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Abstract 

The goal of this project was to design a low cost, easy to use internet-connected biomonitoring 

system which fits in existing incubators and is capable of remote culture monitoring with video 

and data logged automatically. The final design used a Raspberry Pi microcontroller, USB camera, 

LED array, custom-created plastic housing, and temperature/humidity sensor. In addition to live 

video streaming, the device captures still images to create time-lapse videos. The device costs $200 

to produce and was made customizable and easily reproducible through the creation of a step-by-

step building guide which includes alternative design component suggestions. The reproducibility 

of the device was tested by creating multiple systems from the step-by-step guide. These systems 

were used to capture time-lapse videos with durations ranging from 1.5 hours to 5+ days and 

magnifications from 10x to 250x. The temperature/humidity sensor and pH sensing capabilities 

were verified against gold standard technologies. The sensor data is logged automatically to a 

cloud server and overlaid on the images using open source python code.  
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Chapter 1 - Introduction 

Oftentimes in scientific research it is pertinent to use cell or organism cultures as model 

systems. In order to monitor dynamic biological processes, time-lapse microscopy is often 

employed. Time-lapse microscopy (TLM) is a technique in which a sequence of microscopic 

images are captured at regular time intervals [1]. These images are often stitched together to form 

time-lapse videos which show the dynamics of the culture over a set period of time. TLM allows 

for the long-term observation of changes in the behavior of cells and organisms in culture [1]. In 

contrast to endpoint assays where the most common method of capturing images is to take the 

culture plate out of the incubator at several points during the culturing process and observe and 

capture images using a microscope and camera, TLM generally uses continuous monitoring [2]. 

Ideally, cultures should be monitored remotely and continuously while remaining in the 

incubator. Current endpoint assay methods have a strong potential to interfere with the culture 

being analyzed, as the plates are being removed from the desired environment, potentially altering 

the results of a study. Continuous monitoring allows for more consistent monitoring and decreases 

the potential for interference with test conditions and supplies more effective information. More 

importantly, continuous monitoring reports how the biologic process occurs, not just the end result 

like endpoint assays. The importance of this can clearly be seen by looking at two cultures 

commonly used as model systems.  

Cell culture has been used for model systems, toxicity testing, cancer research, virology, 

cell-based manufacturing, genetic engineering and therapy, and drug screening and development 

since its advent in the early 1960s [3]. As part of acting as a model system, the basic biology, 

biochemistry, and interactions of cells within culture are studied. In order to fully model the 

behavior of cells in culture the cells cannot be fixed in place, and therefore grow and migrate while 

interacting with other cells and biological agents [3]. Additionally, the successful culturing of cells 

in a laboratory requires very specific conditions. In order to maintain cell health, cells need specific 

CO2, humidity, O2, and pH levels [4]. These conditions, the overall state of the cells, and the 

behaviors of the cells can be monitored via imaging.  

Another organism commonly used for model systems is Caenorhabditis elegans (C. 

elegans). C. elegans is a soil nematode which was first introduced as a model organism for 

development and neurobiology in 1974 [5]. In recent decades C. elegans has been shown to be a 
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valuable model for a wide variety of biological processes and underlying mechanisms of human 

disease [5]. Examples of discoveries made using C. elegans include seminal discoveries about 

programmed cell death, and  RNA interference, which is gene silencing by double-stranded RNA 

[6]. Due to the fact that C.elegans are whole living organisms, their behavior in culture is even 

more dynamic than the behavior of cells. C. elegans culturing requires very tight monitoring of O2 

levels, temperature, and humidity among others [7]. Imaging of these plates is required to be able 

to analyze the behavior of the nematodes [7].  

There are several devices currently on the market that monitor cell health, function, and 

growth via video recording or TLM while the cells stay in the incubator, allowing for minimal 

interference with the culture [8]. However, these devices are insufficient as they are large, 

expensive, require wired connections, or aren’t customizable to allow for various experiments. The 

large size and high cost of these devices makes them prohibitive for use in most labs. The goal of 

this project was to evaluate the current solutions available for continuous culture monitoring and 

prototype a new device capable of remotely and inexpensively monitoring cell or organism 

cultures. In order to create project objectives, we analyzed the current on-market gold standard 

devices as well as the devices created by other research labs. From our analysis of the strengths 

and weaknesses of each existing device we determined the basic needs of the system, and ways in 

which to improve upon the market standard. These objectives consisted of; capability of sending 

photos and video through the internet to the user along with data retrieved from optional sensors, 

low-cost, easily reproducible through use of a step-by-step instruction guide, small size, and 

versatility so that it may be applicable for use in various settings.  

Once our objectives were determined, we researched the potential components that would 

be necessary to create a device capable of achieving these objectives. The main components we 

deemed necessary were a microcontroller, light source, image gathering source, remote monitoring 

software, and a housing. We also identified sensors for pH, humidity, and temperature as optional 

components. For each of these components we came up with alternative design options which were 

tested and compared to determine the final design. Since one of the objectives of this project was 

versatility, many of the components had multiple alternative design options which could function 

well as part of the final device and our selections were made based on our specific applications. 

Once a final design was selected, we completed validation testing to ensure that the device could 

function for our desired applications. 
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In chapter 2 we will present our background research in the form of a literature review. 

After that, our next chapters will go further in depth into the specifics of our project approach as 

outlined above. After our literature review, we present the project strategy which details our client 

statement, design requirements, and management approach. We then move into our design process 

focusing on our needs analysis, conceptual designs, and a detailed analysis of our alternative 

designs and final design selection. The fifth chapter goes into the specifics of our design testing 

and verification including protocols to test the optional sensors. We further move into the effects 

of our device on the world and the meaning of our results, finally closing with our concluding 

statements and recommendations of future work. 
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Chapter 2 - Literature Review 

2.1 Cell Culture  

Cell cultures have been a crucial primary source for investigations and studies in the 

medical and biomedical field. Cultures performed in a controlled lab environment serve as a model 

system to conduct studies outside of a living organism for a wide variety of possible goals and 

applications. For example, cell-lines have been used to test different types of drug delivery 

mechanisms, such as nanoparticle-based drug delivery systems. This in vitro alternative solves the 

ethical issue of performing tests in in vivo models while still maintaining the ability to assess the 

system’s functionality, efficacy, and biological responses [9]. Furthermore, more advanced 3D cell 

culture models can be used to study different types of cancers as well as drug development [10]. 

There are two types of cell cultures that can be used: (1) primary cells and (2) cell lines [11]. 

Primary Cells come directly from the patient or living organisms and have a limited time span of 

about 40 to 60 cell divisions [11]. On the other hand, cell lines are engineered or mutated so that 

they go beyond the 40 to 60 division mark and continue to proliferate indefinitely.   

By controlling and optimizing the culture environment, we can maintain a healthy and 

steady cell culture. Generally, the goal is to produce an environment that mimics the corresponding 

in vivo conditions based on the study being conducted. This is important because the cell culture 

will be able to yield results and measurements that accurately represent the in vivo behavior of the 

system in question. Some of the common controlled factors used in cell culture include pH, CO2, 

and O2 levels as well as temperature of incubation and percent humidity. The optimal pH value for 

cells is between 7.2 and 7.4 [11]. Phenol red serves as a common pH indicator within the cell 

culture media, however, there are other alternatives to pH regulators and indicators as well. Based 

on  phenol red as the indicator, a yellow colored media indicates a lower pH than the optimal 

values and a bright pink media color indicates a higher pH than the optimal values. For cell 

survival, a 5% margin of CO2 is used to stabilize the pH levels [11]. Generally, cell cultures are 

prepared and held under atmospheric conditions (about 20% O2) [11]. However, that does not 

accurately represent physiological levels of O2 (about 5%). This is due to the fact that the natural 

level of O2 in the atmosphere is about 20% and it is hard to reduce and control low levels of oxygen 

under normal conditions. The optimal temperature for a cell culture depends on the types of cell 
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origin. For mammalian cells, the temperature for optimal growth and proliferation rate is about the 

same as body temperature, which is 37 degrees Celsius [11]. Moreover, humidity for all cell 

cultures should be maintained between 95 to 100% to prevent the cell culture media from 

evaporating [11].  

Some of the current techniques for monitoring cell culture involve plating cells in a Petri 

dish or plate, adding media and keeping track of the criteria for a healthy culture environment 

within an enclosed and sterile incubator. To monitor the culture’s activity, the plate has to be taken 

out of the incubator and imaged under a microscope. This may result in loss of some of those 

optimal conditions we discussed above.  

2.2 C. elegans Culture   

Another widely popular model organism for studies in the biological and medical field is 

the nematode Caenorhabditis elegans. Because of their free-living conditions as well as their rapid 

growth and  reproduction, C. elegans are often chosen to conduct many studies [7]. C. elegans can 

be obtained from the Caenorhabditis Genetics Center, or CGC. They are fed by an E. coli strain 

and Nematode Growth Medium (NGM) [7]. One of their most attractive and useful features are 

the fact that they mature and reach adulthood in about three days, are able to reproduce at an 

accelerated rate, and are transparent and easy to look at under a microscope. These characteristics 

are ideal to study their development, reproduction, and aging patterns.  

C. elegans are periodically transferred to new dishes for feeding and standard development 

cycle purposes. Transfer frequency depends on the type of C. elegans, the temperature in which it 

is incubated, and the goal of the study being conducted. They can be transferred to a new plate by 

simple chunking or moving one by one from plate to plate with a sterilized scalpel or “worm 

picker” respectively. In order to maintain a healthy and optimized nematode culture, some 

conditions must be controlled, such as temperature, frequency of subcultures, and oxygen levels 

[7]. These parameters will vary depending on the application, genotype, and environment in which 

the plates are stocked and cultured in, meaning C. elegans tolerate a wider and not so strict array 

of parameters as compared to cell cultures. For example, cultures maintained at around 25 degrees 

Celsius will reach starvation sooner than an identical culture maintained at around 16 degrees 

Celsius [7]. Additionally, plates kept at around 11 degrees Celsius can survive several months 

without plate transfers [7]. In general, C. elegans can survive without being fed for several months. 
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However, it is most  ideal to conduct studies using well-fed worms because the lack of food as 

well as the temperature and the frequency of passaging all change their behavior [12].  

2.3 Principles of Image Gathering 

Light is defined as an electromagnetic wave composed of photons. Images are created via 

light waves refracting through a lens [13]. Refraction is the deflection of light rays due to them 

passing from one medium to another. Because different mediums have different material 

properties, this changes their velocity, and therefore the direction of light rays. Determining how 

these rays are diffracted can be determined by Snell’s Law [14]. Snell's Law is based on  Fermat’s 

principle, which states that light travels in the shortest path that takes the least time and can be 

seen below in Figure 1. 

 

Figure 1: Snell’s Law [15] 

Figure 1 above shows a light ray passing through mediums n1 and n2. The diffraction angle, 𝛉, 

depends on the ratio between refractive indices n1 and n2 of the two materials [15]. Snell's Law is 

applicable to image capture since light passes from the air to the lens, and back to the air. By 

understanding Snell’s Law, we are able to predict where the image will be produced relative to the 

lens. Below in Figure 2 is a diagram depicting how Snell’s Law works in lenses to capture an 

image.  
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Figure 2: Image Created due to Refraction of Light Through a Lens [14] 

As shown by Figure 2 above, light rays are reflected from the object of the image, causing 

them to bounce back into the lens. Then, they are refracted twice due to the change in medium into 

the lens and then into the air. The point at which these rays meet outside the lens is where an image 

is created. However, the image is created upside down since the distance between the optical axis 

and the point at which the rays focus is in the downward direction. In order to see the image 

created, an opaque image plane must be placed at the point where the rays converge so the light 

rays can be absorbed. The point at which the optical axis originates from is determined by the 

center of the lens [14]. 

Another important parameter of a lens to consider when creating an imaging system is the 

focal length of the lens. Focal length is the distance from the center of the lens at which parallel 

rays are brought to a focus, assuming the object of the image is infinitely far away. If the image 

plane is placed slightly within the focal length of the lens, the image will be blurry since the light 

rays are not focused yet. Focal length of a lens can be determined using the following equation, 

known as the Lens Maker’s Equation, where f is the focal length, n is the refractive index of the 

medium, and R1 and R2 are lens thickness of each side of the lens with respect to the center of the 

lens [14]: 

(1) 1/𝑓 =  (𝑛 − 1)(
1

𝑅1
 −  

1

𝑅2
) 

As we will see in the coming section, focal length helps the user determine the magnification of 

the image. Therefore, lens makers will often manipulate R1 and R2 to meet the client’s 

specifications for magnification and focal length. 
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2.4 Microscopy 

Microscopy is the field of using microscopes to view samples and objects that cannot be 

seen with the naked eye [16]. Microscopy is important because it allows for the viewing of cell 

culture and small organism experiments which are too small to be seen with the naked eye. 

Microscopy is essentially done by magnifying a captured image. Therefore, we need to understand 

the properties of image gathering and magnification to determine the parameters that affect the 

quality of microscopy. 

2.3.1 Application of Image Gathering in Microscopy 

We can use the property of focal length to magnify an image using the Thin Lens Formula. 

In Figure 3 below, f is the focal length of the lens, and S1 and S2 are the distances of the object 

and image to the center of the lens, respectively. 

 

Figure 3: Thin Lens Formula [17] 

The Thin Lens Formula is derived from a combination of Snell’s Law and the Lens Maker’s 

Equation. The Thin Lens Formula allows us to determine the distance the object source should be 

from the lens in order to get our desired magnification for the image [17]. This is extremely 

important in microscopy since, as mentioned earlier, microscopy magnifies an image in order for 

us to see microscopic objects such as cells and small organisms. Despite the fact that the object 

source and the image plane are not at the focal length, the image is still clear due to the 

proportionality of the Thin Lens Formula. Figure 4 below is a simplified version of how lenses 

work together to create a magnified image. However, there are likely more than two lenses in a 
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given microscope, as increasing the number of lenses can help to focus light and therefore provide 

a clearer image. 

 

Figure 4: Image Production via Microscope Lenses 

 Despite there being a general alignment of lenses to create an image, there are many ways 

to transmit light through the object, which changes the type of microscopy, and therefore the image 

quality. One reason for this is because the density and material properties  of objects vary, meaning 

they have their own refractive index. This affects the direction of light reflected off the object, and 

consequently the resulting focused image. There are three main types of light transmitted 

microscopy using visible light: bright-field, dark-field, and phase contrast. Additional forms of 

microscopy include differential interference contrast, Hoffman modulation contrast, and 

fluorescence. These forms were not considered for this paper as they use more complicated means 

to achieve higher contrast levels which would be difficult to replicate on this scale. 

2.3.2 Brightfield Microscopy 

 Brightfield Microscopy is the easiest method of light transmitted microscopy. In 

brightfield, light is transmitted straight through the sample. The image contrast is created by the 

absorbance of the transmitted light in denser areas of the sample. Because many biological samples 

are transparent, a lot of brightfield images do not show a lot of contrast. Therefore, scientists stain 

the samples to produce contrast proportional to the density of the sample or to bind to specific 

biological components [17]. An example of the comparison between unstained and stained samples 

can be seen below in Figure 5. Staining of samples is not feasible for the applications of this device 

though as staining cannot be done on live cell or organism imaging.  
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Figure 5: Not Stained (Left) vs. Stained (Right)  Brightfield Image [17] 

2.3.3 Darkfield Microscopy 

 In darkfield microscopy, the light is condensed before hitting the sample so that all of the 

light waves are concentrated into the object. Light is condensed using an annulus, which has holes 

that only allows some waves to pass through, increasing the light density through those holes. The 

bright, straight-on light hits the specimen at an angle, meaning it’s reflected away from the 

objective lens after passing through the specimen. The indirect light waves are diffracted by the 

specimen due to the different diffraction indexes within the specimen’s structure. Because these 

are indirect light waves, they are less bright due to having less photons and having a lower photon 

density. Therefore, there is more space between each photon, making diffracted waves very 

sensitive to changes within the specimen. The contrast in the image is caused by scattering light 

from the sample. Because of the sensitivity, samples do not need to be stained to create contrast. 

Then, the diffracted light rays pass through the objective lens and are magnified to create the image 

as shown below in Figure 6 [17]. 
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Figure 6: Dark Field Microscopy [17] 

2.3.4 Phase Contrast Microscopy 

 Phase contrast gets its name because it takes the phase shift caused by a specimen and 

converts it into an amplitude, creating contrast. This is done by comparing the diffracted waves to 

surrounding bright light as shown below in Figure 7. 

 

Figure 7: Phase Contrast and Phase Plate Hardware [17] 

The waves are condensed using an annulus, as explained in section 2.3.3. The condensed 

and diffracted waves then hit the specimen and then pass through the objective, unlike in darkfield 

microscopy where only the diffracted waves pass through the objective lens. The condensed light 

is very dense and is therefore not as sensitive to changes in the specimen. Both diffracted light and 

condensed light go through the phase plate, where the condensed light is now considered to be 

surrounding light. In order to assure the surrounding light can pass through the phase plate, the 
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focal length of the objective lens has to be calculated very precisely using the Thin Lens Formula. 

With both the surrounding light and diffracted light passing through the phase plate, we can 

compare the difference in light intensity, creating contrast [17]. 

2.3.5 Digital Image Sensors and USB Microscopes 

 Being able to see images due to the refraction and reflection of light waves through lenses 

is very useful to our society. However, in our digital age, being able to replicate these results on a 

screen aids with further development of the image to the user’s desire. This has led to the increased 

use of digital image sensors, especially in the form of USB microscopes. 

Digital cameras take images via an image sensor, which primarily uses complementary 

metal-oxide-semiconductor (CMOS) technology. A CMOS sensor has photodetectors that 

correspond to each pixel in the image. These photodetectors capture an analog voltage signal from 

the energy of the photons and the frequency at which the photons are hitting the sensor. This signal 

gets amplified and converted into a digital signal relating to the brightness of the photons using a 

digital to analog converter. To get color data, an RGBG Bayer filter is layered over the array of 

photodetectors to mimic the human eye, and a computation program produces the full-color image. 

The job of a lens in a USB microscope is to focus the light onto the sensor to produce a crisp 

image. The more photodetectors the CMOS has, the more pixels the image can be divided into, 

which directly correlates to the number of megapixels (MP) a camera has. For example, an 8 MP 

sensor has 8 million photodetectors [18]. 

Digital magnification manipulates the image it's capturing to make it larger. When the 

image size is increased, the size of each individual pixel is also increased, which causes the image 

to look pixelated. To combat this, viewing software adds more pixels into the image and 

interpolates their corresponding voltage based on the photon voltage the CMOS’ photodetectors 

are reading. Therefore, it is imperative that the USB microscope’s CMOS sensor has a high 

resolution, aka a high number of photodetectors; so that when the image gets larger, it can be 

divided into more pixels [19]. 

USB microscopes have become increasingly more popular as they are significantly cheaper 

than tabletop microscopes. Therefore, most USB microscopes use brightfield microscopy since 

it’s the simplest and cheapest option which requires the least amount of hardware. Focus and 

magnification in a tabletop microscope is adjusted via moving the sample’s platform. However, in 
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USB microscopes, magnification is changed using a digital camera within the microscope [19]. 

While the low cost of these devices is certainly an advantage, they do have certain limitations as 

compared to their large-scale counterparts. USB microscopes are able to capture an image with 

magnification sufficient to observe cells (< 10 µm), but compound microscopes can reach 

diffraction limits of ~300 nm. Additionally, USB microscopes generally have fewer lenses which 

leads to more aberrations, and the lenses are often made of plastic which tends to have a worse 

image quality than glass lenses. However, the cost to effectiveness of these USB microscopes is 

still relatively high, and therefore is desirable for increasing the access of microscopy. 

2.4 Existing Device Research 

2.4.1 Commercial Devices 

Our project aims to create a device similar to devices on the market but with specific 

differences to increase the accessibility of such devices. These devices are what we will be 

referring to as the gold standard for our application. There are other monitoring devices on the 

market which do not use microscopes and instead use more indirect monitoring methods, but these 

devices do not gather the specific information we wanted as part of our design. The gold standard 

continuous monitoring devices which use microscopes fall into two major categories. The first 

category, which has been around longer, is a device which consists of a standard high-end phase 

contrast microscope with a built-in incubator component. One main example of such a device is 

the Zeiss live cell imaging device [20]. As you can see in Figure 8 below, the device creates an 

incubator-like environment using a plexiglass chamber around the microscope stage and attached 

O2, CO2, and temperature modules  [20]. 
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Figure 8: Zeiss Live Cell Imaging System  [20] 

An additional gold standard device which includes its own incubation is the Viva View FL 

Incubator Microscope [21]. This device is an inverted microscope built into a high-tech incubator 

[21]. Figure 9 below shows the outside of the device which looks similar to a standard incubator 

and has an attached computer module. The device is capable of both fluorescence and phase 

contrast microscopy [21]. However, this device can only image samples in 35 mm diameter glass 

bottom plates.  

 

Figure 9: Viva View FL Incubator Microscope [21] 

 The other category of devices capable of continuous monitoring are small microscope 

systems which fit inside standard incubators. An example of these devices is the CytoSMART 

Lux2 shown below in Figure 10. This device is capable of bright field microscopy only and has a 

fixed 10x objective [8]. The system has an open design to allow the imaging of any transparent 

culture vessel [8]. 
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Figure 10: CytoSMART Lux2 [8] 

 With these three gold standard devices identified, we completed an analysis comparing the 

pros and cons of each device to find a comparable gold standard to our goal device. This 

comparison can be seen in Table 1 below. 

 Zeiss Live Cell Imaging Viva View FL  CytoSMART Lux2 

Pros ● High quality microscope 

● Differential phase 

contrast compatible 

● Environmental control 

● High quality 

microscope 

● Differential phase 

contrast compatible 

● Environmental control 

● Compatible with 

standard incubators 

● Usable with any 

transparent vessel 

Cons ● Not compatible with 

standard incubators 

● Low quality incubation 

● Only 1 sample at a time 

● Not compatible with 

standard incubators 

● Exclusive 40x 

objective 

● Can only image 35mm 

diameter glass bottom 

plates 

● Bright field only 

● Fixed 10x objective 

● Fixed height 

difference between 

sample and 

objective 

● No environmental 

sensing 

Table 1: Current Devices Pros and Cons 

 From this analysis we chose the CytoSMART Lux2 as a comparable gold standard for 

comparison to our device. This system has a small size with dimensions of 13.3 x 9.0 x 10.0 cm 

(L x W x H) and costs roughly $2500 to purchase [8]. Based on the pros and cons for this device, 

we focused on making a device which had more potential for customization than the CytoSMART 

device and which could be recreated for a lower cost.  
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2.4.2 Low-cost Non-commercial/Research Lab Devices 

Other labs have also begun to investigate low-cost mobile microscopy as an alternative to 

these expensive gold-standard devices. Many of these devices are built using easily accessible and 

low-cost components such as smartphone cameras, microcontrollers, and digital cameras. In many 

cases these labs augment the camera with added lenses. Some techniques used by other labs to 

develop low-cost small size devices include the use of an LED Array. This allows various kinds 

of multi-contrast images such as bright field, dark field, and differential phase contrast (DPC) to 

be acquired through the use of various illumination patterns of the light source [22]. In this paper, 

a Raspberry Pi personal computer controls the LED array illumination patterns and the images are 

captured through the use of an image sensor [22]. The center part of the led array being lit equates 

to bright field, dark field can be achieved by illuminating LEDs around the edges of the array such 

that the numerical aperture (NA) of the illumination is beyond the NA of the objective, and DPC 

is computed as the normalized difference between two intensity images taken with opposite 

illumination angles [22]. The difference in DPC is related to the object’s phase gradient along the 

axis of symmetry [22]. The size defining the transition from bright field to dark field is dependent 

upon the numerical aperture of the objective [22]. This Raspberry Pi based microscope consists of 

a 10× (NA, 0.25) objective lens, a 150 mm focal length tube lens, a raspberry pi camera module 

camera and an 8 x 8 Red Blue Green LED array measuring 5.3 cm x 5.3 cm and can be seen below 

in Figure 11 [22].  

 

Figure 11: (a) Schematic for a Raspberry-pi-based LED array microscope and (b) picture of a RGB matrix LED 

array [22] 
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An alternative solution which has been studied is low-cost, sub-micron resolution, wide-

field computational microscopy. In conventional imaging the number of pixels in the detector array 

constitutes a hard limit on the space-bandwidth product (SBP) and so therefore an increased field 

of view can only be achieved through a reduced spatial resolution [23]. This paper investigates the 

use of a low-cost, wide-field, high-resolution Fourier-ptychographic microscope (FPM) made of 

3D printed opto-mechanics and a Raspberry Pi for data acquisition as can be seen in Figure 12 

[23].  

 

Figure 12: Raspberry Pi 3 single-board computer board based experimental setup next to a quarter US dollar for 

scale [23] 

In this application, high SBP images are constructed from multiple low-resolution images 

captured in time sequence using oblique illumination angles [23]. Stitching of the images in the 

frequency domain is implemented using an iterative phase-retrieval algorithm to recover high-

resolution amplitude and phase of the sample image as well as aberrations due to the objective 

[23]. These solutions have some of the aspects of the gold-standard devices, but do not achieve it 

all in one system. Additionally, both of these systems are designed to be used with fixed sample 

imaging rather than live sample imaging. 

2.5 Internet Connectivity and IoT Devices 

The Internet of Things (IoT) is defined as the interconnected network of internet-based 

devices that has grown over time since more and more devices have been created which connect 

to the internet [24]. IoT device examples cover many different technological categories including 

ATMs, smart watches, smart baby monitors, laptops, cell phones, microcontrollers, and devices 
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such as the Amazon Echo or Google Home [24]. The nature of a remote monitoring device 

necessitates a connection to the internet to allow device to device wireless communication meaning 

that such a device would fall under the IoT umbrella.  

IoT devices use server protocols to fetch and send information through the internet. For the 

purposes of this project we will be focusing on HTTP. HTTP is the foundation of any data 

exchange on the internet and is a client-server protocol which means that requests for information 

are initiated by the recipient [25]. Most of the time the recipient is a web browser page which sends 

its requests to the server [25]. Once the request is sent it passes through multiple layers to reach 

the server which sends the HTML document which represents the page [25]. HTTP does not 

directly control the connection as this occurs at the transport layer and HTTP resides at the 

application layer of the network, so it relies on the Transmission Control Protocol (TCP) which 

lets two hosts connect and exchange data streams [25]. 

Every internet connected device is considered a host, and each host has layers that allow 

the device to interface with the internet and other devices via the internet. The layers of a host 

include the Access Layer, Transmission Layer, Internet Layer, Linked Layer, and PHY layer, in 

order of how closely they interact with the internet. The purpose of the Access Layer is to connect 

data with the specified application, the Transmission Layer ensure reliable data delivery, the 

Internet layer facilitates routing/communicity across data networks, the Linked Layer negotiates 

access to the medium the data is being sent across in the presence of other hosts, and the PHY 

layer converts the data into an electromagnetic with a specific frequency, such that it can be sent 

wirelessly. If a device is connected to the internet, it has an IP address on the internet and externet 

side. Externet is the network that is interfaced between the modem and the service provider. 

Modems are given an IP address accessible by the service provider, as well as a local IP address 

that interfaces with the devices connected to it. This is necessary such that the modem can pass the 

externet connection to private devices, without sharing their IP addresses to the public. The 

network between a modem and its connected devices is therefore called the internet. The modem 

also assigns IP addresses to the devices connected. These IP addresses are typically dynamic, 

unless specified otherwise by the network service provider. The IP address of a device is stored in 

its Internet Layer, and devices can interface with other devices using their IP addresses, given they 

are on the same network.  
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Chapter 3 - Project Strategy 

3.1 Initial Client Statement 

The initial client statement that we were given by our advisor was as follows: design a 

compact, inexpensive internet-enabled biosensing and video monitoring system. The video and 

data should be logged automatically and accessible remotely via the internet. 

3.2 Technical Design Requirements 

Overall, we had several design objectives based on our initial client statement which are 

shown in the tree in Figure 13 below: 

 

Figure 13: Objectives Chart 

In addition to these design objectives, the device should not directly interact with the 

culture as to prevent negative impact on the cells/organisms being cultured. Cells and organisms 

can be easily influenced by toxicity in proximity or direct contact. Therefore, it must be ensured 

that all potentially toxic materials are kept several inches away from the culturing plate. 

Additionally, there are non-contact possible sources of contamination or alteration to the culture, 

such as heat or illumination generated from the device in proximity. Therefore, these possible 
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additional issues must be accounted for and addressed in order to ensure a safe environment for 

the culture. 

However, in order to know how to apply the design objectives towards creating a device, 

the parameters for the application for the device must be understood first. These are shown below 

in Table 2. 

 C. elegans 

plate 

C. elegans 

microfluidic 

Cell Culture 

Field of view 35 or 60mm plates 30 x 30mm 

16 x 16mm 

1.4 x 1mm 

Required resolution 50 pixels/mm 50 pixels/mm 1200 pixels/mm 

Required frame 

interval 

2-3 frames/sec 2-3 frames/sec 4 frames/hour 

Required time 

duration for recording 

Few minutes for 

locomotory state, 12 

for sleep/long-term 

behavior 

2-3 hours, 12 for 

sleep 

5 days 

Table 2: Application Needs 

 The table above was constructed based on the needs of our advisor for C. elegans culturing 

due to their own experimentation. As mentioned in the background, C. elegans age quickly, where 

they reach adulthood in 3 days. Therefore, the frame interval is 2-3 per second and duration of 

recording must also be 2-3 hours. On the other hand, cells demonstrate changes very slowly, so it 

is more reasonable to record them at a rate of 4 frames/hour, with experiments lasting about 5 days. 

Additionally, a nominal field of view to observe cell count/migration in a cell culture experiment 

is 1.4 mm x 1 mm. In order to calculate the resolution for cell culture, we must know the resolution 

of the image sensor used and the size of the cell being studied. Therefore, we hypothesized using 

an image sensor with a resolution of 1600 x 1200, since it provides a relatively clear picture to the 

human eye, while ensuring the device remains as affordable as possible. The average mammalian 

cell is between 10-100 µm in diameter. Assuming a 10x smaller pixel size than cell size and the 

aforementioned resolution, this allowed us to calculate a resolution of approximately 1200 

pixels/mm both directions.  
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3.3 Design Requirements (Standards and Regulations) 

As one of our deliverables, we developed a step by step guide on how to recreate our device 

for educational purposes. In order for our device to be reproduced successfully and in compliance 

with the regulations, we had to establish a set of standards to keep in mind. Below are our standards 

categorized by different aspects of our device. 

3.3.1 Computer and Electronic Equipment 

Underwriters Laboratories published a set of standards for Information Technology Safety 

that apply to our device under the UL 60950-1 set of standards. These standards cover protection 

from potential hazards, physical requirements, and wiring and connection to networks.  

3.3.2 Software Coding 

The ISO 9000 standard series are standards to document quality management and 

assurance of the system in order to be able to maintain a properly functioning system. These 

standards can be applied to the software aspect of the device as well as the system as a unit. 

3.3.3 Wifi  

The Institute of Electrical and Electronics Engineers has developed a set of standards for 

the usage of WI-FI in multiple frequencies under the IEEE 802.11 standard series. These standards 

are applicable for devices that connect and have access to the internet without using wires. Some 

of the frequencies included within these standards are 2.4, 5 and 60 GHz frequency bands. 

3.3.4 Cell/C. elegans Culture 

The ISO 20387 standard discusses requirements to ensure quality and competence of 

biological materials and the data collection related to them. These standards are applicable to 

microorganisms used for research and development.  

3.4 Revised Client Statement 

A low cost, easy to use device which will fit in already existing incubators and be capable 

of remotely monitoring cell/C. elegans cultures through the use of live video capabilities. The 
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device needs to be able to connect to WiFi and use web-based monitoring software to control 

image capture. Additionally, the device should be equipped with a lighting apparatus which allows 

for viewing of the samples through contrast, and an image sensor capable of viewing small 

organisms and cells. A secondary goal is to include sensors for humidity and temperature, and 

image segmentation capabilities to determine pH. 

3.5 Management Approach 

 TASK NAME 
START 

DATE 
END DATE 

START ON 

DAY* 

DURATION* 

(WORK 

DAYS) 

A Term Goals BME 4300 

 Complete Draft of Chapter 1 9/12 9/16 0 4 

 Complete Outline of Chapter 2 9/12 9/16 0 4 

 Presentation #3 9/16 9/20 4 4 

 Complete Draft of Chapter 3 9/16 9/25 4 9 

 Complete Draft of Chapter 4 9/23 10/2 11 9 

 Final Draft of Chapters 1, 3, & 4 10/2 10/8 20 6 

 Presentation #4 9/23 10/3 11 10 

A Term Goals MQP 

 
Research based off of revised project 

goal and directions 
9/13 9/23 1 10 

 
Create a list of design objectives and 

user needs for the device 
9/13 9/23 1 10 

 

Begin designing the device 

parameters based on goal, research, 

and design requirements 

9/23 10/3 11 10 

 Prototype designs 10/3 10/10 21 7 

 Begin working with the Raspberry Pi 9/26 10/10 14 14 

B Term Goals 

 
Experiment with image capture 

options 
10/22 12/7 40 46 

 Connect Raspberry Pi to Internet 10/22 12/7 40 46 
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 Write paper chapters 10/22 12/13 40 52 

 Design basic housing options 11/27 11/30 76 3 

 CAD model housings 12/13 1/15 92 33 

 Upload Motioneye to Raspberry Pi 12/13 1/15 92 33 

C Term Goals 

 Test Light Source Options 1/15 1/29 125 14 

 Work out bugs in MotionEye code 1/15 1/29 125 14 

 
Test image source, light source, and 

Pi together 
1/29 2/12 139 14 

 
Assemble device with housing and 

test device with cells and C. elegans 
2/12 2/26 153 14 

 Writing paper 1/15 3/6 125 51 

 Work on incubator-proofing of device 2/12 3/6 153 23 

D Term Goals 

 Add Sensors to Device     

 Determine which sensors to use 3/30 4/1 200 2 

 Write pseudo code for sensors 4/2 4/7 203 5 

 
Determine how the sensors will be 

attached to the device 
3/30 4/1 200 2 

 Order Sensors 3/30 4/1 200 2 

 Attach sensors to device 4/8 4/9 209 1 

 Integrate IP Display into system 4/12 4/16 213 4 

 Test sensors by simulating conditions 4/8 4/18 209 10 

 Validation     

 Run Experiments 4/1 5/1 202 30 

 Paper and Poster     

 Edit Presentation 4/1 5/1 202 30 

 Work on Paper 3/25 5/11 195 47 

 Presentation Practice Days 5/1 5/4 232 3 

Figure 14: Gantt Chart 
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Figure 15: Full Year Calendar 
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This Gantt chart and calendar show our plan for the course of our four term project. Much 

of the preliminary device design testing was accomplished in B term and then functional testing 

and reworking of the preliminary designs occurred in C term. The majority of the work in B and 

C terms is shown as occupying the same time on the calendar as work was done concurrently by 

different members of the team at each time. In D term we completed verification testing of the 

device and finalized our paper and presentation. 

Financially, we had a $750 budget for this project. We aimed to make this device cost 

effective for late high school and early college. In order to test as many alternative design options 

as possible, and to create multiple systems to complete verification testing in D term we had to 

purchase many components. Overall, we spent $642.04 on supplies for the project. The full 

breakdown of expenses can be seen below in Table 3.  
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Item Cost Amount Total 

Case base $5.00 3 $15.00 

case lid $3.00 3 $9.00 

Pi 3B+ $35.00 4 $140.00 

Unicorn Hat 8 x 8 LED Array $29.95 1 $29.95 

Housings $0.00 1 $0.00 

Sugru $16.99 1 $16.99 

screws $5.45 1 $5.45 

nuts $8.85 1 $8.85 

Micro SD cards 3 pack: 32 GB $12.39 1 $12.39 

Regular SD cards 3 pack: 32 GB $11.99 1 $11.99 

Power cords $8.99 3 $26.97 

keyboard and HDMI $20.00 1 $20.00 

Temperature + Humidity Sensor $7.00 2 $14.00 

USB microscope (white) $39.56 1 $39.56 

Arducam (5 MP) $9.49 1 $9.49 

Raspberry pi camera(2.1) $29.95 2 $59.90 

SD card: 8GB $5.97 1 $5.97 

USB microscope (black) $79.95 1 $79.95 

SD card: 32 GB $7.99 1 $7.99 

Raspberry pi zero $14.00 2 $28.00 

Raspberry pi zero case $5.95 2 $11.90 

autofocus cam $14.99 1 $14.99 

White LED Backlight Module $2.95 2 $5.90 

Pi Camera Board Case with 1/4" Tripod Mount $2.95 1 $2.95 

Unicorn Hat 16 x 16 array $34.95 1 $34.95 

Mini Display $14.95 2 $29.90 

  
Total 

spent: $642.04 

Table 3: Expenses 
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 While we spent $642.04 overall, the actual cost of one system is much less. The breakdown 

of the estimated cost to replicate this device can be seen below in Table 4. Note that the cost for 

the housing in this table differs from the cost of our housing as we had access to a 3D printer where 

the housing could be printed for free. Additionally, there may be additional shipping costs 

associated with the purchase of each of these components which we did not have to pay because 

of the large scale of the orders in which our components were purchased. Sensor costs were not 

included in the singular device cost as they are an optional addition. The final estimated cost of 

this device is $191.22 which falls below our initial goal of $200. 

Item Cost Amount Total 

Case base $5.00 1 $5.00 

case lid $3.00 1 $3.00 

Pi 3B+ $35.00 1 $35.00 

Unicorn 8 x 8 LED Array $29.95 1 $29.95 

Housing $30.00 1 $30.00 

Sugru $16.99 1 $16.99 

Screws $5.45 1 $5.45 

Wing nuts $8.85 1 $8.85 

SD card (32 GB) $7.99 1 $7.99 

USB Microscope $40.00 1 $40.00 

Power cord $8.99 1 $8.99 

  Total: $191.22 

Table 4: Single Device Cost 
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Chapter 4 - Design Process 

4.1 Needs Analysis 

Given our revised client statement, we divided our design requirements into our primary 

and secondary goals, primary defining our devices’ needs and secondary defining our devices’ 

wants. 

4.1.1 Needs 

Based on the client’s application needs specified in Table 2,  Table 5 below demonstrates 

the ideal physical design parameters of our device to ensure maximum compatibility and 

efficiency: 

Design Requirement Corresponding Parameter Ideal Value 

Small Volume Occupied by Device 10 cm x 10 cm x 10 cm 

Sufficient Frame Size Maximum Viewing Area 30 mm x 30 mm 

Light Source setup for 

Microscopy 

Direction of Light Around sample for Dark Field 

Microscopy 

Functions in High Humidity Sealant Around Device Withstands 90 - 100% 

Humidity 

Clarity of Image Resolution 1600 x 1200 pixels 

Processing Ability Minimum RAM  512 MB 

Sufficient Data Storage Minimum Memory Storage 32 - 128 GB depending on 

experiment type 

Streaming Ability Data Transmission Rate 25 mbps 

Table 5: Ideal Device Parameters 

Values for the device and field of view size were given by our original problem statement 

from our advisor. Direction of light was determined by background research from our advisor’s 

lab, where it was discovered that C. elegans, our choice of organism to monitor, are clearly imaged 

when light is diffused by placing it very far away from the sample or placing a privacy film to 
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cloud the light [26]. This results in a similar effect as dark field microscopy (DFM), since 

dispersing the light leads to less dense light and less photons per light ray, allowing for sensitivity 

to change in the sample. It is also mentioned in Section 2.4.2 that other labs have used both dark 

field microscopy and simulated phase contrast techniques with optical tricks to clearly image cells 

[22]. An evaluation of these methods will be discussed in Section 4.2. 

  Based on the preliminary photos taken of C. elegans  taken with the highest resolution 

imaging sensor and interface of our device, where the field of view was 3 mm x 3 mm, the 

maximum memory taken up by each photo was 1.1 MB. Given we want to take 4 frames per hour 

for 24 hours for 5 days, that leads to the maximum memory occupied to be about 528 MB. 

However, other sensing processes, which will be discussed further in chapter 4, require a picture 

to be taken at least every minute, which results in 7.92 GB being consumed. For C. elegans, change 

is observed via pictures taken 2 frames per second (fps). Given C. elegans experiments last up to 

12 hours overnight, this results in 86.4 GB being consumed assuming each picture takes up 1.1 

MB. Additionally, 20 GB of leeway is allotted to download libraries for necessary programs for 

the interface, sensors, and light source. 

Our microprocessor must perform the following minimum functions: controlling the light 

source, taking an image at a specified interval, and sending the image to an online interface. 

Through preliminary testing with the Raspberry Pi Zero W, it was determined that 512 MB is 

enough RAM to perform the minimum functions of our device given the images were taken and 

saved at a rate of 2 fps. Reasoning for using a Raspberry Pi as our microcontroller is described in 

section 4.2.  

To determine streaming ability and clarity of image, current streaming services such as 

Hulu and Netflix were analyzed, and it was determined that their highest streaming quality in 

1080p requires a maximum of 25 mbps [27]. However, the speed of the signal is primarily 

dependent on the wifi source and is therefore, not in the control of our device. 

In order to ensure the electronic parts are not corroded due to high humidity in the chamber, 

the device must be protected by a sealant. The products our team researched to seal off our device 

from the humid environment in the chamber will be discussed in section 4.2. 

4.1.2 Wants 

 Our secondary goal is derived from our wants as defined by Table 6 below. 
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Aspect Range 

Temperature Monitoring 0.0 - 50.0 C + 0.1 C 

pH Monitoring 6.0 - 8.0 + 0.1  

Table 6: Wants Analysis 

In addition to the aspects of our secondary goal in the table above, our group would also 

like to illustrate a step-by-step assembly guide to allow for further accessibility of this device, as 

it would give other educational labs the opportunity to perform low-cost wireless microscopy.  

The parameters characterized in the above table were determined from the ideal parameters 

for cell and organism culture as explained in Sections 2.1 and 2.2 and a tolerancing amount. In 

order for sensors to effectively determine if an aspect is within ideal conditions, it must be able to 

withstand and monitor in a range larger than the ideal range.  

4.1.3 Technical Constraints 

Along with our device needs and wants, it is important to consider the feasibility of our 

device by analyzing the corresponding constraints. The constraints are listed in Table 7 below: 

Constraint Bounds 

Withstand High Humidity Up to 100% 

Withstand High Temperature Up to 37C 

Range of Wireless Signal Must be able to pass through incubator 

Data Transmission Rate Must allow for clear image 

Memory Storage 32 - 128 GB depending on experiment 

Power Consumption Must be powered up to 5 days 

Table 7: Device Operation Constraints 

 The aspects above were determined as constraints as they can adversely affect the 

functionality of the monitoring system. Humidity and temperature are known throughout the 

device industry to impact functionality as heat adds energy to the air which interferes with the 

energy flowing through the circuit, the electrons [28]. Humidity adds water to the air which allows 
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for conductivity of charges through the air which could also impact the electrical system [29]. 

Range of the wireless signal and data transmission rate are constraints due to our concern that the 

signal cannot permeate through the incubator due to an incubator’s insulation. Data transmission 

rate and range of the wireless signal can affect the livestream video received by the observer of the 

culture. If the data transmission rate is not high enough, the receiver will receive different pixels 

of the image at different times, which is when people often see lag in the picture. Similarly, if the 

range of the wireless signal of the computer is not high enough, then it will restrict the rate at 

which certain pixels of the image are sent or the signal may not be receivable at all, meaning there 

would be no interface able to retrieve the video. The parameters for humidity and temperature 

constraints were determined due to parameters of cell culture defined in Section 2.1. Calculation 

of the constraint for memory storage is described in Section 4.1.1. 

 Below can be found a pairwise comparison of our project objectives ranking them 

according to importance. In this comparison a 1 indicates that the objective in the row is more 

important than the objective in the column and a 0 indicates that the objective in the column is 

more important than the objective in the row. The total column represents the sum of the numbers 

for each row, allowing the objectives to be ranked. 

 

Figure 16: Pairwise Comparison of Objectives 
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 As can be seen in Figure 16, our highest ranked objective is the wireless livestream, with 

small volume being our next highest. These objectives being ranked highly shows how important 

it is for us to consider our design constraints highly when designing our final device. Multiple of 

our objectives are ranked evenly in importance, as they were all essential in achieving our 

overarching goal. 

4.2 Concept Maps / Conceptual Designs, Design Concept Prototyping / 

Modeling, Feasibility Studies 

Our initial conceptual design has a basic block diagram of a computing system with an 

LED array and optical microscope with image sensing capabilities. 

 

Figure 17: Initial Design Block Diagram 

The main components of our initial design as shown in Figure 17 are a microprocessor 

acting as control of the device, an image sensor and optics for image capture, and illumination to 

create image contrast. Depending on the image sensor chosen, the optics may be built in, such as 

in a USB microscope. The device can be powered using a battery pack or a wall outlet, depending 

on the environment for the experiment. This initial block diagram leaves room for alterations in 

the specific components based on alternative design testing. 

A description of the interconnected features of our device design is shown below in Figure 

18. 
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Figure 18: Design Process Block Diagram 

4.2.1 Microprocessor Feasibility Studies 

Although our advisor recommended using a Raspberry Pi for the microprocessor, technical 

specifications of several other brands were also researched in preliminary studies to ensure we 

picked the best microprocessor for our design. The requirements for our microprocessor were 

chosen based on our design goals shown in Figure 11 and our design parameters in Table 5. They 

are as follows: 

1. Must be able to send and receive wireless via the internet without external 

components 

2. Must have at least 512 MB of RAM 

3. Must be less than $50 

4. Must have ports for camera connectivity 

Figure 19 is a table from All3DP that lists alternative microprocessors considered outside 

of the Raspberry Pi family under $50. For each of these microprocessors with a memory of 512 

MB RAM or greater, further research was done on the device’s website to check if they were 

capable of transmitting and receiving data over the internet. Out of this list, only the Rock64 Media 

Board, the PocketBeagle, and the Le Potato had a RAM of 512 MB or greater. Upon further 

research on the company websites for each of these processors, it was discovered that none of them 

are capable of communicating wirelessly via the internet without a USB dongle.  

Using a USB dongle for internet connectivity was not something we wanted to include in 

our device. This is because we wanted the user to have maximum opportunity for customization, 

which meant leaving as many ports available as possible. Additionally, setting up the dongle and 

downloading its supported packages if there are any would take up additional memory storage of 

the device and time for the user. Since it has to be purchased separately, this would also raise the 
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cost of the device. It also has the potential to be lost given it is an external component, increasing 

the cost the user must invest in the device in the future. Therefore, we concluded that using a device 

with a USB dongle as opposed to having built in WiFi would be inadvisable given there are 

products on the market that have built in WiFi connectivity, such as the Raspberry Pi. Therefore, 

none of these alternative options were chosen as they were unable to meet our design parameters. 

 

 

 

Figure 19: Microcontroller Specifications Comparison Chart [30] 

Preliminary research was done on various models of Raspberry Pi to determine which 

should be ordered for our alternative and final designs. The chart below in Figure 20 shows 

Raspberry Pi Models compared due to their specifications. The criteria for choosing a particular 

Raspberry Pi were the same as mentioned previously for the microprocessors. The Raspberry Pi 

3, and 4 were eliminated immediately, as the 3 was discontinued, the 4 had the largest dimensions. 

Out of the Raspberry Pi 3 A+, 3 B+, and Zero WH, we further narrowed our choices to the 
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Raspberry Pi 3B+ and Zero WH, since the Zero WH has the same capabilities as the 3A+, along 

with being smaller and cheaper, and the 3B+ had more RAM. The 3B+ and Zero WH will be 

compared in Section 4.3. 

 

Figure 20: Raspberry Pi Specifications Comparison Chart [31] 

4.2.2 Lighting Feasibility Studies 

In our background research, we determined that imaging cells in a low-cost system without 

staining is possible through both dark field microscopy and DPC. In order to create DPC, different 

areas beneath the sample must be lit at different times at wavelengths corresponding to red (660 

nm), green (550 nm), and blue light (450 nm). All of these parameters need to be varying in 

differential phase contrast in order for the computer to receive all angles and absorbances of the 

sample to process them into one image. In order to simulate dark field microscopy, an LED array 

is lit around the sample, resulting in angled light hitting the sample [22]. The method of dark field 

microscopy was pursued over DPC as it required a simpler light configuration and code, while 

resulting in a clear image of cells, as shown in Watanabe’s study and Figure 21 below.  
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Figure 21: (a) darkfield, and (b) left-right DPC images of corn cells [22] 

Also, our advisor’s research shows that C. elegans’ behavior changes with the presence of 

blue light [32], meaning it’s possible that other colored light could affect the behavior of cell 

culture or other small organisms, which could skew the results of the user’s experiment. Because 

we decided to pursue dark field microscopy, we considered using an external light source that 

lights up around the edges by design, such as the Ty Lite in Figure 22 below: 

 

Figure 22: Possible External Light Source 

However, since we wanted to experiment with different types of microscopy with our lighting 

source and ensure the user had the most opportunity to customize the device, we thought it made 

sense to choose a lighting source where the lights’ position can be changed to the need of the user. 

4.2.3 Humidity Feasibility Studies 

To decide a feasible sealant for the device to prevent interference with humidity, online 

recordings of experiments were observed to understand how humidity can affect the device’s 

ability to conduct current, as well as innovative materials that can waterproof consumer products 

(a) (b) 
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[33, 34]. Through these videos, we searched for a consumer available spray that allowed the user 

to coat an item with the hydrophobic substance such that water would not stick to the surface of 

the electronic components, but many results were for industrial use only, and therefore would not 

meet our accessibility objective of the device. 

4.2.4 pH Reading Feasibility Studies 

We considered two options to determine pH of the sample: measuring the absorbance of 

the sample’s solution given a light with a known wavelength is transmitted or determining the pH 

via detecting the color of the sample. As mentioned in Section 2.1, an indicator is added to the 

solution of the sample, which changes the color of the solution depending on its pH. In common 

cell culture practices, the person conducting the experiment uses the color of the solution to 

determine when to change the media of the sample. Given this procedure, we theorized that using 

a color sensor or image processing program that extracts the RGB value of the sample would allow 

us to draw a correlation between pH and RGB values such that the user can take a picture of the 

sample and extract a pH based on its RGB value.  

Out of these two options we eliminated measuring absorbance of the sample, due to the 

presence of cells possibly interfering with the absorbance. Also, phenol red experiences the most 

absorption when the light passed through the sample has a wavelength about 425 nm for pHs from 

4 - 7 and about 560 nm for pHs 8 - 10 [35], corresponding to purple and yellow light, respectively 

[36]. As mentioned earlier in this section, shining colored light at the sample could affect the 

behavior of cell culture or other small organisms, which would go against our design objectives 

for this component. 

Feasibility studies were also done to determine the most effective method to extract RGB 

values. Color sensors within our budget typically operate via shining a light on the sample, and 

then reading the RGB values of the light that is reflected off the sample using a photodiode. 

However, given the samples in our device would be transparent, this method seemed flawed for 

ensuring we would get the true RGB value of the sample, since the light from the color sensor 

would pass through the sample as opposed to bouncing off of it, meaning not all of the sample’s 

color could be picked up by the photodiode. Also, because our design involves placing a light 

across the sample to allow for microscopy, it can possibly interfere with the light picked up by the 

photodiode that determines RGB value. 
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4.2.5 Housing 

This device was designed to include a 3D printed housing structure to create the necessary 

support for the components of the device. We originally believed that with the use of a 

commercially available USB microscope we would have less need for this structure. In the case of 

the Raspberry Pi camera, we knew we needed this structure to hold the camera and objective lens. 

We realized however, that in both cases we would need the housing to hold  the Raspberry Pi and 

LED array, and the sample container.  

4.3 Alternative Designs 

4.3.1 Raspberry Pi Model 

As mentioned in Section 4.2, we narrowed our options for a microprocessor down to the 

Raspberry Pi Zero WH and the Raspberry Pi 3 B+. Figure 23  below describes the specifications 

for both the Raspberry Pi 3B+ and Zero WH. As explained in section 4.1.1, 512 MB was 

determined to be a sufficient amount of RAM to complete the minimum functions required of our 

device through preliminary testing. However, when installing the required libraries and packages 

needed to set up the device, the Raspberry Pi Zero WH was significantly slower than the Raspberry 

Pi 3B+, causing visible lag in the desktop of the Raspberry Pi’s OS. 

 

Figure 23: Raspberry Pi 3B+ and Zero WH Comparison Chart [31] 

 It is also worth noting that the power rating for the Raspberry Pi 3B+ is about 10 times 

higher than that of the Zero WH. Knowing the current ratings for the two microcontrollers allowed 
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us to calculate the necessary amount of current needed to power the Raspberry Pi over the course 

of several days. As mentioned in Section 4.1.1, the maximum amount of time for a cell culture 

experiment is 5 days. Therefore, the Raspberry Pi 3B+ would need a battery pack with a current 

rating of approximately 135,600 mAh or power rating of 678,000 mWh, assuming the experiment 

is in a chamber without outlets. Given a battery pack with this capacity is not commercially 

accessible, it is recommended that if the 3B+ is used that the power cable plugs into an outlet 

outside the chamber with the Raspberry Pi inside the chamber. The Raspberry Pi Zero WH would 

need a battery pack with a current rating of approximately 21,600 mAh, which is commercially 

available to the average consumer for around $30. 

 When comparing the dimensions between the two microcontrollers, we noticed that the 

two had a similar width and depth. However, the height of the Raspberry Pi 3B+ is a little more 

than double that of the Zero WH. Regardless, the height and width dimensions of the Raspberry 

Pi 3B+ fit within the desired dimensions of our product as described in Section 4.1.1.  

4.3.2 Remote Monitoring  

A key aspect of this project is the ability to remotely monitor the culture. This means that 

the device needs to be capable of sending data wirelessly to the user. Multiple options were 

evaluated to complete this aspect. The first option evaluated was the MotionEye Operating System 

(OS) for the Raspberry Pi. This OS is made of open source code and can be downloaded from the 

internet onto any Raspberry Pi for free. This option would be accessible to anyone and could work 

on any Raspberry Pi model. Alternatively, we also considered downloading a version of Raspbian, 

a common RasPi operating system, that was compatible with Motioneye’s independent software 

and use the combination of the two instead of MotioneyeOS. The Motioneye software has the same 

functionality as the Motioneye OS, but it allows the Pi to function as more than just the remote 

data communication tool. The Motioneye software is compatible with several Raspbian versions 

such as the newest versions of  Buster and Stretch. Lastly, we considered the possibility of writing 

our own code from scratch to be able to communicate data wirelessly. This option allows for more 

customization of the software’s capabilities. However, it takes a long time to develop. For 

example, we would have to create code for features like taking photos at preset intervals for a 

specific period of time, sending photos and sensor data to a cloud server and overlaying this 

information on the captured images, allowing the user to control and monitor the camera view of 



 

40 

 

the system in real time as well as compile all the images of an experiment into a time lapse video 

and extract valuable data from them (tables, graphs and more). 

In order to compare these options, the team planned to compare the performance of  

MotionEye OS with the performance of  MotionEye software on Buster OS. When attempting to 

download the MotionEye OS on the Raspberry Pi, it was discovered that the OS was incompatible 

with the Worcester Polytechnic Institute wireless service and could not be downloaded or started 

while the Pi was connected to the Institute’s wireless network. The team worked with the Institute’s 

IT and Network Operations department to find the root of the issue for several days. It was found 

that because of how the University’s Wireless network works as well as how it is secured, the 

motioneye configuration timeout was set to occur before it had received all the information for the 

network to authenticate the device. WPI uses WPA-Enterprise to secure the wireless Wi-Fi 

network, which requires each user to present log in credentials in order to authenticate and allow 

the user to connect to the network. Usually, most universities, companies, and institutions have a 

network with extra levels of security that home networks do not have. Therefore, it is expected 

that this type of issue will not happen on a regular home network due to a less structured network 

security. 

4.3.3 Image Gathering Source 

The next source of alternative considerations in our design was the source of image 

gathering. Ideally, one image gathering source would be capable of being used for both the cell 

and C. elegans cultures.  

4.3.3.1 USB Microscopes 

We investigated the use of a USB microscope for viewing cells in the lab. We tested two 

different USB microscopes to determine which one would work better. The specs of these two 

microscopes are included in Table 8 below. 
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Specifications 

USB Microscopes 

Microscope 1 [37] 

 

Microscope 2 [38] 

 

Purchase Source Adafruit Monoprice 

Manufacturer MicroView Monoprice 

Model Number Product ID: 636 Model 11613 

Max Magnification 220x 250x 

Size 110 mm (L) x 33 mm (D) 80 mm (L) x 30 mm (D) 

Image Sensor 2MP 2MP 

Cost $80 $40 

Table 8: USB Microscope Specifications 

The first test run on USB Microscope 1 was conducted by plugging the microscope into 

one of our computers and turning it on to try and view a sample of 3T3 cells in culture. When we 

attempted to view the cells from above with the microscope, we found that the focal length of the 

microscope was not long enough to be able to view the cells and focus on them as the field of view 

was only reaching the depth of the culture plate lid. This is demonstrated in Figure 24 below which 

shows condensation bubbles on the underside of the culture plate lid and a diagram of the setup 

used to capture this image. 
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A: Diagram 

 

B: Condensation Droplets on Lid 

Figure 24: First USB Microscope Image Attempt 

Our next move was to attempt to image a hemocytometer, a small device used for cell 

counting, in order to determine if the microscopes were capable of seeing the small sizes required 

for viewing cells. The success of this test is demonstrated in Figures 25 and 26 below where we 

were able to view and capture an image of the smallest subset of squares on a hemocytometer. 

These squares measure an area of 0.0025 mm2 or volume of 0.25 nL. The entire image in Figure 

25 represents a field of view of approximately 2 mm x 2 mm and in Figure 25 a field of view of 

approximately 1 mm x 1.5 mm. The microscope which captured Figure 26 had a superior image 

quality of the two microscopes tested when viewed at the default pixel resolution of each 

microscope. This microscope was therefore chosen to continue with the preliminary USB 

microscope tests, however both microscopes were used for versions of the final design testing. 

 

Figure 25: Hemocytometer Imaged with USB microscope 1 
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Figure 26: Hemocytometer Imaged with USB microscope 2 

Once we knew that the microscope could image at a high enough magnification to view 

particles the size of cells, we attempted to view the cells from beneath the plate in order to put 

them closer to the image sensor. In doing this, we were able to view and focus on attached 3T3 

cells in culture with the microscope. These images were taken at the full magnification the 

microscope offers which is 250x magnification. Examples of this are shown in Figures 27 and 28 

below. Figure 27 was captured with a direct point light source above the plate where Figure 28 

used only ambient room light. 

 
 

A: Diagram where Arrows represent Light 

 

B: 3T3 Fibroblasts Viewed with USB 

Microscope and a Point Light Source 

Figure 27: Dark Image of cell plate 
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A: Diagram where Arrows represent Light 

 

B:3T3 Fibroblasts Viewed with USB 

Microscope 

Figure 28: Clear Image of cell plate 

4.3.3.2 Raspberry Pi Camera 

As an alternative to the USB microscopes, we also investigated the use of an 8MP 

Raspberry Pi V2.1 camera. The tests run with the Raspberry Pi camera were run on a sample of C. 

elegans in culture as the camera alone does not have the magnification necessary to view cells. 

The plate was imaged from below at a distance of half an inch. These nematodes are visible in 

Figure 29 below. The initial images are rather dark as they were captured with only ambient room 

lighting which does not create the necessary contrast to properly view the nematodes. 

 
 

A: Diagram where Arrows represent Light 

 

B: C. elegans on an Agar Plate Imaged with Pi 

Camera 

Figure 29: Nematodes Imaged with Raspberry Pi Camera 
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4.3.3.3 Raspberry Pi Camera with Inverted Lens or Objective 

Since the Raspberry Pi V2.1 camera alone cannot reach a magnification high enough to 

visualize cells, we also looked at the use of a Raspberry Pi V2.1 camera with a second Raspberry 

Pi camera lens inverted in front of it. This idea was based on previous research that showed that 

inverting an identical version of the lens will give the image the resolution and magnification of 

the original image sensor [39]. These images have what appears to be a similar magnification to 

the USB microscopes (roughly 220-250x) but are shaky due to the team members having to hold 

the second lens while capturing the image. Multiple attempts were made to use the inverted lens, 

and even with more stable positioning, the images were of a lower quality than those with the 

microscopes. The image in Figure 30 appears to represent approximately 1.5 mm x 2 mm overall. 

The smallest squares visible possess the same dimensions as those in Figures 25 and 26. 

 

 
 

A: Diagram where Arrows represent Ambient 

Room Light 

 

B: Hemocytometer captured with Inverted Lens 

Figure 30: Image of Hemocytometer taken with Inverted Lens on Raspberry Pi Camera 

 We additionally considered using an objective lens in place of the inverted lens to achieve 

the magnification necessary to visualize cells [22]. We attempted to test this with the use of 

borrowed objective lenses of varying magnifications but were not able to line them up properly to 

be able to capture an image. Due to the difficulty of using and integrating this technique, the idea 

was therefore eliminated as an alternative design option but remains as a potential avenue of future 

work. 

4.3.3.4 Autofocus Raspberry Pi Camera 

In addition to the Raspberry Pi V2.1 camera, we also looked at a 5MP Raspberry Pi 

Autofocus camera. This camera would allow the user to change the camera focus from afar rather 
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than having to manually change it. In theory, this would be very useful to this device in regard to 

limiting the amount of times the incubator needs to be opened and the sample disturbed. However, 

this camera was difficult to use and would require the same inverted lens set up in order to reach 

a magnification high enough for cells. This camera would likely be useful for work with 

macroscopic studies. While the team was able to get the autofocus camera to function eventually, 

we decided to move it to future work as when we needed to move into final design testing it did 

not work yet. 

Overall, the functional image gathering sources found from early tests were both of the 

USB microscopes, and the Raspberry Pi V2.1 camera (for macroscopic work).  

4.3.4 Light Source 

In order to properly light the samples while inside an incubator, the device has to have a 

built-in light source opposite of the image gathering source. As mentioned in Section 4.1.1 and 

Section 4.2, we determined that the best method of microscopy for our device would be darkfield, 

meaning the light source would have to illuminate the area around the sample. This need comes 

from our background research of existing lab devices similar to ours in Section 2.4.2, where we 

were inspired to use a programmable LED array [22]. Additionally, we took into consideration our 

advisor’s lab’s work, where they imaged C. elegans with a rectangular flat light and a blocking 

filter to diffuse the light [26]. Therefore, the options we considered using were an LED array, with 

a varying number of LEDs, and a flat light. Table 9 below shows the different light sources, along 

with some relevant specifications.  
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Light Source Size Connection Price 

8x8 Pimoroni UnicornHat LED Array

 

65mm x 56mm x 

6.5mm 

GPIO $29.95 

16x16 Pimoroni UnicornHat LED Array 

  

65.0mm x 

56.0mm x 

7.9mm 

GPIO $34.95 

White LED Backlight Module 

 

45mm x 86mm 

 

 

GPIO $2.95 

Raspberry Pi SenseHat 

 

65.1mm x 

56.6mm x 

13.9mm (whole 

structure, not just 

light source) 

GPIO $39.95 

Table 9: Light Source Options [40, 41, 42, 43] 

All of the lighting options above connect to the GPIO header of the Raspberry Pi. The 

White LED Backlight Module needs to be plugged into two GPIO pins to operate, one pin being 

ground and the other being power. Also, the white LED backlight module can be plugged into a 
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clock pin to be configured to turn on when a picture is taken, allowing the user to save power. A 

tutorial for this is in the Step-by-Step Assembly Guide in Appendix A. Overall, the white LED 

backlight module allows the user for the most customization, as it leaves the maximum number of 

GPIO pins unused. The 8x8 LED uses three pins, one for data, one for ground, and one for power. 

However, it sits on all 40 pins of the Raspberry Pi’s header, and therefore, must be wired differently 

than the manufacturer’s recommendation if use of the other GPIO pins is required. The method for 

appropriate wire configuration is also shown in the Step-by-Step Guide in Appendix A. The 16x16 

LED Array uses the most GPIO pins, proving the least customization of the GPIO pins for other 

uses. However, the smaller LEDs within the same size as the 8x8 LED Array allows for further 

customization of lighting direction and configuration. Using a programmable LED array also 

allows the user to potentially try the DPC method described in Section 4.2, as the lights’ colors 

can be controlled, as well as timing. 

The Pi Sense Hat also has a programmable LED array along with temperature, humidity, 

and pressure capabilities. These extra capabilities are beneficial as it allows for further 

compactness of the device. However, because the LED array does not take up the whole structure 

like the 8x8 and 16x16 UnicornHat does, there is a concern that this LED array would not light 

the whole sample. 

4.3.5 Housings 

As part of our design alternatives, we designed multiple housing ideas to hold the 

components of the device. Each different imaging technique could require a different housing set 

up to function. The initial sketches of these housings are shown below in Figure 31. 
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A: Housing for USB 

microscope 

 

 

 

B: Housing for C. elegans with 

Raspberry Pi camera 

 

 

 

C: Housing for Raspberry Pi 

with Objective lens 

Figure 31: Alternative Housing Designs 

After further consideration of these housing designs, another alternative was designed 

which would be more versatile than the previous design options. This housing option, shown below 

in Figure 32, consists of a main pole or rod with a channel cut into it, and an assortment of 

“shelves” with screw attachments that can be inserted through the channel of the rod. Wing nuts 

would be used to secure the shelf in place once the screw is through the channel.  

 

Figure 32: Isometric Sketch of Hollow Rod Housing Design 
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4.3.6 Temperature and Humidity Sensor 

 We considered two types of temperature sensors for our device, the DS18B20 and the 

AM2302/DHT22. Table 10 below compares the sensors’ specifications. 

Sensor GPIO Pins Voltage Rail External 

Components 

Accuracy Size 

DS18B20 3: Data, 

power, and 

ground 

3.3 or 5 V 4.7 kOhm 

resistor 

-10 C to 85 

C: +0.5 C 

-55 C to -10 

C and 85 C to 

125 C: +2 C 

Cable: 4 mm 

diameter 

91 mm long 

Sensor: 6 mm 

diameter 

30 mm long 

AM2302/DH

T22 

3 : Data, 

power, and 

ground 

3.3 or 5 V 4.7 kOhm/10 

kOhm 

resistor 

-40 C to 80 

C: +0.5 C 

15.3 mm x 

7.8 mm x 

25.3 mm 

Table 10: Temperature Sensors’ Specifications [44, 45] 

The data pin can be configured for almost any pin on the Raspberry Pi header for both 

sensors. There are tutorials online for the software setup of both sensors. However, the setup for 

the AM2302/DHT22 is simpler as it only requires libraries and repositories to be downloaded and 

installed, where the code to receive temperature readings is within the downloaded software. This 

differs from the DS18B20, as software setup for this sensor requires the user to write their own 

code; although there are also many straightforward tutorials online. Also, the length of the 

DS18B20 was significantly more than that of the AM2302/DHT22 due to the fact that it has a 

cable component. Therefore, we were concerned this would impact the overall size of our device, 

as one of our design goals was to ensure our device was compact, as mentioned in Section 4.1.1. 

 Additionally, the DHT22/AM2302 has a humidity sensor, while the DS18B20 doesn’t, 

meaning if the user chooses the DS18B20, they must find an alternate humidity sensor. However, 

the DS18B20 is waterproof, meaning its longevity in a humid incubator will be longer than that of 

the DHT22/AM2302.  

We found in research that the family of DHT22/AM2302 sensors was the only humidity 

sensor commercially available to the average consumer with Raspberry Pi compatibility. 

Therefore, no alternatives for this sensor were found. 
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4.3.7 pH Sensing 

After comparing methods of pH sensing in Section 4.2, it was determined that the best 

method was to analyze RGB values via an image processing program. The options considered for 

this were the MATLAB Image Processing Toolbox, and Open Computer Vision (OpenCV) 

supported by python. The documentation for MATLAB’s image processing toolbox is very 

thorough with each iteration of MATLAB in comparison to OpenCV. There are multiple functions 

in MATLAB that allow the user to perfectly filter an image before it’s analyzed, such as using a 

Gaussian Blur, filling holes, edge detection, edge segmentation, and eroding the edges of an image. 

However, OpenCV does not have direct functions for all of the indicated filtering processes, 

requiring the user to do more software development for the desired result. Also, when MATLAB 

and Image Processing Toolbox is downloaded for the Raspberry Pi, all dependent packages are 

automatically downloaded by the install, whereas for OpenCV, the dependent packages must be 

downloaded manually, making the installation process longer for the user. Also, the install 

instructions for MATLAB are very clearly documented, whereas the instructions for the OpenCV 

install on their website is not straightforward for first-time users, meaning outside tutorials need 

to be used, and many are incomplete and therefore lead to a failure in the install. 

OpenCV is advantageous over MATLAB for this project though, in that it doesn’t require 

a license, meaning it’s no additional cost for the user for installation. Additionally, software 

maintenance for a MATLAB license expires after a year, meaning it would have to be renewed 

every year. For educational purposes, if the user’s school does not provide campus-wide licenses, 

a permanent license that allows for unlimited renewal is $500. If the user is in primary or secondary 

school, the license price $100 [46]. 

4.3.8 Data Logging 

Assuming the temperature sensor used is the AM2302/DHT22, we had a few options for 

data logging. The AM2302 library from Adafruit came with a Python script that could be 

configured to send data to a google spreadsheet in a .csv format. However, given experiments are 

recording temperature, humidity, and pH every minute, and sometimes more often depending on 

the application, this would result in at least 7200 data points, making it difficult for the user to 

parse through and determine which data they would like to visually represent. 
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Another option we considered for data logging was using ThingSpeak. ThingSpeak is an 

online interface supported by MathWorks that allows the user to send data to their channel to make 

it viewable to the public or custom members if desired by the user. They also allow the user to 

customize the resulting graph in several ways, such as limiting the number of data points to show, 

which days of the data to show, adjust the minimum and maximum values on the y axis, and 

modify axis and chart titles. The benefit of this is it automatically graphs the data for the user, 

allowing it to be visible in real time while data is still being taken. However, since this is a program 

supported by MathWorks, it requires a MATLAB license to unlock all features, with its high costs, 

as mentioned in Section 4.3.8 above. 

4.4 Final Design Selection 

4.4.1 Raspberry Pi  

As described in 4.3.1, the Raspberry Pi Zero WH and 3B+ specifications were compared. 

For a list of the specifications of the two microprocessors refer to Section 4.3.1. It was found that 

the Zero WH could accomplish the tasks given it has 512 MB of RAM compared to the 3B+ having 

1 GB of RAM. However, the install process took much longer on the Zero WH due to having less 

RAM. The Zero WH is also smaller and $20 cheaper than the 3B+. Also, the Raspberry Pi Zero 

WH can be reasonably powered with a commercially available battery pack, whereas the 

Raspberry Pi 3B+ would need to be plugged in outside the incubator for long time lapse 

experiments. 

Despite consuming more power and being bigger than the Pi Zero WH, it was determined 

that the Raspberry Pi 3 B+ was the correct choice for the device based on its RAM, which allowed 

for ease of use during setup. Additionally, the fact that the 3B+ was more expensive and larger 

than the Zero WH was not deemed important, since it was still within our budget for a 

microprocessor, as outlined in Section 4.2, and also its size was still within our needs described in 

Section 4.1.1. 

4.4.2 Remote Monitoring 

Each of the alternative design options for wireless communication and automated features 

was examined in the following evaluation table and compared to determine the best choice for the 
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final design. In the table below, “not customizable” means that in order to change certain aspects 

of the user interface, additional python or shell scripts have to be created and run. In other words,  

the base code of the program itself is not easily customizable. 

Wireless Communication Pros Cons 

MotionEye OS 

• Easy to use 

• Open source 

• Built in user interface 

• Not compatible with WPI 

wifi 

• not customizable 

• Pi OS is devoted only to 

wirelessly communicating data 

collection 

MotionEye Software 

• Easy to use 

• Open source 

• Built in user interface 

• Compatible with downloaded 

some versions of  Raspbian OS 

(flexible) 

• sensor data reporting more 

complicated 

Custom Software (Our Own) 

• customizable 

• could build in sensor data 

reporting feature 

• time consuming to create due 

to the number of features to 

develop from scratch 

• need to build user interface 

Table 11: Remote Monitoring Evaluation Table 

 Based on the findings in Table 11 it was decided to move forward with the MotionEye 

software downloaded with Buster OS as it was the most accessible, and easiest to use of the 

options. 

4.4.3 Image Gathering Source 

Based on the photos taken with each image gathering device which can be seen in the 

alternative design section, a matrix of pros and cons of each image gathering device was made. 

This can be seen below in Table 12. Each of the USB microscopes have the con of the potential 

for focus drift. This means that over time it is possible that the focus of the microscope would 

change slightly causing the sample to drift out of focus in the images. The autofocus camera has 

no focus drift as a pro because while the focus still has the potential to change, the nature of the 

autofocus camera allows it to be refocused remotely without disturbing the sample. 
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Image Gathering Source Pros Cons 

USB Microscope 1 

(Microview) 

• Easy to use 

• Inexpensive 

• Clear image of 

hemocytometer 

• Easy to create a housing for 

• Potential for focus drift 

• Large size 

• short focal length 

• not customizable 

• poorer focus on 

hemocytometer 

USB Microscope 2 

(Monoprice) 

• Easy to use 

• Inexpensive 

• Clear image of 

hemocytometer 

• Clear image of cells 

• Easy to create a housing for 

• Potential for focus drift 

• Large size 

• short focal length 

• not customizable 

Raspberry Pi Camera V2.1 

• Easy to use 

• Inexpensive 

• Clear image of C. elegans 

• built into raspberry pi 

• easier to use GPIO with 

• low magnification 

• short focal length 

• difficult to use with a Pi 

based light source 

Raspberry Pi Camera V2.1 with 

inverted lens 

• Inexpensive 

• easier to use GPIO with 

• low image quality 

• short focal length 

• difficult to use with a Pi 

based light source 

• difficult to create housing for 

5 MP Autofocus Raspberry Pi 

Camera 

• no focus drift 

• easier to use GPIO with 

• adjustable focal length 

•  low image quality 

• difficult to use with a Pi 

based light source 

• difficult to create housing for 

Table 12: Image Gathering Source Evaluation Table 

 Based on this evaluation table it was decided that the best option to move forward with was 

USB microscope 2. While the autofocus camera appeared to be a strong option, in reality it was 

difficult to use, and the team could not get it to work before the final design testing phase of the 

project. This option is discussed further in the recommendations chapter of this paper. 
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4.4.4 Light Source 

The alternative light source options were theoretically evaluated and the pros and cons of 

each were compiled in Table 13 below. 

Light Source Option Pros Cons 

Pimoroni UnicornHat 8x8 LED 

Array 

• easy to use 

• powered by Pi 

• controlled through code 

on Pi 

• inexpensive 

• accessible code 

• small amount of LEDs 

• has to be attached to Pi 

• creates white light out of 

RGB 

• no additional sensors 

pi SenseHat LED Array 

• allows use of other 

sensors on same board 

• powered by Pi 

• controlled through code 

on Pi 

• inexpensive 

• small array 

• smaller LEDs 

• has to be attached to Pi 

• creates white light out of 

RGB 

• more expensive 

Pimoroni UnicornHat HD 16x16 

LED Array 

• larger array 

• easy to use 

• powered by Pi 

• controlled through code 

on Pi 

• accessible code 

• has to be attached to Pi 

• creates white light out of 

RGB 

• more expensive 

• no additional sensors 

White LED Backlight Module 

• white light 

• powered by Pi 

• inexpensive 

• no additional software 

required 

• no control over individual 

LEDs 

• no control over color of 

light 

• no additional sensors 

Table 13: Light Source Evaluation Table 

 In addition to the features listed above, Table 9 in Section 4.3.4 describes several other 

features, such as wire connectivity type, price and size. Based on size, the Pi Sense Hat was 

eliminated, as the LEDs were a section of the structure, as opposed to being the whole structure 

like the UnicornHats. Because of this, we were concerned the light would not cover the whole area 

of the sample. The White Backlight LED Module was also taken out of consideration, as the 

individual LEDs cannot be programmed to change the direction or color of light. However, the 
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direction of light could be modified by diffusing the light via a privacy film [26]. This leaves the 

8x8 and 16x16 UnicornHat LED array, where we ultimately chose the 8x8 LED array due to price. 

Despite being cheaper, and therefore having less and larger LEDs, we thought the 8x8 LED array 

could be easily programmed to test out lighting configurations for different types of microscopy, 

which are further explained in Section 5.1. 

4.4.5 Housing 

Once the design alternatives for the device’s housing were created it was necessary to 

complete an evaluation to determine which design would be selected as the final device housing. 

Table 14 shows the pros and cons of each design alternative. 

Design Pros Cons 

Rigid structure, cubic shape 

with built in shelves

 

• Easy shape to design 

• Stable structure 

• Easily reproducible 

• Can be made from 

cheap/accessible materials 

• Set distance between 

components 

• Only functional for one 

application per structure 

• Requires more material than 

other design 

• Takes up more space 

Hollow stand with removable 

shelves 

 

• Easy shape to design 

• Stable structure 

• Easily reproducible 

• Can be made from 

cheap/accessible materials 

• Easily customizable 

• Functional for more varied 

applications 

• Easy to construct and alter 

• More pieces to potentially 

misplace 

• More complicated to 

assemble than the single piece 

design 

• Requires use of metal screws 

and nuts 

Table 14: Housing Design Evaluation Table 
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 These pros and cons led to the selection of the hollow rod housing design. After selection 

of this design, it was realized that by adding a second nut to the design mobility could be achieved 

in the x direction as well as the z direction. Additionally, in moving forward with this design it 

was necessary to evaluate whether the screw element should be built into the shelf, or a separate 

piece. The pros and cons of each option were evaluated as shown in Table 15 below. 

Design Element Pros Cons 

Built in screw with separate 

nut 

• Screw can’t be misplaced 

• Easier to assemble 

• Stronger attachment to shelf 

• Plastic screw element is 

easier to break 

• Can snap off shelf if not 

stored properly 

• Difficult to design screw for 

correct functionality 

• More difficult to properly 

size 

Metal screw and nut assembly 

(not built into shelf) 

• Easier to design (don’t have 

to CAD the screw) 

• Easier to fabricate 

• Metal screw is stronger 

• Assures correct screw size 

and threading for standard nuts 

• Screw can be misplaced 

• Need to specify length and 

size of screw in handbook 

Table 15: Screw Evaluation Table 

 Through this evaluation, it was deemed better to use a separate metal screw and nut 

assembly rather than a built-in screw. 3D models of the housing components were made using a 

Computer-aided Design (CAD) software called SolidWorks. In order to design these models, 

measurements were taken of each component to ensure an accurate fit. Additionally, different 

options for screws were compared. It was found that the longest fully threaded screws available 

were 2 inches long. These selected screws were flat-head, phillips, stainless steel screws with a 

small head diameter and large number of threads. These features allow the screws to easily and 

unobtrusively fit into the component shelves and be tightened to exactly the right length as needed. 

Wing nuts which would fit with the screw size were also chosen at this time. Brass wing nuts were 

chosen because they are corrosion resistant in wet environments. Schematics of the chosen screws 

and wing nuts are in Figure 33 from the McMaster-Carr website [47, 48]. 
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A: Screw [47] 

 

B: Wing Nut [48] 

Figure 33: Diagrams of Housing Screws and Wing Nuts 

 After the screws were chosen and the measurements of components were taken, the initial 

CAD designs were created. For the plate holder components, it was deemed beneficial to make 

one plate holder for 100mm plates and an additional converter which would rest inside that 

component making the opening smaller. The first iteration of each component can be seen below 

in Figure 34. 

 

A: 100mm Plate Holder 

 

C: Microscope Holder 

 

E: Hollow Rod 
 

B: 50mm Plate Holder Insert 

 

D: Raspberry Pi Holder 

Figure 34: First Iteration CAD Models 

 After these initial CAD designs were made, an expert on Worcester Polytechnic Institute 

3D printing was consulted. Unfortunately, the printers on campus were not capable of printing the 
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rod as it was currently designed due to its height of roughly 31 cm. In order to work around this 

the design was cut in half and pegs were created so that the two halves of the rod could snap 

together after printing to reach the full rod height. After this design alteration, all of the components 

were printed. After the initial print of each component it was found that the 100mm plate holder, 

and 50 mm converter initial designs were adequate, and became the final designs for those 

components. The rest of the component holders needed continued prototyping. The microscope 

holders fit around the microscope but did not have a way to attach to the rod. Subsequently, a new 

design was created which would allow it to attach to the rod. The final microscope holder design 

entailed one print of the initial design attached to one of the secondary designs through attached 

screws. Both the CAD model and printed design can be seen below in Figure 35. 

 

A: CAD Model 

 

B: Printed 

Figure 35: Final Microscope Holder 

 The initial design for the Raspberry Pi holder had a couple of flaws. The wall of the holder 

was not thick enough to accommodate the hole for the screw with enough strength. Additionally, 

the opening for the LED array was not positioned correctly and overlapped partly with a row of 

the array. The holder was redesigned to fix these issues, and the final CAD design is shown below 

in Figure 36. 
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Figure 36: Final Raspberry Pi Holder 

 The initial rod design proved to be too thick when printed to allow for the proper alignment 

of the component shelves. Additionally, the channel was too wide so that the wing nuts would also 

slide partly into the channel. It was also discovered that in order to maintain the balance of the 

housing, a larger base was needed to counterbalance the weight of the shelves. As part of this 

redesign, additional extenders were designed for the rod so that the height can be customized as 

needed. These design changes are reflected below in Figure 37. 

 

A: Top Half 

 

B: Bottom Half 

 

C: Extender 

Figure 37: Final Hollow Rod CAD Model 

 After finalizing these designs, the team also decided to design a plate holder for 6-well 

plates in order to run additional experiments with the device. The CAD design of this component 

can be seen below in Figure 38. 
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Figure 38: 6-Well Plate Holder 

 Once all of these components were designed, printed, and redesigned to come up with the 

final CAD models of each component the full housing was printed on a MakerBot 3D printer using 

PLA plastic in colors available in the lab. The printed components were assembled along with the 

screws, nuts, and additional components including the raspberry pi and microscope to create the 

final base device design (without added sensors). This printed design can be seen below in Figure 

39. 

 

Figure 39: Final Printed Device Front and Back Views 
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4.4.6 Temperature and Humidity Sensor 

The team chose to use the DHT22/AM2302 for its compact size, ease of use for the user, 

and additional humidity sensing feature, as mentioned in Section 4.3.6. It’s accuracy was 

comparable to that of the DS18B20, as shown in Table 10 in Section 4.3.6.  A breadboard is 

required to set up this sensor to ensure it can sit upright within the chamber and read the ambient 

temperature. After the temperature sensor is inserted in the breadboard, a wire connecting the 

rightmost pin when facing the back of the sensor should be connected to the 5V rail of the 

Raspberry Pi, which is header pin two. A 10 kOHm/4.7 kOhm resistor then connects the  rightmost 

pin of the temperature sensor and the pin to its left. The 2nd pin from the right of the sensor is 

connected via a wire to any data pin on the Raspberry Pi the user desires, as this can be configured 

within the temperature reading program. We connected our wire to GPIO pin 23, also known as 

header pin 16. The 3rd pin of the temperature sensor is not connected to anything. The 4th pin of 

the temperature sensor connects to a ground pin on the Raspberry Pi, which is on header pin 6. 

Figure 40 below shows the configuration. 

 
3 Wires Connected to Pins of Sensor (Back-

Facing) 

 
10 kOhm Resistor Connecting Rightmost Pin 

and Pin to its Left 

 
GPIO Wires Connecting to Raspberry Pi 

GPIO Pins 

 
Overall Configuration 

Figure 40: Temperature Sensor Wire Configuration 
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After that, we installed the necessary packages and code repository, as that code allows the 

user to receive temperature and humidity readings from the sensor. In order to view the temperature 

and humidity readings from the sensor, we navigated to the corresponding directory where the 

code was stored and ran the temperature script in the Raspberry Pi terminal. After ensuring our 

sensor was reading values, we put our hand over the sensor to see if it would pick up the change 

in humidity and temperature caused by the change in the environment. We observed that the 

temperature and humidity did change significantly when a hand was placed over the sensor, 

meaning it was sensing changes in the environment. 

Another  feature we wanted to include, along with data logging of the temperature and 

humidity, is the temperature and humidity of the environment of the sample being overlaid onto 

the interface, allowing the user to visually track the changes in the environment during an 

experiment. This entailed us writing a shell script that ran our temperature and humidity reading 

script every time the overlay script was called. The overlay data script is run every minute via a 

cron job, which is a command sent to the Raspberry Pi every desired time interval to run a specific 

script. The fastest a script can update with a cron job is every minute, which is how often our 

temperature and humidity overlay updates. A full tutorial on how the user can accomplish this is 

in the Step-by-Step Assembly Guide in Appendix A. 

4.4.7 pH Sensing 

The method  chosen to determine pH was to use the OpenCV library supported by python, 

as it was more cost efficient in comparison to using MATLAB. However, because the method of 

image processing was chosen in feasibility studies, pH can only be read and overlaid onto the 

interface when taking pictures of the sample, which would occur during a time lapse. For this 

reason, despite only needing a picture every 15 minutes in cell culture, a picture must be taken 

every minute to ensure the pH is being analyzed and updated every minute. 

The python script imports the OpenCV library, Numpy, os and glob. Using the os and glob 

import, the program iterates through all the pictures in the specified folder to find the most recent 

picture. However, the limitation with this is that the time lapses are separated by folder according 

to date. Therefore, if there is a time lapse that spans several days, the file path will need to be 

updated every day. Further development can be done to program this or configure motioneye such 

that time lapses are not grouped by date. 
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The most recent picture is then imported into the script converted to an RGB format. This 

is just to ensure our pictures are in color, although they are expected to be taken in color anyways. 

After that, the RGB value of each pixel is taken by looping through all the pixels in the image 

using a nested for loop and analyzing the RGB value of each pixel, resulting in a 2D array. The 

elements of the outer array correspond to each pixel, and the elements of the inner array correspond 

to the B, G, and R value of the corresponding pixel. The values in this array are averaged using 

numpy.average along the vertical axis, resulting in a 3-element array where the elements are B, G, 

and R. If the elements were averaged along the horizontal axis, this would result in an array n 

number of pixels long, where each element is the averaged RGB value for that pixel.  A correlation 

between pH and RGB was attempted in order for the system to import a picture and read the pH 

value based on its RGB value. An explanation of the experimental procedure to create this 

correlation is in Section 6.3 and the results and explanation are in Sections 5.2.2.1 and Section 7, 

respectively. 

4.4.8 Data Logging 

 Ultimately, it was decided that the ThingSpeak automatic data logging website would be 

used to log data from the device sensors as it was relatively easy to create code to run continuously, 

and the website automatically creates graphs of the collected data. Additionally, the sensor data is 

reported on the images taken along with the timestamp so that the data at a given time can be 

directly correlated to the image being taken. While this website is not ideal for all uses since access 

to a free MathWorks account has limitations, but since the addition of sensors and data logging is 

not integral to the function of the basic device, this could be customized by an end user if they did 

not have access to the necessary features. 

Chapter 5: Design Verification 

5.1 Preliminary Testing 

Once a final design was selected and built for this device, it was necessary to test the 

functionality of the components together. The first test which we ran was a test of the USB 

Microscope and Raspberry Pi 3 B+ with MotionEye software together. We needed to assure that 

the Raspberry Pi was capable of detecting the image from the USB microscope, and 



 

65 

 

communicating it through the MotionEye software. The USB microscope was plugged into the 

Raspberry Pi and positioned above a hemocytometer. The IP address of the Raspberry Pi was 

found, and a laptop was used to go to the URL for the MotionEye user interface. A live image of 

the hemocytometer was able to be seen from the USB Microscope, and a still image was captured. 

This image is below in Figure 41. 

 

Figure 41: Image Taken of Hemocytometer with USB Microscope and Pi 3 B+ with MotionEye Software 

 The next test was a test on the lighting source, the Pimoroni UnicornHat 8x8 LED array, 

with the Raspberry Pi 3 B+ and USB microscope system. In order to test the LED array, it was 

attached to the Pi, and the USB camera was used to capture an image. A hair was used as a sample 

for the image to focus on. Figure 42 below shows the hair under the LED with all LEDs turned 

on. 

 

Figure 42: Hair Viewed Using USB Microscope with All LEDs Activated 
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 Based on this test we determined that having the full LED array turned on (bright field 

microscopy) led to the color makeup of the white light (the RGB leds) being visible in the image. 

More testing of bright field microscopy with the LED is required with a different sample to 

determine how visible the colors are when the magnification is greater and distance between the 

image gathering source and LED array is greater. Dark field microscopy was tested next which 

consisted of just a ring of LEDs being turned on. This test was much more successful at showing 

the detail of the hair sample and is closer to what the LED array will be used for as a part of culture 

experiments. This can be seen below in Figure 43. 

 

Figure 43: Hair Viewed Using USB Microscope with Ring of LEDs Activated 

 An additional test was run to determine if the device was capable of capturing images at 

set intervals (determined in the MotionEye User Interface) and create a time lapse video. This was 

the first time lapse taken on our device with the LED array, and Raspberry Pi 3B+. The objective 

of this time lapse was to test if all the components work together to clearly image small organisms. 

C. elegans were used as an example organism, and a time lapse was completed using the device to 

see how the organisms would react to rapidly changing light colors. We also wanted to verify that 

changing the interval at which pictures are taken would work by observing the change in seconds 

with each picture within the time lapse. At the beginning of the time lapse, photos were set to be 

taken every 2 seconds. One quarter of the way through, the interval was changed to take pictures 

every second. For the last third of the time lapse, the interval was set to take a picture every 3 

seconds. The color of the lights varied due to a preprogrammed script that came with the 8x8 

UnicornHat library. The overall time lapse was taken across 2 minutes and 13 seconds, and the 
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pictures from each second of the experiment were compiled at a rate of 20 fps, resulting in a 3 

second time lapse. The device was able to successfully capture images and create a downloadable 

time lapse video. An example image can be seen below in Figure 44 and the video can be viewed 

at https://youtu.be/tKdHw6qSjQs.   

 

Figure 44: C. elegans Under Multi-colored Light 

 Once it was determined that all of the components functioned together, we tested the ability 

of the device to function within an incubator. This consisted of testing the ability of the wireless 

signal to leave the incubator, as well as assuring that the device is not affected by the humidity and 

temperature of the incubator. The Raspberry Pi 3 B+ was put into an incubator with a power supply 

and the door was closed. In order to test the wireless capabilities a laptop outside the incubator 

attempted to log into the MotionEye User Interface. The laptop was able to login and see an image, 

meaning that the signal was able to exit the incubator. However, additional testing to determine 

signal strength from the closest access point was not done due to not having access to the labs in 

D-term. The command sudo iwconfig wlan0 or sudo iwlist wlan0 scan can provide the user with 

information such as signal strength in magnitude (not dB), bitrate, package delivery protocol, 

ESSID, and frequency band of the wireless signal [49]. With this wifi test successful it was 

important to assure that the device would not be affected by long term exposure to the conditions 

inside the incubator. Since the Raspberry Pi 3 B+ is fundamentally a circuit board, it was always 

planned to have it inside a case. This case would protect the majority of the Pi from the humidity 

within the incubator which was the greatest concern. The only areas of weakness for the case were 

the openings for the Raspberry Pi ports. In order to prevent any water entering these ports, the 

unnecessary openings were covered in a material, sold under the trade name Sugru, which hardens 

https://youtu.be/tKdHw6qSjQs
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into water-proof rubber after 24 hours. The remaining ports can be sealed after the device is set up 

for each new experiment, and the material removed at the end if necessary.  

5.2 Verification 

5.2.1 Experimental Results 

After assuring that the entire device works and can be used in an incubator the next step is 

to validate the ability of the device to work for the intended applications. A list of experiments to 

potentially run with the device were compiled by the team as shown in Table 16 below. There 

were two broad categories of experiments we found feasible, time lapse experiments which are 

interesting and closer to what the device would be used for at a high school level, and time lapse 

of more cutting-edge college level experiments. Time lapse ideas in the no column were eliminated 

for safety concerns, and ease of access of materials concerns. 

Feasible For Home Feasible In Lab No 

● Ice freezing 

● Swab some bacteria on 

agar and watch it grow 

● Food molding (e.g. 

strawberries) 

● Out window time lapse 

● Flower blooming 

● C. elegans 

● Ice melting 

● Ants eating food  

● Cell attachment in different 

materials with different 

hydrophilicities (different 

contact angles) 

● Decellularization of 

spinach leaves with fluid 

flow 

● C2C12 Mouse myoblast 

differentiation 

● Chemotaxis with 3T3 cells 

● Water evaporating 

● Reacting metal 

● Flower staining  

● Leaf drying up (from a 

flower somewhere) 

● Bean sprouts growing  

● Attach wires to power 

supply and put other end 

into water to watch it 

oxidize 

● Put metal in saltwater and 

watch it oxidize 

Table 16: Potential Experiments 

In terms of the first category planned experiments include ice freezing, food molding, 

flower staining, and bacterial growth on agarose. Unfortunately, due to the campus closure related 

to the Coronavirus Outbreak of 2020, the cutting-edge experiments were not able to be performed 

as the laboratories couldn’t be accessed. In order to still complete verification testing, each member 

of the team had an individual system in order to test the device from home. Two members had Pi 

3B+s and one had a Pi Zero. All of the Raspberry Pis were equipped with Motioneye. One member 
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with a 3B+ had USB Microscope 2 and the printed housing model. The other 3B+ system had a 

Raspberry Pi V2.1 camera and the Zero had USB Microscope 1. 

The first experiment run with the Pi Zero system was an attempt to watch bacteria grow on 

gelatin. Store brand jello was placed in one well of a 6-well plate and allowed to set. Once the jello 

was set bacteria was acquired from a cat’s mouth and swabbed onto the jello. This was monitored 

with the device for 12 hours, taking an image every 60s and a time lapse was created at a 40 frame/s 

rate. The device was successfully able to monitor the sample for the full length of time and the 

time lapse was easily created using MotionEye. Unfortunately, no growth can be seen in the time 

lapse but there is movement which is believed to come from the jello melting over the course of 

the experiment. A sample image of the jello is shown below in Figure 45 and the video can be 

viewed at https://youtu.be/lmnZLTp-rMQ. 

 
A: Jello at time 0h 

 
B: Jello at time 12h 

Figure 45: Picture of Jello Melting Taken with Pi Zero and USB Microscope 1 

 The second experiment run with the Pi Zero system was a multiday mold growth 

experiment. Cheese which had grown mold spots was placed in one well of a 6-well plate and the 

system was set up to take a photo every 5 minutes. The system recorded the mold growth for just 

under 5 days. These images were compiled into a single time lapse with a rate of 30 frames/s. An 

example image of the moldy cheese can be seen below in Figure 46 and the video can be viewed 

at https://youtu.be/lFgpFkF1l2U. 

 

 

https://youtu.be/lFgpFkF1l2U
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A: Mold on Day 1 

 
B: Mold on Day 5 

Figure 46: Mold on Cheese Viewed with USB Microscope 1 and Pi Zero 

  The other experiment we ran with the whole system involving C. elegans was a 

focus drift experiment. A time lapse of C. elegans was taken across 3 hours and an image was 

taken every second. The time lapse compiled images from every 5 seconds at a rate of 20 fps. The 

purpose of this experiment was to determine whether the presence of focus drift was a concern for 

our system. The results of this experiment are explained in Section 5.2.x. 

 
A: C. elegans at 0h 

 
B: C. elegans at 3h 

Figure 47: C. elegans Movement over 3 Hours 

 The next experiment consisted of taking a time lapse video of the new from a balcony. This 

particular experiment was done on two separate occasions. In both occasions, the device used 

consisted of a Raspberry Pi 3b+ microprocessor and a Raspberry Pi camera. For the first trial of 

the experiment, the device was set to take pictures at 1 frame per minute and left to run for about 

3.5 hours. The images were compiled into a time lapse video of 10 frames per second. For the 
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second trial of these experiments, the device was set to take pictures at 2 frames per minute for 

about 1.5 hours. Both trials successfully recorded the progression of the last few hours of natural 

sunlight and the sunset. Example images of what the time lapse videos for these experiments 

showed can be seen in Figure 48 below and the videos can be viewed at and the time lapse videos 

can be viewed at https://www.youtube.com/watch?v=cFQoCEsq_4I and 

https://www.youtube.com/watch?v=oJF5BBZKzks respectively: 

 
A: 1st Trial 

 
B: 2nd Trial  

Figure 48: Example Frames of  Two Trials Performed for Balcony View Experiment  

 We also conducted a flower experiment in which we attempted to capture a flower’s 

blooming process. This experiment was also done on two separate occasions. The time lapses for 

this experiment were taken using a Raspberry Pi 3B+ microprocessor and a Raspberry Pi camera. 

For the first trail, the device was set to take a picture every 3 minutes for 2 and a half days (about 

60 hours). For the second trial, the device was set to take pictures every 3 minutes for almost two 

days (about 40 hours). Both trials showed the meticulous process of a flower blooming. However, 

a lot of the process is lost in the first trial due to lack of illumination during night-time, so a 

lightbulb was installed for the second trial to be able to capture the entire process.  Example images 

of what the time lapse videos for these experiments showed can be seen in Figure 49 below and 

the videos can be viewed at https://www.youtube.com/watch?v=xY2RAhfInh8 and  

https://www.youtube.com/watch?v=9Vdx0hvJOzA respectively: 

 

 

 

https://www.youtube.com/watch?v=cFQoCEsq_4I
https://www.youtube.com/watch?v=oJF5BBZKzks
https://www.youtube.com/watch?v=xY2RAhfInh8
https://www.youtube.com/watch?v=9Vdx0hvJOzA
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A: 1st Trial 

 
B: 2nd Trial  

Figure 49: Example Frames of  Two Trials Performed for Flower Blooming Experiment  

 An ice melting time lapse was gathered as well. For this experiment a Raspberry Pi 3b+ 

and a Raspberry Pi camera were used to gather the images. The device was set to take pictures at 

2 frames per second for about 2 hours. This time lapse showed an ice melting naturally due to the 

difference in temperature between the ice block and the outside temperature (which was about 85 

degrees Celsius that day). Example images of the experiment can be found in Figure 50 below 

and the video can be viewed at https://www.youtube.com/watch?v=3yuzEA8iRbw: 

 
A: Initial Stages 

 
B: Final Stages 

Figure 50: Example Frames of  Ice Melting Experiment  

 We also conducted an experiment recording a spider’s activity for several hours. For this 

experiment, an indoor spider was collected and put inside an improvised chamber. The device used 

to record this experiment consisted of a raspberry Pi Zero microprocessor and a Raspberry Pi 

autofocus camera. An LED array was used as backlight and the device was set to record images 

https://www.youtube.com/watch?v=3yuzEA8iRbw
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for about two and a half hours. We were able to successfully perform a quantitative analysis from 

the images and data recorded from this experiment. Example images of the time lapse video for 

this experiment is shown in Figure 51 below and the video can be viewed at 

https://www.youtube.com/watch?v=ngtG7XjpiVc :  

Figure 51: Example Frame of Spider Activity Experiment 

5.2.2 Sensor Results 

5.2.2.1 Temperature and Humidity Results 

Three experiments were conducted to validate our choice to use the AM2302/DHT22 as 

our temperature and humidity sensor. The objective of our first experiment was to test the precision 

of the AM2302/DHT22 in comparison with an FDA approved medical device, the Cat. 16811-100 

Digital Thermometer by Allegiance, a Cardinal Health Company. We blew a hairdryer with the 

same configuration over both our temperature sensor and our thermometer at a specified distance 

and observed the change in time versus temperature. We did this to measure the R2 value to 

determine the precision of both the thermometer and our sensor. The results are shown in Figures 

52 - 57 below: 

https://www.youtube.com/watch?v=ngtG7XjpiVc
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Figure 52: Thermometer Temperature Graph vs. Time 

Figure 52 above plots the temperature vs. time for each trial, along with the computed R2 

value and linear regression equation. The three trials were plotted separately because plotting all 

the data together was potentially skewing the R2 value due to human error of the experiment. The 

procedure and possible areas for error will be described in Section 6.3.  

 

Figure 53: Trial 1 AM2302 Temperature vs. Time 
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Figure 54: Trial 2 AM2302 Temperature vs. Time 

 

Figure 55: Trial 3 AM2302 Temperature vs. Time 

In Figure 53 - 55 above, the trials are plotted separately, once again to ensure human error would 

not affect the R2 value of the sensor. 

 Another experiment we ran to better control the ambient temperature and humidity being 

read by the AM2302/DHT22 is we put our system in the oven and set the oven to 150 F. Ideally, 

we would have set our oven to 100 F, but it was unable to produce a controlled temperature that 

low. The objective of this experiment was to verify the AM2302/DHT22 can accurately read the 

ambient temperature, given that we are able to control the temperature of the environment it is in. 

The following graphs in Figure 56 and Figure 57 from the experiment were collected using 

ThingSpeak. 
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Figure 56: AM2302 Temperature vs. Time in Oven 

 

Figure 57: AM2302 %Humidity vs. Time 

According to the Samsung website, which is the brand of oven, which was used, calibrated 

consumer ovens can vary in temperature +25 F, which is in accordance with manufacturing 

standards [50]. Since the temperature was set to 150 F, the temperature sensor could have measured 

readings varying from 125 F - 175 F. The oven indicated it was done preheating the oven 5 minutes 

after the experiment started, at 21:58. This is important to note since the temperatures succeeding 

this time should be within the tolerance of the oven. 

5.2.2.2 pH Sensing 

Attempts to calibrate the RGB values to specific pHs were conducted to create a correlation 

between the two. This was done with the expectation that the color of a solution would change and 

its RGB values could be detected via image processing, as described in Section 4.4.7. Figure 58 

below shows images of solutions at different pHs taken with our system. 
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pH = 6.5, B = 82.58, G = 82.44, R = 81.61 

 
pH = 6.8, B = 79.32, G = 79.79, R = 78.67 

 
pH = 7.0, B = 77.35, G = 79.06, R = 78.99 

 
pH = 7.4, B = 79.02, G = 79.34, R = 78.68 

 
pH = 7.6, B = 79.28, G = 79.95, R = 79.38 

Figure 58: RGB values of Solutions taken at 250x Magnification (rounded to the nearest hundredth) 

It is clear that the images taken do not vary in color to the naked eye, and the program 

detected little variation in RGB values. This is likely due to a lack of contrast in the image. There 

are several possibilities for this, which will be discussed in Chapter 7. 

5.2.3 Data Logging 

Once ThingSpeak was chosen as the data logging software for this project, the next step 

was to undergo the process of creating instructions for its use and testing its functionality. The 

process of using ThingSpeak for Raspberry Pi data logging was to create a script in Python on the 

Pi which would run continuously and send the data captured with the attached sensors to the cloud 

log. Our advisor uses ThingSpeak in his lab and was therefore able to give us basic instructions on 
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how to use it which we adapted for our purposes. These adapted instructions for ThingSpeak use 

are included as part of our Step-by-Step assembly guide found in Appendix A. Once the code was 

created and set up to capture the data from a sensor, the functionality of ThingSpeak was tested by 

attaching a sensor to the Raspberry Pi and recording its output for multiple days. This test was run 

on the Raspberry Pi Zero system using a DHT11 Temperature and Humidity Sensor. The sensor 

ran continuously for 5 days. A sample of the data recorded by ThingSpeak can be seen below in 

Figure 59. 

 

Figure 59: DHT11 Temperature and Humidity Data Collected with ThingSpeak 

 Since the system is meant to run in an environment where it cannot be connected to a 

monitor while running, an SSH connection was used to access the Pi’s command window remotely 

from a laptop to run the code. Overall, the use of ThingSpeak was deemed effective for sensor data 

logging. 

5.2.4 Live Sample Tracking 

As a monitoring device potentially used for data analysis and observation, it is important 

that the device is able to obtain significant numerical data from the compiled videos or images. 

Quantification of the size, position and movement of an object within an image sequence can 

produce useful information for many studies and applications in the medical and biomedical 

engineering field. In order to assess this feature, we compiled a time lapse video of a spider inside 

an enclosed space to track and quantify its movement over time (Figure 60). In this case, the type 

of data obtained can help us understand important information about animal behavior. For 

example, patterns of activity relating to time of the day, patterns of movement in certain motion or 

direction to accomplish different goals, etc.  
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Figure 60: Image Sequence of the Spider Movement Over Time 

For this particular experiment, an indoor spider was collected and kept inside a 32x24mm 

SD card case as a type of cage or chamber. The device used to record the time lapse consisted of 

a Raspberry Pi Zero microprocessor and an autofocus Raspberry Pi camera. An LED backlight 

was placed underneath the case to create a bright background effect. The autofocus camera was 

placed about 6cm above the case. Motioneye was accessed via IP address and used to set automatic 

and continuous image collection at 1 frame per minute. To quantify, visualize and track the spider’s 

activity, we used the ImageJ program to perform image processing and segmentation. By 

processing and adjusting the image sequence, we were able to simplify the data by eliminating the 

unnecessary information within them and highlighting the important elements. Similarly, we used 

image segmentation techniques to translate the processed image sequence to quantitative data. 

First, we cropped out the border pixels that were not holding any important information (Figure 

61.A to 61.B); this means the sections of the images that the object of interest (the spider) did not 

appear in. Then, we converted the color images to a grayscale (Figure 61.B to 61.C). Following 

this, we reduced the background information by separating the background from the object of 

interest. This was done by generating a MAX Z projection of the image and subtracting it from the 

original image (Figure 61.C to 61.D). Then, we set a threshold so that the lighter pixels were 

easily distinguished from the darker pixels (Figure 61.E) . The best threshold is the one that best 

outlines and fills the object of interest in red. Lastly, to eliminate noise and for further specificity 

of the object, we set the program to consider particles with an area of 2 to 30mm^2 and circularity 

of 0 to 1 and replace the object with a representative ellipse in its place (Figure 61.F). Lastly, a 
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scale was created and calibrated based on known lengths identified in the image with their pixel 

equivalents calculated by the program.  

Figure 61: Image Processing and Segmentation Process 

After setting the appropriate parameters discussed above, a table with data resulting from 

the image sequence analysis was generated to display the frame number, area, position in the x 

axis, position in the y axis, angle and other useful information. The spider’s displacement was 

calculated from the x and y values using the distance formula and an excel sheet. Additionally, the 

spider’s displacement and orientation were graphed over time.  

 

Table 17: Snippet of the Data Table Generated Using ImageJ 

The initial time lapse by itself only offered a visual representation of the spider’s activity. 

However, combining the video with the data and the graphs generated by the data allows for a 

clearer and more specific interpretation of the animal’s behavior. For example, a change in 

displacement and orientation during the same time points in both graphs might represent 

exploration. No significant change in displacement or orientation might represent rest or feeding. 

A change in orientation but no change in displacement might represent turning movements, and 
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constant changes in orientation but small changes in displacement over a sustained period of time 

might represent web making. Higher activity at specific timepoints in a day might represent the 

animal’s tendency to be more active at certain times or conditions. The pattern for the spider’s 

behavior during the time lapse video can be observed in the figures below: 

 

Figure 62: Graph of the Spider’s Displacement Over Time  

 

Figure 63: Graph of the Spider’s Orientation Over Time 

We can observe from the graphs that from minutes 0 to 10, there is high displacement with 

changes in angular orientation, meaning the spider was most likely roaming around the enclosed 

space. From minutes 10 to 80, there is smaller displacement and some angular differences, 

meaning the spider was still roaming around but not as much as before. From minutes 80 to 100, 

we can see high displacement and angles again, meaning the spider went back to roaming all 

around, probably looking for the best place to start a web. From minutes 100 to 140, there is 

frequent angular change and small displacement, meaning the spider was most likely building a 
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web. By looking at the time lapse video around minutes 100 to 140, we can confirm that the spider 

was indeed building a web. And lastly, from minutes 150 to 250, there is almost no displacement 

and a couple of sudden angular changes, meaning the spider was probably resting and shifted 

positions a couple of times. This process demonstrates that we can successfully perform 

quantitative tracking of moving objects and organisms on the videos and images collected using 

our device. This assessment can be applied to cell and cell culture-related studies as well as many 

other biological organism monitoring applications. In this particular experiment, we were able to 

capture basic spider behavior including web building and we were able to extract quantitative data 

such as angular change, displacement and time duration through that process.  

Chapter 6: Final Design And Validation 

6.1 Meeting Objectives 

The main goal for this project was to create a device capable of remotely monitoring 

cell/organism cultures that would be more accessible than current gold standard devices. As we 

have previously discussed, our design objectives included allowing the user to have remote control 

and access to data, enhancing the accessibility of the device, making the device customizable and  

adaptable to any lab setting and application, demonstrating full functionality of the device through 

experiments and minimizing the need to take the device out of the controlled-environment 

chamber. These objectives were achieved by creating a small and inexpensive device that uses 

open source code for remote monitoring.  To achieve remote access and control of our device, we 

used Motioneye’s software interface, which allows the user to access the system from anywhere 

in the world just by knowing the device IP address. Through the software interface, the user can 

access a livestream camera view with the corresponding overlaid sensor data. The user also has 

the option to take still images and videos, compile time lapses, and download files. In order to 

make the device more accessible to a wider spectrum of potential users, we designed a device 

using inexpensive parts and components which ended up costing about $200 per unit. This price 

is significantly lower than the price of gold standard devices which can cost anywhere from $2,000 

to $200,000. Additionally, we made our device easily reproducible by making a step-by-step guide 

with customizable options to fit every lab setting, need and application. Each member of the team 

was able to successfully create a device from scratch and customize it using the step-by-step guide 
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based on the experiments we each performed. We were able to test the functionality of the device 

by gathering different time lapses with overlaid sensor data and using them to perform a 

quantitative analysis of the experiments. Based on these time lapse experiments, we determined 

that the device is capable of capturing images as frequent as 2 frames per second, which is enough 

to capture C. elegans movement and activity. Additionally, we also determined that the device can 

continuously record data if it is powered by an outlet. However, the longest recording time if 

powered by a battery pack will depend on the battery pack used. Lastly, we designed our device 

to be compact and comfortable in size when compared to gold standard devices. Our final design 

is 31cm tall, 11.2 cm wide and 11.2 cm long.  

6.2 Reproducibility 

In order to make this project easily reproducible, and accessible to use in real world settings 

we created a step by step guide to recreate the final design of the device and this guide can be 

found in Appendix A. The guide has subsections for the creation of the physical device, the 

software setup, how to create time lapses, optional features, and alternative design options for 

customization. Within the hardware assembly instructions is included the overview of how to put 

the microprocessor unit in its case and attach it to the SD card, power cord, and external mouse 

and keyboard as well as detailed instructions for how to print and assemble the device housing 

using the included 3D CAD models. These CAD models were made accessible for free online 

using Thingiverse so that all an end user who wants to recreate this device exactly has to do is 

download the STL files from the provided links and then 3D print the housing components and 

assemble. Links to the screws and wingnuts used for the housing are also included in the guide 

along with a full description and part numbers to ensure the purchase of the correct items. The 

software setup instructions include open source code and detailed instructions for the user to; 

download and set up the appropriate operating system on the Pi, connect to WiFi networks, 

download and install the MotionEye software, enable port forwarding, and how-to setup SSH 

which allows remote access to the Pi’s command terminal. The time lapse setup section of this 

guide details how to capture still images at set time points and download these images as a time 

lapse using the MotionEye software. The optional additions section details how to set up 

temperature/humidity sensors, pH sensing, data overlay on an image within MotionEye, data 

logging using cloud storage, and the setup for use of a mini display. The guide also includes a 
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section on troubleshooting wifi connectivity, and a list of additional parts that could be used in 

place of specific components to allow customization of the device. In order to verify the ease of 

reproduction of this device each team member used the step by step guide to successfully build a 

biomonitoring device. 

6.3 Experimental Methods 

Each component of this device had to be tested to verify it completed our desired operations 

before testing all the chosen components together. We first tried to connect our Raspberry Pi with 

MotioneyeOS to WPI WiFi. A Raspberry Pi Zero WH was being used due to it being in the original 

problem statement given by our advisor. When meeting with WPI’s NetOps, to connect the 

Raspberry Pi Zero WH with MotioneyeOS, it was discovered that MotioneyeOS could not connect 

to the network due to the timeout, as mentioned in Section 4.3.2. NetOps then created a set of 

instructions to connect a Raspberry Pi with Raspbian OS, which we used to connect our Pi Zero 

WH to WPI-Wireless. We then tried downloading and installing Motioneye on our Pi Zero WH, 

which was moving very slowly, as mentioned in Section 4.3.1. We decided to try downloading it 

on our 3B+, and the install process went much faster and successfully connected to the internet. 

After that, all of the potential imaging sources were evaluated by imaging a hemocytometer 

as shown in Section 4.3.3. Because we hadn’t decided on a lighting source yet, we used a pointed 

light source from our phones, which caused a very bright light in the corner of a picture, but 

diffused light amongst the rest of the picture, allowing us to observe enough contrast to 

differentiate the quality between imaging sources. In preliminary testing of the image sensors, 

pictures were captured using the manufacturer’s recommended software. Once we had chosen an 

imaging source, we captured an image of the hemocytometer using the Motioneye interface, as 

shown in Section 5.1. 

From seeing the effects of using a pointed light source and doing background research, the 

team was inspired to use a light source that allows for the position of the lighting to be controlled 

via programming, such that we could test the best lighting configuration. After purchasing a light 

source based, preliminary photos and time lapses were taken with multiple biological specimens, 

such as C. elegans and a hair, as shown in Figures 39 and 41  in Section 5.1. The original lighting 

configuration tested was with all of the LEDs in the array on, where we saw a disco-light effect, 

which was likely due to the fact that the white light from the LEDs is made up of a red, green, and 
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blue LED. Since this reflection impedes the user’s ability to view the sample, we tried the dark 

field lighting method used by Watanabe [22] that we found in our background research and 

reimaged the hair, as shown in Figure 42 in Section 5.1. 

To test the precision of the AM2302/DHT22, we blew a hairdryer over  Cat. 16811-100 

Digital Thermometer by Allegiance, a Cardinal Health Company and the AM2302/DHT22. The 

heat settings on the hairdryer were the same for all trials, where it was set to low with a cool blast. 

The cool blast was set since the thermometer’s temperature sensing range was less than the 

nominal heat of the hairdryer. The hairdryer was placed two inches away from both temperature 

sensing devices and it was made sure that the air was directly hitting the front of each device. 

However, it was possible for error to be introduced since the thermometer and the hairdryer were 

being held as opposed to being clamped to a structure, due to lack of supplies. The hairdryer was 

especially difficult to hold steadily since it took extra pressure to press the cool blast button. 

Temperature readings were taken by running the temperature script that came with the 

DHT22/AM2302 library in the terminal. The script was run as often as possible by the user. It was 

not possible to loop through this script automatically for the duration of the experiment as it would 

run out of RAM after 8 consecutive readings. Using ThingSpeak for this experiment was not 

possible since the base subscription for ThingSpeak updates the graph every 15 seconds, and the 

thermometer readings changed every second, meaning we wanted our AM2302/DHT22 sensor 

readings to be at a similar interval. After that, the data points of the temperature vs. time reading 

were plotted for both the thermometer and the AM2302/DHT22. Each trial was plotted separately 

as to not skew the R2 value of each trial, which indicates precision. The higher an R2 value of a 

curve, the stronger the correlation is, which indicates precision because it means the data points 

taken are following a clear pattern. The regression for both sensors was compared to temperature 

vs. time data of other temperature sensors to ensure the correlation was legitimate. 

To test accuracy of the AM2302/DHT22, the sensor was placed in the oven on a tray, along 

with a battery pack, and the Raspberry Pi 3B+. The oven was set to 150 F since that was its lowest 

possible setting. For this experiment, data logging with ThingSpeak was set up to automatically 

graph the change in humidity and temperature. Using ThingSpeak, as opposed to  manually 

logging data as described in the previous experiment, was possible since we were not comparing 

the AM2302/DHT22 to any other temperature sensor. So, we did not have to take another sensor’s 

update rate into consideration. The experiment was run long enough to observe 3 peaks in 
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temperature and humidity. The time at which the oven added more heat to the environment was 

observed to occur right before the humidity and temperature spiked. All the temperature readings 

after the oven was done preheating were checked to be within the tolerance of the oven’s 

temperature. During this experiment an attempt was made to take a time lapse of the Cat 16811-

100 Digital Thermometer, as used in the hair dryer experiment. This would have added further 

validity to the accuracy to our AM2302 sensor since it would be compared to an FDA approved 

medical device. However, the microscope that was reading the digital readout on the thermometer 

failed due to not being suitable for temperatures greater than 100 F. Additionally, the 

thermometer’s readout range was significantly less than 150 F, tapping out at around 108 F, 

meaning the thermometer was not the best temperature sensor to compare the AM2302/DHT22 

with during an experiment in the oven. Therefore, this experiment was reattempted with an analog 

temperature sensor that provides readouts greater than 150 F and a Raspberry Pi V2.1 Camera. 

However, this experiment was not able to be completed as the analog temperature sensor had to 

be far enough away from the camera in order to record the changing temperature, and the tools to 

do this were not available. It was theorized that the thermometer could be taped to the oven door, 

but heat resistant tape was not available. It was also theorized that the thermometer could be hung 

from a shelf, but there was a concern that the string would burn. Ideally, a configuration would’ve 

been found if we had access to the labs on campus, which was not possible due to COVID-19. 

Also, the Raspberry Pi V2.1 Camera could not be focused in the oven due to a lack of light, despite 

the oven’s light being turned on. 

For pH development we had to test each portion of the code. The RGB value of one pixel 

of an image taken with our system was analyzed and printed to the terminal to ensure RGB values 

could be analyzed. We then wrote a nested for loop around this command to retrieve the RGB 

values of the pixels in  a 2 x 2 area, and then 10 x 10. As mentioned in Section 4.4.7, this results 

in a 2D array, where the elements in the outer array correspond to the number of pixels, and the 

elements in the inner array correspond to B, G, and R values. We then expanded this for loop to 

analyze the RGB values of the height and width of the image, resulting in a large 2D array, since 

every pixel of the image was being analyzed. We then tested averaging the RGB values using 

np.average with axis = 1 to ensure the output was a 3-element array, where each element was a B, 

G, or R value. An explanation of the averaging axis of this command is in Section 4.4.7. The next 

step was testing to make sure the program was pulling the most recent picture within the specified 
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data folder in the camera configuration folder. We took a picture with our microscope that was 

completely black and loaded it into the program using a glob iterator, as mentioned in Section 

4.4.7, and analyzed the RGB value. We then downloaded that picture to our desktop and analyzed 

its RGB value using Paint software to ensure the RGB values matched up. This test also proved to 

us that the program was detecting RGB values for different pictures. To test the picture was being 

taken from the most recent folder, we ran this test again, except with two glob iterators, one for 

file path within the camera configuration folder and one for picture within the most recent file 

path. We ran this code with the expectation that the RGB values received would be the same as 

that of the previous test, where we only retrieved the RGB values of the most recent picture in a 

known file path. 

 To calibrate the correlation between RGB and pH, solutions with a pH of 6.5, 6.8, 7.0, 7.4, 

and 7.6 were prepared. These solutions were prepared by adding baking soda to water, since baking 

soda’s most active ingredient is NaCO3, sodium bicarbonate. To measure the pH of these solutions, 

pH paper sticks were used that change color depending on the pH of the solution. The legend to 

determine what the corresponding pH was for each color of the paper stick came with the container 

of pH sticks. Originally, each solution was imaged using the dark field microscopy method, as 

described in Section 5.1. After seeing a lack of contrast to determine the color of solution, bright 

field microscopy was also attempted to see if that was a better technique to create contrast in the 

solution. 

6.4 Standards 

For this project, we outlined a set of standards in order for our device to be reproduced 

successfully and in compliance within regulations while still being able to ensure a quality product. 

The standards we highlighted are based on different aspects of our device. For example, the UL 

60950-1 set of standards regulates the usage of computer and electronic equipment appropriately. 

The ISO 9000 regulates the usage and development of software coding. The IEEE 802.11 standard 

series regulates the wifi usage and the ISO 20387 standard regulates the appropriate usage of 

microorganisms for studies and data collection.  
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6.5 Global Impact 

 6.5.1 Economics 

The low cost of producing this device would directly affect the economics of labs that are 

looking to use remote monitoring devices. The current gold standard devices which remotely 

monitor cultures while inside an incubator cost around $2,000 [8]. This means that these devices 

are inaccessible for many labs and programs. Our device is only around $200 to make which means 

that it can be accessed by low-resource programs and it makes the device more highly reproducible. 

6.5.2 Environmental Impact 

The biggest environmental impact that this project has is the fact that the housing is made 

out of plastic. Plastic was chosen for this project because it is cheap and accessible. However, the 

use of plastic for these purposes could potentially increase the amount of plastic entering landfills 

and therefore the environment. Specifically, because of the nature of the housing design, the 

process of 3D printing requires scaffold material to be printed to support them. Once the pieces 

are done printing this scaffold material is immediately thrown away. Since the device itself is 

durable and reusable however, there is ultimately not much waste produced per device. 

6.5.3 Societal Influence 

This project could potentially make fun science experiments using time lapse more 

accessible to high school and early college level students even in low resource environments. This 

socially influences the ordinary person by opening more opportunities for students to get an 

interest in higher level science, and potentially pursue careers in science or engineering. 

Additionally, this device can allow more labs access to time-lapse microscopy and continuous 

monitoring for experiments at a low cost which has the potential to further the knowledge gained 

from research which could positively affect society as a whole. 

6.5.4 Political Ramifications 

Likely, this project would not have any effect on the culture of other countries, or on the 

global market. The largest effect this may have would be making science more accessible in low 

resources areas of other countries as well. Additionally, this project may affect the market for the 
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gold standard devices though it seems unlikely. This project could also potentially affect global 

politics through the increase of knowledge on science as it applies to public health. 

6.5.5 Ethical Concerns 

This project does not have any negative ethical concerns, and on the contrary brings up a 

discussion of the ethics of its gold standard devices. The high cost and lack of accessibility of these 

devices means that they are only available to the wealthy. This brings up the ethics of having such 

a device which could advance biomedical research be available to such a low number of 

researchers. Our project opens this technology up to more researchers so that the positive effects 

of its use can be more widely experienced. 

6.5.6 Health and Safety Issues 

The only health and safety issues related to this device come from the fact that it involves 

electricity and electronic components which if mishandled could lead to potential harm to the user. 

Additionally, the small parts such as the screws and wingnuts should be kept away from small 

children as they could pose a choking hazard. 

6.5.7 Manufacturability 

This project could be very easily reproduced. Attached as an appendix to this paper is a 

step by step guide on how to create this device including links to access the open source code used 

and the CAD models made of the housing design. This guide allows anyone to recreate the device 

and gives tips on how they can modify it for potential different desired applications. It is easily 

reproducible at a large scale as well because of the low cost of the materials, and relative ease of 

manufacture and assembly of the parts. 

6.5.8 Sustainability 

This project requires the use of electricity and is made of electronic and plastic parts. To 

make this project more sustainable, renewable energy could be used to power the device, and all 

electronic and plastic pieces should be recycled properly. For example, there are solar battery packs 

that can be used to power the device instead of using electricity from an outlet.  
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Chapter 7: Discussion 

 The preliminary testing of this device showed that each of the components could function 

in harmony with each other in order to capture images. This means that the main functional 

components of the device were working as expected so that we could move onto the next stage of 

verification by testing the device on actual experiments to collect data. The colored C. elegans 

time lapse was the first time lapse we took with small organisms with the whole device to verify 

all the components integrated well with each other. These preliminary tests cannot be taken to 

mean that the device definitively works as the housing was not used to hold the components in 

these experiments, and the tests were only run for a very short amount of time. However, these 

results were very promising in showing that the device could meet the main objectives of ensuring 

the device can do microscopy without external components, including a wireless feature to 

livestream culture, and demonstrating functionality.  

 The additional verification experiments run on the complete system each showed that the 

system could meet various objectives of the design goal. Overall, the creation of a step-by-step 

assembly guide meant the completion of an objective, and by using this guide to create separate 

systems for each group member to run experiments with, we met the objectives of ensuring use in 

any setting and customization for user applications. 

The results of the jello experiment show that the device has complete functionality in 

regard to being able to capture a time lapse over the course of multiple hours. The cheese mold 

growth experiment was able to show more functionality in terms of an increased experiment 

duration, and a higher level of magnification which was required to see the mold well. This 

experiment’s results also showed that the USB microscope did not have any noticeable focus drift 

over the course of an almost five-day long experiment. The plain C. elegans time lapse was taken 

to determine the presence of focus drift with the USB microscope. The sunset balcony view 

experiments were able to demonstrate the device can work under high temperature conditions and 

is able to record for prolonged hours under said conditions. The flower blooming experiments 

show the device will continuously record images for as long as needed if the device is connected 

to a power outlet and a steady internet connection. These experiments were run for about three 

consecutive days. The ice melting experiment shows the device can be set to take pictures at a 

framerate fast enough to capture the fast-changing stages of ice melting. The spider activity 

experiment shows the device is able to record data that can be used for a quantitative analysis. The 
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live sample tracking analysis we performed using the spider activity experiment video 

demonstrates that we can successfully quantify the position, shape and movement of objects within 

our time lapse videos. This assessment can be very useful when monitoring cells or C. elegans in 

order to track movement or behavior over a period of time. All of these experiments show the 

versatility of our device designs by showing that both the Pi 3B+ and the Pi Zero WH work, that 

both of the USB microscopes and the Pi camera worked. Additionally, these experiments show 

that images can be compiled into time lapses both within MotionEye, and by downloading the 

images and compiling them externally. Additional testing with the Pi Zero device showed that a 

2-fps frame capture rate could be achieved on the Pi as long as it could maintain a streaming rate 

above 2 fps. This streaming rate was unreliable though and showed that the Pi Zero has issues with 

high frame rate speeds. Due to the unreliable nature of this rate, a full experiment was not able to 

be run showing this 2-fps frame capture rate. 

A summary of the time lapse videos and a link to them are shown in Table 18 and Table 

19 respectively.  

Ex. 

# 
Sample Device Lighting Framerate Duration 

Total 

Frames 
Observations 

1 
Colored 

C. elegans 

Pi 3B+ + 

USB 

microscope 

 8x8 

UnicornHat 

LED Array 

1 frame 

every 

second  

2 mins  
 120 

frames 

Whole system is 

able to take time 

lapse videos with 

clear image  

2 

Bacteria 

growth on 

gelatin 

Pi Zero + 

USB 

microscope 

 USB 

Microscope 

light 

 1 frame per 

minute 
 12 hours 

720 

frames  
Melting of jello  

3 
Mold growth 

on cheese 

Pi Zero + 

USB 

microscope 

 USB 

Microscope 

Light 

1 frame 

every 5 

minutes  

 120 hours 
1440 

frames  

Spread of mold 

on pieces of 

cheese  

4 
White Light 

C. elegans 

Pi 3B+ + 

USB 

microscope 

 8x8 

UnicornHat 

LED Array  

1 frame 

every 

second  

3 hrs.  
10,800 

frames  

No focus drift 

over 3 hours  

5 
Balcony 

view #1 

Pi 3B+ + Pi 

camera 

Natural 

light 

1 frame per 

minute 
3.5 hours 

210 

frames 

Progression of 

sunset 
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6 
Balcony 

view #2 

Pi 3B+ + Pi 

camera 

Natural 

light 

2 frames 

per minute 
1.5 hours 

180 

frames 

Progression of 

sunset 

7 
Flower 

Blooming #1 

Pi 3B+ + Pi 

camera 

Natural 

light 

1 frame 

every 3 

mins 

60 hours 
1,200 

frames 

Progression of a 

flower blooming 

8 
Flower 

Blooming #2 

Pi 3B+ + Pi 

camera 

Natural 

light + 

lightbulb at 

night 

1 frame 

every 3 

mins 

40.8 hours 
816 

frames 

Progression of a 

flower blooming 

9 Ice melting 
Pi 3B+ + Pi 

camera 

Natural 

light 

2 frames 

per minute 
2 hours 

240 

frames 
Ice melting 

10 
Spider 

activity 

Pi Zero + Pi 

autofocus 

camera 

LED array 

backlight 

1 frame per 

minute 
2.5 hours 

152 

frames 

Spider web 

building 

Table 18: Summary of Time-Lapse Experiments 

Experiment # Link to the time lapse videos 

1 https://www.youtube.com/watch?v=tKdHw6qSjQs 

2 https://www.youtube.com/watch?v=lmnZLTp-rMQ 

3 https://www.youtube.com/watch?v=lFgpFkF1l2U 

4 https://www.youtube.com/watch?v=YDtAWWe8TzY 

5 https://www.youtube.com/watch?v=cFQoCEsq_4I 

6 https://www.youtube.com/watch?v=oJF5BBZKzks 

7 https://www.youtube.com/watch?v=xY2RAhfInh8 

8 https://www.youtube.com/watch?v=9Vdx0hvJOzA 

9 https://www.youtube.com/watch?v=3yuzEA8iRbw 

10 https://www.youtube.com/watch?v=ngtG7XjpiVc 

Table 19: Link to the time lapse videos 

https://www.youtube.com/watch?v=tKdHw6qSjQs
https://www.youtube.com/watch?v=lmnZLTp-rMQ
https://www.youtube.com/watch?v=lFgpFkF1l2U
https://www.youtube.com/watch?v=YDtAWWe8TzY
https://www.youtube.com/watch?v=cFQoCEsq_4I
https://www.youtube.com/watch?v=oJF5BBZKzks
https://www.youtube.com/watch?v=xY2RAhfInh8
https://www.youtube.com/watch?v=9Vdx0hvJOzA
https://www.youtube.com/watch?v=3yuzEA8iRbw
https://www.youtube.com/watch?v=ngtG7XjpiVc
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The results of our data logging experiment show that the device is able to wirelessly 

communicate data to an external cloud server so that it can be recorded and logged successfully. 

Additionally, these results gave important information about the feasibility of using SSH to run 

long term command programs on the Raspberry Pi module. 

Looking at the results from the first temperature experiment we were able to determine that 

each trial had high R2 values within a 10% confidence interval for both the thermometer and the 

temperature sensor, as shown in Figures 45 - 48 in Section 5.2.2.1. However, they do follow 

different regressions, as the thermometer follows a linear regression, whereas the AM2302/DHT22 

follows an exponential with the equation y = A(1-ekt), where A is the asymptote the regression 

approaches and k is the rate of change. This is likely because the thermometer uses a different 

sensing technology than the AM2302/DHT22, or the raw sensor data from the thermometer is 

digitally processed to output readings linearly. 

The results from the second temperature experiment tell us whether the temperature sensor 

was accurately reading the temperature in the oven. As mentioned in Section 5.2.2.1, the 

temperatures read by the AM2302/DHT22 were expected to be in the range of the oven’s tolerance, 

125 F - 175 F, after the oven had finished preheating around 21:58. Data points at 21:58:17 and 

21:58:42 read temperatures of 123.98 and 124.52, respectively, meaning these two temperature 

readings were outside the tolerance of the oven. It is likely this occurred due to a lag in the sensor 

readings in comparison to its environment. However, starting at 21:58:52, the temperature sensor 

was reading values from 125.06 F - 139.82 F, meaning the rest of the values were within the oven’s 

tolerance. 

During pH calibration, it was discovered that not enough contrast could be made using our 

dark field setup to determine the color of the solution. This is possibly due to the fact that the 

camera automatically adjusts to remove hues of the image. This is hypothesized because during 

calibration, it was observed that the hue of the image on the interface changed from being a light 

purple upon initial illumination of the device to black and white after a second had passed. 

Therefore, the white balance was adjusted within the motioneye interface, such that no auto white 

balancing would occur, and no change was seen. Another reason a lack of contrast could have 

occurred is because the image sensor was only magnified to look at the solution in a culture plate 

during calibration, meaning it had no other objects in view to compare the color of the solution to. 
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We also tested a bright field setup to see if this would change due to more light being 

transmitted through the sample. However, the bright field configuration showed even less contrast, 

as the sample appeared as if it were just a clear solution. Adjustments to white balance were made 

again, such that no auto white balance would occur, and no change was seen.  Recommendations 

on future testing and development are written in Section 8.2. 

Overall, we were able to create a device that costs about $200 which is significantly cheaper 

than the gold standard devices that can cost up to $200,000. This device is able to communicate 

wirelessly with a remote monitoring software, and capture images without requiring components 

to exit an enclosed environment. Through MotionEye’s user interface, the user can remotely access 

data and control of the system just by connecting to it using the device IP address. Through the 

use of a USB microscope this device can reach magnification levels of 10x to 250x the original 

sample size. Using the built-in features of MotionEye, the user can set specific time intervals for 

image capture and compile these images into time lapse videos. Additionally, temperature and 

humidity can be read, logged, and graphed on a ThingSpeak channel. The temperature and 

humidity can also be overlaid on the Motioneye interface so that the user can visually see 

environmental changes during the experiment. Because pH is determined via image processing, it 

requires an image to be taken in, as mentioned in Section 4.4.7. Therefore, it can only run when 

pictures are being taken in interval snapshots to be compiled into a time lapse. 

 There are some limitations to the device we have created, but these did not affect the 

device’s ability to achieve the project objectives and can be addressed as part of future work. As 

mentioned in the previous paragraph, reading and overlaying the pH is only possible when taking 

images for a time lapse, meaning a user is restricted to only taking time lapses if they would like 

to observe pH. Additionally, because the time lapses are grouped by date, if a multiple-day time 

lapse is being run, the file path must also be changed to ensure the image processing program is 

pulling the most current picture in the time lapse Also, as mentioned in Section 4.3.1, the current 

needed to power the Raspberry Pi 3B+ for the maximum number of days would be a battery pack 

with 135,600 mAh, which is not commercially available for consumers. While the alternative 

design choice of the Pi Zero would allow for use of a commercially available battery pack, the 

Zero has limitations which were discovered through our experimentation which showed issues 

with large images, and inability to operate with high frame rates. Therefore, with the current 

design, a power wire would need to exit the incubator to be plugged into a wall outlet. Another 
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limitation of the current device is the focus control. Currently, with the use of an USB microscope, 

the microscope must be focused manually before the experiment is begun. Our long-term 

experiments showed that there was no noticeable focus drift over the course of five days, but it 

could become an issue once the device is inside an incubator, or if the experiment is longer than 

five days. If focus drift were to occur, the user would have to manually refocus the microscope 

which would potentially require interrupting the experiment. An additional limitation of the current 

device design is that the housing is made of PLA plastic and is most accessible to those with 3D 

printers. There are services that will 3D print based off of designs which users could utilize to get 

the housing pieces if they do not have a 3D printer but depending on the service this could make 

the device slightly more expensive to create. Additionally, we were unable to test the effects of 

prolonged high humidity on the plastic housing. The housing also poses a similar limitation to the 

USB microscope in the fact that the component holders need to be manually positioned so if 

something were to become misaligned during an experiment the user would have to manually 

adjust. Another limitation of this device is the fact that in order to monitor multiple samples at 

once, such as in a 6-well plate, multiple image gathering sources are required. This can be achieved 

using multiple hollow rods on the same base, and multiple image gathering sources plugged into 

the same microcontroller. This increases the bulk of the device however and is cumbersome to the 

monitoring of more than two wells simultaneously. If multiple samples are to be studied in separate 

plates however, this device is ideal as its small size means that many can fit in an incubator at 

once. In terms of software interface, downloading the outlined software used for our device might 

be challenging for individuals with limited coding experience. Despite providing a step-by-step 

guide that describes how to go through the process in detail, sometimes the user has to troubleshoot 

some steps in order to get it right, which might not be easy without code experience.  

Chapter 8: Conclusion and Recommendations 

8.1 Conclusion 

 Overall, the results of our testing show that the final device design meets all of the project 

objectives. The final device shows full functionality and is capable of remotely monitoring a 

sample without external components and wirelessly captures images with overlaid data which is 

logged in a cloud server mitigating the need to take the sample out of the experimental 
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environment. Additionally, this device is customizable, can have dimensions as small as 15 cm x 

11cm x 11cm, and a step by step guide was made to show how to recreate the device making it 

ideal for use in any setting. This device meets all of these objectives and can be made for the low 

cost of $150-$200 dollars which represents a one-hundred-fold decrease in cost as compared to 

the gold standard. This project represents the creation of an effective biomonitoring device which 

can be made widely accessible for use in classrooms and laboratories all around the world without 

the issue of high cost or requiring a high-level understanding of coding or CAD modeling as the 

code and models are all open source. 

8.2 Recommendations 

An important next step for this project would be to test our device in a real laboratory 

environment in which the device can monitor organisms over a sustained period of time. An 

appropriate assessment would be monitoring a cell culture inside an incubator and evaluating the 

device performance in terms of image quality, sensor readouts and resistance to the incubator’s 

environment on a long-term basis. Additionally, we recommend adding and testing a broader 

selection of sensors to compliment the compiled data. Some useful sensors to monitor biological 

organisms would be light, oxygen and carbon dioxide sensors. We also recommend developing an 

automated housing component with motorized movement that is able to withstand high humidity 

on a long-term basis. Automating and motorizing the device housing would even further mitigate 

the need to take the device out of the chamber for any adjustments needed. In order to address 

additional limitations of our device such as the potential for focus drift, we recommend that future 

work look at the integration of the 5MP Autofocus camera into the device. Future testing to create 

enough contrast to generate pH values from RGB values can be done by using another camera 

with a lower magnification such that contrast can be viewed between the solution and the sides of 

the plate. Also, a white paper can be placed opposite to the image sensor on top of the culture plate 

to create contrast between the color of the solution and the white background. Also, because of 

lack of lab access due to COVID-19, this calibration could not be done with cells, whereas the 

presence of cells could help determine contrast between the color of the solution. If color cannot 

be determined, despite creating further contrast between the solution and other items in the photo, 

it is recommended that the image be translated into grayscale in the image processing program, 

and the intensity of the greyscale is analyzed, as phenol red causes a change of the color of solution 
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ranging from yellow to magenta as the solution becomes more basic. Therefore, on a grayscale 

this would be perceived as less gray to more gray, meaning the intensity of the grayscale could be 

correlated to pH. It is also recommended that the auto white balance for the pH program is turned 

off by modifying the camera configuration files, as opposed to through the interface. This can be 

attempted by adding “mmalcam_control_params -awb greyworld” (without quotation marks) to 

“Extra Motion Options” in the motioneye.conf file. Future development is also required to ensure 

the file path in the program doesn’t need to be changed daily due to time lapses being separated 

by date. This can be attempted by changing rollover to manual in the motioneye.conf file by 

changing ffmpeg_timelapse_mode. 

8.3 Personal Reflection 

A wide range of engineering and scientific course materials were found to be incredibly 

useful and were directly applied in this project. Many of the principles used in our preliminary 

design phase were taught in Biomedical Engineering Design (BME 3300) and MQP Capstone 

Design (BME 4300). In completing our background research for this project, we drew on 

information learned in multiple BME and ECE courses including Cellular Engineering Lab (BME 

3813), Biomedical Signals, Instruments, and Measurements (BME 2210), Biomedical Imaging 

(BME 4201), and Introduction to Communications and Networks (ECE 2305). Concepts from 

Electromagnetic Theory (ECE 2112) were used to hypothesize any interference between the 

wireless signal and the incubator structure. In order to determine important design requirements 

for our microprocessor, concepts from Embedded Computing in Engineering Design (ECE 2049) 

were referred to. When it came time to finalize the design elements and create our custom housing, 

the team heavily relied upon the use of Computer Aided Design Software. The knowledge of how 

to use this software came from a team member’s experiences in high school. The process of 3D 

printing the components was learned both from this team member’s experience and working with 

Rob Kirch to train us on the BME department machines. Intro to Material Science (ES 2001) was 

helpful in determining the necessary properties of the materials used in creation of the housing. In 

regard to the coding work necessary to install and run the various programs used in the creation 

and operation of this device Computer Science classes such as Intro to Program Design (CS 1101) 

and Introduction to Programming for Non-Majors (CS 1004) were useful. Biomedical Signals, 
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Instruments, and Measurements (BME 2210) and Biomedical Sensors Laboratory (BME 3012) 

were also helpful for the sensing portion of this project. 
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Appendix A: How To Build Your Own Internet-Connected 

Biomonitoring Device 

1.0 Materials: 

1.1 Set Up and Programming 

● Monitor  

● USB Keyboard 

● USB Mouse 

● Wifi  

● HDMI cord 

● Micro SD card (16GB+) 

● Micro SD to SD card adapter 

● Micro USB Power cord (preferably with “on/off” switch) 

1.2 Computer Unit   

● Raspberry Pi 3B+ 

● Raspberry Pi 3B+ case 

○ Top in smoke gray - Product 2244 from Adafruit 

○ Bottom in smoke gray - Product 2256 from Adafruit 

1.3 Monitoring Device 

● CAD housing pieces  

● Brass wing nuts - Part # 92771A471 from McMaster-Carr 

● 2” Long Stainless Steel Phillips Flat Head Screws - Part # 91771A120 from McMaster-

Carr 

● USB Microscope 

● UnicornHat 8x8 LED Array 

○ 3 GPIO wires are necessary to connect the LED Array to the Pi 

1.4 Optional 

● Temperature and Humidity Sensor (DHT22/AM2302) 

○ GPIO wires are necessary to connect the sensor to the Pi 

● Adafruit Mini PiTFT 1.14 Display 

● HDMI to VGA adapter in case monitor doesn’t have HDMI port 

 

2.0 Hardware Assembly Instructions: 

2.1 Imaging Unit 

1. Put Raspberry Pi inside its case  

2. Insert micro SD card with metal pads facing the board 

3. Plug power cord into PWR IN port 

4. Plug HDMI cord in indicated port to connect it to the monitor  

https://www.adafruit.com/product/2244
https://www.adafruit.com/product/2256
https://www.mcmaster.com/92771a471
https://www.mcmaster.com/91771a120
https://www.mcmaster.com/91771a120
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5. Plug in the mouse and keyboard in USB ports 

2.2 Housing 

1. Component holders and Rod: 

a. Download STL files from links found below 

i. Raspberry Pi 3B+ Holder: 

1.  https://www.thingiverse.com/thing:4252999 

ii. Microscope Holder: 

1. https://www.thingiverse.com/thing:4253013 

2. https://www.thingiverse.com/thing:4253018 

iii. 100 mm Plate Holder: 

1. https://www.thingiverse.com/thing:4253022 

iv. 50 mm Plate Converter: 

1. https://www.thingiverse.com/thing:4253027 

v. 6-well Plate Holder: 

1. https://www.thingiverse.com/thing:4253047 

vi. Rod: 

1. https://www.thingiverse.com/thing:4253063 

b. If you need to edit any of the components the original Solidworks files can all be 

found here: 

i. https://www.thingiverse.com/thing:4253075/files 

c. Once you have downloaded the STL files they are ready to be printed. The parts 

can be printed in basic PLA plastic. In terms of printing you have 2 options: 

i. If you own or have access to a 3D printer such as a MakerBot you can 

print these files yourselves.  

ii. If you do not have access to a 3D printer, you can have the parts printed 

through a service such as can be found in this article: 

https://www.allthat3d.com/best-3d-service-online/ 

d. If neither of these options for acquiring the housing elements work for you, the 

housing can be recreated out of other materials/objects found around the house as 

necessary. 

2. Screws and Nuts: 

a. The screws which are linked in the supply section of this document are the exact 

ones which the STL files have been designed to fit. 

i. The nuts which are linked in the supply section of this document are the 

nuts we recommend to pair with the screws which are linked in the supply 

section of this document. 

b. If you plan to use other screws the CAD files will need to be edited according to 

the diameter of the screw head and tail of the new screws. 

i. Additionally, you will need to find new wingnuts to work with your new 

screws. 

https://www.thingiverse.com/thing:4252999
https://www.thingiverse.com/thing:4253013
https://www.thingiverse.com/thing:4253018
https://www.thingiverse.com/thing:4253022
https://www.thingiverse.com/thing:4253027
https://www.thingiverse.com/thing:4253047
https://www.thingiverse.com/thing:4253063
https://www.thingiverse.com/thing:4253075/files
https://www.allthat3d.com/best-3d-service-online/
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3. Assembly: 

a. The two halves of the rod are designed to be printed separately and then snapped 

together. If there is wiggle room between the peg and hole, the rod can be glued 

together.  

i. If the standard rod height is not long enough for your purposes, a rod 

extender is included in the files which can be used to add extra height. 

b. Once the rod is assembled, the additional component holders can be attached 

using the screw and wingnuts.  

i. Each component holder can be attached at the desired height by feeding 

the screw through the hole in the holder and then the hole in the rod.  

1. The wingnut is screwed on to the back side of the rod to hold the 

“shelf” in place and can be loosened to adjust the height of said 

“shelf”. 

ii. For the Microscope holder, the same screws and wingnuts are used to 

attach the two halves of the holder to each other around the microscope. 

1. In order to line the microscope up to the hole in the plate holders 

and view the sample,two additional wingnuts can be used to adjust 

the microscope position within the x-y plane. 

4. Tips: 

a. If the middle where the pieces of the rod meet expands and the channel is too 

wide you can squeeze the sides while tightening the nut in place to ensure that the 

shelf won’t fall 

b. The shelves can be placed at various heights, but if using a usb microscope it is 

recommended to place it as close to the base as possible for maximum balance of 

the device 

2.3 Lighting Setup without Temperature + Humidity Sensors 

1. Place UnicornHat 8x8 LED Array on Raspberry Pi header 

a. Make sure pins are properly aligned to the openings on the LED array 

b. Push down to ensure none of the header pins can be seen 

2. Snap the lid of the case onto the Raspberry Pi case 

a. Make sure the notches on the lid are aligned with the notches on the case 

3.0 Software Set Up Instructions: 

3.1 Operating System 

For the purposes of this device, download Buster with Desktop and Recommended Software 

onto the SD card 

1. Insert the SD card into your computer  

2. Go to https://www.balena.io/etcher/ and download the BalenaEtcher application to your 

computer by clicking on the download button for your corresponding OS (i.e macOS, 

Windows 10, ect 

https://www.balena.io/etcher/
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3. Go to https://www.raspberrypi.org/downloads/raspbian/ and download “Raspbian Buster 

with Desktop and Recommended Software” as a ZIP file to your computer   

4. Expand the downloaded Buster zipped file (By just double clicking on it on macOS). It 

should be an .img file after expansion.  

**(this step is optional, the file can be selected as a zip file from the BalenaEtcher 

application) 

5.  Select the newly expanded (.img) file from the BalenaEtcher application. More 

specifically, from where it says “Select Image” 

6. Make sure the drive selected is the drive where the SD card reader is (Apple SD card 

reader Media for macOS) 

7. Click on “Flash!” 

8. Eject the SD card when done if it didn’t do it automatically 

9. To double check what version/release of Raspbian you downloaded, you can insert the 

SD card in the Raspberry Pi, get it started, open terminal and type 

cat /etc/os-release 

3.2 Internet Connectivity - Home Network  

1. Insert Micro SD card into the Raspberry Pi  

2. Connect the Pi to a power source, an HDMI monitor, a USB keyboard and a USB mouse. 

3. Turn the Pi on 

4. Complete initial configuration about time zone and language 

5. Create and confirm new Password for Raspberry Pi 

6. The Pi will automatically look for available WiFis, select and enter the password for the 

desired WiFi connection  

7. Restart the Raspberry Pi 

3.3 Internet Connectivity - WPI Wireless Network 

These steps were based on the WPIHub page for connecting a Raspberry Pi to the WPI Wireless 

network connection: https://its.wpi.edu/article/361/connect-to-wpi-wireless-using-a-raspberry-pi-

with-gui 

1. First, register both Ethernet (eth0) and Wireless (wlan0) in the WPI network Registration 

here using your own computer: https://netreg.wpi.edu/ 

a. Log in with WPI credentials  

b. Register the device’s Ethernet and Wireless 

c. To find their respective MAC Addresses, type  

i. > ifconfig 

ii. in the Terminal 

2. Now, connect the Raspberry Pi via ethernet  

3. Run the following commands on Terminal 

i. > sudo apt update 

ii. > sudo apt install network-manager-gnome 

https://www.raspberrypi.org/downloads/raspbian/
https://its.wpi.edu/article/361/connect-to-wpi-wireless-using-a-raspberry-pi-with-gui
https://its.wpi.edu/article/361/connect-to-wpi-wireless-using-a-raspberry-pi-with-gui
https://netreg.wpi.edu/
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iii. > sudo systemctl enable NetworkManager 

iv. > sudo systemctl disable dhcpcd 

4. Reboot the Raspberry Pi and log back in 

5. There are now two icons on the status bar for the network. Hover over the rightmost icon 

(a tool tip will display about dhcpcd). Right click and remove the icon from the panel. 

6. Disconnect the ethernet  

7. Using the other Network Manager icon, connect to WPI-Open 

8. Visit the Wireless Connection page: https://guest.wpi.edu/guest/start.php?_browser=1 

9. Select the “Setup My WPI Wifi” 

10. Select “Unknown” from the dropdown menu 

11. Select “Sign IN” and use your WPI credentials to log in  

12. Once logged in, create a new certificate  

a. Enter Wireless MAC address including the colons  and click “create 

b. create a new password for the certificate  

c. click “submit” and a certificate will be generated. The certificate will be called 

something like “username@wpi.edu.p12” 

13. Download the “WPI NetOps Wireless CA” certificate  

14. Go back to the Network Manager icon and connect to WPI-Wireless by selecting the 

following  

a. Authentication: TLS 

b. Domain: (leave blank) 

c. Identity: yourusername@wpi.edu 

d. user certificate: username@wpi.edu.p12 (the one you just created) 

e. CA certificate: “WPI NetOps Wireless CA” 

i. 3905b39901f24ad1293bee10ec9a67703b61834e.cer 

f. Private Key: username@wpi.edu.p12 file should auto-populate 

g. Private Key Password: use the password created for the certificate 

15. click “save” 

3.4 MotionEye  

These steps were based on the GitHub page for installing motioneye on Raspbian: 

https://github.com/ccrisan/motioneye/wiki/Install-On-Raspbian 

1. Turn the Raspberry Pi on 

2. Open Terminal  

3. Enable the Raspberry Pi CSI Camera Module by typing  

> sudo raspi-config 

Select “5 Interfacing Options”, then “P1 Camera”, then “yes”. Select “Finish” and 

the “Yes” for reboot  

4. Run an update: 

> sudo apt-get update 

5. Install ffmpeg and other motion dependencies: 

https://guest.wpi.edu/guest/start.php?_browser=1
mailto:yourusername@wpi.edu
mailto:username@wpi.edu
mailto:username@wpi.edu
https://github.com/ccrisan/motioneye/wiki/Install-On-Raspbian
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> sudo apt-get install ffmpeg libmariadb3 libpq5 libmicrohttpd12 

Type “y” and press enter 

6. Install motion: 

> sudo wget https://github.com/Motion-

Project/motion/releases/download/release-4.2.2/pi_buster_motion_4.2.2-

1_armhf.deb 

> sudo dpkg -i pi_buster_motion_4.2.2-1_armhf.deb 

7. Install the dependencies from repositories: 

> sudo apt-get install python-pip python-dev libssl-dev    libcurl4-openssl-dev 

libjpeg-dev libz-dev 

Type “y” and press enter 

8. Install motioneye, which will automatically pull Python dependencies (tornado, jinja2, 

pillow and pycurl) 

 > sudo pip install motioneye 

9. prepare the configuration directory:  

 > sudo mkdir -p /etc/motioneye 

> sudo cp /usr/local/share/motioneye/extra/motioneye.conf.sample  

/etc/motioneye/motioneye.conf 

10. Prepare the media directory: 

 > sudo mkdir -p /var/lib/motioneye 

11. Add an init script, configure it to run at startup and start the MotionEye server: 

> sudo cp /usr/local/share/motioneye/extra/motioneye.systemd-unit-local 

/etc/systemd/system/motioneye.service 

 > sudo systemctl daemon-reload 

 > sudo systemctl enable motioneye 

 > sudo systemctl start motioneye 

12. To upgrade to the newest version of MotionEye server: 

>  sudo pip install motioneye --upgrade 

> sudo systemctl restart motioneye 

13. To get the IP address, type  

 > hostname -I 

14. Go to any browser type the following URL 

 > http://(your IP address):8765/ 

For example: If your IP address is 10.0.0.18, your URL should look like this 

http://10.0.0.18:8765/ 

15. Use “admin” and no password as the initial credentials when asked for them  

16. Add and prompt yout camera based on the type of camera or imaging device being used 

3.6 UnicornHat LED Array 

1. Enter following line of code into the terminal: 

>curl https://get.pimoroni.com/unicornhat | bash 
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2. Press y to continue 

3. During installation, you'll be asked if you want to install Flask for Unicorn Paint. Answer 

no 

4. Once the install is done, the script will ask if you want to download example code, 

answer yes. 

5. Type the following command into the terminal to navigate to the code directory using the 

following terminal command: 

a. cd ~/Pimoroni/unicornhat/examples/ 

6. To verify the scripts work with your UnicornHat, type the following command into the 

terminal 

a. sudo python ./simple.py 

7. Use the following command to edit the simple.py lighting script 

a. >sudo nano simple.py 

8. Change your code accordingly to set up configurations for dark field and bright field 

lighting: 

a. #!/usr/bin/env python 

import time 

import unicornhat as unicorn 

 

print("""Simple 

 

Turns pixels on for dark field microscopy 

 

If you're using a Unicorn HAT and only half the screen lights up, 

edit this example and  change 'unicorn.AUTO' to 'unicorn.HAT' below. 

""") 

 

unicorn.set_layout(unicorn.HAT) 

unicorn.rotation(0) 

unicorn.brightness(0.5) 

width,height=unicorn.get_shape() 

 

## for bright field 

""" for y in range(height): 

    for x in range(width): 

        unicorn.set_pixel(x,y,225,225,225) 

        unicorn.show() """ 
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for y in range(height): 

    unicorn.set_pixel(0,y,255,225,225) 

    unicorn.set_pixel(7,y,225,225,225) 

    unicorn.show() 

 

for x in range(width): 

    unicorn.set_pixel(x,0,225,255,225) 

    unicorn.set_pixel(7,y,225,225,225) 

    unicorn.show() 

 

#change for time duration of experiment in seconds 

time.sleep(1800) 

 

9. Press Ctrl+X to exit, Y to save, and then enter to confirm file name 

10. Go back to the home directory by using the following terminal command 

a. >cd ~/ 

3.5 Port Forwarding:  

This is used if the wifi your Pi is connected to is a network (such as home networks) which 

doesn’t allow outside access to IPs. If using WPI wireless or a wifi with similar security this 

wouldn’t be necessary. 

1. Open a browser on your computer. 

2. Log into your wifi router using either 192.168.1.1 or 192.168.0.1 

a. More instructions about logging into your router can be found on your router or 

through your internet service provider 

3. Once logged into your router you should be able to find a section of information labelled 

“ Port Forwarding”. Within this section you will make a new “rule”. 

a. Destination port: this is the local IP address, like 192.168.1.xxx, and forward port 

number 8765 for motioneye 

b. Entry port: pick a number-- security measures suggest using a different port 

number. For example, 5678 

c. Protocol: Default TCP/UDP 

d. Click Add or Save 

4. Now, you find your external IP address 

a. You can use a web browser to whatismyip.com or similar. Should say something 

like: “My Public IPv4 is: 188.60.149.109” 

5. You now have an external IP to use to view MotionEye on a different network. 

6. In order to do this you have to go to the new IP for example 188.60.149.109, with the 

port number you created, for example 5678. This would read as 188.60.149.109:5678. 

7. This should allow you to connect to MotionEye and view your sample from wherever 

you are. 
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3.6 SSH Setup 

1. Connect your Pi to a monitor 

2. Go to the raspberry pi symbol in the upper left corner 

a. Open the preferences menu 

b. Select configuration 

c. Select interfaces 

d. Enable SSH 

3. Now you will have to download PuTTY on the computer you wish to use to access the Pi 

4. Once PuTTY is downloaded you can open it and put in the IP address of your Pi and hit 

open 

5. Once PuTTY opens a command window you can log into your Pi using the hostname and 

password you created during setup 

 

4.0 Time Lapse Set Up  

4.1 Still Images Configuration 

1. Open MotionEye in web browser 

2. log in  

3. Select the desired camera to take the pictures for the time lapse 

4. Set image quality to preferred setting  

a. e.g. “100%” 

5. Set capture mode to “interval snapshots”  

6. Select the appropriate time interval between each picture taken  

a. e.g. “30” secs per snapshot  

7. Click on the orange button at the top of the menu that says “Apply”  

8. Let device take pictures for however much long as needed 

4.2 Time Lapse  

1. Open MotionEye in web browser  

2. Log in 

3. Select the image icon on the top right corner of the camera view in MotionEye 

4. Select time lapse  

 

5.0 Optional Additions 

5.1 Light Wiring with Temperature + Humidity Sensor 

1. Plug in male end of 3 GPIO wires to Raspberry Pi Header pins 2, 6, and 16 (GPIO 23) 

2. Thread these wires through the top slit in the Raspberry Pi 3B+ case’s lid 

a. Make sure the shape of the lid fits the orientation of the case 

3. Take another 3 GPIO wires and cut off the female end using wire cutters 

4. Strip this end to ¼ “ 
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5. Plug the male end of these GPIO wires into Raspberry Pi Header Pins 4, 12 (GPIO 18), 

and 14 

6. Insert the stripped end of these wires through the underside of the 3 holes at the bottom of 

the LED Array 

a. Pin 4 → leftmost hole, pin 12 → middle hold, pin 14 → rightmost hole 

b. These holes should be facing the USB and ethernet ports on the Raspberry Pi 

7. Solder each of the wires in place by placing solder on the LED-side of the holes on the 

LED array 

8. Coil GPIO wires under LED array such that they fit in the case 

9. Secure coiled wires with ziptie 

10. Lower case lid onto threaded wires and secure case lid to case 

a. You should hear it snap in place 

11. Plug in temperature sensor on breadboard 

12. Connect rightmost pin and pin to its left facing the back of the sensor with a 4.7 kOhm or 

10 kOhm resistor 

13. Connect Raspberry Pi Header pin 2 → rightmost temperature sensor pin, Raspberry Pi 

Header pin 6 → leftmost temperature sensor pin, Raspberry Pi Header pin 16 → 2nd 

from rightmost temperature sensor pin 

5.2 Temperature + Humidity Sensor Software 

1. Enter the following commands into the terminal to update packages: 

>sudo apt-get update 

>sudo apt-get install build-essential python-dev python-openssl git 

2. Install the directories containing the temperature and humidity readings code by typing 

the following commands into the terminal 

>git clone https://github.com/adafruit/Adafruit_Python_DHT.git && cd 

Adafruit_Python_DHT 

>sudo python setup.py install 

3. Navigate to the directory by typing the following command into the terminal: 

a. >cd ~/Adafruit_Python_DHT/examples 

4. Test you can get readouts by entering the following command into the terminal: 

a. >sudo ./AdafruitDHT.py 2302 23 

5. Edit the temperature by typing the following command into the terminal: 

a. > sudo nano AdafruitDHT.py 

6. Change your code accordingly to remove the need for user input. This is so the 

temperature can be read without the user needing to prompt the script: 

#!/usr/bin/python 

# Copyright (c) 2014 Adafruit Industries 

# Author: Tony DiCola 
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# Permission is hereby granted, free of charge, to any person obtaining a copy 

# of this software and associated documentation files (the "Software"), to deal 

# in the Software without restriction, including without limitation the rights 

# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 

# copies of the Software, and to permit persons to whom the Software is 

# furnished to do so, subject to the following conditions: 

 

# The above copyright notice and this permission notice shall be included in all 

# copies or substantial portions of the Software. 

 

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF 

ANY KIND, EXPRESS OR 

# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 

MERCHANTABILITY, 

# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN 

NO EVENT SHALL THE 

# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, 

DAMAGES OR OTHER 

# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 

OTHERWISE, ARISING FROM, 

# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

OTHER DEALINGS IN THE 

# SOFTWARE. 

import sys 

import time 

import Adafruit_DHT 

 

 

# Parse command line parameters. 

#sensor_args = { '11': Adafruit_DHT.DHT11, 

#                '22': Adafruit_DHT.DHT22, 

#                '2302': Adafruit_DHT.AM2302 } 

#if len(sys.argv) == 3 and sys.argv[1] in sensor_args: 

#sensor_args[sys.argv[1]] 

#sys.argv[2] 

 

#else: 

#    print('Usage: sudo ./Adafruit_DHT.py [11|22|2302] <GPIO pin number>') 
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#    print('Example: sudo ./Adafruit_DHT.py 2302 4 - Read from an AM2302 

connected to GPIO pin #4') 

#    sys.exit(1) 

sensor = Adafruit_DHT.AM2302 

pin = 23 

# Try to grab a sensor reading.  Use the read_retry method which will retry up 

# to 15 times to get a sensor reading (waiting 2 seconds between each retry). 

humidity, temperature = Adafruit_DHT.read_retry(sensor, pin) 

 

# Un-comment the line below to convert the temperature to Fahrenheit. 

temperature = temperature * 9/5.0 + 32 

 

# Note that sometimes you won't get a reading and 

# the results will be null (because Linux can't 

# guarantee the timing of calls to read the sensor). 

# If this happens try again! 

 

if humidity is not None and temperature is not None: 

        print("Temp={0:0.1f}F;Hum={1:0.1f};".format(temperature, humidity)) 

else: 

        print('Failed to get reading. Try again!') 

        sys.exit(1) 

 

7. Press CTRL+X, Y, and then enter to save the file under its original name 

8. Make the script executable by typing  

> chmod +x ~/Adafruit_Python_DHT/examples/AdafruitDHT.py 

9. Go back to the home directory by using the following terminal command 

a. >cd ~/ 

5.3 OpenCV Installation and RGB Reading Code for pH Sensing 

1. Update the pi using the following command in the terminal: 

>sudo apt update 

>sudo apt upgrade 

2. Install dependent packages by running the following commands into the terminal: 

>sudo apt install cmake build-essential pkg-config git 

>sudo apt install libjpeg-dev libtiff-dev libjasper-dev libpng-dev libwebp-dev 

libopenexr-dev 

>sudo apt install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev 

libxvidcore-dev libx264-dev libdc1394-22-dev libgstreamer-plugins-base1.0-dev 

libgstreamer1.0-dev 

>sudo apt install libgtk-3-dev libqtgui4 libqtwebkit4 libqt4-test python3-pyqt5 
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>sudo apt install libatlas-base-dev liblapacke-dev gfortran 

>sudo apt install libhdf5-dev libhdf5-103 

>sudo apt install python3-dev python3-pip python3-numpy 

3. Modify the swap file configuration by typing the following command into the terminal: 

a. >sudo nano /etc/dphys-swapfile 

4. In this file find CONF_SWAPSIZE=*your number* and take note of this number 

a. Change it to CONF_SWAPSIZE=2048 

5. Restart the swap file by typing the following command into the terminal: 

a. >sudo systemctl restart dphys-swapfile 

6. Clone the opencv repositories to your Pi by typing the following commands into the 

terminal: 

>git clone https://github.com/opencv/opencv.git 

>git clone https://github.com/opencv/opencv_contrib.git 

7. Create and navigate to the directory where the OpenCV will be installed by typing the 

following commands into the terminal 

 >mkdir ~/opencv/build 

>cd ~/opencv/build 

8. Prepare the build files to start the OpenCV install by typing the following command into 

the terminal 

 >cmake -D CMAKE_BUILD_TYPE=RELEASE \ 

    -D CMAKE_INSTALL_PREFIX=/usr/local \ 

    -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/modules \ 

    -D ENABLE_NEON=ON \ 

    -D ENABLE_VFPV3=ON \ 

    -D BUILD_TESTS=OFF \ 

    -D INSTALL_PYTHON_EXAMPLES=OFF \ 

    -D OPENCV_ENABLE_NONFREE=ON \ 

    -D CMAKE_SHARED_LINKER_FLAGS=-latomic \ 

9. Compile the build files by typing this command into the terminal: 

>make -j$(nproc) 

10. Install OpenCV by typing the following command into the terminal: 

>sudo make install 

11. Link the dependent libraries to the install file: 

>sudo ldconfig 

12. Change the swap file size back to its original size by typing the following command into 

the terminal: 

>sudo nano /etc/dphys-swapfile 

13. In this file find CONF_SWAPSIZE=2048 and change it to CONF_SWAPSIZE=*your 

original number* 

14. Restart the swap file by typing the following command into the terminal: 

https://github.com/opencv/opencv.git
https://github.com/opencv/opencv_contrib.git
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a. >sudo systemctl restart dphys-swapfile 

15. Test OpenCV is installed by typing the following commands in the terminal: 

>python3 

>import cv2 

>cv2.__version__ 

16. Your result from these commands should be a version number, such as ‘4.1.2’ 

17. Navigate back to the home directory by typing the following command into the terminal: 

>cd ~/ 

18. Create a directory for pH reading code and navigate to it by typing the following 

commands into the terminal: 

>Mkdir ~/pHreading 

>cd ~/pHreading 

19. Create a script to read pH based on RGB values by typing the following command into 

the terminal 

 >sudo nano RGB2pH.py 

20. Edit the script to reflect the following: 

a. Note: this script has to be calibrated with cells or reconfigured for further contrast. 

See recommendations (Section 8.2) and Discussion (Section 7) for more 

information 

import cv2 

import numpy as np 

import os 

import glob 

 

 

LatestFile = max(glob.iglob('/var/lib/motioneye/Camera1/2020-05-18/*jpg'), 

key=os.path.basename) 

 

 

img = cv2.imread('LatestFile',cv2.IMREAD_COLOR) 

height = img.shape[0] 

width = img.shape[1] 

 

allBGR = [] 

for x in range(height): 

        for y in range(width): 

                curBGR = img[x,y] 

                allBGR.append(curBGR) 

 

b,g,r = np.mean(allBGR, axis = 0) 
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print(b) 

print(g) 

print(r) 

 

5.3 Data Overlay on Images 

1. Ambient Temperature 

a. Create a new file 

> sudo nano /usr/local/bin/overlaytemperature 

b. Type the contents below in the new file created 

> CAM_CONFIG_FILE="/etc/motioneye/camera-1.conf" 

>CAM_NAME='' 

>if [ -f $CAM_CONFIG_FILE ]; then 

       > CAM_NAME=`grep text_left $CAM_CONFIG_FILE | cut -f2 -d' '` 

>fi 

 

>TEMP=`/home/pi/Adafruit_Python_DHT/examples/AdafruitDHT.py | cut -f1,2 -

d';'` 

>curl "http://localhost:7999/1/config/set?text_left=$TEMP\n$CAM_NAME" 

2. Save under original file name by hitting CTRL+X, Y, and enter 

   

5.4 Data Logging/Storage 

Once the desired sensor is attached to the Pi you can create code to run the data logging 

automatically (this requires access to a MathWorks Account) 

1. Go to ThingSpeak.com 

2. Log in using your MathWorks Account credentials 

3. Go to the Channels tab and create a new channel 

4. Set up two fields named Temperature and Humidity and name the Channel as you wish 

5. Save the channel 

6. Go to the sharing tab and turn on “Share channel view with everyone” if you would like 

the data to be visible without logging in 

7. Go to the API keys tab and find your Write API key for the next steps 

These steps can either be completed while the Pi is plugged into a monitor or by using SSH 

8. Once you have access to a command window on the Pi you must create a file storage 

location by typing  

>mkdir datalogging 

9. You can now switch into this folder by typing  

>cd ~/datalogging 

10. To create your program type 

>sudo nano cloudlog.py 

11. This will open a file named cloudlog.py which you can now type this code into 
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>import sys 

>import urllib2 

>import Adafruit_DHT 

>from time import sleep 

> 

>myAPI = '8JDYC1LUM8FO80XW' 

> 

>baseURL = 'https://api.thingspeak.com/update?api_key=%s' % myAPI 

>    

>def AM2302_data(): 

        sensor = Adafruit_DHT.AM2302 

        pin = 23 

        humidity, temperature = Adafruit_DHT.read_retry(sensor, pin) 

        temperature = temperature *9/5.0 + 32 

        return humidity, temperature 

 

 

>while True: 

> try: 

>  humidity, temperature = AM2302_data 

>   

>  # If Reading is valid 

>  if isinstance(humidity, float) and isinstance(temperature, float): 

>                     

>   # Format to two decimal places (optional) 

>   tempC = '%.2f' % temperature          

>   humidity = '%.2f' % humidity 

>    

>   # Send the data to thingspeak 

>   with urllib2.urlopen(baseURL + '&field1=%s&field2=%s' % 

(tempC, humidity)) as response: 

>    html = response.read() 

>   #print conn.read() 

>    

>   # Close the connection 

>   #conn.close() 

>  else: 

>   print('Error') 

>   

>  sleep(10) 

>  # Build in a delay between loggings. For ~every minute, use a delay 

of 60s. 

>  # Note that this may not be exact if the other commands take time. 

You can use 

>  # a more precise timing system, like monitoring a system timer. 

> except: 

>  print('Data Logged') 

> sleep(60) 

a. Within this code you should replace the string in myAPI with the Write API Key 

of the channel you set up on ThingSpeak 

12. Save you file by hitting ctrl x to exit and y to save 

13. You can now start this program by typing 

>sudo python ./cloudlog.py 

14. If you wish to end the program running you can hit ctrl c  

15. You can go to your ThingSpeak channel to view your data logged on graphs in real time 

5.5 Mini Display Setup 

The screen will be set up to display the following stats about your Raspberry Pi: 
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IP address 

CPU load 

Disk space 

CPU temperature  

Based on: https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-

pi?view=all 

 

Python setup 

1. Install Adafruit_Blinka library  

a. run necessary updates: 

> sudo apt-get update 

> sudo apt-get upgrade 

> reboot 

> sudo pip3 install --upgrade setup tools  

b. Enable I2C 

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-

i2c 

> sudo apt-get install -y python-smbus 

> sudo apt-get install -y i2c-tools  

> sudo raspi-config 

 Go to Interfacing options 

 the I2C 

Enable  

Yes  

Yes 

Finish 

>sudo reboot 

c. Enable SPI  

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-

spi 

> sudo raspi-config 

 Interfacing Options 

 SPI 

 Yes  

 Yes  

 Finish 

d. Enable second SPI  

> sudo nano /boot/config.txt 

add the following line at the bottom  

Reboot 

https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi?view=all
https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi?view=all
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-spi
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-spi
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e. Install Python Libraries and Adafruit Blinka 

> pip3 install RPI.GPIO 

> pip3 install adafruit-blinka 

2. Run the following commands at the Terminal  

> sudo pip3 install adafruit-circuitpython-rgb-display 

> sudo pip3 install --upgrade --force-reinstall spidev 

> sudo apt-get install ttf-dejavu 

> sudo apt-get install python3-pil 

> sudo apt-get install python3-numpy 

3. OPTIONAL: If so desired, go to the link below to download the “Quickstart Button Test” 

demo to make sure it works  

https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-

raspberry-pi?view=all 

then, run the following command  

> sudo python3 rgb_display_minipitfttest.py 

Once its running, push the top button to get a red display, the bottom button to get 

a blue display, and both buttons to get a green display  

 

Stats Display 

1. Go to the link below to download and save the “stats.py” code in your home directory on 

your raspberry Pi  

https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-

raspberry-pi?view=all 

2. Run the script by typing 

> python3 stats.py 

 

Running Stats on Boot  

1. Run the following command 

> sudo nano /etc/rc.local 

2. Add the following line own its own command line right before the command line that 

says “exit 0” 

> sudo python3 /home/pi/stats.py & 

3. Save (CTRL O) and Exit (CTRL X) 

4. Reboot to make sure it works  

It Should look like this: 

https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi?view=all
https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi?view=all
https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi?view=all
https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi?view=all
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If the screen is taken off, there is no need to reconfigure, just plug it back on and it should work.  

 

6.0 Troubleshooting 

6.1 Internet Connection Troubleshooting 

1. Computer Parameters Needed: 

a. wpa_supplicant.conf in wpa_supplicant folder 

b. Network name (ssid) 

c. Network password 

d. Whether it’s a hidden network or not 

2. Troubleshooting Steps: 

a. If the folder wpa_supplicant folder is missing, you must create it and create the 

wpa_supplicant.conf file within it by pressing the new folder and new file icon in 

the upper left hand corner 

b. Type sudo raspi-config to enable wireless networking 

c. Open in wpa_supplicant.conf in nano by typing  
sudo nano /etc/wpa_supplicant/wpa_supplicant.conf 

d. Ensure that the following lines of code are at the top of the file: 
ctrl_interface=DIR=/var/run/wpa_supplicant 

GROUP=netdev 

update_config=1 

country=<Insert country code here> 

e. Go to the bottom of the file and add the following: 
network={ 

    ssid="Network_Name" 

    psk="networkPassword" 
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} 

f. If the network is a hidden network, add scan_ssid=1 to the network definition in 

the brackets 

g. If the network has no password, add key_mgmt=NONE to the network definition in 

the brackets 

6.2 Timelapse not Compiling 

 This is possibly due to the lack of RAM in the system to compile a time lapse. In this 

case, MobaXterm can be downloaded to interface with the Pi and access its files 

1. Download MobaXterm https://mobaxterm.mobatek.net/download.html and follow the 

instructions 

2. Once install is complete start MobaXterm 

3. Select “Start Local Terminal” 

4. Type ssh pi@*your IP address*, assuming SSH is enabled 

a. A file system should appear in a sidebar on the right 

5. In the file system, click the button labelled “Parent Directory” twice to navigate to the 

overarching directory 

a. “Parent Directory” label will appear after hovering over the button 

b. File path name after one click should be /home/, file path name after two clicks 

should be / 

6. In the overarching directory double click on var, then bin, then motioneye, then the 

camera name according to your Motioneye UI, and then date of timelapse 

7. Select all the files in the folder by pressing the topmost file, shift, and then the bottom 

most file 

8. Select the “Download” button, which is to the immediate right of the “Parent Directory” 

button 

a. Once again, the label of the button will show up when hovering above it 

7.0 Alternative Supply Options*: 

● Microprocessor 

○ Raspberry Pi 3B (and corresponding case and power cord) 

○ Raspberry Pi 3A+ (and corresponding case and power cord) 

○ Raspberry Pi 4B (and corresponding case and power cord) 

○ Raspberry Pi Zero WH (and corresponding case and power cord) 

● Image Gathering Source 

○ Raspberry Pi V2.1 Camera (macroscopic view only) 

https://mobaxterm.mobatek.net/download.html
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■ For Raspberry Pi Zero WH: 

● Raspberry Pi Zero v1.3 Camera Cable 

○ 5MP Raspberry Pi Autofocus Camera (macroscopic view only) 

● Light Source 

○ UnicornHat 16 x 16 LED Array 

*If any alternative design components are selected, the housing may need to be altered to work 

with the new components 


