to upload images?

3. If you use old app, would you use this one instead?

(a) Would you use it instead of the website?

A.2.2 User Interview 1

OS iOS

Version

Device iPhone

Account Used

1. Observational Notes:

• Did open the side drawer in tutor

• Immediately found image for upload

– Is it in?

2. Immediate Feedback

• none

A.2.3 User Interview 2

OS iOS

Version

Device iPhone

Account Used own

1. Observational Notes:

• Accidentally found the actionbar hiding, but didn’t notice it?

• Logged in fine

• Started landscape, rotated to portrait when he couldn’t see something

– Zoom not working quite right, same as webapp

• Crashed on submit work button

40

– But worked after a restart

– I biased a bit on image submission, because he did not know the normal
behaviour

∗ So he opened the box beforehand as well

∗ Other student pointed it out

• Knew where sidebar button was immediately upon prompting

• Got an out of space error when downloading for offline

– “97 pythagorean theorem finding leg. . . ”

• Did read error on re-login, but didn’t restart until I asked

• Tried to just uncheck the remember-me toggle when prompted to try to clear
password

– Didn’t seem to notice the settings button

2. Immediate Feedback

• none

A.2.4 Other students

• Scratchpad sketch has a black background when added to show-work

• Submit a bug page not submitting when no email set

– School email can’t send to non-domain emails

– Probably needs to be a HTTP POST instead

B User Survey

41

Default Question Block

How did you test the app?

What version of the ASSISTments mobile app did you test?

Are you an existing ASSISTments user?

What is your role within ASSISTments?

In-person with an observer and instructions

On my own time

iOS (Apple - iPhone or iPad)

Android (Non-Apple devices)

Both

Yes

No, but I am familiar with ASSISTments

No, I have never heard of ASSISTments

Student

Teacher

Admin

Other

What is your affiliation with ASSISTments?

Have you used the old version of the ASSISTments mobile app? If so, which

platform?

Which platform does your personal mobile device use?

What type of device are you most likely to use the ASSISTments mobile app

on?

What did you like MOST about the app?

I have used ASSISTments in an academic class as either a Student or
Teacher

I am a member of the ASSISTments Team at WPI

Other:

Yes, iOS

Yes, Android

No, I have never used the ASSISTments mobile app

iOS (Apple)

Android (Samsung, LG, Google Pixel)

I don't have a personal device

Other:

Phone (iPhone, Samsung, LG, Google Pixel, etc.)

Tablet (iPad, Galaxy Tablet, etc.)

Google Chromebook

Other:

What was the WORST part about the app?

Was there any part of the app that surprised you? How did it differ from your

expectations?

Which task (or tasks) were EASIEST to complete?

Which task (or tasks) were most DIFFICULT to complete or did not function as

expected?

How likely are you to...

recommend the app
to a friend

use the app again

use the app instead
of the website

Extremely
unlikely

Extremely
likely

1 2 3 4 5 6 7

Powered by Qualtrics

How satisfied were you with the overall experience of the app?

Are there any features that should be added or removed? Please explain.

What other feedback or suggestions do you have?

Satisfaction Level

Extremely
dissatisfied

Extremely
satisfied

0 1 2 4 5 6 7

C User Survey Results

43

Default Report
ASSISTments Mobile App IQP
March 6, 2019 11:04 PM MST

Q.1 - How did you test the app?

In-person with an
observer and
instructions

On my own time

0 1 2 3 4 5 6 7 8 9 10 11

Field Minimum Maximum Mean Std Deviation Variance Count

1 How did you test the app? 1.00 2.00 1.17 0.37 0.14 12

Showing rows 1 - 3 of 3

Field
Choice
Count

1 In-person with an observer and instructions 83.33% 10

2 On my own time 16.67% 2

12

Q1.1 - What version of the ASSISTments mobile app did you test?

iOS (Apple - iPhone
or iPad)

Android (Non-Apple
devices)

Both

0 1 2 3 4 5 6 7 8 9 10 11

Field Minimum Maximum Mean Std Deviation Variance Count

1 What version of the ASSISTments mobile app did you test? 1.00 3.00 1.31 0.61 0.37 13

Showing rows 1 - 4 of 4

Field
Choice
Count

1 iOS (Apple - iPhone or iPad) 76.92% 10

2 Android (Non-Apple devices) 15.38% 2

3 Both 7.69% 1

13

Q2 - Are you an existing ASSISTments user?

Yes

No, but I am
familiar with

ASSISTments

No, I have never
heard of

ASSISTments

0 2 4 6 8 10 12 14

Field Minimum Maximum Mean Std Deviation Variance Count

1 Are you an existing ASSISTments user? 1.00 1.00 1.00 0.00 0.00 13

Showing rows 1 - 4 of 4

Field Choice Count

1 Yes 100.00% 13

2 No, but I am familiar with ASSISTments 0.00% 0

3 No, I have never heard of ASSISTments 0.00% 0

13

Q3 - What is your role within ASSISTments?

Student

Teacher

Admin

Other

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Showing rows 1 - 5 of 5

Field
Choice
Count

1 Student 100.00% 12

2 Teacher 0.00% 0

3 Admin 0.00% 0

4 Other 0.00% 0

12

Q3_4_TEXT - Other

Other

Q4 - What is your affiliation with ASSISTments?

I have used
ASSISTments in an

academic class as
either a Student or

Teacher

I am a member of the
ASSISTments Team at

WPI

Other:

0 1 2 3 4 5 6 7 8 9 10 11 12

Showing rows 1 - 4 of 4

Field
Choice
Count

1 I have used ASSISTments in an academic class as either a Student or Teacher 91.67% 11

2 I am a member of the ASSISTments Team at WPI 0.00% 0

3 Other: 8.33% 1

12

Q4_3_TEXT - Other:

Other:

Son of Neil and Christina Heffernan

Q5 - Have you used the old version of the ASSISTments mobile app? If so, which

platform?

Yes, iOS

Yes, Android

No, I have never used
the ASSISTments

mobile app

0 1 2 3 4 5 6 7 8 9

Showing rows 1 - 4 of 4

Field
Choice
Count

1 Yes, iOS 69.23% 9

2 Yes, Android 0.00% 0

3 No, I have never used the ASSISTments mobile app 30.77% 4

13

Q6 - Which platform does your personal mobile device use?

iOS (Apple)

Android (Samsung, LG,
Google Pixel)

I don't have a
personal device

Other:

0 1 2 3 4 5 6 7 8

Field Minimum Maximum Mean
Std

Deviation
Variance Count

1
Which platform does your personal mobile device use? -

Selected Choice
1.00 3.00 1.42 0.64 0.41 12

Showing rows 1 - 5 of 5

Field
Choice
Count

1 iOS (Apple) 66.67% 8

2 Android (Samsung, LG, Google Pixel) 25.00% 3

3 I don't have a personal device 8.33% 1

4 Other: 0.00% 0

12

Q6_4_TEXT - Other:

Other:

Q7 - What type of device are you most likely to use the ASSISTments mobile app on?

Phone (iPhone,
Samsung, LG, Google

Pixel, etc.)

Tablet (iPad, Galaxy
Tablet, etc.)

Google Chromebook

Other:

0 1 2 3 4 5 6 7 8 9

Showing rows 1 - 5 of 5

Field
Choice
Count

1 Phone (iPhone, Samsung, LG, Google Pixel, etc.) 52.94% 9

2 Tablet (iPad, Galaxy Tablet, etc.) 47.06% 8

3 Google Chromebook 0.00% 0

4 Other: 0.00% 0

17

Q7_4_TEXT - Other:

Other:

Q8 - What did you like MOST about the app?

What did you like MOST about the app?

It helps me remember older concepts with the reassessment tests.

Offline mode

It works fast

I liked how it was smooth to use

It’s easy and fast

I like to do math on it

The ability to do Assistments offline.

No WiFi setting

Offline

It was faster than the older one I was using.

Doing problems was very easy and worked without problem

Q9 - What was the WORST part about the app?

What was the WORST part about the app?

Some reassessment tests have way too many questions. When you get a question wrong multiple times, it doesn’t tell you the answer

The math

Depending on the phone the questions are small

The font was pretty small. I was using the app on my phone, so the screen was a bit smaller. Therefore, the font was smaller

Having to sign in and reassessment tests

Sometimes it gets stuck zoomed in

It was confusing at first.

Glitchy

Small

Well since it’s a phone obviously the screen is smaller.

The sketchbook was very buggy

Q10 - Was there any part of the app that surprised you? How did it differ from your

expectations?

Was there any part of the app that surprised you? How did it differ from yo...

Just one time we had weird quiz questions that gave us a score at the end, but it never appeared again.

No.

No

I was surprised in a positive way at the major improvements the app had undergone. Before, the app was very slow. Now it is pretty smooth, it could be
smoother, but I'm satisfied for now

It was like the websites with an app like outside with a sort of control panel. I thought it would be the website

Nope

The ability to do them offline. It exceeded them.

I didn’t think you’d be able to do it without WiFi.

Nope

I thought it would still be slower but it was pretty fast.

The report button next to the assignments looks like a button to report the assigment for a bug or something. I would just change it to say "view report"

Q11 - Which task (or tasks) were EASIEST to complete?

Which task (or tasks) were EASIEST to complete?

The reassessment tests with only 1 or 2 questions are very easy to complete

Logging in

The work

It was easiest to do the multiple choice questions

The tests

Fractions

Checking the remember my password feature.

Just doing the Assistments

Zooming in

Getting back to all my assignments quicker.

Multiple choice was easiest

Q12 - Which task (or tasks) were most DIFFICULT to complete or did not function as

expected?

Which task (or tasks) were most DIFFICULT to complete or did not function a...

The reassessment tests with over 10 questions are very hard because whenever you get a question wrong, you have to do at least 3 more questions for
that subject because you get redemption’ questions

Making it load

Nothing

There werent really any tasks which did not function as expected or were difficult to complete

Reassessment tests

The letter ones

Checking the downloadable assignments feature.

I didn’t understand the download thing at first

Nothing

Zooming in to click on the right answer.

It was unintuitive to get to the logout button because the three lines looked like they were a separate thing outside of the site.

Q13 - How likely are you to...

Field Minimum Maximum Mean Std Deviation Variance Count

1 recommend the app to a friend 3.00 6.00 4.50 0.96 0.92 6

2 use the app again 5.00 7.00 5.50 0.76 0.58 6

3 use the app instead of the website 4.00 7.00 5.67 1.37 1.89 6

Q14 - How satisfied were you with the overall experience of the app?

Field Minimum Maximum Mean Std Deviation Variance Count

1 Satisfaction Level 3.00 7.00 5.13 1.17 1.36 8

Q15 - Are there any features that should be added or removed? Please explain.

Are there any features that should be added or removed? Please explain.

When we get the problem wrong in a reassessment test, possibly provide an explanation on how to actually do the problem. I know there are the
redemption tests for that, but I've spoken with others and we all agree that immediate instruction would be helpful

I think that the remediation or reassessment tests should be removed

How when there is reassessment test you sometimes have to do like 30 questions in one

No

Add in calculator

No

Make the finished assignments a different color than red or light red.

Make the site different on the app than the web version so it fills the screen more and is dynamic with the text and fills the screen.

Q16 - What other feedback or suggestions do you have?

What other feedback or suggestions do you have?

Probably make things a little less website looking (make it more compatible for a mobile app). Also, make the font bigger. I find myself having to

I don’t like how when you are doing a test if you get one wrong you have to restart

None

Make it so the screen can adjust to my phone because right now it’s very small and hard to read

None

Don’t give the same reassisments even when the student has mastered them.

The login and offline buttons when you log in would make more sense if they we're "login online"/"login" and "login offline" to me.

Q8 - Topics

End of Report

Unknown

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Showing rows 1 - 1 of 1

Field
Choice
Count

1 Unknown 100.00% 1

D User Guide

62

General Usage of the Mobile
App for iOS and Android

1/18

Use this slide to navigate to desired sections of the
the user guide

1. Installation
2. Login
3. Logout

a. iOS Bug
4. Create an Account
5. Clear Saved Login Data
6. Layout Overview
7. Report a Bug

a. Send Email iOS
b. Send Email Android

8. Offline Mode - allows students to download problem sets to their device, work on
the problem set offline, and then upload their work when they have access to WIFI.

9. Show Work - Image Submission
10. Show Work - Scratch Pad Submission

Assign • Assist • Assess

Table of Contents

InstallationAssign • Assist • Assess

2. Ensure that you are downloading the
version named “ASSISTments Mobile”

1. Install the app via the
App Store (iOS) or Play

Store (Android)

2/18iOS Android

NOTE: These instructions primarily use iOS
screenshots. The functionality and user interface on
Android is identical. If there are variations between
the versions, then screenshot from both platforms

will be provide for demonstration

Login

3/18

2. Turn the Remember Me toggle on (the
display will be yellow) if you wish for the

app to auto-login every time the app opens.
This will save account credentials so that

they do not need to be entered again

3. Click the Login button once you
have completed entering your

credentials

4. You will receive an alert if
the username and/or

password are incorrect. Tap
OK and try again

1. Enter your username
and password in the

proper text fields
Logout

More

1. Open the Side Drawer

2. Click Log Out

3. Confirm Log Out on
dialog

Logout
iOS Bug

5/18

If you attempt to Login
immediately after Log

Out this alert will appear
and you will not be able
to enter the app. Click

OK and follow the
instructions. This video

demonstrates how to quit
the app on iOS

Create an Account

6/18

1. Click on the Create an
Account label

2. Follow the on-screen
instructions to complete

the account creation
form

3. Once you have
finished the form

and received your
username and

password. Click
the Back button

to navigate to the
Login Screen

4.Enter your new
username and password

to login

Clear Saved Login Data

7/18

1. Click on the Settings
icon 2. Click the Clear button. This will erase the

saved login credentials and will require
input of a username and password to login

again

4. Click Close to return to the Login Screen

5. The username and password field will
now be empty

3. Click Clear on the dialog

Layout Overview

More

Quickly swipe upward on the screen to
hide the Action Bar. Quickly swipe

downward to display the hidden Action Bar

Rotate the device into a horizontal
orientation to activate Landscape

Mode. This will make text more legible,
especially on smaller devices

Use the icons in the center of the Action Bar to navigate
through pages in the webview. The left-facing arrow will
load the previous page. The refresh icon will reload the

current page and the right-facing arrow will undo a
backwards navigation

Layout Overview

9/18

Inside the Tutor, tap the arrow button
to reveal the assignment progress bar

shown below

If open, tap again to close the
assignment progress bar

TIP: Pinch and drag
inside the webview to

zoom IN and OUT!

Report a Bug

Next Steps

1. Open the Side Drawer

2. Click on Report a Bug

3. Complete the form. All
fields marked with a red
asterisk (*) are required

4. Submit the form

NOTE: Make
sure to select
the role you
are currently
signed in as

11/18

NOTE: Please do
NOT change the

Subject or To:
fields

1. An email
template will

appear prefilled
with the

information
submitted in the

form

NOTE: On iOS the
email can only be sent
from within the Apple
Mail app shown on

right. If the Mail app is
not configured you will
not be able to submit

the form on the
Report a Bug screen.

Also, if you cannot
send an email to an

address outside of the
school district (to
@wpi.edu) please

contact someone who
can

3. Click Send

2. Edit the input if
necessary. Please

do not delete
important

information

Mail App

Report a Bug
iOS

12/18

Report a Bug
Android

1. After Submit you
may be prompted to

select an email
application

2. Select your preferred
email application and

choose ALWAYS.
ASSISTments will send

emails using the selected
application on your device

3. Once the email draft
is open follow the
instructions on the

previous slide

Offline Mode

Continued

1. Click the Download button

4. Once back in the app, select
Yes on the dialog to enter

Offline Mode

6. If you selected No, then you
can enter Offline Mode by

toggling the switch in the Side
Drawer

5. If you selected No, open
the Side Drawer

2. Click the View Assignment

3. Turn OFF internet
connectivity. Make sure WiFi
and Cellular Roaming are

OFF on your device

Continued

Offline Mode

1. In Offline Mode, Select your
account

2. Click Show Downloaded
Assignments

3. Select the assignment you downloaded. If
this screen is completely white without
visible text, scroll to the top left of the

webview until the downloaded assignment
appears

4. You may now complete
problems in the Tutor!

Continued

Offline Mode

1. If you finish the downloaded
assignment, this pop-up will

appear. Click View
Assignments

2. The assignment will be
marked as Completed

3. Once you wish to go
back online turn WiFi and

Cellular Roaming ON

4. The app will register you
are connected. Select Yes

in the dialog

5. If you select No,
you may still turn
Offline Mode OFF
using the switch
inside the Side

Drawer

16/18

Offline Mode

1. Once back online - if you
finished an assignment while

in Offline Mode you may
submit the assignment by
selecting Yes in the dialog

2. If the assignment is
Submitted, the assignment will

be marked as Complete

3. If an assignment was NOT
finished in Offline Mode, your

progress will be saved and the
assignment will be marked as

In Progress

Show Work - Image
Submission

2. The first time this feature is
launched ASSISTments will
request photo library access.

Select OK

1. Enter the Tutor and click
the Image icon. This icon
will be disabled outside of

the Tutor, and when a
problem does not allow you

to submit work

3. Tap the Show Work label to
expand the textbox. The image
selected from the photo library

will appear here

4. Click Submit Answer to
record the answer to the

problem with the associated
work

Continued

NOTE: This feature does not support
upload for free response questions

Show Work - Scratch
Pad Submission

1. Enter the Tutor and click
the Scratch Pad icon. This
icon will be disable outside

of the Tutor

2. Draw in the Scratch Pad

NOTE: Tap Clear to remove any work. The
Scratch Pad will return to its original empty state

NOTE: Tap
Close to exit the

Scratch Pad

3. Tap the Show Work
label to reveal the contents

of the Scratch Pad

18/18

3. Tap Submit
when finished 4. Tap Submit Work to

complete the problem and
upload the Scratch Pad

work

E GitHub Project Task Management

E.1 Wontfix

• icons in the Action Bar are not aligned/spaced correctly [bug] [iOS]

Action Bar is not optimized for iPhone X

• Scratch Pad work will not save after navigation away from the page [bug]

• Handle URL (open with Native App) [enhancement]

From the Google classroom app, but might only matter for 2.0.

References:

– https://github.com/hypery2k/nativescript-urlhandler
– https://developer.android.com/training/app-links/
– https://developer.apple.com/library/archive/documentation/General/Conceptual/AppSearch/UniversalLinks.html

looks like it requires a file on the server for iOS support

• Side Drawer items have increased left-margin [bug] [iOS]

68

Not sure how to reproduce issue. I think it occurs on the first ever open of the app
after switching portrait –¿ landscape –¿ portrait

• Support Assistments 2.0 [enhancement]

Looks like this should mostly just be implementing #16.

• Detect offline capability of student and disable offline mode [enhancement]

Either detect classes or check if there is downloaded content

• Enforce lack of network in offline mode [enhancement]

ie force loading from cache only

• Fix aspect ratio of splash screen for iPhone X or later [bug] [iOS]

Narrow whitespace at the bottom of the screen

• CreateAccount did not redirect to login on sucess [bug]

• Allow for image submission to free response questions [enhancement]

Maybe optional?

• screen capture/video recording and uploading as show work [enhancement]

• Cannot navigate to any page from Admin [Android] [bug]

Seems to be specific to Anthony’s phone/account so far. Characterized by ”batched”
loading, where requests will appear to silently fail, then all happen at once.

Unable to reproduce bug...

69

E.2 TODO

E.3 In Progress

E.4 Needs Testing

E.5 Done

• Remove old iOS app for sale and unpublish old Android from the Play Store [distribu-
tion]

• Update preview images in the Play Store [Android] [distribution]

Should match Apple - or both should be changed if necessary

• Update existing Offline Mode Google Slide to link to new guide [distribution]

• Change name - currently AssistmentsMobile1 [distribution] [iOS]

change to ASSISTments

• Link to help docs [enhancement]

Probably in sidedrawer?

• Action Bar distorted and hides scratchpad button in Landscape orientation [bug] [iOS]

Cannot see scratchpad icon. iPhone XS

• Generate PPTX for app help [distribution]

probably just display some html docs that explain how to use any non-obvious features,
or os-specific/other app based features like screen recording.

• Allow WebView to lay underneath status bar when Action Bar is hidden [enhancement]

• Open source licences page [enhancement]

We should have a page in the app that describes the open-source libs we use, if their
licenses require that.

• Change email for report a bug [distribution]

assistments-help@wpi.edu

• Action Bar is hard to show after hiding it [enhancement]

maybe a toast when it is hidden?

• Remember me switched ON as default [enhancement]

• Change wording on Login alert dialog [question]

”Due to a bug introduced in IOS 11.3 the login may not work. If this happens, you
must completely quit the app then try again.”

70

• Scratchpad has black background when submitted [bug] [iOS]

• Scratchpad is not actually disabled [bug]

• Different app icons for Android and iOS [question]

iOS with graph and Android no graph - should make both with graph

• Use modern Android icons [Android] [enhancement]

the two part things, don’t remember what they are called

• Can we make an entire PPTX for help [distribution] [question]

Instead of just offline demo - a full app demo

• Change Role selection on report a bug page. Should auto select role based on logged
in user [enhancement]

Not autoselecting. Instead, add a more descriptive label

• Cannot login more than once per app launch [bug] [iOS]

Something something cookie syncing Temp fix/workaround by displaying an alert di-
alog on hanging login - Can’t force an app close...

• Styling/branding stuff [enhancement]

x Launch screen
x icons
x login screen banner
x colors

• Auto-submit offline work when connection re-established [enhancement]

• ScratchPad for work submission [enhancement]

Maybe just call out to notability1

• Image Work Submission [enhancement]

Students should be able to take/upload/draw images as their ”show work”

Implementation

1. detect presence of ”[-] You may submit work with your answer” on page
2. provide button and picker to select image

– or scratchpad (the mechanics for this are a bit different)
3. upload image to server
4. embed image into tinyMCE editor
5. allow submission of problem as normal Maybe add button inside the page, instead

of menu bar.

1<https://www.gingerlabs.com/>

71

https://www.gingerlabs.com/

• Offline Mode [enhancement]

User can access certain features while offline

• Replace ”Home” text in Action Bar with navigation icons for webview [enhancement]

• Redesign Login page to remove Action Bar and add a settings icon [enhancement]

• Create a Settings page that allows for clearing of login data [enhancement]

• Get a test account for automated testing [question]

• When in offline, a click on ”logout” will never terminate/fail, making further requests
fail too [bug]

including an attempt to go back online

• CreateAccount does not redirect on logout, which you get when already logged in [bug]

• Register button on the Login Screen [enhancement]

Ask about this Should add, but be called ”Create an account”

• Add a ”submit a bug/give feedback” button [enhancement]

Should just prompt an email to somewhere. send an email to an address that doesn’t
exist yet, filled from a form that we check for completion

• Add button to clear saved username/pw [enhancement]

• Banner image too large on login screen on landscape devices [Android] [bug]

• Auto-hide the ActionBar on scroll to save space [enhancement]

might be a bit tricky to get the scroll event from the webview. maybe we can get it
from higher up?

• Handle JS alert, confirm, and prompt dialogs [enhancement]

probably involves setting a WKUIDelegate and WebChromeClient.

• add Crashalytics or some other crash logging/notifications [enhancement]

• Add side Drawer [enhancement]

almost certainly use RadSideDrawer2

probably overkill implementation in Vue3

Honestly not exactly sure what exactly we would put in it, maybe tabs (like the older
app) would be better?

2<https://docs.telerik.com/devtools/nativescript-ui/Controls/NativeScript/SideDrawer/

getting-started>
3<https://medium.com/@jamie_45704/nativescript-vue-creating-a-global-side-drawer-fd1c76683722>

72

https://docs.telerik.com/devtools/nativescript-ui/Controls/NativeScript/SideDrawer/getting-started
https://docs.telerik.com/devtools/nativescript-ui/Controls/NativeScript/SideDrawer/getting-started
https://medium.com/@jamie_45704/nativescript-vue-creating-a-global-side-drawer-fd1c76683722

• Collapse Problem Bar [enhancement]

We should provide a button to collapse the list of problems sidebar, like the current
iOS app.

• Add buttons for webview navigation (forward, back, refresh)

• Login Saving

• Basic Webview

F README

This is a cross-platform app client for ASSISTments4.

G Building/Development

This app is written in NativeScript5, specifically NativeScript Vue6. This allows it to share
a common code base for both iOS and Android.

To get set up for building the app, follow the NativeScript setup instructions7. Then,
run npm install in the top level directory of the project (which should be the same place
this README can be found) to install the app’s dependencies.

Then you can run the appropriate command to build/run/debug the app on a given
platform, for example tns run android --bundle to run on android. Note that --bundle
is quite important, as without it tns will not build the JS code.

You can make the app connect to Vue Devtools for debugging purposes with --env.vueDevIP=130.215.214.150.

G.1 Building for Distribution

Text in brackets (<>) should be replaced by the appropriate values.

G.1.1 Setting the version

The easiest way to change the version is to use NativeScript Sidekick, but if you want to do
it manually, here’s what you need to change (keeping the style of the existing values:

app/App_Resources/Android/AndroidManifest.xml:

android:versionCode, android:versionName

app/App_Resources/iOS/Info.plist:

CFBundleShortVersionString, CFBundleVersion

package.json: version

package-lock.json: version

4<https://www.assistments.org/>
5<https://www.nativescript.org/>
6<https://nativescript-vue.org/>
7<https://nativescript-vue.org/en/docs/getting-started/installation/>

73

https://www.assistments.org/
https://www.nativescript.org/
https://nativescript-vue.org/
https://nativescript-vue.org/en/docs/getting-started/installation/

To apply this, make sure you either remove the platforms directory, or re-run tns

prepare ios (or android) to copy this new information into the build directory.

G.1.2 Build/Publish for iOS

You will need to acquire the Distribution Certificate and add it to your keychain. It will
probably be a .p12 file, which ideally someone else in ASSISTments has access to. Alterna-
tively, anyone with an account that is an ’App Manager’ in the WPI Developer group can
revoke the old certificate, add a new one, and add it to the provision. You will also said
provision, which you should just be able to download from Apple’s certificates page8.

1 tns build ios --release --for-device --bundle --env.production --env.uglify

--provision <provisioning profile id or name>

←↩

↪→

2 tns publish ios <appleid> --ipa

platforms/ios/build/Release-iphoneos/AssistmentsMobile.ipa

←↩

↪→

This should upload the package to App Store Connect. It will then process for a while,
and you can go through the normal process to create a new version and submit it for review.

G.1.3 Build/Publish for Android

You will just need the keystore file and its passwords. Ideally someone else in ASSISTments
has these, but alternatively they can probably be found in the previous Android app’s files.

1 tns build android --aab --bundle --release --env.uglify --env.production --clean \

2 --key-store-path <keystore file> --key-store-password <password> \

3 --key-store-alias ASSISTments --key-store-alias-password <password>

Then upload the created .aab file to Google Play Console. You can use the --copy-to

<path> argument to place the .aab in a more convenient location.

H Code structure

All of the code for the app is found in the app directory.
The entry point for the app is app.js. Most of the app is contained in Vue single

file components (SFCs) in the components directory. There is also a mixins folder which
contains code that is used across multiple SFCs.

There is a constants file at constants.js that currently just contains a mapping of
URLs.

All of the code injected into the webview can be found at local.js.
Most of the common style in the app can be found in app-common.scss, and the style’s

colors can be set in app variables.scss. Each SFC can also contain it’s own style.

8<https://developer.apple.com/account/ios/certificate/>

74

https://developer.apple.com/account/ios/certificate/

I Authors

This app was originally written by Adam Goldsmith and Ben Emrick at WPI as an IQP
project in C term of 2019.

75

	Introduction
	Existing Apps and Infrastructure
	Features
	Tools and Technology

	Methodology
	Version Control
	Development Life Cycle
	User Testing Procedure

	Implementation
	Overall Structure
	Single File Components
	Code Style

	Login and Cookie Syncing
	Offline
	Login Saving

	Webview Specifics
	JS Dialogs
	Page Scaling
	Webview Navigation Buttons

	SideDrawer
	Firebase and Crashlytics

	Results and Discussion
	Code size
	User Test Analysis
	Oak Middle School

	NativeScript

	Conclusion
	Future Work
	Known Issues

	References
	Appendices
	User Tests
	User Interview 1 on 02/19
	Round 1
	Round 2
	Round 3

	Oak Middle School 2/25
	Tasks
	User Interview 1
	User Interview 2
	Other students

	User Survey
	User Survey Results
	User Guide
	GitHub Project Task Management
	Wontfix
	TODO
	In Progress
	Needs Testing
	Done

	README
	Building/Development
	Building for Distribution
	Setting the version
	Build/Publish for iOS
	Build/Publish for Android

	Code structure
	Authors

