
Study on Impacts of Varying Weather
Patterns upon Circuits with Photovoltaic

(PV) Penetration

A Major Qualifying Project Report submitted in partial fulfillment of the

requirements for the Degree of Bachelor of Science in
Electrical and Computer Engineering (ECE)

Worcester Polytechnic Institute,

Worcester, MA, 01609, USA

Submitted by: Barry Aslanian Jr, Christian Curll, Matthew Scherrer, Markus
Zimmermann

Advisors: Professor Maqsood Mughal and Professor Sundari Ramabholta

Sponsor: Umair Zia (Eversource)

Table of Contents

Table of Contents 1

List of Figures 3

Abstract 4

Acknowledgements 6

Introduction 7

Goals and Objectives 7

Background 8
Photovoltaics 8
Tap Changers 9
Eversource Energy 10

Literature Review 11
Voltage Flicker 11

Methods 14
Cloud Motion Simulator (CMS) 19
Cloud Motion Simulator Parameters 21
Calculations 24
GE Curve 25

Results 26
Tap Changer 26
Voltage Analysis 27
Short-Term Flicker Severity (Pst) 29
GUI 35

Conclusion 36

Going Forward 37

References 38

Appendices 41
CMS Code [Matlab] 41

1

Pst Code [Matlab] 44
Generator output Code 50
GUI Code [Python] 55
Extracted CMS Parameter 59
Second Based Generator Outputs 61

2

List of Figures
Figure 1: Block diagram of flicker meter from IEEE standard 1453-2015 (9)
Figure 2: Demonstrating the use of irradiance values, the change of value,

and the rate of change of values to find the CMS parameters. (16)
Figure 3: A typical day, without clouds (17)
Figure 4: Cloudy day over PV array (18)
Figure 5: An ideal day with no clouds and consistent PV array output (19)
Figure 6: A cloudy day with inconsistent PV array output (20)
Figure 7: Demonstrating the use of irradiance values, the change of value,

and the rate of change of values to find the CMS parameters. (21)
Figure 8: Cloud Motion Simulator Parameters (22)
Figure 9: Visual representation of the cloud motion simulator parameters (23)
Figure 10: GE Curve (25)
Figure 11: Average Tap Changing Operations for 18G-8x Circuit (26)
Figure 12: Aclara Data Over Three Days (28)
Figure 13: Aclara Data as Rate of Change Over Three Days (29)
Figure 14: Aclara Data of Voltage Versus Irradiance Over Three Days (29)
Figure 15: Pst Calculations Using Eversource Data (31)
Figure 16: Irradiance Versus Line Power With Respect to Time (32)
Figure 17: Pst Versus Line Voltage, Zoomed In (33)
Figure 18: Pst Versus Irradiance (34)
Figure 19: Pst Versus Irradiance, Zoomed In (35)
Figure 20: Current Functionality of GUI (37)

3

Abstract

The goal of the project is to model and create a system to show the effects of

cloud coverage on an installed PV system and those impacts on the electrical grid.

When a cloud disrupts a PV array by blocking the sun, the electrical output varies in

reference to the initial output. This variation ripples across the grid and can impact other

systems along the power line. Initially, to adjust for this phenomenon a test is done at an

output lower than initially expected. While this method is sufficient it does not consider

all preventable scenarios. We analyzed irradiance data for areas provided by

Eversource Energy with the electrical output of their system and made a model to

indicate a flicker moment on the grid and compensate accordingly.

With more and more customers, including large businesses, turning to

photovoltaics, as an additional source of electrical energy to power their homes and

buildings, any disruption can cause issues on the grid. Disruption causes electrical

instability and asset degradation, increasing operating costs. The disruption is caused

by PV’s susceptibility to weather conditions such as cloud cover. High PV penetration of

distributed PV systems is causing technical problems such as reverse power flows and

voltage instability in distribution feeders that affects the operation of the bulk

transmission system.

Our sponsor, Eversource, wants to determine a better method for calculating a

dip in electrical production when a cloud covers an array of solar panels for a period of

time. By predicting the effects of flicker in a simulation, power distributors can take

4

preparatory measures to reduce the strain on the grid, lowering the operating cycles of

corrective equipment and therefore lowering operating costs. Additionally, with more

and more photovoltaic systems entering the grid, there is growing concern for the

longevity of corrective assets. Proper knowledge of the lifecycle of equipment allows for

timely replacements that prevent inconveniences to customers.

5

Acknowledgements

We’d like to show our appreciation to Kaveh Rahimi and Robert Broadwater of

Virginia Polytechnic Institute for sharing their work on cloud motion simulations with us.

Their paper titled Computation of Voltage Flicker With Cloud Motion Simulator was

extremely helpful for us to begin our project.

We’d also like to thank Umair Zia, Everett Hall, Thaer Qunias, and Dan Lewis of

Eversource Energy for providing us with the necessary materials and support to work on

this project. Eversource Energy has been a generous sponsor for this project through

their donation of funding and data.

6

Introduction

Eversource Energy, hereafter called Eversource, is a publicly traded electric

utility company based in the New England region. Established in 2015 as Eversource,

the company came out of a merger between Northeast Utilities and NSTAR to provide

service to the greater Boston region. To reach their goal, Eversource has a mission to

deliver “reliable energy and superior customer service, in community service and

leadership, and in doing the right thing for their customers, co-workers, shareholders

and the environment.” Eversource not only has a stake in the electrical grid, the

company also provides gas for heating and cooking to numerous homes, and more

recently, water.

Goals and Objectives

The goal of the project is to implement a fully functional interface with Synergi, a

distributed feeder simulation software that Eversource Energy uses to analyze load flow

for their circuits. The current method used by eversource is inefficient and does not

properly simulate voltage flicker. Our project goal is to make Synergi more impactful in

its use by creating an add-on model that will compute PV output power and a voltage

flicker severity index using IEEE 1453-2015 standard and high resolution (5 minute)

data from a pyranometer located near the PV array.

7

Background

Photovoltaics

Photovoltaics (PV), commonly referred to as solar panels, are typically first

thought of when it comes to renewable energy. To create a PV array, smaller

photovoltaic modules are attached together to cover a larger area. PV arrays can

replace traditional methods of power generation such as coal-fired and natural gas

powered plants, by producing electricity with a much smaller carbon footprint (Evans).

More recently, the efficiency of solar panels have reached up to 23%, converting 23

percent of the sun’s solar energy into electricity. This whole process is dependent on

one huge factor, the sun. Any disruption reduces the amount produced and transferable

to the grid (Energy Sage). Renewable energy accounted for about 17% of the United

States electricity generation in 2018, making flicker and equipment wear pressing

issues (US Energy Information Administration).

Distributed PV power generation systems are being rapidly deployed, causing

technical problems to utility sectors worldwide as reverse power flows and voltage

fluctuations in distribution feeders, and real and reactive power transients that affect the

operation of the bulk transmission system. Traditional voltage control devices such as

line voltage regulators and switched capacitor banks can alleviate slow moving

fluctuations, but these devices need to operate more frequently than usual when PV

generation fluctuates due to cloud cover. The output of a PV system can vary from

8

100% to 20% in seconds. A concern of the utility sector is that such frequent operations

will impact the life expectancy of these voltage control devices.

Tap Changers

Tap changers are a voltage control device that allow transformers to hold

variable turn ratios in discrete steps. There are two types of tap changers, on-load and

off-load tap changers. On-load transformers are used to make changes to the turn ratio

while the circuit is in use, while off-load requires a disconnection from the circuit before

changing. On-load tap changers are typically found in power circuits, as it allows for

corrections to the voltage to occur throughout the day based on load needs(Pitt). A tap

changer is only expected to have a limited number of tap changes in its lifetime, so

more frequent corrections lower its life expectancy. To fully understand and address

these problems, utility companies like Eversource are seeking solutions to this problem.

In a meeting including Eversource Distribution Engineering Director Umair Zia in

October, 2019 concern was voiced in regards to the impact of PV penetration on the

performance of the electrical grid. As PV penetration into the grid is increasing, concern

arose for the longevity of the tap changers. If PV penetration increases the number of

tap changing operations per day, the life span prediction of the equipment needs to be

re-evaluated so replacement can happen before equipment failure, which can cause an

electric power outage.

9

Eversource Energy

Eversource is a publicly traded company providing electrical, gas, and water

services to houses and businesses in New Hampshire, Connecticut and Massachusetts.

It is the largest utility in New England, delivering energy to approximately 3.7 million

residents.

As an electric utility, Eversource has a power quality standard regarding the

interconnection of distributed energy resources (DER). The standard is to keep voltage

levels on the grid within ±2% of the nominal voltage level (Eversource Energy). High PV

penetration into the grid is making it difficult for Eversource to meet this standard due to

the intermittent nature of PV systems caused by cloud motion above arrays. As PV

penetration increases, the severity of the problems associated with PV intermittency will

also increase.

The renewable market is expected to grow as time goes on. With 80 financial

incentives in the state of Massachusetts alone, Eversource customers are encouraged

by the government to add more PV sources to Eversource’s networks (N.C. Clean

Technology Center). As of December 31, 2018, Eversource has nearly 700 MW of PV

power interconnected with their network (Eversource Energy).

Currently, the engineers simulate flicker by running a simulation at either end of

capacity, from 100% to 5% (Eversource Energy). These run times are two extremes, not

what would actually happen if a cloud covers a PV array for an extended period of time.

10

This is not effective as a one runtime simulation, as more clouds could roll over and

reduce the output of the PV system.

Literature Review

Voltage Flicker

Voltage flicker is defined by IEEE 1453-2015 as the subjective impression of

fluctuating luminance caused by voltage fluctuations (IEEE Recommended Practice for

the Analysis of Fluctuating Installations on Power Systems. 1-74). This phenomena can

be described as a change in voltage quick enough to not be corrected by stabilizing

systems, but noticeable to the human eye via an incandescent light bulb. Although

flicker may not be blatantly visible, it can still cause irritation.

The relationship between irritability and visibility of voltage flicker is called the

“GE curve” and was published by General Electric from a collection of previous flicker

studies. The GE curve consists of two curves, one showing the borderline of irritation

and the other showing the borderline of visibility. The perceptibility curves were

developed by scientists using human subjects in front of various flickering lamps. The

GE curve is still used in the power industry to impose flicker limits on industrial

customers connected to the grid (IEEE Recommended Practice for the Analysis of

Fluctuating Installations on Power Systems. 1-74). Eversource’s voltage flicker limit, for

example, is that voltage flicker should not exceed ±2% (Eversource Energy).

11

The most recent measurement method used to calculate voltage flicker is from

the IEEE 1453-2015 standard, IEEE Recommended Practice for the Analysis of

Fluctuating Installations on Power Systems. The following flicker computation method is

adapted from the IEC 61000-4-15:2010 standard (IEEE Draft Recommended Practice --

Adoption of IEC 61000-4-15:2010, Electromagnetic Compatibility (EMC)---Testing and

Measurement Techniques---Flickermeter---Functional and Design Specifications. 1-53).

The computation method is done in five steps that are briefly described by a block

diagram.

Figure 1: Block diagram of flicker meter from IEEE standard 1453-2015

Block 1 removes the dependence on the input voltage level by converting the

value to a percent ratio. Blocks 2-4 simulate the lamp-eye-brain response. Block 2

simulates the behavior of an incandescent lamp by separating the low frequency

voltage fluctuation from the main voltage signal using a squaring demodulator. Block 3

filters unwanted frequencies produced by the demodulator. In addition, it also weights

the signal according to the lamp-eye-brain response. A 4th order band-pass filter is used

to represent the lamp-eye-brain response. Block 4 outputs the instantaneous flicker

level by squaring the input voltage signal to simulate the non-linear eye-brain response,

and a sliding mean filter is used to average the signal and simulate the short-term

12

storage effect of the brain. Block 5 processes the output of block 4 statistically to create

a histogram. The output is separated into different classes or “buckets”, creating a

probability density function (PDF). Then, from the PDF, a cumulative distribution

function (CDF) can be formed. The CDF is the probability that the instantaneous flicker

does not exceed a certain level (IEEE Recommended Practice for the Analysis of

Fluctuating Installations on Power Systems. 1-74; U.S. Energy Information

Administration).

Flicker severity is evaluated at two levels, short-term and long-term. Short-term

flicker severity, Pst, is calculated over a 10-minute window of observation using

equation (1):

 P st = √0.0314P .0525P .0657P .28P .08P0.1 + 0 1s + 0 3s + 0 10s + 0 50s (1)

where , , , , and are flicker levels that exceeded the percent of timeP 0.1 P 1s P 3s P 10s P 50s

specified in the subscript. For instance, represents flicker level that is exceededP 50s

50% of the time. The flicker level values are taken from the CDF curve mentioned

above. The suffix s represents smoothed values obtained from equations (2)-(5). For

example, P1 represents the flicker level that is exceeded 1% of the time.

P 1s = 3
P +P +P0.7 1 1.5 (2)

P 3s = 3
P +P +P2.2 3 4 (3)

13

P 10s = 5
P +P +P +P +P6 8 10 13 17 (4)

P 50s = 3
P +P +P30 50 80 (5)

Long term flicker severity is calculated from 12 successive short-term flicker

severity values using equation (6) (IEEE Recommended Practice for the Analysis of

Fluctuating Installations on Power Systems. 1-74).

 P lt = √3 1
12 ∑

12

j=1
P 3

stj (6)

Methods

As voltage flicker was not a term known throughout the group, we were advised

to read a few scholarly articles, case studies and the IEEE 1453 standard about it. One

paper that was advised to read was centered around a Cloud Motion Simulator (CMS)

to compute voltage flicker index. This CMS provided a way to simulate what would

happen to the voltage if a cloud rolled over a PV system, and could be used to

extrapolate the impacts on the grid. This paper closely aligned with the scope of our

project and served as a point of reference to present to Eversoure as a better way to

simulate a cloud covering PV panels. As a group, with our advisors, we presented this

idea to our sponsor, Eversource, and received high praise and the go-ahead. To begin,

we understood that analyzing the changes in transformers, tap changers, would be

quick to analyze and focused on that. Then as the cloud simulator is our main goal, it

was imperative that we then began that process.

14

A sub task assigned was to check if the addition of PV panels on a circuit

lowered the stability of the circuit. A subset of the data provided held information on tap

changes, which mark how often corrective action had to be taken to stabilize the circuit

via a change in transformer windings. The data given showed repair dates on the

transformers, and how many tap changes had occurred since the last repair. By dividing

the number of tap changes in a repair period by the number of days in the repair period,

the result is that the average amount of tap changes per day. By plotting the average

tap changes per day as a function of time, as well as collecting meta-data with dates in

regards to solar panel installation, the effects of solar panels on grid stability will

become apparent.

Matlab proved to be a valuable tool in analyzing the data that Eversource

provided to us. We created numerous plots to see impacts of cloud coverage over time,

and use these plots to analyze the fluctuation on a given circuit. Figure XX is an

example of four Cloud Motion Simulator parameters from a seven minute time window

that shows constant photovoltaic output and a medium cloud covering the system.

15

Figure 2: Demonstrating the use of irradiance values, the change of value, and the rate of change

of values to find the CMS parameters.

The large drop in irradiance identifies a cloud large enough to significantly affect

power output and cause a flicker event on the grid. The received irradiance drops from

450 W/m2 to a measly 75 W/m2, and on the second small tip, from the same 450 W/m2

to a smaller 350 W/m2.The initial drop lasted around 20 seconds, then 16 seconds for

the second smaller drop. These two provide two numbers for the beginning of the CMS

When the system returns to normal to then be covered by a cloud almost a minute later

for a shorter period of time. The large irradiance change is the primary concern for

Eversource. Figure 4 is a seven minute window on a sunny day experiencing

16

intermittent clouds; several events like the first described create the challenge of

integrating PV into the grid.

Further analysis was done on different days. The graph seen below in Figure 3 is

an example of what a typical PV output would look like when there are no clouds to

block the sun.

Figure 3: A typical Day, Without Clouds.

A normal sunny provides a bell curve like shape for the output of a system. This

curve is predictable, allowing easy integration to the grid. The Power companies can

easily predict what the expected load on the grid for a day will be. If PV power

generation is also predictable, it is a fairly simple process to reduce traditional

generation to account for the influx of power from PV. A seamless blend of PV and

traditional generation will easily meet the load requirement of the grid.

17

Figure 4: Cloudy Day Over PV Array

Figure 4 displays a figure of a very cloudy day with very little PV output. This was

helpful in conducting analysis with the cloud coverage and calculating the worst case

scenario in most situations. It is days like shown in figure XX that prevents the

integration of solar into the grid. If the grid is compensated according to an expected

bell curve of PV output, the eratic dips in irradiance due to clouds can create flicker

events. If the grid is not compensated for PV generation, excess power is created and

flows backwards along the power lines, reducing power quality. The data used was from

Brookhaven Laboratories in New York and provided the results.

18

Cloud Motion Simulator (CMS)

There are several different ways to simulate the effects of cloud coverage on PV

generators and the impact that it has on power systems. Some engineers simulate

flicker by running a simulation at either end of capacity, from 100% to 5% (Eversource

Energy). These run times are two extremes, not what would actually happen if a cloud

rolls over for an extended period of time. This one runtime simulation is not effective, as

more clouds could roll over and reduce the output of the PV system.

Figure 5: An ideal day with no clouds and consistent PV array output

Fig. 5 exhibits the expected solar irradiance of an ideal day. With no clouds

blocking the sunlight, the curve generated by the measurement of power from the PV

array is predictable and stable, allowing easy assimilation to the grid to help with load

requirements (Nwaigwe, Mutabilwa, and Dintwa 629-633).

19

Figure 6: A cloudy day with inconsistent PV array output

Fig. 6 displays the irradiance received by a PV array on a day with clouds. With

clouds intermittently covering the array, the power generated does not drop to 5% often

from 100% but rather somewhere between. A quasi steady state (QSS) simulation can

be used to perform simulations with higher accuracy than the aforementioned method to

simulate flicker. One such method is to simulate how the effect of a cloud rolling over

PV panels affect the output power over time, instead of the extremes (Rahimi et al.

2628-2636). By simulating a constant motion, opposed to two extremes, one can

witness the effect of power quality over time.

In this study, to measure the impact of moving clouds upon large PV systems, we

performed a simulation using irradiance data from a pyranometer located at Eversource

solar site in East Springfield as shown in Figure 9. The line voltage of the circuit is 13.8

kV. The net DG current installed is 5,233.715 kW with 14,291.2 kW in progress.

Parameters of cloud motion were determined by analyzing data from the pyranometer to

gather measurable parameters regarding a cloud's impact on the system. Of the data to

20

collect, cloud speed, width of cloud, and time interval between clouds is determined.

The direction of the moving cloud can also be determined with knowledge of the solar

array’s layout.

Cloud Motion Simulator Parameters

Figure 7 below shows how four of the parameters for the cloud motion simulator

relate to irradiance values. Figure 8 is a table containing all the parameters of the

simulation. Fig. 9 is a visual representation of how the parameters affect the simulation.

Figure 7: Demonstrating the use of irradiance values, the change of value, and the rate of change of

values to find the CMS parameters.

The wind speed indicates how fast the cloud moves over the PV array, and

determines how long the simulation performs the analysis of one cloud over the array.

The time between successive clouds is a representation of how cloudy the day is, with a

shorter interval indicating more tightly packed clouds. The cloud width parameter

21

determines how much of the array is covered as the cloud passes over. The final

parameter is how fast a PV system can react to cloud coverage. A cloud may

completely pass over an array, but still affect system output afterwards based on the

systems rate of change.

Parameter Parameter Description

P1 Number of clouds
passing over

P2 Direction of cloud
movement

P3 Speed of cloud over the
system

P4 Time between
successive clouds

P5 Width of clouds

P6 Rate of change PV
generation as clouds
move over the system

Figure 8: Cloud Motion Simulator Parameters

Number of Cloud: (P1) The first parameter is the number of clouds passing over the

East Springfield array, which is how many instances the simulation will analyze.

Cloud speed: (P2) Throughout the calculations, the speed of the clouds was kept at a

constant 7.6605 miles per hour to keep the coverage time longer than the decay time.

22

Width of Clouds: (P3) With increasing width of clouds the Pst also increases as long as

the coverage time is less than decay time.

Number of clouds: (P4) With more clouds drifting over a PV system the number of

fluctuations increase, increasing the Pst value.

Time interval between two successive clouds: (P5) By giving more time between cloud

coverage, similar to the time it takes for the output to reach the minimum, the Pst value

also increases.

Direction of Cloud Motion: (P6) The direction of cloud movement allows the simulation

to adjust PV output based on the configuration and orientation of the PV array. This was

assumed to be laterally over the array, covering more and more each second until it

leaves

Figure 9: Visual representation of the cloud motion simulator parameters

23

Calculations

The Pst calculation is a calculation done in order to determine the flicker

perceptibility of a distribution system. This has two elements: long- and short-term

flicker. The short-term flicker is more applicable in this case due to the impacts that

clouds can have in an instant over a solar array.

Using data given to the team by Eversource, Pst calculations were done using

MATLAB. These values can be calculated using these equations:

 ΔS/Sd = sc (7)

 2.3 T f = * (100)* d * F 3 (8)

 P st = √3 Σ T f

window interval (9)

Where d is a parameter that describes percentage voltage flicker and is theSΔ

change in power output and Ssc is the maximum available fault current. F is a

parameter that describes the fastest rate of change in the system and is set to 0.2 in

this case. Using these equations, the data analyzed over the course of three days

yields graphs of Pst over time.

24

GE Curve

Figure 10: GE Curve

Desired by Eversource was a comparison between the IEEE 1453-2015 curve to

the GE curve. Since the GE curve was the initial standard and is still in use today it is

important that the flicker attributed on the grid meets all standards. After conducting a

few MATLAB analysis, on average, the number of dips per minute from Eversource’s

data results in 5 dips. This number falls in between both the line of irritation and line of

visibility. This is ideal since it does not further impact the end user, however, the larger

dips, dips of 30% and more is an issue.

25

Results

Tap Changer

After obtaining information in regards to the tap changes over time, a plot of

average tap changes per day was generated to observe any trends. Figure 11 below

shows the average tap changes per day of the 18G-8x circuit.

Figure 11: Average Tap Changing Operations for 18G-8x Circuit

After further analysis, it was decided that the graph be split up into two sections.

The first, between 2014 and 2017 and the next between 2017 and 2019, the most

recent data. The large spikes in mid 2015 years, is a result of UMass Amherst adding a

26

project to the Eversource grid and then a stabilization. However, the key thing to notice

is that after March of 2017 there is a slight increase in tap changes over time. At first the

line doesn’t look steep however upon further investigation it is an increase of seven to

almost ten changes a day which is significant. The conclusion is that with more and

more PV systems added to the grid, there is an increase in voltage changes which

means faster wear time and the possibility of failure and need of replacement.

Voltage Analysis

With Voltage and Irradiance data for the 18G8 circuit obtained, one could

observe relationships between the two graphically. Irradiance and Voltage are both

measured in respect to time, using one of two sensors, an ACLARA sensor or a

pyranometer, so that the rates of change could also be compared. Another comparison

made was the direct correlation of irradiance to measured voltage, which produced 9

horizontal lines when graphed. This most likely has to do with where the voltage

measurement is taken, and what the ratio for the transformer was at the time of

measurement.

27

Figure 12: Aclara Data Over Three Days

Figure 13: Aclara Data as Rate of Change Over Three Days

28

Figure 14: Aclara Data of Voltage Versus Irradiance Over Three Days

Short-Term Flicker Severity (Pst)

The overarching goal for this project was to allow Eversource to analyze their

grid in order to make better decisions about new DER entering the grid, and

subsequently maintenance or upgrades that would be necessary to support these

DERs. The Pst calculation is a calculation done in order to determine the flicker

perceptibility of a distribution system. Due to the infrastructure that was present at the

time the resolution of the irradiance data that was available was only a fifteen-minute

interval. To accommodate for this the Pst calculations were calculated for an hour

window instead of the normal ten-minute window.

29

Figure 15: Pst Calculations Using Eversource Data

Figure 15 shows that the Pst values calculated all fall below the 2% fluctuation

benchmark Eversource holds standard. With fluctuation within acceptable bounds, the

relationship between line power and irradiance on line voltage was explored and is

displayed in Figure 16.

30

Figure 16: Irradiance Versus Line Power With Respect to Time

31

Figure 17: Pst Versus Line Voltage, Zoomed In

Due to how close irradiance and line power correspond, Figure 17 is a zoomed in

view of Figure 16 to provide a better understanding of the relationship between the Pst

and line voltage to see the full impact that a cloud coverage dip has on output and utility

line transmission. The effect of irradiance on line voltage can be determined by the line

power, as the current is kept constant so fluctuations in power result from a change in

line voltage.

As seen in these figures, the impact on line voltage caused by irradiance is clear.

There is in fact a lag in line voltage fluctuation due to irradiance. Unfortunately, with the

32

limited resolution of data available, this time cannot be accurately determined. The Pst

was also compared against irradiance in order to see the relationship between the two.

Figure 18: Pst Versus Irradiance

33

Figure 19: Pst Versus Irradiance, Zoomed In

As exemplified by the beginning of the zoomed in graph, the lobes of the

irradiance and Pst fluctuation spike are matching after removing data. This shows the

relationship between solar irradiance on a panel and both voltage fluctuation and line

voltage. A big takeaway is the impact of cloud motion direction on Pst. The Pst graphs,

specifically Figure 15, show that the direction of cloud motion can change the maximum

value of Pst. The change is due to the fact that for different cloud motion directions,

different PV generators are affected in the time sequence, and this results in different

voltage changes, and consequently, different Pst values.

34

GUI

The purpose of the graphical user interface (GUI) is to provide a way to analyze

irradiance data from a pyranometer for a given period of time in an efficient manner.

Below is the current state of the GUI with an explanation of its functionality.

Figure 20: Current Functionality of GUI

35

Upon hitting run in Synergi, the Graphic User Interface displays. Hitting run in the toolbar

shows the next screen with four button options. Additionally, a command window asks for the

desired wind speed to calculate cloud coverage and length. Each button has a different

functionality. The first runs a normal CMS calculation and displays graphs shown in Figure 7.

The button below runs a load flow within Synergi to calculate the different loads at the

moment. The third button displays PST data shown in Figure 19, for easy accessible

references. Finally, the IR display button shows the two graphs seen in Figure 20,

showing dips and changes over time in longer time spans. Further testing will be done

to make sure this is smoothly added to Synergi and it accomplishes all the goals we set

out to do. Due to the nature of the software that Eversource provides, quick numbers

are provided without any analysis. Providing a Graphic User Interface (GUI) to see the

effect of cloud coverage. With the additional input of cloud speed, the other Cloud

Motion simulator parameters such as cloud width and rate of PV output so that a better

understanding of what happens when a cloud rolls can be gathered. What we intend to

do in terms of adjusting Transformer output based on irradiance data in “real time”. In

our current situation hopefully every few seconds based on past IR data.

Conclusion

Considering PV accounts for over 9% of produced renewable energy in the

United States, the ability to predict the effect of clouds passing over an array, the most

likely cause of flicker, and its ability to influence the power grid, is of interest(U.S.

Energy Information Administration). This paper introduces a cloud motion simulator that

36

simulates cloud shadows passing over a PV array. The CMS calculates the short-term

flicker based on the IEEE 1453-2015 standard. In this work, effects of the cloud speed,

width, number, direction, and interval between on short-term flicker are investigated.

Results indicate that there is a relationship between flicker from a PV site and the

voltage of the power lines it feeds.

Going Forward

The final end state would be the implementation and integration of code and begin

testing to provide insight to Eversource. Initial analysis of the tap changers produced

Information Eversource was Intrigued to receive and our initial voltage analysis, the

same. The next step in this process is the full implementation of our analysis tool into

synergi for eversource to utilize. Unfortunately, this aspect could not be realized at the

time of writing due policy regarding the project team as an outside source to modify

company software. Further expansion of this project would include real time analysis of

irradiance data and automating the adjusting of generators to maximize efficiency based

on the irradiance data.

37

References

Energy Sage. Solar Panel Efficiency: What Panels are most Efficient? |

EnergySage. Energy Sage, 2020,

https://news.energysage.com/what-are-the-most-efficient-solar-panels-on-the-

market/.

Evans, Simon. "Solar, Wind and Nuclear have 'Amazingly Low' Carbon Footprints,

Study Finds.", -12-08T17:58:33+00:00, 2017,

https://www.carbonbrief.org/solar-wind-nuclear-amazingly-low-carbon-footprints

.

Eversource Energy. 2018 Sustainability Report.

---. "Information and Technical Requirements for the Interconnection of Distributed

Energy Resources (DER).", Jan 21, 2020,

https://www.eversource.com/content/docs/default-source/builders-contractors/d

er-information-technical-requirements.pdf?sfvrsn=ab2bfc62_8.

IEEE Draft Recommended Practice -- Adoption of IEC 61000-4-15:2010,

Electromagnetic Compatibility (EMC)---Testing and Measurement

Techniques---Flickermeter---Functional and Design Specifications. , 2011,

doi:10.1109/IEEESTD.2011.5937014.

38

https://news.energysage.com/what-are-the-most-efficient-solar-panels-on-the-market/
https://news.energysage.com/what-are-the-most-efficient-solar-panels-on-the-market/
https://www.carbonbrief.org/solar-wind-nuclear-amazingly-low-carbon-footprints
https://www.eversource.com/content/docs/default-source/builders-contractors/der-information-technical-requirements.pdf?sfvrsn=ab2bfc62_8
https://www.eversource.com/content/docs/default-source/builders-contractors/der-information-technical-requirements.pdf?sfvrsn=ab2bfc62_8

IEEE Recommended Practice for the Analysis of Fluctuating Installations on Power

Systems. , 2015, doi:10.1109/IEEESTD.2015.7317469.

N.C. Clean Technology Center. "Dsire.", Feb 26, 2020,

https://programs.dsireusa.org/system/program?fromSir=0&state=MA.

Nwaigwe, K. N., P. Mutabilwa, and E. Dintwa. "An Overview of Solar Power (PV

Systems) Integration into Electricity Grids." Materials Science for Energy

Technologies, vol. 2, no. 3, 2019, pp. 629-633. CrossRef,

https://doaj.org/article/2a371a7ccbfc4a37bb9148b954ca7cd4,

doi:10.1016/j.mset.2019.07.002.

Pitt, Jeson. "All You Need to Know about Tap Changers.",

2018-08-21T11:04:00.0000000-04:00, 2018-08-21T11:04:00.0000000-04:00,

https://www.azom.com/article.aspx?ArticleID=16582.

Rahimi, Kaveh, et al. "Computation of Voltage Flicker with Cloud Motion Simulator."

IEEE Transactions on Industry Applications, vol. 54, no. 3, 2018, pp.

2628-2636. CrossRef, https://ieeexplore.ieee.org/document/8240682,

doi:10.1109/TIA.2017.2787621.

U.S. Energy Information Administration. "What is U.S. Electricity Generation by

Energy Source?", Feb 27, 2020,

https://www.eia.gov/tools/faqs/faq.php?id=427&t=3.

39

https://programs.dsireusa.org/system/program?fromSir=0&state=MA
https://doaj.org/article/2a371a7ccbfc4a37bb9148b954ca7cd4
https://www.azom.com/article.aspx?ArticleID=16582
https://ieeexplore.ieee.org/document/8240682
https://www.eia.gov/tools/faqs/faq.php?id=427&t=3

US Energy Information Administration. "How Much of U.S. Energy Consumption

and Electricity Generation Comes from Renewable Energy Sources?", Jun 4,

2019, https://www.eia.gov/tools/faqs/faq.php?id=92&t=4.

40

https://www.eia.gov/tools/faqs/faq.php?id=92&t=4

Appendices

CMS Code [Matlab]
Used to produce CMS graphs and CMS parameters

%Solar Sort
clear Q N i L Data J;

Q = size(BNLSolarData);
N = Q(1);
i = 2;
L = 1;
Data = [];
while(i <= N)
 J = char(string(table2array(BNLSolarData(i,1))));
 if str2num(J(2)) == L
 if J(14) == '9' && J(16) == '3'
 d = table2array(BNLSolarData(i,2))
 Data = [Data, d]
 end
 if J(14) == '9' && J(16) == '4'
 L = L + 1;
 plot(Data)
 end
 end

 i = i + 1;
end

%BucketSort
%import data from previous script one day at a time. Note call the imported data IR
%it will sort into buckets for ROC and regular values

dIRdt = diffby5(IR);
dIRdt = abs(dIRdt);
%differentiate in a discrete manner IR
B1 = 0; %%0-30
B2 = 0; %%30-40
B3 = 0; %%40-50
B4 = 0; %%50-60
B5 = 0; %%60-70
B6 = 0; %%70-80
B7 = 0; %%80-90

41

B8 = 0; %%90+
%IR data
A1 = 0; %%0-30
A2 = 0; %%30-40
A3 = 0; %%40-50
A4 = 0; %%50-60
A5 = 0; %%60-70
A6 = 0; %%70-80
A7 = 0; %%80-90
A8 = 0; %%90+
Size = size(dIRdt);
%%get size of IR
for i=(1:Size(1,2))
 %Bucket sort dIR/dt
 if dIRdt(i) < 30
 B1 = B1+1;
 elseif (dIRdt(i) > 30 && dIRdt(i) < 40)
 B2 = B2+1;
 elseif (dIRdt(i) > 40 && dIRdt(i) < 50)
 B3 = B3+1;
 elseif (dIRdt(i) > 50 && dIRdt(i) < 60)
 B4 = B4+1;
 elseif (dIRdt(i) > 60 && dIRdt(i) < 70)
 B5 = B5+1;
 elseif (dIRdt(i) > 70 && dIRdt(i) < 80)
 B6 = B6+1;
 elseif (dIRdt(i) > 80 && dIRdt(i) < 90)
 B7 = B7+1;
 else
 B8 = B8+1;
 end
end
S2 = size(IR)
for i=(1:S2(1,2))
 %Bucket sort IR
 if IR(i) < 30
 A1 = A1+1;
 elseif (IR(i) > 30 && IR(i) < 40)
 A2 = A2+1;
 elseif (IR(i) > 40 && IR(i) < 50)
 A3 = A3+1;
 elseif (IR(i) > 50 && IR(i) < 60)
 A4 = A4+1;
 elseif (IR(i) > 60 && IR(i) < 70)
 A5 = A5+1;
 elseif (IR(i) > 70 && IR(i) < 80)
 A6 = A6+1;
 elseif (IR(i) > 80 && IR(i) < 90)

42

 A7 = A7+1;
 else
 A8 = A8+1;
 end
end
 DataCheck = B1+B2+B3+B4+B5+B6+B7+B8
 %this loop sorts each discrete point into one bucket with ranges
 %designated above then chacks to ensure the buckets add to the total
 %data size
 B = [B1,B2,B3,B4,B5,B6,B7,B8]/Size(1,2);
 A = [A1,A2,A3,A4,A5,A6,A7,A8]/S2(1,2);
 %plot both functions as bar charts
 figure(1)
 bar(B)
 figure(2)
 bar(A)

function [output_data] = diffby5(input_data)
% find the Rate of change of input_data based on every fourth data
% entry(limits data set and creates a smoother curve generally
Q = size(input_data);
S = Q(1,2); %gets the actual size because size returns a table
j = 1;
i = 1;
while i < S
 if(i+5 < S)
 output_data(j) = ((input_data(i+4) - input_data(i))/5);
 j = j + 1; % iterate output data array counter
 i = i + 4; %jump and check new RoC for 5 seconds forward
 else
 i = i + 1;
 end
end
end
function [Sorted_data] = sortGreaterThanZero(Monthly_IR_Data)
%trim the IR data to be only greater than 0.4 and have a new index with the
%smallest possible value to allocate all data properly
j = 1;
for i = (1:size(Monthly_IR_Data))
 if Monthly_IR_Data(i) > 0.04
 Sorted_data(j) = Monthly_IR_Data(i);
 j = j + 1;
 end
end
end

43

Pst Code [Matlab]
clearvars -except combinedData
h = exist("combinedData",'var');
pause(3);
if(h)
 q = size(combinedData);
 q = q(1);
 if(q == 373)
 clearvars combinedData;
 clearvars q;
 h = 0;
 end
end
if(~h)

%% Import data from text file
% Script for importing data from the following text file:
%
% filename: C:\Users\cmcurll\Desktop\18G3\combinedData.csv
%
% Auto-generated by MATLAB on 23-Mar-2020 13:49:55

%% Setup the Import Options and import the data
opts = delimitedTextImportOptions("NumVariables", 5);

% Specify range and delimiter
opts.DataLines = [3, 1118];
opts.Delimiter = ",";

% Specify column names and types
opts.VariableNames = ["INSTANTANEOUSREALPOWER", "Sensor000616", "VarName3",
"START20190908", "Var5"];
opts.SelectedVariableNames = ["INSTANTANEOUSREALPOWER", "Sensor000616", "VarName3",
"START20190908"];
opts.VariableTypes = ["datetime", "double", "double", "double", "string"];

% Specify file level properties
opts.ExtraColumnsRule = "ignore";
opts.EmptyLineRule = "read";

% Specify variable properties
opts = setvaropts(opts, "Var5", "WhitespaceRule", "preserve");
opts = setvaropts(opts, "Var5", "EmptyFieldRule", "auto");
opts = setvaropts(opts, "INSTANTANEOUSREALPOWER", "InputFormat", "MM/dd/yyyy HH:mm");

44

% Import the data
combinedData = readtable("C:\Users\cmcurll\Desktop\18G3\combinedData.csv", opts);

%% Clear temporary variables
clear opts
end
p = exist("Solar",'var');
if(~p)
%% Import data from spreadsheet
% Script for importing data from the following spreadsheet:
%
% Workbook: C:\Users\cmcurll\Desktop\Solar.xlsx
% Worksheet: Sheet1
%
% Auto-generated by MATLAB on 30-Mar-2020 16:06:33

%% Setup the Import Options and import the data
opts = spreadsheetImportOptions("NumVariables", 3);

% Specify sheet and range
opts.Sheet = "Sheet1";
opts.DataRange = "A1:C384";

% Specify column names and types
opts.VariableNames = ["Sep2019000000", "VarName2", "VarName3"];
opts.VariableTypes = ["datetime", "double", "double"];

% Specify variable properties
opts = setvaropts(opts, "Sep2019000000", "InputFormat", "");

% Import the data
Solar = readtable("C:\Users\cmcurll\Desktop\Solar.xlsx", opts, "UseExcel", false);

%% Clear temporary variables
clear opts
end
% this data is in 5 minute intervals, I may add Gaussian white noise to
% simulate second data
i = 1;
j = 1;
q = size(combinedData);
q = q(1);

storeData = zeros((q/3)+1,4);
while(j < q)

45

 storeData(i,1) = i;%table2array(combinedData(1,j));
 storeData(i,2) = double(table2array(combinedData(j,2)));
 storeData(i,3) = double(table2array(combinedData(j,3)));
 storeData(i,4) = double(table2array(combinedData(j,4)));
 j=j+3;
 i=i+1;
end
 clearvars combinedData;
 combinedData = zeros((q/3)+1,4);
 combinedData = storeData;
 clearvars storeData;
Psimulated = (combinedData(:,2));
%Psimulated = resample(Pow,5,1);
IR_US = (Solar(:,2));
%IR_US = resample(IR,15,1);
Vsimulated = (combinedData(:,3));
%Vsimulated = resample(Vinst,5,1);

% L was calculated in synegri it represents the load down the circuit from
% the solar DG
j = sqrt(-1);
L = 0.059+j*0.165;
%volatage / current lead or lag
phi = tan(imag(L)/real(L));
%apparent power
i = size(Psimulated);
i = i(1);
j = 1;
Q = zeros(1,i);
while(j < i)
 %get reactive power
 Q(j) = tan(phi)*Psimulated(j,1);
 j = j + 1;
end
R = real(282.3256*L);
X = imag(282.3256*L);
j = 1;
k = 1;
maxV = 0;
minV = 50000;
maxCurrent = 0;
maxDeltaV = 0;
while(j < i)
 %find min and max IR of each hour window from current location in
 %the dataset
if(j + 4 < i)
 while(k < 4)
 if(Vsimulated(j+k,1) > maxV)

46

 maxV = Vsimulated(j+k,1);
 end
 if(minV > Vsimulated(j+k,1))
 minV = Vsimulated(j+k,1);
 end
 deltaV = maxV-minV;
 if(maxDeltaV < deltaV)
 maxDeltaV = deltaV;
 end
 current = Psimulated(j+k,1)/Vsimulated(j+k,1);
 if(maxCurrent < current)
 maxCurrent = current;
 end
 k = k + 1;
 end
end
 k = 1;

 F = maxDeltaV/maxV; % percentage fluctuation from max value within 30min seconds
 deltaS = maxV-minV; % max fluctuation
 Ssc = maxCurrent; %max available current from PCC
 d = deltaS/Ssc; %parameter for flicker
 Tf(j) = 2.3*(100*d*F)^3; % flicker time according to solar data
 if(j + 4 < i)
 deltaP = max(Psimulated(j:j+4)) - min(Psimulated(j:j+4));
 deltaQ = max(Q(j:j+4)) - min(Q(j:j+4));
 avgV = mean(Psimulated(j:j+4));
 d2 = ((R * deltaP) + (X * deltaQ))/(avgV^2);
 Tf2(j) = 2.3*(100*d2*F)^3; % flicker time according to solar data
 end
 maxV = 0;
 minV = 50000;
 maxCurrent = 0;
 maxDeltaV = 0;
 j = j + 1;
end
i = i -60;
j = 1;
k = 1;
q = size(Vsimulated);
q =q(1);
eightk = 8000 + zeros(q,1);
VsimulatedNorm = Vsimulated - eightk;
Pst = zeros(1,i);
while(j < i-1)
 if(j+10 < 5519)
 Pst(j) = (sum(Tf(j:j+1))/60)^(1/3);
 Pst2(j) = (sum(Tf2(j:j+1))/60)^(1/3);

47

 end
 j = j + 1;
end
%based on data from 09/08/2019-09/11/2019
figure(1)
plot(Pst(1:313))
 title('Time vs Pst')
 xlabel('Time from 9/8/2019 00:00:00 to 9/11/2019 21:55:00 incremented over 15 minutes')
 ylabel('Pst [% fluctuation]')
%figure(2)
%plot(Pst2(20:5501))
 % title('time vs Pst2')
 % xlabel('Time in minutes')
 % ylabel('Pst2')
%% notes
%d = (line resistance * active power change) + ((reactance * reactive power change)/nominal voltage^2)
%F = maxDeltaV/maxV; or percentage fluctuation from max value within 60 seconds
%Tf(i) = 2.3*(100*d*F)^3; % flicker time according to solar data
% Pst = cube root(sum(Tf)/10min)
% Plt = cube root(1/12*sum[1:12](Pst^3))
eightk = 8000 + zeros(i+60,1);
VsimulatedNorm = (Vsimulated - eightk);
IR_US = double(table2array(IR_US));
%Vsimulated = double(table2array(Vsimulated));
figure(3)
hold on
title("Irradiance vs Line Voltage")
yyaxis left
ylabel("Irradiance [W/m^2]")
ylim([0 1200])
plot(IR_US)
yyaxis right
ylabel("Volts [V]")
plot(Vsimulated(1:313));
legend("IR","Vsim");
xlabel("Time from 9/8/2019 00:00:00 to 9/11/2019 21:55:00 incremented over 15 minutes")
hold off

figure(6)
hold on
title("Pst vs Irradiance")
yyaxis left
ylabel("Pst Values [% fluctuation]")
plot(Pst)
yyaxis right
ylabel("W/m^2")
ylim([0 1200]);
plot(IR_US)

48

legend("PST","IR");
xlabel("Time from 9/8/2019 00:00:00 to 9/11/2019 21:55:00 incremented over 15 minutes")
hold off

49

Generator output Code
import mlreportgen.ppt.*
%% This file gets the IR change over a window so that we can change the transformer output
percentages in Synergi
%Output table: durations,sizes,wind,
%% Import IR data needed if not already imported
%this takes approximately 2 minutes if executed
h = exist("secondData",'var');
if(~h)
 % Import data from spreadsheet
 % Script for importing data from the following spreadsheet:
 % Auto-generated by MATLAB on 24-Feb-2020 13:03:07
 % Setup the Import Options and import the data
 opts = spreadsheetImportOptions("NumVariables", 12);
 % Specify sheet and range
 opts.Sheet = "Sheet2";
 opts.DataRange = "A1:L1048576";
 % Specify column names and types
 opts.VariableNames = ["Column1", "Var2", "Var3", "Var4", "Var5", "Var6", "Var7", "Column8",
"Var9", "Column10", "Var11", "Column12"];
 opts.SelectedVariableNames = ["Column1", "Column8", "Column10", "Column12"];
 opts.VariableTypes = ["string", "char", "char", "char", "char", "char", "char", "string", "char",
"string", "char", "string"];
 % Specify variable properties
 opts = setvaropts(opts, ["Column1", "Var2", "Var3", "Var4", "Var5", "Var6", "Var7", "Column8",
"Var9", "Column10", "Var11", "Column12"], "WhitespaceRule", "preserve");
 opts = setvaropts(opts, ["Column1", "Var2", "Var3", "Var4", "Var5", "Var6", "Var7", "Column8",
"Var9", "Column10", "Var11", "Column12"], "EmptyFieldRule", "auto");
 % Import the data
 secondData = readtable("C:\Users\cmcurll\Downloads\second data.xlsx", opts, "UseExcel",
false);
 % Clear temporary variables
 clear opts
end

% ask for wind speed or option for file input

x = input("Enter Wind Speed for day in single quotes or type file for a file
import: \nfile import must match time scale and size of IR data\nPlease rename the file WIND
pre import\n");

50

if(x ~= "file")
 windSpeed = str2double(x);
else
 uiopen
end

%% start CMS
%% start CMS
%Best to use if only one day of data is imported otherwise it will take
%forever and the data may not be that useful
 m = double(table2array(secondData(:,3))); %import all of column 3 for IR data, if you need a
different column change this
 highIR = 0;
 SSS = size(m); % gets the size of the passed parameter m
 cloud = zeros(1,SSS(1,2));
 IRdip = [];
 cloudsizes = [];
 starttimes = [];
 durations = [];
 starttime = 0;
 endtime = 0;
 windtotal = 0;
 windavg = 0;
 cloudsize = 0;
 j = 1;
 i = 2;
 lowIR = 900;
 eof = SSS(1,1);
while(i <= eof)
 if(m(i,1) > highIR - 19)
 if(m(i,1) > highIR)
 highIR = m(i,1);
 end
 %store highest IR number to this point
 cloud(i) = 0;
 if(cloud(i-1) == 1)
 endtime = i;
 end
 elseif(m(i) + 19 < highIR)
 cloud(i) = 1;
 if(m(i) < lowIR)
 lowIR = m(i);
 end

51

 %if there is a discrepancy of more than 20 W\m^2 then we assume
 %there is a cloud or at least the sun is setting
 if(cloud(i-1) == 0)
 starttime = i;
 end
 else
 cloud(i) = 0;
 if(cloud(i-1) == 1)
 endtime = i;
 end
 end
if(starttime ~= 0 && endtime ~= 0)
 starttimes = [starttimes,starttime];
 IRdip = [IRdip,highIR-lowIR];
 highIR = 0;
 lowIR = 900;
 if(x=="file")
 windavg = 0;
 windtotal = 0;
 while(j <= endtime-starttime)
 windtotal = windtotal+WIND(j+starttime);
 end
 windavg = windtotal/j;
 else
 windavg = windSpeed;
 end
 %convert windavg to cloud size
 %1mile/hr = 0.447m/s
 %endtime-starttime = coverage in minutes
 %m/s*(coverage in min)*60sec/min outputs cloud size in meters

 cloudsize = 0.447*windavg*(endtime-starttime)*60;
 duration = endtime - starttime;
 cloudsizes = [cloudsizes, cloudsize];
 durations = [durations, duration];
 %%store data from calculation in case its needed later
 %%we are assuming square clouds for worst case scenario analysis
 starttime = 0;
 endtime = 0;
 cloudsize = 0;
 duration = 0;
 windtotal = 0;
 %windavg = 0;

52

 j = 1;
end
i = i +1;
end
figure(1)
stem(starttimes,IRdip);
xlabel("times of cloud cover start in seconds since start")
ylabel("Size of irradiance change [W/m^2]")
i = 1;
s = size(durations);
s = s(1,2);
while(i<s)
if(durations(1,i) > 10000)
 durations(1,i) = 0;
end
i = i + 1;
end
figure(2)
stem(starttimes,durations);
xlabel("times of cloud cover in seconds since start")
ylabel("length of duration in seconds")
%clearvars -except m IRdip starttimes eof maxIR
generatorOutputs = zeros(1,eof);
j = 1;
i = 1;
maxIR = input("Enter IR value in Watts per Meter squared that leads to 100% generator
output in single quotes\n");
maxIR = str2double(maxIR);
while(i <= eof)
 generatorOutputs(i) = 100*(m(i)/maxIR);
 i = i + 1;
end
figure(3);
plot(generatorOutputs);
xlabel("time in seconds since start")
ylabel("percentage setting for generator output")

% create csv's for import to python and data analysis
outputs = [cloudsizes',durations',IRdip',starttimes'];
out = table(outputs(:,1),outputs(:,2),outputs(:,3),outputs(:,4));
out.Properties.VariableNames = ["cloud sizes[m]","duration of cover[s]","delta IR[W/m^2]","start
times"];

53

writematrix(generatorOutputs',"genOutput.csv");
writetable(out,"cloudData.csv");

54

GUI Code [Python]

import tkinter as tk
import requests
from decimal import getcontext, Decimal
#import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import pandas as pd

month_dict = {"jan" : "January",
 "feb": "February",
 "mar": "March",
 "apr": "April",
 "may": "May",
 "jun": "June",
 "jul": "July",
 "aug": "August",
 "sep": "September",
 "oct": "October",
 "nov": "November",
 "dec": "December"}

#lat and long are based on an x-y plane coordinate system so if W, long needs to be negative
need to start coding in the eversource stuff
HEIGHT = 700
WIDTH = 800

getcontext().prec = 5

labels = []

#try and use Text to print on each line
#the data is in kWh/m^2/day
def ir_format_response(weather):
 IR_data = pd.read_csv('/Users/MarkusZimmermann/Desktop/6A267-2012_2000_KW.csv', index_col =
"DATE")
 weather = str(weather)
 print(weather)
 r = 0
 counter = 0
 filtered = IR_data.loc[[weather], ["TIME", "kW"]]
 x = filtered.TIME

55

 y = filtered.kW

 for num in y:
 if num != 0:
 non_zero_IR = num
 labels.append(tk.Label(lower_frame, text=str(non_zero_IR), anchor="w", justify="left"))
 labels[r].place(relwidth=0.5, y=(r*20))
 r = r + 1
print(non_zero_IR)

 plt.plot(x, y)
 plt.ylabel('IR')
 plt.xlabel('Time (5 minute intervals)')
 plt.title('IR vs Time')
 plt.show()

print(filtered)

mylist = Listbox(lower_frame, yscrollcommand = scrollbar.set)
for key in month_dict.keys():
temp = Decimal(weather["outputs"]["avg_dni"]["monthly"][key])*(730)
mylist.insert(END, month_dict[key] + ": "+ str(temp))

r = 0
del labels[:] #remove any previous labels if the callback was called before
for key in month_dict.keys():
temp = Decimal(weather["outputs"]["avg_dni"]["monthly"][key])*(730)
labels.append(tk.Label(lower_frame, text=month_dict[key] + ": "+ str(temp), anchor="w",
justify="left"))
labels[r].place(relwidth=0.5, rely=0.2, y=(r*20))
r = r + 1

def city_format_response(weather):
 try:
 name = weather["name"]
 desc = weather["weather"][0]["description"]
 final_str = "City: %s\nDescription: %s\n\nAverage Irradiance in W/m^2:" % (name, desc)
 except:
 final_str = "There was a problem with the input"

 return final_str

##def get_ir_data(coordinate):

56

ir_weather_key = "3sQIGVGw9civsBSL7uI50SispEWBcx1g4gLomFvx"
#url =
"https://developer.nrel.gov/api/alt-fuel-stations/v1.json?fuel_type=E85,ELEC&state=CA&limit=2&api_key=
3sQIGVGw9civsBSL7uI50SispEWBcx1g4gLomFvx&format=JSON"
ir_url =
"https://developer.nrel.gov/api/solar/solar_resource/v1.json?api_key=3sQIGVGw9civsBSL7uI50SispEWB
cx1g4gLomFvx"
coor_string = coordinate.split(", ")
print(coor_string)
ir_params = {"APPID": ir_weather_key, "lat": float(coor_string[0]), "lon": float(coor_string[1]), "units":
"imperial"}
ir_response = requests.get(ir_url, params=ir_params)
weather = ir_response.json()

 ##ir_format_response(weather)
 ##print(weather)

def get_city(coordinate):
 city_weather_key = "8897cde892da72541a4c2b7baed2289b"
 city_url = "https://api.openweathermap.org/data/2.5/weather?"
 coor_string = coordinate.split(", ")
 print(coor_string)
 city_params = {"APPID": city_weather_key, "lat": float(coor_string[0]), "lon": float(coor_string[1]),
"units": "imperial"}
 city_response = requests.get(city_url, params=city_params)
 weather = city_response.json()

 label_1["text"] = city_format_response(weather)
 print(weather)

#key for weather:
#8897cde892da72541a4c2b7baed2289b
api.openweathermap.org/data/2.5/forecast?q={city name},{country code}

#key for irradiance
#3sQIGVGw9civsBSL7uI50SispEWBcx1g4gLomFvx
#https://developer.nrel.gov/api/alt-fuel-stations/v1.json?fuel_type=E85,ELEC&state=CA&limit=2&api_key
=3sQIGVGw9civsBSL7uI50SispEWBcx1g4gLomFvx&format=JSON

root = tk.Tk()

canvas = tk.Canvas(root, height = HEIGHT, width = WIDTH)
canvas.pack()

#top frame
frame = tk.Frame(root, bg="#80c1ff", bd = 5)
frame.place(relx = 0.5, rely = 0.1, relwidth = 0.7, relheight = 0.1, anchor = "n")

57

entry = tk.Entry(frame, font=40)
entry.place(relwidth = 0.68, relheight = 1)
 #get_city(entry.get()) #this is the city
button = tk.Button(frame, text = "Get IR data", font=40,
command=lambda:[ir_format_response(entry.get())])
button.place(relx = 0.7, relwidth = 0.3, relheight = 1)

lower_frame = tk.Frame(root, bg="#80c1ff", bd = 10)
lower_frame.place(relx = 0.5, rely=0.25, relwidth=0.75, relheight=0.6, anchor="n")

label = tk.Label(lower_frame, anchor="nw", justify="left")
label.place(relwidth=1, relheight=0.1)

##label_1 = tk.Label(lower_frame, anchor="nw", justify="left")
##label_1.place(relwidth=0.5, relheight=0.01)

label_2 = tk.Label(lower_frame, anchor="e", justify = "right", text="This is a placeholder\nfor the graph")
label_2.place(relx=0.5, relheight = 0.81, relwidth = 0.5)

##scrollbar = tk.Scrollbar(lower_frame)
##scrollbar.pack(side = RIGHT, fill = Y)
##mylist.pack(side = LEFT, fill = BOTH)
##scrollbar.config(command = mylist.yview)

root.mainloop()

58

Extracted CMS Parameter
AVG Wind Speed = 12mph (User selected)

cloud sizes[m] duration of
cover[s]

delta IR[W/m^2] start times[s] since
"2018-01-01
00:00:00"

55678.32 173 137.4 128346 January 2, 2018,
11:39:06 AM

12229.92 38 43.6 128531

5471.28 17 24 128593

1609.2 5 28.4 128885

3218.4 10 206.2 128913

10620.72 33 391.3 128937

16735.68 52 42.2 129147

182805.12 568 57.8 129514 January 2, 2018,
11:58:34 AM

3540.24 11 232.2 130119

38620.8 120 382 130134

250713.36 779 422.5 130336

85609.44 266 43.7 131161

321.84 1 19.9 131505

7724.16 24 24 131646

37333.44 116 166.3 131838

11586.24 36 257.4 132071

5793.12 18 205.5 132124

1609.2 5 20.9 132482 January 2, 2018,
12:48:02 PM

9655.2 30 28.9 132550

59

14482.8 45 71.4 133476

15126.48 47 216.6 133775

643.68 2 21.2 134023

321.84 1 19.1 134711

17379.36 54 22.3 135707

26712.72 83 24.7 136266

2896.56 9 20 136966

53103.6 165 32.9 137552

8046 25 26.7 138155

2574.72 8 19.3 138273

965.52 3 19.2 138446

3218.4 10 20.7 138557

10620.72 33 23.2 138657

129701.52 403 74.9 139089

55678.32 173 48.6 139677

12873.6 40 22.3 140069

20863921.68 0 277.429 140576 January 2, 2018,
03:02:56 PM

60

Second Based Generator Outputs
Start time 2018-01-01 0:00:00
Max expected irradiance = 1200 W/m^2
Used to inject into Synergi electric and fulfil the goal of getting eversource a more accurate
flicker model

61

