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Abstract

Clustering is defined as the process of grouping a set of objects in a way that objects

in the same group are similar in some sense to each other than to those in other

groups. It is used in many fields including machine learning, image recognition,

pattern recognition and knowledge discovery. In this era of Big Data, we could

leverage the computing power of distributed environment to achieve it over large

dataset. It can be achieved through various algorithms, but in general they have high

time complexities. We see that for large datasets the scalability and the parameters

of the environment in which it is running become issues which needs to be addressed.

Therefore it’s brute force implementation is not scalable over large datasets even in

a distributed environment, which calls the need for an approximation technique or

optimization to make it scalable.

We study three clustering techniques: CURE, DBSCAN and k-means over dis-

tributed environment like Hadoop. For each of these algorithms we understand

their performance trade offs and bottlenecks and then propose enhancements or

optimizations or an approximation technique to make it scalable in Hadoop. Fi-

nally we evaluate it’s performance and suitability to datasets of different sizes and

distributions.
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Chapter 1

Introduction

Clustering is one type of unsupervised learning methods that is used for discover-

ing useful data distribution and patterns in the underlying data. Given a set of

n points, the task of clustering can be described as to partitioning points into k

partitions or groups based on their similarity. Additionally some of the clustering

methods take k as an user defined parameter while others detect the number of

partitions automatically. For example: k-means[7] takes k as an user defined input

while DBSCAN[5] achieves it automatically. Based on the methodology used in the

technique, the clustering algorithm can be classified into Hierarchical based, Density

based, Centroid-based and Distribution based.

We are concerned with the first three methods of the above mentioned one’s. Hi-

erarchical based clustering performs hierarchical decomposition of given data points.

Data points having similar features are merged at different levels forming tree shaped

structure. Initially each data point is considered as a self made cluster and then

iteratively clusters are merged based on common feature or pattern to form a tree

like structure. In hierarchical clustering there are different algorithms that have

been proposed like CLARAN [11], CURE [6], CHAMELEON[9] and BIRCH [13].
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Hierarchal algorithms are not scalable to apply on large datasets since it has a time

complexity of at least O(n2).

In density-based clustering, we identify areas with high density of data to clusters

and the sparse ones are identified as noise or outliers. The examples of this method

include DBSCAN [5], OPTICS [2] and Mean-shift algorithm [4]. In centroid-based

clustering, we represent clusters using central vectors which may not be a member

of the dataset. We assign data to clusters based on the minimum distance to these

central vectors. k-means algorithm [7] comes under kind of clustering technique.

Distributed computing environment which consists of interconnected nodes can

be used to apply clustering algorithms to large amount of data. Typically in this

environment we partition the dataset and then process each partition in parallel

using the nodes and then combine the results from each node. The idea here is

to leverage the parallel computing power in hand, but since the algorithms have

time complexities we need to propose an enhancement or an optimization to make

it scalable. Apache Hadoop, is an open source framework for distributed computing

which uses Map Reduce paradigm and we will be using it for implementation.

Our work involves implementing the three clustering algorithms: CURE, k-

means and DBSCAN in a distributed environment like Hadoop. For each of these

algorithms we understand their performance trade offs and bottlenecks and then

propose enhancements or optimizations or an approximation technique to make it

scalable in Hadoop. Finally we evaluate it’s performance and suitability to datasets

of different size and distributions.

In the following subsections we discuss the three techniques in an overview and

the challenges one faces while implementing them in a distributed environment.
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1.1 CURE

CURE is a hierarchical algorithm which utilizes representative points which are se-

lected by obtaining the most scattered points within a cluster and then shrinking

them towards the mean of the cluster by a specified fraction. This enables to de-

termine clusters of non-spherical sizes and the ones having wide variances in size[6].

The stages involved in the algorithm are depicted in the Figure 1.1.

Figure 1.1: Stages in CURE

Firstly, the data is sampled using a sampling technique. Secondly the sampled

data is partitioned to k partitions. Thirdly, each partition is processed using the

CURE algorithm until it is paused to check for outliers, after the removal of outliers

the clustering is resumed until we get the required number of clusters. The clusters

from each partitions are combined using the CURE algorithm to get the final list of

clusters. Finally the data points on the disk which were not selected for sampling are

assigned clusters from the above step. Since it uses a combination of partitioning and

sampling it is a good candidate among the hierarchical algorithms to be implemented

in a distributed environment.

CURE uses a k-d tree and a priority queue to process the clusters. The k-d tree is

used to retrieve the closest cluster for a given cluster, the search operation has a time

complexity of O(logn). The priority queue stores the list of clusters ordered with

respect to the distance of a given cluster to its closest cluster. The algorithm runs
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till the number of clusters in the queue equals to the number of clusters required.

The algorithm has a time complexity of O(n2logn) and a space complexity of O(n).

1.2 DBSCAN

DBSCAN[5] is a density-based clustering technique, which takes in minPnts and ε

as input parameters. Using this technique for every data point considered, we would

draw an imaginary circle with radius ε and then perform a neighborhood query to

retrieve the number of points within the imaginary circle drawn. Based on the

number of points returned we would classify the point as a core point, border point

or a noise point. For example in the figure 1.2 for inputs minPnts=6 and ε radius,

Figure 1.2: Classification of points in DBSCAN

we classify x as a core point as neighborhood(x) >= minPnts, y is classified as a

border point as it is in the neighborhood of the core point x and neighborhood(y)

< minPnts and z is classified as a noise point as neighborhood(z) < minPnts and it

not in the neighborhood of a core point.

The points returned from the query are inserted into a queue, the same procedure

is repeated for each point in the queue in a iterative manner until the queue is empty

and all the points processed are assigned to a cluster. The procedure resumes with

the next unprocessed point in the dataset until all the points are processed. This

approach has a time complexity of O(nlogn) if proper index structure is used and a

meaningful value of ε is chosen.
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There are three main advantages of using this approach. Firstly it is insensitive

to the ordering of points, as it does not matter the order in which we process the

points as the output is going to be the same. Secondly we need not specify the

number of clusters prior to clustering. Thirdly, it is capable of identifying clusters

of arbitrary shape. The disadvantage of this approach is that it is very sensitive to

the parameter settings, for example: for two sets of values of minPnts and ε we are

going to get different set of clusters.This makes the approach nondeterministic.

1.3 k-means

k-means[7] is a centroid based clustering technique, it takes seeds as input which

are central vectors and the final number of clusters produced is equal to the num-

ber of seeds provided. Every point in the dataset is assigned to one of the seeds

by determining the one with the minimum distance to it. Once all the points are

assigned clusters, the central vectors are calculated again by determining the cen-

troids of the assigned clusters. This process is done in an iterative manner until the

newly calculated central vectors are equal to the previous one or if the number of

iterations is equal to a bound which is provided as an input. The steps involved in

the algorithm are depicted in the figure

1.4 Challenges

The are three obstacles one faces while implementing a clustering algorithm over

a distributed environment. Firstly, most of the clustering algorithms have a high

time complexity hence a brute force implementation is not going to be scalable

for large input sizes. This calls the need for an optimization or an approximation
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Figure 1.3: Steps in k-means

technique to be applied so that the clustering becomes scalable over a distributed

environment. Secondly, there is a need for the different stages involved in a clustering

algorithm to be interpreted in terms of Map Reduce paradigm since a distributed

environment like Hadoop uses this paradigm. For example : sampling is one of the

stages involved in the CURE clustering technique, we would have to decide how this

could be accomplished in a Map Reduce paradigm.

Thirdly, even after coming up with the distributed version of the algorithm we
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find that the environment parameters and nature of the dataset has an effect on the

performance of the algorithm on a distributed environment.
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Chapter 2

Background

2.1 CURE

CURE as described in the previous section is a hierarchical clustering algorithm.

The Figure 1.1 shows the various stages involved and we are going to explore each

stage in detail.

2.1.1 Sampling

In this phase we use a technique to extract a sample of the whole data input. Hence

this phase is called ”Sampling”. We use a technique called ”Reservoir Sampling”

to accomplish the task of selecting samples. Reservoir Sampling comes under a

family of randomized algorithms to select k sample from a list of n items, where n

is large and is not small enough to fit into main memory. The steps involved in the

algorithm are listed in Algorithm 1. The algorithm begins by initializing the output

with the first k elements with an index i which iterates from 0 to k-1. We proceed

by iterating index i from k-1 to n-1, where n is the total size of the input. For every

iteration we determine a random number r between 0 to i and if it happens that
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r is less than k, we assign the ith element in the input to the rth element in the

output. The time complexity of this approach is O(n) and the space complexity of

this approach is O(k).

Algorithm 1: Reservoir Sampling

Result: reservoir
Input : input[]:Array containing the input,k:number of partitions,n:number

of elements in the input array
Output: Array of sampled input of size k

1 i← 0 ;
2 reservoir[]← Array of size k;
3 for i =0 to k-1 do
4 reservoir[i]← input[i] ;

5 RandomNumberGenerator r ;
6 for i = k to n-1 do
7 j ←r.nextInt(i+1);
8 if j¡k then
9 reservoir[j]← input[i] ;

2.1.2 Partitioning

This phase assigns the points inside the input to its appropriate partitions. The

intention to create partitions is so that we can process the partitions independently

and in a parallel fashion. We use straight forward approach, which process’s the

data points in sequential and assigns partition using the equation.

PartitionNumber ← Input index mod Partition Size (2.1)

2.1.3 CURE Algorithm

CURE is a hierarchical algorithm which utilizes representative points which are se-

lected by obtaining the most scattered points within a cluster and then shrinking
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them towards the mean of the cluster by a specified fraction. This enables to de-

termine clusters of non-spherical sizes and the ones having wide variances in size[6].

The algorithm presumes each point to be a cluster of its own, and then proceeds

by inserting these clusters into the k-d tree T and the priority queue Q. It inserts

a cluster c into the queue Q based on the distance to its closest cluster. It removes

the cluster u from the priority queue and determines the its closest cluster v. The

representative points from the clusters u and v are removed from the k-d tree. The

merged cluster w is formed by selecting c closest representative points from the set of

representative points from u and v. It proceeds by iterating through the queue, and

for each cluster x we update its closest cluster as there are two scenario’s now:first

one is that the merged cluster w might be its closest cluster and second one is that

it might have u or v as its closest cluster and since those clusters are merged there

is a need to update. For the second scenario, according to [6] there is bounding

distance which is defined as the distance between merged cluster w and cluster x

under consideration, this optimizes the search of the closest cluster by avoiding the

need to iterate through all the nodes of the k-d tree. This process is repeated until

we get the required number of clusters. So for every merged cluster w produced

we iterate through all the elements in the priority queue and in the worst case we

might use the k-d tree for the search operation which gives a time complexity of

O(nlogn). Therefore for n merged clusters we get a time complexity of O(n2logn),

which is quite high. The flowchart in Figure 2.1 presents a high level view of the

steps involved in this implementation.

The pseudo code of the approach is presented in algorithm 2.

10



Figure 2.1: flowchart CURE

2.1.4 Merge Process

We use the improved merge procedure as discussed in [6] while merging two clusters.

We essentially do not store the points that are assigned to the clusters, instead we

11



Algorithm 2: CURE

Result: Q
Input : S:list of points,k:number of clusters,alpha:shrinking factor,c:number

of
Output: Set of clusters of size k

1 T ← buildkdtree(S);
2 Q← buildheap(S);
3 while Q.size() > k do
4 u← Q.poll();
5 v ← u.getClosest();
6 Q.remove(v)
7 Delete from priority queue;
8 T.delNode(u.getRep());
9 T.delNode(v.getRep());

10 w ← merge(u, v, c, alpha);
11 T.insertNode(w.getRep());
12 w.setClosest(Q.peek());
13 foreach x in Q do
14 if dist(w, x) < dist(w,w.closest) then
15 w.closest← x;
16 if x.closest is either u or v then
17 x.closest← closestcluster(T, x, dist(x,w));

18 else
19 x.closest← w;

20 relocate(Q, x);

21 else
22 if dist(x, x.closest) > dist(x,w) then
23 x.closest← w;
24 relocate(Q, x);

25 insert(Q,w);

only store the representative points. Suppose we have clusters u and v merged, as

each cluster has utmost c representative points, there is a need to iterate though

only 2c points instead of n points, there by the complexity comes down to O(1)

instead of O(n). We calculate the scattered point by unshrinking the representative

12



points using the (2.2).

p = p+ alpha ∗ (w.mean− p) (2.2)

where w.mean is the mean of the merged cluster and alpha is the shrinking factor.

The algorithm 3 describes the process.

Algorithm 3: Merge Procedure

Result: w
Input : the clusters to be merged u and v,alpha
Output: Merged cluster w

1 w ← u ∪ v;
2 w.mean←calculate the mean;
3 tempset←determine the c closest points among 2c points from u and v;
4 foreach p in tempset do
5 w.rep← w.rep ∪ (p+ alpha ∗ (w.mean− p));
6 return w;

2.1.5 Outliers Elimination

When the number of clusters formed is equal to the 1/3 of the initial number of

clusters we started with, in this case it would be the number of points we began

with. We would remove the clusters having less than 2 representative points. Once

the outliers are removed, we resume with the clustering of the points using CURE.

2.1.6 Data Structures

k-d tree

This data structure is used to index the points and to optimize the nearest neigh-

borhood query. The k-d tree is a binary tree in which every node is a k-dimensional

point. Every non-leaf node can be thought of as generating a splitting hyperplane
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that divides the space into two parts, Points to the left of this hyperplane are rep-

resented by the left subtree of that node and points right of the hyperplane are

represented by the right subtree. So, for example, if for a particular split the ”y”

axis is chosen, all points in the subtree with a smaller ”y” value than the node will

appear in the left subtree and all points with larger ”y” value will be in the right

subtree. The following are the time complexities for the basic operations:

Figure 2.2: Representation of points (2,3),(4,7),(5,4),(7,2),(9,6),(8,1) in k-d tree

• Insertion:Insertion of n points will take O(nlog2n)) if O(nlogn) sort is used to

determine the median at every level.

• Deletion: Removal of a point in the tree will take O(logn) where n is the

number of points in the tree.

• Insertion of single point:O(logn)

• Nearest neighbor search:O(logn)

Priority Queue

Priority Queue is min-heap or max-heap data structure and is used in the algorithm

to store the clusters in the order of its distance to its closest cluster. The following
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are the time complexities for the operations on it:

• fin-min:O(1)

• delete-min:O(logn)

• insert:O(logn)

• decrease key:O(logn)

2.2 DBSCAN

DBSCAN is a density based clustering technique[5]. It is comes under density based

clustering technique because for every point it process’s it draws an imaginary circle

with ε radius and counts the points under that region. Based on the number of

points it categorizes the points to following three types:

• Core point: x is a core point if neighborhood(x) >= minPnts

• Border point:x is a border point if neighborhood(x) < minPnts but is in the

neighborhood of a core point.

• Noise point:x is a noise point if neighborhood(x) < minPnts and is not in the

neighborhood of a core point.

Before processing, for all the points in the dataset we set the status as unprocessed.

We take a random point from the dataset and change its status to processed. We

then query the points in its neighborhood within ε distance by drawing an imaginary

circle of ε. The points returned from the query are inserted into a queue, the same

procedure is repeated for each point in the queue in a iterative manner until the

queue is empty and all the points processed are assigned to a cluster. And then we
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proceed to the next unprocessed point. The concept of reachability explains how

we assign points to a cluster. The following are the three types of reachability and

is also depicted in the Figure2.3:

• Directly reachable: if for a point p, point q falls within the ε radius, it is said

that q is directly reachable from p.

• Density reachable: if for a point p, point q does not fall within the ε radius,

but it is directly reachable from point o which is directly reachable from point

p. Point p and q are said to density reachable.

• Density connected: if point p and point q are density reachable from point o,

then p and q are said to be density connected.

Figure 2.3: Reachability

A cluster C with respect to ε and minPnts in D, where D is the set of objects satisfy

the following conditions[5]:

• Maximality:∀ p,q ∈ D:if p∈C and q is density reachable from p with respect

to ε and minPnts, then q ∈ C.

• Connectivity:∀ p,q ∈ C: p is density connected to q with respect to ε and

minPnts. Every object not contained in any Cluster is noise.

The algorithm 4 describes each step in clustering. It begins by building a R-tree

of the points. It is a spatial index data structure which can perform neighborhood
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search query in O(log n) time. We can observe that for a point p which is unvisited

it performs a neighborhood query and if the number of points returned is greater

than minPnts it assigns the same clusterID for its neighbors which ensures the two

properties we discussed above: Maximality and Connectivity. Also we can observe

that the algorithm gives the same result and is not dependent on the order of

the points. For example: if a point p is assigned a type NOISE but is in fact a

BORDER point, line number 21 in algorithm 4 ensures that it is assigned the right

type. The time complexity of the approach is (nlogn), as for every unprocessed point

we perform the neighborhood query which has time complexity of (logn).

2.3 k-means

k-means is a type of unsupervised learning, which is used to group data where the

number of groups is represented by the variable K. The algorithm works iteratively

to assign every data point to one of the group based on feature similarity. The

results of the algorithm are :

• Centroids of K clusters which can be used to label data.

• Data points assigned to one of the K clusters.

Also examining the results of the centroid values can be used to interpret the kind

of group each cluster represents.

2.3.1 Algorithm

The algorithm runs in a iterative manner in such a way that the results after every

iteration converges towards the final result. The input to the algorithm are the
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Algorithm 4: DBSCAN

Result: DB
Input : DB:p1,p2..pn, ε and minPnts
Output: each point p assigned to type(BORDER,CORE,NOISE) and a

clusterID
1 rtree←buildRtree(DB);
2 clusterID ← 0;
3 foreach unvisited point p in DB do
4 mark p as visited;
5 nbhdP ←getNeighborhood(p,ε);
6 if SizeOf(nbhdP ) < minPnts then
7 p.flag ←NOISE;

8 else
9 p.flag ←CORE;

10 p.clusterID ←clusterID;
11 foreach point q in nbhdP do
12 if q is unvisited then
13 mark q as visited;
14 q.clusterID ←clusterID;
15 nbhdQ←getNeighborhood(q,ε);
16 if SizeOf(nbhdQ) >= minPnts then
17 q.f lag ←CORE;
18 nbhdP ← nbhdQ ∪ nbhdP ;

19 else
20 q.f lag ←BORDER;

21 else if q.f lag is NOISE then
22 q.f lag ←BORDER;
23 q.clusterID ←clusterID;

24 clusterID+ = 1;

number of clusters K, initial seeds and the dataset. The initial seeds can be ran-

domly generated or can be randomly selected from the dataset. The following are

the steps for the algorithm:

• Data assignment step: Each data point is assigned to the closest cluster based

on the closest Euclidean distance
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• Centroid update step: The centroids are recomputed by calculating the means

of the points assigned to that centroid’s cluster.

• Iterative step: After calculating the new centroids we can stop at this point if

the old centroids is equal to the new centroid which means we have converged

or we can iterate a specific number of times and stop at that point. According

to [7], it is sure that the results would finally converge, but there is a possibility

that we reach the local optimum for the initial seeds and we might get different

results with different seeds.

2.3.2 Choosing K

Determining the number of clusters K in a dataset involves applying the algorithm

with different values of K and then determining the quality of clusters using com-

parative index like silhouette coefficient [?] and [3].
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Chapter 3

Hadoop and MapReduce paradigm

3.1 Apache Hadoop

The Apache Hadoop software library is a framework that is used for the distributed

processing of large data sets across clusters of computers using MapReduce paradigm.

It is designed to scale up from single servers to thousands of machines, each offering

local computation and storage. There are four components which form the frame-

work:

• Hadoop Common: contains java libraries and utilities which is required by

other modules.

• Hadoop Distributed File System(HDFS): a distributed file system which pro-

vides access to application data.

• Hadoop YARN: frame work for job scheduling and cluster management

• Hadoop MapReduce: a YARN based system for parallel processing of data

and is the execution engine of the framework.
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We are going to limit our discussion to the of details of HDFS and Hadoop MapRe-

duce.

3.1.1 High Level Architecture of Hadoop

Hadoop follows a master slave architecture as illustrated in the Figure 3.1 for parallel

processing and data storage which constitutes the MapReduce layer and HDFS

respectively. The master node of the HDFS layer is the namenode and the master

node of the MapReduce layer is the Job Tracker. The slave nodes form the other

systems in the cluster which perform computations and data storage. Each of these

systems have a Task Tracker daemon and a DataNode to communicate with the Job

Tracker and the NameNode respectively.

Figure 3.1: Hadoop Architecture
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3.1.2 HDFS

HDFS provides access to the data for applications and also stores the data in a

distributed fashion. The main purpose of this layer is to make a clear separation

of concern from the developers, who only needs to deal with the processing and

computation of data. The following are some of the goals/features of the HDFS:

• Data Replication: The data is replicated in more than one node to avoid the

loss of data due to hardware/software failure.

• Streaming data access: The emphasis is put on high throughput of data than

low latency of data access.

• Large data sets: It can support operations on huge amount of data ranging

from gigabytes to terabytes in size.

• Localizing computations: It aims on bringing computations closer to data than

the other way around. This lowers network congestion and traffic especially

when large amount of data is involved.

HDFS Architecture

HDFS has a master slave architecture with one of the nodes in the cluster acting

as the master also known as NameNode and the other usually one per node in the

cluster acting as the DataNode, which is also responsible for managing storage in

that particular node. HDFS exposes a file system namespace and allows user data

to be stored in files. Internally the files are divided into blocks which are usually

of size 64MB each and then stored in a distributed manner in a set DataNodes.

The NameNode is responsible for file system namespace operations like opening,

closing, and renaming files and directories. It also performs the mapping of blocks
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Figure 3.2: HDFS Architecture

to DataNodes. The DataNodes are responsible for serving read and write requests

from the file systems clients. The DataNodes also perform block creation, deletion,

and replication upon instruction from the NameNode. The softwares responsible for

NameNode and DataNode are written in Java language and any machine that has a

Java environment can be a DataNode/NameNode. Usually in a cluster, one of the

machine is assigned the NameNode and the other usually one per cluster is assigned

the DataNode.

FileSytem Namespace

HDFS has a traditional hierarchical file organization. A user can create directories

and store files inside these directories. NameNode is responsible for the Namespace

system and any changes to it is recorded by it.
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Data Replication

Fault tolerance is one of the features of the HDFS, it prevents the loss of data blocks

due to hardware/software faults in the DataNodes. This is done by replicating the

blocks in more than one DataNodes, usually the number is 3. This can be changed

by the user.

3.1.3 MapReduce paradigm

MapReduce is processing technique and programming model used for processing

large amounts of data in a distributed manner. It has two important parts. The

first part is a Map, which process’s input and produces key/value pairs. The values

from the same key are enumerated to form a new key/List<value> pair which is fed

to the second part called the Reducer, which process’s it and writes to the HDFS.

The beauty of this paradigm is that if any algorithm can be decomposed into map

and reduce tasks then it comes scalable in a distributed environment, but the task

of decomposing is not trivial.

Hadoop-MapReduce

MapReduce program/application executes in three stages namely map stage, shuffle

and sort stage and the reduce stage.

• Map Stage: The mapper’s job is to process the input from the HDFS usually

line by line to produce key/value pair. On a high level it processes data and

produces chunks of small data which needs to be processed.

Input:k1, v1,Output:list <k2, v2>

• Shuffle and sort stage: Data from the mapper tasks is prepared and moved

to the nodes where the reducer tasks will be run. When the mapper task

24



Figure 3.3: Stages in MapReduce

is complete, the results are sorted by key, partitioned if there are multiple

reducers, and then written to disk, which is then accessed by reducers.

• Reduce Stage: The reducer’s job is to process the values assigned to a key by

the mapper and then produce the output which is written to the HDFS.

Input:k1, List<v> ,Output:k2, v2

The Figure 3.3 illustrates the stages in detail. The framework takes the responsibility

of allocating map and reduce tasks to the nodes in cluster, it tries to do it manner

that the task is assigned to the nodes where the data resides.
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Chapter 4

Map Reduce Implementations

4.1 CURE

The stages described in figure 1.1 needs to be interpreted in terms of Map Reduce

paradigm to be implemented in Apache Hadoop. We accomplish this using a single

Map Reduce job in Apache Hadoop. The input to the driver program is a csv file

where each line is a 2-d point in form of x,y. on a high level, the mapper designates

every point its respective partition and the reducer runs the clustering algorithm

on the points it is assigned to. The following steps describes the implementation of

stages of CURE in Apache Hadoop environment:

• Step 1: Sampling is performed by overriding the getSplits() method of Tex-

tInputFormat class. We use reservoir sampling technique to apply sampling

on the available splits.

• Step 2:The number of partitions is taken as an input to the program, it is

interpreted as the number of reducers in the Map Reduce job. A particular
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point is assigned to the respective reducer using the relation:

Reducer = key mod (NumberofPartitions) (4.1)

key refers to the line number of the input in the CSV file.

• Step 3: A modified version of CURE is run on points assigned to each of the

reducers from step 2. This is described in detail in the following section.

• Step 4: When the number of clusters formed is equal to the 1/3 of the initial

number of clusters we started with, in this case it would be the number of

points we began with. We would remove the clusters having less than 2 repre-

sentative points. Once the outliers are removed, we resume with the clustering

of the points using CURE. We use this technique which was described in [6].

• Step 5: After the Map Reduce job is completed, we collect all the set of

clusters from the reducers and then run the CURE algorithm centrally on this

set till we get the required number of clusters. All the stages except sampling

is applied on the the result to get the final set of clusters.

4.2 Bottlenecks and Challenges

• According to the algorithm for every merged cluster we have to iterate through

the priority queue to update closest clusters and update the priority queue

using the closest distance parameter. This contributes to the time complexity

by time complexity of O(nlogn). This makes the brute force approach not

scalable especially for the data

• The number of partitions determines the size of the partitions and every par-
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tition is processed by a reducer. If the size of the partition is large and since

the time complexity is high it is paramount that each reducer is assigned a

partition which it can complete processing before it times out.

4.2.1 k-merge Implementation

The time complexity of the CURE algorithm is high since for every two clusters

merged the size of the priority queue decreases by 1 and also there is a need to iterate

through the remaining clusters in the queue. We can confer that the majority of

the time in the algorithm is spent on processing the priority queue. The main idea

behind this approach is to pick k closest pair of clusters from the queue and then

merge them into one cluster. We found this approach not scalable for large data

sets even though it decreases execution time by speeding up the merging process

but it does not decrease the time complexity, it remains the same. The flowchart in

Figure 4.1 presents a high level view of the steps involved in this implementation.

4.2.2 Hash Map Implementation

The time complexity of the CURE algorithm can be reduced by applying an approx-

imation technique so that for every two clusters merged, we only iterate through the

subset of remaining clusters in the queue. Using this approach, we use a Hash Map

where key is the cluster id and the values are the clusters it is closest to. Suppose u

and v are the clusters getting merged to form a cluster w, we could use the hash map

to determine the the clusters which are going to get affected by the merge and then

use the kd tree to update their closest clusters,thereby avoiding to iterate through

the each of the clusters in the priority queue. Also after determining the closest

cluster x to the merged cluster w, there is a chance that closest cluster to cluster x
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Figure 4.1: k-merge implementation of CURE

might get affected, therefore we update the closest cluster to cluster x. Using this

method there is a possibility that we might not have updated all the clusters which

have the merged cluster w as its closest cluster, after removing closest clusters u

and v from the priority queue we do a check whether v is indeed the closest cluster

to u and vice versa there by mitigating its effect. The following is the pseudocode

of this approach :

Cure HashMap ( i n t k , i n t c , Prior ityQueue<Cluster> Q, kdtree T)
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// I n i t i a l i z e HashMap

Map<Cluster , L ist<Cluster>> hmap=new HashMap ( ) ;

// Out l i e r cond i t i on check

in t num po in t s ou t l i e r s=Q. s i z e ( ) ∗ 1/3 ;

i n t c h e c k ou t l i e r=f a l s e ;

whi le (Q. s i z e ()<k){

Cluste r u=Q. p o l l ( ) ;

c l u s t e r v=u . g e tC lo s e s t ( ) ;

c l u s t e r u c l o s e s t=ge tC l o s e s tC lu s t e r (T, u ) ;

whi le ( v!= u c l o s e s t ){

updateHashMap ( ) ;

i f ( v . c l o s e s t==u){

Cluste r v c l o s e s t=ge tC l o s e s tC lu s t e r (T, v ) ;

updateHashMap ( ) ;

}

Q. add (u ) ;

u=Q. p o l l ( ) ;

v=u . g e tC lo s e s t ( ) ;

u c l o s e s t=ge tC l o s e s tC lu s t e r (T, u ) ;

}

// d e l e t e v from p r i o r i t y Queue

Q. remove (v ) ;

// d e l e t e u and v ’ s r e p r e s en t a t i v e po int s

T. delNode (u . getRep ( ) ) ;

T. delNode (u . getRep ( ) ) ;

C lus te r w=merge (u , v , c , alpha ) ;

//add w’ s po in t s to kdtree

T. insertNode (w. getRep ( ) ) ;

//modify the hash map and

get the l i s t o f modi f ied c l u s t e r s from hashmap

List<Cluster> mod i f i e d c l u s t e r s=new ArrayList <>();

updateHashMap ( mod i f i e d c l u s t e r s ) ;

Update the c l u s t e r s in mod i f i e d c l u s t e r s

Get the c l o s e s t c l u s t e r to w

c l u s t e r w c l o s e s t=ge tC l o s e s tC lu s t e r (T,w) ;

Get the c l u s t e r s c l o s e s t to w c l o s e s t and

do a check whether i t s g e t t i ng modi f ied

// s e t the c l o s e s t to w c l o s e s t

w. s e tC l o s e s t ( w c l o s e s t ) ;

//add w to Queue

Q. add (w) ;

// check f o r o u t l i e r cond i t i on

i f ( num po in t s out l i e r s<=Q. s i z e ( )

&&!checkOut l i e r ){

checkOut l i e r=True ;

removeOutl iers ( ) ;

}

}

The flowchart in Figure 4.2 presents a high level view of the steps involved in this

implementation.

30



Figure 4.2: hashMap implementation of CURE

The time complexity of this approach is O(nlogn). Even though this approach

brings down the time complexity but it will have a impact the quality of clusters

produced. In the following section we evaluate the quality of clusters produced using

this approach.
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4.3 DBSCAN

DBSCAN is a density based clustering algorithm and we are going to implement

the version proposed by [8] and then determine the bottleneck/challenges of the

approach. There are four stages involved in the process as shown in the 4.3 and

Figure 4.3: Stages in DBSCAN

are described in high level below:

• Data Partitioning: We determine the appropriate partitions for the input data

using a cost based approach.

• Clustering: For each partition we run the DBSCAN clustering algorithm for

the points belonging to the partition.

• Merging: We perform the intersection of the results from the last stage and

determine the points which simultaneously belong to different partitions. The

cluster ids of these points are used to perform mapping from local cluster ids

to global cluster ids.

• Relabeling: We use the mapping of the global cluster id to local cluster id

from the last stage to relabel the cluster id’s which have been merged.

4.3.1 Data Partitioning

The different steps involved in this stage are shown in the Figure 4.4.

The goal of this stage is to determine partitions of the data in such a way that we

can run clustering task on each of them independently. Initially we consider the the
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Figure 4.4: Steps in Data Partitioning

whole input to be contained within a rectangle which we refer to as MBR(Minimum

Bounding Rectangle),SU . We then divide SU into cells whose side length is 2 * ε.

The MBR is going to be covering a large area if the data is taken in as it is. There

is a need to normalize the data so that the MBR is small enough that it can be

processed. If the values in the data under consideration is positive we can normalize

the data between [0,1] otherwise we normalize between [-1,1].

Data coordinates are normalized to [0,1] so that the MBR has a lower left bottom
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corner of (0,0) and a top right corner of (1,1) if we consider the case where the values

are positive . A MapReduce job is started to determine the the number of points

inside each cell. The output from the job is fed to the partition generator which is

a centralized process.

Partition Generation

This step is performed in a centralized fashion. The input to this step is the out-

put from the MapReduce job. The output contains the count of the data points

contained under each cell.

We proceed by partitioning SU into two sub rectangles by considering splitlines

along the cells. Each splitline divides the main rectangle into 2 sub rectangles, and

then cost is assigned to each sub rectangle. The cost of the rectangle is enumeration

of the cost of each cell and is calculated the the equation.

Cost(Ci) = 1 + h+
√
Nci ∗

1√
f − 1

+Nci ∗
1

f − 1
(4.2)

h = 1 + d
log NS

f

log f
e (4.3)

where Ci is the cost of cell i, Nci is the number of a points contained inside cell i,f

is the fanout of the R-tree and NS is the total number of points contained inside

rectangle S. The splitline selected will have the minimum cost difference for the

sub rectangles created. The algorithms 5, 6 and 7 explains the step in detail. once

the partitions are generated, we determine the intersecting partitions which is later

used in the merging stage. The following Figure 4.5 illustrates the process in a high

level.
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Figure 4.5: Partitioning overview

4.3.2 DBSCAN Clustering

This phase involves a MapReduce job to perform the clustering of each partition

using DBSCAN. The mapper allocates every point to its corresponding partition.

Before allocating every point it expands the partition by ε . This is done to de-

termine the border points which will be later used to merge the clusters which

belong in different partitions but constitute a single cluster on their own. There

is a reducer started for every partition that had been generated. Reducer receives
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the points allocated to a partition and performs clustering. It writes output to

three files namely file-results-partitionID, file-AP-partitionID, file-BP-partitionID.

The file-results-partitionID contains the overall results of clustering i.e the points

along with the clusterID’ s and the type. The file-AP-partitionID file contains points

which belong to the inner margin of the partition and also is a core point. The file-

BP-partitionID file contains points which belong to the outer margin of the partition

and also is not a noise point. These files are later used in the merge phase.

4.3.3 Merge Phase

We use the fast merge theorem stated and proved in [8] to determine the merge

points. The theorem states the following :

Mergepoints = (AP1 ∩BP2) ∪ (AP2 ∩BP1) (4.4)

where 1 and 2 are intersecting partitions, AP and BP represents files file-AP-

partitionID and file-BP-partitionID for respective partitions. This phase represents

a MapReduce job where the input to the mapper is the file containing the inter-

secting partitions, which we had determined in the first stage. We then determine

the merge points using (4.4), the clusterID’s of the merge points are sent to one

reducer which means we are using the same key. For example, if there is a point

p which has clusterId of A and B as it is part of merge points, then the mapper

output will have the value (A,B) and a key of NULL. The key is NULL so that it

goes to a single reducer. In the reducer we use breadth first search to determine

the connected components. The clusterID’s belonging to the same component are

assigned a global clusterID. The output of the reducer will contain the mapping

from the local cluster ID to the global clusterID.
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4.3.4 Relabel Data

This final phase also represents a MapReduce job. The input to the mapper is the

local clustering results contained in file-results-partitionID(one for each partition).

The mapper maps the local cluster ID to the global cluster ID for a point and

followed by emitting the point as key and a pair as value which contains the final

cluster ID and type of the point. For a point belonging in the margins of a partition

it might belong to more than one partition and hence there might be duplicate keys

emitted from the mapper, that means a point might be associated with different

types. The values of the duplicate key are processed in the reducer. In the reducer,

we assign a type(BORDER,NOISE,CORE) to the point also referred as the duplicate

key here, based on the following priority in the order of high to low :CORE,BORDER

and NOISE. The unique keys from the mapper are directly written to the output.

Algorithm 5: Cost-based spatial partitioning

Result: partitions
Input : SU ,nPointsOfCell:Array containing number of points in each

cell,maxCost:Maximum cost for each partition
Output: Set of non-overlapping partitions

1 taskQueue← SU ;
2 partition← emptyset;
3 while taskQueue is not empty do
4 S ←pop from taskQueue ;
5 if EstimateCost(S, nPointsOfCell) > maxCost then
6 (S1, S2)← costBasedBinarySplit(S,nPointsOfCell);
7 push (S1, S2) into taskQueue ;

8 else
9 add S to partitions ;

10 return partitions;
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Algorithm 6: Cost based binary split

Result: S1, S2

Input : S:the rectangle to split,nPointsOfCell
Output: sub rectangles S1, S2

1 (S1, S2)←(NULL,NULL) ;
2 minDiff ←∞ ;
3 splitLineCandidates←all vertical and horizontal lines that split S into sub

rectangles;
4 foreach splitLine in splitLineCandidates do
5 (R1, R2)← sub rectangles corresponding to splitLine ;
6 R1.cost← EstimateCost(R1,nPointsOfCell);
7 R2.cost← EstimateCost(R2,nPointsOfCell);
8 costDiff ← |R1.cost−R2.cost|;
9 if costDiff < minDiff then

10 minDiff ← costDiff ;
11 (S1, S2)← (R1, R2);

12 return (S1, S2);

Algorithm 7: Estimate Cost

Result: cost
Input : S,n
Output: cost

1 foreach cell in S do
2 nPoints←get the number of points in cell;
3 costOfCell←use equation (4.2) ;

4 return cost ;

4.3.5 Optimization

The number of cells will be increasing as the value of the epsilon decreases. For

example: the ε value of 0.0001 will be creating a MBR of 108 cells. Consider the

function call EstimateCost() in line number 5 of Algorithm 5, there is a possibility

that at one point of time the enumerated cost of processed cells might be higher

than the maxCost parameter of Algorithm 5 and the processing of the rest of the

cells is not necessary. One way to avoid this is to pass in the maxCost parameter

to the function EstimateCost() and to return the cost at the point where the cost
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of processed cell is more than the maxCost parameter thereby avoiding the need to

process all the cells. The algorithm 8 illustrates the idea presented here.

Algorithm 8: Improved Estimate Cost

Result: cost
Input : S,n,maxcost
Output: cost

1 foreach cell in S do
2 nPoints←get the number of points in cell;
3 costOfCell←use equation (4.2) ;
4 cost+← costOfCell;
5 if cost > maxCost then
6 break;

4.3.6 Objective

The MapReduce version of DBSCAN can run successfully in a distributed environ-

ment like Hadoop as long as the partitions produced are not large enough that it

does cause time out of the reducer to which it is assigned to unless reducer time out

value is changed or the some partitions are large in size that it makes it processing

sequential than parallel. The size of the partition is dependent on two parameters ε

and maxCost. The feasible values for ε and maxCost can be determined by firstly

running a MapReduce job to determine the number of points in each cell, followed

by feeding the output to the partition generator which gives out the partitions. Sec-

ondly we start a new MapReduce job which uses the partitions we generated to do

clustering, and if we do not encounter any failed reducers which means we have used

the feasible values for ε and maxCost. So to determine the feasible values for ε and

maxCost we require a MapReduce job to determine the cell count for a value of ε

and which is followed by the partition generator phase and a MapReduce job for

clustering for different values of maxCost . Our objective is to explore the relation-
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ship between ε and maxCost and also look for observations which would shorten the

process required to find the feasible values.

4.4 kmeans

The MapReduce implementation is pretty straight forward. The driver acts like

controller in the sense that it controls the number of iterations and also loads the

latest seeds to the distributed cache so that it can be accessed in the mapper and

reducer. The mapper for every data point determines the closest seed and the

reducer calculates the new seeds.

• Mapper: The mapper takes a data point as the input and outputs the closest

seed as the key and the point along with value of 1 as its value.

Figure 4.6: Mapper in kmeans

• Reducer:The reducer is run for every seed, and calculates the new seed as it

process all the points closest to that particular seed and it is written to the
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output. It also determines whether the new centroid calculated is equal to the

previous one, the value written is used by the driver. The Figure 4.7 illustrates

the function of reducer.

Figure 4.7: Reducer in kmeans

• Driver: The driver process’s the output from the reducer and checks whether

the recently calculated seeds is similar to the previous seeds, if so it would

terminate the program as the clustering is completed else it would start a new

MapReduce job to calculate the seeds. It would do so until the number of

iterations is equal to the input the user has provided.

4.4.1 Optimization

We see that for every new iteration started the input is loaded and processed before

being assigned to the mapper. One thought that comes to the mind is to load the

input into the distributed cache and use it for further processing. But the problem

with that approach is that the distributed cache has a size limit of 10GB, but often

input size will exceed that limit making that approach unfeasible. Another approach

is to use a combiner in addition to a mapper and reducer. Combiner’s primary job
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Figure 4.8: Use of Combiner

is to summarize the output from the mapper, and it usually runs after the mapper

and before the reducer. It works on the intermediate key/value pairs and reduces

the number of key/value pairs before sending to the reducer there by decreasing the

network bandwidth and congestion. The output from the mapper which consists

of the seed and the points assigned to it. The combiner uses the output from

the mapper and calculates the intermediate mean and then outputs the seed as

the key and the value consists of the intermediate mean along with count of the

points that had been assigned. The count is also written to the output because it is

needed in the reducer to calculate the new seed, as the product of the intermediate

mean and the count will give us the respective sums to calculate the new seed.

This optimization is trivial and straight forward. The goal is to understand the its

effect on the performance of the clustering. We would run it against set of varying
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inputs and evaluate its performance with and without combiner which would help

us understand the effect of network traffic on completion of a MapReduce job.
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Chapter 5

Experiments and Evaluation

5.1 CURE

5.1.1 Experimental Setup

For evaluation purpose, we have created a cluster using Amazon EMR having 1

master node and 2 slave nodes and having a software configuration of Hadoop 2.8.3.

Each of the nodes have a configuration of 4v CPU and 8 GB memory.

5.1.2 Datasets

We use 2 datasets, the first one is a custom dataset and the second one is a real

world dataset. The following describes the dataset in detail.

• Custom dataset:The input is a set of points in the form (x,y) which is created

randomly and is not a real world dataset. The size of the dataset varies

between 2.3 MB and 1.1 GB.

• NYC taxi and limousine trip dataset: This dataset represents the trips made

by yellow and green taxi’s in the New York city between the year 2014 to
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2017. The trip records include fields capturing pick-up and drop-off dates/-

times, pick-up and drop-off locations, trip distances, itemized fares, rate types,

payment types, and driver-reported passenger counts. The two fields we use

for clustering are trip distance and total fare amount. The dataset has size of

71.9 GB.

5.1.3 Input parameters

– k=300(MapReduce job) and k=10(Centralized Processing)

– c(Number of representative points)=56

– Shrinking factor=0.8

5.1.4 Results and Evaluation

We test the dataset of varying sizes, we then record the number of partitions

and the processing time against varying sample rates. The goal is to evalu-

ate the quality of the clusters produced for different sampling rates and also

understand the number of partitions required to do so. We determine the ac-

curacy using Silhouette coefficient, It is found to be best performing index in

comparative experiments according to [12] and [3]. The value of the Silhouette

coefficient varies between [-1,1], the closer the value is to 1 the better is the

quality of the clusters and a negative value indicates that the produced clus-

ters are not distinct enough. We have also calculated the Silhouette coefficient

for the dataset we are testing against using a sequential clustering algorithm

called ”Basic Sequential Algorithmic Scheme ” also known as ”BSAS”. It is a

linear clustering algorithm and we have used it as a baseline to make a com-

parison between the coefficient’s obtained from the modified version of CURE
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Size(MB) Time(hh:mm) Partitions Accuracy

2.3 00:01 10 0.338746
23.3 00:05 10 0.310756
231 00:13 10 0.27502496

1126.4 00:14 10 0.22284046

Table 5.1: Sample rate:1%

Size(MB) Time(hh:mm) Partitions Accuracy

2.3 00:01 10 0.338746
23.3 00:05 10 0.310756
231 00:13 10 0.258733124

1126.4 00:13 10 0.271897678

Table 5.2: Sample rate:5%

which uses a hash map and the linear sequential algorithm. The input param-

eters to the BSAS are the threshold of dissimilarity which is assigned a value

of 100 and the number of maximum clusters q which assigned a value of 10.

5.1.5 Custom Dataset

The following Tables 5.1,5.2,5.3,5.4,5.5 below show the results for the different

sampling rates and input sizes for the modified version of CURE. The Table

5.6 shows the coefficient’s calculated for the same dataset using BSAS.

Size(MB) Time(hh:mm) Partitions Accuracy

2.3 00:01 10 0.338746
23.3 00:05 10 0.310756
231 00:06 10 0.3087494

1126.4 00:38 10 0.2997695

Table 5.3: Sample rate:10%
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Size(MB) Time(hh:mm) Partitions Accuracy

2.3 00:01 10 0.338746
23.3 00:05 10 0.310756
231 00:06 10 0.3087494

1126.4 00:51 30 0.30764198

Table 5.4: Sample rate:20%

Size(MB) Time(hh:mm) Partitions Accuracy

2.3 00:01 10 0.338746
23.3 00:05 10 0.310756
231 00:33 10 0.283745

1126.4 02:56 1000 0.3105107

Table 5.5: Sample rate:60%

Size(MB) Accuracy

2.3 0.475721
23.3 0.469697
231 0.477696

1126.4 0.471976

Table 5.6: Silhouette coefficient calculated for sequential clustering
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Evaluation

We can infer from the tables above that as we increase the sample rates the accu-

racy of the clusters produced is increasing particularly for dataset with size 1126.4

MB which seems conceivable. But in comparison to coefficient’s calculated for the

dataset using sequential clustering in Table 5.6, the values are lower which indicates

that the quality of clusters produced in the modified version of CURE is not good

as the one’s in the sequential clustering. We can also observe that as the sampling

rate increases particularly for the larger dataset of sizes 231 MB and 1.1 GB , we

are required to create more number of partitions(reducers) for successfully cluster-

ing. The value of number of partitions was chosen based on the notion that each

reducer were assigned points that it can handle before it time outs, but large val-

ues of reducers without taking in account of the degree of parallelization makes the

computation more sequential than parallel.

5.1.6 Real World Dataset

We run the algorithm against the NYC taxi and limousine trip dataset using different

sample rates and number of partitions to observe the run time and the accuracy of

the clusters produced. The following table

Sampling rate(%) Time(hh:mm) Partitions Accuracy

1 01:24 1100 -0.35811067768
5 03:09 1650 -0.1737438564
10 06:10 3204 -0.199098639

Table 5.7: Real World Dataset Results
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Evaluation

We observe that the the accuracy increases when the sampling rate increases from

1% to 5%, but the accuracy decreases when the sampling rate increases from 5% to

10%. We observe that the coefficient for the same dataset using BSAS clustering

algorithm is equal to 0.7286294251401926, in comparison to values in Table 5.7 for

different sample rates. We can infer that the quality of clusters produced is poor

in comparison to the ”BSAS”, one value is closer to 1 and the other is negative.

This can be attributed to the fact that the dataset contains data from the years

2014-2017, and the output from sampling may not contain data from all the years.

5.2 DBSCAN

Our objective is to explore the relationship between ε and maxCost and also look for

observations which would shorten the process required to find the feasible value for

the above parameters. We would do so by observing the number of failed reducers,

the number of partitions and average size of these partitions for different values of

ε and maxCost.

5.2.1 Experimental Setup

For evaluation purpose, we have created a cluster using Amazon EMR having 1

master node and 2 slave nodes and having a software configuration of Hadoop 2.8.3.

Each of the nodes have a configuration of 4v CPU and 8 GB memory.

5.2.2 Dataset

NYC taxi and limousine trip dataset: This dataset represents the trips made by

yellow and green taxi’s in the New York city. I have taken the dataset for the year
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2014 and for the month January which is of the size 2.16 GB but after normalization

the size comes up to 397 MB. It contains 9657376 records.

5.2.3 Results and evaluation

maxCost Number of partitions Number of reducers Failed Average Size(Points/partition)

100000 1 1 1 9657376
10000 3 3 1 3219125.3
1000 3 3 1 3219125.3

Table 5.8: epsilon:0.1

maxCost Number of partitions Number of reducers Failed Average Size(Points/partition)

100000 2 2 2 4828688
10000 5 5 3 1931475.2
1000 15 15 12 643825.066667

Table 5.9: epsilon:0.01

maxCost Number of partitions Number of reducers Failed Average Size(Points/partition)

100000 2 2 2 4828688
10000 19 19 15 508282
1000 112 112 20 86227

Table 5.10: epsilon:0.001

maxCost Number of partitions Number of reducers Failed Average Size(Points/partition)

1000 8 8 0 1207172

10000 64 64 0 150896

Table 5.11: epsilon:0.0001
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5.2.4 Evaluation

We can make the following observations from the above tables which would help

one to decide on the values of maxCost and ε:

• If for a particular value of ε, if the number of partitions remain the same for

different maxCost values it means that epsilon is not small enough, as you can

see in Table 5.8

• The number of partitions does not indicate whether the clustering will be

done successfully. As you can observe that in Table 5.11 the clustering is done

successfully with fewer partitions than in Table 5.10. This happens because

the points are unevenly distributed with few partitions having high number of

points and few having very few compared to the other.

• The lower the value of epsilon the better the chance of successful clustering, be-

cause every partition would assign fewer number of points from the partitions

which are intersecting with it.

5.3 k-means

The optimization applied to the k-means is the use of a combiner. The combiner acts

like a ”mini reducer” and summarizes the output from a mapper thereby decreasing

the network congestion and traffic. The objective here is to determine the effect of

combiner on the run time of the k-means MapReduce job and to accomplish this we

would run the clustering with/without combiner on same set of input and record

the run time for a single iteration.

51



5.3.1 Set up

All experiments were conducted on a cluster consisting of 2 nodes. Each node

consists of 56 Intel@Xenon CPU E5-2690 2.60GHz processors. 500GB RAM, 7TB

HDD. Each node is connected to a Gigabyte Ethernet switch and runs Ubuntu

16.04.3 LTS with Spark-2.02 and Hadoop-2.73. The input to the k-means clustering

job consisted of a text file consisting of 3 seeds.

5.3.2 Dataset

NYC taxi and limousine trip dataset: This dataset represents the trips made by

yellow and green taxi’s in the New York city between the year 2013 to 2017. The trip

records include fields capturing pick-up and drop-off dates/times, pick-up and drop-

off locations, trip distances, itemized fares, rate types, payment types, and driver-

reported passenger counts. The two fields we use for clustering are trip distance and

total fare amount. The dataset has size of 98.9 GB.

5.3.3 Results

The following tables demonstrates our observation of the run time of the single

iteration of the k-means clustering job with/without using combiner:

Size(GB) Time(mm:ss)

25 03:13
47.2 06:28
71.9 08:55
98.9 14:16

Table 5.12: Using the combiner
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Size(GB) Time(mm:ss)

25 09:16
47.2 16:22
71.9 32:32
98.9 42:51

Table 5.13: Without using the combiner

(a) Using the combiner (b) Without the using the combiner

Figure 5.1: Results for K- Means

5.3.4 Evaluation

On comparison of the results we can infer that the k-means clustering job with a

combiner takes almost 1/3rd run time of the one without a combiner. This highlights

the significance of the use of a combiner on the k-means clustering job.
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Chapter 6

Related Work

6.1 CURE

A MapReduce version of CURE is proposed by [10], they have performed all the

stages involved in CURE in a single Reducer as it is designed for a single node

cluster. It is not certain that their approach is scalable as the largest test dataset

consists of 10000 points, which is not realistic in the environment where typically

datasets are huge.

6.2 K-Means

There is a similar comparative analysis done by [1] where they perform K-Means

clustering with/without combiner but the largest dataset had 5 million records which

is not realistic in the environment where typically datasets are huge.
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Chapter 7

Conclusion and Future work

7.1 CURE

The distributed version of CURE proposed which uses a hash map to reduce the time

complexity from O(n2logn) to O(nlogn) by applying an approximation is scalable,

as it can be observed in the results section that it can handle large dataset but the

quality of clusters seems to be compromised especially in comparison to the clusters

produced by ”BSAS”. We can conclude that the approach is scalable as it can

handle large datasets but since the quality of clusters produced are not up to the

standard in comparison to the ones produced by ”BSAS”, this method cannot be

used practically

The value of number of partitions was chosen based on the notion that each

reducer were assigned points that it can handle before it time outs, but large values

of reducers without taking in account of the degree of parallelization makes the

computation more sequential than parallel. Usually the number of reducers are
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assigned by using relation

MaximumNumber of reducers = (degree of parallelization) ∗ 10 (7.1)

Future work would include determining the performance of the approach using the

(7.1) to determine the number of reducers that can be used. The timeout value

of the reducer can be manipulated by changing the value of mapred.task.timeout

in mapred-site.xml, by default it is 600000 milliseconds but it requires root user

privileges to change its value.

7.2 DBSCAN

We explored the relation between parameters in the MapReduce version of DB-

SCAN: ε and maxCost(maximum cost of a partition), to make observations which

could help one decide the values for them. We made three observations. Firstly, we

observed that for a particular value of ε, if the number of partitions remain the same

for different maxCost values we could infer that ε is not small enough. Secondly, we

observed that the large number of partitions does not indicate successful partition

generation, there is the possibility that there is an uneven distribution of points for

the partitions. Finally we observed that the lower the value of epsilon the better

is the chance of successful clustering, because every partition would assign fewer

number of points from the partitions which are intersecting with it.

We also proposed an optimization to the algorithm 7 which is used to estimate

cost for a rectangle S, the main idea proposed is not to iterate through all the cells of

the rectangle if the enumerated cost is higher than the maxCost parameter specified.

This would help to reduce the runtime when the ε is low and there are large number

of cells to be processed.
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Future work would include to use Silhouette coefficient to determine the quality

of the clusters produced for different values of epsilon in DBSCAN and make a

comparison to the one’s produced by the ”BSAS” algorithm.

7.3 k-means

The use of combiner is an optimization that can be applied to the MapReduce version

of k-means, we wanted to determine its effect on the performance. We measured

the runtime of single iteration of clustering by using MapReduce version of k-means

with/without combiner against dataset of various sizes. On comparison of the results

we could infer that the k-means clustering job with a combiner takes almost 1/3rd

run time of the one without a combiner, which highlighted the significance of a

combiner.
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Appendix A

Basic sequential algorithmic

scheme

The basic sequential algorithmic scheme (BSAS) is a sequential clustering algorithm

and is linear in order. It makes a single pass through the data points and the

number of clusters is not known before. The inputs to the algorithm are threshold

of dissimilarity T(maximum distance allowed between a point and existing cluster)

and the number of maximum clusters allowed q.

Algorithm 9: BSAS

Result: w
Input : set of points X,threshold distance T,maximum number of clusters

allowed
Output: C:List of clusters

1 m← 1;
2 C1 ←initialize the first cluster with the first point ;
3 foreach x in X do
4 Ck ← closest cluster to x;
5 if d(x,Ck) > TAND(m < q) then
6 m+← 1;
7 Cm ← create new cluster containing x;

8 Else add x to Ck;
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