
INTERACTIVE PLANNING AND SENSING FOR AIRCRAFT IN
UNCERTAIN ENVIRONMENTS WITH SPATIOTEMPORALLY EVOLVING THREATS

by
Benjamin Cooper

A dissertation submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN AEROSPACE ENGINEERING.

December 2018

APPROVED:

Dr. Raghvendra V. Cowlagi, Advisor
Assistant Professor, Aerospace Engineering Program.

Dr. Michael A. Demetriou, Committee Member
Professor, Aerospace Engineering Program, WPI.

Dr. Nikolaos A. Gatsonis, Committee Member
Professor, Aerospace Engineering Program, WPI.

Dr. Nikhil Karanjgaonkar, Graduate Committee Representative
Assistant Professor, Aerospace Engineering Program, WPI.

Dr. Puneet Singla, Committee Member
Associate Professor, Department of Aerospace Engineering,
The Pennsylvania State University.

2

Acknowledgements

Contained in this dissertation is an exploration of the relationship between planning and esti-

mating. While the discussion and results within are technical and mathematical in nature, years of

studying these topics have led me to a deeper philosophical appreciation of the interaction between

planning and estimation. The solution I present takes an iterative form in which plans are made

given our best understanding (estimation) of the world. Then, additional data is gathered to verify

this plan, which if found deficient, must be revised.

It is easy to find parallels in your own life. If you are a PhD student, perhaps you planned to

solve a rather impressive problem for your degree, that is, until you began working on that prob-

lem in depth and had to revise your ambitious plan. Now consider there is an element of time

permeating your problem. The difficulty of planning and gathering relevant information dramati-

cally increases. Your hope of graduating in five years has suffered from your initial ambitious and

uncertain plan. Wouldn’t it be nice if there were an algorithm to guide you in achieving your goal,

given all these complications and constraints? I wasn’t nearly that ambitious to propose such an

algorithm for my PhD, but I did benefit greatly from the guidance and support of a series of men-

tors, family, colleagues, and friends. Their guidance and support optimized my path and reduced

the uncertainty in my goals, and I must thank them immensely.

I thank my advisor, Dr. Raghvendra Cowlagi, who took the biggest risk by taking in this

former structural dynamics experimentalist to delve into theoretical aspects of planning and esti-

mation. I can’t imagine why he thought that was a good idea at the time, perhaps he was desperate.

Either way, I am extremely grateful for his bold investment. Raghu has transformed a once blunt

tool relying on intuition and hard work into a slightly more refined device capable of classifying

and dissecting complex problems. I look forward to any future collaborations we may have.

I would like to thank my committee members. Dr. Nikhil Karanjgaokar, for serving as the

committee representative. Dr. Nikolaos Gatsonis for his perspective on the fluid behaviour impli-

cations of one of my examples. Thank you to Dr. Puneet Singla who served as an external member

i

and suffered through the technical limitations of remote collaboration. Finally, thank you to Dr.

Michael Demetriou, from whom I took many courses and for whom I presented many seminar

talks. I am sure I haven’t heard the last of him.

I am grateful for the financial support of the Mechanical Engineering department through

Teaching Assistant positions, and later through the United States Air Force Office of Scientific

Research (AFOSR grant # FA9550-17-1-0028). This support made this research possible.

Thank you to the great many friends, coaches, and mentors I have had throughout Mas-

sachusetts and New Mexico. I have absorbed many great lessons about leadership, sacrifice,

compassion, failure, and success from these individuals. Though I could list the names of these

important people given enough time, there isn’t space to sufficiently detail their contributions. So

I will leave it at that. I give a final thanks to my lab mates, Jighjigh Ivase, Zetian Zhang, Jie Fang,

Chase St. Laurent, who have helped me grow technically and emotionally, and Ruixiang Du who

encouraged my appreciation of proper programming practices.

It took me a while to recognize the influence my parents had on my success. I don’t remember

needing much direct help on homework, or pestering to complete projects. Their lessons were

more abstract and learned through simple exposure. My father worked incredibly hard both in

his career and in providing opportunities to play and grow. My mother endured reading the same

bedtime stories over and over, answering all my “but why?” questions, and demonstrated many

other examples of calm patience. A PhD favors not the brilliant but the persistent and patient.

From those two qualities, work ethic and patience, I have derived all my successes.

I thank my one and only sibling, who is far braver than I could ever be. Again, the lesson

comes by way of example. We live fairly distinct and different lives, yet I have tried to become

more self-aware of the person I am, and the risks I might take to find happiness and success.

At last, thank you to Jodie who reminds me that success and happiness do not always require

working too hard, sometimes you only need to work one hard (possibly my favorite joke). It is from

her that I learned my final lesson: balance. A solution is not really good if it requires maximum

effort for success. Such a solution is not robust to disturbances. I can finally appreciate that a well

balanced approach yields the optimal life in the presence of life’s uncertainties.

ii

Abstract

Autonomous aerial, terrestrial, and marine vehicles provide a platform for several applica-

tions including cargo transport, information gathering, surveillance, reconnaissance, and search-

and-rescue. To enable such applications, two main technical problems are commonly addressed.

On the one hand, the motion-planning problem addresses optimal motion to a destination: an ap-

plication example is the delivery of a package in the shortest time with least fuel. Solutions to this

problem often assume that all relevant information about the environment is available, possibly

with some uncertainty. On the other hand, the information gathering problem addresses the maxi-

mization of some metric of information about the environment: application examples include such

as surveillance and environmental monitoring.

Solutions to the motion-planning problem in vehicular autonomy assume that information

about the environment is available from three sources: (1) the vehicle’s own onboard sensors,

(2) stationary sensor installations (e.g. ground radar stations), and (3) other information gather-

ing vehicles, i.e., mobile sensors, especially with the recent emphasis on collaborative teams of

autonomous vehicles with heterogeneous capabilities. Each source typically processes the raw

sensor data via estimation algorithms. These estimates are then available to a decision making

system such as a motion-planning algorithm. The motion-planner may use some or all of the esti-

mates provided. There is an underlying assumption of “separation” between the motion-planning

algorithm and the information about environment. This separation is common in linear feedback

control systems, where estimation algorithms are designed independent of control laws, and con-

trol laws are designed with the assumption that the estimated state is the true state.

In the case of motion-planning, there is no reason to believe that such a separation between

the motion-planning algorithm and the sources of estimated environment information will lead to

optimal motion plans, even if the motion planner and the estimators are themselves optimal. The

goal of this dissertation is to investigate whether the removal of this separation, via interactive

motion-planning and sensing, can significantly improve the optimality of motion-planning.

iii

The major contribution of this work is interactive planning and sensing. We consider the

problem of planning the path of a vehicle, which we refer to as the actor, to traverse a threat

field with minimum threat exposure. The threat field is an unknown, time-variant, and strictly

positive scalar field defined on a compact 2D spatial domain – the actor’s workspace. The threat

field is estimated by a network of mobile sensors that can measure the threat field pointwise. All

measurements are noisy. The objective is to determine a path for the actor to reach a desired goal

with minimum risk, which is a measure sensitive not only to the threat exposure itself, but also to

the uncertainty therein. A novelty of this problem setup is that the actor can communicate with

the sensor network and request that the sensors position themselves in a procedure we call sensor

reconfiguration such that the actor’s risk is minimized.

This work continues with a foundation in motion planning in time-varying fields where waiting

is a control input. Waiting is examined in the context of finding an optimal path with considerations

for the cost of exposure to a threat field, the cost of movement, and the cost of waiting. For example,

an application where waiting may be beneficial in motion-planning is the delivery of a package

where adverse weather may pose a risk to the safety of a UAV and its cargo. In such scenarios,

an optimal plan may include “waiting until the storm passes.” Results on computational efficiency

and optimality of considering waiting in path-planning algorithms are presented. In addition, the

relationship of waiting in a time-varying field represented with varying levels of resolution, or

multiresolution is studied.

Interactive planning and sensing is further developed for the case of time-varying environ-

ments. This proposed extension allows for the evaluation of different mission windows, finite

sensor network reconfiguration durations, finite planning durations, and varying number of avail-

able sensors. Finally, the proposed method considers the effect of waiting in the path planner under

the interactive planning and sensing for time-varying fields framework.

Future work considers various extensions of the proposed interactive planning and sensing

framework including: generalizing the environment using Gaussian processes, sensor reconfigura-

tion costs, multiresolution implementations, nonlinear parameters, decentralized sensor networks

and an application to aerial payload delivery by parafoil.

iv

Contents

1 Introduction and Literature Review . 1

1.1 Motivation and Problem Statement . 1

1.2 Background and Literature Review . 5

1.2.1 Modeling Environments with Basis Functions 6

1.2.2 Path-planning in Static Environments . 8

1.2.3 Path-planning in Time-Varying Evironments 9

1.2.4 Multiresolution Path Planning . 11

1.2.5 Motion-planning with Uncertainty . 12

1.2.6 Sensor Management and Optimal Placement 12

1.2.7 Estimation and Sensor Placement for Time-varying systems 14

1.2.8 Interactive Planning and Sensing . 14

1.3 Thesis Overview and Statement of Contributions 15

1.3.1 Overview . 15

1.3.2 Contributions . 16

2 Interactive Planning and Sensing for Path-planning in a Threat Field 19

2.1 Problem Elements Overview . 19

2.2 Uncertain Environment Formulation . 20

2.2.1 Path-planning in Uncertain Environment Problem Statement 22

2.3 Interactive Planning and Sensing Algorithm . 23

2.4 Task-Driven Sensor Reconfiguration . 27

2.5 Termination Criterion . 28

2.5.1 Relationship with Fisher Information . 29

2.6 Convergence Conditions and Optimality . 31

3 Path-planning with Waiting in Time-varying Environments 36

3.1 Problem Formulation . 36

3.1.1 Threat Field Parametrization . 36

v

3.1.2 Path-planning with Uniformly High Resolution Field Map 37

3.2 Waiting Policies and Considerations . 38

3.3 General Solution to Uniform High Resolution Path-planning Problem 39

3.3.1 No-Wait Path-planning . 40

3.4 Local Test for No-Wait Suboptimality . 41

3.5 Traditional Heuristics for Reducing Computational Burden 43

3.6 Machine Learning Classification for Path-planning Algorithm Selection 44

4 Multiresolution Path-planning with Waiting in Time-varying Spatial Fields 46

4.1 Problem Formulation . 46

4.1.1 Solution to Multiresolution Path-planning Problem 50

5 Interactive Planning and Sensing for Time-varying Systems 52

5.1 Problem Overview . 53

5.2 Estimation Formulation using Kalman Filter . 57

5.3 Interactive Planning and Sensing for Time-varying Systems Algorithm 58

5.3.1 Discretization of threat parameter system . 60

5.3.2 The IPAST Algorithm . 60

5.3.3 Task-Driven Sensor Reconfiguration . 64

5.4 Termination and Convergence Conditions . 65

5.5 Steady State Conditions and Extra considerations 68

6 Simulation Results and Discussion . 70

6.1 Interactive Planning and Sensing Results and Discussion 70

6.1.1 Illustrative Example . 70

6.1.2 Convergence and Optimality . 72

6.1.3 Comparisons with Information-Driven Approaches 74

6.1.4 Performance in Parameter-Rich & Resource-Constrained Scenarios 79

6.1.5 Computational Complexity . 82

6.1.6 Discussion of IPAS Algorithm and Alternative Comparisons 83

6.1.7 Comparison with Blackbox Optimization . 83

6.2 Waiting in Spatiotemporal Fields Illustrative Example and Discussion 84

6.2.1 Uniformly High Resolution Waiting vs. Non-waiting Solution 85

vi

6.2.2 A∗ Path-Planning Algorithm using Traditional Heuristics 89

6.3 Multiresolution Waiting vs. Non-waiting Solution 93

6.4 Interactive Planning and Sensing for Time-varying Systems Results and Discussion . 96

6.4.1 Illustrative Example . 97

6.4.2 Path Cost Variance Convergence Behavior 99

6.4.3 Convergence Behavior of the Final Path . 99

6.4.4 High Parameter - Long Horizon Example . 102

6.4.5 Waiting in IPAST Framework . 103

7 Conclusions and Future Works . 112

7.1 Generalizing the Environment . 113

7.1.1 Gaussian Processes . 114

7.1.2 Transport Phenomenon or Convection-Diffusion Process 116

7.2 Sensor Reconfiguration Cost . 117

7.3 Multiresolution Implementation of IPAS and IPAST 118

7.4 Nonlinear Estimation for IPAS . 118

7.4.1 Uncertainty Propagation . 120

7.5 Decentralized Sensor Network . 120

7.6 Limited Sensor Trajectory Control - Parachute Drop 121

Appendix A Wavelet Decomposition . 123

Appendix B Machine Learning for Waiting Problem . 124

B.1 Data Sources . 124

B.2 Methods . 125

B.2.1 Field Classification using Traditional Supervised Learning 125

B.2.2 Field Classification using Deep Neural Networks 128

B.2.3 Overall Optimized Path-Planner . 129

B.3 Results . 131

B.3.1 Field Classification through Supervised Learning 131

B.3.2 Classification by CNN-LSTM . 134

B.4 Conclusions . 134

Appendix C Detailed IPAST Algorithm . 136

vii

List of Figures

1.1 Information flow diagram demonstrating the connections between the physical

world, modeled worlds, estimation, and decision making elements. 2

1.2 Traffic density variations over timescales comparable to the duration of travel. Im-

ages acquired using Google Maps (Google Inc., 2018). Areas with higher traffic

density are indicated with yellow and red colors. (a) Mil. to Bos.; query at 06:15

AM. (b) Mil. to Bos.; query at 07:07 AM. 5

1.3 Generating a threat field for the component basis functions. 8

1.4 Discretizing the threat field. 9

1.5 The smooth threat field (a) is discretized, a graph is associated with each grid point

(b), and a minimal cost path is obtained using Dijkstra’s algorithm (c) or other

grid-based planners. 10

2.1 Pseudocode for the proposed IPAS algorithm to solve Problem 1. 26

2.2 Pseudocode for SENSOR RECONFIGURATION procedure called at Line 17 of main

algorithm in Fig 2.1. 27

3.1 Different waiting policies based on applications. 39

3.2 Illustration of the local no-wait condition. The decision to wait at vertex vk or

immediately move to vertex v` is based on the future threat field values c(xk, tj+1),

c(x`, tj+1), c(x`, tj+2), and waiting and movement costs αw and αm. 43

3.3 A potential outcome is the use of a classifier to select the appropriate path-planner

given a particular instance of the Gaussian field. The classifier will be trained on

occurrences of the field labeled as Go or Wait . 45

4.1 Example of an intensity map and its vehicle-centric multiresolution approximation

according to Eqn. (4.6). The vehicle’s location is indicated by the black dot near

the center. (a) Original field map. (b) Vehicle-centric multiresolution approximation. 47

viii

4.2 Pseudo-code for the proposed path-planning algorithm. 51

5.1 Illustration of the various time steps in the IPAST algorithm. 62

5.2 Pseudocode for Kalman filter based IPAST algorithm to solve Problem 4. 63

5.3 Pseudocode for SENSOR RECONFIGURATION procedure called at Line 17 of main

algorithm in Fig 5.2. 63

6.1 Convergence behavior of the IPAS algorithm. 71

6.2 Visualization of the iterative and interactive planning and sensing (IPAS) process

for NP = 36 and NS = 10. 73

6.3 Number of iterations until convergence with λ1 = 5. 75

6.4 Suboptimality in pathological cases where the number of sensors is extremely

small, and when the number of iterations of the IPAS algorithm are limited. 75

6.5 Number of iterations until convergence with λ1 = 1.2. 76

6.6 Simulations results summarizing the path cost percentage suboptimality compared

to the true optimal cost. 77

6.7 Path cost variance behavior for each sensor placement strategy at selected NP 79

6.8 Example with NP = 100 and NS = 10, the requirement number of measurements

for convergence is only 55. 80

6.9 Comparison of IPAS approach and an information-driven approach (frame potential). 81

6.10 The total number of measurements required given an NP − NS pair were tracked

over all simulations. The number of required total measurements increases slowly

with NP . 82

6.11 Execution time to solve Problem 1. (a),(b) The computational expense with wait-

ing included is bimodal with the dominant mode at higher computation times. Bi-

modality indicates calculation of waiting paths falls into two populations: optimal

waiting paths found in a narrow search of GT , and optimal waiting paths found in

a broader search of GT . This observation identifies two characteristically different

threat field families. (c),(d) Computational expense (execution time) when waiting

is not allowed. 86

ix

6.12 Difference in costs of waiting-allowed and no-wait optimal paths, for different

field characteristics. When the minimum field value is low, optimal paths more

frequently include waiting. The greatest differences between paths with and with-

out waiting cluster near a median value suggesting that large and small temporal

gradients of the field favor movement over waiting. 87

6.13 Computational efficiency due to local no-wait condition. When the local no-wait

condition (3.9) is used to prune search trees the calculation time for the majority of

paths is significantly reduced while still finding optimal paths that include waiting. 88

6.14 Difference in costs of waiting-allowed and no-wait optimal paths, for different

values of constants in edge transition cost. For lower values of the constants αw

and αm, optimal paths more frequently involve waiting. 88

6.15 Difference in costs of waiting-allowed and no-wait optimal paths, for different

numbers of field parameters. For fields with a larger number of parameters (i.e.

peaks) NP, the optimal path more frequently involves waiting. 89

6.16 Results of Heuristic Speed up. Heuristic drastically changed the number of visited

nodes, therefore improving the efficiency of searching. 90

6.17 Results of Heuristic Speed up. There was a strong reduction in the computation

time for A* with waiting. 90

6.18 Expanding the environment from 10x10x40 (4000 space-time locations) to 30x30x80

(72000 possible space-time locations) maintains strong computation reductions for

the search with heuristic. The number of nodes generated with the heuristic is or-

ders of magnitude smaller. 92

6.19 The scaling of computational reduction was explored with three increasing en-

vironment sizes which give increasing number of possible space-time locations:

4000, 20000, and 72000. In this graph, we compare the mean number of nodes

generated for each environment size. Computation reduction is strongest when ap-

plying the heuristic to the Wait version of A*. However, the heuristic still does not

reduce the search complexity of waiting to the level of a No-Wait search. 92

x

6.20 Waiting-allowed path with a multiresolution map of a three peak Gaussian field.

Here, the center peak fades over time for D = 4 and 7 (a and b). The multireso-

lution path is in blue boxes and the uniform resolution path in solid red. Note the

tenfold reduction in calculation time for the D = 7 multiresolution case. 94

6.21 Percentage cost reduction when waiting is considered using the multiresolution

representation at different resolution levels. Negative cost reductions (or sub-

optimality of no-wait paths) indicate that the algorithm anticipated a benefit from

waiting but was mistaken. 95

6.22 Suboptimality of using the multiresolution map, with different values of the pa-

rameter D. 95

6.23 Comparison of computation times. The computation time was measured and av-

eraged for each case of waiting-allowed vs. no-wait paths, and uniform vs. mul-

tiresolution maps. Waiting-allowed and no-wait computations with multiresolution

maps require equal computational time. 96

6.24 Path Cost and Variance of Path Cost behavior of IPAST algorithm. 98

6.25 Visualization of the iterative and interactive planning and sensing for Time-varying

fields (IPAST) process for NP = 9 and NS = 2. 100

6.26 IPAST Path cost variance and stop threshold at every time instant. 101

6.27 IPAST Path cost variance and stop threshold at every time instant for the final path

as well as the steady state covariance P∞. 102

6.28 There are insufficient number of sensors to even reach ε1(v∗)`. 103

6.29 There are sufficient number of sensors, but the planning duration is too long before

the variance threshold can be evaluated. 104

6.30 IPAST Path cost variance and stop threshold at every time instant for the final path

as well as the steady state covariance P∞. 105

6.31 Visualization of true optimal with waiting for non-uniform diffusivity threat field

with NP = 36 and NS = 4. 107

6.32 Visualization of IPAST result with waiting for non-uniform diffusivity threat field

with NP = 36 and NS = 4. 108

xi

6.33 Variance of estimated path cost and path cost at each iteration of the IPAST process

using the waiting algorithm for the non-uniform diffusivity field of NP = 36 with

NS = 4. 109

6.34 Variance of estimated path cost and path cost at each iteration of the IPAST process

using the non-waiting algorithm for the non-uniform diffusivity field of NP = 36

with NS = 4. 110

7.1 The resulting mean function and two standard deviations of variance. Measure-

ment points indicated as blue crosses. Generated using GPML Matlab Toolbox,

available at http://www.gaussianprocess.org/gpml/code/matlab/doc/ 116

B.1 A potential outcome is the use of a classifier to select the appropriate path-planner

given a particular instance of the Gaussian field. The classifier will be trained on

occurrences of the field labeled as Go or Wait . 124

B.2 A common architecture used in video classification is the CNN-LSTM consisting

of a layer of two-dimensional convolutional neural networks (CNN) that feed spa-

tial features into a layer of Long-Short Term Memory (LSTM) units that identify

temporal patterns. The output of the LSTM is sent through a standard multilayer

neural network for prediction. 130

B.3 A potential outcome is the use of a classifer to select the appropriate path-planner

given a particular instance of the Guassian field. The classifier will be trained on

occurrences of the field labeled as Go or Wait. 131

C.1 Detailed Pseudocode for Kalman filter based IPAST algorithm to solve Problem 4. 137

xii

http://www.gaussianprocess.org/gpml/code/matlab/doc/

List of Tables

1.1 Estimated travel times obtained from the Google Maps application. Data obtained

on April 10, 2018. 4

6.1 Summary of cost of and calculation times . 93

6.2 The waiting IPAST achieves lower cost over the non-waiting IPAST. Additionally,

IPAST achieves lower cost over the true non-waiting path in either waiting or non-

waiting versions. 111

B.1 Results of three best algorithms for Supervised Classification. 132

B.2 Results of three ensemble methods for Supervised Classification. 133

xiii

Chapter 1

Introduction and Literature Review

1.1 Motivation and Problem Statement

Autonomy has been driven by the technological leaps of digital computing. Ever smaller and

cheaper computers have spurred the proliferation of the embedded system such that autonomous

systems are found in factories, processing plants, cars, planes, coffee machines, and more. Control

and autonomy is the hidden technology that gains public view when it intersects science fiction

such as in driverless cars, UAV’s, and robots. Another technology that rests just below the public’s

attention is the network. Many will be familiar with the Internet and telephones as elements of a

network, but their design and operation remain in the background. The continual development of

autonomy and networks gives rise to the control of networks and the networks of control. Control

of networks considers the topology, interactions, and demands of elements and connections in a

network, such as coordinating telephone calls and webpage requests. Networks of control is the

paradigm of interest in this thesis and we explore a particular formulation of distributed autonomy,

where a heterogenous team of mobile vehicles collaboratively executes a common task. Mirroring

the evolution of computers from single to multi-core processors, networking has brought an age of

distributed control.

There are two major technical components of vehicular autonomy: (1) sensing and situa-

tional awareness in the vehicle’s environment, and (2) motion-planning and control to achieve

autonomous motion in this environment. These two components can be identified with the ob-

server/estimator and the controller subsystems, respectively, in a traditional control systems frame-

work. Mirroring a common practice in control systems design, a “principle of separation” between

these two components is often assumed, as evident from discussions in textbooks on autonomous

mobile vehicles, e.g., (Siegwart et al., 2011). This separation entails that the collection and pro-

1

1.1. MOTIVATION AND PROBLEM STATEMENT

Environment Model

c(x, t) =
∑NP

n=1 θn(t)φn(x)

= Φ(x)Θ(t)

Propagate

Θ−
k = AΘk−1

P−
k = APk−1A

T +Q

Execute Plan
OR

Failure

Check Stop Condition
V ar[Ĵ(v∗

ℓ)] < ε1(v
∗
ℓ) ?

zk = c(xsk , t) + ηk

Sensor Network

k = 1, . . . , NS

Planning
• Update Map: ĉ

• Get Path v∗
ℓ

Measurement Model

k = 1, . . . , NS

H =
[
∂c(xs)
∂Θ

]
kp

=
∂c(xsk)

∂θp

p = 1, . . . , NP

∂c
∂t = α

(
∂2c
∂x2 +

∂2c
∂y2

)Physical Environment

Update

Θ̂k = Θ−
k +Gk(zk −HΘ̂−

k)

Pk = (I −GkH)P−
k

Gk = P−
k HT (HP−

k HT +R)−1

{Φ}

Θ̂k

v∗
ℓ

Yes

No

xsℓ

xsℓ

zk

v∗
ℓ

{Φ}
Pk

Sensor Reconfiguration
• Get sℓ+1, xsℓ
• ℓ = ℓ+ 1

Pk

Estimation
Physical World

Decision Making

Figure 1.1: Information flow diagram demonstrating the connections between the physical world, modeled
worlds, estimation, and decision making elements.

cessing of sensor data is independent of the specific motion-planning problem at hand. In this

dissertation, we study a specific motion-planning problem and a sensor setup, Interactive Planning

and Sensing (IPAS), where the removal of such separation between the two components of auton-

omy can be beneficial. The diagram in Fig. 1.1 provides an overview of the main ideas explored in

this dissertation and emphasizes the coupled and interconnected nature of a decision making and

estimation problem.

Motion-planning is an important component of autonomy. There are a large variety of appli-

cations of unmanned aerial and terrestrial vehicles to drive the need for motion-planning. Motion-

planning for an unmanned aerial or terrestrial vehicle (UxV) is the process of finding control inputs

that enable the vehicle to travel from a prespecified initial position to a prespecified destination.

The vehicle’s motion is described by a controlled dynamical system. The environment in which

the vehicle moves may contain obstacles that the vehicle must avoid. Finally, the vehicle trajectory

2

1.1. MOTIVATION AND PROBLEM STATEMENT

may be associated with a quality metric, i.e. a cost function, and the objective of motion-planning

is to find an obstacle-free vehicle trajectory of minimum cost. The solution of the motion-planning

often involves discretization of the environment to first determine an obstacle-free path, which is a

finite sequence of “waypoints” that approximately specifies the vehicle’s actual trajectory.

This dissertation concerns the following concepts: path-planning, spatiotemporally varying

fields, and sensor limits. These are all major elements that collectively inform but do not define

the primary theme of this thesis: autonomy. Although autonomy is a broad term that alludes to

decision making and self-sufficiency, we specifically study point-to-point path-planning to achieve

a minimum cost traversal in spatiotemporally-varying environments, given limitations on available

information. Two limitations on sensor capabilities will be investigated: sensor noise and sensor

resolution.

We investigate the general problem of path-planning in a 2D workspace in the presence of a

spatiotemporal threat field, where minimal exposure to the threat is desired. We include the pos-

sibility of waiting for finite intervals of time. We consider first a scenario where the threat field

is fully known, and then a scenario where the field is partially known in vehicle-centric multires-

olution detail. This multiresolution representation can portray sensor resolution limits and serve

as a method to reduce computational burden as will be discussed later. The solutions to these

problems are conceptually simple: the dimension of the search space is expanded to include the

temporal dimension. However, computational implementations are challenging because the search

space along this temporal dimension is in principle unbounded even if the 2D spatial workspace is

compact.

One action not often explicitly considered in path planning in time-varying fields is the deci-

sion to not move, or to wait in one form or another. We envision scenarios where commanding the

vehicle to wait in the form of parking, loitering, or circling provide the optimal solution. When

the environment is a time-invariant field and when the quality metric penalizes path traversal time,

waiting in not beneficial. Waiting implies the trade-off of some unit of time in exchange for a re-

duced cost elsewhere (e.g. reduced danger, reduced travel cost, reduced uncertainty in field/state)

which minimizes the overall cost. Therefore, waiting needs to be considered only when the envi-

ronment is time-varying.

3

1.1. MOTIVATION AND PROBLEM STATEMENT

For a concrete example, consider the problem of planning a driving route from one place to

another. Minimum-time solutions to this problem are provided by many commercially available

gadgets (CNET Editorial Board, 2017) and freely available software applications such as Google

Maps (Google Inc., 2018). Furthermore, such applications are now capable of using real-time traf-

fic data to provide estimates of the travel duration (Lowe, 2017). Table 1.1 shows estimated travel

durations between the cities Springfield, MA, Boston, MA, and an intermediate town Millbury,

MA, which is approximately equidistant from Springfield and Boston1. These data are obtained

using the Google Maps application on a desktop computer browser, queried at 06:15 AM and

again at 07:07 AM on April 10, 2018. Notice the following peculiarity of this result. Per the 06:15

AM query, the estimated travel duration from Springfield to Millbury, MA is 52 min, and that from

Millbury to Boston is 1 hr. 11 min. A vehicle starting from Springfield at 06:15 AM will ostensibly

reach Millbury at 07:07 AM. However, in the 07:07 AM query, the estimated travel duration from

Millbury to Boston increases by 18%, and the total travel duration from Springfield to Boston will

be larger than the 06:15 AM estimate of 2 hrs. 1 min. An explanation of this discrepancy is that

the Google Maps application possibly2 ignores temporal variations in traffic, which are indicated

in Figs. 1.2(a) and 1.2(b).

Table 1.1: Estimated travel times obtained from the Google Maps application. Data obtained on April 10,
2018.

Spr. to Bos. Spr. to Mil. Mil. to Bos.

Query at 06:15 AM 2 hrs. 3 min. 52 min 1 hr. 11 min.
Query at 07:07 AM 2 hrs. 16 min.* – 1 hr. 24 min.

*: This duration is calculated by adding the Spr. → Mil. duration to the Mil.→ Bos. duration estimated in the 07:07
AM query.

Consider now that the objective of the same path planning problem were not to minimize travel

duration, but rather to minimize a weighted sum of travel duration and exposure to traffic. Such an

objective may be of importance to reduce the health risks to long-haul truck drivers by reducing

their exposure to automobile emissions (Peters et al., 2004; Raaschou-Nielsen et al., 2011; Rice

et al., 2015). This problem is also of renewed importance because in recent times, a wealth of

traffic data has become available to make accurate predictions of traffic (Lv et al., 2015; Tan et al.,

1The city halls of each city are chosen as specific starting and ending street addresses.
2The algorithmic details of this application are proprietary and not publicly known.

4

1.2. BACKGROUND AND LITERATURE REVIEW

(a) (b)

Figure 1.2: Traffic density variations over timescales comparable to the duration of travel. Images acquired
using Google Maps (Google Inc., 2018). Areas with higher traffic density are indicated with yellow and red
colors. (a) Mil. to Bos.; query at 06:15 AM. (b) Mil. to Bos.; query at 07:07 AM.

2016). In this case, an optimal route may involve waiting (e.g. at a rest area) for traffic to subside.

This problem is an example of the general problem of path-planning problem with mini-

mum exposure to a scalar field (e.g. traffic density in this example) that varies with space and

time. Other applications of this problem include motion-planning for aerial vehicles in inclement

weather with physics-based predictive models, and for mobile robots with continually updated

estimates of workspace features from noisy measurements.

The above problems of time-varying environments and interactive planning and sensing in

uncertain environment maps can be developed independently. However, in a time-varying and

uncertain map where the external mobile sensors collect measurements to estimate the field, an

important research question is: “Should the primary vehicle wait while the mobile sensor net-

work collects measurements, and if so, for how long should it wait?” In other words, consider

the waiting time as a function of information gathered or cost of path currently evaluated. The so-

lution to this question is the natural extension, Interactive Planning and Sensing for Time-varying

fields (IPAST), which dynamically reallocates mobile sensors in time-varying environment to dis-

cover and reduce the uncertainty of the minimum-cost path.

1.2 Background and Literature Review

Path- and motion-planning for autonomous mobile vehicles is a well-studied research area

(Choset et al., 2005). The canonical problem formulations are of finding obstacle-free paths and/or

5

1.2. BACKGROUND AND LITERATURE REVIEW

motions (i.e., paths in the vehicle state space) between prespecified initial and destination points

in a compact 2D or 3D workspace. A large variety of methods including geometric methods

(Kambhampati and Davis, 1986; Latombe, 1991), randomized sampling-based methods (Frazzoli

et al., 2002; Karaman and Frazzoli, 2011; LaValle and Kuffner, 2001), trajectory optimization

methods (Betts, 1998; Garg et al., 2010), and combinations thereof (Cowlagi and Tsiotras, 2012a;

Plaku et al., 2010) are reported in the literature to solve these canonical problems. Planning in

partially known workspaces (Stentz, 1994, 1995), or in workspaces with dynamic obstacles (Xu

et al., 2010) is also well-studied. However, problems involving predictive models of changes in the

workspace, where the planner can actively choose to wait for a more “favorable” workspace, are

less thoroughly studied. Examples of applications of such problems include motion-planning for

aerial vehicles in inclement weather with physics-based predictive models, motion-planning with

continually updated estimates of workspace features from noisy measurements, and path-planning

for cars (with considerations of waiting at rest areas) with known traffic flow patterns.

1.2.1 Modeling Environments with Basis Functions

Before describing the literature directly relevant to the extensions on path-planning presented

in this work, it is valuable discuss the environment used in the following investigations. The en-

vironment, often referred to herein as the threat field, is a linear combination of basis functions

defined on a workspace,W ⊂ R2, which is a closed square region. Each individual basis function

is considered a threat component, and a threat field is made of NP threats or basis functions dis-

tributed within a predefined workspaceW . The basis functions and the number of parameters NP

are prespecified. Specifically, we assume a Gaussian basis function

φn(x) := exp(− 1

2νn
· (x− x̄n)T(x− x̄n)), (1.1)

for each n ∈ [NP], where νn ∈ R>0 and x̄n ∈ W are prespecified constants.

The threat field is finitely and linearly parametrized as

c(x) = B +

NP∑

n=1

θnφn(x)

6

1.2. BACKGROUND AND LITERATURE REVIEW

= B + ΦT(x)Θ (1.2)

where B is a bias that offsets the field, and θn are coefficients associated with each basis φn and

represent the intensity of that threat.

The finite parameterization of the threat field c using Gaussian functions is justified by the

fact that a large class of functions on R, namely, square integrable functions, can be approximated

with arbitrary precision by linear combinations of Gaussian functions (Calcaterra, 2008). Further-

more, 2D Gaussian functions of varying width can be used to represent varying levels of resolution

by including narrower Gaussian functions into higher resolution images or video (Goshtasby and

Oneill, 1994). Finally, Gaussian function appear in series solutions to several partial differential

equations such as the diffusion equation (Crank, 1979), which enables the application of the pro-

posed work to path- and motion-planning with threat field modeled by physical phenomena such as

advection-diffusion of gases or radiation in the atmosphere (Demetriou et al., 2013). In the context

of this work, Gaussian functions also provide the smoothness in the derivatives, which we assume

later in Chapter 4 when addressing multiresolution representations of the threat field.

Figure 1.3 demonstrates the process of generating a generic threat field distributed across the

workspace. Individual basis may partially overlap with neighboring basis to create various different

environment topologies. In the next section, we demonstrate how a path-planning problem is

formulated and solved for this example static environment.

Remark (Discontinuous environments) The environment models presented in this disser-

tation are primarily smooth fields due to the use of the Gaussian function as a basis. However,

the primary contribution, Interactive Planning and Sensing, does not explicitly rely on the use of

smooth fields as the environment model. It would be possible in include environments with dis-

continuous features such as jumps in the field, or piecewise representations of the field. For the

case of Gaussian functions, this could be accomplished by properly sizing and locating additional

basis functions to approximate a jump or box function. This approach is similar to the superposi-

tion of sin and cosine waves in Fourier series approximations. Additionally, other basis functions

can be chosen such as Super Gaussian functions which can be designed to have very sharp drops

while still remaining smooth. Finally, various wavelet functions may be used for discontinuous

7

1.2. BACKGROUND AND LITERATURE REVIEW

(a) (b)

(c) (d)

Figure 1.3: Generating a threat field for the component basis functions.

environments. In fact, we make use of wavelet functions to represent the multi-resolution path

planning problem in Chapter 4. One of the extensions of interactive planning and sensing dis-

cussed in the future work section is the incorporation of the multi-resolution representation of the

environment to explore its effect on the formulation and operation of the interactive planning and

sensing framework.

1.2.2 Path-planning in Static Environments

Workspace cell decomposition is widely used in path-planning (Brooks and Lozano-Pérez,

1985; Latombe, 1991). The vehicle’s workspace (i.e., the planar region in which the vehicle moves)

is partitioned into convex regions called cells, that are either free or full of obstacles. A graph is

8

1.2. BACKGROUND AND LITERATURE REVIEW

(a) (b)

Figure 1.4: Discretizing the threat field.

defined such that each vertex of G uniquely corresponds to a free cell, and edges in this graph are

defined according to geometric adjacency of cells. The vehicle’s path-planning is then transformed

to a problem of searching for a minimum cost path in this graph, for which techniques such as

Dijkstra’s algorithm and the A∗ algorithm (Russell and Norvig, 2003) are available.

Using the threat field generated in Fig. 1.3, the continuous field can be uniformly discretized

to produce a discrete representation of the field, as in Fig. 1.4. Then each cell of the discretization

can be assigned as grid point as in Fig. 1.5(b). As described, each grid point is associated with a

vertex on a graph, where edge connects adjacent grid points. The traversal of an edge is assigned

a cost based on the local threat intensity (e.g. the value of the threat field at the destination grid

point). Finally, a graph search based algorithm such as Dijkstra is used to determine the minimum

cost path, as in Fig. 1.5(c).

The rest of the literature review and thesis describe the problems that arise and solutions

needed when the threat field is time-varying, when the discretization is non-uniform, and/or when

the intensity of the threat field is unknown and must be measured with some level of uncertainty.

1.2.3 Path-planning in Time-Varying Evironments

In the Dijkstra’s algorithm path-planning technique, it is straightforward to include traversal

costs based on a time-invariant field defined over the workspace. Optimal path-finding algorithms

9

1.2. BACKGROUND AND LITERATURE REVIEW

(a) (b) (c)

Figure 1.5: The smooth threat field (a) is discretized, a graph is associated with each grid point (b), and a
minimal cost path is obtained using Dijkstra’s algorithm (c) or other grid-based planners.

for graphs with time-varying edge costs appear in (Akgüna et al., 2007; Cai et al., 1997; Orda and

Rom, 1991; Philpott and Mees, 1993), but their applications to path-planning in a time-varying

spatial field have not appeared in the literature.

Time-dependent path planning has its’ most direct applications in travel and transportation.

Much of the work in this area is motivated by transportation route-planning (Chen and Yang,

2004; Pallottino, 1998; Sung et al., 2000) and travel planning between cities (Berube et al., 2006).

The typical objective in transportation problems is minimum time or minimum delay paths (a.B.

Philpott and a.I. Mees, 1992; Orda and Rom, 1990). In such applications, the cost of a path is

the total time taken to travel from a source to a destination, and often evaluating the all sources

to a single destination (Chabini, 2013). A scenario in which waiting can be beneficial is given

in (Orda and Rom, 1990) where a passenger contemplates taking the local slower train stopping

in front of him or waiting for the express train to take him to the final destination. Such scenarios

consider time-varying edge costs where the edge cost has a different delay or equivalent travel

speed depending on the current time. This time-dependent edge delay cost may result in behavior

violating the first-in-first-out (FIFO) condition of the network and has consequences which will be

discussed and addressed later. When the FIFO condition holds, waiting never benefits the minimum

time path. However, there are other objectives in path planning besides minimal time, which

are usually collected under the term minimum cost and may included fuel consumption, minimal

exposure to some threat, or some preferred travel terrain. Minimum cost paths with waiting are

10

1.2. BACKGROUND AND LITERATURE REVIEW

covered extensively in (Dean, 2004a; Orda and Rom, 1991) and include proper assumptions on

FIFO conditions. The other major example of waiting in time-varying networks involves data

transmission (a.B. Philpott and a.I. Mees, 1992; Cai et al., 1997; Dell’Amico et al., 2008; Gangulay

et al., 2004), however waiting in time-varying spatial fields has also not been addressed.

1.2.4 Multiresolution Path Planning

Path-planning using multiresolution cell decompositions involves representing the vehicle’s

environment with different levels of accuracy. For example, the quadtree method (Kambhampati

and Davis, 1986; Noborio et al., 1990; Samet, 1984), generates a planar cell decomposition con-

sisting of small cell sizes that accurately capture obstacle boundaries, and larger cell sizes that

efficiently represent large areas in free space. Other examples of multiresolution path-planning

techniques include (Behnke, 2004; Hwang et al., 2003; Kim and Lee, 2005; Prazenica et al., 2005;

Verwer, 1990). Though many of these hierarchical representations are present in path-planning,

the incorporation of waiting into this method is yet unseen.

Computationally efficient multiresolution cell decompositions, and associated path-planning

techniques based on the discrete wavelet transform (DWT) have been discussed in (Cowlagi and

Tsiotras, 2012b; Jung, 2007; Tsiotras and Bakolas, 2007). The wavelet transform is a power-

ful tool widely used in multiresolution signal processing (Daubechies, 1994; Mallat, 1989; Rao

and Bopardikar, 1998), and in vision-based navigation, localization, and mapping (Cho and Nam,

2000; Ilkyun et al., 2009; Lui and Jarvis, 2010; Shim et al., 1999). Autonomous vehicles use data

collected from multiple onboard sensors as well as ground-based and satellite-based sensors. To

assimilate data from such a variety of sensors, the wavelet transform is expected become the com-

mon standard of the representation and analysis of signals (Cipra, 1994; Paulson et al., 2010; Wei

and Fwa, 2004; Wiesemann et al., 2002; Yguel et al., 2006). Other examples of the application of

wavelet transforms in multiresolution path-planning include (Carrioli, 1991; Narayanaswami and

Pang, 2003; Pai and Reissell, 1998; Sinopoli et al., 2001).

11

1.2. BACKGROUND AND LITERATURE REVIEW

1.2.5 Motion-planning with Uncertainty

Another important research area in motion-planning is the development and evaluation of

planners that account for uncertainty in one or more elements of the problem formulation. Appli-

cations including information-driven path planning, environment mapping, SLAM, and motion-

planning under uncertainty can be categorized by three main sources (Kurniawati et al., 2012):

(1) motion or action uncertainty due to modeling errors, (2) vehicle state uncertainty due to state

measurement noise, and (3) environment map uncertainty due to measurement noise and limits on

resolution.

The first two uncertainty sources, action and state, are typically addressed under Stochas-

tic Motion Planning techniques. These problems are formulated as a Markov Decision Process

(MDP) or a partially observable MDP (POMDP), and can be solved using dynamic programming

(DP) (Bertsekas, 2000). Unfortunately, a naı̈ve implementation of DP is, in general, computation-

ally intractable for practical applications. Another tool is the sampling-based methods, such as

Probabilistic Roadmaps (PRM’s) and Rapidly-exploring Random Trees (RRT’s) (Alterovitz et al.,

2007; Missiuro and Roy, 2006). Following on this, belief space roadmaps are discussed for motion-

planning under uncertainty (Alterovitz et al., 2007; Prentice and Roy, 2009). The literature on

simultaneous localization and mapping (SLAM) algorithms addresses (Chakravorty and Saha,

2008; Lerner et al., 2007) the simultaneous reduction in uncertainty in the environment map and in

the vehicle’s state, by estimating parameters that describe environmental features. SLAM methods

may also involve planning, typically formulated as an MDP (Chakravorty and Saha, 2008) that

reflects the uncertainties in the map and in the vehicle state.

1.2.6 Sensor Management and Optimal Placement

distributed estimation of processes/fields, Information-driven path planning The literature on

sensor management addresses optimal placement of sensors to estimate distributed processes (Krause

et al., 2008; Ucinski, 2010), including the atmospheric dispersal of gases (Demetriou and Ucinski,

2011), the spread of volcanic ash (Madankan et al., 2014), and the identification and control of

structural vibrations (Padula and Kincaid, 1999). Guidance and coordination strategies for mobile

12

1.2. BACKGROUND AND LITERATURE REVIEW

sensors are also discussed (Demetriou et al., 2013; Martinez, 2010; Martinez and Bullo, 2006) for

envisioned implementations using teams of unmanned aerial, terrestrial, or underwater vehicles

(UXVs).

A typical performance metric used to characterize optimal sensor placement is maximum in-

formation, or equivalently, minimum entropy (Cochran and Hero, 2013). Maximization of a char-

acteristic, such as the determinant, the trace, or the largest eigenvalue, of the Fisher Information

Matrix (FIM) is another frequently used performance metric. Other metrics include the classical

least squared error in parameter estimates, mutual information, Battacharya coefficients, Hellinger

distance, and Kullback-Lieber divergence (Cochran and Hero, 2013; Krause et al., 2008; Mu et al.,

2015).

Target tracking and localization has benefited from using information-driven approaches to

sensor measurements. It could be considered as a subset of the parameter estimation problem and,

as stated, subject to information driven methods as in (Adurthi and Singla, 2014; Farmani et al.,

2014). When framed as a problem for UAV’s, two more concerns arise, coordination/planning and

vehicle performance of the UAV’s as mobile sensors whether they are fixed wing aircraft suited

to long-term monitoring or quadrotors more suited for short-term agile pursuit. In (Martinez and

Bullo, 2006), Martinez and Bullo address the question of motion coordination for target tracking

and express that both the motion control algorithm and estimation process should be optimally

integrated to make the most of network performance.

The idea of an integrated and coordinated planning and sensing scheme is broaching closer to

the heart of this paper. Singla and Adurthi tackle the problem of optimally routing a UAV to better

estimate the targets state while using as little energy as possible (Adurthi and Singla, 2014). In

this problem, they make use of a Mutual Information construction using an information distance

metric based on Hellinger distance in terms of Battacharya coefficients. The balance between

information gathering, vehicle performance, and task fulfillment (target tracking) leads to a paper

by Kreucher (Kreucher et al., 2005) in which the merits of Task Driven versus Information Driven

sensor management were compared for the case of target tracking. Within the frame of the paper,

they concluded that for a specific task (eg. target tracking), a task-specific objective function (eg.

minimize the tracking error) works best. However, when there are multiple competing performance

13

1.2. BACKGROUND AND LITERATURE REVIEW

criteria then information-driven approaches perform consistently as well. Kreucher’s paper gives

justification for the use of information driven approaches, but leaves the particular implementation

for further pursuit and exploration.

1.2.7 Estimation and Sensor Placement for Time-varying systems

Sensor selection and scheduling for Kalman filtering is of direct relevance to this work. This

continually evolving topic is driven in large part by work on sub- and supermodular functions

whose properties allow greedy algorithms to select sets of sensors which are nearly optimal. Since

this property was originally analyzed (Nemhauser et al., 1978), greedy algorithms invoking sub-

modular functions have been explored extensively (Krause et al., 2008; Ranieri et al., 2014). The

sensor placement problems fall under finite horizon solutions (Gupta et al., 2006; Mo et al., 2011;

Tzoumas et al., 2016) and infinite horizon solutions (Asghar et al., 2017; Mo et al., 2014; Ye et al.,

2018; Zhang et al., 2017). Infinite horizon problems often focus on minimizing the statistical

steady state error covariance (Zhang et al., 2017) or finding periodic sensor schedules (Mo et al.,

2014; Shi and Chen, 2013). Furthermore, the sensor selection (or design-time) problem maximizes

performance for a single set of fixed sensors (Tzoumas et al., 2016; Zhang et al., 2017), whereas

the sensor scheduling (or run-time) problem considers possibly different sensor configurations at

each time step (Asghar et al., 2017; Jawaid and Smith, 2015; Mo et al., 2011). In this work, we

study path-planning in the scenario of sensor scheduling under a finite time horizon.

1.2.8 Interactive Planning and Sensing

We are concerned with environment uncertainty insofar as it affects the optimal planning for

a point to point path. A similar concern is presented in (Al-Sabban et al., 2013) where the goal is

point to point planning in uncertain, time-varying wind fields with the extra objective of leveraging

wind energy to reduce overall energy costs. The extra objective in our work is to leverage external

mobile sensors to reduce the uncertainty in the field in the relevant domain of interest, which is

the environment around the optimal path. Another effort in the spirit of our goal is the work by

Skoglar (Skoglar et al., 2006) which seeks an information driven planning approach. The vehicle

14

1.3. THESIS OVERVIEW AND STATEMENT OF CONTRIBUTIONS

has an on-board gimbaled electro-optical/infrared camera which can be controlled. The goal is to

concurrently plan the vehicle path and the ‘path’ of the sensor or rather the direction of the gaze

to maximize the information necessary to plan the route, but also the route plan maximizes the

ability to gain information. Their work touches on ideas of optimal design of experiments and

active sensing.

The recent works (Tzoumas et al., 2016, 2018) consider the sensor selection problem for LQG

control. Initially noting the problem requires jointly designing sensing, estimation, and control

and thus breaking the traditional principle of separation, the authors present an argument which

allows design of sensor selection for estimation separate from the control problem. However, they

consider the sensor selection case in which a fixed set of sensors is chosen for measurements at

all time steps. In comparison, we seek a solution to the planning and sensing problem in which a

subset of a network of sensors can assume different configurations for any given time step during

the finite time horizon. To this end, the proposed work studies a method to determine a domain of

the actor’s interest for guiding sensor placement: specifically, the iterative process that results from

the computation of this domain, the subsequent sensor placement, and replanning by the actor with

newly acquired sensor data.

1.3 Thesis Overview and Statement of Contributions

The goal of this dissertation is to develop planning algorithms to find optimal routes in spa-

tiotemporally varying fields subject to map uncertainty or varied resolutions.

1.3.1 Overview

We observe the following missing links in the existing literature: while many problems address

the optimal use of sensor networks to estimate a distributed environment, to the best of the author’s

knowledge, there is no work focused on using a sensor network to directly optimize the objective of

a path planning problem, i.e. minimizingthe sum of edge costs in point-to-point motion-planning

implemented on a graph; applications of planning may consider time-varying costs, but few con-

15

1.3. THESIS OVERVIEW AND STATEMENT OF CONTRIBUTIONS

sider the direct implication of waiting on algorithm complexity and optimality. In this thesis, we

first develop an interactive planning and sensing (IPAS) algorithm which iteratively plans a path

and redirects a sensor network to identify the optimal path with a required level of certainty, and

extend the concept to spatiotemporally-varying environments. Second, we address the explicit

case of waiting as part of the solution to a path-planning problem in a spatiotemporally-varying

environment. We investigate the computational complexity as well as optimality through imple-

mentation of a multiresolution decomposition of the time-varying environment, with comparisons

to standard informed search heuristics.

One of the themes explored in this thesis is the relationship between the level of information

available and the quality of the path given that information. When referring to the level of informa-

tion, we may refer to the available resolution of the environment as explored in the multiresolution

representation of the environment, or the uncertainty of the environment as formulated in the inter-

active planning and sensing work in Chapters 2 and 5. These two formulations arise naturally from

the common limits on sensor measurements, namely measurement resolution and measurement

noise.

Therefore, this thesis explores the practical but fundamental question of optimizing the per-

formance of path-planning algorithms given the very real limits of resolution and noise. This work

not only considers that the information available is limited in some way, but makes the claim that

it is not necessary or even desirable to maximize the level of information when the goal is finding

optimal paths.

1.3.2 Contributions

We make the following contributions toward path-planning in spatially- and spatiotemporally-

varying environments in which information may be limited by resolution or uncertainty.

Interactive Planning and Sensing Optimizes Path Performance For the case of environments

formulated by a combination of linear basis functions, the interactive planning and sensing algo-

rithm using a sensor network optimizes the path performance to within an arbitrarily small value

16

1.3. THESIS OVERVIEW AND STATEMENT OF CONTRIBUTIONS

of the true path cost. We present theorems and proofs demonstrating both the termination and

convergence of this algorithm in a finite number of iterations.

Interactive Planning and Sensing Minimizes Sensor Network Resources with respect to In-

formation-Driven Sensor Placement Methods In addition to optimizing path performance, the

IPAS algorithm uses a minimal amount of sensor resources to accomplish the required path cost

tolerance. We demonstrate that for a given amount of sensor measurements, the IPAS algorithm

achieves better path performance with higher confidence than several other information-based sen-

sor placement strategies. This advantage increases both as the number of parameters in the envi-

ronment increases and the number of available sensors decreases.

Pruning of the Search Graph Preserves Optimality of Waiting Path Planners By imposing

a local wait check on the neighbors of a vertex, we can preserve the most beneficial routes that in-

clude waiting while reducing the computational burden of exhaustively searching the entire search

graph space.

Waiting has Negligible Impact on Computational Expense in Multiresolution Path-planning

When using a multiresolution representation of the environment, the explicit inclusion of waiting

in the search algorithm has negligible effect on computational expense. Whenever the search

algorithm explores waiting, the spatial multiresolution decomposition does not change. Therefore,

in the multiresolution path-planning problem, the allowance of waiting does not incur significant

additional computational expense.

Interactive Planning and Sensing for Time-varying Environments The algorithm and prin-

ciples behind the interactive planning and sensing algorithm are extended to environments with

both spatially and temporally varying parameters. This is accomplished by reformulating the least

squares parameter estimation as a Kalman filter in which the parameter system is the dynamic

system being estimated. While the extension to time-varying fields is straightforward, the inclu-

sion of the time dimension significantly complicates the convergence properties of the algorithm.

We present a revised convergence criterion and discuss the influence of various problem elements

17

1.3. THESIS OVERVIEW AND STATEMENT OF CONTRIBUTIONS

including sensor reconfiguration time, planning time, the rate of evolution of the threat field (as

capture by a diffusivity parameter α), as well as the number of parameters of the field and number

of sensors available.

Waiting as a Side Effect of Interactive Planning and Sensing for Time-varying Environments

In the noiseless information case we discussed the benefits and issues involved with waiting in

uniform high resolution and multiresolution representations of the threat field. As a consequence

of the reconfiguration and planning required during iterations of the IPAST algorithm, we observe

additional evidence that waiting should be considered when planning. This provides additional

motivation that waiting should be incorporated explicitly in path-planning problems including the

IPAST algorithm presented.

18

Chapter 2

Interactive Planning and Sensing for Path-planning

in a Threat Field

2.1 Problem Elements Overview

In what follows, we denote by R and N the sets of real and natural numbers, respectively; by

[N] the set {1, . . . , N} for any N ∈ N; and by I(N) the identity matrix of size N. For the reader’s

convenience, a nomenclature table is provided.

Symbol Meaning

x̄n, νn Constants used in spatial basis functions (2.2)
NS, NP Numbers of sensors, parameters, resp.
NG Number of grid points
xi Grid point location of vertex i ∈ [NG]
c, ĉ True, estimated threat, resp.
Θ̂, P Threat estimate and error covariance, resp.
J , Ĵ True, estimated path cost, resp.
v∗ True optimal path
s` Sensor placement at iteration `
¯̀ # iterations for IPAS algorithm termination
I Set of identified parameters, see (2.5)
K Minimal cover of path, see (2.10)
L Sensor reconfiguration, see (2.11)

LetW ⊂ R2 be a closed square region, called the workspace, in which the actor and the sen-

sors move. In this workspace, we formulate a grid consisting of NG points uniformly placed the

workspace. The coordinates in a prespecified Cartesian coordinate axis system of the ith grid point

are denoted by xi, for each i ∈ [NG]. We consider a strictly positive scalar field c : W → R>0,

called the threat field, which represents unfavorable regions with higher intensity. The actor is

assumed to traverse grid points according to a “4−connectivity rule.” Let δ denote the distance

19

2.2. UNCERTAIN ENVIRONMENT FORMULATION

between adjacent grid points. We neglect vehicle kinematic and dynamic constraints, while noting

that such constraints can in the future be easily incorporated in the proposed grid-world prob-

lem setup (Cowlagi and Tsiotras, 2012a), and that multiresolution grids can also be considered

(Cowlagi and Tsiotras, 2012b). We also assume that the actor vehicle has no uncertainties in lo-

calization or in motion on the grid: i.e., the current grid-point location of the actor is known, and

the effect of moving to an adjacent grid-point is deterministic and known.

The actor’s motion-planning problem is formulated as a graph search problem on a graph

G = (V,E), where each vertex in V is uniquely associated with a grid point, and labeled by

integers 1, 2, . . . NG. The edge set E is the set of pairs of vertices associated with adjacent grid

points. Edge transition costs are assigned by a scalar function g : E → R>0 defined as

g((i, j)) = c(xj), for i, j ∈ [NG], (i, j) ∈ E. (2.1)

A path in the graph G between two prespecified vertices is and ig is a sequence v = (v0, v1, . . . , vP)

of successively adjacent vertices with v0 = is and vP = ig. The cost J (v) ∈ R>0 of this path is

the sum of edge transition costs, i.e., J (v) :=
∑P

k=1 g((vk−1, vk)). The actor’s motion-planning

problem is the problem of finding a path with minimum cost between initial and goal grid points

is, ig ∈ [NG]. We will refer to this path as the true optimal path, denoted by v∗.

2.2 Uncertain Environment Formulation

Uncertainty in the actor’s motion-planning problem arises from uncertainty in the knowl-

edge of the threat field. The threat field is finitely and linearly parametrized as c(x) = 1 +
∑NP

n=1 θnφn(x) = 1 + ΦT(x)Θ, where φn : W → R>0 are spatial basis functions, Φ(x) :=

[φ1(x) . . . φNP
(x)]T, and Θ := [θ1 . . . θNP

]T. The basis functions and the number of

parameters NP are prespecified. Specifically, we assume

φn(x) := exp(− 1

2νn
· (x− x̄n)T(x− x̄n)), (2.2)

for each n ∈ [NP], where νn ∈ R>0 and x̄n ∈ W are prespecified constants.

20

2.2. UNCERTAIN ENVIRONMENT FORMULATION

Definition 1 (Region of significant support). The region Rsup
n := {x : ‖x− x̄n‖ 6 3

√
νn} ∩W is

defined as the region of significant support for the basis function φn.

Whereas the functions φn do not have compact support in R2, 99.74% of the volume enclosed

under each φn is enclosed by the restriction of φn toRsup
n .

Assumption 1. The constants νn and x̄n are chosen such that the union of the interiors of the

regions of significant support cover the entire workspace.

WhenNP is a perfect square, the workspace coverage in Assumption 1 is achieved by choosing

x̄n on a uniform
√
NP ×

√
NP grid on the workspace W . To ensure coverage and to minimize

overlap of the basis functions, νn is chosen such that theRsup
n extends to half the diagonal distance

between basis functions. Specifically, for adjacent basis functions with indices n and p, we choose

νn := (
√

2
6

(x̄n − x̄p))
2.

This choice of Gaussian basis functions is justified by the fact that square integrable functions

can be approximated with arbitrary precision by linear combinations of Gaussian functions (Cal-

caterra and Boldt, 2008). The proposed algorithm does not specifically depend on this choice, and

other basis functions such as orthogonal wavelets (Rao and Bopardikar, 1998) can be used.

A finite number of sensors NS � NG are available to take pointwise measurements in the

workspace. A number NL 6 NS of these sensors are placed at distinct grid points. The set of these

grid points, called a placement, is denoted by s = {s1, . . . , sNL
}. The measurement taken by each

sensor is zk := c(xsk) + ηk, where ηk ∼ N (0, σ2
k), for each k ∈ [NL].

We define a region of estimability for each basis φn, which is a region in which a sensor

must be located to confidently estimate the parameter θn. To this end, let σ̄ := max{σk}NS
k=1. For

Gaussian measurement noise, if the signal-to-noise ratio (SNR) is greater than three, θnφn
σ̄

> 3, the

probability of detecting a signal is at least 0.9974 (Miller et al., 2005). Therefore, placing sensors

outside of the region where θnφn > 3σ̄ is not advisable1. By (2.2), it follows that this region is

defined by the ball
{
x ∈ W : ‖x− x̄n‖ 6

√
2νn log(θn/3σ̄)

}
.

Whereas the parameter θn is unknown, the radius of this ball scales logarithmically2 with θn.
1Note that the maximum SNR is obtained when the sensor is placed at x = x̄n.
2To be precise, the radius scales slower: i.e., with the square root of the logarithm of θn.

21

2.2. UNCERTAIN ENVIRONMENT FORMULATION

Therefore, this region can be determined using a rough order of magnitude estimate of θn, which

is typically available in practice. We assume that upper and lower bounds θ̄n and θn are known,

and that these bounds are within two orders of magnitude of each other.

It is always possible to place a sensor at a grid point inside Rest if δ < 2
√

2νn log(θ̄n/3σ̄).

We tighten this region further to ensure that the regions of estimability of adjacent basis functions

do not significantly overlap. By doing so, estimates of parameters made from measurements taken

within this region are independent from estimates of other parameters. That is, if zn, zp are mea-

surements taken by sensors placed in Rest
n and Rest

p , respectively, with n 6= p and n, p ∈ [NP],

then Covar(θ̂n, θ̂p|zn, zp) ≈ 0. It is always possible to place a sensor at a grid point inside Rest
n if

δ < 2(1− 1√
2
)∆x̄, where ∆x̄ := min{‖x̄n − x̄p‖ : n, p ∈ [NP]}.

Definition 2 (Region of estimability). The region of estimability for the basis function φn is the set

Rest
n :=

{
x : ‖x− x̄n‖ 6 (1− 1/

√
2)∆x̄

}
.

2.2.1 Path-planning in Uncertain Environment Problem Statement

The actor can avail of estimates of the threat field parameters generated using measurements

taken by the sensors over a sequence of placements {s`}`∈N . Therefore, the actor’s path-planning

problem is reformulated by considering deterministic but unknown edge transition costs based on

the estimated threat field.

Problem 1. Find a sequence of sensor placements {s`}`∈N , and a path v̂∗ in G with minimum

estimated cost.

A precise definition of estimated cost is provided in Section 2.3. Problem 1 encodes an explicit

dependence between the sensor locations and the actor’s path-planning problem. It is of course

desirable that the path with minimum estimated cost is close to or identical to the true optimal path

as defined by (2.1), i.e., and |J (v̂∗) − J (v∗)| is small. A significant finding of this paper is that

if Problem 1 is solved by decoupling the sensor placement and path optimization subproblems,

then the true cost of the resulting path can be significantly suboptimal (see Section 6.1.1). More

importantly, the proposed approach finds solutions to Problem 1 such that v̂ is near-optimal.

22

2.3. INTERACTIVE PLANNING AND SENSING ALGORITHM

2.3 Interactive Planning and Sensing Algorithm

For a given set s of sensor locations, let Θ̂ and P denote the mean and estimation error covari-

ance matrix of the least squares estimate of the parameter Θ. Precisely:

Θ̂ := HLz, P := (HTR−1H)−1 (2.3)

Here R := diag(σ2
1, ..., σ

2
NL

) is the measurement error covariance matrix, z = [z1 . . . zNL
]T,

H :=
[

Φ(xsl,1) Φ(xsl,2) . . . Φ(xsl,NL
)
]T

,

and HL is the left pseudo-inverse. Using these estimated parameters, a threat field estimate is

constructed as ĉ(x) := 1 + ΦT(x)Θ̂, and an estimated edge transition cost function ĝ : E → R>0 is

defined similar to (2.1).

This least squares estimation problem is well-posed when NL > NP, and the resulting esti-

mates will be unbiased with minimum variance. Two complications can arise. First, the problem

can become ill-conditioned when sensors are placed outside the regions of significant support of

the spatial basis functions φn. In the proposed problem formulation, these basis functions are pre-

specified and their regions of support are known. Therefore, ill-conditioning is easily avoided.

Second, the problem becomes ill-posed whenNL < NP. In this case, the parameter estimation

is an underdetermined linear system, and has infinitely many solutions. The proposed approach

addresses ill-posedness by identifying a smaller set of basis functions of interest, thereby restricting

the estimation problem to a smaller number of parameters.

The estimated cost of a path v = (v0, . . . , vP) in G is Ĵ(v) =
∑P

k=1 ĝ((vk−1, vk)) = P +
∑P

k=1 ΦT(xk)Θ̂. For a given parameter estimate Θ̂, the actor’s problem of finding an optimal path

in G can be solved using a standard path optimization algorithm such as Dijkstra’s algorithm (Bert-

sekas, 2000).

The novelty of the proposed work is that Problem 1 is solved by the following iterative method.

At each iteration ` ∈ N, this method finds a parameter estimate Θ̂`, the estimation error covariance

23

2.3. INTERACTIVE PLANNING AND SENSING ALGORITHM

matrix P`, a sensor placement s`, and a path v∗` in G with minimum estimated cost, such that with

a high probability

lim
`→∞

Ĵ(v∗`) = lim
`→∞
J (v∗`) 6 J (v∗) + ε, (2.4)

where ε is a suboptimality bound precisely identified in Theorem 1 below. The process of find-

ing the next sensor placement s`+1 based on the actor’s current optimal path v∗` is called sensor

reconfiguration.

The algorithm terminates when the variance of the estimated path cost variance, Var[Ĵ(v∗)],

reaches a value smaller than a prespecified threshold. The details of this termination condition,

including the variance computation, are discussed in Section 2.6.

This interactive planning and sensing (IPAS) algorithm is described in Lines 1–9 of Fig. 2.1

and the sensor reconfiguration policy is described in Lines 1–3.

The IPAS algorithm is initialized in Line 1 with an arbitrary sensor placement denoted s0. The

algorithm maintains a set I ⊂ [NP] of parameter indices, called identified parameters. At each

iteration ` ∈ N, in Line 4, the algorithm determines the set I from the current sensor placement

s` = {s`,1, . . . , s`,NL
} recursively as

I := I ∪ {n : ∃k ∈ [NL] with xs`,k ∈ Rsup
n }. (2.5)

Informally, for each n ∈ I, at least one sensor is placed within the region of significant support

of φn in at least one iteration of the algorithm including the `th iteration. The complement of I is

Ic := [NP]\I.

The algorithm also maintains a set of indices L = {m1, . . . ,mNL
} ⊂ [NP]. The sensor re-

configuration policy determines L as discussed in Section 2.4. The size of this set L is NL 6 NS.

Informally, these indices are such that the kth sensor is placed in the region of estimability Rest
mk

of the mth
k basis function. From a practical perspective, the placement s` is interpreted as new

locations for sensors to be placed, and that NL out of NS sensors move at each iteration.

Next in Line 5, the parameter estimate Θ̂`, and the estimation error covariance P` are computed

from the sensor measurements z` ∈ RNL . The well-posedness of the least squares estimation

24

2.3. INTERACTIVE PLANNING AND SENSING ALGORITHM

problem is ensured as follows. The matrix T ∈ RNL×NP is defined as

Tij :=





1 if j = mk,

0 otherwise.

for k ∈ [NL], j ∈ [NP]. Next, Hwp is defined as

Hwp :=




φm1(xs`,1) φm2(xs`,1) . . . φmNL
(xs`,1)

φm1(xs`,2) φm2(xs`,2) . . . φmNL
(xs`,2)

. . .

φm1(xs`,NL
) φm2(xs`,NL

) . . . φmNL
(xs`,NL

)



.

Recall that xs`,k denotes the grid point at which the kth sensor is placed and is the closest available

grid point to the center of mkth basis. The construction of the set L ensures sensor placement

to maximize SNR ensures each row has a non-zero entry. Then by Definition 2, all columns of

Hwp are linearly independent therefore the matrix Hwp has full rank NL. The parameter estimates

and estimation error covariance can then be computed using the standard recursive least squares

method augmented with a transformation matrix T as follows:

Pwp := TP`T
T (2.6)

G` := PwpH
T
wp(HwpPwpH

T
wp +R)−1, (2.7)

Θ̂`+1 := Θ̂` + TTG`(z` −HwpT Θ̂`), (2.8)

P`+1 := (I(NP) − TTG`HwpT)P`. (2.9)

This recursive method is initialized with Θ̂0 := 0, and P0 := λ0I(NP), where λ0 is an arbitrary

large constant. The threat field is then estimated as ĉ(x) := 1 + ΦT(x)Θ̂`. We refer to this threat

field estimate as an optimistic estimate because for all indices m ∈ IC, the parameter θ̂m retains

its initialized value of zero. This property contributes towards the optimality of the proposed

algorithm, as discussed in Section 2.6.

Definition 2 implies that the parameter estimates θ̂n can be treated, for practical purposes, as

mutually independent random variables (r.v.). Consequently, at each iteration, NL sensors can be

25

2.3. INTERACTIVE PLANNING AND SENSING ALGORITHM

Interactive Planning and Sensing

1: Set initial sensor placement s0 ⊂ {1, . . . , NG}.
2: Set ` := 0, StopCondition := false, and I := ∅.
3: while ¬StopCondition do
4: Find the set I by (2.5).
5: Update Θ̂`, P`, by (2.7)–(2.9) and construct ĉ(x).
6: if Var[Ĵ(v∗`)] 6 ε2(v∗`) then
7: Execute Dijkstra’s algorithm to find v∗` .
8: SENSOR RECONFIGURATION

9: Set ` := `+ 1, and evaluate StopCondition.

Figure 2.1: Pseudocode for the proposed IPAS algorithm to solve Problem 1.

placed to estimate NL parameters – i.e., the other (NP − NL) parameters are treated as “nuisance

variables” for that iteration (Routtenberg and Tong, 2015), which leads to the following important

feature of the proposed algorithm.

Remark 1. The least-squares estimation problem in Line 5 is well-posed, and the the estimates θ̂n

are unbiased for each identified parameter, i.e., for each n ∈ I.

Using the transformation matrix T, (2.7)–(2.9) provide the computational convenience of

maintaining the sizes of Θ̂` and P` constant at each iteration.

In Line 7, Dijsktra’s algorithm is executed to determine an optimal path v∗` in G, i.e., v∗` has

minimum estimated cost with the estimate of the threat field at the `th iteration. Next, the sensor

reconfiguration policy is executed to obtain a new sensor placement s`+1. The search for a new

optimal path in Line 7 is conditional on the confidence in the estimated cost of the current path

(Line 6). Specifically, a new optimal path is searched in Line 7 only if the variance of estimated

path cost is lower than a threshold ε2(v∗`). Exact expressions of the path cost variance and a defi-

nition of the threshold ε2(v∗`) are provided in Section 2.5.

26

2.4. TASK-DRIVEN SENSOR RECONFIGURATION

Sensor Reconfiguration
SENSOR RECONFIGURATION

1: Find the set K by Eqn. (2.10).
2: Find the set L according to Eqn. (2.11).
3: For each m ∈ L, place a sensor inRest

m to get s`+1.

Figure 2.2: Pseudocode for SENSOR RECONFIGURATION procedure called at Line 17 of main algorithm in
Fig 2.1.

2.4 Task-Driven Sensor Reconfiguration

The sensor reconfiguration policy in the proposed IPAS algorithm is tailored to collect mea-

surements that are of most relevance to the “task” (i.e., the path planning problem) at hand. To this

end, this policy first identifies (Line 1) a minimal set of indicesK ⊆ [NP] such that the current path

lies within the total region of significant support defined by the corresponding basis functions. To

be precise, let V` ⊂ W be the set of grid point locations in the workspace associated with each of

the vertices in the path v∗` . Then

K := {n ∈ [NP] : V` ∩Rsup
n 6= ∅}. (2.10)

We call the set K the minimal cover of the path v∗` .

The rationale of the proposed IPAS algorithm is that, typically,K has fewer thanNP elements.

The parameters θn for n ∈ K are considered to be of the “most relevance” to the path-planning

problem. Therefore, sensors can be placed to improve the confidence in the estimation of these

parameters, possibly at the expense of reduced confidence in estimates of the other remaining

parameters, i.e., those θn where n /∈ K.

Next, in Line 2, we compute a set of indices L defined as

L :=




K if K ∩ IC = ∅,

K ∩ IC otherwise.
(2.11)

Informally, K ∩ IC is the set of indices of parameters that are of relevance to the path-planning

27

2.5. TERMINATION CRITERION

problem but not yet identified. The sensor placement s`+1 in Line 3 consists of locations within the

region of estimability of basis function φm, for each m ∈ L. Ideally, sensors should be placed at

grid points closest to the locations x̄m for each m ∈ L, i.e., the maxima of the basis functions φm.

The situation K ∩ IC = ∅ can occur when the path v∗` inside the region
⋃
n∈KRsup

n has

not fulfilled StopCondition described in Section 2.5. In this situation, the sensor reconfiguration

policy considers all parameters with indices in K to be relevant.

It is possible that L has more than NS elements. In this case, L is sorted {m1,m2, . . . , }
such that the distances of x̄mi

to their closest grid points are in non-decreasing order with increas-

ing i. Then L is redefined as L := {m1,m2, . . . ,mNS
}. Recall that x̄mi

is the maximum of the

basis function φmi
, and therefore this ordering of L is equivalent to ordering by SNR for sensor

measurements.

After computing the set L with NL 6 NS elements, as above, the sensor reconfiguration

policy finds a placement s`+1 such that for each m ∈ L, there is at least one sensor placed within

the region of estimabilityRest
m of the basis φm (Line 3).

2.5 Termination Criterion

The termination criterion for this algorithm, denoted by the boolean variable StopCondition,

is based on the variance of the estimated path cost variance, which is in turn computed from the

parameter estimation error covariance. Because the path cost depends linearly on the parameters,

it is a Gaussian r.v. Because parameter estimates are unbiased, the path cost estimate is also

unbiased whenever all parameters with indices in the set K are identified. Note that the sensor

reconfiguration policy ensures that parameters with indices inK become identified as the algorithm

iterates.

At the `th iteration of the IPAS algorithm, the variance of the estimated cost of path v∗` =

(v0, . . . , vP) is

Var[Ĵ(v∗`)] = Var[
∑P

i=0ΦT(xvi)Θ̂`]

28

2.5. TERMINATION CRITERION

=
∑P

i=0ΦT(xvi)P`Φ(xvi). (2.12)

The boolean StopCondition is true if Var[Ĵ(v∗`)] 6 ε1(v∗`), or is false otherwise. Here, ε1(v∗`)

is a path-dependent threshold. chosen based on the grid resolution. Consider the hypothetical ideal

case where a sensor can be placed at every grid point, and the measurement error variance of each

sensor is σ̄. Then the estimation error covariance is Pgrid := (HT
gridR

−1Hgrid)−1, where

Hgrid :=
[

Φ(x1) Φ(x2) . . . Φ(xNG
)
]T

,

R := σ̄I(NG). Then we define

ε1(v∗`) := λ2
1

∑P
i=0ΦT(xvi)PgridΦ(xvi), (2.13)

ε2(v∗`) := λ2
2

∑P
i=0ΦT(xvi)PgridΦ(xvi), (2.14)

where λ2 > λ1>1 are prespecified constants. Note that Pgrid can be computed a priori, i.e., without

taking any measurements at all.

The variance computation in (2.12) is well-defined because the least-squares estimation prob-

lem in Line 5 is well-posed, per Remark 1. Due to the unbiasedness of parameter estimates, the

proposed algorithm can also reduce the variance and mean square error, both, of the estimated path

cost to arbitrarily small values.

2.5.1 Relationship with Fisher Information

Fisher information and the Fisher information matrix (FIM), is closely related to the formu-

lation of the termination criteria as well as estimation problems in general. Formally, the Fisher

information matrix has entries

[I(θ)]i,j = E
[(

∂

∂θi
logf(X, θ)

)(
∂

∂θj
logf(X, θ)

) ∣∣∣∣θ
]

(2.15)

29

2.5. TERMINATION CRITERION

where under certain regularity conditions can alternatively be formulated as

[I(θ)]i,j = −E
[(

∂2

∂θiθj
logf(X, θ)

) ∣∣∣∣θ
]

(2.16)

where E(·) is the expectation operator.

The fisher information, and its matrix variant, is particular useful for capturing the lower bound

of the variance on an estimator. For an unbiased estimator, the famous Cramer Rao lower bound

(CRLB) is given by

Cov(θ̂) � 1

I(θ)
. (2.17)

The above form of the CRLB states that, any unbiased estimator θ̂ cannot have a lower variance

than the inverse of the information matrix I(θ). For the estimators studied in this dissertation,

namely the least squares estimator and later the Kalman filter, the estimators are both unbiased and

achieve the CRLB. Therefore, with respect to the notation presented

P = I−1(θ). (2.18)

In other words, the error covariance is the inverse of the Fisher information matrix.

Consequently, another way to state the termination criteria is with respect to information, i.e.

ε1(v∗`) := λ2
1

∑P
i=0ΦT(xvi)I−1

grid(θ)Φ(xvi), (2.19)

or alternatively,

εI(v
∗
`) := γ2

∑P
i=0ΦT(xvi)Igrid(θ)Φ(xvi), (2.20)

where γ < 1 as to reflect the inverse relationship to λ1 > 1. The revised stop threshold constant γ

reflects the concept that I(θ) represents the maximum amount of information attainable if sampling

every grid location, and γ reduces the requirement on the amount of information needed in order

30

2.6. CONVERGENCE CONDITIONS AND OPTIMALITY

to terminate. The corresponding path cost information would be represented as

I[Ĵ(v∗`)] =
∑P

i=0ΦT(xvi)I`(θ)Φ(xvi). (2.21)

Then, of course, the boolean StopCondition is flipped and true if I[Ĵ(v∗`)] > εI(v
∗
`), or is

false otherwise. Rather than reducing variance below the threshold, the aim is to increase the

information until the information threshold is met.

For the problem explored in this dissertation, finding and reducing the uncertainty of the opti-

mal path, the variance formulation is more intuitive. However, other tasks such as target tracking

may find that the information form of the termination criteria better aligns with the problem for-

mulation.

2.6 Convergence Conditions and Optimality

In this section, we show that the proposed IPAS algorithm terminates in a finite number of

iterations. We then provide the main result of this paper: upon termination the algorithm provides

a near-optimal path.

Proposition 1. The IPAS algorithm terminates in a finite number of iterations whenever the number

of parameters NP is finite, for any number of sensors NS > 0.

Proof. Because the number of parameters NP is finite, one of two cases must occur: (1) either all

parameters are identified, i.e., I = [NP], or (2) a proper subset of parameters is identified, i.e.,

I ⊂ [NP]. In either case, there is a finite L ∈ N such that the set I becomes invariant after the Lth

iteration. Therefore, for each ` > L, K` ∩ I = ∅, and L = K becomes invariant. To see this, note

that otherwise a sensor is placed in the region of estimability of at least one parameter with index

in IC by (2.11), and consequently this parameter is identified by (2.5), and I changes in the next

iteration.

By definition of the minimal coverK, for the path v∗` = (v0, . . . , vP), the values of φn(xvi) ≈ 0

31

2.6. CONVERGENCE CONDITIONS AND OPTIMALITY

for each i = 0, . . . , P and n /∈ K. Therefore, by (2.12),

Var[Ĵ(v∗`)] =
∑P

i=0ΦT
[K](xvi) P`|[K] Φ[K](xvi),

where P`|[K] is the principal submatrix obtained by deleting rows and columns of P` that are not in

the set [K], and Φ[K](x) := [φm1(x) φm2(x) . . .]T, for m1,m2, . . . ∈ [K.] In (2.6)–(2.9), Pwp is

then the same as P`|[K] , and only the elements of this principal submatrix are updated in P` at each

iteration. Because the parameters to be estimated are constant, it follows from standard recursive

least squares theory (Stengel, 1994) that P`|[K] , reduces monotonically at each iteration as long as

at least one new measurement is taken, which is ensured by the proposed sensor reconfiguration

policy.

Therefore, Var[Ĵ(v∗`)] also decreases monotonically, and inf{Var[Ĵ(v∗)]}`∈N = 0. After a

finite number of iterations, Var[Ĵ(v∗`)] reduces below ε1(v∗`), and StopCondition becomes true.

In what follows, we denote by ¯̀ the number of iterations required for the IPAS algorithm to

terminate and converge to the solution of Problem 1.

Note that the preceding proof involves an approximation, namely, that the values of basis func-

tions outside of their regions of support are zero, whereas these are actually small non-zero values.

However, arbitrary precision can be achieved by redefining the regions of significant support to

include larger regions. This redefinition will have the effect of making the minimal cover larger

for each path, and therefore the algorithm will take additional iterations to terminate.

The next result follows immediately due to Prop. 1, due to the definition of StopCondition,

and due to the fact that the path cost estimate is a Gaussian r.v.

Corollary 1. P
[
J (v∗¯̀)− Ĵ(v∗¯̀) 6 3

√
ε1(v∗¯̀)

]
> 0.9987.

Line 6 of the proposed algorithm prevents the algorithm from discarding potentially low-cost

paths before a high confidence is reached in the estimated costs of such paths. Furthermore, the

aforesaid optimistic estimate of the threat field ensures that the algorithm “explores” all relevant

regions of the workspace. These features of the algorithm are formally described in the following

32

2.6. CONVERGENCE CONDITIONS AND OPTIMALITY

result.

Lemma 1. Let I be the set of identified indices at the termination of the IPAS algorithm after ¯̀

iterations. Let v∗I be a path of minimum true cost, such that the grid points of all vertices in this

path lie within the region ∪k∈IRsup
k . Then

P
[
Ĵ(v∗¯̀)− J (v∗I) 6 3

√
ε2(v∗n)

]
> 0.9974. (2.22)

Proof. If there is an iteration n 6 ¯̀such that v∗n is identical to v∗I , then (2.22) is true due to Line 6

of the proposed algorithm and due to the fact that the estimated cost is a Gaussian r.v.

Suppose there is no iteration where the path found in Line 7 is identical to v∗I , and consider

some iteration n 6 ¯̀. By Line 6, Var[Ĵ(v∗n)] 6 ε2(v∗n) before the algorithm terminates. Consider

the set of indices K defined in (2.10). By the sensor configuration policy (2.11), measurements

are taken in the regions of estimability of all basis functions with indices in K. Because ε2(v∗n) is

path-dependent as defined in (2.14), it follows that for every path v whose minimal cover is K,
Var[Ĵ(v)] 6 ε2(v). Furthermore, by (2.12), for each k ∈ K, the kth diagonal element of Pn is

small enough such that Var[Ĵ(v)] 6 ε2(v).

By the definition (2.5) of I, and by the sensor configuration policy (2.11), an index k ∈ [NP] is

included in I only if k is in the minimal cover of the optimal path found in Line 7 at some iteration

of the proposed algorithm before termination. It follows that, at termination, for each k ∈ K, the

kth diagonal element of P¯̀ is small enough such that Var[Ĵ(v∗)] 6 ε2(v∗) for any path v whose

minimal cover is a subset of I.

In particular, Var[Ĵ(v∗I)] 6 ε2(v∗I). It follows that

P
[
Ĵ(v∗I)− J (v∗I) 6 3

√
ε2(v∗n)

]
> 0.9974.

Because Dijkstra’s algorithm is optimal in Line 7, Ĵ(v∗I) > Ĵ(v∗¯̀), and the result (2.22) follows.

Next, we state the main result of the paper as follows.

Theorem 1. Let ¯̀ ∈ N be the iteration at which the IPAS algorithm terminates, and let I be the

33

2.6. CONVERGENCE CONDITIONS AND OPTIMALITY

set of identified indices at termination. The path v∗¯̀ satisfies either

P
[
J (v∗¯̀)− J (v∗) 6 3(

√
ε1(v∗¯̀) +

√
ε2(v∗))

]
> 0.9948,

or, if I 6= [NP], P
[
J (v∗¯̀)− J (v∗) ∼ O(

√
NG

10
)

]
> 0.9974.

Proof. As discussed in the proof of Prop. 1, after a finite number of iterations, the set I becomes

invariant. First, consider the case that either I = [NP], and/or v∗ is covered by ∪k∈IRsup
k . By

Lemma 1, P
[
Ĵ(v∗¯̀)− J (v∗) 6 3

√
ε2(v∗)

]
> 0.9974. By Corl. 1,

P
[[
Ĵ(v∗¯̀)− J (v∗) 6 3

√
ε2(v∗)

]
and

[
J (v∗¯̀)− Ĵ(v∗¯̀) 6 3

√
ε1(v∗¯̀)

]]
> 0.99742 = 0.9948,

and it follows that

P
[
J (v∗¯̀)− J (v∗) 6 3(

√
ε1(v∗¯̀) +

√
ε2(v∗))

]
> 0.9948.

Second, consider the case that I 6= [NP], and v∗ does not entirely lie within ∪k∈IRsup
k , i.e., there

is at least one vertex i ∈ V that belongs to the path v∗ but lies outside the regions of significant

support of bases with indices in I. Recall that the threat field estimate is optimistic, i.e., for grid

points xi such that xi /∈ ∪k∈IRsup
k , ĉ(xi) 6 1 + 0.011

∑
k∈I θ̄k because the maximum value of any

basis function outside its region of significant support is 0.011, by (2.2).

The true value of the threat field at this grid point is c(xi) > 1+0.011
∑

k∈I θk. Therefore, the

regret associated with not including i is at most ĉ(xi)−c(xi) 6 0.011
∑

k∈I(θ̄k−θk). The number of

such vertices is at mostO(
√
NG) because threat values are strictly positive everywhere and optimal

paths will have minimal numbers of vertices. It follows that Ĵ(v∗¯̀) − J (v∗) ∼ 0.022
∑

k∈I(θ̄k −
θk)O(

√
NG) ∼ O(10−2

√
NG) and by consequence,

P
[
J (v∗¯̀)− J (v∗) ∼ O(10−2

√
NG)

]
> 0.9974.

34

2.6. CONVERGENCE CONDITIONS AND OPTIMALITY

Remark 2. Note that the preceding proof relies on the unbiasedness (per Remark 1) of estimates

of identified parameters. Otherwise, the estimate of the regret of not including a grid point i such

that xi /∈ ∪k∈IRsup
k , will involve the bias of estimates of identified parameters.

Informally, the optimistic threat estimate causes the proposed algorithm to search for an op-

timal path through regions of significant support of bases with non-identified parameters. If the

estimates of identified parameters have a negative bias, then, in turn, the search for optimal paths

is biased to regions within the regions of significant support of bases with already identified pa-

rameters.

35

Chapter 3

Path-planning with Waiting in Time-varying Environ-

ments

3.1 Problem Formulation

In what follows, R and Z represent the sets of reals and integers, respectively.

3.1.1 Threat Field Parametrization

We consider a threat field constructed as the weighted sum of a finite number of 2D Gaussian

basis functions c(x, t) =
∑NP

n=1wn(t)φn(x, t). Here, the spatial basis function φn is defined for each

n = 1, . . . , NP by

φn(x, t) :=
1√
2π

exp

(−(x− µn(t))T(x− µn(t))

2‖Σn(t)‖2

)
, (3.1)

where µn(t) = (µnx(t), µny(t)) defines the spatial mean of φn and Σn(t) = (σnx(t), σny(t)) defines

the spatial spread of φn. In this work, we consider affine functions µn and Σn of the form µn(t) =

µn0 + µn1t, and Σn(t) = Σn0 + Σn1t, where µn0, µn1,Σn0,Σn1 ∈ R2 are prespecified constants.

The finite parameterization of the threat field c using Gaussian functions is justified by the

fact that a large class of functions on R, namely, square integrable functions, can be approximated

with arbitrary precision by linear combinations of Gaussian functions (Calcaterra, 2008). Further-

more, 2D Gaussian functions of varying width can be used to represent varying levels of resolution

by including narrower Gaussian functions into higher resolution images or video (Goshtasby and

Oneill, 1994). Finally, Gaussian function appear in series solutions to several partial differential

equations such as the diffusion equation (Crank, 1979), which enables the application of the pro-

36

3.1. PROBLEM FORMULATION

posed work to path- and motion-planning with threat field modeled by physical phenomena such

as advection-diffusion of gases or radiation in the atmosphere (Demetriou et al., 2013).

3.1.2 Path-planning with Uniformly High Resolution Field Map

LetW ⊂ R2 be a closed square region, called the workspace, in which the vehicle moves. We

consider a strictly positive spatiotemporal scalar field c : W × [0,∞) → R>0, called the threat

field, which represents unfavorable regions with higher intensity. For path-planning, we restrict

time to a compact interval T = [t0, tf] ⊂ R+. The threat field may represent, for instance, terrain

elevation (Pai and Reissell, 1998), a risk measure (Tsiotras and Bakolas, 2007), a probabilistic

occupancy grid (Elfes, 1989), or the atmospheric concentration of a gas (Demetriou et al., 2013).

First, we consider path-planning on a grid consisting of NG points uniformly placed in NR

rows and NR columns. The coordinates in a prespecified Cartesian coordinate axis system of the

jth grid point are denoted by xj , for each j = 1, ..., NG. The vehicle is assumed to traverse grid

points according to a “4−connectivity” rule, and the time taken to traverse between adjacent grid

points is a prespecified constant tstep. In this paper, we neglect vehicle kinematic and dynamic

constraints that can restrict this motion, while noting that such constraints can in the future be

incorporated in the proposed grid-world problem setup (Cowlagi and Tsiotras, 2012a).

We define a graph G = (V,E), where each vertex in V is uniquely associated with a grid

point, and labeled with superscripts as v1, v2, . . . , vNG . The edge set E is defined as the set of pairs

of vertices associated with adjacent grid points. A path between vertices vis , vig ∈ V , denoted

v(is, ig), is a finite sequence of vertices (v0, v1, . . . , vP), with v0 = vis , vP = vig , and either

(vj−1, vj) ∈ E or vj−1 = vj, for each i ∈ {1, . . . , P}. Note that subscripts are used to denote

indices of vertices. The cost of the path v(is, ig) is defined by J (v) :=
∑P

j=1 g((vj−1, vj), jtstep),

where g : E×[0,∞)→ R>0 is a strictly positive function that assigns time-varying edge transition

costs. Specifically,

g((vk, v`), t) =





c(x`, t) + αm, if vk 6= v`,

c(x`, t) + αw, if vk = v`.
(3.2)

37

3.2. WAITING POLICIES AND CONSIDERATIONS

where αm, and αw are prespecified strictly positive constants. Note that the preceding definition

of a path and its cost implicitly allows for waiting at any grid point, namely, instances where

v̄j−1 = v̄j for any j ∈ {1, . . . , P}. The constants αw and αm are costs of waiting and of moving,

respectively.

Problem 2. Find a path v∗(is, ig) such that J (v∗(is, ig)) 6 J (v(is, ig)) for every other path

v(is, ig) in G.

3.2 Waiting Policies and Considerations

A brief discussion of the waiting constant αw will help illustrate the application of waiting and

potential complexity involved. In this work, we restrict the cost of waiting to be a constant value

regardless of the vehicle’s location in space or time, see Fig. 3.1(a). However, in more advanced

applications αw can be a function of location, αw(xi), a function of time, αw(t), or a combination,

αw(xi, t). Additionally, the waiting cost can be depend on the accumulation of time at a location,

αw(xi, t, τ), where τ is the duration of time after arriving at (xi, t).

Waiting functions fall into two primary categories, location dependent and duration dependent.

Location dependent waiting assigns a cost based on the current position both in space and time.

For example, a parking garage in the downtown area likely has a higher cost than a garage on the

edge of town. The same garage may have time dependent costs such as different parking costs for

business and nighttime hours, Fig. 3.1(b). Duration dependent waiting costs penalize waiting in

a location for an extended period of time, such as parking garages charging increasing rates for

one, four, and eight hours. These duration dependent rates often have concave and convex shapes

to the waiting cost function, Fig. 3.1(c) and Fig. 3.1(d). Parking garages rates often level off in a

concave manner, whereas the exponential health risk of exposure to radiation is convex (Thomas

and Scotto, 1983).

38

3.3. GENERAL SOLUTION TO UNIFORM HIGH RESOLUTION PATH-PLANNING
PROBLEM

1

tmax

gW

(a) Constant waiting (b) Piecewise waiting

(c) Convex waiting (d) Concave waiting

Figure 3.1: Different waiting policies based on applications.

3.3 General Solution to Uniform High Resolution Path-planning

Problem

Problem 2 is similar to a standard path-planning problem with the exception that the edge

transition costs are time-varying. This exception, however, significantly complicates the solution

of this problem. Specifically, to solve Problem 2, a search must be performed not on the graph G
but instead on a much larger graph GT obtained as follows. Let T be a line graph whose vertices

are the time instants t0, t1, . . . , and whose edges are the pairs (tj−1, tj), where tj − tj−1 = tstep for

each j ∈ N. The graph GT is then defined as the product of graphs G and T , i.e., each vertex in GT
is a pair (vk, tj), and the pairs (vk, tj) and (v`, tm) form an edge of GT if and only tm − tj = tstep

and either vk = v` or (vk, v`) ∈ E, with k, ` ∈ {1, . . . , NG} and j,m ∈ N. The worst-case

complexity of Dijkstra’s algorithm for solving Problem 2 is O(|GT |(1 + log |GT |)).

In typical path-planning algorithms, Dijkstra’s algorithm is sped up using a search heuristic:

for example, the A∗ algorithm uses Euclidean distance to the goal as a search heuristic (Nilsson,

39

3.3. GENERAL SOLUTION TO UNIFORM HIGH RESOLUTION PATH-PLANNING
PROBLEM

1998). For Problem 2, we can define for each vertex vk ∈ V, k = 1, 2, . . . , |V |, we define the

search heuristic

h(vk) := αm‖xig − xk‖, (3.3)

which is Euclidean distance to the goal scaled by the positive constant αm. The scale factor ensures

that the heuristic h underestimates the true cost to the goal, and therefore ensures that the search

algorithm returns an optimal path (Nilsson, 1998). Note that the worst-case computational com-

plexity of the search algorithm does not change despite using the search heuristic (Nilsson, 1998),

although a significant speed-up is achieved for most (vis , vig) pairs of initial and goal vertices.

3.3.1 No-Wait Path-planning

An approximate solution to Problem 2 can be obtained by ignoring the possibility of waiting.

To this end, we define a no-wait path as a path v = (v0, v1, . . . , vP) where vj−1 6= vj for each

i ∈ {1, . . . , P}. We define an edge transition cost function:

gnw((vk, v`), t) := c(x`, t) + αm. (3.4)

The cost of a no-wait path is then defined as Jnw(v) :=
∑P

j=1 gnw((vj−1, vj), jtstep).

Compared to solving Problem 2 exactly as in Section 3.3, it is significantly easier to find a

path v∗nw(is, ig) with minimum no-wait cost Jnw(v∗nw). The worst-case complexity of Dijkstra’s

algorithm to find this path is O(|G|(1 + log |G|)), and |G| is smaller than |GT | by the order of

magnitude of |T |.

It is therefore natural to question: (1) whether the computational effort in exactly solving

Problem 2 is worthwhile: i.e., whether the suboptimality of the v∗nw, measured as J (v∗nw) −
J (v∗) , is large enough to justify spending the significantly higher computational resources to

find the true solution v∗ to Problem 2, and (2) whether the exact solution v∗ can be computed

faster. In the sequel we address both of these questions.

To address the first question (on computational effort), we characterize the differenceJ (v∗nw)−

40

3.4. LOCAL TEST FOR NO-WAIT SUBOPTIMALITY

J (v∗) based on a study of a large number of numerical simulations (discussed in Section B.3). The

results of this study identify the threat fields where the difference J (v∗nw)−J (v∗) is significant.

This study consisted of 2000 simulations of different instances of Problem 2. In each simulation,

the threat field c was constructed with an arbitrary NP chosen from the set {3, 4, . . . , 40}, followed

by arbitrary choices of the constants wn0, wn1, µn0, µn1, Σn0, and Σn1 for each n = 1, . . . , NP. The

weights wn0, wn1 were fixed at 1 so that all peaks in the field are of uniform height. The param-

eters µn0, µn1 were chosen by random sampling on a uniform distribution over the workspaceW .

The parameters Σn0,Σn1 were chosen by random sampling from a uniform distribution a quar-

ter the size of the workspace W . The simulations were run using NG = 1600, t = [0, 100], and

tstep = Wwd

NR−1
whereWwd is the width of the (square) workspace. The product graph GT in each

simulation has approximately 1.2×106 vertices. The simulations were designed using MATLAB R©

and executed on a Windows 7 Enterpriser computer using an Intelr CoreTM i7-4770 3.4 GHz CPU

and 16 GB RAM . The results of this study are discussed in Section B.3, and MATLAB R© source

code is available at http://users.wpi.edu/∼rvcowlagi/software.html.

The issue of interest here is whether it is beneficial to search in the larger product graph GT or

the smaller topological graph G. This issue depends on the properties of the threat field itself, and

not on the specific software implementation of the search algorithm. Therefore, simulation results

in MATLAB R© suffice to study this issue. Real-time implementations of the search algorithms (e.g.

in a lower-level language such as C/C++) are not necessary because they shed no further light.

To address the second question (whether the exact solution can be computed faster), we de-

velop a method to prune search trees during the execution of Dijkstra’s algorithm as discussed

next.

3.4 Local Test for No-Wait Suboptimality

The number of computations in solving Problem 2 can be reduced by pruning edges of GT
during the execution of Dijkstra’s algorithm. Specifically, an edge of GT between the pairs (vk, tj)

and (vk, tj+1), k ∈ {1, . . . , NG}, j ∈ N, can be pruned if a condition, as identified next, precludes

waiting at xk at time tj−1 from being optimal.

41

http://users.wpi.edu/~rvcowlagi/software.html

3.4. LOCAL TEST FOR NO-WAIT SUBOPTIMALITY

Consider the cost of moving from xk to an adjacent point x`, with k, ` ∈ {1, . . . , NG}. Ac-

cordingly, consider the vertex (vk, tj) of GT , and two paths for traveling to x`. The first path is the

single edge in GT from vertex (vk, tj) to vertex (v`, tj+1) achieves this travel. The second path

consists of two successive edges from vertex (vk, tj) to vertex (vk, tj+1) to vertex (v`, tj+2) also

achieves this travel, but includes waiting at the point xk for one time step (see Fig. 3.2). Waiting at

xk is beneficial if the cost of the first path is greater than the cost of the second path, i.e., if

g((vk, vk), tj+1) + g((vk, v`), tj+2) < g((vk, v`), tj+1), (3.5)

⇒ c(xk, tj+1) + αw + c(x`, tj+2) < c(x`, tj+1). (3.6)

For further insight into this condition, consider a two vertex system with current position

xk, and goal position x`. Figure 3.2 illustrates the possible paths and costs. For brevity, define

Fk,j+1 := c(xk, tj+1) , F`,j+1 := c(x`, tj+1), and F`,j+2 := c(x`, tj+2). Waiting is beneficial if

αw + Fk,j+1 + αm + F`,j+2 < αm + F`,j+1

⇒ αw + Fk,j+1 < F`,j+1 − F`,j+2, (3.7)

and it is easy to see that,

αw + c(xk, tj+1) < −∆c(xk + ∆x, tj+1)∆t (3.8)

The terms in (3.8) suggest that an optimal path can involve waiting when the sum of αw and

the threat in the next time step c(xk, tj+1) is less than the difference between the field costs at the

next vertex −∆c(xk + ∆x, tj+1)∆t, where x` = xk + ∆x. This occurs when the waiting costs

and field values are low relative to large decreasing changes in the field threat. In other words, it

is beneficial to wait if the threat along the optimal path v∗ is rapidly diminishing and the cost to

remain at current position xk is low. This observation is supported via numerical experiments. We

identify a local no-wait condition as follows.

αw + c(xk, tj+1) + c(x`, tj+2)− c(x`, tj+1) > 0 (3.9)

42

3.5. TRADITIONAL HEURISTICS FOR REDUCING COMPUTATIONAL BURDEN

tj

tj+1

tj+2

t

αw

αm

αm

αtc(x
k, tj+1)

αtc(x
k, tj)

αtc(x
`, tj+1)

αtc(x
`, tj+2)

Figure 3.2: Illustration of the local no-wait condition. The decision to wait at vertex vk or immediately
move to vertex v` is based on the future threat field values c(xk, tj+1), c(x`, tj+1), c(x`, tj+2), and waiting
and movement costs αw and αm.

When executing Dijkstra’s algorithm, edges can be pruned using (3.9). If (3.9) holds true, then

the two-vertex local condition is violated. To decrease the number of edges explored in the graph

GT , the neighbors of vk are evaluated under (3.9) at each iteration. If any neighbor violates the

waiting condition, then vk is marked as a non-waiting node.

3.5 Traditional Heuristics for Reducing Computational Bur-

den

In this approach, we improved the performance by optimizing the path-planning algorithm.

We applied the Manhattan distance heuristic in A* to reduce the run time of both the algorithm

that considers waiting and the algorithm that ignores waiting.

Because Manhattan distance from current node to the goal node is an optimistic estimate

of the total cost, it is admissible and guaranteed to find the optimal path while usually consid-

ering fewer nodes. As we discussed in Section II, the cost of the path v(is, ig) is defined by

J (v) :=
∑P

j=1 g((vj−1, vj), jtstep), where g : E × [0,∞) → R>0 is a strictly positive function

that assigns time-varying edge transition costs. We can estimate the cost better by also adding

43

3.6. MACHINE LEARNING CLASSIFICATION FOR PATH-PLANNING ALGORITHM
SELECTION

threat exposure cost. More specifically, Instead of using h = d(node, goal), we update h with

hnew = d(node, goal)+minimum threat value∗d(node, goal) where d(node, goal) is the Man-

hattan distance from current node to the goal node.

Datasets are the same as we described in Section B.1. To assess the algorithms, we generated

various but identical environments for path-planning with “Wait without heuristic”, “Wait with

heuristic”, “No-wait without heuristic” and “No-wait with heuristic”. We kept track of the number

of nodes visited and the run time to assess and compare each of these algorithms.

3.6 Machine Learning Classification for Path-planning Algo-

rithm Selection

The fundamental trade-off being explored with the waiting concept is between path optimality

and computational efficiency. The waiting algorithm will provide the optimal solution at the cost

of additional computational burden, and the non-waiting algorithm will be faster but provide a

suboptimal solution. In Section 6.2.1, we present results of 2000 simulations that demonstrate there

is some relationship between characteristics of the field (minimum/average field value, min and

max field gradients, ...) and the benefits of waiting (reduction in path cost). A waiting algorithm

used on some fields may give the same path solution as the non-waiting algorithm, thus there was

no benefit to using the computationally expensive waiting algorithm. The question arises, “Can the

appropriate algorithm be selected a priori given a field and characteristics of that field?” In other

words if, for a given field, waiting will provide some benefit then use the expensive algorithm,

otherwise use the cheaper algorithm, as seen in Fig. 3.3.

This strategy amounts to a classification problem in standard machine learning terminology,

more specifically a supervised learning problem. In short, we can gather many examples of dif-

ferent threat field topologies and behaviors and in what amounts to a large complicated regression

problem the machine learning process will develop a function that determines if a given field is

beneficial for waiting or not. The advantage is that this machine learning problem can be done

off-line, then the classification can be done on-line and provide the most appropriate algorithm

44

3.6. MACHINE LEARNING CLASSIFICATION FOR PATH-PLANNING ALGORITHM
SELECTION

Figure 3.3: A potential outcome is the use of a classifier to select the appropriate path-planner given a
particular instance of the Gaussian field. The classifier will be trained on occurrences of the field labeled
as Go or Wait

choice to the path planning agent.

This machine learning classification endeavor began as a curiosity, and while it provide in-

credibly valuable from a learning and exploration perspective the results were not satisfactory.

Rather than interrupt the flow of this thesis from noiseless time-varying path planning problems to

uncertain time-varying environment path planning, the machine learning content is available in a

supplemental chapter in Appendix B. A brief conclusion states that for this problem it is difficult

to “hand-engineer” features for a traditional machine learning approach such as support vector

machines (SVM), k-Nearest Neighbors (KNN), or random forests. When it is difficult to hand

engineer features, deep learning techniques can automatically discern features and learn classifi-

cation simultaneously. However, the deep learning approach using a CNN-LSTM (convolutional

neural network with recurrent neural network LSTM layers) also failed to produce satisfactory

classification. This may be due to hyperparameter optimization, however, CNN architectures are

used because they are invariant to the spatial position of a feature and the path planning problem

is inherently spatially variant. A different architecture which directly considers the spatial position

of the path may be more appropriate. See Appendix B for full details and additional issues dealing

with classification accuracy.

45

Chapter 4

Multiresolution Path-planning with Waiting in Time-

varying Spatial Fields

4.1 Problem Formulation

We consider next a multiresolution discretization of the workspace based on the discrete

wavelet transform (DWT). This multiresolution discretization algorithm is adopted from the sec-

ond author’s previous works (Cowlagi, 2014; Cowlagi and Tsiotras, 2012b), and provides a so-

called vehicle-centric multiresolution approximation to the threat field intensity map. The moti-

vation for considering multiresolution discretization is twofold. First, such a discretization may

be necessary for practical onboard computations. Second, such a discretization reflects the nature

of typical maps available to vehicles in many applications: namely, well-known in the immediate

vicinity of the vehicle, partially known in regions farther away, as illustrated in Fig. 4.1. We investi-

gate the potential cost reductions by considering waiting in path-planning. Waiting is allowed only

at vertices in the highest resolution region. We provide a skeletal overview of this discretization

here, and refer the reader to (Cowlagi and Tsiotras, 2012b) for details.

The DWT represents a scalar field using so-called approximation and detail coefficients, which

multiply spatial basis functions called scaling functions and wavelets. If appropriate, it is possible

to use these spatial basis functions to also represent the threat field, without affecting the results

presented in this paper. The reasons for using wavelets in this section are the convenient dyadic

structure and orthogonality of the basis functions (Rao and Bopardikar, 1998).

Without loss of generality, we assume thatW = [0, 1] × [0, 1] . For the following discussion,

we choose a parameter D ∈ Z+ indicating the highest resolution considered in the multiresolution

approximation. Specifically, the smallest grid separation (i.e. highest resolution) is 2−D. For con-

46

4.1. PROBLEM FORMULATION

(a) (b)

Figure 4.1: Example of an intensity map and its vehicle-centric multiresolution approximation according to
Eqn. (4.6). The vehicle’s location is indicated by the black dot near the center. (a) Original field map. (b)
Vehicle-centric multiresolution approximation.

text, the grid separation in the uniformly high resolution map considered in the previous subsection

is 2−7 units.

Assumption 2. The field c is sufficiently smooth such that

c(x, y, t0) +
∑∞

n=1
(t−t0)n

n!
∂nc(x,y,t)

∂tn

∣∣∣
t=t0

(4.1)

converges to c(x, t) for all x ∈ W , and t ∈ [0,∞).

Assumption 3. The values taken by c are known at a finite resolution mf > −D, for k, ` =

0, 1, . . . , 2D+mf − 1. Without loss of generality, mf = 0.

Assumption 4. The values taken by the temporal derivatives of c at time t = t0 are known at the

same finite resolution as described in Assumption 3.

Relying on Assumption 2, we consider Taylor series expansions of time-varying approxima-

tion and detail coefficients of the DWT of the threat field c. The coefficients of these Taylor series

47

4.1. PROBLEM FORMULATION

expansions are given by

αnm0,k,`
:=

〈
Φm0,k,`(x, y),

∂nc(x, y, t)

∂tn

∣∣∣∣
t=t0

〉
, (4.2)

βp,nm,k,` :=

〈
Ψp
m,k,`(x, y),

∂nc(x, y, t)

∂tn

∣∣∣∣
t=t0

〉
, (4.3)

for p = 1, 2, 3, k, ` ∈ Z, mf > m > m0 = −D, and n ∈ Z>0. Here Φ and Ψ denote families

of scaling functions and wavelets, respectively (see (Cowlagi and Tsiotras, 2012b) for details). The

threat field is reconstructed from these coefficients as follows:

c(x, y, t) =
1∑

k,`=0

∑

n∈Z>0

(t− t0)n

n!
αnm0,k,`

Φm0,k,`(x, y)

+
3∑

p=1

mf∑

m=m0

2m−m0∑

k,`=0

∑

n∈Z>0

(t− t0)n

n!
βp,nm,k,`Ψ

p
m,k,`(x, y), (4.4)

where c denotes the reconstructed field. To construct a vehicle-centric multiresolution approxima-

tion of the threat field, let A ⊂ {(m, k, `) ∈ Z3 : m0 6 m < 0, 0 6 k, ` 6 2D+m}. We define for

all p = 1, 2, 3 and n ∈ Z+,

β̂p,nm,k,` :=





βp,nm,k,` (m, k, `) ∈ A,
0 otherwise.

(4.5)

The reconstruction of the threat field is then performed using β̂p,nm,k,` in Eqn. (4.4) instead of βp,nm,k,`.

The set A contains the indices of detail coefficients that are considered “significant”. Follow-

ing (Cowlagi and Tsiotras, 2012b), we choose A such that high resolution information is retained

in the immediate vicinity of the vehicle’s current location (x0, y0) ∈ W and it is gradually dis-

carded in regions farther away. To this end, let % : Z → N be a “window” function that specifies,

for each level of resolution, the distance from the vehicle’s location up to which the detail coeffi-

cients at that level are significant. The set A = Awin(x0, y0) of indices is then defined by

Awin(x0, y0) :=
{

(m, k, `) : m0 6 m < 0, (4.6)

48

4.1. PROBLEM FORMULATION

b2mx0c − %(m) 6 k 6 b2mx0c+ %(m), b2my0c −%(m) 6 ` 6 b2my0c+ %(m)
}
.

The preceding description of the vehicle-centric multiresolution approximation is minimal; the

interested reader is referred to (Cowlagi, 2014; Cowlagi and Tsiotras, 2012b) for further details. In

what follows, we focus on the following problem.

Problem 3. Solve Problem 2 using a vehicle-centric multiresolution approximation c of the threat

field.

To formulate Problem 2 precisely, we define a multiresolution cell decomposition Ωmr, which

is a partition of W into square cells of different sizes, such that c is constant in the spatial vari-

ables over each of the cells. We denote by cell(vk; Ω) the coordinates of the center of the cell

associated with a vertex vk ∈ V , and by vert(C;G) the vertex in V associated with a cell C ∈ Ω.

We attach with the cell decomposition Ωmr a graph Ḡ = (V̄ , Ē) such that each cell in Ωmr corre-

sponds to a unique vertex in V̄ . Each vertex j ∈ V̄ corresponds to a set W (v̄k, V̄) ⊂ V , and the

collection {W (v̄k, V̄)}v̄k∈V̄ is a partition of V . Specifically:

W (v̄k, V̄) :=
{
vk ∈ V : cell(vk; Ω) ⊆ cell(v̄k; Ωmr)

}
. (4.7)

Vertices v̄k, v̄` ∈ V̄ are adjacent in Ḡ if there exist vk ∈ W (v̄k, V̄) and v` ∈ W (v̄`, V̄) such that

{vk, v`} ∈ E. We define edge costs ḡ : Ē → R+ in Ḡ as

ḡ((v̄k, v̄`), t) :=





c(x`, t) + αw, if |W (v̄k, V̄)| = 1, v̄k = v̄`,

(cv̄`(v̄
`, t) + αm)|W (v̄`, V̄)|, otherwise,

(4.8)

where cv` are time-averaged cell intensities. Owing to the use of the DWT, the computation

of these time-averaged intensities involves simple algebraic computations (see (Cowlagi, 2014)

for details). This edge cost function considers approximate periods of time and distance required

to traverse these cells, which are in turn related to the cell sizes |W (v̄`, V̄)|. We restrict waiting

to only the uniform resolution window of Ωmr, precisely, when |W (v̄k, V̄)| = 1 and v̄k = v̄` in

Eqn. (4.8). The cost J̄ (v̄) of a path in Ḡ is the sum of all edge costs.

49

4.1. PROBLEM FORMULATION

4.1.1 Solution to Multiresolution Path-planning Problem

The multiresolution path-planning algorithm utilizes Dijkstra’s algorithm to search the product

ḠT of graph Ḡ and T .

Figure 4.2 shows in pseudo-code form the proposed path-planning algorithm based on the

vehicle-centric multiresolution approximation of the spatial field c. The algorithm iterates Lines 3–

10 until the goal is reached. At each iteration, the algorithm computes a vehicle-centric multireso-

lution approximation and the corresponding cell decomposition graph (Lines 1–4). In Line 5, the

optimal path in Ḡn is computed by a label-correcting algorithm. The vehicle is assumed to traverse

the first cell in the path π̄∗n, and the process is repeated for the new vehicle location.

A procedure to determine the locations and the sizes of cells in Ωmr in the vehicle-centric

multiresolution approximation, including fast updates of these cell locations and sizes with the

changing vehicle location, is provided in (Cowlagi and Tsiotras, 2012b). Furthermore, a procedure

denoted MR-GRAPH to determine the edges in the graph Ḡ associated with Ωmr, including fast

updates to the sets of vertices and edges of this graph with the changing vehicle location, is also

provided in (Cowlagi and Tsiotras, 2012b).

One detail not explicitly stated in the pseudo-code in Figure 4.2 is the ability to bypass the

optimization problem in Line 5 when the multiresolution decomposition in Lines 1–4 is unchanged.

Because of the vehicle-centric decomposition, if the vehicle has found a waiting beneficial path it

will remain stationary for several iterations while it steps through the optimal space-time path, v̄∗.

In this case, Line 5 can be bypassed until the vehicle moves and the decomposition updates. For the

multiresolution planning, this significantly speeds up the planning and allows the planner which

considers waiting to compute in the nearly the same time as the no-wait planner as will be seen in

the results section.

The topological properties (i.e. cell locations, sizes, and adjacency relations) of the vehicle-

centric multiresolution approximation are the same as in (Cowlagi and Tsiotras, 2012b) and there-

fore, the proof of completeness of this path-planning algorithm is the same as that provided in

detail in (Cowlagi and Tsiotras, 2012b).

50

4.1. PROBLEM FORMULATION

Multiresolution Path-planning with Time-varying Costs

procedure MR-APPROX(j)

1: A := Awin(cell(vk;G)) using Eqn. (4.6)
procedure MAIN

1: v := vis , v0 := vis , n := 0, AtGoal := 0, J (v) := 0
2: while ¬AtGoal do
3: An := MR-APPROX(vkn)
4: Gn := MR-GRAPH(An)
5: v̄∗n := arg min

{
J̄ (v̄) : v̄ is a path in Ḡn

}

6: vkn+1 := vert(cell(v̄`1; Ḡn);G), where v̄`1 is the second vertex in the path v̄∗n
7: AtGoal := (vkn+1 = vig),
8: v := (v, vkn)
9: J (v) := J (v) + g(vkn, v

k
n+1, nδt)

10: n := n+ 1

Figure 4.2: Pseudo-code for the proposed path-planning algorithm.

51

Chapter 5

Interactive Planning and Sensing for Time-varying Sys-

tems

We address planar path-planning for a mobile vehicle, which we call the actor vehicle, to

traverse a planar workspace W with minimum exposure to a spatially and temporally varying

scalar field, called the threat field. The threat field is unknown, time-variant, and strictly positive

everywhere onW . The values taken by the threat field overW are estimated by a finite number of

mobile sensors that take pointwise measurements. All measurements are noisy. Future applications

of this problem setup include, for example, delivery (by an actor) of emergency supplies to a

remote location that lies within/beyond a region afflicted by wildfire or atmospheric contaminants

(the threat field).

We study the problem of sensor scheduling over a finite time horizon to optimize the actor’s

performance. This explicit relationship between the problem of sensor placement and the actor’s

path-planning problem removes the traditional separation between the sensing and planning.

To this end, we formulate this problem on a grid defined onW ,which in turn defines a topolog-

ical graph G. The threat field is assumed to be finitely parameterized by coefficients of spatial basis

functions. These coefficients are time-varying and described by a set of differential equations as

outlined in Section 5.3. Estimates of these parameters are obtained from the sensor measurements

through a Kalman filter. Whereas edge transitions in the graph G are deterministic and known,

the transition costs depend on the threat field estimates, and are deterministic but unknown. We

propose an iterative sensor placement and path-planning algorithm. At each iteration, Dijkstra’s

algorithm is used to find a path with minimum threat exposure in the graph G for the actor. A set

of grid points “near” this path are identified as points of interest. The next set of sensor locations

is determined to improve the confidence of threat field estimates on these points of interest. The

threat field estimate is accordingly updated, and the iteration repeats. The algorithm either returns

52

5.1. PROBLEM OVERVIEW

a path of sufficient confidence or reports a failure.

Our contributions in this paper are as follows. First, we formulate a problem in which an actor

vehicle with access to a sensor network must traverse an unknown and time-varying environment

(the threat field) and minimize its exposure to the threat field. We solve this problem using an

iterative bidirectional interaction between planning and sensing phases by the actor and sensor net-

work, respectively. We refer to this interaction as interactive planning and sensing for time-varying

fields. The formulations and results of this paper complement and extend the work in (Cooper and

Cowlagi, 2018) and (Cooper and Cowlagi), which studied the problem of static environments and

proved convergence and bounds on optimality for the iterative algorithm.

5.1 Problem Overview

In what follows, we denote by R and N the sets of real and natural numbers, respectively; by

[N] the set {1, . . . , N} for any N ∈ N; and by I(N) the identity matrix of size N.

Let W ⊂ R2 be a closed square region, called the workspace, in which the actor and the

sensors move. In this workspace, we formulate a grid consisting of NG points uniformly placed

in the workspace. The coordinates in a prespecified Cartesian coordinate axis system of the ith

grid point are denoted by xi, for each i ∈ [NG]. We consider a strictly positive spatiotemporal

scalar field c : W × [0,∞) → R>0, called the threat field, which represents unfavorable regions

with higher intensity. The actor is assumed to traverse grid points according to a “4−connectivity

rule.” Let δ denote the distance between adjacent grid points. We neglect vehicle kinematic and

dynamic constraints, while noting that such constraints can in the future be easily incorporated in

the proposed grid-world problem setup (Cowlagi and Tsiotras, 2012a), and that multiresolution

grids can also be considered (Cowlagi and Tsiotras, 2012b). We also assume that the actor vehicle

has no uncertainties in localization or in motion on the grid: i.e., the current grid-point location of

the actor is known, and the effect of moving to an adjacent grid-point is deterministic and known.

The actor’s motion-planning problem is formulated as a graph search problem on a graph

G = (V,E), where each vertex in V is uniquely associated with a grid point, and labeled by

integers 1, 2, . . . NG. The edge set E is the set of pairs of vertices associated with adjacent grid

53

5.1. PROBLEM OVERVIEW

points. For path-planning, we assume a compact interval T = [t0, tf] ⊂ R+. For planning purpose,

t := {tk : k∆ts, k ∈ N}, which indicates that a pair of adjacent vertices are traversed in ∆ts time,

encoding the vehicle’s speed. Edge transition costs are assigned by a scalar function g : E × T →
R>0 defined as

g((i, j), t) = c(xj, t), for i, j ∈ [NG], (i, j) ∈ E. (5.1)

A path in the graph G between two prespecified vertices is and ig is a sequence v = (v0, v1, . . . , vP)

of successively adjacent vertices with v0 = is and vP = ig. The cost J (v) ∈ R>0 of this path is

the sum of edge transition costs, i.e., J (v) :=
∑P

k=1 g((vk−1, vk), ktP−step). The actor’s motion-

planning problem is the problem of finding a path with minimum cost between initial and goal grid

points is, ig ∈ [NG]. We will refer to this path as the true optimal path, denoted by v∗.

Note that the costs are time dependent, and a path-planning algorithm which considers time-

varying edge cost is used. For time-varying environments the true optimal path may include in-

stances of waiting (vehicle remains at the same location for multiple consecutive time steps) which

increases the computational complexity (Dean, 2004b) by an order of T 2. General algorithms for

path-planning with waiting to minimize time-varying edge costs appear in (Chabini, 2013; Dean,

2004b; Orda and Rom, 1991), and the trade off between optimality and complexity is discussed

in (?) for environments similar to those in this paper. In order to focus on the sensor placement

and iterative process of the proposed algorithm, we restrict planning to non-waiting solutions and

subsequent references to path optimality are with respect to the optimal non-waiting path.

Uncertainty in the actor’s motion-planning problem arises from uncertainty in the knowledge

of the threat field. The spatiotemporal threat field may model some physical phenomena such as

advection-diffusion of gases or radiation in the atmosphere (Demetriou et al., 2013). These various

phenomena modeled as partial differential equations can be approximated as series solutions using

Gaussian basis functions (Crank, 1979). Therefore, we assume that the threat field is finitely

parametrized as c(x, t) =
∑NP

n=1 θn(t)φn(x) = Φ(x)Θ(t), where φn : W → R are prespecified

spatial basis functions, Φ(x) := [φ1(x) . . . φNP
(x)], and Θ(t) := [θ1(t) . . . θNP

(t)]T. The

basis functions and the number of parameters NP are prespecified. Specifically, we assume

φn(x) := exp(− 1

2νn
· (x− x̄n)T(x− x̄n)), (5.2)

54

5.1. PROBLEM OVERVIEW

for each n ∈ [NP], where νn ∈ R>0 and x̄n ∈ W are prespecified constants.

Definition 3 (Region of significant support). The region Rsup
n := {x : ‖x− x̄n‖ 6 3

√
νn} ∩W is

defined as the region of significant support for the basis function φn.

Whereas the functions φn do not have compact support in R2, 99.74% of the volume enclosed

under each φn is enclosed by the restriction of φn toRsup
n .

Assumption 5. The constants νn and x̄n are chosen such that the union of the interiors of the

regions of significant support cover the entire workspace.

WhenNP is a perfect square, the workspace coverage in Assumption 5 is achieved by choosing

x̄n on a uniform
√
NP ×

√
NP grid on the workspace W . To ensure coverage and to minimize

overlap of the basis functions, νn is chosen such that theRsup
n extends to half the diagonal distance

between basis functions. Specifically, for adjacent basis functions with indices n and p, we choose

νn := (
√

2
6

(x̄n − x̄p))
2.

This choice of Gaussian basis functions is justified by the fact that square integrable functions

can be approximated with arbitrary precision by linear combinations of Gaussian functions (Cal-

caterra and Boldt, 2008). The proposed algorithm does not specifically depend on this choice, and

other basis functions such as orthogonal wavelets (Rao and Bopardikar, 1998) can be used.

We assume that a finite number NS of sensors take pointwise measurements. These sen-

sors are assumed to be located at grid points, and the set of these grid points is denoted by s =

{s1, s2, . . . , sNS
} ⊂ {1, . . . , NG}. The measurement taken by each sensor is zk := c(xsk , t) + ηk,

where ηk ∼ N (0, σ2
k), for each k = 1, . . . , NS. Finally, we assume that the number of sensors is

“small,” i.e., NS � NG.

We define a region of estimability for each basis φn, which is a region in which a sensor

must be located to confidently estimate the parameter θn. To this end, let σ̄ := max{σk}NS
k=1. For

Gaussian measurement noise, if the signal-to-noise ratio (SNR) is greater than three, θnφn
σ̄

> 3, the

probability of detecting a signal is at least 0.9974 (Miller et al., 2005). Therefore, placing sensors

outside of the region where θnφn > 3σ̄ is not advisable1. By (5.2), it follows that this region is

defined by the ball
{
x ∈ W : ‖x− x̄n‖ 6

√
2νn log(θn/3σ̄)

}
.

1Note that the maximum SNR is obtained when the sensor is placed at x = x̄n.

55

5.1. PROBLEM OVERVIEW

Whereas the parameter θn is unknown, the radius of this ball scales logarithmically2 with θn.

Therefore, this region can be determined using a rough order of magnitude estimate of θn, which

is typically available in practice. We assume that upper and lower bounds θ̄n and θn are known,

and that these bounds are within two orders of magnitude of each other.

It is always possible to place a sensor at a grid point inside Rest if the distance between

grid points δ < 2
√

2νn log(θ̄n/3σ̄). We tighten this region further to ensure that the regions of

estimability of adjacent basis functions do not significantly overlap. By doing so, estimates of

parameters made from measurements taken within this region are independent from estimates of

other parameters. That is, if zn, zp are measurements taken by sensors placed in Rest
n and Rest

p ,

respectively, with n 6= p and n, p ∈ [NP], then Covar(θ̂n, θ̂p|zn, zp) ≈ 0. It is always possible to

place a sensor at a grid point insideRest
n if δ < 2(1− 1√

2
)∆x̄, where ∆x̄ := min{‖x̄n− x̄p‖ : n, p ∈

[NP]}.

Definition 4 (Region of estimability). The region of estimability for the basis function φn is the set

Rest
n :=

{
x : ‖x− x̄n‖ 6 (1− 1/

√
2)∆x̄

}
.

The actor can avail of estimates of the threat field parameters generated using measurements

taken by the sensors over a sequence of placements {s`}`∈N . Therefore, the actor’s path-planning

problem is reformulated by considering deterministic but unknown edge transition costs based on

the estimated threat field.

Problem 4. Find a sequence of sensor placements {s`}`∈N , and a path v̂∗ in G with minimum

estimated cost.

This problem involves an explicit dependence between the sensor locations and the actor’s

motion-planning problem.

2To be precise, the radius scales slower: i.e., with the square root of the logarithm of θn.

56

5.2. ESTIMATION FORMULATION USING KALMAN FILTER

5.2 Estimation Formulation using Kalman Filter

In the static environment case, the IPAS algorithm continually updates the parameter estimates

using a recursive least squares formulation. In order to extend IPAS to time-varying fields, it is

straightforward to now estimate the parameters using a Kalman filter by incorporating a predictor

step. We formulate the filter as a discrete Kalman filter. The input vector in the system model in

Eq. 5.13 is assumed zero. The filter is initialized with Θ̂0 := 0, and P0 := λ0I(NP), where λ0 is an

arbitrary large constant.

The prediction or time update step is given by the discrete equations,

Θ−k = AΘk−1 (5.3)

P−k = APk−1A
T +Q. (5.4)

A modification to the measurement update step equations ensures each estimate update is a

well-posed problem. The algorithm also maintains a set of indices L = {m1, . . . ,mNL
} ⊂ [NP].

The sensor reconfiguration policy determines L as discussed in Section 5.3.3. The size of this

set L is NL 6 NS. Informally, these indices are such that the kth sensor is placed in the region

of estimability Rest
mk

of the mth
k basis function. From a practical perspective, the placement s` is

interpreted as new locations for sensors to be placed, and that NL out of NS sensors move at each

iteration. The matrix T ∈ RNL×NP is defined as

Tij :=





1 if j = mk,

0 otherwise.

for k ∈ [NL], j ∈ [NP].

The observation matrix Hwp is constructed with respect to the number of measurements used

and the basis φmk
such that Hwp has full rank. Then the parameter estimates and error covariance

can be computed with the standard recursive equations modified with the transformation matrix T

57

5.3. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
ALGORITHM

at time tk:

P−wp := TP−k T
T (5.5)

Gk := P−wpH
T
wp(HwpP

−
wpH

T
wp +R)−1, (5.6)

Θ̂k := Θ̂−k + TTGk(zk −HwpT Θ̂−k), (5.7)

Pk := (I(NP) − TTGkHwpT)P−k . (5.8)

5.3 Interactive Planning and Sensing for Time-varying Systems

Algorithm

The problem of sensor placement to optimize an actor’s performance was studied for a static

environment (Cooper and Cowlagi, 2018). The proposed solution in that work, Interactive Plan-

ning and Sensing (IPAS), determined an optimal path through an iterative sensor placement, esti-

mation, and planning loop. The IPAS algorithm was shown to always converge upon a solution as

well as ensure optimal performance to an arbitrary small value (Cooper and Cowlagi).

The IPAS algorithm is extended to environments which vary both spatially and temporally. In

turn, we now refer to the algorithm as Interactive Planning and Sensing for Time-varying fields

(IPAST). Consider the linear system model with additive Gaussian noise:

Θ̇(t) = AcΘ(t) + w (5.9)

where w ∼ N (0, Qc) is the white noise process of the continuous system where Qc = σpI(NP). A
c

is the transition matrix that describes the evolution of the threat parameters Θ. The construction

of Ac is based on the assumption that the threat field is governed by a partial differential equation

with a series solution composed of Gaussian basis functions as mentioned in 5.1. For example,

consider that the field is governed by the heat diffusion equation

∂c

∂t
= α

(
∂2c

∂x2
+
∂2c

∂y2

)
(5.10)

58

5.3. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
ALGORITHM

which has a series solution as a sum of Gaussian functions,

c(x, t) =

NP∑

n=1

θn(t)φn(x) = Φ(x)Θ(t). (5.11)

The parameters Θ are the unknown quantities, therefore we are interested in tracking the

evolution of these threat parameters through some differential equation Θ̇(t) = f(Θ(t)), t ∈
[0,∞) . We can relate the rate of change in the field approximation to the rate of change of the

parameter:
∂c

∂t
= Φ(x, y)Θ̇(t). (5.12)

Along with the two spatial derivatives, the threat field equation, Eq. 7.2, can be arranged to

give

Θ̇(t) = α
ΦT

|Φ|2∇
2ΦΘ(t). (5.13)

The ∇2 is the Laplace operator which arises to describe the spatial derivatives of the Gaussian

bases Φ.

Remark. This particular representation of the threat parameter evolution Θ̇(t) uses a par-

tial differential equation, specifically the diffusion equation, as a model of the physical process

under investigation. Therefore, it is necessary to characterize the boundary and initial condi-

tions of this process. While the planning and sensing spatial domain is defined on the workspace

W = [−1, 1]2 ⊂ R2, the physical process is defined through and beyond the boundary ofW . The

spatial domain Ω of the physical process is defined on some multiple of the planning and sensing

workspace, Ω = `ΩW = [−`Ω, `Ω] ⊂ R2. The physical process has the Dirichlet boundary condi-

tions c(t,−`Ω, y) = c(t, `Ω, y) = c(t, x,−`Ω) = c(t, x, `Ω) = cbd, x, y ∈ [−`Ω, `Ω] where cbd is

some small number. The initial condition is c(0, x, y) = c0(x, y) ∈ Ω for x, y ∈ [−`Ω, `Ω], where

c0 is the distribution of the threat or physical process at time t = 0. With regard to regularity, the

smoothing associated with the diffusion equation ensures the well-posedness of the problem.

However, the dynamics of the threat parameter may be modeled in a number of ways. For

example, data may be collected about some phenomenon such as wind speed and direction, and

59

5.3. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
ALGORITHM

the representative model is simply a curve fitting to the available data. In such a case, the choice

of model (polynomial, local basis functions, splines, wavelets) determines the smoothness and

properties such as differentiability of the threat process of interest. There is no inherent requirement

on the smoothness, continuity or other ‘well-behaved’ properties for the IPAS approach, however

properties of the threat model may dictate the type of estimation scheme implemented.

5.3.1 Discretization of threat parameter system

The target implementation is discrete Kalman filter running on an on-board microprocessor,

therefore the system must first be discretized. The Kalman filter time update runs every ∆tkf

seconds. We follow the procedure outlined in (Xie et al., 2007)(Sec. 2.4) for discretization of a

continuous stochastic system. Given the continuous state transition matrixAc and noise covariance

matrix Qc, the infinite series expansion of the sampled matrices are

A = I(NP) + Ac∆tkf +
(Ac)2(∆tkf)

2

2!
+ ... (5.14)

Q = Qc∆tkf +
(AcQ+QcAT)(∆tkf)

2

2!
+ ... (5.15)

We consider the case that ∆tkf is sufficiently small that terms with (∆tkf)
2 are disregard.

The resulting discretized dynamics are now written as

Θk+1 = AΘk + wk (5.16)

wherewk ∼ N (0, Q) is a zero-mean process noise, andA andQ are the matrices from Eqns. (5.14)

and (5.15) where terms of order (∆tkf)
2 are disregard.

5.3.2 The IPAST Algorithm

The interactive planning and sensing for time-varying fields (IPAST) algorithm is described

in Fig. 5.2 and the sensor reconfiguration policy is described in Fig. 5.3. The sequence and relative

scaling of the phases of the IPAST algorithm are also illustrated as a time-line in Fig. 5.1.

60

5.3. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
ALGORITHM

The IPAST algorithm is initialized in Lines 1–4 with an arbitrary sensor placement s0, a zero

vector of estimates Θ̂0 := 0, a diagonal error covariance matrix with arbitrary large elements P0 :=

λ0I(NP), and a reconfiguration counter ` := 0. In addition, four flags are initialized that indicate

different phases of the IPAST algorithm. The SRflag indicates a new set of sensor locations

should be obtained from the sensor reconfiguration procedure, while the PlanF lag indicates a

new path should be obtained. The PlanFinal and PlanFail flags describe the final resolution of

the algorithm.

A Kalman filter loop drives the entire process. Upon entering the for loop, in Lines 6–15,

the algorithm determines if the path should be updated and what the next phase of the algorithm

will be. The planning phase is entered if the planning flag PlanF lag has been set (in Line 6 of

sensor reconfiguration procedure), plan failure hasn’t occurred, and the current time is at least the

reconfiguration time plus time to gather some measurements, tk > trd + ∆tc. The time trd is the

time at which sensor reconfiguration is done, and ∆tc is a window of time for measurements that

allows the Kalman filter to converge on an estimate.

In Line 7, the starting time for the search window is determined as the time at which the

planning will be concluded, the current time plus the time to compute a path solution, tstart :=

tpd = tk + ∆tp. The path planning algorithm is a version of Dijkstra’s algorithm which considers

time-varying cost functions with a prescribed time window (see (Akgüna et al., 2007; Cai et al.,

1997; Orda and Rom, 1991; Philpott and Mees, 1993) for further details and implications.) The

path planning algorithm uses the current estimate of the evolution of the threat field as well as the

remaining prescribed time window trem = [tpd, tf] and returns a path or reports failure.

As the last part of the planning phase, if the path planner has not reported a failure, the next

stage of the algorithm will be determined. The conditional statement in Line 10 compares the

variance of the current estimated path cost, Var[Ĵ(v∗`)], with the a stop threshold, ε1(v∗`), based on

the lower bound for the estimated path cost of the current path described in detail in Section 2.5. If

the stopping condition is not met, the algorithm will continue repositioning sensors by setting the

sensor reconfiguration flag. If the condition is met, the PlanFinal flag is set to true. Informally,

the stopping condition characterizes the confidence in the current path.

Next, at Line 16, the algorithm determines if a sensor reconfiguration is needed. If the sensor

61

5.3. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
ALGORITHM

∆tkf

∆tm

∆tc

tk, trd

∆tp ∆tr

tpd trd

b bb bb

t0

Output: sℓ, Θ̂, P

Begin Planning done
Output: v∗

ℓ
StopCondition

collection
Planning Sensor reconfiguration

planning
ℓ+ 1th Sensor

Measurement

ℓth Sensor
placementzk+∆tm

Update
with

placement

Output: sℓ+1, Θ̂, P

b

Figure 5.1: Illustration of the various time steps in the IPAST algorithm.

reconfiguration flag SRflag has been set, plan failure hasn’t occurred, and the current time is

at least the time in which planning is done, tk > tpd, then the SENSOR RECONFIGURATION

procedure is called. The time tpd represents the time at with we expect planning is done and the

latest path is available.

After the sensor reconfiguration phase, Lines 19–21 follow the standard continuous-discrete

Kalman filter formulation, see (Xie et al., 2007). The measurement update is trigged with respect to

the notion of data availability. Data can be collected with a measurement frequency, 1
∆tm

indicated

by the modulus operation mod (tk,∆tm) = 0, and is only collected after a sensor reconfiguration

has been completed, indicated by tk > trd. The other modification embedded in the measurement

update is a procedure to ensure the well-posedness of the estimation problem as discussed in Sec-

tion 5.2. The last instruction in Line 23 is triggered if a path has successfully met the stopping

condition from Line 10, in which case at each time step of the for loop the appropriate step of the

path is executed until the goal is reached.

Note that the pseudocode in Fig. 5.2 represents a compressed description of the algorithm

used in simulation. Specifically, extra “book keeping” flags are needed to handle the statements

which occur after the intervals in which planning or sensor reconfiguration occur. In Fig. 5.2 this is

simplified with the conditionals when tk > tpd in Line 9 and when tk > trd in Line 18. A detailed

algorithm including all extra book keeping flags can be found in Appendix C.

62

5.3. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
ALGORITHM

Interactive Planning and Sensing, Time-varying

1: Set initial sensor placement s0 ⊂ {1, . . . , NG}.
2: Θ̂0 := 0, P0 := λ0I(NP), ` := 1, trd = 0
3: Set SRflag := false, P lanF lag := true.
4: Set PlanFinal := false, P lanFail := false.
5: for tk = t0 to tf do
6: if PlanF lag and ¬PlanFail and tk > trd + ∆tc then
7: tpd = tk + ∆tp
8: {v∗` , P lanFail} ← Dijkstra’s algorithm.
9: if ¬PlanFail, when tk > tpd then

10: if Var[Ĵ(v∗`)] > ε1(v∗`) then
11: SRflag := true
12: else
13: PlanFinal := true
14: else
15: return failure.
16: if SRflag and ¬PlanFail and tk > tpd then
17: SENSOR RECONFIGURATION

18: Set ` := `+ 1 when tk > trd.
19: Predict:{Θ̂−k , P−k }
20: if tk > trd and mod (tk,∆tm) = 0 then
21: Meas. Update: {Θ̂k, Pk} ← by (5.5)–(5.8).
22: if PlanFinal then
23: Execute v∗` for time step tk.

Figure 5.2: Pseudocode for Kalman filter based IPAST algorithm to solve Problem 4.

Sensor Reconfiguration

1: Find the set K by Eqn. (5.17).
2: Sort K by largest Var[Ĵ(v∗`)]

∣∣
φn

for n ∈ K. Eqn. (5.19)
3: Find the set L according to Eqn. (5.18).
4: For each m ∈ L, place a sensor inRest

m to get s`+1.
5: trd = tk + ∆tr
6: Set PlanF lag := true.

Figure 5.3: Pseudocode for SENSOR RECONFIGURATION procedure called at Line 17 of main algorithm in
Fig 5.2.

63

5.3. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
ALGORITHM

5.3.3 Task-Driven Sensor Reconfiguration

Central to the novelty of interactive planning and sensing is the identification of regions to

place sensors which are relevant to the path-planning problem. The sensor reconfiguration proce-

dure, Fig. 5.3, of the proposed IPAST algorithm is designed to collect “task”-relevant measure-

ments. This procedure first identifies (Line 1) a minimal set of indices K ⊆ [NP] such that the

current path lies within the total region of significant support defined by the corresponding basis

functions. To be precise, let V` ⊂ W be the set of grid point locations in the workspace associated

with each of the vertices in the path v∗` . Then

K := {p ∈ [NP] : V` ∩Rsup
p 6= ∅}. (5.17)

We call the set K the minimal cover of the path v∗` .

Next, in Line 3, we compute a set of indices L defined as

L := {Ksorted : |L| = NS}. (5.18)

In Line 2, the set K is sorted by descending Var[Ĵ(v∗`)]
∣∣
φn
, for each basis φn ∈ K. The value

Var[Ĵ(v∗`)]
∣∣
φn

can be thought of as the influence of the threat n ,corresponding to threat coefficient

θn and basis φn, on the variance of the estimated path cost of the current path Var[Ĵ(v∗`)], or more

simply, the threat influence. The threat influence of threat n is calculated as

Var[Ĵ(v∗`)]
∣∣
φn

:=
∑P

i=0ΦT(xvi)
∣∣
φn
P`
∣∣
φn

Φ(xvi)
∣∣
φn

=
∑P

i=0V ar[θ̂n]φ2
n(xvi). (5.19)

Then, in Line 3, the first NS bases of Ksorted, with largest variance, are assigned to set L.
The sensor placement s`+1 in Line 4 consists of locations within the region of estimability of

basis function φm, for each m ∈ L. Ideally, sensors should be placed at grid points closest to the

locations x̄m for each m ∈ L, i.e., the maxima of the basis functions φm.

Remark 3 (Task-driven identification). This threat influence metric Var[Ĵ(v∗`)]
∣∣
φn

explicitly con-

64

5.4. TERMINATION AND CONVERGENCE CONDITIONS

siders the mission task of finding an optimal path by direct inclusion of v∗` in the calculation

of Eqn. (5.19). Consider the scenario in which the set K contains two basis, φa and φb, and that

the variance of corresponding coefficient estimates is such that V ar[θ̂a] > V ar[θ̂b]. The initial

intuition is to prioritize φa for measurement by relocating a sensor to the estimable region Rest
a .

However, the mean location x̄a of threat basis φa may be collectively farther from the path than

threat basis φb, i.e.
∑P

i=0 ‖xvi − x̄a‖ >
∑P

i=0 ‖xvi − x̄b‖. The result may be that measuring at basis

φa may have little effect on reducing Var[Ĵ(v∗`)].

Remark 3 emphasizes the importance of the task-driven approach which is core to interac-

tive planning and sensing. First, the identification of bases for set K reduces the space of bases

to only those relevant to the planning problem. Then, sorting of basis by threat influence met-

ric Var[Ĵ(v∗`)]
∣∣
φn

prioritizes the basis which have a more dominant effect on the variance of the

estimated path cost Var[Ĵ(v∗`)]. Note that we could calculate Var[Ĵ(v∗`)]
∣∣
φn

for every n ∈ NP

and achieve the same result. However, if NP is very large, then |K| � NP, and calculating

Var[Ĵ(v∗`)]
∣∣
φn

for every n ∈ NP would be computationally expensive and unnecessary.

5.4 Termination and Convergence Conditions

The termination criterion for the IPAST algorithm given in Line 10 is based on the variance

of the estimated path cost which is derived from the parameter estimation error covariance, as in

Eqn. (5.20). Because the path cost depends linearly on the parameters, it is a Gaussian r.v. and

retains the same properties as the parameter estimates including unbiasedness. Note that the sensor

reconfiguration policy ensures that parameters with indices in K are measured as the algorithm

iterates.

After the `th reconfiguration and planning phase of the IPAST algorithm, the variance of the

estimated cost of path v∗` = (v0, . . . , vP) is

Var[Ĵ(v∗`)] = Var[
∑P

i=0ΦT(xvi)Θ̂`]

=
∑P

i=0ΦT(xvi)P`Φ(xvi). (5.20)

65

5.4. TERMINATION AND CONVERGENCE CONDITIONS

The termination condition, Var[Ĵ(v∗`)] > ε1(v∗`), in Line 10 will confirm the current path exceeds

the prescribed level of confidence as given by ε1(v∗`). Here, ε1(v∗`) is a path-dependent threshold.

chosen based on the grid resolution. Consider the hypothetical ideal case where a sensor can

be placed at every grid point, and the measurement error variance of each sensor is σ̄. Then the

estimation error covariance is Pgrid := (HT
gridR

−1Hgrid)−1, where

Hgrid :=
[

Φ(x1) Φ(x2) . . . Φ(xNG
)
]T

,

R := σ̄I(NG). Then we define

ε1(v∗`) := λ2
1

∑P
i=0ΦT(xvi)(Pgrid/NP)Φ(xvi), (5.21)

Note that Pgrid can be computed a priori, i.e., without taking any measurements at all. Additionally,

scaling Pgrid by NP gives a consistent threshold ε1(v∗) for environments of increasing NP.

The following proposition identifies the conditions under which the proposed IPAST algorithm

will terminate in a finite number of iterations.

Proposition 2. The IPAST algorithm terminates in a finite number of iterations ¯̀ if there is suffi-

cient time and the following inequality holds:

Var[Ĵ(v∗¯̀)|(Pk − Pk−nR
)]︸ ︷︷ ︸

change of Var[Ĵ(v∗
`)] in reconfiguration phase

−Var[Ĵ(v∗¯̀)|TTGkHwpTP
−
k]︸ ︷︷ ︸

Reduction due to measurements

+ Var[Ĵ(v∗¯̀)|(Pk+nm)nP
− Pk+nm)]︸ ︷︷ ︸

change during planning phase

< 0 (5.22)

where,

Var[Ĵ(v∗`)|X] =
P∑

i=0

ΦT(xvi)XΦ(xvi) (5.23)

66

5.4. TERMINATION AND CONVERGENCE CONDITIONS

where (Pk)n is the discrete error covariance recurrence relation after n updates,

(Pk)n = AnPk(A
T)n +

n−1∑

i=0

AiQ(AT)i, (5.24)

and n is the number of updates that occur during a particular phase, i.e. n = ∆tp
∆tkf

for the duration

of planning.

In Proposition 2, the integer nR is the number of updates during a reconfiguration phase, i.e.

nR = ∆tr
∆tkf

. Therefore, Pk−nR
is the error covariance matrix nR updates before the time index

k. Then, (Pk − Pk−nR
) is the growth of the error covariance since time index k − nR, in other

words, the amount of error covariance that is accumulated over a reconfiguration sequence. The

term Var[Ĵ(v∗¯̀)|TTGkHwpTPk] represents the amount of reduction in the path cost variance due to

measurements from the current set of sensors. The term Pk+nm is the state of the error covariance

after the measurement updates at time index k + nm where nm is the number of updates due to

measurements. The term (Pk+nm)nP
represents the state of the error covariance after the planning

phase is completed, and nP = ∆tp
∆tkf

is the number of update cycles during planning phase. There-

fore, the difference ((Pk+nm)nP
− Pk+nm) represents the amount of variance accumulated while

calculating the path.

Note that Var[Ĵ(v∗¯̀)] is evaluated against ε1(v∗¯̀) immediately after the planning complete.

Therefore, stated simply, if the growth of the error variance over the previous planning and recon-

figuration phase, minus the affect of the sensors, plus the additional growth while computing a path

is less than zero, eventually Var[Ĵ(v∗¯̀)] will decrease below the stopping threshold ε1(v∗¯̀).

Finally, note that all path cost variance evaluations are made with respect to the final accepted

path v∗¯̀. We are interested in the path that is both the output from the path planner, e.g. a minimum

threat path determined by Dijkstra’s algorithm, and has a path cost variance Var[Ĵ(v∗`)] below the

specified threshold ε1(v∗`). Therefore, the quantity of interest is the behavior of Var[Ĵ(v∗¯̀)], the

variance of the final accepted path.

Proof. The argument for the convergence proposition rests on the notion that the growth of the

error covariance cannot be faster than the ability of the sensor reconfiguration procedure to target

67

5.5. STEADY STATE CONDITIONS AND EXTRA CONSIDERATIONS

and reduce the parameter estimate variances associated with the path.

To begin, consider that the number of parameters NP is finite and there at least NS > 1

sensors available. Consider the moment immediately after a sensor reconfiguration has taken place

at time index k as the reference time index. Then Pk is the state of the error covariance after

reconfiguration is complete, but before measurements are taken. Then consider that Pk−nR
is the

state of the error covariance at the beginning of the sensor reconfiguration. The matrix (Pk−Pk−nR
)

represents the change in the error covariance due to Eq. 5.4. Therefore, the first term in Eq. 5.22 is

the change in the path cost variance during the reconfiguration phase.

The second term of the inequality describes the reduction of the variance of the estimated

path cost due to the measurements from sensors assigned to the basis set L. Inspecting the error

covariance update formula in Eqn. (5.8), the term that modifies the variance of the estimates is

TTGkHwpTP
−
k . Therefore, by considering the matrix TTGkHwpTP

−
k , we can quantify the reduc-

tion in the estimated path cost variance due to the measurements.

Lastly, because the stop condition, Var[Ĵ(v∗`)] < ε1(v∗`), cannot be evaluated until the `th path

is available, we also must consider the growth of the error covariance over the planning duration

∆tP . In the third term of inequality 5.22, Pk+nm is the error covariance after measurements have

been assimilated, and (Pk+nm)nP
is the state of the error covariance after nP update cycles, i.e.

during the planning phase. Therefore, the third term Var[Ĵ(v∗¯̀)|(Pk+nm)nP
− Pk+nm)] represents

the change in the estimated path cost variance while the next optimal path is computed.

Therefore, if the L.H.S. of the inequality Eqn. (5.22) which represents the total change of

Var[Ĵ(v∗¯̀)] is negative then after a finite number of iterations, Var[Ĵ(v∗¯̀)] reduces below ε1(v∗¯̀).

5.5 Steady State Conditions and Extra considerations

Remark 4 (Steady state covariance). The time-varying system as described in Section 5.1 is de-

rived from the advection-diffusion equation with no sources. Therefore, the system is inherently

stable and the solution of the discrete algebraic Ricatti equation will yield a unique steady state

68

5.5. STEADY STATE CONDITIONS AND EXTRA CONSIDERATIONS

covariance for the error covariance matrix of the threat parameters, P∞. In the extreme case where

the planning and reconfiguration phases are much slower than the system dynamics, the implica-

tions of equation 5.22 in Proposition 2 are that the reduction in Var[Ĵ(v∗`)] by the measurements

need to be large enough to reduce the path cost variance given by the steady state covariance,

Var[Ĵ(v∗`)|P∞], below the stop threshold ε1(v∗`).

Remark 5 (Time Window). The termination criterion in Line 10 of the IPAST algorithm as well

as the convergence condition of Proposition 2 assume a valid path v∗ is available. For a finite

horizon mission window, if a planning phase begins too late there will be insufficient time in the

remaining window. This is the case when Dijkstra’s algorithm returns a true PlanFail flag in

Line 8. Therefore, for Remark 4 to hold, the time window must be sufficiently long to ensure both

an available path v∗ and for the error covariance to evolve to P∞.

In the preceding proposition, several factors can determine if the inequality holds. If the total

time for reconfiguration ∆tr is increased, this allows for a great accumulation of variance that needs

to be overcome by the next set of sensors. Depending onA andQ, the steady state solution P∞ may

lead to a Var[Ĵ(v∗)|P∞] much larger than the required threshold ε1(v∗`). In addition, depending on

the transition matrix A, the error covariance can evolve toward P∞ rapidly. Increasing the number

of available sensors NS will increase the reduction rate of variance, while concurrently reducing

the ratio of unmonitored to monitored basis covering the path, K. Conversely, a larger number of

parameters NP, in general, leads to a larger |K| leading to faster growth of Var[Ĵ(v∗`)].

69

Chapter 6

Simulation Results and Discussion

6.1 Interactive Planning and Sensing Results and Discussion

In this section, we present results of numerical simulations to illustrate the proposed IPAS al-

gorithm, to study its performance characteristics, and to compare its performance against a typical

information-driven approach from the literature.

The numerical simulations reported in this section are all performed with a square workspace

W = [−1, 1] × [−1, 1] in nondimensional units. The threat field is constructed as in Section 2.1.

The locations x̄n of maxima of the basis functions are assigned to chosen to provide uniform

separation between them. As discussed in Section 2.1, the constants νn are chosen such that the

workspace is covered by the union ∪n∈[NP]Rsup
n . The ground truth values of the parameters θn are

randomly generated for each simulation by sampling the uniform distribution U(0, 10). Therefore,

θn = 0 and θ̄n = 10 for each n ∈ [NP].

6.1.1 Illustrative Example

Figures 6.1 and 6.2 provide results of the implementation of the algorithm on an illustrative

example. In this example, the algorithm termination criterion is set with the constant λ1 = 5

in (2.13). The numbers of grid points, parameters, and sensors are NG = 400, NP = 36, and

NS = 10, respectively. As previously discussed, the IPAS algorithm attempts to minimize the

estimated path cost. To study the algorithm’s performance, Fig. 6.1 shows also the true cost of the

optimal path, and the incurred cost, which is true cost of the path found by the algorithm.

First, note in Fig. 6.1 (top) that the IPAS algorithm terminates in 5 iterations. For each of the

iterations ` = 2, 3, 4, and 5, Fig. 6.2 shows the threat estimate ĉ by a colormap, the path v∗` of

70

6.1. INTERACTIVE PLANNING AND SENSING RESULTS AND DISCUSSION

1

10
-

10
1

10 4

V
ar

[Ĵ
(v
∗ `)

]

NP = 36, NG = 400

IPAS Var[Ĵ(v∗)]

λ2
1Var[Ĵ(v∗)]

Var[Ĵ(v∗)]grid

J
(v
∗ `)

IPAS incurred
IPAS estimated
True optimal

Iteration `

N
L

NS = 10, No. of measurements = 33

2 3 4 5

1 2

1 2 4

5

5

43

3

5

0

100

50

2

150

10

Figure 6.1: Convergence behavior of the IPAS algorithm.

71

6.1. INTERACTIVE PLANNING AND SENSING RESULTS AND DISCUSSION

minimum estimated cost by white circles, and the sensor placement s` by black circles. Whereas

the termination criterion requires that the path cost variance be at most ε1(v∗`) = 0.683, in this

case, at termination the actual path cost variance is much lower, namely Var[Ĵ(v∗`)] = 0.059. In

Fig. 6.2, the gray regions are of significant support of bases with non-identified parameters, i.e.,

those φn with n ∈ IC. Because the IPAS algorithm finds optimistic threat estimates, as discussed

in 2.3, these gray regions indicate zero contribution from the basis functions to the estimated threat.

Therefore, in Fig. 6.2(a) for example, the path v∗2 traverses through the gray regions.

Second, note in Fig. 6.1 (middle) that upon termintation, the incurred and estimated costs

are nearly identical: namely J (v∗`) = 63.16 and Ĵ(v∗`) = 62.33 respectively. This observation

agrees also with the low variance in the estimated cost at termination. More importantly, note that

the incurred and estimated costs are nearly identical to the true optimal cost, which agrees with

the theoretical result of Theorem 1. Before termination, the estimated cost is lower than the true

optimal cost because of the optimistic threat estimates. Conversely, the incurred cost of a path at a

given iteration will be greater than or equal to the true optimal cost.

Third, note in Fig. 6.1 (bottom) that the number of sensors placed in each iteration is not al-

ways NS. The sum of the numbers of sensors placed at each iteration, over all of the five iterations,

is 33. Crucially, note that the total number of measurements taken by the IPAS algorithm is less

than the number of parameters, and yet the path found by the algorithm is nearly identical in cost to

the true optimal path. This example therefore illustrates the most powerful feature of the IPAS al-

gorithm: not only can it find a near-optimal path withNS � NP, but it can find a near-optimal path

with fewer measurements than parameters, i.e., even with
∑¯̀

`=1NL(`) < NP, where NL(`) is the

number of sensors placed at each iteration, and ¯̀ is the total number of iterations. In Section 6.1.4,

we emphasize this feature with additional results.

6.1.2 Convergence and Optimality

To corroborate the theoretical results Proposition 1, Theorem 1, and Proposition 3 with numer-

ical simulation results, we performed a study with varying number of sensors and parameters. To

this end, we performed numerical simulations for every combination ofNP ∈ {4, 9, 16, 25, 36, 49, 64, 81}

72

6.1. INTERACTIVE PLANNING AND SENSING RESULTS AND DISCUSSION

(a) Iteration 2. (b) Iteration 3.

(c) Iteration 4. (d) Final iteration 5.

Figure 6.2: Visualization of the iterative and interactive planning and sensing (IPAS) process for NP = 36
and NS = 10.

73

6.1. INTERACTIVE PLANNING AND SENSING RESULTS AND DISCUSSION

with NS ∈ {1, 2, . . . , 90}, and with fixed NG = 400 and λ1 = 5. The results gathered for every

combination (NS, NP) were averaged over 100 simulations, for different threat fields with ran-

domly generated parameter values. The algorithm was programmed to terminate after a maximum

of 30 iterations unless the previously discussed StopCondition was reached earlier.

Figure 6.3 shows results on the convergence of the proposed algorithm, i.e., the number of

iterations ¯̀ required to terminate “normally” by the StopCondition criterion. As intuitively ex-

pected, the number of iterations decreases with increasing number of sensors, irrespective of the

number of parameters. Indeed, the data plotted in Fig. 6.3 are empirically approximated by the

curve ¯̀ = 29.8 exp(−0.23NS) + 9.09 exp(−0.0056NS). As was the case with the illustrative ex-

ample of Section 6.1.1, the algorithm converges in a small number of iterations even in cases where

NS � NP. For example, note that for NP = 81, the algorithm converges in less than 10 iterations

with as few as 13 sensors.

Figure 6.4 shows the striking result that the incurred costs of paths found by the IPAS al-

gorithm are almost always identical to the true optimal cost. The exceptions are cases where an

extremely small number of sensors is used to estimate a field with a large number of parameters,

e.g. NS = 1 and NP = 81. Even in this case, the suboptimality is due to the forcible termination of

the algorithm after 30 iterations. If additional iterations are allowed, then the algorithm converges

to a near-optimal path even in these cases.

As described in Section 2.5, the constant λ1 characterizes a level of path cost variance that

must be achieved before the algorithm terminates. Lower values of λ1 provide more stringent

termination criteria by requiring a higher confidence (lower variance) in the estimated path cost. In

Figure 6.5, the convergence results from a set of simulations run with λ1 = 1.2 show an increase

in the iterations required. Note that for higher NS the number of required iterations is similar for

λ1 = 5 and λ1 = 1.2.

6.1.3 Comparisons with Information-Driven Approaches

We compare the proposed IPAS algorithm to two information-driven approaches: one that

attempts to maximize the so-called frame potential, and the other that attempts to minimize mean

74

6.1. INTERACTIVE PLANNING AND SENSING RESULTS AND DISCUSSION

20 40 60 80

No. of Sensors available, N
S

0

5

10

15

20

25

30

It
e
ra

ti
o
n
s

IPAS Iterations to Convergence

Np = 4

Np = 9

Np = 16

Np = 25

Np = 36

Np = 49

Np = 64

Np = 81

Figure 6.3: Number of iterations until convergence with λ1 = 5.

1 2 3 4 5 6

No. of Sensors available, N
S

0

10

20

30

40

50

60

%
 (

T
ru

e
 -

 I
n
c
)/

T
ru

e

IPAS - Path Cost Suboptimality

Np = 4

Np = 9

Np = 16

Np = 25

Np = 36

Np = 49

Np = 64

Np = 81

Figure 6.4: Suboptimality in pathological cases where the number of sensors is extremely small, and when
the number of iterations of the IPAS algorithm are limited.

75

6.1. INTERACTIVE PLANNING AND SENSING RESULTS AND DISCUSSION

20 40 60 80

No. of Sensors available, N
S

0

5

10

15

20

25

30

It
e
ra

ti
o
n
s

IPAS Iterations to Convergence
1

 = 1.2

Np = 4

Np = 9

Np = 16

Np = 25

Np = 36

Np = 49

Np = 64

Np = 81

Figure 6.5: Number of iterations until convergence with λ1 = 1.2.

squared error. Frame potential is a scalar metric that measures the orthogonality of the rows of

the measurement matrix, and a near-optimal greedy placement algorithm and its software imple-

mentation1 are readily available in the literature (Ranieri et al., 2014). Initial simulations also

considered comparisons with mutual information (Krause et al., 2008). However, for our applica-

tion, mutual information performed similarly to frame potential but required up to two orders of

magnitude more computation time and was omitted from the large simulation studies. Numerical

simulations were performed for these two methods for the same set of combinations of NP and NS

as discussed in Section 6.1.1. For each (NP, NS) combination, we performed 100 simulations with

different randomly generated threat fields. In addition we use sensor placement that randomly as-

signs locations without repetition (no location assigned twice). Comparing against random sensor

placement is a commonly used “sanity check” in the literature (Krause et al., 2008; Ranieri et al.,

2014).

Figure 6.6 shows the optimality of paths resulting from these two information-driven ap-

proaches and from randomized sensor placement, compared to the path resulting from the IPAS

1https://github.com/jranieri/OptimalSensorPlacement.

76

https://github.com/jranieri/OptimalSensorPlacement

6.1. INTERACTIVE PLANNING AND SENSING RESULTS AND DISCUSSION

10 20 30 40 50 60 70 80 90

No. of Sensors available, N
S

0

10

20

30

40

50

60

70

%
 (

T
ru

e
 -

 I
n

c
)/

T
ru

e

IPAS - Path Cost Suboptimality

Np = 4

Np = 9

Np = 16

Np = 25

Np = 36

Np = 49

Np = 64

Np = 81

(a) IPAS algorithm.

10 20 30 40 50 60 70 80 90

No. of Sensors available, N
S

0

10

20

30

40

50

60

70

%
 (

T
ru

e
 -

 I
n

c
)/

T
ru

e

Frame Potential - Path Cost Suboptimality

Np = 4

Np = 9

Np = 16

Np = 25

Np = 36

Np = 49

Np = 64

Np = 81

(b) Maximum frame potential (Ranieri et al., 2014).

10 20 30 40 50 60 70 80 90

No. of Sensors available, N
S

0

20

40

60

80

100
%

 (
T

ru
e

 -
 I

n
c
)/

T
ru

e
Mean Squared Error - Path Cost Suboptimality

Np = 4

Np = 9

Np = 16

Np = 25

Np = 36

Np = 49

Np = 64

Np = 81

(c) Minimum mean squared error.

10 20 30 40 50 60 70 80 90

No. of Sensors available, N
S

0

10

20

30

40

50

60

70

80

90

%
 (

T
ru

e
 -

 I
n

c
)/

T
ru

e

Random Placement - Path Cost Suboptimality

Np = 4

Np = 9

Np = 16

Np = 25

Np = 36

Np = 49

Np = 64

Np = 81

(d) Random sensor placement.

Figure 6.6: Simulations results summarizing the path cost percentage suboptimality compared to the true
optimal cost.

77

6.1. INTERACTIVE PLANNING AND SENSING RESULTS AND DISCUSSION

approach. The percentage difference between the costs of these path and the cost of the true op-

timal path is indicated. These plots show that (1) the proposed IPAS algorithm consistently finds

a path with cost nearly identical to the true optimal cost, and (2) the IPAS algorithm outperforms

the other two information-driven approaches especially in situations where NS � NP. Note, for

example, that for NS 6 30 the results of the two information-driven approaches are significantly

suboptimal for several NP, whereas the IPAS algorithm returns near-optimal paths. As discussed

in Section 6.1.1, the instances of sub-optimal results of the IPAS algorithm in Figs. 6.4 and 6.6(a)

are due to limiting the number of iterations at 30.

To ensure that these comparisons were fair, each of the three comparative methods are al-

lowed the same number of measurements as the IPAS algorithm, i.e., the previously stated quantity
∑¯̀

`=1NL(`), which is greater than NS.

Next, we compare the variance of estimated costs of the paths resulting from the aforesaid

three comparative approaches to that resulting from the IPAS algorithm. Figure 6.7 indicates this

variance for various values of NP. Recall that the termination criterion of the IPAS algorithm is

based on this variance, and by Prop. 1, this variance is guaranteed to be at most equal to the

threshold ε1(v∗¯̀).

In each of the cases shown in Fig. 6.7, the IPAS algorithm achieves a path cost variance at

least as low, and often slightly lower than that achieved by the frame potential method. The path

cost variances achieved by the other two approaches is higher by at least two orders of magnitude.

For cases with NS � NP, the termination limit of 30 iterations often causes the IPAS algorithm

to result in a higher path cost variance. However, even in these cases, Fig. 6.7 shows that these

variances are of the same order of magnitude as those achieved by the frame potential method.

To summarize, not only does the IPAS algorithm consistently find paths whose true costs are

near-optimal, but it also ensures that the confidence in the estimated path cost is high (i.e., path

cost variance is low).

78

6.1. INTERACTIVE PLANNING AND SENSING RESULTS AND DISCUSSION

10 20 30 40 50 60 70 80 90
NS

10-2

10-1

100

V
a
r[
Ĵ

(v
∗ L

)]

IPAS
FP
MSE
RAND

(a) NP = 4.

10 20 30 40 50 60 70 80 90
NS

10-2

100

102

104

V
a
r[
Ĵ

(v
∗ L

)]

(b) NP = 25.

10 20 30 40 50 60 70 80 90
NS

10-2

100

102

104

V
a
r[
Ĵ

(v
∗ L

)]

(c) NP = 49.

10 20 30 40 50 60 70 80 90
NS

10-2

100

102

104

V
a
r[
Ĵ

(v
∗ L

)]

(d) NP = 81.

Figure 6.7: Path cost variance behavior for each sensor placement strategy at selected NP .

6.1.4 Performance in Parameter-Rich & Resource-Constrained Scenarios

To further emphasize the fact that the IPAS algorithm can achieve near-optimal paths with far

fewer measurements than the number of parameters, we present here an example with NP = 100

and NS = 10, is an order of magnitude smaller than NP.

Figure 6.8 shows the path resulting from the IPAS algorithm on this problem. Note the sig-

nificant regions of the map which remain gray, corresponding to many parameters that were not

identified. The estimated, incurred, and true path costs, the variance of the estimated path cost,

and the numbers of sensor placements at each iteration are shown in Fig. 6.9. Note that the path

resulting from the IPAS algorithm is in fact a true optimal path.

By comparison, an information-driven approach will necessarily place sensors in the gray re-

gions, whereas those sensor measurements will provide no benefit for this particular path planning

problem. In this example, the IPAS algorithm terminated normally in 8 iterations, and the total

number of measurements taken over all of these iterations was 55, which is roughly half the num-

79

6.1. INTERACTIVE PLANNING AND SENSING RESULTS AND DISCUSSION

Figure 6.8: Example with NP = 100 and NS = 10, the requirement number of measurements for conver-
gence is only 55.

ber of parameters NP. In contrast, when the frame potential method with 55 measurements was

implemented, the resultant path with minimum estimated cost was significantly suboptimal com-

pared to the true optimal path. The reason for this behaviour is that, as shown in Fig. 6.9 (top),

the variance of the estimated path cost due to the frame potential method remained four orders of

magnitude higher than that resulting from the IPAS algorithm.

The maximization of information in the data collection stage can have different objective func-

tions, such as mutual information or frame potential, but all metrics typically strive to uniformly

gather data in environment or other information space. This uniformity of measurement explains

why information approaches perform poorly in comparison to the IPAS approach in high parame-

ter spaces. As the number of parameters increases, the probability that sensors will be placed with

sufficient density around the true path decreases. Therefore, to maintain optimality and confidence

of path cost estimates in environments characterized by a large number of parameters and/or a

relatively small number of sensors, the IPAS algorithm is more suitable.

80

6.1. INTERACTIVE PLANNING AND SENSING RESULTS AND DISCUSSION

1 2 3 4 5 6 7 8

10 -1

10 2

10 4

V
ar

[Ĵ
(v
∗ `)

]

NP = 100, NG = 400

NS = 10, No. of measurements = 55

Info
IPAS

1 2 3 4 5 6 7 8

40

50

60

J
(v
∗ `)

IPAS Info True optimal

1 2 3 4 5 6 7 8
Iteration `

0

5

10

N
L

Figure 6.9: Comparison of IPAS approach and an information-driven approach (frame potential).

81

6.1. INTERACTIVE PLANNING AND SENSING RESULTS AND DISCUSSION

20 40 60 80

N
P

0

20

40

60

80

100

120

140

N
o
.
o
f
m

e
a
s
u
re

m
e
n
ts

IPAS - No. of measurements

Ns = 10

Ns = 20

Ns = 30

Ns = 40

Ns = 50

Ns = 60

Ns = 70

Ns = 80

Ns = 90

Figure 6.10: The total number of measurements required given an NP − NS pair were tracked over all
simulations. The number of required total measurements increases slowly with NP .

6.1.5 Computational Complexity

The computational complexity of the IPAS algorithm depends on the number of calls to Di-

jkstra’s algorithm in Line 7 in Fig. 2.1. Note that it is trivial to replace Dijsktra’s algorithm in

Line 7 with the faster A∗ algorithm (Nilsson, 1998), but the worst-case computational complex-

ity of both algorithms is identical. Specifically, the worst-case complexity of either algorithm is

O(NG + NG log(NG)), when the algorithm is implemented using a Fibonacci heap data structure

(Nilsson, 1998). The total number of iterations of the algorithm scales linearly with the number

of parameters NP. Therefore, the worst-case computational complexity of the IPAS algorithm is

O(NP(NG +NG log(NG))).

Figure 6.10 shows the number of measurements required for termination. An approximate

linear increase in th number of measurements is observed with an increasing number of parameters

NP.

82

6.1. INTERACTIVE PLANNING AND SENSING RESULTS AND DISCUSSION

6.1.6 Discussion of IPAS Algorithm and Alternative Comparisons

The traditional approach to the solution of Problem 1 is to first deploy sensors to optimize

some metric about the quality of the threat field estimate, and to then plan a path using the estimated

field. We refer to such traditional approaches as information-driven, to highlight the fact that the

objective of sensor placement is to obtain as much information about the threat field as possible

without regard to the path-planning problem at hand.

A key observation here, which was also used in the proof of Theorem 1, is that the solu-

tion of Problem 1 improves as the variance of the estimated path cost decreases. In other words,

for a path v̂∗ with minimum estimated cost, if Var[Ĵ(v̂∗)] is small, then the estimated path cost

|Ĵ(v̂∗)−J (v̂∗)| is small with a high probability. Consequently, v̂∗ is a near-optimal path with high

probability. It follows from (2.12) that the sensor placement problem in Problem 1 must attempt

to minimize tr[P¯̀|[K]]. Recall from (2.10) that K is the minimal cover of the path v̂∗.

In an information-approach, regardless of which specific method is used for sensor placement,

tr[P¯̀|[K]] is at least as large as that obtained from the IPAS algorithm. This claim is true because

the information-driven approach is not concerned withK at all, whereas the IPAS algorithm specif-

ically attempts to reduce Var[Ĵ(v̂∗)], and therefore implicitly reduces tr[P¯̀|[K]]. We assume that

the total number of measurements made is the same in either case, and that the threshold ε1(v∗¯̀) is

sufficiently small to prevent premature termination of the IPAS algorithm.

Based on these observations, the following result is true.

Proposition 3. Let v̂∗IPAS be the solution to Problem 1 returned by the IPAS algorithm, and let

v̂∗ID be the solution to Problem 1 returned by an information-driven approach. Then J (v̂∗IPAS) 6

J (v̂∗ID).

6.1.7 Comparison with Blackbox Optimization

It is clear that Problem 1 can be formulated as an optimization problem where the set of all

possible sensor placements s is treated as the design space, and the cost Ĵ(v) is the objective func-

tion to be minimized. The least squares estimates of parameters using the sensor measurements,

83

6.2. WAITING IN SPATIOTEMPORAL FIELDS ILLUSTRATIVE EXAMPLE AND
DISCUSSION

and the execution of Dijkstra’s algorithm for computing the path v with minimum estimated cost

can be wrapped inside a “blackbox” with input s and output Ĵ(v). The inner operations of this

blackbox need not be visible or available to an optimization algorithm based on, say, gradient de-

scent or randomized sampling. This practice is common in the optimal design of experiments, and

arguably it can be applied to the solution of Problem 1.

One obvious issue with this approach is that the size of the design space expands combinatori-

ally with increasing number of sensors NS. A more serious issue is that s is in fact an inappropriate

design vector. As is clear from the proposed IPAS algorithm, when the number of sensors is small,

multiple iterative sensor placements are needed, and the number of measurements exceeds the

number of sensors. (see Sections 6.1.1 and 6.1.4 for illustrative examples). Therefore, the appro-

priate design vector for the preceding blackbox optimization problem is the set of measurements,

possibly achieved via multiple iterative sensor placements. This design space is, of course, much

larger than that of the sensor placements. What is worse, is that we do not a priori know how

many measurements are needed to reduce the variance of the estimated path cost below a desired

threshold. In other words, the size of the design space is variable, which renders the blackbox

approach impractical for this particular problem, irrespective of the method used for optimization.

6.2 Waiting in Spatiotemporal Fields Illustrative Example and

Discussion

The results in this section are summarized as follows. The allowance for waiting in the path-

planning algorithm can reduce paths costs by 25% compared to no-wait path-planning, but this

cost reduction incurs an added computational expense of a 30- to 300-fold increase in execution

time. Using the local no-wait condition of Section 3.4 reduces this added computation expense to

only a 10-fold increase in execution time, while discovering a majority of optimal paths.

84

6.2. WAITING IN SPATIOTEMPORAL FIELDS ILLUSTRATIVE EXAMPLE AND
DISCUSSION

6.2.1 Uniformly High Resolution Waiting vs. Non-waiting Solution

In what follows, we present the results of the numerical study described in Section 3.3.1,

specifically, the characteristics of the difference in costs between the path solving Problem 2 and

the no-wait path: J (v∗nw)− J (v∗) normalized by J (v∗) .

Computational effort for allowance of waiting. Over the 2000 simulations conducted, the

greatest suboptimality of the no-wait path was 25% . In 156 of these simulations, i.e., nearly 8%

of the simulated cases, v∗nw was suboptimal compared to v∗, but this suboptimality was significant

(greater than 5%) in only in less than 1% of cases of the 2000 simulations. The computation times

for finding the no-wait path in each simulation were all under 0.4 s, while those for finding the

solution to Problem 2 were in the range of 11–120 s as shown in the histogram in Fig. 6.11. In

other words, the computation time to find the solution v∗ to Problem 2 was between 30–300 times

slower than the time to find the no-wait approximate solution v∗nw, whereas the suboptimality

J (v∗nw)− J (v∗) was greater than zero in slightly less than 8% of the cases simulated. In certain

applications, however, this extra computational effort may be justified, say in the transportation of

hazardous waste through adverse weather (threat) (Akgüna et al., 2007).

Local no-wait condition – Cost reduction and computational efficiency. The discussion in

Section 3.4 indicates that waiting is locally beneficial when the waiting cost αw and the threat

field value are low compared to the local temporal gradient of the threat field. It was noted that

the movement cost αm did not affect this local test, and therefore the ratio αm/αw is not relevant

to the waiting decision. In Fig. 6.12(a), we note that the cost reduction of waiting occurs more

frequently with a lower minimum values of the field c. Figures 6.12(b)-(d) summarize the average

value across time for the field and its gradients.

When the field temporal gradient is small, i.e., ∇c(x, t)→ 0, the field is approximately static

and an optimal path does not involve waiting. For further insight into the lack of waiting paths for

fields with large temporal gradients, consider a vehicle at location xk at time tj and the threat value

c(x`, tj) at location x` along the optimal path v∗. Due to the large gradient, the threat will move

or dissipate at time tj+m∆t. If the threat at position x` dissipates such that ∇c(x`) > dx
dt

, where dx
dt

85

6.2. WAITING IN SPATIOTEMPORAL FIELDS ILLUSTRATIVE EXAMPLE AND
DISCUSSION

0 50 100 150

Time (s)

0

5

10

15

20

25

%

C
o

s
t

Computation Time - Waiting

(a)

0 50 100 150

Time (s)

0

100

200

300

400

500
Computation Time - Waiting

(b)

0.1 0.2 0.3 0.4

Time (s)

0

5

10

15

20

25

%

C
o

s
t

Computation Time - No Waiting

(c)

0 0.1 0.2 0.3 0.4

Time (s)

0

100

200

300
Computation Time - No Waiting

(d)

Figure 6.11: Execution time to solve Problem 1. (a),(b) The computational expense with waiting included is
bimodal with the dominant mode at higher computation times. Bimodality indicates calculation of waiting
paths falls into two populations: optimal waiting paths found in a narrow search of GT , and optimal waiting
paths found in a broader search of GT . This observation identifies two characteristically different threat
field families. (c),(d) Computational expense (execution time) when waiting is not allowed.

is the speed of the vehicle, then the vehicle arrives after the threat is dissipated and no waiting is

required. However, if the vehicle arrives at position x` before time tj+m∆t, it will incur a threat

exposure cost and should wait. These arguments indicate that optimal paths may involve waiting

when the field changes moderately over time, i.e.,∇c(x, t) is neither too high nor too low.

As discussed in Section 3.4, we can modify Dijkstra’s algorithm with the local no-wait condi-

tion (3.8), which leads to a significant computational advantage. Using this local no-wait condition

check, the average calculation time is reduced from 78.7s to 5.47s, which is a 140% reduction (see

Fig. 6.13). With the local no-wait condition check, 83% of paths are determined in under 6 sec-

onds while still discovering optimal paths that involve waiting. Because this no-wait condition

is approximate, potentially optimal waiting paths can be discarded. Among the 2000 simulations

conducted, 156 cases involved waiting in the optimal path, but with the local no-wait condition

86

6.2. WAITING IN SPATIOTEMPORAL FIELDS ILLUSTRATIVE EXAMPLE AND
DISCUSSION

0 0.02 0.04 0.06 0.08 0.1

Field Min

0

5

10

15

20

25

%

C
o

s
t

Min Field Value

(a)

0.05 0.1 0.15 0.2 0.25

Avg Field

0

5

10

15

20

25

%

C
o
s
t

Average Field Value

(b)

-10
10

-10
5

Min Gradient

0

5

10

15

20

25

%

C
o
s
t

Min Field Gradient

(c)

10
5

10
10

Max Gradient

0

5

10

15

20

25

%

C
o
s
t

Max Field Gradient

(d)

Figure 6.12: Difference in costs of waiting-allowed and no-wait optimal paths, for different field character-
istics. When the minimum field value is low, optimal paths more frequently include waiting. The greatest
differences between paths with and without waiting cluster near a median value suggesting that large and
small temporal gradients of the field favor movement over waiting.

87

6.2. WAITING IN SPATIOTEMPORAL FIELDS ILLUSTRATIVE EXAMPLE AND
DISCUSSION

0 20 40 60 80 100

Time (s)

0

5

10

15

20

25
%

C

o
s
t
w

/
c
h
e
c
k

Computation Time - Waiting with Local Check

(a)

0 20 40 60 80 100

Time (s)

0

500

1000

1500

2000

(b)

Figure 6.13: Computational efficiency due to local no-wait condition. When the local no-wait condition
(3.9) is used to prune search trees the calculation time for the majority of paths is significantly reduced
while still finding optimal paths that include waiting.

0 0.02 0.04 0.06 0.08 0.1

W

0

5

10

15

20

25

%

C
o
s
t

Cost diff vs. Wait weight

(a)

0 0.2 0.4 0.6 0.8 1

M

0

5

10

15

20

25

%

C
o
s
t

Cost diff vs. Move Weight

(b)

Figure 6.14: Difference in costs of waiting-allowed and no-wait optimal paths, for different values of con-
stants in edge transition cost. For lower values of the constants αw and αm, optimal paths more frequently
involve waiting.

check included, only 13 of these 156 waiting paths were found by the algorithm. However, these

included paths with the greatest reduction in cost: specifically, the reduction of cost of the waiting

paths (compared to an optimal no-wait path) with a cost difference greater than 5%, 57% were

found by the algorithm including the local no-wait check condition. In summary, the local no-wait

condition was observed to significantly reduce computational efforts while finding optimal paths

in a majority of the simulated cases.

Other dependencies. Figure 6.14 indicates that a low value of the movement cost constant αm

in the edge transition cost (3.2), the optimal path more frequently involves waiting. Such cases

may occur when the optimal no-wait path v∗nw is shorter (i.e., has fewer vertices) but has higher

path cost J (v∗nw) compared to when that v∗w is longer than v∗nw, but has lower cost path due to

88

6.2. WAITING IN SPATIOTEMPORAL FIELDS ILLUSTRATIVE EXAMPLE AND
DISCUSSION

0 10 20 30 40

of peaks

0

5

10

15

20

25

%

C
o
s
t

Number of Peaks

Figure 6.15: Difference in costs of waiting-allowed and no-wait optimal paths, for different numbers of field
parameters. For fields with a larger number of parameters (i.e. peaks)NP, the optimal path more frequently
involves waiting.

threat exposure. For these simulations the waiting cost constant αw was restricted to the interval

(0, 0.1].

The number of parameters NP used to define the threat field also demonstrated a pattern with

respect to cost-reduced waiting paths. In Fig. 6.15, an increase in NP is associated with a greater

number of optimal paths involving waiting. An increase in the density of peaks in the field may

lead to lower spatial gradients of the field (min and max), which influences optimal waiting-allowed

paths in a manner similar to the aforesaid influence of the temporal gradient.

6.2.2 A∗ Path-Planning Algorithm using Traditional Heuristics

We simulated over 800 environments with spatial size 10x10 and temporal resolution of 40

(10x10x40) and tested each of the four algorithms. A strong positive correlation was found be-

tween the number of visited nodes and the computation time. As seen in Figures 6.16 and 6.17,

without using the new heuristic, computation time for the A* algorithm with waiting often took

89

6.2. WAITING IN SPATIOTEMPORAL FIELDS ILLUSTRATIVE EXAMPLE AND
DISCUSSION

Figure 6.16: Results of Heuristic Speed up. Heuristic drastically changed the number of visited nodes,
therefore improving the efficiency of searching.

Figure 6.17: Results of Heuristic Speed up. There was a strong reduction in the computation time for A*
with waiting.

90

6.2. WAITING IN SPATIOTEMPORAL FIELDS ILLUSTRATIVE EXAMPLE AND
DISCUSSION

multiple minutes, exploring hundreds of thousands of nodes. In extreme cases, computation time

was almost an hour for a single path-planning problem. Meanwhile, when the heuristic was added

to the A* algorithm with waiting, the vast majority of computation times fell to a fraction of a

second with extreme cases taking little over a second to compute.

Meanwhile, the A* algorithm without waiting achieved computation times ranging from tenths

of a second to just over a second even without the heuristic, as the number of nodes to be explored

numbered only in the hundreds rather than the hundreds of thousands. Even so, the algorithm

displayed significant improvement when the heuristic was added. The number of nodes explored

was reduced drastically, such that even outlying cases explored just over a hundred nodes. This

reduction in explored nodes resulted in a corresponding reduction in computation time, roughly

halving the computation time of the algorithm on average.

In order to understand the impact of these encouraging results, we scaled up the environment

size and performed the same set of simulations. The results of a 30x30x80 environment set are

presented in the histogram of Figure 6.18. The trend of strong reductions in computation burden

are maintained, and we see a reduction of nearly two orders of magnitude in the waiting search

case. In Figure 6.19, the mean value of nodes generated for each environment and search case

highlight the relative reductions for waiting and non-waiting search. Although there is strong

reduction in the space searched for waiting, the nodes generated are still an order of magnitude

above the non-waiting algorithm case.

91

6.2. WAITING IN SPATIOTEMPORAL FIELDS ILLUSTRATIVE EXAMPLE AND
DISCUSSION

Figure 6.18: Expanding the environment from 10x10x40 (4000 space-time locations) to 30x30x80 (72000
possible space-time locations) maintains strong computation reductions for the search with heuristic. The
number of nodes generated with the heuristic is orders of magnitude smaller.

Figure 6.19: The scaling of computational reduction was explored with three increasing environment sizes
which give increasing number of possible space-time locations: 4000, 20000, and 72000. In this graph,
we compare the mean number of nodes generated for each environment size. Computation reduction is
strongest when applying the heuristic to the Wait version of A*. However, the heuristic still does not reduce
the search complexity of waiting to the level of a No-Wait search.

92

6.3. MULTIRESOLUTION WAITING VS. NON-WAITING SOLUTION

The prior full resolution examples also serve as a benchmark for the multiresolution with

waiting examples.

6.3 Multiresolution Waiting vs. Non-waiting Solution

An investigation with the multiresolution representation was initially performed using a threat

field with three parameters (i.e., NP = 3) as shown in Fig. 6.20, corresponding to three “peaks”

of the threat field. The center peak decreases in magnitude over time, therefore the optimal path

should wait as long as possible then traverse through the center of the field. This scenario was run

at four different resolutions, NR = {16, 32, 64, 128}, corresponding to D = {4, 5, 6, 7} and the

results of these simulations are summarized in Table 6.1. Recall that the parameter D indicates

the highest resolution considered in the multiresolution approximation. With D = 6 the total

computation time for finding the optimal path with the multiresolution map (i.e. solving Problem 3)

is of the same order of magnitude as that for finding the optimal path in the uniform resolution

map ((i.e. solving Problem 2)). With D = 7, computation with the multiresolution map is an order

of magnitude faster. This computational speed is achieved with suboptimality, i.e. the cost of the

solution of Problem 3 is always greater than or equal to the cost of solution of Problem 2. However,

with D = 7, the maximum such suboptimality observed across all cases was approximately 1%.

Next, we discuss this suboptimality with lower values of D.

Table 6.1: Summary of cost of and calculation times

Allow wait No wait

D Uniform Multires. Uniform Multires.

4 Path cost 3.41 3.43 3.57 3.88
Calc. time 4.66 s 256.7 s 0.79 s 92.1 s

5 Path cost 6.57 6.64 7.39 7.42
Calc. time 59.9 s 743.9 s 13.0 s 358.0 s

6 Path cost 12.91 13.04 14.72 14.72
Calc. time 2305 s 2489 s 375.8 s 1284.2 s

7 Path cost 26.04 26.37 29.62 29.76
Calc. time 104,940 s 10,600 s 21,835 s 5,978 s

93

6.3. MULTIRESOLUTION WAITING VS. NON-WAITING SOLUTION

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

Wait Cost = 0 ,Move Cost = 0.1 ,Path time = 99

Fine cost = 3.4115 ,MR cost = 3.4384

Fine Calc Time = 4.6561 s ,MR Calc Time = 256.7363 s

2

4

6

8

10

12

14

16

(a)

-8 -6 -4 -2 0 2 4 6 8

-8

-6

-4

-2

0

2

4

6

8

Wait Cost = 0 ,Move Cost = 0.1 ,Path time = 794

Fine cost = 26.0386 ,MR cost = 26.3694

Fine Calc Time = 104935.7955 s ,MR Calc Time = 10607.6189 s

2

4

6

8

10

12

14

16

(b)

Figure 6.20: Waiting-allowed path with a multiresolution map of a three peak Gaussian field. Here, the
center peak fades over time for D = 4 and 7 (a and b). The multiresolution path is in blue boxes and
the uniform resolution path in solid red. Note the tenfold reduction in calculation time for the D = 7
multiresolution case.

In addition to the three peak field, the numerical study reported in the Section 6.2.1 was re-

peated for the multiresolution cases D = {4, 5, 6}. All parameters of the threat fields remain the

same. A set of 100 simulations (in addition to the previous set of 2000 simulations) was run for

eachD = {4, 5, 6}, and each simulation included four calculations: waiting with uniform and mul-

tiresolution and non-waiting with uniform and multiresolution. The major results are summarized

in Figs. 6.21 and 6.22.

Figure 6.21 describes the cost reduction of considering a path with waiting under the mul-

tiresolution approximation of the field. A significant difference from the uniform resolution results

is the phenomenon of cases when the allowance for waiting is leads to paths with higher costs

compared to no-wait paths. An explanation of this phenomenon is as follows. Based on the current

position, the path planner expects that waiting is beneficial but ends up anticipating incorrectly due

to the partial knowledge available at that location. However, increasing the D parameter reduces

the number of such occurrences.

Fig. 6.22 shows the difference between uniform- and multiresolution cases when both path

planners allow waiting, i.e., the difference in the cost of the solution of Problem 3 to that of

Problem 2. Therefore, this result is an indication of the suboptimality incurred due to the vehicle-

94

6.3. MULTIRESOLUTION WAITING VS. NON-WAITING SOLUTION

−300 −200 −100 0 100
0

20

40

60

80
No−Wait − Wait : Multi−Res

Sub−optimality of resultant paths (%)

N
u
m

b
e
r

o
f
s
im

u
la

ti
o
n
 c

a
s
e
s

D = 4

D = 5

D = 6

Figure 6.21: Percentage cost reduction when waiting is considered using the multiresolution representation
at different resolution levels. Negative cost reductions (or sub-optimality of no-wait paths) indicate that the
algorithm anticipated a benefit from waiting but was mistaken.

centric multiresolution approximation of the field. This suboptimality increases with increasing

values of D. This observation is explained as follows. Allowance for waiting is made inside of

the high-resolution window of the multiresolution approximation. As D increases, the area of

this window is a smaller portion of the overall workspace, and therefore the multiresolution path

planner is “myopic” and suboptimal.

0 100 200 300 400
0

10

20

30
MR − Uniform : Waiting

Sub−optimality of resultant paths (%)

N
u
m

b
e
r

o
f
s
im

u
la

ti
o
n
 c

a
s
e
s

D = 4

D = 5

D = 6

Figure 6.22: Suboptimality of using the multiresolution map, with different values of the parameter D.

Finally, we observe the average computation times for the four cases of waiting-allowed vs.

no-wait paths and uniform vs. multiresolution maps, as summarized in Fig. 6.23. It is immediately

95

6.4. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
RESULTS AND DISCUSSION

Uniform Resolution Computation Times

D = 4 D = 5 D = 6
0

500

1000

1500

A
v
e
ra

g
e
 C

o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

Wait - Uniform-Res
No-Wait - Uniform-Res

(a)

Multi-Resolution Computation Times

D = 4 D = 5 D = 6
0

500

1000

1500

A
v
e

ra
g

e
 C

o
m

p
u

ta
ti
o

n
 T

im
e

 (
s
)

Wait - Multi-Res
No-Wait - Multi-Res

(b)

Figure 6.23: Comparison of computation times. The computation time was measured and averaged for each
case of waiting-allowed vs. no-wait paths, and uniform vs. multiresolution maps. Waiting-allowed and
no-wait computations with multiresolution maps require equal computational time.

clear that the multiresolution map bears computational advantages as the resolution parameter D

increases. Specifically, the average computation time between waiting and non-waiting for the

multiresolution cases is nearly equal. This result was previously alluded to when describing the

path planning algorithm in Fig. 4.2. Whenever the search algorithm explores waiting, the spatial

multiresolution decomposition does not change. Therefore, in the multiresolution path-planning

problem, the allowance of waiting does not incur significant additional computational expense.

6.4 Interactive Planning and Sensing for Time-varying Systems

Results and Discussion

We demonstrate the IPAST algorithm with an illustrative example, describe key points during

the progression of the algorithm through time, and discuss the convergence of the algorithm as a

function of the variance of the estimated path cost Var[Ĵ(v∗`)].

The numerical simulations reported in this section are all performed with a square workspace

W = [−1, 1] × [−1, 1] in nondimensional units. The threat field is constructed as in Section 5.1.

The locations x̄n of maxima of the basis functions are assigned to chosen to provide uniform

separation between them. As discussed in Section 5.1, the constants νn are chosen such that the

96

6.4. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
RESULTS AND DISCUSSION

workspace is covered by the union ∪n∈[NP]Rsup
n .

6.4.1 Illustrative Example

Figures 6.24 and 6.25 demonstrates the implementation of the algorithm on an illustrative

example. In this example, the algorithm termination criterion, ε1(v∗) is set with the constant

λ1 = 25 in (5.21). The numbers of grid points, parameters, and sensors are NG = 400, NP = 9,

and NS = 2, respectively. The IPAST algorithm attempts to minimize the estimated path cost. To

study the algorithm’s typical behavior, Fig. 6.24 displays the evolution of the variance of the path

costs,Var[Ĵ(v∗`)] (top) and the path costs, J (v∗`), at each planning and reconfiguration iteration `.

To see the performance and convergence characteristics of IPAST, Fig. 6.24 shows also the true

cost of the optimal path (both when planning starts at t = 0, and when replanning occurs at the

current starting time of each iteration `), and the incurred cost, which is true cost of the path found

by the algorithm given v∗` .

Note the decreasing true optimal cost (with tstart(`)) versus the true optimal with planning be-

ginning at tstart = 0. This is an indication that the optimal path includes waiting, and the replanned

paths inadvertently benefit from the waiting required to reduce path uncertainty. As mentioned ear-

lier, we restrict the current planning problem to non-waiting solutions and reserve the complication

of waiting for future work.

For selected time instants t = 1.2, 3.2, 4.45, 10.85, 12.80 and 22.05, Fig. 6.25 shows the threat

estimate ĉ by a colormap, the candidate path v∗` of minimum estimated cost by gray circles, the

final path v∗¯̀ by white circles, and the sensor placement s` by red rings. During execution of the

final path, as in Fig. 6.25(f), the current position of the vehicle is shown as a small red circle. In

Fig. 6.25, the gray regions are of significant support of bases with non-identified parameters, i.e.,

those φn where no sensor has been placed withinRest
n . Because the IPAS algorithm finds optimistic

threat estimates, as discussed in 5.3, these gray regions indicate zero contribution from the basis

functions to the estimated threat. Therefore, in Fig. 6.25(a) for example, the path v∗1 traverses

through the gray regions.

The IPAST algorithm begins at time tk = 0 with NS initial sensor placements. The resulting

97

6.4. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
RESULTS AND DISCUSSION

Figure 6.24: Path Cost and Variance of Path Cost behavior of IPAST algorithm.

estimated field from the initial measurements is shown in Fig. 6.25(a) as well as the initial path

v∗1 given the current estimated field. In this example, the measurement collection time ∆tc is 0.2

seconds and the planning duration is ∆tp = 1 second, therefore a planning phase is triggered at

t = 0.2 and the plan is ready at t = 1.2. At this stage, a significant portion of the path lies in

unknown regions and the path cost variance Var[Ĵ(v∗1)] will likely be higher than the stopping

criterion ε1(v∗) triggering a sensor reconfiguration. The time required for sensor reconfiguration

is set to ∆tr = 2, therefore at t = 3.2 seconds, in Fig. 6.25(b), the next set of sensors and the up-

dated field estimate are shown. The planning and reconfiguring phases continue in this fashion in

Figs. 6.25(c)–6.25(e). Note that in Fig. 6.25(d) a true optimal path is found, however the stopping

criterion has not been met. In this case, the previously measured regions have accumulated addi-

tional variance through the error covariance update step, in particular through the process noise.

Consequently, previously sensed regions will be targeted again by the sensor reconfiguration pro-

98

6.4. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
RESULTS AND DISCUSSION

cedure as in Fig. 6.25(e). Finally, at t = 17.2, seconds a path meets the path cost variance threshold

ε1(v∗`), is accepted as the final plan, and the vehicle executes the path as in Fig. 6.25(f).

6.4.2 Path Cost Variance Convergence Behavior

As a demonstration of the algorithm termination criterion and convergence properties and

Proposition 2 discussed in Section 2.5, we investigate the state of the path cost variance Var[Ĵ(v∗`)]

and stopping criterion ε1(v∗`) at every time instant tk during the IPAST operation. Although the

IPAST algorithm only checks the stopping condition after obtaining a new path, we can observe

the full behavior of Var[Ĵ(v∗`)] for every loop through the Kalman filter. In Fig. 6.26 the path cost

variance and stop threshold from the previous example are shown. For the first 10 seconds the path

cost variance stays relatively large compared to the threshold value. During this time the candidate

optimal path is typically moving from one unknown region to another, and significant variance

remains in the parameter estimates and resulting path costs. After approximately t = 10, the

regions in which the path lies have been measured and reaching the threshold ε1(v∗`) is contingent

upon how quickly the measurements can counter the growth of the variance, as in approximately

t = 10 . . . 17. This is the scenario we refer to in Proposition 2. Note that the threshold is evaluated

based on the current path v∗` and may change depending on the route the path takes through the

basis functions.

6.4.3 Convergence Behavior of the Final Path

When defining the convergence condition in Proposition 2 we specifically state that the be-

havior is based on v∗¯̀. This is for two reasons: (1) because our ultimate interest is in discovering

and reducing the variance of the final accepted path, and (2) considering a fixed path makes the re-

lationship between the Var[Ĵ(v∗`)] during reconfiguration, measurement, and planning more clear.

Specifically, the circles in Fig. 6.26 denote the transition from Var[Ĵ(v∗`−1)] to Var[Ĵ(v∗`)]. During

this transition, a path v∗` may pass through a different region with arbitrarily higher variance. In

fact, because unmeasured regions are assumed to have parameter value of zero until measured,

(θ̂0 = 0), paths will tend to pass through unknown regions in the initial iterations of the algorithm.

99

6.4. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
RESULTS AND DISCUSSION

(a) First Plan. (b) Reconfiguration complete.

(c) Second Plan. (d) True optimal found.

(e) Additional sensing. (f) Executing final plan.

Figure 6.25: Visualization of the iterative and interactive planning and sensing for Time-varying fields
(IPAST) process for NP = 9 and NS = 2.

100

6.4. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
RESULTS AND DISCUSSION

Figure 6.26: IPAST Path cost variance and stop threshold at every time instant.

101

6.4. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
RESULTS AND DISCUSSION

Figure 6.27: IPAST Path cost variance and stop threshold at every time instant for the final path as well as
the steady state covariance P∞.

By focusing on the behavior of the final path v∗¯̀ we can see a more clear and consistent picture of

the convergence behavior. In Fig. 6.27 the Var[Ĵ(v∗¯̀)] is plotted alongside the Var[Ĵ(v∗`)]. From

Fig. 6.27 it is more clear that the final path variance Var[Ĵ(v∗¯̀)] is either targeted by sensors or

converging on Var[Ĵ(v∗¯̀)|P∞]. When the IPAST algorithm settles on v∗¯̀, the past cost variances

Var[Ĵ(v∗¯̀)] and Var[Ĵ(v∗`)] will overlap and, if Proposition 2 holds, will converge.

6.4.4 High Parameter - Long Horizon Example

Finally, we illustrate the points made in Remarks 4 and 5 with an example with NP = 100,

reconfiguration duration ∆tr = 10, and planning duration ∆tp = 3. This is sufficiently long that

the error covariance of the Kalman filter achieves its steady state covariance P∞ within 0.1%.

In this extreme scenario, the relevant parameters are: NP = 10, tfinal = 100, α = 10−3, Q ∼
(0, 1), R ∼ (0, (0.1)2),∆tr = 10,∆tp = 3,∆tm = 0.1,∆tc = 0.2,∆tkf = 0.05 and starting

102

6.4. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
RESULTS AND DISCUSSION

Figure 6.28: There are insufficient number of sensors to even reach ε1(v∗)`.

with NS = 10. Given these parameters, the steady state covariance P∞ is achieved rapidly and is

fully achieved during a reconfiguration phase. In Fig. 6.28, Var[Ĵ(v∗`)] achieves Var[Ĵ(v∗)|P∞]

during every reconfiguration phase. Furthermore, the small number of sensors is not sufficient to

reduce Var[Ĵ(v∗`)] below ε1(v∗`) at any point. In Fig. 6.29, the number of sensors is increased to

25, however, the planning duration is too long and when a new path v∗` is available for verification,

Var[Ĵ(v∗`)] has already risen above the threshold. Providing significantly more sensors will not

alleviate this problem. In Fig. 6.30, the planning duration is reduced to ∆tp = 0.15, perhaps using

a coarser map, or less sophisticated technique, and the algorithm is able to achieve convergence.

6.4.5 Waiting in IPAST Framework

In Section 6.4.1 it was noted that each subsequent path of iterations ` = 1, 2, ... had a lower

cost than the original optimal path at tstart = 0. This was an indication that waiting was beneficial

in this environment. In this section we invoke the waiting based path-planning algorithm from

103

6.4. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
RESULTS AND DISCUSSION

Figure 6.29: There are sufficient number of sensors, but the planning duration is too long before the variance
threshold can be evaluated.

104

6.4. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
RESULTS AND DISCUSSION

Figure 6.30: IPAST Path cost variance and stop threshold at every time instant for the final path as well as
the steady state covariance P∞.

105

6.4. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
RESULTS AND DISCUSSION

Chapter 3 on an additional example to compare the non-waiting vs. waiting performance under the

IPAST framework.

First, a minor modification is made to the threat field construction. Previously the threat field

diffusivity α is constant and homogeneous over the entire field, in other words in the equation

Θ̇(t) = αAΘ(t), the diffusivity α is simply a constant. However, we let α be a diagonal matrix

Λ with distinct diffusivity coefficients α1, α2, . . . , αNP
, then each basis function coefficient θ can

have a distinct diffusivity value. This allows a non-uniform rate of decay for different regions of

the environment. Physically, this could correspond to a region with a stronger heat “sink” due to

either different materials or some active process drawing energy out of the field. This allows for

some regions to decay faster in time than others.

Based on the revised threat field construction,

Θ̇(t) = Λ
ΦT

|Φ|2∇
2ΦΘ(t) (6.1)

where Λ = diag(α1, α2, . . . , αNP
), we can construct an example field as in Fig. 6.31. This field

contains two “barriers” in which two “doors” open up after some amount of time. This diffusivity

matrix Λ is defined such that a basis on the bottom left and basis on top right decay more quickly

than the rest of the basis, allowing a low cost path to open up if the vehicle waits for enough time.

In Fig. 6.31, the solution for the true field (perfect knowledge) using a waiting algorithm is

presented. The optimal path avoids exposure to the threats by first moving to a position equally

far from the first two basis, as in Fig. 6.31(a). The vehicle waits at this position until t = 9 when

the first basis along the path decays significantly in Fig. 6.31(b). It waits until t = 17.75 to move

directly below the almost completely decayed threat in Fig. 6.31(c) and waits until the 2nd “door”

threat in the upper right more fully decays. Then at t = 21.5 the vehicle moves all the way to

the goal to arrive at t = 29.75, just before the mission time window closes. The non-waiting path

immediately proceeds to the goal by traversing between the threats as best as possible, but still

incurring additional cost over the waiting path.

In Fig. 6.32, the resulting accepted IPAST path is shown. As expected from the IPAST frame-

work, it is not necessary to uncover the full environment to find a nearly optimal path. The the

106

6.4. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
RESULTS AND DISCUSSION

(a) Wait first position. (b) Wait second position.

(c) Waiting third position. (d) Start moving to goal.

Figure 6.31: Visualization of true optimal with waiting for non-uniform diffusivity threat field withNP = 36
and NS = 4.

107

6.4. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
RESULTS AND DISCUSSION

(a) Final path accepted. (b) First step after waiting.

Figure 6.32: Visualization of IPAST result with waiting for non-uniform diffusivity threat field withNP = 36
and NS = 4.

accepted path v∗¯̀ is found and begins at t = 11.75. However, this plan includes waiting, and the

first movement begins at t = 20.35 and the vehicle proceeds to the goal, arriving at t = 29.6,

a bit before the mission time window closes. This demonstrates that the IPAST framework can

additionally discover near optimal paths, even paths that include waiting as an optimal action.

Figure 6.33 shows the iteration history of the non-uniform diffusivity example for the variance

of the estimated path cost Var[Ĵ(v∗`)] and the estimated path cost Ĵ . While Figure 6.34 shows the

history for the non-waiting algorithm. Two of the major differences to note are the history of

the True optimal paths (tstart = 0 and tstart(`)), and the total iterations. In the waiting case,

Fig. 6.33, the true optimal path cost at t = 0 and at later start times remains the same. Due to

the consideration of waiting, the algorithm is always considering the best path, which includes

waiting, at every new iteration. In contrast, in Fig. 6.34, the non-waiting algorithm is naive to

waiting benefits, and the true optimal path cost gets better over time because the path is forced to

start later and later by virtue of the iteration process. As to the second point, the waiting version

terminates at ` = 9 vs. the non-waiting version which requires ` = 11 iterations. Although this is

an isolated example a larger parametric study would be needed to confirm this trend, the intuition

is that waiting algorithm already considers what the best path is for any starting time and therefore

spends less time searching to verify other paths. Whereas, the optimal path for the non-waiting

algorithm changes over time, and IPAST may spend time verifying a path which will be outdated

108

6.4. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
RESULTS AND DISCUSSION

Figure 6.33: Variance of estimated path cost and path cost at each iteration of the IPAST process using the
waiting algorithm for the non-uniform diffusivity field of NP = 36 with NS = 4.

in the next iteration.

Taking the final path cost and summarizing in Table 6.2 shows a few interesting points. First,

the waiting based IPAST outperforms the non-waiting IPAST. This was desired due to the previous

literature and results from Chapters 3 and 4, but perhaps not expected. However, it does follow

from the intuition that if the planner considers all possible start times during each iteration it should

converge to a better path than the non-waiting based IPAST. Note that the margin is not very large,

this is due to the number of iterations of IPAST that were required to verify the path. If the

variance threshold had been more forgiving, IPAST would have terminated early with a worse path

cost. Second, the non-waiting IPAST performs better than the non-waiting path planner with full

109

6.4. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
RESULTS AND DISCUSSION

Figure 6.34: Variance of estimated path cost and path cost at each iteration of the IPAST process using the
non-waiting algorithm for the non-uniform diffusivity field of NP = 36 with NS = 4.

110

6.4. INTERACTIVE PLANNING AND SENSING FOR TIME-VARYING SYSTEMS
RESULTS AND DISCUSSION

Table 6.2: The waiting IPAST achieves lower cost over the non-waiting IPAST. Additionally, IPAST achieves
lower cost over the true non-waiting path in either waiting or non-waiting versions.

Waiting Non-waiting
True 40.27 45.3
IPAST 40.52 40.8

information (True, Non-waiting cell). This relates to the first point, that the non-waiting version of

IPAST benefits from the fact that it must wait several iterations to converge on path with acceptable

path cost variance.

The conclusion returns back to the original problem discussed in Chapters 3 and 4, the tradeoff

between choosing the optimal but computation heavy waiting planner or the sub-optimal but fast

non-waiting planner.

Remark 6 (Environments with stable dynamics). Waiting tends to be beneficial in environments

with stable dynamics, such as environments which decay over time. If, in fact, the environment

has some unstable dynamics, in which things get worse over time, the forced waiting that occurs

in IPAST may lead to a higher path cost. However, the behavior of the environment is unknown a

priori, as well as the corresponding optimal path, until measurements are made. Therefore, IPAST

may be the best option in either case. An avenue of future work is to evaluate the potential that the

environment will get worst and the vehicle should begin moving toward the goal on a sub-optimal

path with the intention that additional measurements from the sensor network will better inform

the vehicle as the environment is updated. It may be necessary to immediately vacate the start

position, but then wait in some other region for the most optimal path.

111

Chapter 7

Conclusions and Future Works

In this thesis, we formulated and discussed time-varying path-planning algorithms under two

different sensor constraints, limitations on measurement resolution and uncertainty. With regard

to sensor measurement resolution, we presented a multiresolution time-varying path-planning al-

gorithm which explicitly considers waiting. For the topic of measurement uncertainty, captured

by sensor noise, we developed a iterative path-planning algorithm valid for static and time-varying

environments, coined as Interactive Planning and Sensing (IPAS) and Interactive Planning and

Sensing for Time-varying fields (IPAST) respectively.

We addressed the noisy sensor measurements problem using a sensor network to both con-

verge to the optimal path in an unknown environment and provide a guarantee on the optimality of

that path. Begining with a static environment, we developed the IPAS framework which iteratively

identifies regions relevant to the path-planning problem, updates an environment map, and uses

the updated path to identify the next relevant region for measurement. We define this process as

task-driven sensor placement which is implemented in the sensor reconfiguration algorithms. In

our task-driven approach, sensor reconfiguration prioritizes regions which have direct influence on

the current path and high uncertainty as characterized by their estimated threat coefficient variance.

We compare task-driven sensor placement with information-driven sensor placement approaches

and find that the IPAS task-driven framework optimizes path planning performance while minimiz-

ing the area of the map needed to measure. A valuable finding with regard to resource allocation

was that the mission planner can trade off sensor resources for path convergence time with an ex-

ponentially decaying relationship, i.e. for a few more sensors, the path can converge exponentially

faster.

For the sensor with resolution limits, we expressed a vehicle-centric multiresolution environ-

ment in which waiting for finite intervals of time may provide the minimum cost exposure plan

112

7.1. GENERALIZING THE ENVIRONMENT

to a time-varying threat field. First, it was demonstrated that waiting can provide meaningful path

cost reductions, up to 25% in our studies, in the uniform environment representation. The path

optimality comes at the cost of increased computational expense, and a pruning method as well

as a study of path search heuristics demonstrated reduction in computation time while preserving

optimal paths. Next, the multiresolution environment representation was applied to the waiting

path-planning algorithm and we found that the vehicle-centric multiresolution approximation of

the threat still allowed the discovery of beneficial waiting paths. Importantly, we observed that

including waiting in to the multiresolution planner has a negligible computational expense.

Finally, we extend the IPAS results to the time-varying environment problem, and refer to this

solution as IPAST. This is accomplished by applying a Kalman filter to the time-varying threat

coefficients. The iterative nature of the IPAS algorithm remains in IPAST as well as the guarantees

on convergence and optimality, with some caveats. There must be sufficient time in the mission

window to allow for enough iterations to converge on a confident path. A mission planner can

influence convergence in a number of ways, the most relevant including allowing higher risk (vari-

ance) in the accepted path, or allocating more sensor resources to speed up the convergence of

the path, similar to the IPAS results. As a final connecting link, we briefly explore the behavior

of IPAST with respect to waiting. It was seen that a waiting path-planning algorithm within the

IPAST framework yields a lower cost path while maintaining the convergence properties of IPAST.

This final result ties together the concepts of Chapters 2, 3, and 5.

After covering the IPAST work, the time is appropriate to look at Interactive Frameworks for

Unified Time-varying Replanning or IFUTR work.

7.1 Generalizing the Environment

A limitation of the current IPAS frameworks is the form of the environment model. We assume

that the threat field is composed of evenly distributed basis functions which collectively cover

the entire workspace, are approximately disjoint, and their location (x̄) and shape (σ) are known.

These assumptions allow for very clear identification of relevant basis functions and the use of

efficient linear regression making the problem very tractable. Furthermore, as the density of the

113

7.1. GENERALIZING THE ENVIRONMENT

basis increases over the workspace the model of the environment has the universal approximation

property.

However, a more general version would allow for significant overlap of basis functions. The

disjoint basis environment ensures that estimates of parameters made from measurements taken

within that basis are independent from estimates of other parameters. This also avoids the under-

determined estimation case where a single measurement is used to try to obtain estimate of two

coefficients of basis that are adjacent and overlapping the sensor. This probably can be addressed

through standard regularization techniques that minimize the norm of the estimates in some way

such as Ridge regression and LASSO. However, the IPAS algorithm relies on characterizing the

uncertainty of the path cost by utilizing the variance of the coefficients. When using regularization

techniques, there are various methods to calculate the parameter estimate variance, but no standard

method and the variance obtained may not reflect the true variance of the parameter.

Two issues that leads into the solution of the next subsection is the accuracy of modeling any

arbitrary function. If the location and shape of the basis functions are specified, then any function

can be approximated with arbitrary precision using an increasingly higher density of basis func-

tions approaching infinity. If there is an upper limit on the number of basis functions, one could

also allow the location x̄ and shape σ to be free to estimate, but this can cause the estimation proce-

dure to be analytically intractable and possibly computationally expensive (see future work section

on nonlinear extension). However, both of these issues are addressed by Gaussian processes.

7.1.1 Gaussian Processes

In some sense Gaussian processes are the limiting case when there are an infinite number

of basis functions and parameters to fit. One way to consider a Gaussian process is as defining

a distribution over functions where m(x) is the mean function and k(x,x′), is the covariance

function, as in

f(x) ∼ N (m(x), k(x′,x′)). (7.1)

114

7.1. GENERALIZING THE ENVIRONMENT

With this representation, one can take get an estimate at some location xi as well as the vari-

ance of the estimate at that location, k(xi,xi). See (Williams and Rasmussen, 2006) for detailed

introduction and theory on Gaussian processes for regression. An example of the resulting mean

and variance functions for a Gaussian process regression are shown in Fig. 7.1. The true function

being measured and estimated is y = sin(3x) and it can be clearly seen that around the measure-

ment locations the Gaussian process does a good job representing the function and giving a level

of confidence as indicated by the shaded regions which is two standard deviations above and below

the mean function. Note that in regions far from the measurements the function assumes a zero

mean value and has high variance. This appropriate characterizes the knowledge available about

those regions. But more importantly, for an extension to the IPAS work, this is exactly the type

of assumption we make about unknown regions in the map, they are zero valued (optimistic) with

high variance.

A straightforward application of Gaussian processes to IPAS can be outlined:

1. Obtain environment function estimate using Gaussian process regression given the current

measurements.

2. Discretize the environment function and plan a path v∗` = v1, v2, ...vG.

3. Evaluate the variance of the estimated path cost Var[Ĵ(v∗`)] where V ar[ĉ(xk)] = k(xk, xk).

and compare with stop threshold ε1(v∗`).

4. If path not converged, place NS at path vertices v1, v2, ... with the highest variance as evalu-

ated at xv1 , xv2 , ...

5. Get new measurements to update environment Gaussian process. Return to Step 1.

The disadvantage of this approach is that the Gaussian processes can scale more poorly with

data than the previous linear regression approach. However, if the environment required an increas-

ingly large number of basis functions to be accurately represented, the Gaussian process regression

may be preferable. However, Gaussian processes have already been applied to the multi-sensor

environment modeling problem in (Erickson et al., 2015) so the advantages may outweigh any

drawbacks.

115

7.1. GENERALIZING THE ENVIRONMENT

Figure 7.1: The resulting mean function and two standard deviations of variance. Measurement points in-
dicated as blue crosses. Generated using GPML Matlab Toolbox, available at http://www.gaussianprocess.
org/gpml/code/matlab/doc/

7.1.2 Transport Phenomenon or Convection-Diffusion Process

For the time-varying extension of IPAS, we considered a field governed by the heat diffusion

equation
∂c

∂t
= α

(
∂2c

∂x2
+
∂2c

∂y2

)
(7.2)

with the series solution as a sum of Gaussian functions,

c(x, t) =

NP∑

n=1

θn(t)φn(x) = Φ(x)Θ(t). (7.3)

We related the rate of change in the field approximation to the rate of change of the parameter:

∂c

∂t
= Φ(x, y)Θ̇(t). (7.4)

along with the two spatial derivatives, to obtain a representation of the heat diffusion process

116

http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://www.gaussianprocess.org/gpml/code/matlab/doc/

7.2. SENSOR RECONFIGURATION COST

as

ΦΘ̇(t) = α∇2ΦΘ(t). (7.5)

The ∇2 is the Laplace operator which arises to describe the spatial derivatives of the Gaussian

bases Φ.

However, many interesting phenomenon include a convection or transport component, partic-

ular when some flow field is involved. In this case, we process of interest would have the form

∂c

∂t
= α

(
∂2c

∂x2
+
∂2c

∂y2

)
−
(
vx
∂c

∂x
+ vy

∂c

∂y

)
(7.6)

where v = (vx, vy) are the velocity components of a flow field.

With the same basis approximation as in the diffusion equation, we would arrive at

ΦΘ̇(t) =
(
α∇2Φ− v · ∇Φ

)
Θ(t) (7.7)

as the representation of the transport process using the basis approximation. Some immediate

concerns are the stability of the transition matrix (α∇2Φ− v · ∇Φ) of Θ(t), and modifications to

the sensing strategy.

7.2 Sensor Reconfiguration Cost

In this work, we acknowledge but do not currently address the inclusion of sensor reconfig-

uration costs. This cost refers to the cost of physically relocating a team of mobile sensors to

execute the iterative sensor placement provided by the proposed algorithm. Therefore, this cost

captures the time and/or fuel spent in physically moving the sensors, while satisfying the kine-

matic and dynamic constraints of the mobile sensors. To this end, in the future, results from the

field of multi-vehicle path planning may be leveraged, cf. (Bullo et al., 2009) and (Egerstedt and

Hu, 2001).

In the illustrative example of Section 6.1.1, it is clear that the IPAS algorithm does not place

117

7.3. MULTIRESOLUTION IMPLEMENTATION OF IPAS AND IPAST

all NS sensors in each iteration. Therefore, the problem arises of identifying which sensors should

be physically moved to which new location. This issue can be formulated as a task assignment

problem, which is also addressed in the literature, cf. (Choi et al., 2009).

7.3 Multiresolution Implementation of IPAS and IPAST

In chapter 1, we expressed that a major theme of this work was formulating the path plan-

ning problem given some level of information where the level was associated to two fundamental

properties of sensor limitations: resolution and noise. The resolution limitation was explored in

chapter 4 in which a multiresolution representation of the environment was used, but the value

of the threat in each cell was known and noiseless. Then, the noise limitation was explored in

chapters 2 and 5 resulting in a full resolution environment, but with uncertainty in the threat cost.

Another formulation to explore is the combination of both sensor limitations of resolution and

noise.

One way to approach this would be to take the multiresolution representation and each suc-

cessively larger cell size would have proportionally higher noise variances. Another variant of

multiresolution implemented with the IPAS framework would be to have a vehicle-centric mul-

tiresolution representation of the map where every mobile sensor in the sensor network contributes

to the high resolution regions of the map. Any region in which a sensor takes a multiresolution

measurement maintains that high resolution information which decays into lower resolution further

away from the measurement location. Visually, this would look like ‘pockets’ of high resolution

regions dotting the map. The same IPAS principle would hold where high resolution (low uncer-

tainty) regions of the map are only produced where the optimal path should lie.

7.4 Nonlinear Estimation for IPAS

Throughout this work, the state dynamics and measurement models have all been linear. The

threat field which was central to the IPAS algorithm with static threats and the IPAST extension to

time-varying fields was a linear combination of Gaussian basis functions. Furthermore, we were

118

7.4. NONLINEAR ESTIMATION FOR IPAS

interested in estimating the coefficient θ which was linear in the basis functions, c(x) = θφ(x).

However, in an effort to generalize the applicability of IPAS, we may be interested in estimating

the basis shape and locations parameters, σi, x̄. In the case of IPAS and the static field, the least

squares approach can be replaced with non-linear least squares approach in the usual way. Define

the error term,

εk = zk − c(xk) = zk − θiφi = zk − θi exp(−(xk − x̄i)

2σ2
i

) (7.8)

for the kth measurement of the ith basis function φi.

Then take the sum of squares approach and define function

f(θi, σi, x̄i) =
N∑

k=1

ε2
k =

N∑

k=1

[
zk − θi exp(−(xk − x̄i)

2σ2
i

)

]2

(7.9)

for N measurements which can be minimized using various solvers. Alternatively, the partial of

derivatives of f(θi, σi, x̄i) can be found,

∂f

∂θi
= 2

N∑

k=1

εk
∂εk
∂θi

∂f

∂σi
= 2

N∑

k=1

εk
∂εk
∂σi

∂f

∂x̄i
= 2

N∑

k=1

εk
∂εk
∂x̄i

and a Gauss-Newton method can be used.

The nonlinear least squares problem could be solved repeatedly in as a batch each time a

new measurement is received, however a recursive version would be advantageous. One recursive

implementation can be found in (Alessandri et al., 2007). Of course, this assumes knowledge

of the number of basis functions present in the field. And the question of which measurement

below to which basis function if the location and width of the basis are unknown. At this point, it

may be more appropriate to consider this type of threat field as a target identification and tracking

problem, of which there is much literature (Bar-Shalom and Li, 1995; Martinez and Bullo, 2006;

119

7.5. DECENTRALIZED SENSOR NETWORK

Olfati-Saber and Sandell, 2008; Reid et al., 1979). Alternatively, it may be better to approach it as

a Gaussian Process problem as mentioned previously.

7.4.1 Uncertainty Propagation

For the case of the time-varying system in which we employ the IPAST algorithm, the natural

step for a nonlinear system would be to apply the extended Kalman filter (EKF). As has been the

experience, the linearizion of the dynamics and/or measurement models may work well in practice.

However, the IPAST method takes advantage of the fact that estimates from the Kalman filter

remain Gaussian the the propagation and update stages. This makes calculation and interpretation

of the variance of the estimated path cost Var[Ĵ(v∗)] fairly straightforward. In contrast, the EKF is

not an optimal filter and the error covariance matrices obtained don’t represent the true covariance

of the estimates. The formulation and of Var[Ĵ(v∗)] would need to be evaluated. The general

field of Uncertainty Quantification may hold many salient discussions and solutions to the issue

of appropriately characterizing the uncertainty of estimates, see (Adurthi, 2016) which focuses on

nonlinear filtering and uncertainty quantification within the realm of dynamic sensing.

7.5 Decentralized Sensor Network

Although never explicitly stated, the sensors considered in the IPAS and IPAST problems are

considered part of a sensor network in which local information, the measurements of each sensor, is

available globally. The estimates of the threat coefficients are determined in a centralized manner.

This could be a result of all sensors having a communication link with every other sensor, or that all

sensors transmit measurements to a centralized aggregator or base station. In the IPAS framework,

the natural architecture is that the planning vehicle, referred to as the actor, is the base station.

This is the most straightforward approach because the actor both needs the sensor information to

update the map, and must command the sensor network where to move next.

However, much work has been done on decentralized estimation using sensor networks using

the notion of estimate consensus (Olfati-Saber and Murray, 2004) including under the formula-

120

7.6. LIMITED SENSOR TRAJECTORY CONTROL - PARACHUTE DROP

tion of the Kalman filter (Olfati-Saber, 2005, 2009; Olfati-Saber and Shamma, 2005). There is

even work to estimate an environment model of the same summed basis form as presented in this

thesis (Lynch et al., 2008).

If the size of the sensor network becomes fairly large, relying on a centralized and global esti-

mation scheme may become impractical. The estimation part of the IPAS method would follow in

a straightforward manner from the previous literature, all agents including the actor would reach a

consensus on the threat estimates and the actor can update the map and plan accordingly. The actor

must still command the rest of the sensor network where to measure next. These commands could

be relayed across the network with each movement command containing and ID for the appropri-

ate sensor agent. Alternatively, each agent in the system could perform it’s update its own map

and path plan, and identify the next location accordingly. Since each agent achieves a consensus

on the map, each agent will have consensus on the planned path and identification of the next basis

to measure. However, if the sensing agents are expected to be small with minimal computation

resources, the map update and planning may be too much burden for the light platform.

7.6 Limited Sensor Trajectory Control - Parachute Drop

Consider the problem of accurately dropping a package by parafoil or parachute. In this

scenario there is a target location on the ground in which a valuable package dropped from an aerial

vehicle by either parafoil or parachute. In the case of a round canopy parachute, the trajectory (and

final touchdown location) are completely dependent on the dynamics of the wind environment. The

more wing-shaped parafoil may have some limited control over it’s trajectory, but is still largely

subject to the behavior of the wind environment. In this case, the initial position of the package

release point and the accuracy of the wind environment play critical roles in the trajectory and final

touchdown point of the primary package.

Now, we can frame this problem as an instance of the IPAS(T) problem. The planning portion

is defined as finding either the optimal release point that will drop package in the target zone for the

case of round canopy parachute, or the optimal point and set of commands to follow a trajectory to

the target zone for a parafoil. If the package drop team has a set of sensor package parachutes (or

121

7.6. LIMITED SENSOR TRAJECTORY CONTROL - PARACHUTE DROP

parafoils), these can be dropped and tracked to provide an estimate on wind conditions (O’Brian,

2016). Then the IPAS(T) formulation follows the usual procedure:

1. Choose initial release point and gather sensor data

2. Update estimated wind map, and choose new release point

3. Evaluate if release point would get package into target zone with sufficient confidence

4. Release payload or send out additional sensors to get data.

5. Repeat from Step 2.

Some of the challenges in this problem include:

• Using current wind map to determine release point that will achieve target zone destination.

• Characterizing the uncertainty in reaching target zone given the uncertainty in the wind map.

• Limited ability to direct where sensors gather data.

– Expected sensor location will differ from actual location due to remaining uncertainty

in wind field. Need to consider and respect that limitation when choosing release loca-

tions and measurement fusion.

• Should sensors be dropped sequentially or in batches?

The incentive to use an IPAS(T) formulation in this scenario is driven by the very task oriented

goal of this mission. There is a specific location to drop the package and the environment is

uncertain but may have a known structure. There may be seasonal patterns to the wind distribution

as well as limited wind assessment in the area such as fixed weather stations. However, to ensure a

high degree of confidence in the mission, the environment should be sampled in a manner directly

related to the task to provide a more up to date estimation of the wind distribution with higher

resolution.

122

Appendix A

Wavelet Decomposition

For each m, k ∈ Z, we define scalar functions φm,k and ψm,k by φm,k(t) :=
√

2mφ(2mt− k),

and ψm,k(t) :=
√

2mψ(2mt − k). The discrete wavelet transform of a scalar function f ∈ L2(R)

is defined by am0,k := 〈φm0,k(t), f(t)〉 , and dm,k := 〈ψm,k(t), f(t)〉 , where m0 ∈ Z. The 1D

reconstruction equation is

f(t) =
∞∑

k=−∞

am0,kφm0,k(t) +
∞∑

m=m0

∞∑

k=−∞

dm,kψm,k(t).

The scalars am0,k and dm,k are known as approximation and detail coefficients respectively. For the

2D extension of the 1D DWT, a scaling function Φm,k,`(x, y) and three wavelets Ψ1
m,k,`, . . . ,Ψ

3
m,k,`

are defined. The 2D DWT coefficients of a scalar function F ∈ L2(R2) are

am0,k,` :=
〈
Φm0,k,`(x, y), F (x, y)

〉
, (A.0.1)

dpm,k,` :=
〈
Ψp
m,k,`(x, y), F (x, y)

〉
, (A.0.2)

for p = 1, 2, 3, k, ` ∈ Z, and m > m0 ∈ Z. The 2D reconstruction equation is analogous to the

1D case.

An example of a pair of scaling function and wavelet is the Haar family (Daubechies, 1994).

For the 1-D Haar family, the functions φm,k and ψm,k are compactly supported over the interval

Im,k := [2−mk, 2−m(k + 1)], and by consequence, the functions Φm,k,` and Ψm,k,` are compactly

supported over

Sm,k,` := Im,k × Im,`. (A.0.3)

123

Appendix B

Machine Learning for Waiting Problem

The machine learning problem was motivated by the visible pattern of the histogram results

from Section 6.2.1. It was thought that if a machine learning algorithm could take a threat field or

some characteristic features of the field, it could learn to classify between waiting beneficial and

waiting non beneficial fields, as shown in Fig. B.1.

This supplemental chapter will cover the data generation procedure, the different machine

learning methods used including traditional and deep learning approaches, and the results of the

investigations.

B.1 Data Sources

For this stage of the investigation, we can generate data arbitrarily to train and test the search

and learning algorithms. Each example can be easily labeled as Go or Wait based on comparing

the path cost for Go and Wait algorithms. We consider a threat field constructed as the weighted

sum of a finite number of 2D Gaussian basis functions c(x, t) =
∑NP

n=1wn(t)φn(x, t). Each Gaus-

sian basis function φn can be specified by its location, size, and intensity level. Each of these

Figure B.1: A potential outcome is the use of a classifier to select the appropriate path-planner given a
particular instance of the Gaussian field. The classifier will be trained on occurrences of the field labeled
as Go or Wait

124

B.2. METHODS

parameters can vary in time, in other words, each Gaussian can move across the workspace as well

as grow or decay.

c(x, t) =

NP∑

n=1

wn(t)φn(x, t).

Here, the basis function φn is defined for each n = 1, . . . , NP by

φn(x, t) :=
1√
2π

exp

(−(x− µn(t))T(x− µn(t))

2|Σn(t)|2
)
,

where µn(t) = (µnx(t), µny(t)) defines the spatial mean of φn and Σn(t) = (σnx(t), σny(t))

defines the spatial spread of φn. In this work, we consider affine functions µn and Σn of the form

µn(t) = µn0 + µn1t, and Σn(t) = Σn0 + Σn1t, where µn0, µn1,Σn0,Σn1 ∈ R2 are prespecified

constants.

The finite parameterization of the threat field c using Gaussian functions is justified by the fact

that a large class of functions on R, namely, square integrable functions, can be approximated with

arbitrary precision by linear combinations of Gaussian functions (Calcaterra, 2008). In addition,

Gaussian function appear in series solutions to several partial differential equation’s such as the

diffusion equation (Crank, 1979), which enables the application of the proposed work to path- and

motion-planning with threat fields modeled by physical phenomena such as advection-diffusion of

gases or radiation in the atmosphere (Demetriou et al., 2013).

B.2 Methods

B.2.1 Field Classification using Traditional Supervised Learning

As described in Section B.1, simulated environments were generated with various, randomly

placed Gaussian threat fields throughout to collect data for supervised learning. For each envi-

ronment, the A* algorithm that considers waiting and the A* algorithm that ignores waiting were

both run. Afterwards, post-processing was conducted to extract features from each simulation,

125

B.2. METHODS

standardize the features to make them suitable as input to the classification algorithms, and label

the simulation as ‘Wait’ or ‘Go’. The environment was labeled as ‘Wait’ if the algorithm that

considered waiting produced a lower path cost than the algorithm that did not consider waiting,

otherwise it was labeled as ‘Go’.

Features included the number of threats in the environment, threat intensity features, threat

X/Y location features, threat X/Y shape features, global threat value features, and global threat

time derivative features.

As data was collected, the there was a strong imbalance in the ‘Wait’ vs. ‘Go’ cases, the

classical problem of class imbalance. Throughout the data collection process, the percentage of

simulations labeled as ‘Wait’, the minority class, composed anywhere from 1 to 15% of the dataset.

The problem of class imbalance is not a unique phenomenon, and has been studied extensively in

the medical domain for learning to produce a diagnosis, and in the industrial inspection domain for

learning to identify defective products, among others (Jazi and Liu, 2017; Shenfield and Rostami,

2017).

Oversampling, undersampling, cost-sensitive learning, and the use of probability thresholds

are some common approaches for addressing class imbalance (Jazi and Liu, 2017; Kotsiantis et al.,

2006; Shenfield and Rostami, 2017). Oversampling involves randomly sampling with replacement

from the minority class until the minority class has reached the desired size. Conversely, un-

dersampling involves randomly selecting examples from the majority class to be removed until the

majority class is reduced to the desired size. Cost-sensitive learning applies heavier penalties to the

misclassification of the minority class during the training process. Finally, probability thresholds

(PT) can be used to tune supervised classifiers that output the probability of an example belonging

to a certain class by biasing that prediction to a particular class.

Using each of these techniques, we develop a variety of supervised classifiers to produce a

performance comparison for this machine learning problem. The classifiers chosen for the perfor-

mance comparison include Support Vector Machines (SVM), k-Nearest Neighbors (KNN), Multi-

layer Perceptron Neural Network (MLP), Random Forest (RF), and ensemble methods using the

aforementioned classifiers, such as Majority Voting (MV) and Summation of Probabilities (SP)

(Breiman, 2001; Chang and Lin, 2013; Omohundro, 1989; Polikar, 2006; Rojarath et al., 2016;

126

B.2. METHODS

Rumelhart et al., 1986).

SVM with a Gaussian kernel was chosen because it is known to generally perform well with

a small feature set and an intermediate-sized training dataset. KNN was selected due to its sim-

plicity and to test the hypothesis that similar classes might have similar feature values. A neural

network (MLP) was constructed because of its known ability to learn complex, non-linear models.

Similarly, RF was implemented, as it is also known to classify non-linearly separable data better

than other classifiers such as SVM. Finally, ensemble learning techniques such as MV and SP

were employed because the combination of multiple classifiers tends to improve classification, and

these methods of classifier combination were easy to implement while also being commonly used

in current scientific literature.

To train and assess the individual classifiers, the dataset of features and labels was partitioned

into a training dataset, composed of 80% of the examples, and a testing dataset, made up of the

remaining 20% of the examples. After training the classifiers using the training dataset, each classi-

fier was tested using the data from the testing dataset. The results were analyzed using a confusion

matrix and supporting statistics. By convention, the minority class, the ‘Wait’-labeled class, cor-

responded with a positive prediction, while the ‘Go’-labeled class corresponded with a negative

prediction. Therefore, using the number of true positive (TP) and negative (TN) predictions and

false positive (FP) and negative (FN) predictions, supporting statistics were calculated to better

inform the success in relation to path-planning in time-varying environments.

Traditional metrics of machine learning, such as Accuracy and Precision, provide general

information for the comparison of algorithm performance on training and testing data. However,

they do not adequately characterize classifier performance due to the inherent class imbalance, as

a high accuracy rate can be achieved by classifying all examples as the majority class.

Accuracy (ACC) =
TP + TN

TP + TN + FP + FN

Precision (PPV) =
TP

TP + FP

127

B.2. METHODS

Instead, there are two statistics that may be of much more importance depending on the goal

of the path-planning agent. For example, if the agent is undergoing a task that is time-sensitive,

then they want to minimize the computation time required to find a path. In this case, they want

to minimize the False Positive Rate (FPR), as this statistic indicates the percentage of cases where

the computationally-expensive A* algorithm with waiting is chosen, but waiting provides no ad-

vantage in terms of path-cost.

False Positive Rate (FPR) =
FP

FP + TN

On the other hand, a path-planning agent may be carrying an important payload, meaning that

it should avoid threat exposure to the best of its ability. Then, the agent should minimize its False

Negative Rate, as this statistic indicates the percentage of cases where the A* algorithm without

waiting is selected even though it produces a suboptimal path cost.

False Negative Rate (FNR) =
FN

FN + TP

B.2.2 Field Classification using Deep Neural Networks

A major source of performance degradation is our lack of understanding about the relevant

features that differentiate a ‘Wait’ field from a ‘Go’ field. We know that we seek to travel along

minimum points in the environment. The path of travel has both spatial and temporal structure, and

the previous features do not strongly consider the spatial correlations of minimum points. If we

consider that the time-varying threat field is similar in concept to a video, we can draw inspiration

from current video classification techniques (Jha et al., 2016; Ng; Tran et al., 2015; Wu et al.,

2015).

Spatial structure can be dealt with using convolutional neural networks (CNN). This is the

current favorite when performing image classification. When training a CNN over a set of images,

the trained network tends to look for low level features in the bottom CNN layer such as horizontal

and vertical lines and simple curves. Later layers find patterns composed of the low level features

to build of shapes such as boxes or circles. The final layers are intended to match the desired

128

B.2. METHODS

training examples such as faces, animals, foods, etc...

The temporal structure is learned by recurrent neural networks (RNN). These networks are

used to learn sequences of events and are popular with text generation and prediction. But they can

also be used to predict and classify videos. RNN’s can be used to learn spatial features that change

throughout a sequence. An example of learning patterns from a video might the classification

between two people dancing and two people fighting. Recurrent neural networks often suffer from

‘forgetting’, and struggle to classify long term sequences. In this case, there is modified RNN

architecture known as the Long-Short Term Memory (LSTM) unit. This special RNN finds a

balance between short term motion and long term motion patterns.

The state of the art for video classification is to connect a two dimensional CNN to an LSTM

network as seen in Figure B.2. In this architecture, the CNN learns the spatial features and the

LSTM looks for those spatial features across a sequence. In the dancing versus fighting example,

the CNN might find features such as arms, legs and body positions. The LSTM might learn that

certain sequences of arm and/or leg placements are more likely to be dancing rather than fighting.

With this neural network structure in mind, we develop a CNN-LSTM which is intended to find

features identifying minimum cost paths through space and time.

Alternatively, rather than using an RNN on two dimensional CNN’s, we can consider the

space-time data as a volume of information. By considering the stack of frames (time being the

third dimension) as a three dimensional object, we can look for ‘shapes’ in a volume that indicate

pro-waiting environments. As in (Tran et al., 2015), we can pass this field volume into a 3D

CNN and train the network using the same labels as the CNN-LSTM approach. The idea for

this approach is that fields with beneficial waiting should contain vertical columns of low threat

intensity in the volume.

B.2.3 Overall Optimized Path-Planner

Given the results of the classification and heuristic implementation, we can consider a general

hierarchical approach to path-planning in time-varying environments. First, if the environment is

small (Small Field case), we will show that the heuristic speedup makes classification unnecessary

129

B.2. METHODS

Figure B.2: A common architecture used in video classification is the CNN-LSTM consisting of a layer of
two-dimensional convolutional neural networks (CNN) that feed spatial features into a layer of Long-Short
Term Memory (LSTM) units that identify temporal patterns. The output of the LSTM is sent through a
standard multilayer neural network for prediction.

130

B.3. RESULTS

Figure B.3: A potential outcome is the use of a classifer to select the appropriate path-planner given a
particular instance of the Guassian field. The classifier will be trained on occurrences of the field labeled
as Go or Wait.

and it is prudent to always select the A* that always considers waiting. Second, if the performance

of the heuristic does not scale as well to larger field sizes and the classification accuracy improves

in future efforts, then we consider a Large Field case. Therefore if we have a Small Field case,

always use Waiting A*. If we have a Large Field case, classify the field as ‘Wait’ or ‘Go’, then

select the appropriate A* algorithm as in Figure B.3.

B.3 Results

B.3.1 Field Classification through Supervised Learning

SVM, RF, and KNN were the three individual classifiers that performed the best. Unfortu-

nately, the results were not very useful for distinguishing between ‘Wait’ and ‘Go’ environments

from the test set. As shown in Table B.1(a), SVM exhibited underfitting, evident by its accuracy

rates of just over 50% when tested on both the training and the testing datasets. Meanwhile, RF

exhibited overfitting, as shown in Table B.1(b), achieving a precision of over 70% when tested

on the training dataset and a precision of just over 10% when tested on data not used to train the

algorithm. KNN also exhibited overfitting, but not to the degree seen in RF, as can be seen in Table

B.1(c).

In addition to traditional metrics for machine learning classifiers, there are two additional

strategies for comparing classifiers when examining path-planning problems in a time-varying

threat field. These strategies depend on the nature of the task at hand. For example, a path-planning

agent may have precious cargo and therefore want to avoid threat exposure at all costs. In this case,

131

B.3. RESULTS

Table B.1: Results of three best algorithms for Supervised Classification.

(a) SVM exhibited underfitting.

SVM-RBF Actual Class
Wait Go

Predicted
Wait

Train: 2067 Train: 11146
Test: 314 Test: 2813

Go
Train: 1031 Train: 15264
Test: 461 Test: 3790

(b) RF exhibited overfitting.

RF Actual Class
Wait Go

Predicted
Wait

Train: 813 Train: 305
Test: 20 Test: 171

Go
Train: 2285 Train: 26105
Test: 755 Test: 6432

(c) KNN exhibited overfitting, but performed slightly better than
RF on the testing dataset.

KNN Actual Class
Wait Go

Predicted
Wait

Train: 2378 Train: 3503
Test: 160 Test: 1271

Go
Train: 720 Train: 22907
Test: 615 Test: 5332

132

B.3. RESULTS

Table B.2: Results of three ensemble methods for Supervised Classification.

(a) Majority Voting with Probability Thresh-
olds.

MV w/ PT Actual Class
Wait Go

Predicted
Wait 330 2842
Go 445 3761

(b) Majority Voting without Probability
Thresholds.

MV w/o PT Actual Class
Wait Go

Predicted
Wait 102 780
Go 673 5823

(c) Summation of Probabilities with Prob-
ability Thresholds.

SP w/ PT Actual Class
Wait Go

Predicted
Wait 377 3356
Go 398 3247

a threat-averse strategy would be adopted, and the False Go Rate should be minimized to reduce

the probability of the path-planning agent selecting a path with a suboptimal threat exposure. On

the other hand, a path-planning agent may have a mission that is time-sensitive but less sensitive

to threat exposure. In this case, the agent should take a computation-averse approach, meaning

that the False Wait Rate should be minimized to reduce the probability of significantly increasing

computational cost for no improvement in path cost.

Despite the aggressive overfitting of the RF classifier, its FPR, just above 1% for the training

dataset and 2.5% for the testing dataset, indicates that the algorithm would be beneficial for A*

algorithm selection in a time-sensitive, computation-averse situation.

After combining the three best individual classifiers, SVM, RF, and KNN, using three different

ensemble techniques, the classification performance on data not used to train the algorithms im-

proved slightly but still ultimately failed to produce a robust classifier for the problem of labeling

a field as suitable for waiting or not. As can be seen in Table B.2(a), Majority Voting with Prob-

ability Thresholds performed best out of the ensemble techniques when adopting a threat-averse

133

B.4. CONCLUSIONS

policy. When compared with the individual classifiers, this technique is a slight improvement over

the individual classifier that performs the best on the training dataset, SVM, since the ensemble

technique increases the number of unseen examples that are correctly classified as a field in which

waiting is beneficial. The other two techniques for ensemble classifiers proved less effective; Ta-

ble B.2(b) shows that Majority Voting without Probability Thresholds has a high false negative

rate, and Table B.2(c) shows that Summation of Probabilities with Probability Thresholds exhibits

underfitting with high false negative and false positive rates.

B.3.2 Classification by CNN-LSTM

As with the traditional methods mentioned previously, the CNN-LSTM is unable to obtain

both good precision and good sensitivity. The classifier predicts the dominant class at all times,

giving an accuracy equal to the proportion of the majority class, roughly between 85 to 95% de-

pending on the dataset used. This trend continues with the 3D-CNN architecture.

The class imbalance problem persisted when varying the number of layers, size and number

of CNN filters, as well as increasing the hidden unit count in the final fully connected layers for

both CNN-LSTM and 3D-CNN. We varied the choice and parameters of the optimizer including

Adam, Adadelta, and SGD with varying learning rates. All networks were trained from scratch,

i.e., we are not using any pre-trained layers at this time.

B.4 Conclusions

We presented a path-planning problem in which the environment describes a time-varying en-

vironment, the threat field, inspired by natural phenomena dictated by partial differential equations.

The threat field was a summation of Gaussian basis functions in which we allowed all parameters

of the Gaussian basis to vary in time. We noted that the computational complexity between a

path-planner that considers strictly movement of the agent and path-planner that allows for wait-

ing at nodes differed by a factor of O(|ḠT 2|), as well as providing empirical evidence of this by

simulation.

134

B.4. CONCLUSIONS

In order to make the best decision for any given field we took a two pronged approach: iden-

tification of fields by machine learning, and heuristic augmentation of the search algorithm. We

explored various traditional machine learning methods including, Support Vector Machines, Ran-

dom Forests, k-Nearest Neighbors, and more. In general we had poor predictive performance,

overfitting and underfitting all models by various degrees. Noting that the path-planning problem

is inherently spatially and temporally correlated, we struggled to determine appropriate features to

the field in the same manner that the search algorithm evaluates the field (the extreme of this would

be reconstructing the path cost function as a feature itself, defeating the point of the classifier.) We

then drew inspiration from the video classification community to implement our classification with

a CNN-LSTM network.

The Convolutional Neural Network stacked with the Long-Short Term Memory units (CNN-

LSTM) seems like the next logical step since our problem shares many features with image and

video classification. However, our initial training results are poor. The classifier predicts the major-

ity class (Go Field) in all cases, still suffering from the class imbalance problem. To progress fur-

ther, we need to optimize the layers and hyper-parameters of the CNN-LSTM network to achieve

better accuracy, an effort that remains largely an art. In addition, many of the state of the art efforts

build on top of pre-trained layers that have already discovered the appropriate lower level features,

such as with the Sports-1M dataset (Ng). As a final note, we may also consider our spatiotemporal

dataset as a three-dimensional object where the time dimension is just another dimension. This

approach is similar to 3D shape recognition and uses a 3D CNN (Tran et al., 2015). Our current

results with training a 3D-CNN still fail to obtain reasonable classification accuracy. Currently, the

goal for the deep learning architectures is to first obtain overfitting through adjusting the network

layers (wider/deeper), ensuring that the weights are not being saturated, and different weight ini-

tialization approaches. After we can achieve good classification through overfitting, then we can

employ the standard techniques of Dropout and regularization to gain good generalization of the

model.

135

Appendix C

Detailed IPAST Algorithm

The IPAST algorithm discussed in Chapter 5 is a compressed version of the simulation code.

The detailed algorithm in Fig. C.1 includes the full specifications in the algorithm including three

minor “book keeping” flags: PlanAvailable, P lanUpdateNew, and IncrementedIter.

The PlanAvailable flag is only necessary to handle the first iteration and addresses when the

iteration counter ` should be updated in Line 18. During the first iteration, trd = 0 and won’t be

updated until first a plan is available, Line 8, and subsequently sensor reconfiguration has been

performed. It is necessary for trd to be initialized to 0 so that Line 21 executes properly on the first

iteration. Therefore, PlanAvailable covers the startup period where the algorithm has yet to enter

a planning or sensor reconfiguration phase.

The PlanUpdateNew flag handles the period when tk > tpd, but the algorithm has not

entered the planning phase, and therefore tpd is outdated and would incorrectly trigger Line 7. This

would occur during the measurement collection (∆tc) and sensor reconfiguration (∆tr) phases.

Informally, PlanUpdateNew is set true in Line 24 to alert the algorithm that it should now be

monitoring when tk > tpd because an updated plan is coming. The PlanUpdateNew is set to

false in Line 10 so that subsequent steps will not trigger Line 7 until a new planning phase has

begun.

The IncrementedIter flag accounts for when the algorithm is not in the reconfiguration

phase. The logic is similar to the PlanUpdateNew flag which also prevents premature exe-

cution of the planning and stop condition logic. While not in the reconfiguration phase, the

value of trd is outdated and the IncrementedIter flag is true indicated we already finished the

previous reconfiguration phase. Once a sensor reconfiguration phase is entered, trd is set and

IncremetedIter := false indicating that the algorithm is in the reconfiguration phase but has not

yet finished and incremented ` for the current phase.

136

Interactive Planning and Sensing, Time-varying

1: Set initial sensor placement s0 ⊂ {1, . . . , NG}.
2: Θ̂0 := 0, P0 := λ0I(NP), ` := 1, trd = 0
3: Set SRflag := false, P lanF lag := true.
4: Set PlanFinal := false, P lanFail := false.
5: Set PlanAvailable := false, P lanUpdateNew := false, IncrementedIter := false
6: for tk = t0 to tf do
7: if tk > tpd and PlanUpdateNew then
8: {v∗` , P lanFail} ← Dijkstra’s algorithm.
9: PlanAvailable := true

10: PlanUpdateNew := false
11: if ¬PlanFail then
12: if Var[Ĵ(v∗`)] > ε1(v∗`) then
13: SRflag := true
14: else
15: PlanFinal := true
16: else
17: return failure.
18: if PlanAvailable and tk > trd and ¬IncrementedIter then
19: Set ` := `+ 1
20: IncrementedIter := true
21: if PlanF lag and ¬PlanFail and tk > trd + ∆tc then
22: PlanF lag := false
23: tpd = tk + ∆tp
24: PlanUpdateNew := true
25: Execute Dijkstra’s algorithm.
26: if SRflag and ¬PlanFail and tk > tpd then
27: SRflag := false
28: IncrementedIter := false
29: SENSOR RECONFIGURATION

30: Predict:{Θ̂−k , P−k }
31: if tk > trd and mod (tk,∆tm) = 0 then
32: Meas. Update: {Θ̂k, Pk} ← by (5.5)–(5.8).
33: if PlanFinal then
34: Execute v∗` for each corresponding time step tk.

Figure C.1: Detailed Pseudocode for Kalman filter based IPAST algorithm to solve Problem 4.

137

Bibliography

a.B. Philpott and a.I. Mees. Continuous-time shortest path problems with stopping and start-

ing costs. Applied Mathematics Letters, 5(5):63–66, 1992. ISSN 08939659. doi: 10.1016/

0893-9659(92)90066-I.

N. Adurthi. Conjugate Unscented Transform Based Methods for Uncertainty Quantification, Non-

linear Filtering, Optimal Feedback Control and Dynamic Sensing. PhD thesis, State University

of New York at Buffalo, 2016.

N. Adurthi and P. Singla. Information driven optimal sensor control for efficient target localiza-

tion and tracking. In Proceedings of the 2014 American Control Conference, pages 610–615,

Portland, OR, USA, June 4–6 2014.

V. Akgüna, A. Parekh, R. Batta, and C. M. Rump. Routing of a hazmat truck in the presence of

weather systems. Computers & Operations Research, 34:1351–1373, 2007.

W. H. Al-Sabban, L. F. Gonzalez, and R. N. Smith. Wind-energy based path planning for un-

manned aerial vehicles using markov decision processes. 2013 IEEE International Conference

on Robotics and Automation, pages 784–789, 2013. ISSN 1050-4729. doi: 10.1109/ICRA.2013.

6630662. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6630662.

A. Alessandri, M. Cuneo, S. Pagnan, and M. Sanguineti. A recursive algorithm for nonlinear

least-squares problems. Computational Optimization and Applications, 38(2):195–216, 2007.

R. Alterovitz, T. Siméon, and K. Goldberg. The stochastic motion roadmap: A sampling frame-

work for planning with markov motion uncertainty. Proceedings of Robotics: Science and

Systems (RSS), 2007.

A. B. Asghar, S. T. Jawaid, and S. L. Smith. A complete greedy algorithm for infinite-horizon

sensor scheduling. Automatica, 81:335–341, 2017.

138

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6630662

BIBLIOGRAPHY

Y. Bar-Shalom and X.-R. Li. Multitarget-multisensor tracking: principles and techniques, vol-

ume 19. YBs London, UK:, 1995.

S. Behnke. Local multiresolution path planning. Lecture Notes in Artificial Intelligence, 3020:

332–43, 2004.

D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Belmont, MA,

2000.

J. F. Berube, J. Y. Potvin, and J. Vaucher. Time-dependent shortest paths through a fixed sequence

of nodes: Application to a travel planning problem. Computers and Operations Research, 33

(6):1838–1856, 2006. ISSN 03050548. doi: 10.1016/j.cor.2004.11.021.

J. T. Betts. Survey of numerical methods for trajectory optimization. Journal of Guidance, Control,

and Dynamics, 21(2):193–204, 1998.

L. Breiman. Random Forests. Machine Learning, 45(1):5–32, oct 2001. ISSN 1573-0565. doi:

10.1023/A:1010933404324. URL https://doi.org/10.1023/A:1010933404324.

R. A. Brooks and T. Lozano-Pérez. A subdivision algorithm in configuration space for findpath

with rotation. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(2):224–233,

Mar–Apr 1985.

F. Bullo, J. Cortés, and S. Martinez. Distributed Control of Robotic Networks: A Mathematical

Approach to Motion Coordination Algorithms. Princeton University Press, 2009.

X. Cai, T. Kloks, and C. K. Wong. Time-varying shortest path problems with constraints. Networks,

29(3):141–150, 1997.

C. Calcaterra. Linear combinations of gaussians with a single variance are dense in l2. In Proceed-

ings of the World Congress on Engineering, volume 2, 2008.

C. Calcaterra and A. Boldt. Approximating with gaussians. arXiv preprint arXiv:0805.3795, 2008.

L. Carrioli. Unsupervised path planning of many asynchronously self-moving vehicles. In Pro-

ceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems IROS ‘91,

pages 555–559, 1991.

139

https://doi.org/10.1023/A:1010933404324

BIBLIOGRAPHY

I. Chabini. Discrete dynamic shortest path problems in transportation applications: Complexity

and algorithms with optimal run time. 53(9):1689–1699, 2013. ISSN 1098-6596. doi: 10.1017/

CBO9781107415324.004.

S. Chakravorty and R. Saha. Simultaneous planning localization and mapping: A hybrid

bayesian/frequentist approach. Proceedings of the American Control Conference, pages 1226–

1231, 2008. ISSN 07431619. doi: 10.1109/ACC.2008.4586660.

C.-C. Chang and C.-J. Lin. LIBSVM: A Library for Support Vector Machines. 2013. URL

https://www.csie.ntu.edu.tw/{∼}cjlin/papers/libsvm.pdf.

Y. L. Chen and H. H. Yang. Finding the first K shortest paths in a time-window network. Computers

and Operations Research, 31(4):499–513, 2004. ISSN 03050548. doi: 10.1016/S0305-0548(02)

00230-7.

J. T. Cho and B. H. Nam. A study on the fuzzy control navigation and the obstacle avoidance of

mobile robot using camera. In Proceedings of the 2000 IEEE Systems, Man, and Cybernetics

Conference, volume 4, pages 2993 – 2997, 2000.

H.-L. Choi, L. Brunet, and J. P. How. Consensus-based decentralized auctions for robust task

allocation. IEEE Transaction on Robotics, 25(4):912–926, 2009.

H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, and S. Thrun. Principles

of Robot Motion: Theory, Algorithms, and Implementations. The MIT Press, 2005.

B. Cipra. Parlez-vous wavelets? In What’s Happening in the Mathematical Sciences, volume 2.

American Mathematical Society, 1994.

CNET Editorial Board. Best GPS systems for 2018. Online: https://www.cnet.com/topics/gps/

best-gps/, Dec. 18 2017. Accessed Apr. 9, 2018.

D. Cochran and A. O. Hero. Information-driven sensor planning: Navigating a statistical mani-

fold. 2013 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2013 -

Proceedings, (0):1049–1052, 2013. doi: 10.1109/GlobalSIP.2013.6737074.

140

https://www.csie.ntu.edu.tw/{~}cjlin/papers/libsvm.pdf
https://www.cnet.com/topics/gps/best-gps/
https://www.cnet.com/topics/gps/best-gps/

BIBLIOGRAPHY

B. S. Cooper and R. V. Cowlagi. Interactive planning and sensing in uncertain spatiotemporal

threat fields. Automatica. In review. Draft available at https://goo.gl/Uny1JC.

B. S. Cooper and R. V. Cowlagi. Interactive planning and sensing in uncertain environments

with task-driven sensor placement. In Proceedings of the 2018 American Control Conference,

Milwaukee, WI, USA., June 2018. To appear. Draft available at https://goo.gl/b3nnqG.

R. V. Cowlagi. Multiresolution path-planning with traversal costs based on time-varying spatial

fields. In Proceedings of the 53rd IEEE Conference on Decision & Control, pages 3745–3750,

Los Angeles, CA, USA, December 15–17 2014.

R. V. Cowlagi and P. Tsiotras. Hierarchical motion planning with dynamical feasibility guarantees

for mobile robotic vehicles. IEEE Transactions on Robotics, 28(2):379 – 395, 2012a.

R. V. Cowlagi and P. Tsiotras. Multi-resolution motion planning for autonomous agents via

wavelet-based cell decompositions. IEEE Transactions on Systems, Man and Cybernetics: Part

B - Cybernetics, 42(5):1455–1469, 2012b.

J. Crank. The mathematics of diffusion. Oxford university press, 1979.

I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Lecture Notes, 61, SIAM, 1994.

B. C. Dean. Algorithms for minimum-cost paths in time-dependent networks with waiting policies.

Networks, 44:41–46, 2004a.

B. C. Dean. Shortest paths in FIFO time-dependent networks: Theory and algorithms. Rapport

technique, Massachusetts Institute of . . . , pages 1–13, 2004b. doi: 10.1145/1113830.1113838.

URL http://people.csail.mit.edu/bdean/tdsp.pdf.

M. Dell’Amico, M. Iori, and D. Pretolani. Shortest paths in piecewise continuous time-dependent

networks. Operations Research Letters, 36(6):688–691, 2008. ISSN 01676377. doi: 10.1016/j.

orl.2008.07.002. URL http://dx.doi.org/10.1016/j.orl.2008.07.002.

M. Demetriou, N. Gatsonis, and J. Court. Coupled controls-computational fluids approach for the

estimation of the concentration from a moving gaseous source in a 2-d domain with a Lyapunov-

141

https://goo.gl/Uny1JC
https://goo.gl/b3nnqG
http://people.csail.mit.edu/bdean/tdsp.pdf
http://dx.doi.org/10.1016/j.orl.2008.07.002

BIBLIOGRAPHY

guided sensing aerial vehicle. IEEE Transactions on Control Systems Technology, 22(3):853–

867, 2013. doi: 10.1109/TCST.2013.2267623.

M. A. Demetriou and D. Ucinski. State estimation of spatially distributed processes using mobile

sensing agents. American Control Conference (ACC), (January 2011):1770–1776, 2011.

M. B. Egerstedt and X. Hu. Formation constrained multi-agent control. In Proceedings of the 2001

IEEE International Conference on Robotics and Automation, Seoul, Korea, May 2001.

A. Elfes. Using occupancy grids for mobile robot perception and navigation. Computer, 22(6):46

– 57, 1989.

P. Erickson, M. Cline, N. Tirpankar, and T. Henderson. Gaussian processes for multi-sensor en-

vironmental monitoring. In Multisensor Fusion and Integration for Intelligent Systems (MFI),

2015 IEEE International Conference on, pages 208–213. IEEE, 2015.

N. Farmani, L. Sun, and D. Pack. Optimal uav sensor management and path planning for tracking.

The ASME 2014 Dynamic System and Control Conferences, pages 1–8, 2014. doi: 10.1115/

DSCC2014-6232.

E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning for agile autonomous vehicles.

Journal of Guidance, Control, and Dynamics, 25(1):116–129, 2002.

S. Gangulay, A. Sen, G. Xue, B. Hao, and B. Shen. Optimal routing for fast transfer of bulk

data files in time-varying networks. 2004 IEEE International Conference on Communications

(IEEE Cat. No.04CH37577), 2(c):1182–1186, 2004. ISSN 05361486. doi: 10.1109/ICC.2004.

1312686.

D. Garg, M. Patterson, W. W. Hager, A. V. Rao, D. A. Benson, and G. T. Huntington. A unified

framework for the numerical solution of optimal control problems using pseudospectral meth-

ods. Automatica, 46:1843–1851, 2010.

Google Inc. Google maps. Online: https://maps.google.com, 2018.

A. Goshtasby and W. D. Oneill. Curve fitting by a sum of gaussians. CVGIP: Graphical Models

and Image Processing, 56(4):281–288, 1994.

142

https://maps.google.com

BIBLIOGRAPHY

V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray. On a stochastic sensor selection algorithm

with applications in sensor scheduling and sensor coverage. Automatica, 42(2):251–260, 2006.

J. Y. Hwang, J. S. Kim, S. S. Lim, and K. H. Park. A fast path planning by path graph optimization.

IEEE Transactions on Systems, Man, and Cybernetics– Part A: Systems and Humans, 33(1):

121–127, January 2003.

J. Ilkyun, J. Seewong, and K. Youngouk. Mobile robot navigation using difference of wavelet

SIFT. In Proceedings of the 2009 Second International Conference on Machine Vision, pages

286 – 292, 2009.

S. T. Jawaid and S. L. Smith. Submodularity and greedy algorithms in sensor scheduling for linear

dynamical systems. Automatica, 61:282–288, 2015.

A. Y. Jazi and J. J. Liu. Handling class imbalance and multiple inspection objectives in design

of industrial inspection system. In 2017 6th International Symposium on Advanced Control of

Industrial Processes (AdCONIP), pages 606–611. IEEE, may 2017. ISBN 978-1-5090-4397-2.

doi: 10.1109/ADCONIP.2017.7983849. URL http://ieeexplore.ieee.org/document/7983849/.

D. K. Jha, A. Srivastav, and A. Ray. Temporal Learning in Video Data Using Deep Learning and

Gaussian Processes. pages 1–11, 2016.

D. Jung. Hierarchical Path Planning and Control of a Small Fixed-wing UAV: Theory and Exper-

imental Validation. PhD thesis, Georgia Institute of Technology, 2007.

S. Kambhampati and L. S. Davis. Multiresolution path planning for mobile robots. IEEE Journal

of Robotics and Automation, RA-2(3):135–45, September 1986.

S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. Interna-

tional Journal of Robotics Research, 30:846–894, 2011.

C.-T. Kim and J.-J. Lee. Mobile robot navigation using multi-resolution electrostatic potential

field. In Proceedings of the 32nd Annual Conference of IEEE Industrial Electronics Society,

2005, IECON 2005, 2005.

143

http://ieeexplore.ieee.org/document/7983849/

BIBLIOGRAPHY

S. Kotsiantis, D. Kanellopoulos, and P. Pintelas. Handling imbalanced datasets: A review. GESTS

International Transactions on Computer Science and Engineering, 30, 2006. URL https://pdfs.

semanticscholar.org/95df/dc02010b9c390878729f459893c2a5c0898f.pdf.

A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in gaussian processes:

Theory, efficient algorithms and empirical studies. Journal of Machine Learning Research, 9:

235–284, 2008. ISSN 15324435. doi: 10.1145/1102351.1102385.

C. Kreucher, A. O. Hero, and K. Kastella. A comparison of task driven and information driven

sensor management for target tracking. Proceedings of the 44th IEEE Conference on Decision

and Control, and the European Control Conference, CDC-ECC ’05, 2005:4004–4009, 2005.

doi: 10.1109/CDC.2005.1582788.

H. Kurniawati, T. Bandyopadhyay, and N. M. Patrikalakis. Global motion planning under uncer-

tain motion, sensing, and environment map. Autonomous Robots, 33(3):255–272, 2012. ISSN

09295593. doi: 10.1007/s10514-012-9307-y.

J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

S. M. LaValle and J. J. Kuffner, Jr. Randomized kinodynamic planning. International Journal of

Robotics Research, 20(5):378–400, May 2001.

R. Lerner, E. Rivlin, and I. Shimshoni. Landmark selection for task-oriented navigation. IEEE

Transactions on Robotics, 23(3):494–505, 2007. ISSN 15523098. doi: 10.1109/TRO.2007.

895070.

M. Lowe. Get real-time commute info and more in one tap. Online: https://blog.google/products/

maps/get-real-time-commute-info-and-more-one-tap/, Feb. 6 2017.

W. L. D. Lui and R. Jarvis. A pure vision-based approach to topological SLAM. In Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3784 – 3791,

Taipei, Taiwan, October 18 – 22 2010.

Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Y. Wang. Traffic flow prediction with big data: A deep

learning approach. IEEE Transactions on Intelligent Transportation Systems, 16(2):865–873,

April 2015. ISSN 1524-9050. doi: 10.1109/TITS.2014.2345663.

144

https://pdfs.semanticscholar.org/95df/dc02010b9c390878729f459893c2a5c0898f.pdf
https://pdfs.semanticscholar.org/95df/dc02010b9c390878729f459893c2a5c0898f.pdf
https://blog.google/products/maps/get-real-time-commute-info-and-more-one-tap/
https://blog.google/products/maps/get-real-time-commute-info-and-more-one-tap/

BIBLIOGRAPHY

K. M. Lynch, I. B. Schwartz, P. Yang, and R. A. Freeman. Decentralized environmental modeling

by mobile sensor networks. IEEE transactions on robotics, 24(3):710–724, 2008.

R. Madankan, S. Pouget, P. Singla, M. Bursik, J. Dehn, M. Jones, A. Patra, M. Pavolonis, E. B.

Pitman, T. Singh, and P. Webley. Computation of probabilistic hazard maps and source parame-

ter estimation for volcanic ash transport and dispersion. Journal of Computational Physics, 271:

39–59, 2014.

S. G. Mallat. A theory for multiresolution signal decomposition: The wavelet representation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 11(7):674–93, 1989.

S. Martinez. Distributed interpolation schemes for field estimation by mobile sensor networks.

IEEE Transactions on Control Systems Technology, 18(2):491–500, 2010.

S. Martinez and F. Bullo. Optimal sensor placement and motion coordination for target tracking.

Automatica, 42(4):661–668, 2006.

J. N. Miller, J. C. Miller, et al. Statistics and chemometrics for analytical chemistry. 2005.

P. E. Missiuro and N. Roy. Adapting probabilistic roadmaps to handle uncertain maps. Proceedings

- IEEE International Conference on Robotics and Automation, 2006:1261–1267, 2006. ISSN

10504729. doi: 10.1109/ROBOT.2006.1641882.

Y. Mo, R. Ambrosino, and B. Sinopoli. Sensor selection strategies for state estimation in energy

constrained wireless sensor networks. Automatica, 47(7):1330–1338, 2011.

Y. Mo, E. Garone, and B. Sinopoli. On infinite-horizon sensor scheduling. Systems & control

letters, 67:65–70, 2014.

B. Mu, L. Paull, M. Graham, J. How, and J. Leonard. Two-stage focused inference for resource-

constrained collision-free navigation. Robotics: Science and Systems, 2015.

R. Narayanaswami and J. Pang. Multiresolution analysis as an approach for tool path planning in

nc machining. Computer-Aided Design, 35:167–78, 2003.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing

submodular set functionsi. Mathematical programming, 14(1):265–294, 1978.

145

BIBLIOGRAPHY

J. Y.-h. Ng. Beyond Short Snippets : Deep Networks for Video Classification. ISSN 10636919.

doi: 10.1109/CVPR.2015.7299101.

N. J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kauffman Publishers, Inc., San

Francisco, CA, USA, 1998.

H. Noborio, T. Naniwa, and S. Arimoto. A quadtree-based path planning algorithm for a mobile

robot. Journal of Robotic Systems, 7(4):555–74, 1990.

M. D. O’Brian. Wind assessment for aerial payload delivery systems using gps and imu sen-

sors. Technical report, NAVAL POSTGRADUATE SCHOOL MONTEREY CA MONTEREY

United States, 2016.

R. Olfati-Saber. Distributed Kalman filter with embedded consensus filters. Proceedings of the

44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-

ECC ’05, 2005:8179–8184, 2005. doi: 10.1109/CDC.2005.1583486.

R. Olfati-Saber. Kalman-Consensus filter: Optimality, stability, and performance. Proceedings of

the IEEE Conference on Decision and Control, pages 7036–7042, 2009. ISSN 01912216. doi:

10.1109/CDC.2009.5399678.

R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents with switching

topology and time-delays. IEEE Transactions on Automatic Control, 49(9):1520–1533, 2004.

R. Olfati-Saber and N. F. Sandell. Distributed tracking in sensor networks with limited sens-

ing range. Proceedings of the American Control Conference, pages 3157–3162, 2008. ISSN

07431619. doi: 10.1109/ACC.2008.4586978.

R. Olfati-Saber and J. Shamma. Consensus Filters for Sensor Networks and Distributed Sensor

Fusion. Proceedings of the 44th IEEE Conference on Decision and Control, (0):6698–6703,

2005. doi: 10.1109/CDC.2005.1583238. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=1583238.

S. M. Omohundro. Five Balltree Construction Algorithms. 1989. URL http://citeseer.ist.psu.

edu/viewdoc/download;jsessionid=DEA1784A46135C8E544AE806965AA22A?doi=10.1.1.

91.8209{&}rep=rep1{&}type=pdf.

146

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1583238
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1583238
http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=DEA1784A46135C8E544AE806965AA22A?doi=10.1.1.91.8209{&}rep=rep1{&}type=pdf
http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=DEA1784A46135C8E544AE806965AA22A?doi=10.1.1.91.8209{&}rep=rep1{&}type=pdf
http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=DEA1784A46135C8E544AE806965AA22A?doi=10.1.1.91.8209{&}rep=rep1{&}type=pdf

BIBLIOGRAPHY

A. Orda and R. Rom. Shortest-path and minimum-delay algorithms in networks with time-

dependent edge-length. Journal of the ACM, 37(3):607–625, 1990. ISSN 00045411. doi:

10.1145/79147.214078.

A. Orda and R. Rom. Minimum-weight paths in time-dependent networks. Networks, 21:295–319,

1991.

S. L. Padula and R. K. Kincaid. Optimization strategies actuator placement sensor and actuator

placement. NASA Report, (April), 1999.

D. K. Pai and L.-M. Reissell. Multiresolution rough terrain motion planning. IEEE Transactions

on Robotics and Automation, 14(1):19–33, February 1998.

S. Pallottino. Shortest path algorithms in transportation models: classical and innovative aspects.

Equilibrium and advanced transportation, 13(1):245–281, 1998. ISSN 0254-5330. doi:

10.1007/BF02288320. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.

5192$\delimiter”026E30F$nhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.

4398{&}rep=rep1{&}type=pdf.

C. Paulson, S. Ezekiel, and D. Wu. Wavelet-based image registration. In T. H. O’Donnel, M. Blow-

ers, and K. Priddy, editors, Evolutionary and Bio-Inspired Computation: Theory and Applica-

tions IV, Proceedings of the SPIE, volume 7704, 2010.

A. Peters, S. von Klot, M. Heier, I. Trentinaglia, A. Hrmann, H. E. Wichmann, and H. Lwel. Ex-

posure to traffic and the onset of myocardial infarction. New England Journal of Medicine,

351(17):1721–1730, 2004. doi: 10.1056/NEJMoa040203. URL https://doi.org/10.1056/

NEJMoa040203. PMID: 15496621.

A. B. Philpott and A. I. Mees. A finite-time algorithm for shortest path problems with time-varying

costs. Applied Mathemtical Letters, 6(2):91–94, 1993.

E. Plaku, L. E. Kavraki, and M. Y. Vardi. Motion planning with dynamics by a synergistic combi-

nation of layers of planning. IEEE Transactions on Robotics, 26(3):469–482, 2010.

147

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.5192$\delimiter "026E30F $nhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.4398{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.5192$\delimiter "026E30F $nhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.4398{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.5192$\delimiter "026E30F $nhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.4398{&}rep=rep1{&}type=pdf
https://doi.org/10.1056/NEJMoa040203
https://doi.org/10.1056/NEJMoa040203

BIBLIOGRAPHY

R. Polikar. Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 6

(3):21–45, 2006. ISSN 1531-636X. doi: 10.1109/MCAS.2006.1688199. URL http://ieeexplore.

ieee.org/document/1688199/.

R. J. Prazenica, A. J. Kurdila, R. C. Sharpley, and J. Evers. Multiresolution and adaptive path plan-

ning for maneuver of micro-air-vehicles in urban environments. In AIAA Guidance, Navigation,

and Control Conference and Exhibit, pages 1–12, San Francisco, CA, 2005.

R. Prentice and N. Roy. The belief roadmap: Efficient planning in belief space by factoring the

covariance. International Journal of Robotics Research, 28(11-12):1448–1465, 2009.

O. Raaschou-Nielsen, Z. J. Andersen, M. Hvidberg, S. S. Jensen, M. Ketzel, M. Srensen, S. Loft,

K. Overvad, and A. Tjnneland. Lung cancer incidence and long-term exposure to air pollution

from traffic. Environmental Health Perspectives, 119(6):860–865, 2011.

J. Ranieri, A. Chebira, and M. Vetterli. Near-Optimal Sensor Placement for Linear. 62(5):1135–

1146, 2014.

R. M. Rao and A. S. Bopardikar. Wavelet Transforms - Introduction to Theory and Applications.

Addison-Wesley, 1998. ISBN 0-201-63463-5.

D. Reid et al. An algorithm for tracking multiple targets. IEEE transactions on Automatic Control,

24(6):843–854, 1979.

M. B. Rice, P. L. Ljungman, E. H. Wilker, K. S. Dorans, D. R. Gold, J. Schwartz, P. Koutrakis,

G. R. Washko, G. T. OConnor, and M. A. Mittleman. Long-term exposure to traffic emissions

and fine particulate matter and lung function decline in the framingham heart study. American

journal of respiratory and critical care medicine, 191(6):656–664, 2015.

A. Rojarath, W. Songpan, and C. Pong-inwong. Improved ensemble learning for classification

techniques based on majority voting. In 2016 7th IEEE International Conference on Software

Engineering and Service Science (ICSESS), pages 107–110. IEEE, aug 2016. ISBN 978-1-

4673-9904-3. doi: 10.1109/ICSESS.2016.7883026. URL http://ieeexplore.ieee.org/document/

7883026/.

148

http://ieeexplore.ieee.org/document/1688199/
http://ieeexplore.ieee.org/document/1688199/
http://ieeexplore.ieee.org/document/7883026/
http://ieeexplore.ieee.org/document/7883026/

BIBLIOGRAPHY

T. Routtenberg and L. Tong. Estimation after Parameter Selection: Performance Analysis and Esti-

mation Methods. IEEE Transactions on Signal Processing, 64(20):1–13, 2015. ISSN 1053587X.

doi: 10.1109/TSP.2016.2580533. URL http://arxiv.org/abs/1503.02045.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating

errors. Nature, 323:533–536, oct 1986. URL http://dx.doi.org/10.1038/323533a0http://10.0.4.

14/323533a0.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson Education Inc., NJ,

USA, 2003.

H. Samet. The quadtree and related hierarchical data structures. Computing Surveys, 16(2):187–

260, June 1984.

A. Shenfield and S. Rostami. Multi-objective evolution of artificial neural networks in multi-class

medical diagnosis problems with class imbalance. In 2017 IEEE Conference on Computational

Intelligence in Bioinformatics and Computational Biology (CIBCB), pages 1–8. IEEE, aug 2017.

ISBN 978-1-4673-8988-4. doi: 10.1109/CIBCB.2017.8058553. URL http://ieeexplore.ieee.org/

document/8058553/.

D. Shi and T. Chen. Approximate optimal periodic scheduling of multiple sensors with constraints.

Automatica, 49(4):993–1000, 2013.

M. Shim, J. Kurtz, and A. Laine. Multi-resolution stereo algorithm via wavelet representations for

autonomous navigation. In Proceedings of the SPIE, volume 3723, pages 319 – 328, Orlando,

FL, April 1999.

R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to Autonomous Mobile Robots.

MIT Press, Cambridge, MA, USA., 2011.

B. Sinopoli, M. Micheli, G. Donato, and T. J. Koo. Vision based navigation for an unmanned

aerial vehicle. In Proceedings of the 2001 IEEE Conference on Robotics and Automation, pages

1757–64, 2001.

149

http://arxiv.org/abs/1503.02045
http://dx.doi.org/10.1038/323533a0 http://10.0.4.14/323533a0
http://dx.doi.org/10.1038/323533a0 http://10.0.4.14/323533a0
http://ieeexplore.ieee.org/document/8058553/
http://ieeexplore.ieee.org/document/8058553/

BIBLIOGRAPHY

P. Skoglar, J. Nygards, and M. Ulvklo. Concurrent path and sensor planning for a uav - to-

wards an information based approach incorporating models of environment and sensor. IEEE

International Conference on Intelligent Robots and Systems, pages 2436–2442, 2006. doi:

10.1109/IROS.2006.281685.

R. F. Stengel. Optimal Control and Estimation. Dover, New York, NY, 1994.

A. Stentz. Optimal and efficient path planning for partially-known environments. In Proceedings

of the IEEE International Conference on Robotics and Automation, pages 3310 – 3317, 1994.

A. Stentz. The focussed D∗ algorithm for real-time replanning. In Proceedings of the International

Joint Conference on Artificial Intelligence, volume 95, pages 1652–1659, 1995.

K. Sung, M. G. H. Bell, M. Seong, and S. Park. Shortest paths in a network with time-dependent

flow speeds. European Journal of Operational Research, 121(1):32–39, 2000. ISSN 03772217.

doi: 10.1016/S0377-2217(99)00035-1.

H. Tan, Y. Wu, B. Shen, P. J. Jin, and B. Ran. Short-term traffic prediction based on dynamic tensor

completion. IEEE Transactions on Intelligent Transportation Systems, 17(8):2123–2133, Aug

2016. ISSN 1524-9050. doi: 10.1109/TITS.2015.2513411.

R. F. Thomas and J. Scotto. Estimating increases in skin cancer morbidity due to increases

in ultraviolet radiation exposure. Cancer Investigation, 1(2):119–126, 1983. doi: 10.3109/

07357908309042414. URL http://dx.doi.org/10.3109/07357908309042414. PMID: 6667401.

D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with

3D convolutional networks. Proceedings of the IEEE International Conference on Computer

Vision, 2015 International Conference on Computer Vision, ICCV 2015:4489–4497, 2015. ISSN

15505499. doi: 10.1109/ICCV.2015.510.

P. Tsiotras and E. Bakolas. A hierarchical on-line path planning scheme using wavelets. In Pro-

ceedings of the European Control Conference, pages 2806–2812, Kos, Greece, July 2–5 2007.

V. Tzoumas, A. Jadbabaie, and G. J. Pappas. Sensor placement for optimal kalman filtering:

Fundamental limits, submodularity, and algorithms. In American Control Conference (ACC),

2016, pages 191–196. IEEE, 2016.

150

http://dx.doi.org/10.3109/07357908309042414

BIBLIOGRAPHY

V. Tzoumas, L. Carlone, G. J. Pappas, and A. Jadbabaie. Sensing-constrained lqg control. In 2018

Annual American Control Conference (ACC), pages 197–202. IEEE, 2018.

D. Ucinski. Sensor network scheduling for identification of spatially distributed processes. Confer-

ence on Control and Fault-Tolerant Systems, SysTol’10 - Final Program and Book of Abstracts,

20(3):493–504, 2010. ISSN 1641-876X. doi: 10.1109/SYSTOL.2010.5675945.

B. J. H. Verwer. A multiresolution workspace, multiresolution configuration space approach to

solve the path planning problem. In Proceedings of the 1990 IEEE International Conference on

Robotics and Automation, pages 2107–12, 1990.

L. Wei and T. F. Fwa. Characterizing road roughness by wavelet transform. Transportation Re-

search Record: Journal of the Transportation Research Board, 1869:152 – 158, 2004.

T. Wiesemann, J. Schiefele, and J. Bader. Multi-resolution terrain depiction and airport navigation

function on an embedded SVS. In J. G. Verly, editor, Enhanced and Synthetic Vision 2002,

Proceedings of the SPIE, volume 4713, pages 106 – 117, 2002.

C. K. Williams and C. E. Rasmussen. Gaussian processes for machine learning. the MIT Press, 2

(3):4, 2006.

Z. Wu, X. Wang, Y.-G. Jiang, H. Ye, and X. Xue. Modeling Spatial-Temporal Clues in a Hybrid

Deep Learning Framework for Video Classification. 2015. doi: 10.1145/2733373.2806222.

URL http://arxiv.org/abs/1504.01561.

L. Xie, D. Popa, and F. L. Lewis. Optimal and robust estimation: with an introduction to stochastic

control theory. CRC press, 2007.

B. Xu, D. J. Stilwell, and A. Kurdila. A receding horizon controller for motion planning in the

presence of moving obstacles. In Proceedings of the 2010 IEEE International Conference on

Robotics and Automation, pages 974 – 979, Anchorage, AK, May 3 – 8 2010.

L. Ye, S. Roy, and S. Sundaram. On the complexity and approximability of optimal sensor selection

for kalman filtering. In 2018 Annual American Control Conference (ACC), pages 5049–5054.

IEEE, 2018.

151

http://arxiv.org/abs/1504.01561

BIBLIOGRAPHY

M. Yguel, O. Aycard, and C. Laugier. Wavelet occupancy grids: A method for compact map

building. In P. Corke and S. Sukkarieh, editors, Field and Service Robotics, STAR 25, pages 219

– 230. Springer-Verlag, 2006.

H. Zhang, R. Ayoub, and S. Sundaram. Sensor selection for kalman filtering of linear dynamical

systems: Complexity, limitations and greedy algorithms. Automatica, 78:202–210, 2017.

152

	Introduction and Literature Review
	Motivation and Problem Statement
	Background and Literature Review
	Modeling Environments with Basis Functions
	Path-planning in Static Environments
	Path-planning in Time-Varying Evironments
	Multiresolution Path Planning
	Motion-planning with Uncertainty
	Sensor Management and Optimal Placement
	Estimation and Sensor Placement for Time-varying systems
	Interactive Planning and Sensing

	Thesis Overview and Statement of Contributions
	Overview
	Contributions

	Interactive Planning and Sensing for Path-planning in a Threat Field
	Problem Elements Overview
	Uncertain Environment Formulation
	Path-planning in Uncertain Environment Problem Statement

	Interactive Planning and Sensing Algorithm
	Task-Driven Sensor Reconfiguration
	Termination Criterion
	Relationship with Fisher Information

	Convergence Conditions and Optimality

	Path-planning with Waiting in Time-varying Environments
	Problem Formulation
	Threat Field Parametrization
	Path-planning with Uniformly High Resolution Field Map

	Waiting Policies and Considerations
	General Solution to Uniform High Resolution Path-planning Problem
	No-Wait Path-planning

	Local Test for No-Wait Suboptimality
	Traditional Heuristics for Reducing Computational Burden
	Machine Learning Classification for Path-planning Algorithm Selection

	Multiresolution Path-planning with Waiting in Time-varying Spatial Fields
	Problem Formulation
	Solution to Multiresolution Path-planning Problem

	Interactive Planning and Sensing for Time-varying Systems
	Problem Overview
	Estimation Formulation using Kalman Filter
	Interactive Planning and Sensing for Time-varying Systems Algorithm
	Discretization of threat parameter system
	The IPAST Algorithm
	Task-Driven Sensor Reconfiguration

	Termination and Convergence Conditions
	Steady State Conditions and Extra considerations

	Simulation Results and Discussion
	Interactive Planning and Sensing Results and Discussion
	Illustrative Example
	Convergence and Optimality
	Comparisons with Information-Driven Approaches
	Performance in Parameter-Rich & Resource-Constrained Scenarios
	Computational Complexity
	Discussion of IPAS Algorithm and Alternative Comparisons
	Comparison with Blackbox Optimization

	Waiting in Spatiotemporal Fields Illustrative Example and Discussion
	Uniformly High Resolution Waiting vs. Non-waiting Solution
	A*Path-Planning Algorithm using Traditional Heuristics

	Multiresolution Waiting vs. Non-waiting Solution
	Interactive Planning and Sensing for Time-varying Systems Results and Discussion
	Illustrative Example
	Path Cost Variance Convergence Behavior
	Convergence Behavior of the Final Path
	High Parameter - Long Horizon Example
	Waiting in IPAST Framework

	Conclusions and Future Works
	Generalizing the Environment
	Gaussian Processes
	Transport Phenomenon or Convection-Diffusion Process

	Sensor Reconfiguration Cost
	Multiresolution Implementation of IPAS and IPAST
	Nonlinear Estimation for IPAS
	Uncertainty Propagation

	Decentralized Sensor Network
	Limited Sensor Trajectory Control - Parachute Drop

	Appendix Wavelet Decomposition
	Appendix Machine Learning for Waiting Problem
	Data Sources
	Methods
	Field Classification using Traditional Supervised Learning
	Field Classification using Deep Neural Networks
	Overall Optimized Path-Planner

	Results
	Field Classification through Supervised Learning
	Classification by CNN-LSTM

	Conclusions

	Appendix Detailed IPAST Algorithm

