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Abstract 
General health screening is needed to decrease the risk of pandemic in high volume areas. 

Thermal characterization, via infrared imaging, is an effective technique for fever detection, 

however, strict use requirements in combination with highly controlled environmental 

conditions compromise the practicality of such a system. Combining advanced processing 

techniques to thermograms of individuals can remove some of these requirements allowing for 

more flexible classification algorithms. The purpose of this research was to identify individuals 

who had febrile status utilizing modern thermal imaging and machine learning techniques in a 

minimally controlled setting. Two methods were evaluated with data that contained 

environmental, and acclimation noise due to data gathering technique. The first was a 

pretrained VGG16 Convolutional Neural Network found to have F1 score of 0.77 (accuracy of 

76%) on a balanced dataset. The second was a VGG16 Feature Extractor that gives inputs to a 

principle components analysis and utilizes a support vector machine for classification. This 

technique obtained a F1 score of 0.84 (accuracy of 85%) on balanced data sets. These results 

demonstrate that machine learning is an extremely viable technique to classify febrile status 

independent of noise affiliated.  

 

  



     

iv | P a g e  

 

 

Table of Contents 
Table of Equations .................................................................................................................................................... viii 

1. ............................................................................................................................................. Introduction

................................................................................................................................................................................................ 1 

1.1. ............................................................................................................................................... Motivation

................................................................................................................................................................................................ 1 

1.2. ............................................................................ Thermodynamics and Physiological Heat Transfer

................................................................................................................................................................................................ 5 

1.3. ................................................................................................... Human Temperature Measurements

................................................................................................................................................................................................ 8 

1.4. ........................................................................................................... Radiation Based Measurements

............................................................................................................................................................................................. 11 

1.5. ...................................................................................................... Infrared Measurements in Practice

............................................................................................................................................................................................. 13 

1.6. ............................................................................................... Brief background of Machine Learning

............................................................................................................................................................................................. 20 

1.7. ................................................................................................................. Deep Learning Functionality

............................................................................................................................................................................................. 21 

2. ............................................................................................................ Data Gathered and Equipment

............................................................................................................................................................................................. 27 

2.1. ............................................................................................................................................ Clinical Data

............................................................................................................................................................................................. 27 

2.2. ...................................................................................................................................... Thermal Imager

............................................................................................................................................................................................. 28 

2.3. ....................................................................................................................... Computer Specifications

............................................................................................................................................................................................. 28 

2.4. .......................................................................................................................................................... GPU

............................................................................................................................................................................................. 29 

3. .................................................................................................................................. Research Overview

............................................................................................................................................................................................. 30 

Hypothesis..................................................................................................................................................................... 30 



     

v | P a g e  

 

4. ................................................................................................................ Localized Area Investigation

............................................................................................................................................................................................. 35 

4.1. .................................................................................................................................................... Purpose

............................................................................................................................................................................................. 35 

4.2. ...................................................................................................................................................... Results

............................................................................................................................................................................................. 38 

5. ................................................................................... Binary Classification with Pretrained VGG16

............................................................................................................................................................................................. 43 

5.1. ...................................................................................................................................... Implementation

............................................................................................................................................................................................. 43 

5.2. ................................................................................................................................. Experiment Results

............................................................................................................................................................................................. 46 

5.3. ............................................................................................................................................... Conclusion

............................................................................................................................................................................................. 49 

6. VGG16 Feature Extractor to a Principle Components Analysis to Support Vector Machine 

Approach ........................................................................................................................................................................ 50 

6.1. ................................................................................................................................................. Execution

............................................................................................................................................................................................. 50 

6.2. ...................................................................................................................................................... Results

............................................................................................................................................................................................. 56 

7. ........................................................................... Final Experiment: Comparison the Two Methods

............................................................................................................................................................................................. 59 

7.1. ...................................................................................................................................................... Design

............................................................................................................................................................................................. 60 

7.2. ...................................................................................................................................................... Results

............................................................................................................................................................................................. 60 

7.3. ............................................................................................................................................... Conclusion

............................................................................................................................................................................................. 61 

8. ................................................................................................................................................. Discussion

............................................................................................................................................................................................. 62 

8.1. ......................................................................................................................................... Primary Scope

............................................................................................................................................................................................. 62 



     

vi | P a g e  

 

A. ............................................................................................................................................... Bibliography

............................................................................................................................................................................................... A 

B. ...................................................................................................................................... Glossary of Terms

................................................................................................................................................................................................ E 

 

  



     

vii | P a g e  

 

Table of Figures 
Figure 1 Number of Influenza Cases in the Population .................................................................................... 2 

Figure 2 Prevalence of the Flu in 1918 and 2009 ................................................................................................ 3 

Figure 3 World Population verse Flu Cases 1918 and 2009............................................................................ 4 

Figure 4 Electromagnetic Spectrum [48] ............................................................................................................. 11 

Figure 5 Spectral responses for different HgCdTe alloy detectors [35] .................................................. 12 

Figure 6 Welch Allyn Pro6000 Tympanic Thermometer ................................................................................ 14 

Figure 7 Exergen Temporal Thermometer Use [53] ........................................................................................ 15 

Figure 8 Braun NTF3000 [36] ................................................................................................................................... 15 

Figure 9 Visual Demonstration of Overfit ........................................................................................................... 24 

Figure 10 Focus of Localized Area Investigation .............................................................................................. 35 

Figure 11 Extraction of Sites .................................................................................................................................... 37 

Figure 12 Squared Error verse Power Tested .................................................................................................... 39 

Figure 13 Bland Altman Plot of Best Sites .......................................................................................................... 42 

Figure 14 Updated Approach with Pretrained Model .................................................................................... 43 

Figure 15 Structured Crop Example VGG16 ....................................................................................................... 45 

Figure 16 VGG16 Architecture ................................................................................................................................. 46 

Figure 17 Slope Graph Comparing the Base Pretrained VGG16 Network with the Semi-Randomly 

Down Sampled VGG16 Network ............................................................................................................................ 48 

Figure 18 Final Approach for Classification ........................................................................................................ 50 

Figure 19 Structure Crop with Increased Contrast .......................................................................................... 51 

Figure 20 Base image (left) and Image raised to 10th power(right) ......................................................... 52 

Figure 21 Evaluation for Point by Point Power ................................................................................................. 53 

Figure 22 Circular Distribution versus Elliptical Distribution with vector ................................................ 54 

Figure 23 Optimal Separating Hyperplane [14] ................................................................................................ 55 

Figure 24 Accuracy Heatmap of SVM-PCA Approach ................................................................................... 56 

Figure 25 PCA-SVM-Vote! Accuracy Heatmap ................................................................................................. 58 

Figure 26 Outliers Identified in PCA-SVM-Vote! Results .............................................................................. 58 

Figure 27 Comparison of the Pretrained VGG16 with the PCA-SVM-Vote! Algorithm ..................... 61 

Figure 28 Unacclimated Patient .............................................................................................................................. 63 

 

  



     

viii | P a g e  

 

Table of Tables 
Table 1 Bitar, Goubar and Desenclos Research Comparison [3] 18 

Table 2 FLIR T660 Specifications 28 

Table 3 CPU Specifications 29 

Table 4 GPU Specifications 29 

Table 5 Equations Outputted by Site 40 

Table 6 Output of Least Square Sum Regression by Site 40 

Table 7 Further Results Canthus and Temple Combined 41 

Table 8 Pretrained VGG16 Results with the Full Face and Structured Crop 46 

Table 9 Results of the First Down Sampled Network 48 

Table 10 PCA-SVM Results 56 

Table 11 Feature Extractor - PCA - SVM - Vote Average Results 57 

Table of Equations 
Equation 1 ReLU Activation Function ................................................................................................................... 21 

Equation 2 Softmax Activation Function ............................................................................................................. 22 

Equation 3 Binary Cross Entropy ............................................................................................................................ 23 

Equation 4 F1 Score .................................................................................................................................................... 30 

Equation 5 Modified External Heat Transfer Equation ................................................................................... 38 

Equation 6 Weighted Binary Cross Entropy Equation .................................................................................... 47 



     

1 | P a g e  

 

1. Introduction 

1.1. Motivation 

The presence of disease is lurking behind every human interaction. Disease spreads in various 

modalities, such as contact, contaminated liquids and airborne pathogens. The probability of an 

individual becoming ill increases with prolonged exposure to others already afflicted with a 

given disease. Pandemics and epidemics typically arise when a foreign pathogen is introduced 

to a population, and the individuals are subject to increased exposure to this pathogen. Due to 

the foreign nature of the pathogen, the native population does not have the immunological 

defense to resist initial infection. The influenza is a quintessential example of such a disease, 

historically and in modern times. 

In 1918 the first world war ended. Everyone was relieved that the conflict in Europe was over and 

the soldiers were coming home. Unfortunately, the world was marching into the next battle of 

1918 [52]. This conflict was with the H1N1 Influenza virus also known as the Spanish Flu. This 

was the first pandemic that was extensively studied and had an unprecedented mortality rate 

that is higher than any influenza pandemic that has occurred since. It was calculated that over 

2.5% of the cases resulted in fatality, while the typical influenza pandemic results in an 

approximate 0.1% fatality rate [31, 43, 52]. The graph below demonstrates the presence of the 

illness in the population [52]. 
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Figure 1 Number of Influenza Cases in the Population 

 

The pandemic died down 18 months after the disease’s initial outbreak.  Modern containment 

efforts, aided by technological improvements in the communication systems, diagnostics, 

treatments, and sanitary refinements were particularly critical in containment efforts for this 

pandemic. 

The 2009 Influenza broke out in the North America. It was a mutation of the same H1N1 virus, 

technically classified as the H1N1pdm09 virus or its more common name, Swine Flu. It was 

dangerous because the primary precaution, the influenza vaccine, was not extremely effective 

for this strain of the virus. This failure was not the result of lack of preparation but rather 

targeting the incorrect strain. The world was building their defenses against another, the H5N1 

strain, or avian influenza, which was thought to be the immediate threat rather than Swine Flu 

[54]. The effective vaccine was not available until months after the vaccine’s initial creation [21]. 

Throughout April and May 2009 various actions were taken by the CDC and WHO, including 

increased distribution of antivirals, distribution of the correct vaccine, a tracking log that 

healthcare professionals updated when diagnosing the disease to monitor it as it spread, public 

safety campaigns and social media awareness that aided the previously discussed disease 
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tracking. The pandemic eventually became under control once the actions were set in place [54]. 

These timely actions from the healthcare community helped limit the impact of the disease and 

increased the quality of care for all those affected. This can be seen when directly comparing 

these two pandemics side by side.  

 

Error! Reference source not found. Figure 2 Prevalence of the Flu in 1918 and 2009 below 

outlines the differences between the 1918 influenza outbreak verse the 2009 influenza outbreak: 

 

Figure 2 Prevalence of the Flu in 1918 and 2009 

These pandemics demonstrates that the increase in technology and communication benefit 

disease containment. These results are even more impressive when considering the world 

population was approximately 4.5 times larger than in 1918 (world population was 6.8 billion in 

2009 [62]). This is can be viewed in Figure 3 World Population versus Flu Cases 1918 and 2009 

below: 
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Figure 3 World Population versus Flu Cases 1918 and 2009 

The 1918 Influenza pandemic demonstrates how truly terrifying and impactful a pandemic can 

be on a large portion of the population. The 2009 Influenza pandemic demonstrates the power 

in the current methods for treatment, however, it also demonstrates that the disease can spread 

rapidly if the world’s current controls fails.  

These measures have progressed in both speed identifying pathogens and creating treatments. 

They reduce the risk, however, the controls are not perfect. Benjamin Franklin said it best when 

he stated: 

“An ounce of prevention is worth a pound of cure.” 
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This quote taken slightly out of context (Franklin was talking about fire prevention when he said 

it), however, it is extremely accurate for the modern diagnostic technology as well. In this thesis, 

multiple technologies are used and assembled into various experimental systems to 

fundamentally advance the current state of the art for noninvasive detection of illness using 

febrile status as the primary indicator of health. The decision for use this tool is due to fever 

being a very common symptom of illness [16]. 

1.2. Thermodynamics and Physiological Heat Transfer 

Thermodynamics, more specifically physiological heat transfer, is the primary mechanism for 

fever manifestation. This section introduces a brief overview of thermodynamics and how the 

body uses this process to allow our bodies to run as efficiently as possible.  

1.2.1.  Thermodynamics as Applied to the Body 

Heat is an output of any given system. It can be intentionally introduced into the system or be a 

byproduct of a desired function. Thermodynamics is the broad subject that characterizes 

intentional and non-intentional means of heat displacement. There are three laws that are the 

primary framework for this; the first, second and third laws of thermodynamics.   

The first law of thermodynamics states energy cannot be created or destroyed in an isolated 

system. Due to the body being a semi-isolated system, in every physiological process, energy 

(primarily chemical energy fueled by nutrients) is translated into work and thermal energy. When 

considering the body, the internal body can be considered a closed system, even though there 

are some loss to the surface, while considering the external surface of the body it is an open 

system, with interaction with the ambient environment.  

The second law of thermodynamics states entropy of any isolated system never decreases. 

Entropy is an abstract concept that states thermal energy is equal to the variation from one 

system to another. This means that entropy is the degree of thermal disorder in the system. The 

body is not perfect so this means that they are in a constant state of energy transfers from one 

physiological system to another.  
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The third law of thermodynamics states that as the temperature of a system approaches 

absolute zero the entropy of the system will approach a constant value.  This applies primarily in 

the inverse; that is, as the body responds to diseases the entropy of the system increases and 

the temperature of the body rises.  

As the various organs and systems of the body have optimal temperature ranges for their health 

and operation, heat is transferred to the surface of the body and released to the environment to 

limit hypothermic and hyperthermic conditions.  Physiological Heat Transfer is studied in 

extreme detail to ensure high precision modelling to allow internal body temperature to be 

measured from surface temperature.  

1.2.2.  Physiological Heat Transfer 

Adaption to adhere to the Laws of Thermodynamics was a necessary evolutionary advancement. 

The body optimized thermal detection to be capable of identifying the optimal temperatures for 

different organ function, and control localized temperatures to stay within the operational 

regions. This is the basic premise of thermoregulation inside the body.  

Heat is a byproduct of organ function and it is produced by metabolic action. This metabolic 

heat is detected by thermoreceptors inside the body [10]. The physiological receptors can either 

be hot or cold receptors that activate at various frequencies, and deliver their information to the 

preoptic area and the anterior hypothalamus (also known as the body’s thermostat). Both 

regions cannot be controlled by normal human cognition and as a result are categorized as part 

of the autonomic nervous system. The cold thermoreceptors begin to signal at 33°C (91.4°F), 

have their peak response at 28°C (82.4°F). They stop firing at 10°C(50°F), this is the point where 

humans feel numb. Warm thermoreceptors begin firing at 35°C (95°F) and are located at a 

slightly deeper level in the epidermal layer of the systems. System response time typically takes 

anywhere from 3 minutes to 30 minutes depending on the factors such as thermal conductivity, 

time exposed, insulative effect of the skin and adipose tissue etc. [10]. This means that it 

can take almost a half hour for the physiological structure to acclimate 

and reach thermal stability! 
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Once the thermoreceptor activates, the signal (known as an action potential) propagates to the 

preoptic area and the anterior hypothalamus. These regions of the brain send another signal out 

to impede metabolic generation of heat and provide mechanisms for heat loss in a controlled 

manner or increase the localized metabolic rate to increase heat generation in the area while 

increasing thermal isolation of that area [10, 56]. An example of this is the vasodilation that is 

experienced if an individual is exposed to a warm ambient temperature. The body’s goal is to 

decrease the insulative effect of the skin and use the free energy resource (the warm ambient 

temperature). While vasocontraction takes place if the individual is in a cold ambient 

temperature [56]. 

Another example of this is the heat byproduct produced by muscles when exercising.  This is 

removed from the body through perspiration. Liquid perfuses through the pores of the skin, and 

with the excess internal heat changes phase to a gaseous state, decreasing the temperature of 

the body [10].  

To simplify the study of thermoregulation of the human body it is separated into various 

subsections. These sections are: core temperature (including muscle interaction), and skin 

temperature (including the clothing layer). The clothing layer is the extra clothes a human wears 

to protect them from the ambient elements and the skin which has impact of the ambient 

temperature. This layer also serves as a protective insulative barrier for the second section, core 

temperature. The temperature of the organs that has to be kept at a safe level so that all 

systems function at maximum efficiency [20]. The external layer is an open system with many 

different complexities with the ambient interaction. This is also the primary reason for reference 

devices being semi-invasive. Measuring core temperature has to target a physiological orifice 

(i.e. the mouth, external auditory meatus, or anal cavity; all well recognized approximations of 

core temperature) or penetrate through the outer layer of epidermis (skin) to utilize the internal 

closed system and minimize the variables interacting in these reactions.  

Blood serves as the primary mechanism for providing nutrients in the body (such as oxygen) and 

removing byproducts (including heat) from the body [20]. At rest, approximately all the blood 

circulates throughout the body over the duration of a minute (5-6 Liters per minute).  Circulation 
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is accomplished by forces acting on the arteries from the smooth muscles surrounding them.  

Veins, with their lack of surrounding muscle, act as blood revivors. Since there is an exchange of 

nutrients via blood at the capillaries (area where veins and arteries meet) the arteries deliver the 

blood to the capillaries while veins take the blood from them, therefore, arteries are in a 

constant state of cooling while veins are in a constant state of heating up [20]. This is an integral 

factor when deciding a site to take a temperature reading from.  

The core-to-skin transfer coefficient is a characterization of the site’s ability to acclimate to core 

body temperature [20]. Due to the impact of blood flow and the dynamic nature of the blood 

vessels in thermoregulation, the core-to-skin transfer coefficient correlates strongly with 

proximity of blood vessels. There are many different factors to be considered when 

characterizing local temperature.  Depending on the site, the impact of the factors varies and 

can be idiosyncratic to the individual.  Relevant factors can be age, digestion status, ambient 

temperature acclimation status  [20]. 

Febrile reactions can be characterized as an increase in core body temperature. Different 

diseases have different reactions and disrupt various processes. Fever can be a symptom of 

bacterial infections, certain viral infections (such as the flu) and inflammation [44].  

Historically there have been various means for characterizing core body temperature, these will 

be discussed in the next section, section 1.3 Human Temperature Measurements.  

1.3. Human Temperature Measurements 

The human body is a very complex dynamic system that beautifully balances a wide variety of 

factors. Heat was one of the first metrics of the early physicians to characterize health. This 

section will outline the history of characterizing physiological thermal responses all the way up 

to the modern day.  

1.3.1. Brief History 

The inception of the measurement of human body temperature dates back to ancient times. 

“The earliest references to fever appear in Akkadian cuneiform inscription dating from the sixth 
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century BC and the context used is referring to magic” [10]. Hippocrates was next, and is 

credited as the first person to be recorded to explain fever is an excess of heat in an animal [10]. 

In these ancient times the heat omitted from an animal was recorded by the physician physically 

touching the infected site [10, 11]. This practice then progressed until the invention of a 

thermometer took place.  

The first thermometer’s purpose was to measure the heat of the room where it was held. It 

utilized thermodynamic responses of increasing and decreasing density of oil to cause the rise 

and fall in orbs held inside water [4, 11]. Daniel Fahrenheit took this model and used a more 

reactive substance, mercury, to then create a scale (in 1724) to quantify various physical 

phenomena such as the boiling and freezing point of water (212 and 32 degrees F) and human 

body temperature (initially 96 degrees F taken from the axillary site from his wife) [4]. Very soon 

after Fahrenheit’s scale was established, Andres Celsius established a scale (in 1742) that set the 

freezing point of water to 0 and water’s boiling point to 100 [7]. To this day, the United States 

still uses the Fahrenheit scale to measure temperature, while the common temperature scale 

used by most other nations is the Celsius scale. 

At this point in history thermometers had just started to be used on humans. The next major 

advancement for this research came in 1868 by physician Professor Carl Wunderlich, and his 

treatise “Temperature in Diseases” [11, 57]. In this treatise, Prof Wunderlich outlined a set of 

rules defining the value of human body temperature measurement as follows: 

1. “The average normal temperature of the healthy human body in its interior or carefully 

covered situations on its surface varies, according to the plan of measurement from 98.6 to 

99.5 °F (37 to 37.5°C) 

2. A normal temperature does not necessarily indicate health but all those whose 

temperature exceeds or falls short of the normal range are unhealthy. 

3. Alterations of temperature may be confined to special regions of the body which are the 

seat of diseased actions (local inflammation) while the general temperature remains 

normal. 

4. Exceedingly low temperatures are very commonly met with in the following cases: 
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a. In the remission of a remittent fever. 

b. in consequence of loss of blood. 

c. Sometimes in the death struggle. Abnormally low temperatures may seriously 

disturb the various functions of the body, and may render the continuance of life 

impossible. 

5. Temperature can neither be feigned or falsified. It furnishes a certain proof of the reality of 

death, where this is otherwise uncertain” [11, 57] 

Prof. Weunderlich’s was so accurate with these clinical rules, that they are still in practice today; 

normal temperature is still denoted as a range, lack of fever does not mean perfect health, 

localized hot areas are still used to denote localized infection, temperature still cannot be 

falsified easily and repeatedly.  

Upon the invention of the microcontroller, digital stick thermometers began to appear on the 

market. Initially not as publicly welcomed as the glass thermometers, the digital stick 

thermometers began to capitalize from their digital nature and utilizing predictive 

measurements. This cut down the time needed to take a measurement from 3 to 15minutes 

(depending on the site measured) to 1 minute (with a digital stick thermometer) now as fast as 2 

seconds [37].  

Next came the tympanic infrared designs, which were an improvement from the predictive 

digital stick thermometers, but still semi-invasive to the patient due to their need to be inserted 

in the external auditory meatus of the patient. This allows for characterizing of the heat emitted 

from the tympanic membrane. It is believed that this is such a stable and reliable location due to 

its proximity to the internal thermostat (anterior hypothalamus).  

The latest advancement in home use and clinical thermometry is noninvasive infrared 

measurements. These measurements have susceptibilities of increased impact of the factors 

discussed in section 1.2.2 , however, it is completely non-invasive to the user, making it ideal to 

measure a sleeping child or to maximally limit complications from non-biocompatible materials 

or transmission of disease on the surfaces of the device. The basic premise of the radiation 
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based measurements will be discussed in section 1.4 Radiation Based Measurements and the 

advantages and disadvantages of Tympanic measurements verse Forehead measurements will 

be discussed in section 1.5 Infrared Measurements in Practice.  

1.4. Radiation Based Measurements 

Radiation based measurements of facial temperatures are the primary focus of this research. 

This is the monitoring of energy that is radiated from the face at distinct wavelengths that are 

indicative of the energy created by a human body.  

1.4.1. Wavelength Basics 

All visible light is a form of a quantum particle that is resonating at a specific wavelength. 

Human vision is limited to a small subset of this spectrum (Figure 4 Electromagnetic Spectrum 

[48] below) 

 

Figure 4 Electromagnetic Spectrum [48] 

An important wavelength that cannot be seen by humans is infrared radiation. Infrared radiation 

(IR)is the primary subset of the electromagnetic spectrum that heat resonances at. The peak 

wavelength for the range of the typical temperatures emitted by human skin is approximately 

9μm-12μm, however, measurement devices from 2μm to 15μm have been successfully used in 

recording thermal radiation of physiological structures [39]. 

1.4.2. Infrared Radiation Sources 

 The first law of thermodynamics states that energy cannot be created or destroyed, therefore, 

heat is a byproduct of metabolic reaction(s) (as previously discussed in section 1.2.1). Since the 
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heat is not needed it must be removed before it has detrimental effects on the health of the 

individual. The devices are monitoring the transfer of heat from the sources. 

1.4.3. Means of Detection 

The primary sensor used for the characterization of infrared radiation are thermopiles. 

Thermopiles detect the radiation from the difference (delta) of charges of a given material when 

the material is at rest and when radiation that has infrared wavelengths act upon it. These 

materials change electrical dipole moments from the directions they are aimed [55]. To further 

simplify this means of detection, if the thermopile transducer is aimed at a target that is emitting 

heat, the waves propagate to the sensor causing a change in the material’s charge. The primary 

characterization of the changes is the charge (voltage) that is sent from the sensor.  

Since all forms of light are electromagnetic radiation, manufacturers of these devices typically 

place a material in front of the transducer that allow the intended infrared wavelengths to pass 

through and reject less desirable wavelengths. This material acts as a bandpass pass filter to 

minimize the effect of different spectrums, (such as stray light) from being detected and 

maximize the infrared signal. A graph of the bandpass wavelengths of a HgCdTe alloy (a 

material with the correct filtering properties) can be seen below:  

 

Figure 5 Spectral responses for different HgCdTe alloy detectors [35] 
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This phenomenon is analogous to rod and cone receptors in the human eye. The rod and cone 

receptors allow certain wavelengths of color to be seen, typically characterized by red, green 

and blue. One of these filters only allow for the detection of a single color. The primary 

difference between the rod and cones of the eye and this material is the wavelengths they 

allows to penetrate (infrared verse visible light). The radiation permitted by the filters are then 

used as optical input based upon the number of sensors.   

These sensors then can be used as a single discrete measurement or be combined into focal 

point arrays of thermopile sensors. Section 1.5 Infrared Measurements in  will outline its current 

use in medicine and as a screening device.  

1.5.  Infrared Measurements in Practice 

There are a variety of different clinical diagnostics and applications for which IR sensors have 

been used due to their noninvasive nature. For the sake of this research the primary focus is 

going to be Temperature measurements. 

1.5.1. Core Body Temperature with Thermopile Sensors 

There are a variety of different products that utilize various physiological locations to 

characterize core body temperature.   

One of the most precise forms of measurement of core body temperature is tympanic 

measurements. Tympanic measurements are comprised of a thermopile sensor some distance 

inside the external auditory meatus (ear canal), recording the infrared emission from the 

tympanic membrane or the immediately surrounding tissues [23]. When the device is in contact 

with the human body a heating or cooling element can be added to reduce the amount of 

thermal shock (incorrect measurement due to rapid heat transfer from the surrounding tissue to 

the device), increasing the accuracy of the device [22, 24]. Currently, the industry leader of this 

category are the Braun Thermoscan devices.  
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Figure 6 Welch Allyn Pro6000 Tympanic Thermometer   

Another way that IR technology is used is via forehead measurements. This gives the operators 

(fortunately or unfortunately depending on the intended use of the design) the option for a 

dynamic measurement of a single structure or a single static measurement. Some devices target 

several locations across a single blood vessel structure [53]. The real benefit of this approach is 

the minimization of user error due to the incorrect site being targeted. The processing is 

typically a function that then takes the raw temperature reading of the site and the ambient 

temperature to output a reading equivalent to core temperature based off the characterization 

of the area seen. An example of this device is the one that swipes across the forehead that can 

be seen in Figure 7 Exergen Temporal Thermometer Use [53]: 
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Figure 7 Exergen Temporal Thermometer Use [53] 

Another means of detecting forehead temperature is by enhancing the signal using a parabolic 

mirror to increase the amount of IR radiation directed to the sensor. This allows the area subject 

to measurement to be kept at a near uniform size independent of distance. This can be 

supplemented with the addition of a distance sensor to the device to apply a compensation for 

the loss of the system overall [58, 60]. One device that utilizes both of these approaches is the 

Braun NTF3000, seen in Figure 8 Braun NTF3000 [36]:  

 

Figure 8 Braun NTF3000 [36] 
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These are the two primary means of measurement for forehead devices with a single pixel 

measurement, however, they do have their drawbacks. They are dependent on the device and 

subject to undergo thermal acclimation with ambient conditions, they are dependent on single 

points that are only targeting a single physiological structure (the scanner takes the maximum or 

average value of a single structure, therefore, targeting a single area) and they are very 

susceptible to the skill of the operator with very little ‘forgiveness’ for incorrect use.  

Thermal arrays have the potential of overcoming these hurdles.  

1.5.2. Core Body Temperature with Arrays 

The natural evolution of technology is moving toward fever characterization with IR Focal Point 

Arrays (IRFPAs). These are arrays of thermopile transducers that allow the creation of digital 

images from the IR signal. The downside of this type of sensor is the curse of dimensionality, 

meaning there are too many data inputs. Each input applies a new dimension to the data, and 

potentially a different feature that is present. For this reason, more sophisticated feature 

extraction techniques are needed to:  

1. Extract the features and  

2. Use the features to render the value 

Ring, Jung, Kalicki, Zuber and Vardasca found in 2012 that 9 pixels located in each corner of the 

eye to provide an indication of fever was sufficient for targeting this specific feature [39]. Other 

methods typically entail obtaining the axilla) in combination with another physiological location 

such as the inner canthus of the eye to create a stable consistent measurement [40].   

More reassurance that thermal imaging is the correct tool for fever screening came during the 

Severe Acute Respiratory Syndrome (SARS) epidemic. Chiu et. al used a thermal imager to 

characterize fever and help the ill get the help they needed using the maximum intensity value 

in a near static ambient environment [9]. Necessary for Chiu’s method was precise ambient 

control, precise positioning of the subject in the frame, and thorough acclimation of the subject 

to the ambient temperature. 
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This technique is known as a classification output, which outputs a discrete value indicating if 

the input is febrile or afebrile. The previously discussed temperature readings that people 

conventionally think of are known as a Regression model, outputting a value in the Celsius or 

Fahrenheit scale. The Classification model give some distinct improvements: 

1. It allows for more flexibility in the scale of the data inputs.  

2. It relays less information. When temperature readings are taken to aid containment 

efforts aimed at a pandemic or similar disease, what is desired is a confirmation of illness 

or health rather than an estimation of severity of illness from a continuous temperature 

reading. 

The Classification model is typically the model chosen for screening techniques due to these 

advantages. This is ideal for identifying and assessing large volumes of people in a short amount 

of time to minimize the risk of diseases spreading to the general public in high volume 

locations, such as airports, which can introduce new diseases to new populations and spread 

very quickly.  

1.5.3. IRFPAs as Screening Devices 

There are various studies emerging that incorporate IRFPAs in combination with algorithms of 

varying complexity to create a system that can characterize the health status of an individual 

with fewer constraints to allow easier and more accurate implementation.  

In 2017 the International Organization for Standardization (ISO) came up with standards for 

fever monitoring to combat the threat of pandemics around the world. In the standard titled 

“IEC 80601-2-59:2017 Particular requirements for the basic safety and essential performance of 

screening thermographs for human febrile temperature screening” there are a variety of general 

requirements outlined. These include:  

- Removal of obstructions (such as hair and glasses) [clause 201.7.9.1] 

- Recommendations for ambient temperature between 18°C and 24°C and a relative 

humidity of below 50% (and the subject should not be sweating) [clause 201.7.9.3.1] 

- Near real time algorithms [clause 201.12.2.102] 
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- Minimal target plane of 320x240 [clause 201.12.2.103] 

- Face encompass 56% of the minimum display of the target plane [clause 201.12.2.103] 

There are a variety of other standards and clauses that may apply, however, these are the 

primary ones that will be addressed. 

In 2008 Bitar, Goubar and Desenclos conducted a review of the effectiveness of different sites in 

the prediction of core body temperature. The following table is what was found:  

First 

Author, 

year 

Sample 

Size 

Target 

area 

Temperature 

threshold 

[°C] 

Fever 

Prevalence 

[%] 

Sensitivity 

[%] 

Specificity 

[%] 

Ng E 2004 

[33] 

310 Forehead 37.7 16.9 89.6 94.3 

310 

Inner eye 

corner 37.7 16.9 85.4 95 

Liu 2004 

[29] 

500 Forehead 37.5 unknown 17.3 98.2 

500 

Auricular 

meatus 37.5 unknown 82.7 98.7 

Chan 2004 

[8] 

188 Forehead 38 14.3 4 99 

- Forehead 37.5 N/A 15 98 

116 

Auricular 

meatus 38 20.7 67 96 

Ng 2005 

[32] 500 Forehead 37.5 12.3 89.4 75.4 

Chiu 

2005 [9] 

993 Forehead 37.5 1.2 75 99.6 

72.327 Forehead 37.5 - - - 

Hausfater 

2008 [15] 2.026 Forehead 38 3 82 77 

Table 1 Bitar, Goubar and Desenclos Research Comparison [3] 



     

19 | P a g e  

 

While having large sample sizes, these studies have a low prevalence of fever. This makes it 

difficult for the algorithm to learn the correct information from these sites that have a significant 

level of variation due to the physiological variables (previously discussed in Section 1.2  

Thermodynamics and Physiological Heat Transfer). 

In 2014, Sun et. al explored the feasibility of detecting fever with a smaller array (48x47 pixel 

array). In their study, the system was placed 30cm from the subject, in an ambient range of 72°F-

74.8°F (22.2°C-23.8°C) and a relative humidity of 36-40%. The binary result of febrile status was 

compared to the readings from an axillary reference device, with reference febrile status being 

defined as an axillary temperature value greater than 37.5°C (99.5°F) [50]. 36 patients were found 

to be febrile. The algorithm used was a simple threshold; if the max pixel was above 97.7°F 

(36.5°C) then the patient was said to have a fever. The sensitivity was 80.5% and specificity was 

found to be 93.3% [50]. This challenge to the standard demonstrated that the high resolution 

array is not required for fever screening 

One of the most successful monitoring studies that has been conducted is by Professor Ng of 

Nanyang Technological University. He created an algorithm that uses the K-means clustering 

algorithm to create a radial basis to find locations that are then inputted into a Fully Connected 

Artificial Neural Net for feature classification. This complex algorithm was able to output with 

96% accuracy (claiming a sensitivity of 100% and specificity of 94%)[34]. To obtain these results 

his algorithm necessitates retrieving data from the same patient facial orientation, with a fixed 

distance, in a stable ambient (temperature of 25±2°C with a relative humidity of approximately 

60%), with a FLIR IR ThermaCAM S60 system that has 320x240 pixels resolution[34]. This 

algorithm, despite the constraints required in use, demonstrates the potential for classification 

algorithms for fever screening.  

The current state of thermal imaging for biomedical monitoring has the foundation built and 

ready for further growth. This foundation entails devices that output core body temperature 

based upon a given area of the face. This approach is susceptible to user bias and systematic 
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variation. This research aims to reduce the unpredictability due to various forms of variation with 

flexible algorithmic design, utilizing Machine Learning.  

1.6.  Brief background of Machine Learning 

Artificial Neural Networks are biologically inspired algorithms that output classification or 

regression values of a given input data. These networks only output one of these two possible 

outputs based upon their specific learning algorithm (often square error for regression values or 

cross entropy for classification). This technique is so powerful it is now the building block of 

modern Artificial Intelligence.  

The first publication that made this type of learning viable was published in 1986. It was 

Rumelhart, Hinton and Williams research, titled, “Learning representations by back-propagating 

errors.” In this paper the team outlined the guidelines on how to create an artificial intelligence 

network; first run the data through a network of matrices and tensors (multidimensional 

matrices) and allow the results to converge at the end. The error is found at the output (using 

nodes with initial weights and biases named neurons) and traced back to the front of the 

network, modifying the neurons that contained weights and biases that caused the error. This is 

then repeated until the optimized weights and bias are learned from the input data [45]. This is 

known as the backpropagation algorithm.  

The next big breakthrough occurred in 1998 by LeCun, Bottou, Bengio and Haffner. They 

discovered a technique involving the process of convolution in an image, or multiplying a given 

area of pixels by a filter (with the same area) and outputting the sum value in a new matrix. The 

filter is then slid across the image (or image across the filter). This type of network can then train 

the filters with the backpropagation algorithm, similar to how the nodes of the neural network 

were optimized before [28]. This made the classification of images simpler, and could be used 

on things such as number identification.  

The next major advancement occurred in to 2012 with the inception of AlexNet in the ImageNet 

Large-Scale Visual Recognition Challenge (ILSVRC). This Convolutional Neural was a major 

breakthrough in the current state of the art, outputting a misclassification rate of 15.4%, beating 
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the second place by over 10% (second had an misclassification rate of 26.2%). This started the 

deep learning boom for object detection  

For the next subsequent years this type of feedforward CNN won the challenge, until 2014 

where VGGNet lost to GoogLeNet [51, 52]. This began a new turning point in deep learning from 

conventional linear feedforward architectures, to creating networks that use different layers to 

obtain higher classification accuracies (when sufficient data is available). In the effort to improve 

efficiency in development of new applications ,it was further found that the use of pretrained 

deep networks to create new classification and regression based systems decreased the data 

dependency of the technique.   

1.7. Deep Learning Functionality 

1.7.1. Neuron 

The basic building block for deep learning is the neuron. The conceptualization of a neuron is 

biologically inspired nodal points that are interconnected [17]. These nodal points all have 

specific weights and biases attributed to them. These values are applied to data as it is 

propagated through the neurons.  If the resulting values are large enough to exceed a learned 

threshold, the signal continues.  

The resulting propagation of the signal from the application of the weights and biases of the 

neurons is determined by an activation function. The most common activation function used for 

the hidden layers of an architecture (middle layers that are neither the input or output) is a 

rectified linear neuron (or ReLU) [18]. The equation for this activation function can be seen in 

Equation 1 ReLU Activation Function below: 

Equation 1 ReLU Activation Function 

𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 = 𝑏𝑖𝑎𝑠 + ∑ 𝑠𝑖𝑔𝑛𝑎𝑙𝑖 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 

The final activation function, used to classify the data, is known as the Softmax function.  
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This equation has a sigmoid nature that allows for predictions on a binary scale for a given class 

and is artfully designed to allow multiple different classifications in addition to a simple binary 

output, allowing the network to scale for multiple prediction types.  The equation for the 

Softmax activation function can be seen below: 

 

Equation 2 Softmax Activation Function 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑛𝑔𝑙𝑒 𝑖𝑛𝑝𝑢𝑡 =  
𝑒𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑜𝑟 𝑎𝑛 𝑖𝑛𝑝𝑢𝑡

∑ 𝑒𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑜𝑟 𝑎 𝑐𝑙𝑎𝑠𝑠
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

 

These are the only two types of activation functions used in this research. 

 

In execution, neurons are assembled in groups known as fully connected layers to align with the 

size and format of the data that is being analyzed (for example, the very first fully connected 

layer would have the same number of neurons as pixels in the input image, adjusted for any 

resolution reduction or cropping performed on the input image) and the weights and biases for 

any given fully connected layer are updated during the learning phase to optimize the accuracy 

and performance of the prediction.  This learning is accomplished, in large part, with the use of 

backpropagation.  

1.7.2. Feedforward Networks and Backpropagation 

Feedforward networks are deep learning architectures where each layer of neurons is layered to 

allow the architecture to be executed as data moves forward through the architecture while 

maintaining backward traceability (computers can easily trace the error from the output to the 

input, while it would be extremely difficult for a human). Rumelhart, Hinton and Williams’s 

research with the application made the training of these architectures possible. This 

advancement allows the network to target the neurons that make the incorrect classification and 

modify the weights, resulting in less error.  
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Backpropagation is running an input(s) forward through the network, calculating the error at the 

output, and slowly moving back to the input layer, computing the derivative of the error at each 

neuron, update the weights and biases of these point as the algorithm progresses to the input 

layer [18]. The power in this technique is the ability to learn the computed error for each neuron 

(nodal point) in the architecture when it is allowed to be trained. To compute this error a 

powerful equation is needed. This equation is known as the loss function of the network. For this 

research, binary cross entropy is used, and the equation for this can be seen below:  

Equation 3 Binary Cross Entropy 

𝑙𝑜𝑠𝑠 = −(𝑤𝑒𝑖𝑔ℎ𝑡𝑓𝑒𝑣𝑒𝑟 ∗ 𝑜𝑢𝑡𝑝𝑢𝑡 ∗ log(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) + 𝑤𝑒𝑖𝑔ℎ𝑡𝑎𝑓𝑒𝑏𝑟𝑖𝑙𝑒 ∗ (1 − 𝑜𝑢𝑡𝑝𝑢𝑡) ∗ (log(1 − 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦))) 

The weights of the neurons are optimized by minimizing the absolute value of this loss 

equation, with the goal being a loss of 0. This is how artificial intelligence is applied to deep 

learning.  

There are also optimization functions that allow for increased speed for learning by modulating 

the size of the changes in the weights of the neurons to allow for larger changes when the loss 

is greater and smaller changes as you approach zero, also referred to as modulating the speed 

of gradient descent. These equations have variables (hyperparameters) that allow fine tuning for 

the application. In this research the adaptive moment estimation (Adam) optimizer was used 

[24]. Combining these tools in multiple layers is known as deep learning.  

1.7.3. Regulation 

In the design of a deep learning architecture, regulation of the network is limiting the network’s 

ability to learn overly specific features from the specific inputs so as to force it to learn general 

features instead. It is an important point to note that the goal at the end of the training is a 

generalized design that is capable of theoretically characterizing all use cases, or a network that 

best fits the application. Overfitting, which happens with a poorly regulated network, biases the 

design to only those use cases that the network was trained from. An example of overfit can be 

seen in Figure 9 Visual Demonstration of Overfit.  
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Figure 9 Visual Demonstration of Overfit 

The importance in network regulation cannot be emphasized enough as this investigation was 

with a small dataset (the dataset will be discussed in section 2.1). There are design choices that 

Deep Learning Architects use to minimize overfit such as: separating the test and training set, 

addition of dropout layers and an L2 weight layer.  

The test and training set must be separated to demonstrate if there is an overfit issue; by 

training the algorithm with one set of data (the training set) and validating it against a separate 

set of data (the test set) you ensure that the algorithm is trained to identify general 

characteristics rather than overly specific idiosyncrasies. The most common way to separate a 

dataset is by randomly dividing the dataset into a various number of folds, training on all but 

one fold and evaluating the results against the fold not trained upon. This is repeated for as 

many times as there are folds to ensure that each fold acts as the test set one time for a network 

trained on the other folds. This is known as k-Fold Cross Validation [41]. The k denotes the 

number of folds the data is separated into. This not only allows for the ability to visualize overfit, 

but a more accurate means of evaluating the validity of the network (if an additional clinical trial 

is not a viable option) as it ensures that the final performance of the network is a reflection of 

the actual network design rather than a random lucky result based on the specific combination 

of data used to train and test. For this research a 10 Fold cross validation was used. 10 was 

chosen because it allowed the maximum samples being allowed for training while a large 

enough sample size for validation. 
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Dropout layers can also be added if overfit is an issue for the architecture. These layers are 

placed before the learning layers (fully connected layers made up of neurons) and apply a 

probability of any given connection being turned off in training. This is effective because the 

learning algorithm will decrease weight to a given node when it is not used in a given 

backpropagation iteration [49]. If the connection for a given node is not activated during a 

round of training, the weight will not be updated or be used in the accuracy of the training of 

the current input. The back propagation algorithm will increase the dependency of the weights 

around the connection, decreasing the importance of the connection that is currently turned off. 

The probability of the given input being turned off was found to be 0.7 (empirically found to be 

the optimal value). This technique was supplemented with L2 regularization.  

L2 regularization is applies a square difference from the current value and the estimate value 

(from the loss function, cross entropy) that is then multiplied by a scaler value. This technique 

will apply the shortest path to minimize the loss value. For this algorithm 3e-5 was used for the 

scaler, which is less than the value cited by the original VGG16 network (5e-4).  

1.7.4. Convolutional Neural Networks 

LeCun, Bottou, Bengio and Haffner merged a developed technique known as convolution, or the 

merging of two signals, in conjunction with the concept of neural networks to create 

convolutional neural networks [28]. Small Filters (or kernals when applied to image processing) 

are dragged across the image, containing selected weights. These weights are designed to 

identify select features in the base image. The backpropagation algorithm is then modified to 

compute the error of all the weights in the filter and sum them together to create a feature 

extractor[12].  

This technique is then supplemented with pooling layers. These layers reduce the dimension of 

the images (i.e. go from a 14x14 image to a 7x7 image). This reduces the dimensions and 

decreases training time at the expense of losing resolution of location and details of the 

data[12]. The output of these convolutional layers can be fed into multiple fully connected 

neurons to be trained, or by utilizing transfer learning, fed into another algorithm.  
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1.7.5. Transfer Learning – Pretrained Networks  

Transfer Learning is a technique that allows for a reduction of the data by utilizing a network 

that has already been trained in one domain and applying it to the domain of the network that 

is being designed [25,58]. While using this technique it is standard practice to not train the 

layers that have been trained in the different domain [58]. This allows for the feature extractor to 

have defined filters that are capable of identifying select features of the image. When 

convolutional neural networks are applied in this research, they are left untrainable due to the 

data limitations of the study.  
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2. Data Gathered and Equipment 

All materials outlined in this section were the property of Helen of Troy or the author.  

2.1. Clinical Data 

The data gathered for this research was predominantly obtained at clinical sites with formal 

methodology.  A subset of the data was gathered in laboratory sites using the same 

methodology. Thermography data, using clinical screenings, was obtained by taking thermal 

images of the patients and evaluating these images against a reference temperature reading 

from a reference device to determine febrile status. These continuous values that were output 

by the device were then made in to discrete classifications, afebrile (the patient does not have a 

fever) or febrile.  

A FLIR T660 Thermal Imaging System was used to obtain all gathered images for this research. 

For the specifications of this system refer to Table 2 FLIR T660 Specifications. The reference 

readings were gathered using a Welch Allyn Suretemp 690 Plus thermometer. Patients with a 

reference temperature greater than or equal to 99.5°F (37.5°C) were considered to be febrile  

There were two different sites used, the primary site being Hospital del Niño Jesús in Tucuman, 

Argentina, and the secondary site was Helen of Troy’s Healthcare Laboratory in Marlborough 

Massachusetts. The ambient temperature at the data gathering sites had varying values. The 

Helen of Troy site had an ambient of 62.6±3.6°F (17±2°C), and Hospital del Niño Jesús had an 

ambient temperature range of 80.6 ±3.6°F (27±2°C). The Hospital del Niño Jesús recorded 

image primarily of children (approximately 98% or 123 images). 77% of the dataset was from the 

Argentina site, which means 75% of the total samples validated were children (120 images of 

children). Helen of Troy subjects were all adults older than 22 years old (resulting in 37 adults or 

23% of the total dataset).  

The data was collected from 11 febrile patients, 104 afebrile patients. The data was taken with 

subjects at different thermal acclimation times, angles, distances, and emotional states (the 

dataset has 3 young patients crying). In total there were 810 images taken with 141 images 
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taken on febrile subjects and 669 images taken on afebrile images. Following collection, the data 

was then filtered to remove any images that had the medical professionals obstructing the 

physiologic structures of the face. The delimiters for each study will be stated in their applicable 

chapter.  

2.2. Thermal Imager  

 

Specification Data 

Resolution 640x480 

Thermal sensitivity <20mK @86 °F 

Field of View 

25 degrees x 19 

degrees 

Image Frequency 30Hz 

Object temperature range -40 to 302 °F 

Accuracy 

1% of reading for 

limited temperature 

range 

Operating temperature range 5 to 122 °F 

Table 2 FLIR T660 Specifications 

2.3. Computer Specifications 

Specification Data 

Manufacturer Gigabyte Technology Co., Ltd. 

Primary OS Windows 10 

Secondary OS Ubuntu 16.04 

Processor Intel i7-6700K 

Processor Speed 4.00GHz 
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Cores 4 

Logic Processors 8 

Table 3 CPU Specifications  

2.4. GPU  

In order to enhance computational efficacy a GPU was used. The specifications of the GPU can 

be seen below: 

Specification Data 

Manufacturer NVIDIA 

Type GeForce GTX 980 

Memory Clock 7Gbps  

Base Clock 1126MHz 

Boost Clock 1216MHz 

Memory Config 4 GB 

Memory Bandwidth 224 GB/sec 

Table 4 GPU Specifications 

  



     

30 | P a g e  

 

3. Research Overview  

This research has taken shape in 3 different experiments with the data outlined in Section 2   
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Data Gathered and Equipment. Each experiment had different primary and secondary 

objectives, but aimed to tackle the same base hypothesis.  

Hypothesis 

By utilizing modern machine learning techniques, a correct classification of the febrile 

status of the patient is possible independent of thermal acclimation time, emotional 

status, age, and ambient temperature range.  

 

This proof of concept was evaluated with a combination consisting primarily of the F1 score but 

also including simplistic accuracy and the sensitivity and specificity of the algorithms. The F1 

score was set as the primary metric for evaluation with a value to demonstrate proof of concept 

at 0.8. The F1 score was selected due to it taking into consideration precision and recall [37]. 

Precision is the amount of times the algorithm was correct at identifying fever in relation to the 

amount of times it claimed fever was present. Recall is the amount of times the algorithm was 

correct at identifying fever in relation to the amount of times fever was present. This equation 

can be seen below:  

Equation 4 F1 Score 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=  2 ∗ 

𝑇𝑃
(𝑇𝑃 + 𝐹𝑃)

∗
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
+

𝑇𝑃
(𝑇𝑃 + 𝐹𝑁)

=  
𝑇𝑃 

(𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃)
 

With the expansion of the equation it can be seen that excess weight is given to outputs of 

positive predictions with minimal weight given to outputs of negative predictions [37]. The 

alternative metrics were considered to counter the risk of insufficient weight on false positive 

readings; however, in a device such as this, which is targeted to minimize the impact of 

pandemic scenarios, the risk of false negatives outweighs the risk of spending resources on a 

further investigation of individuals falsely identified as positive. At a proof of concept level, the 

F1 score gives the best balance of accuracy versus prevalence and risk. At a device level, further 

investigation would be needed to validate an ideal success metric.  
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This research is aimed at proving that the combination of these approaches is sufficient, at the 

proof of concept level, to address the noise factors in the data and not at a demonstration of a 

final algorithm. Each of these noise factors (ambient acclimation status, facial orientation, 

emotional state, febrile status, etc.) represent use cases that would occur for a device in the field 

with trained operators. The ambition of a final screening algorithm is to be common for the 

entire population. Validation of a population based method requires a substantial sample size 

that is not present in this research.  

Initially the goal was to identify the most meaningful locations on the human face and then use 

the identified area or areas to generate a decision on the patient’s febrile status (similar to the 

studies taking into consideration a single site). As the research progressed, the team abandoned 

this conventional approach in favor of classification of febrile status via inputting the thermal 

data into a neural network to allow the network to dictate the correct classification.  

It was evident from the beginning that the gathering of the data was an issue. The data was 

gathered in without a common thermal acclimation time, common emotional status and in wide 

ambient temperature range , making the approach robust enough for real world applications. 

The uncontrolled use cases manifested itself as noise in the data.  

The reason for overcoming these use cases is rooted in new technology development ideology. 

It is believed that the creation of an algorithm sufficiently robust to correct for errors in the 

supplied data is superior than simple identification and avoidance of the sources of error.  The 

necessary evil of permitting noisy data allows for a more useful real world algorithm that is 

robust to correct for error. The different experiments conducted were as follows:  

1. Localized Area Investigation (Chapter 4) 

The primary objective of this investigation was to identify and extract temperature data from the 

features on the face to correlate linear relationships between these sites with the noise present. 

Instead of relying on a supervised segmentation algorithm to output the areas of interest, each 

image was masked by key facial features outlined in the publications depicted on Table 1 Bitar, 
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Goubar and Desenclos Research Comparison [3]. Descriptive statistics were extracted and 

inputted into a given equation and optimized for each site using a least squared error algorithm.  

This investigation was ultimately unsuccessful due to it attempting to quantify linear 

relationships. The relationships are not linear in nature (at least in the presence of noise). The 

hypothesis was found to be incorrect due to the nonlinearity of the inputs, however, it directed 

the research to the exploration of nonlinear methods of evaluation. This raised the question, “are 

convolutional neural network flexible enough to apply a correct classification of fever?” 

2. Binary Classification with Pretrained VGG16 (Chapter 5) 

The primary objective was to create a fully supervised algorithm that would be capable of 

meaningful classification of the febrile status. The reason for the pretrained model is to combat 

the data issue (lack of data in combination of excess noise).  

The manner that the data was randomized was integral to the reliability of the validation set. If 

the data was randomized by the augmented data, then the network would learn the features of 

the image resulting in outputs that are not a true representation of the performance of the 

network. For this reason, the inputs were randomized by the individual image rather than the 

augmented input. The imbalanced dataset was also a design consideration that was accounted 

for in the final design of the network. Overall, this experiment was successful, and the results 

were able to accomplish the goal. The final experiment’s goal was now to improve upon these 

results.  

3. Feature Extractor – PCA – SVM – Vote Algorithm (Chapter 6) 

The primary objective for this experiment was beat the benchmarked value that was found in 

Chapter 6. To accomplish this the team elected to blend the benefits of the pretrained VGG16 

Network, using the pretrained convolutional layers as a feature extractor, then reducing the 

dimensions of the data using principle components analysis (PCA) that then is inputted into a 

support vector machine (SVM).  
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This method is a well-studied approach, but new for this fever screening application [6]. It 

requires less data. If the VGG16 Feature Extractor can identify the important nonlinear features, 

the PCA should be able to identify trends and allow the SVM to make the classification.  

This was the final experiment and for this data was found to have a better average result then 

the VGG16 network due to these qualities.  
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Disclaimer 

This research utilized the Fahrenheit 

Temperature scale for the creation of the 

algorithms outlined in the subsequent chapters 

due to the following reasons:  

• Displaying the temperatures in Fahrenheit 

scale allows for a slight increase in 

resolution for the data and  

• This research was conducted by an 

American team. 

From this point forward, all temperature data 

and results are displayed on a Fahrenheit scale. 

unless stated otherwise.   
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4. Localized Area Investigation 

The ambition of this experiment was to identify linear trends in the specific sites of the thermal 

images that can be distinguished in digital images. The first step in this approach was to 

manually mask and analyze areas of interest to evaluate if excess variation was present in the 

segmented structure, and evaluate if this structure outputted a linear (or quadratic) response. 

This approach mirrors the preceding work cited in Table 1. This is shown in Figure 10 Focus of 

Localized Area Investigation.   

 

Figure 10 Focus of Localized Area Investigation 

The optimal output from this investigation would be a single superior site giving a stable and 

liner output in comparison to the other sites. From this investigation, as will be shown, it became 

evident that there is no single feature that was superior.  

4.1. Purpose 

Many publications and devices outlined in Chapter 1 are EXTREMELY dependent on the concept 

of a single site’s superiority. If there was a high correlation with these sites and the reference 

temperature, some function of the distribution should be able to be inputted to a transfer 

function and output an accurate reading. If this site could be identified, it would be extremely 

powerful and maintain the segmentation approach as a viable research route. This investigation 

was meant to provide some insight on the sites chosen and provide input on which 
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physiological feature can provide input to a classification network to determine febrile status of 

the individual.  

The first step was to identify the sites to evaluate. It was decided to extract the left and right 

canthus (corners of the eyes), left and right temple and the center of the forehead so as to 

target the supraorbital blood vessels based on the current publications and thermometers on 

the market. If the structures were not located in the images, then there was no data recorded for 

the individual site and no training or testing input was provided for the given site. For each of 

the patients, at least one of the canthus, temples and the center of the forehead were able to be 

masked and extracted.  For the forehead and temples, a diameter of approximately 1inch 

(2.5cm) was used as the area evaluated. This can only be approximated due to the varying 

distances in the dataset.  

55 images were used for this analysis with 18 being from febrile subjects. The means of selection 

of subjects were random, and the primary output was a continuous core temperature regression 

value. The purpose of this experiment was to be able to identify on a subsample selection of the 

total population if there was any standout feature. Basic linear correlation was not a viable 

option due to the bias of the sites vs core body temperature having a relationship with ambient 

temperature. Multiple equations were evaluated and it was found that a quadratic relationship 

between site temperature and reference temperature, with ambient as an additional input, best 

fit the application.  

To execute this the following steps were taken for each feature for each image: 

1. Masking and import of the Areas of Interest 

2. Dimensionality Reduction using simple Descriptive Statistics 

3. Comparing the sites using an Least Squares Sum Algorithm 

4. Evaluating the Results 

4.1.1. Masking and Importing of the Areas of Interest 

The first step was the masking of the images to make the extraction as simple as possible. The 

masking was done in GIMP (GNU Image Manipulation Program). For each of the images a mask 
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was created for each site. The grayscale image was then imported and for each site the masked 

area was imported as a full array, preserving the distribution of thermal values in each site. 

Figure 11 is an example of the masking of an image.  

 

Figure 11 Extraction of Sites 

4.1.2. Dimensionality Reduction using simple Descriptive Statistics 

For each of the sites, the max, min, mean, median and standard deviation were extracted from 

the temperature data of the masked areas identified. No advanced dimensionality reduction 

techniques were used and each site was hand selected. The precision of the mask was subject to 

human error. The error was reduced by having a single operator utilizing thresholded images 

with contrast increasement for the warmest regions of the image, however, it was not perfect 

and the extremely sparse gradient in combination with varying ambient conditions and external 

factors made it difficult to obtain a perfect mask for each of the images.  



     

39 | P a g e  

 

4.1.3. Comparing the sites using an Least Square Sum Algorithm 

Using these inputs an equation was used to approximate the core body temperature from each 

site. This equation was found in Houdas and Ring’s 1982 publication “Human Body Temperature: 

Its Measurement and Regulation.” The equation can be seen below: 

Equation 5 Modified External Heat Transfer Equation [20] 

𝑇𝑐𝑜𝑟𝑒 =  𝑇𝑠𝑖𝑡𝑒 +  ((𝑇𝑠𝑖𝑡𝑒 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡)𝑝𝑜𝑤𝑒𝑟 ∗ 𝑆𝑡𝑒𝑝) 

This equation was slightly modified to incorporate the Step variable, to add precision for the 

Least Square Sum (LSS) optimization (empirically found to be beneficial). This equation was 

optimized with a LSS Curve Fit for each site individually. Each possible option for power and step 

were evaluated in a given resolution to allow for exhaustive evaluation for any potential peaks 

and valleys in the data. Powers were evaluated from 1 to 9 with a resolution of 1 and the step 

was between 1E-9 steps from 0 to 1 giving us 100,000 total steps. The difference between the 

value outputted and the reference body temperature is the error, and this error is squared and 

summed with the squares of the other errors in the data set.  The value that results in the 

minimal error is saved. This relationship being linear will give a single optimal value that is saved 

from this LSS fit. Execution of this algorithm with all the steps takes approximately 2 minutes.  

The equation could be derived if the previous values were known, however, the data from 

before or after the image rendering was not obtained. Therefore, this type of exhaustive 

approach was needed to derive the optimal value, rather than applying more conventional 

methods for calculation.  

4.2. Results  

The final step for this experiment was to feed the images’ data back through the equation to 

evaluate if a single site outputted a stable reading with the noted equation.  

Figure 12 below shows the loss curves for each of the sites tested: 
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Figure 12 Squared Error verse Power Tested 

The mirrored data points (i.e. the canti and the temples) have nearly identical curves. It is also 

observed that the center of the forehead has similar results as the temples. Table 5 below 

outlines the equations that were found to be optimal for each site: 

 

 

 

 

 

 

214.9

176.6

494.8508.7

484.5

2 3 4 5 6 7 8 9

Le
as

t 
Sq

u
re

 S
u

m
 O

u
tp

u
t

Power

Left Cantus

Right Cantus

Left Temple

Right Temple

Center of the
Forehead



     

41 | P a g e  

 

Site Equation 

Center of the Forehead 𝑇𝑐𝑜𝑟𝑒 =  𝑇𝑚𝑎𝑥 +  ((𝑇𝑚𝑎𝑥 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡)6 ∗ (5.72 ∗ 10−9)) 

 

Left Canthus 𝑇𝑐𝑜𝑟𝑒 =  𝑇𝑚𝑎𝑥 + ((𝑇𝑚𝑎𝑥 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡)5 ∗ (5.41 ∗ 10−8)) 

 

Right Canthus 𝑇𝑐𝑜𝑟𝑒 =  𝑇𝑚𝑎𝑥 + ((𝑇𝑚𝑎𝑥 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡)5 ∗ (5.53 ∗ 10−8)) 

 

Left Temple 𝑇𝑐𝑜𝑟𝑒 =  𝑇𝑚𝑎𝑥 +  ((𝑇𝑚𝑎𝑥 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡)6 ∗ (5.5 ∗ 10−6)) 

 

Right Temple 𝑇𝑐𝑜𝑟𝑒 =  𝑇𝑚𝑎𝑥 + ((𝑇𝑚𝑎𝑥 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡)6 ∗ (5.72 ∗ 10−6)) 

 

Table 5 Equations Outputted by Site 

The results of applying these equations to the 55 patients can be seen below: 

  

Center of the 

Forehead 

Left 

Canthus 

Right 

Canthus 

Left 

Temple 

Right 

Temple 

Bias -2.2 0.2 0.2 -0.8 -0.8 

Standard Deviation 3.3 2.0 1.8 2.5 2.7 

Times Site 

performed the best 15 10 14 8 8 

Table 6 Output of Least Square Sum Regression by Site 

The results on Table 6 indicate that mirrored sites can be considered analogous and were 

evaluated jointly. This allows for the analysis of the descriptive statistics to be on a per site basis 

as seen in Table 7 below.  For additional context, descriptive statistics were prepared for a 

theoretical output (“Best of All”) calculated by selecting the output per image with the lowest 

error; that is, the center of the forehead for some, the cantus for others, and the temple for the 

remainder, based on their idiosyncratic performance.  This “Best of All” output identifies the 
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optimal performance achievable with this method as a point of comparison to the performance 

achieved with any individual site.  

  

Center of 

the 

Forehead 

Canthus Temple 
Best of 

All 

Bias -2.2 0.2 -0.8 -0.2 

Standard Deviation 3.3 1.9 2.6 0.9 

Times Site 

performed the best 15 24 16 55 

Table 7 Further Results Canthus and Temple Combined 

These results demonstrate that the canthus was the best site more often than the other sites, 

however, it is still not the best site for the majority of the patients. These results are also 

artificially inflated due to them being evaluated on the same data as they were optimized with. 

Even with this, high variability is present for each site.  

This allows us to draw a conclusion that there is no one best site to be 

segmented consistently. This is in direct opposition to the earlier 

research in this area!  

An additional step was executed to evaluate the results on only the best of every site. The 

descriptive statistics can be seen in the ‘Best of All’ column in Table 7. A Bland Altman Plot was 

also created to evaluate the results. The Bland Altman Plot is a powerful tool to assess 

distributions of data where the source of the error is not known, or can be produced from the 

reference device or the experimental algorithm [4]. The goal for this plot is to have a trend line 

that is perfectly horizontal and acceptable space between the upper and lower bars. This plot 

can be seen in the Figure below. 
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Figure 13 Bland Altman Plot of Best Sites 

This demonstrates that the algorithm is predicting high at the high temperatures and low at the 

low temperatures, but is stable right in the middle of the data. The R2 value was found to be 

0.41, indicating a week correlation, however, there are two outliers identified in this plot in the 

97°F to 98°F range that would strengthen this value if removed, or taken into consideration in a 

modified algorithm. It is important to reiterate that these results were not evaluated with an 

independent test set, so they are most likely more accurate than the true error value. Regardless 

the results still allow the following conclusion to be drawn: 

There is no one best site to base a fever screening transfer function 

from. The relationship is most likely nonlinear in nature and newly 

developed machine learning techniques can be utilized to characterize 

this.  
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5. Binary Classification with Pretrained VGG16 

With the presumption that the relationships are nonlinear in nature the deep learning 

investigation was than explored. Figure 14 Updated Approach with Pretrained Model 

demonstrates the primary components for this experiment.  

 

Figure 14 Updated Approach with Pretrained Model 

5.1.  Implementation 

The Pretrained VGG16 Network has many different benefits when compared to an untrained 

model. These include:  developed filters (less data is required to update filters rather than create 

them from scratch) and starting points for fine tuning of training variables (the hyperparameters 

that were used in the previous domain are similar to the current). The  two important 

components for this investigation are the handling of the data and preprocessing, and 

designing the VGG16 used.  

5.1.1. Dataset and Preprocessing 

The data was selectively limited by incorporating a single criteria. The only requirement was for 

both eyes to be present in the image evaluated. This reduced the dataset down to 160 images 

total and 35 of those images contained febrile individuals.  

To maximize the benefit of using the pretrained model it was found to be beneficial to modify 

the input images’ dimensions to the scale of the images in the original domain of the network 

(scaling the maximum value to 255). It was also found to be beneficial to decrease the resolution 
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of the images from 640x480 to 320x240. This allows for the full face of the individual to be 

incorporated in the crop, which was not the case with the larger images, allowing the network to 

identify more common features. Due to deep learning’s dependency for data to train the values 

against, image augmentation was used to increase the number in the dataset with more 

legitimate data. These images of size 320x240 were then cropped to 224x224 with a structured 

crop to result in 5 differently cropped versions of each input image, and then the augmented 

inputs were flipped to double the amount of individuals present. As the pretrained network 

requires images with RGB channels, the black and white image data was duplicated 2 times and 

appended to the original to give 3 identical channels, giving 10 augmented inputs with 

dimensions of 224x224x3 for each image in the dataset. This technique was found superior to 

images that were randomly cropped, due the systematic approach. This allows for all features to 

be present in the augmented images rather than potentially removing features due to the 

random placement of the crop on these images.  

The structured crop was designed to displace the individual in the image while taking advantage 

of the convolutional property of location invariance. The structured crop was conducted by 

rendering a square  over the center of the nose of the patient in the image. The augmented 

inputs were cropped from the corners and center of this square; as the data required both eyes 

to be present in the base image there would always contain part of the sides of the face present 

in the resultant input using this technique. The output of this type of crop is the shifting of an 

individual from the center of the image to the four corners of the image. The final results are 

using only the base output of the network and not using any additional processing (such as a 

vote method explained in Chapter 7). This was the final design for the traditional convolutional 

architecture to allow for maximum effectiveness and is the same method used in Chapter 6. 

Examples of this means of augmentation can be seen in the figure below. 
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Figure 15 Structured Crop Example VGG16 

5.1.2. VGG16 Network 

This augmented data was then passed through a pretrained VGG16 network. This pretrained 

model was trained from the ILSVRC (ImageNet Challenge) denoted in section 1.6. The dataset 

that this network was trained on was composed of millions of images classifying one thousand 

different classifications. For this research, the convolutional layers were left untrained, leaving 

only the fully connected layers and the Softmax classification layer trainable. The fully connected 

layers, while pretrained, were trainable so that the important features could be learned (denoted 
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in the gray box seen in the figure below). This is outlined in 

 

Figure 16 VGG16 Architecture: 
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Figure 16 VGG16 Architecture 

5.2. Experiment Results 

The results of this method are outlined in Table 8 Pretrained VGG16 Results with the Full Face 

and Structured Crop:  

Accuracy 84.7% 

Sensitivity 45.7% 

Specificity 96.0% 

Prevalence 22.4% 

F1 0.57 

Table 8 Pretrained VGG16 Results with the Full Face and Structured Crop 

This table outlines a large discrepancy in the sensitivity and specificity. This is due to the network 

being imbalanced, with more afebrile data present than febrile. Due to the network being 

probabilistic in nature, the network will learn that guessing “afebrile” would results in less loss 

on average than guessing febrile; the probability of being wrong when guessing afebrile is very 
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low simply due to the probability of the subject being febrile is very low. In order to balance the 

sensitivity and F1 score corrective actions in the design of the network must be taken. 

5.2.1. Balanced Network Results 

There were a few options for correction of an imbalance dataset. These options are weighted 

binary cross entropy (modifying the base cross entropy equation to give more of a penalty for 

incorrect classifications of fever), up-sampling of febrile data (artificially increasing the number 

of febrile images in the dataset) or random down sampling of the afebrile samples of the 

dataset (randomly remove base images from the training set).  

Up-sampling the febrile data is a technique with risk involved. It allows for any atypical, 

detrimental data in the training set to have an unjustifiably  large impact on the effectiveness of 

the training and to artificially decrease the accuracy of the technique. An issue with 

augmentation being an untrue representation was found in the initial implementations of the 

experiment, and it was believed to have a high probability of reoccurring if up-sampling was 

introduced. For this reason, weighted binary cross entropy and random down sampling of the 

afebrile samples of the dataset was used to balance the prevalence of fever in the dataset.  

Weighted binary cross entropy is the modification of the weights seen in the equation outlined 

on page 23 to accommodate decreased prevalence. The values found to give the best balance 

were 0.8 for febrile and 0.2 for afebrile data (from 0.5 for both febrile and afebrile data), and the 

final equation for this can be seen below: 

Equation 6 Weighted Binary Cross Entropy Equation 

𝑙𝑜𝑠𝑠 = −(0.8 ∗ 𝑜𝑢𝑡𝑝𝑢𝑡 ∗ log(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) + 0.2 ∗ (1 − 𝑜𝑢𝑡𝑝𝑢𝑡) ∗ (log(1 − 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦))) 

The semi-randomly (afebrile only) down sampling of the dataset was executed by applying a 

random value to all data that was found less than 99.5°F (37.5°C), sorting the randomly applied 

values in order from greatest to least and selecting 35 samples with the lowest randomly applied 

values.  
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By applying weighted binary cross entropy and a semi-randomly down sampled dataset, the 

following results were obtained on a single trial: 

 

Accuracy 78.7% 

Sensitivity 87.1% 

Specificity 70.3% 

Prevalence 50.0% 

F1 0.80 

Table 9 Results of the First Down Sampled Network 

When comparing these results to the Base Pretrained VGG16 sample, the data demonstrates the 

decreased tendency for classifying all inputs as afebrile via the decreased discrepancy between 

the Sensitivity and the Specificity (the network classifies febrile more often with these 

improvements). This can be seen in Figure 17 Slope Graph Comparing the Base Pretrained 

VGG16 Network with the Semi-Randomly Down Sampled VGG16 Network. 

 

Figure 17 Slope Graph Comparing the Base Pretrained VGG16 Network with the Semi-Randomly 

Down Sampled VGG16 Network 
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5.3. Conclusion  

Over all, this algorithm does display acceptable results that meet the hypothesis of obtaining a 

F1 score of 0.80. This model is realistic based upon the noisy data gathered and demonstrates 

that this algorithm is promising if the used with a large dataset or if used with less noise 

intentionally added in the gathering of the data. This experiment made it clear that pretraining 

could not be the only answer to improve the algorithm with data limitations. The results found 

in this investigation met the primary objective, but only barely, with a single down sampled 

dataset. Another technique had to be utilized to accomplish the primary objective..   
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6. VGG16 Feature Extractor to a Principle Components 

Analysis to Support Vector Machine Approach 

The fully connected layers of the Neural Network, which were the primary decision-making layer 

of the previous classification, were not the most efficient means of classification for this research 

due to the data limitations. Principle Components Analysis (PCA) with the aid of a Support 

Vector Machine was found to be a more effective way to classify fever status with minimal data. 

Below is the updated design to accomplish this algorithm.  

  

 

Figure 18 Final Approach for Classification 

6.1. Execution 

The new technique was designed to make the fully connected layers obsolete due to their 

dependence on data for training (this was not the correct answer of this dataset). The goal for 
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the classification was to design to utilize the intrinsic relationships outputted by the 

convolutional layers.  

6.1.1. Preprocessing and Augmentation 

The data used in this experiment utilized the structured crop, however the data was not flipped 

around the y axis due to the technique’s decreased dependency for data. An example of a 

cropped image can be seen in the figure below:  

 

Figure 19 Structure Crop with Increased Contrast 

In additional to the crop an additional preprocessing technique was used. Each pixel of the 

images (prior to segmentation) was squared, then normalized to 255, with the max value for 

each image being 255 and all other points being their square relation to the new squared max 

value. The normalization to 255 allowed for maximum overlap between the dataset and the 

domain the preprocessed feature extractor was trained on.  

The theory behind this preprocessing is mechanical in nature. Due to the high precision of the 

measurement equipment (as indicated in Section 2.2 Thermal Imager), and the ambient 

temperatures found in the investigation being lower than the physiological temperature present, 
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the assumption can be made that the warmest regions in the image were physiological 

structures and of interest in the classification. Squaring these points helps push the warmest 

regions ‘forward,’ giving them more weight for the deep learning algorithm. It was empirically 

found that higher orders of magnitude (i.e. cubing or putting the data to the 5th power) had a 

detrimental effect on the results. It is hypothesized this is because it pushes the secondary 

sources of heat further back, giving all additional weight to the warmest feature or draws too 

much attention for too few pixels in the area of interest (only a part of the warmest region could 

be used due to a large discrepancy in the feature’s thermal characteristic).  

An image demonstrating what increasing the data by a power, then normalizing the scale can be 

seen in the figure below. The 10th power was used in the image to enhance the contrast  

between the two images (to make it distinguishable for humans), however, the 2nd power was 

found to be optimal (empirically). 

 

Figure 20 Base image (left) and Image raised to 10th power and scaled(right) 

The graph below demonstrates that the second power outputted the best results of the powers 

tested. The maximum accuracy was found to peak at this second power. This was conducted 

with exhaustive computation of various orders of magnitude. Due to the computational 

efficiency of the technique, empirical optimization started with putting each point in the data to 

the 5th power, then the 3rd and finally finding superior results at the 2nd power. This was then 

evaluated with 2 different down sample trials where the results were confirmed. The figure 

below outlines the initial trial’s results.  
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Figure 21 Evaluation for Point by Point Power 

6.1.2. Feature Extraction 

To utilize the strength of all components used, the same pretrained VGG16 Convolutional 

Neural Network was used to identify important nonlinear relationships in the inputs, commonly 

known as a feature extractor. Using the end output of the final Convolutional layer in this 

pretrained model allows for various, defined blocks of data that simplify nonlinear patterns 

intrinsic to the inputs, just as they do in the VGG16 Model. These layers were left untrained to 

not disrupt the defined filters with this research’s lack of data. This helped further decrease the 

sample size limitation.  

At a simplistic core component level, the Convolutional Neural Network is made up of multiple 

small images for each of the original 350 input images made by passing the pixels of the 

original input images through multiple filters.  Each small filters has dimensions of 14x14x512 

data points; the specific structures in these small images are targeted in an attempt to simplify 

nonlinear trends in the data.  

Principle Components Analysis (PCA) was chosen to help decrease the dimensions of the data 

and quantify the information in a more meaningful manner. This technique was used because it 

is hypothesized that the noise in the dataset was intrinsic to the fully connected layers. If the 

noise also came from the convolutional layers, the feature extractor would not be successful. 
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However, if the problem was lack of data for fine tuning the fully connected layer, the PCA-SVM 

model should give superior results due to less data dependency in the technique.   

6.1.3. Principle Components Analysis 

The power in this investigation lies in the nature of PCA. PCA is a technique used by many data 

scientists over the past decade to reduce a large amount of data points of a common feature to 

a single point. This is known as dimensionality reduction as each point of data adds a new 

dimension and requires analysis. This means that the number of important features inside the 

data can be reduced into a few meaningful ones. For this application, the feature extractor 

outputs a vector of 100,352 data points (14*14*512 points) for each input. This data then gets 

categorized into 90 principle components (90 was empirically derived).  

This exhaustive model to find the characterization of the components was possible due to the 

computational efficiency of the technique. PCA’s end goal is to condense the data points of a 

related feature to a single base vector where the presumed linearity of the data lies (multiplied 

by a dot product) [46]. It is assumed that the data can follow a linear trend, i.e. if plotted, the 

data would appear elliptical in nature rather than circular. The elliptical would be more useful 

because it would be capable of converging to a centered orientation rather than any potential 

distribution. Figure 22 illustrates the difference between a distribution that allows for a single 

center vector (the ellipse) versus a distribution that allows for multiple center vectors (the circle).   

 

Figure 22 Circular Distribution versus Elliptical Distribution with vector 
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This figure also demonstrates the variability present in the input vectors; the difference between 

any given point and the center vector is referred to as variance. The variance of the data is 

defined as the sum of the squared distances from each input vector to the center vector. 

Components (or areas) with high variance are overly influenced by (or represent or are caused 

by) noise in the data [46].  

This algorithm finds similar clusters of data points outputted by the feature extractor by 

comparing the local subsets of the points to sets of orthogonal vectors. This multitude of data 

points can be reduced to a handful of meaningful points to be fed into the Support Vector 

Machine (SVM).  

6.1.4. Support Vector Machine 

A traditional support vector machine was found to give the best results. The SVM takes the data 

fed from the PCA and considers the output a part of a hyperplane, a multidimensional plane, to 

simplify the data to a single classification entity. As the name implies, the algorithm does this by 

applying vectors to separate the data (essentially multidimensional thresholds).  

 

Figure 23 Optimal Separating Hyperplane [14] 

The algorithm optimizes the placement of the multidimensional in the hyperplane by minimizing 

the error of a training set by optimization of an equation, linear or nonlinear in nature, that 

defines the separating vectors. For our investigation, it was found that a third-degree 
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polynomial kernel with a kernel coefficient of 0.0111 (1/ 90, 90 chosen due to it being the 

number of components used in the PCA) outputted the best results (found empirically).  

6.2. Results 

6.2.1. Base Results 

The initial results were just the product of the output directly from the SVM. The algorithm was 

run 5 times due to the down sampling of the of the images selected for the input. The average 

output at the SVM can be seen below:  

Accuracy 83% 

Sensitivity 74% 

Specificity 93% 

F1 0.82 

Table 10 PCA-SVM Results 

After analyzing the heatmap of the various trial results it was evident that there was noise in the 

output (seemingly random incorrect classifications of data throughout the dataset). Figure 24 

below is this heatmap, where the green values are the correct classification and the red are 

incorrect classifications. 

 

Figure 24 Accuracy Heatmap of SVM-PCA Approach 

 



     

59 | P a g e  

 

6.2.2. VOTE 

To combat the random noise in the output of the data, the results began to be analyzed by the 

base (non-augmented) image that was augmented rather that the augmented inputs. This was 

done by considering all results from the augmented inputs of a given image as subcomponents 

of the same image. If the majority (3 or more) were predicted febrile, then the full input image 

was found to be febrile, and vice versa. The data was then reanalyzed for each randomly down 

sampled index. 

This resulted in slight improvements to the Sensitivity of the network at the slight expense of the 

of the Specificity. The improvement in the Sensitivity is greater than the loss of the Specificity, 

resulting in an increased the F1 Score. These results can be seen below: 

Accuracy 85% 

Sensitivity 80% 

Specificity 91% 

F1 0.84 

Table 11 Feature Extractor - PCA - SVM - Vote Average Results 

Less noise was found in the heatmap, and the reduction in noise made outlier detection less 

difficult. This was executed by analyzing each image for each trial (each different randomly down 

sampled index). The seemingly random variation in the results is reduced with this technique, 

making it easier to identify outliers. If a single image was found to have inaccurate readings for 

the majority of the trials (a misclassification for a minimum of 3 of the 5 trials) it was identified 

as an outlier. The Heatmap below outlines the accuracy heatmap of the PCA-SVM-Vote, and the 

blue bars underneath identify the outlier readings.  
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Figure 25 PCA-SVM-Vote Accuracy Heatmap 

7 images were visually inspected to see if any abnormality could be the root cause for their 

misclassification. These images can be seen below:  

 

Figure 26 Outliers Identified in PCA-SVM-Vote! Results 

From these images there were a couple patterns identified. First, from the heatmap it is evident 

that all images were in the febrile class. Not only are they in the febrile classification, but they 

were scattered across the febrile region (core temperatures from 99.7°F [37.6°C] to 101.3°F 

[38.5°C]). In addition to this, they are all within the requirements of the data gathered.  

Two relevant similarities were identified. First is that they are all children from the same clinical 

site, and second, one child was an outlier three times (for all the images present in the dataset). 

Due to a lack of disqualifying data or any apparent discrepancies in the inputs, none of the 

identified outliers were filtered and all data was included in the final results for this algorithm.   
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6.3. Experiment Conclusion 

The following results demonstrate that this is an extremely viable method for the classification 

of febrile subjects in the data. The final step of this research is to compare the two feasible 

methods and evaluate if one is superior.  
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7. Final Experiment: Comparison the Two Methods 

7.1. Design  

With two viable algorithms that can potentially accomplish the objective of the hypothesis, the 

final experiment conducted was a comparison of the results Semi-Randomly Down Sampled 

Pretrained VGG16 Network and the VGG16 Feature Extractor to the PCA to the SVM to a Vote 

(from here further it will be referred to as the Test Algorithm). The first action was to run both 

algorithms 5 times, which is needed due to the semi-random down sampling. The results need 

to confirm that there is a difference between the VGG16 output and the Test Algorithm’s output, 

independent of sample index.  

Once 5 trials were conducted, the next step was to apply a Lilliefors test to the F1 Score and 

Accuracy of the results. The Lilliefors test is a statistical method that evaluates the normality of 

the outputs of the data [29]. If the Lilliefors test demonstrated that the distributions of the 

resulting performance metrics were normal than a T test would be used to evaluate if the means 

of the distributions were the same. If the distribution was found to not be normal then a 

Wilcoxon Ranked Sums test will be used instead. The difference of the distributions would be 

evaluated at 95% confidence.  

7.2. Results 

The Lilliefors test for normality confirmed that the data could be treated as normal (more 

specifically, it failed to conclude that the data was not normal). This is due to the p values for the 

VGG16 results were 0.3681 for the F1 score, and 0.4841 for the accuracy.  The Test Method 

(Feature Extractor to the PCA, SVM and Vote method) results were 0.2035 for the F1 score, and 

0.2796 for the accuracy of this design.   

Due to the inability to reject normality for the distributions, a T test was utilized to evaluate if 

the distributions that were statistically different. The p value for the F1 values was computed to 

be 0.014 and the p value for the accuracy was found to be 0.01.   
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These results demonstrate with 95% confidence that the outputs of 

the algorithms are not the same, and due to the higher performance 

metrics, the Test Algorithm is found to have significant better 

performance compared to the VGG16 Network for this dataset. 

The results of the two networks can be seen on the figure below: 

 

Figure 27 Comparison of the Pretrained VGG16 with the PCA-SVM-Vote! Algorithm 

7.3. Conclusion  

The results from this final network meet the requirements of the research hypothesis validating 

that Machine Learning techniques can handle this noisy data and correctly classifying to the 

appropriate febrile status. 
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8. Discussion 

8.1.  Primary Scope 

The primary goal for this investigation was to evaluate the viability for modern Machine 

Learning techniques to identify febrile status in the presence of noise. This noise includes 

distance, emotional status, facial orientation, ambient temperatures and acclimation times. 

Trying to tackle this problem in the presence of noise is an EXTREMELY difficult task.  

The first and one of the more common obstacles experienced, especially with proof of concept 

research, was number of samples present. Sample size used in training is a luxury that this 

research was unable to afford. The deep learning approach is a big data technique, typically 

created using large sample sets. Various experts in the field claim that the technique should not 

be attempted with sample sizes under 1000. The inability to approach these sample sizes was 

the primary motivation to use the CNN strictly as a feature extractor that did not require prior 

training. The final validation of the network was conducted on 70 samples for any given trial 

without sufficient data to allow stratification for various categories of individuals (acclimation 

time, age, core body temperature, etc).  This validation is sufficient for proof of concept but is 

not sufficient for the final validation of an algorithm.  

The other studies outlined in 1.5 Infrared Measurements in Practice limited the noise by 

controlling the external variables, including dictating specific measurement sites. Ng 2012 really 

began to advance by combining two sites with a specific algorithm meant to gauge multiple 

variables. This research rejects both models (to an extent) due to the development of machine 

learning over the past decade. The year Ng published his work, AlexNet revolutionized 

computer vision using convolutional neural networks for nonlinear transformations for object 

recognition. Over the past decade there has been remarkable progress in these networks. To the 

researchers’ knowledge, this is the first application of CNNs for the classification of febrile 

patients, and it is with the added difficulty of the noise caused by real world external variables 

present in the data. The true goal of these experiments was to evaluate the feasibility of 

classifying in the presence of noise in an uncontrolled setting due to the previous publications 

demonstrating the feasibility of correct fever screening in controlled settings.  
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This noise is an extremely necessary obstacle to overcome. The author’s experience with 

consumer goods shapes the opinion that all devices and algorithms, regardless of how elegantly 

designed, are susceptible to user error, and that error will be experienced. For example, this 

thermal scanning device may be placed near the entrance of a building to prevent an ill person 

getting too far into the premises. The device would experience wide fluctuations in ambient 

temperature which may unintentionally force an incorrect result, with no intention of doing so. 

The results previously outlined in this thesis do not demonstrate a full successful algorithm, 

ready for consumer use, but they do demonstrate that it is possible to overcome these obstacles 

using improved processing methods, rather than artificial constraints on the measurement 

variables.  

The impact of the external variables (manifesting itself as noise in the images) cannot be 

overstated. Measurement in the presence of this ‘noise’, rather than artificially constraining the 

external variables that cause the ‘noise,’ directed the route for the approaches taken. It is 

conventional knowledge in noninvasive thermometry to target the specific sources of heat. The 

acclimation time directly impacts the route chosen for this. When the individual is not 

acclimated to their environment there is too sparse of a gradient to find a distinguishable source 

of heat. A resulting image of such an individual can be seen below:   

 

Figure 28 Unacclimated Patient 

This is why the initial investigation (found in Chapter 4) was conducted using objects that could 

be identified via digital image. Once this investigation demonstrated the difficulty in the 
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secondary investigation it was clear that a more complex algorithm would be required to 

characterize the nonlinearity.  

This research proved to be a viable route. The imbalanced dataset immediately impacted the 

results, giving a high specificity and low sensitivity. Various different forms of preprocessing 

(histogram processing, targeted contrast enhancement, k-means algorithms with various 

centroids, etc.)  were investigated to try and increase the accuracy, however, nothing helped 

these techniques with the minimal amount of data collected. Conventional methods of 

balancing the dataset while using unaltered images proved to be the best method. It became 

evident that the Fully Connected Layer was not the best technique for our application and the 

Feature Extractor-PCA-SVM-Vote was conceived.  

The Feature Extractor-PCA-SVM-Vote technique brought the best of all the worlds together; it 

required less data to make the classification while still extracting the nonlinearity in the data. 

This gave the anticipated results of improvement to the F1 score. The neural networks are 

extremely efficient at identification of nonlinearities in the data once trained, however, if there 

are not enough data to train these fully connected layers, then the results will not be sufficient. 

Therefore, it is hypothesized that if more training data was introduced to the dataset the result 

would be increased performance for the VGG16. 

In all, the Feature Extractor-PCA-SVM-Vote method results meet the objective of the hypothesis 

and demonstrates that it is possible for an algorithm to overcome these obstacles. Potential 

areas that this research can be expanded upon are, increasing the F1 score and accuracy of the 

model, quantifying how human acclimation from the environment and objectively measuring 

which facial feature is the best to classify febrile status.  



     

A | P a g e  

 

A. Bibliography 

1. Amalu, William C., Jonathan F. Head and Robert L. Elliot. "Infrared Imaging of the Breast: A 

Review." Medical Infrared Imaging Principles and Practices. By William B. Hobbins. Boca Raton, FL: 

CRC, 2013. Print. 

2.  Bhowmik, M., S. Kankan, S. Majumder, G. Majumder, A. Saha, A.N. Sarma, D. Bhattacharjee, D.K. 

Basu and M. Nasipuri. "Thermal infrared face recognition—a biometric identification technique for 

robust security system." Reviews, refinements and new ideas in face recognition (2011): 113-138. 

3. Bitar D., A. Goubar, J.C Desenclos, “International travels and fever screening during epidemics: a 

literature review on the effectiveness and potential use of non-contact infrared thermometers”, 

Euro surveillance (2009). 

4. Bland, J. M., and D.G. Altman. “Statistical Methods For Assessing Agreement Between Two 

Methods Of Clinical Measurement.” The Lancet, vol. 327, no. 8476, 1986, pp. 307–310., 

doi:10.1016/s0140-6736(86)90837-8. 

5. Blumberg, Mark S. “Body Heat”, Harvard University Press, 2009. ProQuest Ebook Central, 

http://ebookcentral.proquest.com.ezproxy.wpi.edu/lib/wpi/detail.action?docID=3300584. 

6. Cao, L.j., and W.k. Chong. “Feature Extraction in Support Vector Machine: a Comparison of PCA, 

XPCA and ICA.” Proceedings of the 9th International Conference on Neural Information Processing, 

2002. ICONIP '02., doi:10.1109/iconip.2002.1198211. 

7. "Celsius." The New Dictionary of Cultural Literacy: What Every American Needs to Know, edited by 

E. D. Hirsch. 3rd ed., Houghton Mifflin, 2002. Academic OneFile 

8. Chan L.S., G.T. Cheung, I.J. Lauder and C.R. Kumana. “Screening for fever by remote-sensing 

infrared thermographic camera.” J Travel Med. 2004;11(5):273-9. 12. 

9. Chiu W.T., P.W. Lin, H.Y. Chiou, W.S. Lee, C.N. Lee, and Y.Y. Yang, “Infrared thermography to mass-

screen suspected SARS patients with fever.” Asia Pac J Public Health. 2005;17(1):26-8. 

10. Cisneros, Austin B., and Bryan L. Goins. “Body Temperature Regulation”. Nova Science Publishers, 

Inc., 2009. ProQuest Ebook Central,  

11. E. F. J. Ring, "Progress in the measurement of human body temperature," IEEE Engineering in 

Medicine and Biology Magazine, vol. 17, no. 4, pp. 19-24, July-Aug. 1998. doi: 10.1109/51.687959 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=687959&isnumber=15099 

12. Goodfellow, Ian, Yoshua Bengio and Aaron Courville. “Deep Learning.” MIT Press, 

2017. www.deeplearningbook.org 

http://ebookcentral.proquest.com.ezproxy.wpi.edu/lib/wpi/detail.action?docID=3300584
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=687959&isnumber=15099


     

B | P a g e  

 

13. Greenes DS, G.R. Fleisher. “Accuracy and tolerability of a non-invasive temporal artery 

thermometer for use in infants.” Pediatric Academic Societies/American Academy of Pediatrics 

Conference, 5/2000. 

14. Gunn, Steve R. “Support Vector Machines for Classification and Regression.” University of 

Southampton, 1998 

15. Hausfater P, Y. Zhao, S. Defrenne, P. Bonnet, B. and Riou “Cutaneous infrared thermometry for 

detecting febrile patients.” Emerg Infect Dis. 2008;14(8):1255-8. 

16. Herzog, Lynn, and Stephanie G. Phillips. “Addressing Concerns About Fever.” Clinical Pediatrics, 

vol. 50, no. 5, 2010, pp. 383–390., doi:10.1177/0009922810385929 

17. Hinton, Geoffrey, Nitish Srivastava, and Kevin Swersky. “Lecture 1c Some Simple Models of 

Neurons.” Neural Networks for Machine Learning. Toronto, Canada, University of Toranto. 

18. Hinton, Geoffrey, Nitish Srivastava, and Kevin Swersky. “Lecture 3c The Backpropagation 

Algorithm.” Neural Networks for Machine Learning. Toronto, Canada, University of Toranto. 

19.  Hogan, David E., S. Shipman and K. Smith “Simple Infrared Thermometry in Fever Detection: 

Consideration in Mass Fever Screening.” American Journal of Disaster Medicine,  

www.wmpllc.org/ojs-2.4.2/index.php/ajdm/article/view/214. 

20. Houdas, Y., and E. F.J. Ring. “Human Body Temperature: Its Measurement and Regulation.” Plenum 

Press, New York and London, 1982. Print. 

21. “Influenza (Flu).” Centers for Disease Control and Prevention, 2 Nov. 2017, 

www.cdc.gov/flu/pandemic-resources/basics/past-pandemics.html. 

22.  “Infrared Sensor Stabilizable in Temperature, and Infrared Thermometer with a Sensor of This 

Type.” Bernhard Kraus, assignee. Patent 6626835B1. 30 Sept. 2003. Print. 

23. Kaiser, Manfred. “Radiation Thermometer and Method of Computing the Temperature.” Bernhard 

Kraus, assignee. Patent 6149298A. 21 Nov. 2000. Print. 

24. Kingma, Diederik P and Jimmy Lei Ba. “ADAM: A METHOD FOR STOCHASTIC 

OPTIMIZATION.” ICLR, 2015, arxiv.org/pdf/1412.6980.pdf. 

25. Kim, Seunghyeon, Wooyoung Kim, Yung-Kyun Noh and Frank C. Park, “Transfer Learning for 

Automated Optical Inspection.” 2017 International Joint Conference on Neural Networks (IJCNN), 

2017, doi:10.1109/ijcnn.2017.7966162. 

26. Klos, Alexander, Elke Kahler, Frank Beerwerth, and Horst Mannebach. “Infrared Thermometer with 

Heatable Probe Tip and Protective Cover.” Bernhard Kraus, assignee. Patent 6694174B2. Jan.-Feb. 

2004. Print. 

27. Krizhevsky, Alex, Ilya Sutskever and Geoffrey E. Hinton. “ImageNet Classification with Deep 

Convolutional Neural Networks.” papers.nips.cc/paper/4824-imagenet-classification-with-deep-

convolutional-neural-networks.pdf. 

28. LeCun, Y., L. Bottou, Y. Bengio, P. and Haffiner. “Gradient-Based Learning Applied to Document 

Recognition .” IEEExplore, IEEE Journals & Magazine, Nov. 1998, 

ieeexplore.ieee.org/document/726791/. 

29. “Lilliefors Test.” Oxford Reference, 3rd ed., Oxford University Press, 2014.  

http://www.wmpllc.org/ojs-2.4.2/index.php/ajdm/article/view/214
http://www.cdc.gov/flu/pandemic-resources/basics/past-pandemics.html


     

C | P a g e  

 

30. Liu C.C., R.E. Chang, W.C. Chang. “Limitations of forehead infrared body temperature detection for 

fever screening for severe acute respiratory syndrome.” Infect Control Hosp Epidemiol. 

2004;25(12):1109-11. 15. 

31. Marks G, W.K. Beatty. Epidemics. New York: Scribners, 1976 

32. Ng D.K., C.H. Chan, R.S. Lee, L.C. Leung. “Non-contact infrared thermometry temperature 

measurement for screening fever in children.” Ann Trop Paediatr. 2005;25(4):267-75. 13. 

33. Ng E.Y.K, G.J. Kaw, W.M. Chang. “Analysis of IR thermal imager for mass blind fever screening.” 

Microvasc Res. 2004;68(2):104-9. 

34. Ng, E. Y.K. "Thermal Imager as Fever Identification Tool for Infectious Diseases Outbreak." Medical 

Infrared Imaging Principles and Practices. Ed. Mary Diakides, Joseph D. Bronzino, and Donald R. 

Peterson. Boca Raton,FL: CRC, 2013. 24-1-4-19. Print. 

35. Norton, Paul R., Stuart B. Horn, Joseph G. Pellegrino and Philip Percoti. "Infrared detectors and 

detector arrays." Medical Infrared Imaging Principles and Practices. Ed. Mary Diakides, Joseph D. 

Bronzino, and Donald R. Peterson. Boca Raton,FL: CRC, 2013. 24-1-4-19. Print. 

36. "No Touch + Forehead Thermometer - NTF3000." Braun, n.d. Web. 

37. Powers, D M.W. “EVALUATION: FROM PRECISION, RECALL AND F-MEASURE TO ROC, 

INFORMEDNESS, MARKEDNESS & CORRELATION .” Journal of Machine Learning Technologies, vol. 

2, no. 1, 2011, pp. 37–63., www.bioinfo.in/contents.php?id=51. 

38. Pušnik I. and A. Miklavec. “Dilemmas in Measurement of Human Body Temperature.” 

Instrumentation Science and Technology, (2009) 37:5, 516-530, DOI: 10.1080/10739140903149061 

39. Ring, E. F. J., and K. Ammer. "Infrared thermal imaging in medicine." Physiological measurement 

33.3 (2012): R33. 

40. Ring E. F. J., A. Jung, B. Kalicki, J. Zuber, A. Rustecka and R. Vardasca. “Infrared thermal imaging for 

fever detection in children” Medical Infrared Imaging 2nd edn (Boca Raton, FL: CRC Press) (at 

press) 

41. Rodriguez, J. D., A. Perez and J. A. Lozano. "Sensitivity Analysis of k-Fold Cross Validation in 

Prediction Error Estimation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 

32, no. 3, pp. 569-575, March 2010. doi: 10.1109/TPAMI.2009.187 

42. Ronneberger, Olaf, Philipp Fischer, Thomas Brox. “U-Net: Convolutional Networks for Biomedical 

Image Segmentation.” Lecture Notes in Computer Science Medical Image Computing and 

Computer-Assisted Intervention MICCAI 2015, 2015, pp. 234–241., doi:10.1007/978-3-319-24574-

4_28. 

43. Rosenau MJ, Last JM. Maxcy-Rosenau “preventative medicine and public health.” New York: 

Appleton-Century-Crofts; 1980 

44. Roth, Joachim. “Fever: Mediators and Mechanisms.” Inflammation - From Molecular and Cellular 

Mechanisms to the Clinic, 2017, pp. 861–890., doi:10.1002/9783527692156.ch33. 

45. Rumelhart, D. E., Hinton, G. E., and Williams, R. J. “Learning representations by back-propagating 

errors.” Nature, (1986) 323, 533--536. 

46. Shlens, Jonathon. “A Tutorial on Principal Component Analysis.” 25 Mar. 2003, 

www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf. 

http://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf


     

D | P a g e  

 

47. Simonyan, Karen, and Andrew Zisserman. “VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-

SCALE IMAGE RECOGNITION.” ICLR, 2015, arxiv.org/pdf/1409.1556v6.pdf. 

48. Smale, Alan. “The Electromagnetic Spectrum.” NASA, Mar. 2013, 

imagine.gsfc.nasa.gov/science/toolbox/emspectrum1.html. 

49. Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. “Dropout: a simple way 

to prevent neural networks from overfitting.” J. Machine Learning Res. 15, 1929–1958 (2014). 

50. Sun, G., T. Saga, T. Shimizu, Y Hakozaki and T. Matsui. “Fever Screening of Seasonal Influenza 

Patients Using a Cost-Effective Thermopile Array with Small Pixels for Close-Range Thermometry.” 

International Journal of Infectious Diseases, Elsevier, 20 May 2014, 

www.sciencedirect.com/science/article/pii/S1201971214014957. 

51. Szegedy, Christian, W. Liu, Y Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V Vanhoucke and A. 

Rabinovich. “Going Deeper with Convolutions.” 2015 IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), 2015, doi:10.1109/cvpr.2015.7298594. 

52. Taubenberger, Jeffery K., and David M. Morens. “1918 Influenza: the Mother of All Pandemics.” 

Emerging Infectious Diseases, vol. 12, no. 1, 2006, pp. 15–22., doi:10.3201/eid1209.050979. 

53. “Temporal Artery Temperature Detector”. Francesco Pompei, assignee. Patent 6292685. 11 Sept. 

1998. Print. 

54. “The 2009 H1N1 Pandemic: Summary Highlights, April 2009-April 2010.” Centers for Disease 

Control and Prevention, www.cdc.gov/h1n1flu/cdcresponse.htm. 

55. Weckmann, S. “Dynamic Electrothermal Model of a Sputtered Thermopile Thermal Radiation 

Detector for Earth Radiation Budget Applications” Master’s Thesis, Virginia Polytechnic Institute 

and State University, (1997) Blacksburg, Virginia 

56. Widmaier, Eric P., Hershel Raff, Kevin T. Strang, and Arthur J. Vander. “Vander's human physiology: 

the mechanisms of body function.” 2016. Boston: McGraw-Hill Higher Education.  

57. Wunderlich C. “On the temperature in disease; a manual of medical thermometry.” Univ. Leipzig. 

Translated by W Bathurst Woodman, New Sydenham Society, London 1871. 

58. Yao, Yi, and Gianfranco Doretto. “Boosting for Transfer Learning with Multiple Sources.” 2010 IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition, 2010, 

doi:10.1109/cvpr.2010.5539857. 

59. Yildizyan, Aleksan, Jiawei Hu, Charles Squires, and James Gorsich. “Non-contacxt Medical 

Thermometer with Distance Sensing and Compensation.” Kaz Usa, Inc, assignee. Patent 

20140140368A1. Apr.-May 2014. Print. 

60. Yildizyan, Aleksan, and James Gorsich. “Medical Thermometer Having an Improved Optics 

System.” Kaz Usa, Inc, assignee. Patent 20140140370. Apr.-May 2014. Print. 

61. Zhou B., A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. “Learning Deep Features for 

Discriminative Localization.” CVPR, 2016 (arXiv:1512.04150, 2015).  

62. “2009 World Population Data Sheet.” Population Reference Bureau, Population Reference Bureau, 

12 Aug. 2009, www.prb.org/Publications/Datasheets/2009/2009wpds.aspx.   

http://www.sciencedirect.com/science/article/pii/S1201971214014957
http://www.cdc.gov/h1n1flu/cdcresponse.htm
http://www.prb.org/Publications/Datasheets/2009/2009wpds.aspx


     

E | P a g e  

 

B. Glossary of Terms 

Acclimation time – time it takes for the system to reach equilibrium in a given ambient 

environment. For this research the primary focus is on physiological acclimation to the ambient 

temperature of their environment. 

Ambient temperature – environmental temperature that the individual is in at the time of the 

measurement 

Architecture – see Neural Network Architecture 

Augmented data – increasing the inputted data by different functions (i.e. shifting the feature 

location in the image, flipping along the x and y axis, rotating the image 90 degrees) 

Classification model – characterizing a data input into specific discrete categories (i.e. if the 

patient is febrile or afebrile from a temperature reading) 

Filter – various sized matrix of values that get dragged across the output of the previous 

images, and produce the output to the next architectural layer of the neural network. They are 

the operator that provides the convolution in the convolutional layers of the network 

architecture. In conventual image processing they are known as kernels.  

Hyperparameter – a value that provides input to the training of the deep learning architecture. 

There are a variety of different hyperparameters used for each learning architecture such as: 

learning rate, dropout regularization values, L1 or L2 regulation values, etc. 

Image – Base data structure of a given sample set from a device (before any augmentation, 

windowing or external manipulation) 

Input – input to the algorithm after external manipulation (i.e. after augmentation process)  

IRFPA – Infrared Focal Point Array, an array of thermopile sensors that is capable of capturing a 

thermal data from the infrared spectrum emitted by a substance 

Kernel – See Filter 

Neural Network Architecture – The framework of layers (whether convolutional or fully 

connected layers) that is design to accomplish a given task, absent the training information. This 

is also referred to as the Architecture.  

Neural Network – A neural network architecture that also contains the training information for 

the design 
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Noise – disturbance in the data. This can be artificially added to the input data or applied when 

lack of control of variables when gathering of the dataset. The latter was the objective to 

overcome for this research, and the uncontrolled variables were: thermal acclimation time, 

emotional status and facial orientation (the subject data later had a requirement of having both 

eyes present in the images used).  

Regression model – characterizing a data input with a continuous value of base units (i.e. 

converting a patient reading to 98.6°F from a temperature reading) 

Segment – extract the area of interest in a data input (i.e. extract the area affiliated with the eyes 

in an image of an individual) 

Pooling layer – layer of a convolutional neural network where a mathematical operation 

decreases the resolution of a given layer. The common operations for this is max pool, or taking 

the maximum value of inputs, and average pool, taking the average value for a given area of 

inputs. 

Pretrained model –Neural Network that has been trained on data from another dataset. This 

allows for the filters (that are the tools that allow objects to be identified), to be updated rather 

than generated from scratch.  

Supervised Learning – Machine Learning techniques where the desired outputs are provided to 

the architecture so that the weights and biases of the layers (and filters in convolutional neural 

networks) can be updated to provide the desired results.  

Reference devices – the device used to measure the accuracy or establish the baseline for the 

unit being tested. In the case of these experiments, the reference device was the Welch Allyn 

Suretemp 690plus.  

Regulation – combating the network’s tendency to be biased to the inputs of the training phase 

of supervised learning. This is an algorithmic decrease in dependency to allow the training loss 

to match the test loss more closely. Methods include dropout layers and L2 weighting for this 

research.  

Tensor – multidimensional matrix  

Vote – Algorithmic technique, using multiple inputs from the same image to give the primary 

decision for the image’s febrile status. I.e. if the majority of the images were found to have 

febrile classifications then the final decision for that image would be febrile (and vise versa).  




