
 
 

Project Number: FC CITZ 
 
 

MOTION DETECTION AND OBJECT TRACKING WITH INTERACTIVE 
SURFACES 

 
A Major Qualifying Project Report: 

 
Submitted to the Faculty of the 

 
WORCESTER POLYTECHNIC INSTITUTE 

 
in partial fulfillment of the requirements for the 

 
Degree of Bachelor of Science 

 
by 
 

_________________________________ 
 

Jonathan Glumac 
 

Date: April 30th, 2009 
 

 
 
 
 

__________________________________________ 
Professor Fabio Carrera, Project Advisor 

 
__________________________________________ 

Professor Michael J. Ciaraldi, Project Co-Advisor 
 

__________________________________________ 
Stephen Guerin, Project Sponsor 



 
 

 
 

Abstract 

I have developed software that allows users to interact with a surface using motion 
detection and object tracking.  The system communicates user input to a projector, 
allowing the user to control the data being projected.  The software will be integrated into 
a larger system to produce a completely interactive surface.



 
 

 
 
 

 
 

 
Table of Contents 

1 Introduction ...................................................................................................................... 1 
1.1 Current State ............................................................................................................. 1 
1.2 Project Focus ............................................................................................................. 4 
1.3 Definition of Terms................................................................................................... 4 

2 System Design ................................................................................................................. 6 
2.1 Project Requirements ................................................................................................ 6 
2.2 System Setup ............................................................................................................. 7 
2.3 Design Decisions ...................................................................................................... 7 

2.3.1 Motion Detection Decisions .............................................................................. 7 
2.3.2 Object Tracking Decisions ................................................................................. 9 
2.3.3 Network Communication Decisions ................................................................ 11 

3.1 Motion Detection .................................................................................................... 13 
3.2 Object Tracking ...................................................................................................... 15 
3.3 Network Communication ........................................................................................ 18 

4 Design Evaluation .......................................................................................................... 19 
4.1 Project Requirements .............................................................................................. 19 
4.2 System Testing ........................................................................................................ 20 
4.3 Areas of Concern .................................................................................................... 20 

5 Conclusion & Future Work ............................................................................................ 23 
6. Bibliography ................................................................................................................. 25 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

1 

1 Introduction 
 

The popularity of interactive screens and surfaces has created a large open source 

community for developing interactive media.  A majority of these projects are artistic in 

nature, revolving around user interaction to control music, and color to create an artistic 

display of images and sounds.  There are also some very practical applications for which 

these interactive surfaces can be used.  An example would be an interactive map display 

that would allow for the interactive planning and presentation of city projects, like that in 

development for the Venice Project Center. 

 Professor Fabio Carrera introduced me to Stephen Guerin of Redfish Group, LLC 

located in Sante Fe, New Mexico.  His company has been in collaboration with Professor 

Carrera to develop an interactive tabletop for use with the Venice Project Center.  The 

interactive tabletop would be used for, although not limited to, city and canal 

maintenance planning and the presentation of different traffic management scenarios to 

city officials.  The table would project a map that users around the table could interact 

with as they were discussing and planning city issues.  This project is focused on the 

creation of the interactive input for the Venice table using motion detection and object 

tracking.   

1.1 Current State 
 
 Currently there are several open source frameworks used for developing 

interactive surfaces.  One of them is called touchLib developed by the NUI group.  

Another is the reacTIVision framework, developed at the Universitat Pompeu Fabra in 

Madrid Spain as part of the reacTable project.  I will focus on the reacTIVision 



 
 

 
 
2 

 
 

framework and its implementation in the reacTable project, because it is very similar to 

the table in development at the Venice Project Center (Reactable, 2009).   

The reacTable is a musical instrument that provides visual and audio feedback to 

coincide with the user’s interactions.  The surface is designed with the projector and the 

camera being mounted underneath the surface of the table as shown in figure A.  A 

camera mounted under the table picks up any finger press made on the top of the table, 

and also has the ability to track certain objects with the use of fiducial markers.  Fiducial 

markers are shapes that appear on an object that help define a tangible object.  Examples 

of the fiducial symbols used by reacTable are shown in figure B. 

 
figure A (Reactable, 2009) 

 



 
 

 
 
3 

 
 

 

figure B (Reactable, 2009) 

 For the Venice table, the set up will be quite different.  It will not require anything 

under the table surface and will instead have the camera and projector mounted above the 

table as seen in Figure C.  The projector will display an image that the user can interact 

with.  At the same time, the camera will be capturing the user and object interaction from 

above.  The system will also have the ability to be integrated into other interactive 

surfaces that employ the same messaging protocol, such as the reacTable surface.  This is 

meant to provide a new means of interaction with the surface as hands, fingers and 

objects are tracked from above.   



 
 

 
 
4 

 
 

 

figure C 

1.2 Project Focus 
 
 The focus of this project is to develop a system that can detect motion and track 

objects above or in front of a surface using a camera.  The system will report to a client 

with all the information it has collected and processed.  The product will be part of a 

larger system in which the client communicates with the projector to display new data. 

The projector will change or alter the image based on the interaction collected from the 

camera.   

1.3 Definition of Terms 
 
 Blob:    An area of detected movement in a frame. 



 
 

 
 
5 

 
 

 
 Processing:  A java based visualization library. 
 

Processing Sketch: A Processing sketch is an open project in the Processing 
library. 

  
OSC: Stands for Open Sound Control, which is a network 

protocol. 
 

 TUIO:   A network protocol developed on top of the OSC protocol. 



 
 

 
 
6 

 
 

  

2 System Design 
 
 This section discusses the project requirements.  Due to the proprietary nature of 

the project, I am limited in the amount of detail I can give regarding the design and 

source code.   

2.1 Project Requirements 
  
 The project was proposed by Stephen Guerin with a number of requirements that 

needed to be fulfilled in order for the project to be a useful contribution to the Venice 

Interactive Table, as well as parameters that would ensure smooth integration. 

 The requirements were: 

• The system must be able to detect objects in motion across the top of the 

surface. 

• These objects must have a specific ID, which allows multiple objects to be 

tracked from frame to frame. 

• The object tracking information must be reported through the Open Sound 

Control network protocol so that the data can be transferred amongst other 

interactive systems. 

• An interactive example project must be implemented using the system that 

will be developed as a result of this project. 

Along with these requirements, there was also some discussion of extra features 

that would be useful for the system.  This included a finger detection algorithm, that 

would analyze the curvature of each blob and assess if the blob was a finger or not.  This 



 
 

 
 
7 

 
 

would provide more information to the system which could be programmed to handle 

fingers and hands differently than other blobs.   

2.2 System Setup 
  

This system will only require a simple webcam setup on a computer.  Other 

interactive surfaces might require different setups, but for the scope of this project the 

focus will stay on webcam motion detection and tracking.  I used a Logitech 3000 

webcam that has a USB connection.   

2.3 Design Decisions 
 
 The project was split up into three modules, each concentrating on an important 

aspect of the overall project.  They were divided into: 

• Motion Detection 

• Object Tracking 

• Network Communication 

2.3.1 Motion Detection Decisions 
 
 The motion detection module was dependant on how the object tracking was 

handled.  This was not because motion detection was less important than object tracking, 

but rather because there were more options available for motion detection.  Motion 

detection in general is handled in many different libraries, and has been utilized in several 

online examples.  Object tracking however is more rare in libraries, and is not found in 

many applications other than the frameworks developed for these interactive surfaces.  



 
 

 
 
8 

 
 

Regardless, there were still some important design decisions to be made with respect to 

motion detection. 

 For the motion detection module we chose to implement the project using 

Processing.  Processing is a Java based visualization language that is simple to learn, and 

would create the best opportunity for the development of user friendly features.  

OpenFrameworks was another library that was considered for the project.  It is a C++ 

based visualization library.  Processing was chosen because it already had much 

functionality we were looking for in this project.   

 The motion detection method that was selected is a background subtraction 

technique.  A previous frame is used as the background, and its color is subtracted from 

the current frame to detect any differences in the new frame.  This background frame will 

be resettable at any time by the user, but the first background frame used is the first frame 

that is processed by the application.  A “sliding window” for the background frame was 

considered as well.  The sliding time window would change the background frame at 

intervals so that it would come closer to what we are seeing in the current frames. This 

would improve the motion detection overall, but it would also eliminate any detected 

blobs that stop moving.  Once the blob stops moving, the background sliding window 

would slowly incorporate the blobs into the background. 

Optical flow was also considered as a means of motion detection, but its major 

weakness was that objects that stop moving are no longer detected.  This would make it 

harder to track objects from screen to screen.  With the background subtraction 

technique, we know the object is there even if its movement stops.  Another consideration 

for motion detection was the Camshift algorithm.  The only drawback of the Camshift 



 
 

 
 
9 

 
 

algorithm for this project was that it detects the distribution of a feature across the entire 

frame, such as color (Bradski & Kaehler, 2008).    This application is meant to track any 

movement of any object, and using the Camshift algorithm would limit the objects the 

system was detecting.  Background subtraction has its limitations as well, but there are 

image processing techniques which can limit “false positive” pixels in the frame (Bradski 

& Kaehler, 2008).   

To help define the blobs I used the v3ga blob detection library.  The v3ga library, 

which was developed for Processing, creates blob objects for any areas in the frame with 

a brightness level above a certain threshold.  The thresholding of the v3ga library, 

coupled with the background subtraction technique mentioned above will detect areas of 

brightness in the differenced frame.  This means the blob detection works best in areas of 

contrast between the current frame and the background frame.  The routine will work on 

dark surfaces as well as light surfaces, but it will only be able to detect objects that have 

enough contrast compared to the background. 

2.3.2 Object Tracking Decisions 
 
 Next we needed to figure out how to keep track of objects in motion from frame 

to frame.  The v3ga stores our detected objects as blobs, which gives us a structure to 

track, but the library does not handle tracking the blobs from frame to frame.  With 

modifications to the v3ga source code I implemented methods in the blobDetection class 

to keep track of the blobs that are being detected.   

Object tracking was a particularly hard topic to research.  Some libraries claiming 

to feature object tracking were only actually detecting the objects in motion and not 



 
 

 
 

10 

 
 

tracking their IDs from frame to frame.  Similarly, computer vision books that handled 

the topic of object tracking were actually only discussing methods of motion detection. 

 There were two sources already available that did handle object tracking.  The 

first was existing interactive surface frameworks called touchLib and reacTIVision.  

These were specifically developed for interactive surfaces.  They both detected touch 

events on the table surface using infrared light, and then tracked the finger tip’s motion.  

Either library would have been usable for my project if the blob tracking classes were not 

so heavily dependant on the rest of the library source.  To use the blob tracking class 

required a full setup and configuration of an interactive tabletop.  Even then I am not sure 

I would have been able to effectively use the class for our purposes. Also, using a 

tabletop-dependant library would complicate the possibility of a tabletop that had the 

camera and projector mounted above the table. 

 The next source that handled object tracking was part of the OpenCV library.  It 

was a video surveillance pipeline that was developed to take care of motion detection 

with several available algorithms, as well as handling any object tracking.  At first 

glance, the pipeline was the answer to the motion detection and object tracking 

requirements of the project.  However, the pipeline is very cumbersome.  It is not well 

documented, and is difficult to use.  Parts of the pipeline are very processor heavy as 

well, consuming up to a gigabyte of RAM (OpenCV Wiki, 2009).  I attempted to isolate 

the tracking algorithm used by the pipeline for use with my own detection routines.  The 

lack of documentation and the reliance of the tracking module on the rest of the pipeline 

made it too difficult.  



 
 

 
 

11 

 
 

It was decided that implementing an object tracking algorithm would be the best 

approach. The v3ga blob detection library provided a blob structure on which I could 

base my tracking algorithm.     

2.3.3 Network Communication Decisions 
 
 As a requirement, the network protocol selected for use with the project was the 

Open Sound Control (OSC).  It was chosen because it is flexible and takes advantage of 

the User Datagram Protocol (UDP).  It is also a popular choice among ongoing 

interactive projects, and can easily be imported into any Processing sketch.  This allows 

for the quick integration into several projects.   

 We decided to implement the TUIO protocol within the system.  The TUIO is a 

framework that defines a protocol for the transmission of OSC messages for multitouch 

surfaces.  It provides a method for defining events, and bundling OSC messages together.  

This is the protocol used by the reacTable project, as well as some of the other projects 

being developed at Redfish Group in Sante Fe. 

 The TUIO protocol utilizes three types of OSC messages to communicate with the 

client application.  They are alive, set and fseq messages. 

/tuio/[profileName] set [sessionID parameterList] 
/tuio/[profileName] alive [list of active sessionIDs] 
/tuio/[profileName] fseq [int32] 
 

The protocol is designed to send packets or bundles of packets without listening 

for any return packets.  This is because the system does not care about lost packets.  If the 

client does not receive a packet, it will still get the information it needs in the following 

packets (TUIO, 2009).  This makes the protocol ideal for our application, because we do 

not necessarily need all objects to be updated correctly every time.  If a packet is lost for 



 
 

 
 

12 

 
 

one object, the necessary information will be sent in the next bundle in a set, or alive 

message.



 
 

 
 

13 

 
 

3 Implementation 

 This section discusses the integration and development of the software. 

 

3.1 Motion Detection 
 

The motion detection was implemented in Processing.  After opening up a video 

capture, each frame is fed into the detection phase.  This consists of converting the video 

capture to an image, and then performing image enhancements.   

First a background subtraction is performed on the frame.  The color from each 

pixel in the background frame is subtracted from the color of each pixel in the current 

frame.  The resulting image is brighter in areas of contrast, which should depict new 

foreground objects.  The brightness comes from the absolute value of the frame 



 
 

 
 

14 

 
 

differencing.  The closer the new pixel value is to 255, the closer the pixel color is to 

white.  After background subtraction, image enhancements are performed using the 

Processing library’s image filters.  The image is filtered to eliminate noise, and to 

develop more contrast in the areas of interest.  

img.filter(GRAY); 
img.filter(THRESHOLD, .05f); 
img.filter(ERODE); 
img.filter(ERODE); 
img.filter(DILATE); 
img.filter(DILATE); 
img.filter(BLUR, 3); 

 The image is run through a grayscale filter, and then an initial threshold filter.  

This is followed by erosion and dilation filtering.  Erosion is used to eliminate the smaller 

areas of pixels and dilation to reestablish the remaining areas of pixels.  This set up was 

detecting blobs, but was somewhat erratic.  The edges of the blobs would jump around 

between frames.  To settle the blobs down and make them more consistent a blur filter 

was added to the code, which performs a Gaussian blur on the image (Processing, 2009).  

The blur filter reduces noise and detail in the image which creates better blobs for the 

system to process.  

Once the image has been enhanced it is sent through the v3ga blob detection 

routine.  The blob detection routine uses a threshold for pixel brightness to determine 

where the blobs are on the screen.  The threshold is adjustable within the processing 

sketch.  All the detected blobs are then placed in a blob array. 

theBlobDetection = new BlobDetection(img.width, img.height); 
theBlobDetection.setThreshold(0.3f); 
theBlobDetection.computeBlobs(img.pixels); 
 
The library detects all blobs, and produces an array of blobs.  A blob consists of 

an ID, a center coordinate, a height, a width and a set of vertices.   



 
 

 
 

15 

 
 

The detection library picks up even the smallest blobs and often some false 

positives that are not of interest to the system.  It is left up to the Processing sketch to 

filter out blobs by size.  Since the v3ga library was already being modified to handle 

object tracking, I also decided to implement a size limit on the blobs being detected.  This 

will help cut down on the size of the detected blob array, and the amount of computation 

when comparing detected blobs to tracked blobs in the tracking module.  In the frame 

below the system has detected the blobs seen outlined in green. 

 
Detection Frame 1 

3.2 Object Tracking 
 
 The object tracking is handled within the blobDetection class of the v3ga library.  

As each frame is run through the blobDetection it collects a new array of detected blobs.  



 
 

 
 

16 

 
 

Whenever a call is made to the blobTracker method, these new blobs are compared to an 

array list of existing blobs from the previous frames that are considered to be tracked.  

The sequence of frames below displays the contours and the ID of an object as it is pulled 

across the surface by a thin thread. 

 
Tracking Frame 1 

 



 
 

 
 

17 

 
 

 
Tracking Frame 2 

 
 Each blob that has been detected in the incoming frame is compared to the list of 

blobs that have been tracked from the previous frame.  The x and y coordinates of the 

new blob’s center is first checked to see if it is within a set boundary of the previous 

blob’s center.  If there is no match found, the new blob is given a special ID and is added 

to the tracked blob list.  If there is exactly one match found between the new blob and the 

tracked list, then the match in the tracked list is updated with the data from the new blob.  

If more than one match is found, the blobs are then compared by size and height to 

determine which tracked blob is the better match for the new blob.   

Comparisons of area, height and width are done to determine which blob is the 

best match for the incoming blob.  The area of the new blob is compared to the area of 

each potential match.  If this is determined not to be compelling enough, further 

comparisons between the height and width of each blob are done.  Once a match has been 



 
 

 
 

18 

 
 

determined, the tracked blob is updated with the new blob data. Afterwards, all blobs 

from the tracked list that did not find a new blob match are deleted from the tracked list. 

3.3 Network Communication 
 
 For the network communication we decided to implement the TUIO protocol.  

After the objects in the frame have been tracked, the processing sketch creates a set 

message for each tracked blob.  The set message is used to tell the client that either a new 

object is on the screen, or to send updated object information for those objects already 

known by the client.  The set messages are bundled together with an alive message which 

is used by the client to eliminate those objects it knows, that are no longer in the frame 

sequence.     



 
 

 
 

19 

 
 

 

4 Design Evaluation 
 

This section discusses the testing and evaluation of the system that has been 

implemented. 

4.1 Project Requirements 
 
 The requirements set forth at the beginning of the project were: 
 

• The system must be able to detect objects in motion across the front of the 

screen. 

• These objects must have a specific ID, which allows multiple objects to be 

tracked from frame to frame. 

• The object tracking information must be reported through the OSC 

network protocol so that the data can be transferred amongst other 

interactive systems. 

• An interactive example project must be implemented using the system that 

will be developed as a result of this project. 

Each requirement has been met by the project.  The system has the ability to 

detect objects in motion using a webcam.  These objects are stored as blobs, which are 

then tracked by the methods implemented in the v3ga library.  The OSC protocol is used 

to deliver blob information over a network or internet connection.   



 
 

 
 

20 

 
 

4.2 System Testing 
The system was tested using ad hoc tests.  I focused on the areas of the system 

that were most important, as well as spending time testing areas of concern.  For all the 

tests, the camera was set three and six feet above a surface.  The camera used for testing 

was the Logitech 3000 webcam.  The webcam has a resolution of 640 x 480.   

First the motion detection was tested by varying the threshold level between .3, .5, 

and .7 against different colored backgrounds.  To test the motion tracking functionality, I 

used my hands as well as a laser pointer to ensure the system was following and naming 

the blobs properly.  To test the collision of blobs and blob matching I used my hands and 

objects that were placed on the surface.  To ensure the blob matching routines were used 

correctly I set break points in the code while experimenting with the collision of objects.  

Overall it was a tough aspect to test, because frames are processed so fast that changes in 

a blob ID are hard to follow. 

For the network messaging, I used a TUIO Processing client application.  It is set 

to replicate a simulation of the reacTable.  Since I am using the same TUIO protocol, it 

provided good feedback for the messages I was sending. 

 

4.3 Areas of Concern 
 
 There are some weaknesses and vulnerabilities in the motion detection and object 

tracking aspects of the project.  There seem to be some problems with having several 

objects close to the camera lens.  Testing determined that the camera should be at least 

three feet away from the objects it is trying to track.  Performance is improved even more 

when objects are at a distance of six feet or greater.  If an object is too close it has an 



 
 

 
 

21 

 
 

effect on the lighting that is entering the camera lens, which in turn has a drastic effect on 

the objects being tracked on the screen.  This results in the appearance of several 

differences, even if there is no movement in those areas.  In some cases it picks up 

several blobs that are not actually new objects.  Also, objects that can span the entire 

frame can confuse the detection algorithm into thinking that the spaces around the object 

are blobs when in fact they are not.  This can be limited by making sure that the objects 

are the minimum distance away from the camera.   Adjustments to blob detection size 

may need to be made.  Objects that are farther away from the lens take up fewer pixels in 

the frame.  

 There are also weaknesses that exist in the current tracking module.  The size of 

the bounding box used when comparing new blobs with the tracked blobs can have an 

effect on performance.  If the box is too small, then it is easy for objects moving quickly 

to lose their ID from frame to frame as they exit the boundary box before the next frame.  

This would lead to the loss of the old tracked blob and the creation of a new tracked blob 

for the same object from frame to frame.  At the same time, the bounding box should not 

be too big because it could possibly encompass too many new blobs.  This would lead to 

unnecessary comparison of blobs.  The bounding box is adjustable by the user, but the 

issue exists for any size bounding box. 

 Another weakness involves the crossing and collision of blobs.  When two blobs 

come into contact in a frame, it can combine them to create one larger blob.  This would 

eliminate one of the blobs from existence in the tracking list.  This poses a problem for 

situations involving object movement by the user.  The hand of the user would almost 



 
 

 
 

22 

 
 

certainly corrupt the tracking of an object when placing it on the table or moving it to 

another spot on the table. 

 Some of the short comings in the system performance may be associated with the 

camera quality.  For the implementation and testing of the system, I used the Logitech 

3000 webcam.  This is not the best camera, or even the best webcam.  This could have 

led to the volatility of lighting, and focus in certain system setups.  A high quality camera 

could improve the overall system. 



 
 

 
 

23 

 
 

 

5 Conclusion & Future Work 
 
 
 Overall, the design and implementation of this project is satisfactory for the needs 

of this project.   The system has the ability to track objects on a surface, as well as any 

motion occurring around the surface.  It is not known how well it will integrate into the 

overall system, but because of its simple design it should work well for its intended 

purpose.  Because it is still a relatively simple implementation, after the system has been 

integrated with a table setup, each aspect of the system can be enhanced to improve its 

performance. 

 Major improvements can be made in the blob tracking module.  A useful addition 

would be a tracking algorithm that was able to track blobs through collisions and the 

eclipsing of blobs.  This would eliminate one major drawback of the current system, and 

improve interaction for the user.  The exclusion of objects’ shadows would be another 

great improvement for the system.  Right now, objects can cast a shadow in certain 

lighting situations.  This shadow is often picked up as part of the blob.  To be able to 

eliminate the shadow from the blob detection would make the system much more 

accurate with its objects. 

 Along with improvements on existing features, there are also some features that 

could be introduced to the system.  The ability to track fiducial markers would make the 

blob detection and tracking more dynamic. 

 Along with the idea of the interactive Venice table, Stephen is also investigating 

the use of this application in the development of interactive rooms.  A possible scenario 



 
 

 
 

24 

 
 

would distribute several of the camera/projector couples throughout a room.  In this room 

each user could be interacting with walls, the floor, each other and other surfaces.  



 
 

 
 

25 

 
 

6. Bibliography 

Bradski, G.R., & Kaehler, A. (2008) Learning OpenCV: Computer Vision with the 
OpenCV Library. O’Rielly. 
 
Davies, E.R. (2005) Machine Vision: Theory, Algorithms, Practicalities. Morgan 
Kaufmann. 
 
TUIO Community (2009), http://www.tuio.org/ Pompeu Fabra University.  
 
Reactable (2009), http://www.reactable.com/ Pompeu Fabra University. 
 
OpenCV Wiki (2009), http://opencv.willowgarage.com/wiki/  
 
Processing 1.0 (2009), http://processing.org/ Ben Fry and Casey Raes 
 
Blob Detection (2009), http://www.v3ga.net/processing/BlobDetection/ v3ga. 
 
oscP5 (2009), http://www.sojamo.de/libraries/oscP5/ Andreas Schlegel. 
 
 

http://www.tuio.org/�
http://www.reactable.com/�
http://opencv.willowgarage.com/wiki/�
http://processing.org/�
http://www.v3ga.net/processing/BlobDetection/�
http://www.sojamo.de/libraries/oscP5/�

	1.1 Current State
	1.2 Project Focus
	1.3 Definition of Terms
	2 System Design
	2.1 Project Requirements
	2.2 System Setup
	2.3 Design Decisions
	2.3.1 Motion Detection Decisions
	2.3.2 Object Tracking Decisions
	2.3.3 Network Communication Decisions

	3.1 Motion Detection
	3.2 Object Tracking
	3.3 Network Communication

	4 Design Evaluation
	4.1 Project Requirements
	4.2 System Testing
	4.3 Areas of Concern

	5 Conclusion & Future Work

