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Abstract 

 This project seeks to understand the dynamics of DNA damage repair in cancerous cells 

utilizing preexisting software and novel analysis approaches. Current analysis tools allow 

biologists to independently track cell movement and count damage sites, but not simultaneously. 

Our methods identified a slight increase in damage frequency over time in motile cell 

populations. We suggest utilizing cell morphology rather than coordinate tracking for further 

advancements in this area.  



1. Introduction & Background 

1.1 DNA damage and analysis 
 

The DNA damage response involves the initiation of a chain of events that begins with 

the identification of problematic sites by kinases such as ATM and leads to recruitment of 

several proteins to the site of DNA damage (Khoronenkova et al., 2015).  Proteins that are 

recruited to sites of DNA damage include CHK2 and 53BP1.  The recruitment of some Damage 

response proteins is robust and leads to the formation of defined foci that can be detected using 

fluorescent tags or antibody-based detection of DNA damage response proteins such as 53BP1 

(Cohn et a., 2008). The formation of such foci can be used as a surrogate to identify individual 

sites of DNA damage within cells.  As DNA damage is repaired, DNA damage response and 

repair proteins are removed from DNA.  

Historically, fixed cell imaging of successive time points following acquisition of DNA 

damage has been used to investigate the capacity of individual cellular conditions of DNA 

damage repair where the dissipation of DNA damage associated foci is an indication of the DNA 

damage repair process and differences in the time for foci to resolve indicates differences in 

damage repair capacity. A significant limitation of this approach is the inability to determine the 

metrics of DNA damage occurring and being repaired. Analyzing fixed time images only gives 

information at that specific time point. However, it is important to obtain data concerning the 

timeline of DNA damage to repair, as well as information regarding the percentage of repair. 

To address this limitation, live cell imaging can be employed to follow single cells over 

time. These approaches make use of DNA damage proteins tagged with Green-Fluorescent 

Protein (GFP) or Red-Fluorescent Protein (RFP), like fixed cell imaging, monitor foci formation 

and dissipation as an indication of DNA damage acquisition and repair, respectively. While this 

approach has the ability to analyze the full timeframe of damage instead of fixed cell imaging, its 

application is limited because of the issue of tracking both individual cells over time and the foci 

within them simultaneously. The cells move throughout the field of view while their internal 

components show mobility as well, requiring the tracking of motile objects within larger motile 

objects. The current method involves having an observer review the videos created and record 

the various metrics manually. Manual observation is time consuming and inconsistent, so our 

goal was to develop a software pipeline to record these metrics automatically. A computerized 

process would speed up analysis, have a higher degree of consistency, and be able to collect 

more types of data than a human observer. 

In this project, we attempt to address this limitation by altering and combining different 

pipelines supplied by the CellProfiler program that are used to identify different aspects of cells 

from still images. We also expand upon the CellProfiler pipeline to construct our own program 

that utilizes distance matrices to link foci across timepoints. 

 

 



1.2 CellProfiler 
 

 CellProfiler is an open-source software developed by the Broad Institute of MIT and 

Harvard. This tool is utilized by biologists to quantify and analyze data from biological images in 

a highly-flexible, modular process. Users interact with a Graphic User Interface (GUI) to 

produce customizable analysis pipelines. These pipelines are composed of sequences of premade 

modules that handle various image processing functions. CellProfiler is specifically designed to 

allow users to fine tune their pipelines to specific phenotypes and conditions of individual 

datasets. This software allows users to extract more information more efficiently than can be 

collected by eye (McQuin C et al., 2018).  

 There are other softwares currently available for biological image analysis, such as 

ImageJ, Fiji, and Icy. CellProfiler stands out from these competing softwares due to its flexibility 

in analysis pipeline customization and history of successful analyses. This platform was 

developed with an emphasis on automating analysis of many thousands of high-throughput 

images, while some other similar softwares, such as Fiji, are better designed for analyzing large, 

multi-dimensional images. CellProfiler was chosen as the analysis software for this project due 

to these strengths, in addition to its current use in the Manning Lab (Eliceiri, K et al., 2012).  

 CellProfiler distributes premade analysis pipelines and example datasets that provide a 

baseline for standard analyses. Researchers may expand upon and adjust these pipelines as they 

see fit. Example pipelines include processes such as cell identification, cell tracking, and speckle 

identification. While these pipelines are often very comprehensive for the provided data, 

adjusting the pipelines to one's own, often messy, data can be confusing.  

For the purpose of this study, the team primarily focused on the cell tracking and speckle 

identification pipelines. The cell tracking pipeline provides capability to track individual cell 

movement over time. The speckle identification pipeline identifies and counts all foci present in 

individual images. The parameters of both pipelines are highly dependent on the dataset at hand. 

The user must be especially careful when tuning parameters in the speckle identification pipeline 

to avoid the segmentation of nuclei or identified speckles. Improper assignment of these values 

may lead to the over or under identification of foci and cells within the dataset. While both 

pipelines are standardly distributed, there is currently no pipeline capable of running the two 

processes in parallel. Thus, there is no capability to identify foci and track their movement and 

lifespan over time. This study aims to produce methodologies to address this current lack in 

functionality.  

2. Methods 

2.1 Pipeline overview 

 Figure 1 provides an overview of our data generation and analysis process. We first 

collected data generated in Professor Manning’s lab. A further description of this data may be 



found in section 2.2. Next, we identified damage foci within individual dataset images using an 

optimized speckle identification CellProfiler pipeline, as described in section 2.3. We then 

performed preliminary data exploration on the data files outputted by CellProfiler. The 

methodology and results of this analysis may be found in section 3.1. Finally, in section 2.4 we 

discuss our attempted methods for implementing cell tracking on the CellProfiler output files 

using a Euclidean distance matrix.  

 
Figure 1: Pipeline overview 

2.2 Overview of data 
 

 The data for this project originates from ND2 video files generated using a “Zyla cMOS 

camera mounted on a Nikon Ti-E microscope with a 60x plan Apo oil immersion objective, or a 

20x CFI Plan Four objective” (Navarro-Serer B et al., 2019). These video files cover one 

quadrant recorded in the overall sample, which was recorded for 36 hours. TIF files were 

extracted for each timepoint recorded, resulting in both a “red” and “green” channel image for 

each timepoint. The first channel identifies the fluorescent protein RFP-H2B, a fusion protein of 

red-fluorescent protein and the histone protein H2B (Fig 2A). Histones work to package 

chromatin together within the nucleus, making it an effective marker for identifying 

morphological properties of nuclei (Kobiyama). The second channel picked up by the 

microscope identifies GFP-53BP1 (Fig 2B), a fusion protein of 53BP1 and the marker green-

fluorescent protein. 53BP1 is a signaling protein used by cells to identify locations of DNA 

damage by reading a specific histone code signaled by damaged chromatin (Panier et al., 2014). 

Attaching GFP to 53BP1 is an effective way to take advantage of a functioning cellular 

mechanism and use it as a reporting method (Miwa et al., 2013). When 53BP1 is drawn to sites 

of damage, the high concentration of GFP in the area appears in the images as a point of high 

intensity called a focus. Tracking these foci allow researchers to understand the dynamics of 

DNA damage and repair within the cancerous cells. 



 

 

Figure 2: Channels showing fluorescence of RFP-H2B (A) and GFP-53BP1 (B) 

 

2.3 Foci identification using CellProfiler 
  

The CellProfiler “Speckle Counting” pipeline was used as a starting point for identifying 

damage foci within the dataset. According to the CellProfiler documentation, “this pipeline 

shows how to identify smaller objects (foci) within larger objects (nuclei) and how to use the 

Relate module to establish a relationship between the two as well as perform per-object 

aggregate measurements (such as number of foci per nucleus)” (McQuin C et al., 2018).  

Many object identification criteria were adjusted in order to optimize this pipeline to 

identify nuclei within the study’s dataset. Figure 3 displays an example of the CellProfiler 

interface where parameters are adjusted. The first parameter adjustment for optimizing nuclei 

identification was changing the threshold strategy from global to adaptive. This was changed 

because the intensity of nuclei varied greatly within the study images. Next, the method for 

separating clumped objects was set to separate by shape, which eliminated the potential for 

nuclei to be split and counted as unique cells. Finally, the object diameter threshold was adjusted 

to range from 30 to 80-pixel units to reflect the scaling of images, where a single pixel 

corresponds to 0.33um and a typical cell has a diameter of about 20um.  

 



 

Figure 3: CellProfiler parameter adjustment interface 

Adjustments were also made to optimize the identification of foci within the observed 

nuclei; many of these adjustments were performed due to the disparity in object size between the 

sample dataset and the study dataset. First, the default feature size parameter for enhancing or 

suppressing features was decreased from 10 to 4. Next, the diameter size threshold was adjusted 

to restrict foci size to remain between 3 and 13-pixel units. From a lower limit, this adjustment 

ensures that detected foci are greater than one pixel in size, which will reduce the detection of 

random noise and or fluctuations in intensity within the image. From an upper limit, this ensures 

that cells containing so much damage that they would no longer be alive are excluded from the 

pipeline output. By default, objects identified along the border of their parent objects were set to 

be excluded. In this case, the parent object is the observed nucleus and the child object is the 

foci. This setting was turned off because foci are often brought to the cell boundary for repair. 

The fluorescence intensity of objects in the green channel of the images falls into three classes: 

background outside of the nucleus, background inside of the nucleus, and damage foci. Due to 

this multitude of classes and the variation in foci intensity between cells, adaptive intensity 

thresholding was also utilized for foci identification. Next, the default pipeline specifies the use 

of the Otsu method of thresholding. However, this method assumes that at least 50% of the 

image is covered in objects, which is not true in the study dataset. Thus, the threshold correction 

factor was adjusted to 5 to ensure that foci are appropriately identified. Finally, the default 

declumping setting was removed because foci should be a far enough distance from one another 

to negate the necessity for declumping.  

Visualizations of identified nuclei and foci may be seen as the pipeline is running; an 

example of this may be seen in Figure 4. The final output of the pipeline is composed of three 



comma separated (csv) files: Nuclei.csv, Foci.csv, and Image.csv. Nuclei.csv contains a row for 

each nucleus identified in each image. Each row contains data about its respective nucleus, 

including the positional coordinates of the nucleus and the total number of foci associated with 

the nucleus. Foci.csv provides more detailed data on the individual foci identified in each frame. 

Each row corresponds to a unique foci and contains data such as the positional coordinates of the 

foci and its parent nucleus identity. Finally, Image.csv is a summary document that lists data 

such as the total number of nuclei and foci in each image. While this information is very helpful, 

the object labeling of data points within Nucleus.csv and Foci.csv is relative to the parent image. 

Because of this, the foci labeled as “1” in the first image is likely not the same as foci “1” in the 

second image. This is a problem that will be addressed in section 2.4.  

 
Figure 4: CellProfiler pipeline foci visualization 

 

2.4 Matrix manipulation for cell tracking 

 

In order to track the individual damage foci across each frame, we had to develop a 

method of matching each foci from one frame to the corresponding foci in the prior frame (Fig 

5A). 



A  

B  

 

Figure 5: A) Visual mapping of foci from frame 1 to frame 2 B) Comparison of 

individual foci across frames 

 

To achieve this result, we instituted a Euclidean distance matrix (Albanie S, 2019) to 

compare the X-Y coordinates of foci in consecutive frames (Fig 5B). The pipeline was built and 

run in R, using the CSVs generated from Cellprofiler as mentioned earlier. An R script was 

developed to take the CSVs as input and output a matrix with each unique foci, the first frame 

they enter on, and the last frame they are identified on. Using the spatial coordinates, we built a 

matrix that holds the absolute distance between each foci on one frame to each foci on the next 

frame. This information is stored in a data.frame, allowing for simple search for and elimination 

of values. The distance between the X-Y coordinates of Foci1 in Frame 2 and the X-Y 

coordinates of every foci in Frame 1 are listed in one column of a matrix, and the minimum of 

these distances is identified as the displacement from of Foci1 from Frame 1 to Frame 2 (Fig 6). 

The displacement is calculated by 𝛥𝐷 = √[(𝛥𝑋) 2 +  (𝛥𝑌) 2], where ΔX is the difference in 

X coordinates between frames and ΔY is the difference in Y coordinates between frames. 



We decided on using a Euclidean distance matrix to compare the foci because the foci 

tend to appear in clusters within nuclei but can appear or disappear at any point when damage 

occurs and is repaired. A Euclidean distance matrix works well for this scenario for a few 

reasons. Firstly, it is simple to eliminate foci options because there would be a large difference in 

displacements between foci outside the cluster and those within. Additionally, when matching 

the least-displaced foci, an unmatched foci from a previous frame is an obvious case of repair. 

Similarly, since DNA damage is unlikely to occur at the exact same spot that was just repaired, 

an unmatched foci in a later frame can be assumed to be a new point of DNA damage. 

 

Figure 6: Example of a Euclidean distance matrix between two frames 

 

To track the location of each foci more robustly and efficiently, the matrix cell containing 

the distance between two foci also contains the X-Y coordinates of the foci in the newer image. 

This is achieved by storing all three data points in a dictionary within the matrix cell (Fig 7). 

When the distance matrix has been fully constructed, the coordinates of the foci with the lowest 

distance score are extracted from the distance matrix and placed in a satellite matrix containing 

each foci’s frame-to-frame coordinates. This allows for later reconstruction of each foci’s 

movement path overtime. The final data.frame contains every unique foci as the first dimension, 

with the X-Y coordinate pair of that foci in every frame as the second dimension. Frames that do 

not contain a given foci are assigned a NULL value for that dimension. A summation of values 

in the first dimension can determine how many consecutive frames a foci is identified on, and 

data about the amount of foci per frame can be found with a summation of values in the second 

dimension. 

 

  



 

Figure 7: Matrix mapping method 

3. Results 

 

3.1 Preliminary data exploration 
  

 Before performing Euclidean distance matrix mapping, the team explored the raw output 

from the CellProfiler pipeline using the python libraries: pandas and matplotlib. The data used in 

these analyses consist of the first 216 timepoints (approximately 18 hours) of the full dataset. 

Figure 8 displays the average number of foci per cell displaying damage over time. This graph 

indicates that the average number of foci within each damaged cell spans a range between one 

and three foci per cell. There appears to be a slight increase in the average number of foci within 

damaged cells over time. The average number of foci per cell generally remains between one and 

two foci per cell within the first 100 timepoints of the dataset, however this range increases to 

approximately two to three foci per damaged cell in the last 100 timepoints. Additionally, there 

are two timepoints, frames 97 and 207, where there is no damage or very little damage present. 

However, the frames proceeding and following these images appear to display levels of damage 

that are consistent with the overall population damage. This is potentially due to the images 

being captured at a time when the microscope was not properly focused, preventing foci from 

being identified by CellProfiler. These data points may therefore be considered dropouts. 



 

Figure 8: Average number of foci per cell displaying damage 

Figure 9 displays the behavior of the total number of cells identified within each 

timepoint. This appears to be a linear relationship with an equation of linear fit was y = 0.86x + 

173.92 and an R-squared (R2) value of 0.99. 

 

Figure 9: Number of cells detected over time 

Next, the percentage of cells containing damage, identified as cells containing one or 

more foci, was compared to the overall number of cells detected. The results of this query may 

be seen in Figure 10. The percentage of cells containing damage spanned a 20.0% window, 



ranging between 0.0% damaged and 20.0% damaged. As addressed previously, the frames 

containing 0.0% damage may be considered dropouts. Disregarding potential dropouts, most 

frames spanned a range between 5.0% and 17.5% damaged. As mentioned in the discussion of 

figure 9, the number of cells identified at each timepoint appears to increase at a steady rate, with 

slight fluctuations at points of local slope. Based on the information gathered in Figures 8 and 

10, it appears that there is a slight increase in the percentage of total cells containing damage 

over time.  

 

 

Figure 10: Percent Cells Damaged vs Number of Cells Detected 

The team next sought to understand how the number of foci identified changed over time. 

Figure 11 displays the total number of foci identified over time, with the y-axis indicating the 

number of total foci and the x-axis corresponding to the timepoints of the dataset. The figure was 

also colored based on the binning of the total number of damaged cells, containing one or more 

foci, at that timepoint. This figure shows that the total foci number and the number of damaged 

cells generally increases over time.  



 
Figure 11: Number of total foci over time 

 In Figure 12, the team investigated the dynamics of foci number change (delta) between 

consecutive frames. This was achieved by first normalizing the total number of foci identified at 

each timepoint. Normalization for each timepoint was achieved by dividing the foci number by 

the number of damaged cells (cells containing one or more foci). Next, we calculated the 

difference in normalized foci count between consecutive frames and plotted the results. The 

normalized delta typically remains within a window between -0.5 and +0.5, with a few outliers 

spiking near or over +/- 1.0. These delta values are expected to be small because it is unlikely for 

foci count to vary greatly between consecutive timepoints. The timepoints with large delta values 

may correspond to timepoints where the CellProfiler pipeline failed to properly identify foci.  



 
Figure 12: Change (delta) in normalized foci count over time 

 

Next, we identified the percentage of total cells exhibiting damage at each timepoint, 

binned by the number of damage foci exhibited. An example of an individual timepoint’s data 

distribution may be seen in Figure 13. The x-axis displays the number of foci (greater than or 

equal to 1) and the y-axis displays the percentage of total cells with “x” foci. 

 

Figure 13: Percentage of total cells with x foci at timepoint 1 

Next, we sought to understand the behavior of the percentage of total cells containing 

damage over time. Figures 14A and 14B display this behavior across the first and middle 20 

timepoints in the dataset (images 1-20 and 196-216 in the full movie). The first 20 timepoints 

approximately correspond to the first hour and forty minutes of the video. The middle 20 

timepoints approximately correspond to the middle hour and 40 minutes of the video. Thus, there 



is about 16 hours and 20 minutes between the data collected at the first and middle 20 

timepoints. The x-axis displays the number of foci identified in a cell and the y-axis displays to 

the percentage of total cells identified with the number of foci at the corresponding x-axis value. 

Each bar corresponds to a different timepoint of the video, as shown in the figure legend. Figures 

13A and 13B both display an overall negative trend, indicating that the frequency of damaged 

cells with a low number of foci is much higher than those containing many foci. The foci 

frequency within the middle hour and 40 minutes of the data subset (Fig. 14B), corresponding to 

the midpoint of the full video, appears to be slightly more variable than that of the foci frequency 

in the first hour and 40 minutes. Additionally, image 207 in Figure 14B only has one datapoint, 

indicating that less than 1.0% of the total cells at that timepoint have on foci. This is likely due to 

CellProfiler being unable to identify foci within the image at that corresponding timepoint, as 

previously discussed in Figure 8. 

 

Figure 14: A) Percentage of total cells with x foci (first 20 images) 

B) Percentage of total cells with x foci (middle 20 images) 



 

         Figure 15 compares the percentage of total cells containing x foci between the first and 

middle 20 timepoints (hour and 40 minutes) of the video. The axes of this graph are the same as 

in Figures 13 and 14. The blue bars correspond to the first hour and 40 minutes of the dataset and 

the orange bars correspond to the middle hour and 40 minutes of the dataset. While both subsets 

of the dataset display the same negative trend, the cells in the middle 20 timepoints of the dataset 

appear to have slightly more damage, between 1.0% and 2.0%, per foci number than the cells in 

the first 20 timepoints of the dataset. This increase in overall damaged cell presence, coupled 

with the increase in average number of foci per damaged cell, may indicate that cells are either 

becoming more prone to damage over time or are not healing their damage properly.  

 

Figure 15: Percentage of total cells with x foci (first 20 images vs middle 20 images) 

 4. Discussion 

CellProfiler was a good starting point for understanding the dynamics of DNA damage 

repair in cancerous cells. This software is relatively easy to use and customize once you become 

familiar with it and its nuances. Our utilization of this software allowed us to begin 

understanding our dataset without writing image analysis algorithms from scratch. Passing our 

CellProfiler pipeline to the Manning lab will likely cause less confusion than providing raw code 

due to the lab’s familiarity with CellProfiler.  

The CellProfiler speckle identification pipeline appears to do a relatively good job of 

identifying individual nuclei and foci within them once its many parameters have been optimized 

for the dataset of investigation. The team confirmed this by comparing the CellProfiler counts to 

the lab’s current technique of hand counting nuclei and foci within multiple images. However, an 

issue encountered when working on adjusting the CellProfiler pipeline for this dataset was the 



high amount of blur found on the images. Referring to Figure 2B, the green channel has a high 

amount of green haze that covers the frame. This issue appears most when foci are obscured by 

the haze. The foci identification functions by separating points of high-intensity green from the 

background of low intensity, so a green blur across the frame leads to a masking of foci in 

certain frames. This blur is not consistent across every frame, which meant we had to find the 

optimal thresholds that would lead to the highest number of foci identified in each frame. These 

thresholds included limiting the foci to a certain size, and a radius from the foci to use as a 

reference for the background intensity.  

 Altering the existing CellProfiler code was more difficult than we had initially predicted, 

as it became apparent each pipeline was built with the purpose of being run independently. The 

original plan was to take the cell tracking and speckle identification CellProfiler pipelines, 

identify the useful parts of both, and merge them together into a single pipeline that produced our 

desired end result. When working with the individual tasks within each pipeline, we discovered 

that they are not built in the modular manner that would allow for this technique. While the 

CellProfiler interface shows each step as wholly distinct from the one before it, in fact there are 

high amounts of overlap and dependencies shared. Separating and re-combining the code 

requires a greater knowledge of the application than we have, more akin to a developer of 

CellProfiler. To combat this limitation, we previously decided the optimal strategy for us would 

be to use CellProfiler to obtain a large amount of data from the image sets, then write our own 

programs to interpret the data and track the foci over time. A separate issue that we have realized 

recently is that each image is not taken from the exact same location. There is inconsistent 

variation in the microscope camera’s positioning from one timepoint to the next. The change in 

camera position can vary from a few microns to entire cell lengths from the prior image, as 

shown in Figure 15.  

 

 

Figure 15. Demonstration of image overlap between frames. 



 

These variations mean that using X-Y coordinates could be an impossible method of 

tracking foci, and we will need to develop a new technique to accomplish this tracking. A 

possible small solution we tried was to shift the entire image to overlap correctly. However, the 

cells are motile so there is no way we found that could identify a standard center. Using moving 

objects to standardize against other moving objects led to far too much variation. One possible 

solution to this is to identify foci in reference to the morphology of the cell they are found in. 

This solution may be feasible, but would require image processing that we are unable to develop 

on our own. A deeper investigation of CellProfiler mechanics and possible outside programs is 

necessary to determine how we will combat the inconsistency of the X-Y coordinates.  
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