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2 Abstract 

The goal of this project is to utilize the igus® Robolink arm five degree of freedom 

modular robot arm, to complete useful tasks for persons with no or limited mobility. These tasks 

include driving the joystick of a wheelchair, flipping a light switch, and turning the pages of a 

book. This is done through designing and building a modular interface for mounting the 

Robolink arm onto an existing wheelchair project and implementing a universal control interface 

in the software for future expansion of tasks and control methods. 
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6 Introduction 

Tasks such as drinking from a glass of water, preparing a meal, or doing housework are 

daily activities most people can perform without much difficulty. For a person with limited 

mobility, these Instrumental Activities of Daily Living (IADL) can be difficult, or even 

impossible, without help or supervision. A disability statistics report written in 2000 that focused 

on the use of mobility devices in the United States outlines that 1.7 of the 6.8 million Americans 

who need assistive devices, need wheelchairs or scooters to help them with mobility [19]. More 

than two thirds of these people (68.1 percent) also need assistance with at least one IADL [19]. 

Wheelchair mounted robotic arms have been developed since the early 1990’s to help conquer 

this problem [19].  

The purpose of this project is to establish control of a wheelchair mountable modular 

robotic arm to complete tasks useful for a person with no or limited mobility. The igus® 

Robolink is a five degree-of-freedom (DOF) modular robotic arm that is mounted to augment the 

person's ability to complete tasks. The goals of this project are to utilize the Robolink to drive the 

joystick of a wheelchair, flip a light switch, and turn the page of a book. 

6.1  Explore existing technology 

Existing Robolink applications vary in scope from humanoid robots to industrial 

processes. Research of Robolink applications, including a review of their Youtube playlist 

“igus® robolink® robot modules applications and references” yielded no other cases of the 

Robolink’s use as a wheelchair mounted assistive robot arm (igus GmbH). This led to research 

on the history of assistive robot arms. The team learned that work on assistive robotic arms 

started in the early 1990's, an example of which is the Manus ARM made by Exact Dynamics 

[39]. The ongoing trend is that robot arms are now smaller and lighter than their earlier 

counterparts while increasing in functionality and usability. Advantages of the igus® for human 

assistive projects include it’s low cost, approximately $2,000 as opposed to the approximate 

$48,000 JACO arm, and compact size, compared to arms like DORA [20], [30]. The igus® 

Robolink has a maximum of six DOF, however this configuration utilizes only five. Most 

wheelchair mounted assistive robotic manipulators utilized 5-7 DOF ( Table 1: Similar Project 

Comparison). As with most existing projects, the Robolink arm used has the extension capability 

of just above a meter ( Table 1: Similar Project Comparison). 



8 

6.2 Task Specifications 

A set of task specifications served as guidelines for the project. The most important task 

specification involved driving the wheelchair using the Robolink arm. Specifications for driving 

revolved around creating smooth motion of the chair for the passenger, so abrupt acceleration 

and deceleration were to be avoided. The arm needed to move the joystick of the wheelchair 

front, back, left, and right within a few seconds of receiving the command. The second task was 

flipping a standard height light switch. The arm needed to reach out to a 48in. high light switch 

on a wall, taking less than 15 seconds to flip the switch in either direction. The third task 

involved flipping the pages of a hardcover book, taking less than 30 seconds to open the front 

cover, and less than 30 seconds to turn a page. The time constraints were chosen arbitrarily based 

on the team’s opinions of reasonable time intervals.  

6.3  Design Specifications 

Several design specifications were developed to guide the design process. The Robolink 

arm and its attached control box (12” x 12” x 4”) containing the cables, motors, and controllers 

(referred to as the “cable box”) shown in Figure 2: Robolink Cable Box needed to be stably 

mounted on the wheelchair. This mounting needed to allow the end effector of the Robolink to 

reach the joystick of the wheelchair at the end of the right armrest and the desk along the left 

armrest of the wheelchair seen in Figure 1: Wheelchair with Joystick and Desk.  
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Figure 1: Wheelchair with Joystick and Desk 

The arm also needed to be mobile, so an interface needed to be developed to draw power 

from the wheelchair’s power supply, and the Robolink needed to be controlled by a portable 

small board or laptop.  

One goal of this project involved experimenting with passive end effectors to avoid using 

power and pneumatics to control a gripper, so a passive end effector needed to be developed. The 

passive end effector needed to be modular and easily replaceable, while versatile enough to 

complete multiple task specifications. 
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Figure 2: Robolink Cable Box1 

7 Background 

7.1 igus® Robolink Applications 

The Robolink system was made by igus® and was released in 2011. It is composed of a 

set of lightweight plastic joints, metal tubes, drive units, cables and end attachments that are 

meant to work together to produce an infinite variety of low cost and low maintenance robot 

arms.  

The Robolink system (Figure 3: igus Robolink arm) has a large number of example 

applications ranging from swimming robots, to pick and place industrial robots, to humanoid 

robots. The team found a few good examples of the Robolink system in use in humanoid robotics, 

all of which extend the maximum number of DOF afforded by the Robolink via complex 

grippers and hands.  

                                                 
1 http://robot.wpi.edu/wiki/index.php/Robolink 
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Figure 3: igus Robolink arm2 

The most impressive of these is the Flexible LIREC Autonomous Social Helper (FLASH) from 

the Wrocław University of Technology, which has seven DOF per arm and incorporates two 

arms [21]. The Robolink arms on FLASH are “purposed to express emotions by means of … 

gesticulation” [21].  It is mounted on a self-balancing platform similar to a Segway, shown in 

Figure 4: FLASH Humanoid Robot. 

 

Figure 4: FLASH Humanoid Robot3 

                                                 
2 http://www.igus.com.sg/wpck/default.aspx?Pagename=robolink_articulatedarm&C=SG&L=en 
3 http://www.flash.lirec.ict.pwr.wroc.pl/ 



12 

Another humanoid, Humanoid Robot A1 (ADAM), has six DOF and two arms as well. 

Both are some of the more complex examples of Robolink applications. On the other end of the 

spectrum is a swimming robot from the German Research Center for Artificial Intelligence 

(DFKI GmbH) that uses a Robolink joint to actuate a mechanical fish tail to propel a robot 

through water seen below in Figure 5: Robolink Fishtail Robot. The research conducted suggests 

that the Robolink arm used in our project is the only instance of Robolink currently being used 

for assistive robotics. 

 

Figure 5: Robolink Fishtail Robot4 

7.2 Similar Projects 

To learn more about assistive robotic arms, the team researched previous endeavors in the 

field over the past twenty years. Table 1: Similar Project Comparison, organized by year, was 

developed to compare eight similar projects to our work with the Robolink. The team members 

based on photos, videos, and other research determined ratings in categories like “Size” and 

“Number of Tasks”. The table also compares categories such as Control, Degrees of Freedom, 

Maximum Extension, and Weight of Arm. 

                                                 
4 http://www.youtube.com/watch?v=4ajf4Ob-BGk&list=PL07B939DF7512B3B4 
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Many previous assistive wheelchair mounted robotic arms have used joysticks to control 

the arm, but alternative control methods have been explored. One of the first arms by Exact 

Dynamics used a combination of a camera and a touch screen interface that allows a human to 

control the arm [40]. Touch screens have been used in robotic arms but more recently the use of 

brain signal processing has been a focus of research. This enabled the use of assistive arms that 

do not require physical input from the user, such as the movement of a hand to utilize a joystick, 

so that the arm could be used by persons with no mobility. As the field has progressed, arms 

have been getting smaller and lighter, with the weight of current generation arms being less than 

half of the first iterations. The Robolink arm being used by the team is recent and weighs 10.3 kg 

(arm, cable box, and mounting hardware). As well as being light, the Robolink arm the team is 

using is highly compact even compared to other Robolink implementations. The standard stepper 

motors used to drive the cables have been replaced with a custom drive module, which is far 

smaller. 

As seen in Table 1: Similar Project Comparison, many existing assistive robotic arms use 

a gripper, one of the project’s goals involved implementing a passive end effector to keep 

complexity down. This goal is to prove that a well designed and thought out passive end effector 

is as useful in performing a range of tasks as one that is specialized. 

In order for the end effector to be effective, the system needs a workspace that allowed it 

to perform its task. As seen in Table 1: Similar Project Comparison, the baseline minimum 

number of degrees of freedom for an assistive robotic arm is five. Any fewer degrees and the 

reach of the arm is limited and starts to have difficulty performing tasks due to not being able to 

reach points in space. The Robolink configuration being used for this project has five, which 

allows for versatile reach and task performance while keeping complexity down. 

The reach of existing robotic arms has historically been approximately a meter with 

variances of ±20%. In the wheelchair configuration being used the reach of the Robolink arm is 

1.187 meters, which is on the higher end of historical reaches. 



 Table 1: Similar Project Comparison 

Robot Arm Name: Developed By: 
Year 

Developed: 
Control: 

Weight of 

Arm: 

Size: 

(Compact (1) 

to Bulky (5)) 

End 

Effector: 

Number of 

Tasks: (Few (1) 

to Many (5)) 

Weight can 

lift 

(Payload): 

Extension: 

Degrees 

of 

Freedom: 

Ref: 

Robolink igus® 2013 
Brain Signals, 

Joystick 
10.3 kg 1 Passive 3 N/A 1.187 m 5 [16] 

RAPUDA (Robotic Arm 

for Persons with Upper 

Limb DisAbilities) 

Intelligent 

Systems Research 

Institute (AIST) 

Japan 

2010 Joystick 5.897 kg 3 Gripper 3 0.454 kg 0.914 m 5 
[13] 

[48] 

Human in Loop Integration 

of An Arm Mounted 

Wheelchair Robot Based 

on RT Middleware 

Sugano Lab 

Waseda 

University 

2010 

Joystick, 

Touch Screen, 

Brain Interface 

5.000 kg 2 Gripper 4 1.000 kg 1.070 m 7 
[46] 

[44] 

JACO | Rehab Edition Kinova 2010 Joystick 5.700 kg 1 Gripper 5 1.500 kg 0.900 m 6 
[18] 

[20] 

PerMMA (Personal 

Mobility and Manipulation 

Appliance) 

Carnegie Mellon 

University, 

University of 

Pittsburgh 

2009 

Joystick, Brain 

Signals, Touch 

Screen 

28.600 kg 5 
2x 

Gripper 
5 

2.500 

kg/arm 

0.830 

m/arm 
5 

[26] 

[34] 

DORA (Door Opening 

Robotic Arm) 
UMass Lowell 2009 Joystick 13.063 kg 3 Gripper 1 N/A 1.245 m 7 

[30] 

[31] 

iARM (Assistive Robotic 

Manipulator) 
Exact Dynamics 2009 

Keypad, 

Joystick, or 

Single Button 

9.000 kg 1 Gripper 5 1.500 kg 0.900 m 6 
[14] 

[15] 

WMRA (Wheelchair 

Mounted Robotic Arm) 

University of 

Southern Florida 
2008 Brain Signals 13.750 kg 2 Gripper 5 4.500 kg 1.082 m 7 [1] 

Manus ARM (Assistive 

Robotic Manipulator) 
Exact Dynamics ~1992 

Touch Screen 

User Interface, 

Camera 

14.300 kg 3 Gripper 5 1.500 kg 0.800 m 7 [40] 



8 Methodology 

The goal of this project is to utilize the igus® Robolink arm to drive a wheelchair, flip a 

light switch, and turn the page of a book. The team’s approach to the project involved 

understanding the igus® arm, its capabilities, and constraints. Design solutions for making the 

arm mobile included mounting the arm on the wheelchair, interfacing with the wheelchair’s 

power supply, investing in a joystick to control the chair, and designing a custom passive end 

effector for the Robolink. 

8.1 Review of Previous Work 

The igus® Robolink arm utilized for this project was configured prior to the team’s work 

[39]. The team’s first steps in this project involved reviewing and understanding the initial 

configuration of the cable box, and the documentation of the arm from igus®. The team was also 

provided with the forward and inverse kinematics of the arm, including the Jacobian matrix. The 

team reviewed the configuration of the 5 DOF arm and kinematics calculations. Code was 

provided to run the arm with an Xbox controller. The Xbox controller code was very useful 

throughout the project. 

8.2 Proof of Concept Experiments 

Several proof of concept experiments were conducted as the team brainstormed 

approaches to the design and task specifications of the project. The first task the team 

experimented with was utilizing the Robolink to move the joystick of a controller. The 

wheelchair did not have a joystick for the team to work with, so to conduct the test, the team 

utilized an Xbox controller and a GameCube controller. Since a passive end effector was 

required but not yet developed the team tied the “fingers” of the igus® gripper together seen 

below in Figure 6: Gripper with “Fingers” Tied.  
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Figure 6: Gripper with "Fingers" Tied 

The team utilized the Xbox controller code to move the “fingers” over the different joysticks of 

the controllers to determine if the control was precise enough to move a joystick. The results 

showed that the arm could be used to control a joystick.  

The second proof of concept experiment revolved around finding possible mounting 

positions for the Robolink on the wheelchair based on the workspace of the arm. Taking into 

account the design specification that the end effector needed to reach both the wheelchair’s 

joystick on the end of the right armrest and the desk attached to the left armrest, the team 

measured the workspace of the arm from different mounting configurations. The conclusion was 

that the most appropriate place to mount the arm was on the back of the wheelchair, with the arm 

coming over the right shoulder of the chair.  

8.3 Design Constraints 

8.3.1 Mounting the Robolink 

The team faced many constraints in achieving the design goals. Mounting the cable box 

and arm on the wheelchair posed the issue of finding suitable space to mount the arm. Since 

assistive wheelchairs are already loaded with technology, available mounting space is limited. As 

well as being limited the mounting point needs to support the 10.3 kg weight of the robot arm. 

The arm also needs to be interfaced with the chair’s mobile power supply and laptop. As 
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explained in the proof of concept experiment above, the workspace of the arm with respect to 

both the joystick and desk needed to be accommodated. 

8.3.2 Passive End Effector 

Another important design constraint involved not utilizing the igus® gripper as the end 

effector. This decision was made in an attempt to save space by not mounting pneumatics to 

control it. A simpler solution was necessary, in the form of a passive end effector. This end 

effector needed to be modular, easy to remove and replace the existing gripper. This end effector 

also needed to be versatile enough to work for multiple tasks including joystick driving. 

8.4 Design Solutions 

8.4.1 Mounting Arm 

The Robolink arm needed to be mounted such that the end effector could reach both the 

joystick at the end of the right armrest and the desk of the wheelchair on the left armrest. The 

preliminary experiment showed that the best place to mount the arm was the back of the chair, 

with the arm coming over the right shoulder of the chair. Possible mounting solutions involved 

attaching the cable box to the back of the chair using the headrest, back pocket of the chair, or 

the unused mounting fixture at the base of the chair seen below in Figure 7: Mounting Fixture. 

 

Figure 7: Mounting Fixture 
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The first design version involved utilizing the mounting fixture and 1” steel square pipes. 

The pipes would be bent to an L-shape to attach to the mounting fixture. An L-shaped aluminum 

plate would be machined to attach to and support the cable box. For extra support, nylon 

mounting straps would attach the box to the headrest. 

This first design was evaluated to be too complex. A second version of the design also 

utilized the empty mounting fixture at the base of the chair, but consisted of only 80/20 

Aluminum parts. Several pieces of 1 in. 80/20 pipe and several brackets were utilized to screw 

directly into the back plate of the box. The box was mounted several inches off center such that 

the arm came directly over the right shoulder. The mounting fixture with the back plate of the 

box attached can be seen below in Figure 8: Mounting Structure. 

 

Figure 8: Mounting Structure 



19 

8.4.2 Power Supply 

The Robolink drive module takes 24V DC and at least 10A. The arm needed to be mobile, 

so it needed to interface with the wheelchair’s power supply. Once an empty 24V Anderson 

Power Pole connector was located on the chair, about 5 ft. of wiring was run from the base of the 

chair to the power connector on top of the box to power the arm. 

8.4.3 Controller 

To achieve a mobile system, the igus® arm needed to run from a mobile computer. The 

first mobile computer the team attempted to utilize was a Raspberry Pi, shown below in Figure 9: 

Raspberry Pi. The Raspberry Pi was small and powerful, which would have been ideal for this 

application. Issues occurred with building the existing software against the EposManager library 

on the Raspberry Pi. The issue was that the only provided EPOS driver was available for x86 and 

not ARMel. EposManager is a necessary Robot Operating System (ROS) package for controlling 

the arm, making the Raspberry Pi unusable for this application. 

 

Figure 9: Raspberry Pi5 

The remaining options for controlling the Robolink were laptops. The team investigated 

purchasing a small laptop to control the system. The small laptop would have been ideal because 

it would have been lightweight and compact, while supporting the EposManager. This small 

laptop was ordered used and was found to have issues with the boot drive. The team determined 

that it was not worth it to devote any more time to it, and moved to the Lenovo ThinkPad laptop 

                                                 
5 http://images.bit-tech.net/content_images/2013/03/raspberry-pi-case-competition-update/pi1l.jpg 
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provided by WPI. A ThinkPad labeled Amazon was the computer utilized for controlling the 

wheelchair. The team was assigned a ThinkPad labeled Nile. The Nile laptop's software 

installation was 32-bit, which is required to run the EposManager, while the Amazon laptop's 

existing software installation was 64-bit, and could not be used for the Robolink.  

8.4.4 Wheelchair Joystick 

The highest priority task involved driving the joystick of the wheelchair with the igus® 

arm. The biggest challenge to this accomplishment was the lack of a joystick to work with, since 

the original joystick had been disassembled and determined inadequate for the application. The 

team needed to purchase a joystick with both directional control and a button to be used as an 

emergency stop. Options included game system controllers, such as Xbox, GameCube, or Wii. 

Proof of concept experiments showed promise with the GameCube controller’s grey joystick. 

These game controllers were all potentially clumsy to mount on the chair, however, so 

arcade joysticks were explored next. A simple arcade joystick held much potential; it was cost 

efficient and the proper size to mount on the wheelchair. It can be seen in Figure 10: Simple 

Arcade Joystick. Three concerns were raised with this option, though. The ball on the end of the 

joystick would be difficult to push around, and the joystick was digital not analog, which was 

necessary to control the speed of the wheelchair, and there were not buttons available. 

 

Figure 10: Simple Arcade Joystick6 

                                                 
6 https://www.sparkfun.com/products/9182 
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The team then researched industrial joysticks, which were deemed to provide high 

compatibility with the team's vision for an end effector. They were an ideal size for being 

manipulated. They provided analog control, which was necessary for fine tuned wheelchair 

control, and some were USB compatible, which would make working with Robot Operating 

System (ROS) straightforward. The main downfall of the industrial joysticks was cost. A CTI 

Electronics industrial joystick was ordered for the wheelchair. It can be seen in Figure 11: CTI 

Electronics Industrial Joystick. 

 

Figure 11: CTI Electronics Industrial Joystick7 

The team soon discovered that an emergency stop button would be necessary. A McMaster-Carr 

turn-to-reset Emergency Stop button was ordered and mounted on the back of the cable box to 

cut power to the Robolink, shown in Figure 12: Emergency Stop Button.  

                                                 
7 http://www.ctielectronics.com/OEM-Analog-Industrial-Joysticks/Inductive-Industrial-Joystick.php#N24 
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Figure 12: Emergency Stop Button 

8.4.5 End Effector 

One goal of the project was to utilize a passive end effector, as mentioned in the 

Constraints section above. A Robotics Engineering Undergraduate student volunteered to assist 

the team in designing a passive end effector for the arm. While Walker’s project was under 

development, the team tied the “fingers” of the igus® gripper together to test and prove concepts. 

Walker’s end effector was tailored to work with the CTI Electronics joystick and made to 

modularly fit the end effector attachment of the Robolink. It consisted of a 1 in. deep cup that fit 

over both the joystick and a light switch. The custom end effector was 3D printed. Photos of the 

custom end effector can be seen below in Figure 12: End Effector and Figure 14: End Effector 

Over Joystick. 
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Figure 13: End Effector 

 

Figure 14: End Effector Over Joystick 

8.5 Completion of Tasks 

Two distinct pieces of code have been written for this project. The first one interfaces the 

joystick with the wheelchair's control systems. The other controls the arm mainly to drive the 

joystick and perform other tasks. 

8.5.1 Joystick Code 

The joystick control code converts the raw joystick input data from the axes into 

something that ROS can comprehend. It subclasses some of the methods and overrides others 

that were written for Xbox controller.  Some issues with the joystick itself were overcome in the 

code. When the joystick nears the edges of its range (in the extremes), all the values go to zero. 

To counteract this, a weighted rolling average function was written to check against the last few 

values that the joystick published and output the maximum needed value if the present joystick 
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values are determined to be in the extremes. The function that returns and updates the rolling 

average can be seen below in Table 2: Returns and Updates Rolling Average.  

 

Table 2: Returns and Updates Rolling Average 

    def _ij_x_avg(self): 

        # this function returns the rolling weighted average for 

        # the X values of the joystick value timeline 

        return average(self.x_timeline,weights=WEIGHTS) 

 

    def _ij_y_avg(self): 

        # this function returns the rolling weighted average for 

        #the Y values of the joystick value timeline 

        return average(self.y_timeline,weights=WEIGHTS) 

 

    def _ij_x_update(self,val): 

        # This function updates the Value Timeline of the X values 

        #by removing the last one and adding the latest as the first 

        self.x_timeline.pop() 

        self.x_timeline.insert(0,val) 

 

    def _ij_y_update(self,val): 

        # This function updates the Value Timeline of the Y values 

        # by removing the last one and adding the latest as the first 

        self.y_timeline.pop() 

        self.y_timeline.insert(0,val) 

 

The logic for determining the wheelchair’s speed based on the joystick values can be seen below 

in Table 3: Logic for Determining Wheelchair Speed. 

 

Table 3: Logic for Determining Wheelchair Speed 

        if ij_x > POS_MIN_VAR and ij_x < POS_MAX_VAR: 

            # if the value of x isn't in the joystick extremes 

            if ij_x not in extremes: 

                # convert the joystick value to an integer 

                x_map = convert_joy_value_to_int(1.0-ij_x) 

                # update the rolling average 

                ijO._ij_x_update(x_map) 
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        elif ij_x < NEG_MIN_VAR and ij_x > NEG_MAX_VAR: 

            # if the value of x isn't in the joystick extremes part 2 

            if ij_x not in extremes: 

                # convert the joystick value to something usable 

                x_map = convert_joy_value_to_int(-1.0-ij_x) 

                # update the rolling average 

                ijO._ij_x_update(x_map) 

                 

        else: 

            # we are in the extremes and it's terrible here 

            # so we get the current rolling average 

            a = ijO._ij_x_avg() 

            print a 

            # if the rolling average is above the rolling floor we set it to our max mapped 

value 

            # if the rolling average is under the rolling floor we set it to our negative max 

mapped value 

            if a > ROLLING_FLOOR: 

                x_map = ROLLING_MAP 

            elif a < -ROLLING_FLOOR: 

                x_map = -ROLLING_MAP/2 

 

8.5.2 Robolink Controller 

8.5.2.1 Command Message 

The Robolink control code is composed of two classes that speak to existing Robolink 

driver functionality. The first class is the CommandMessage class, which is initialized with the 

following arguments:  

● 'positions' : a list of position values  

● 'timeinterval': a list of time intervals 

● 'controller': a controller to modify 

○ defaulting to the standard 'RobolinkControl' class 

● 'reset': whether or not to expose a reset parameter 

○ defaults to True 

● 'steps': a list of arbitrary steps to execute  

● 'backsteps': a list of steps to execute when being run in reverse 
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● 'startingstep': a starting step  

○ defaults to the first given 

● 'method': which base method to modify  

○ defaults to pose 

○ can be set to None 

● 'method_sub_map': what properties of the method to modify the values of 'positions' 

○ defaults to the ['position.x','position.y','position.z'] objects 

● 'control_mode': which control mode to use with EPOS 

○ defaulting to pose control 

● 'iterative_control': whether or not to use iterative control 

○ defaults to False 

● 'DRO': a list of command names not to reset on 

The only required argument is the list of positions. It exposes five methods, most importantly 

those to run the steps, run them forward, and to run through them backward. It also supports 

executing any arbitrary position that was given to the Command Message either regularly or 

iteratively 

8.5.2.2 Command Acceptor 

The second class is the Robolink Command Acceptor, which opens a ROS subscriber to 

wait for and execute commands. It is initialized with a dictionary of CommandMessage instances. 

Upon initialization it returns a list of available commands that it is listening for on the subscriber. 

Upon receiving a command via a publisher it proceeds to run it until completion. 

8.5.2.3 Example of Use 

A command can be simple or override default behavior as needed. Two examples are 

shown in Table 4: Example of Use with the command acceptor being initialized after defining 

the CommandMessages. The first defines a set of points in space to iterate to. The second defines 

a set of angles that the arm should replay. 

 

Table 4: Example of Use 

cmddict ={ 

 'simple': CommandMessage( 

   positions=[(0,0.05,0),(0,.1,0)], 
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   reset=False 

 ), 

 'morecomplex': CommandMessage( 

   positions = [(-8,5,0,89,0),(-8,4,0,90,0),(-8,2,0,88,0),(-8,0,0,87,0),(-8,-1,0,85,0),], 

   method=None, 

   reset=True, 

   method_sub_map=METHOD_SUB_MAP_JOINTS, 

   control_mode=JOINT_VELOCITY, 

   DRO=['drive_stop','drive_fwd','drive_back'], 

   backsteps=[0,1,2] 

 ), 

} 

 

 

cmdacceptor = CommandAcceptor(cmddict) 

 

There are a large number of default settings that can be overridden in order to perform tasks 

beyond the default scope. 

9 Results & Discussion 

9.1 Mounting Arm 

The arm mounting structure consisting of 80/20 Aluminum pipes and brackets worked 

well for this application. The structure was stable and strong, both in the sense that it did not 

wiggle or move and that it attached to a very stable fixture on the wheelchair. The design was 

also simple; it took very few pieces, did not require any custom work, and was easy to put 

together. This design also achieved modularity, as its attachment to the fixture was 

straightforward, and easy to put on or remove. The workspace of the Robolink was also very 

efficient from this mounting position – the desk and joystick could both be reached, as well as a 

range of vertical and horizontal locations, shown in Figure 15:Workspace of Arm – Vertical, 

Figure 16: Workspace of Arm – Joystick Driving, Figure 17: Workspace of Arm – Horizontal, 

and Figure 18: Workspace of Arm – Over Desk. 
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Figure 15: Workspace of Arm – Vertical 

 

 

Figure 16: Workspace of Arm - Joystick Driving 
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Figure 17: Workspace of Arm – Horizontal 

 

 

Figure 18: Workspace of Arm - Over Desk 
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9.2 Power Supply 

Interfacing with the wheelchair’s power supply worked well. While it was difficult to 

locate an open 24V DC rail with no knowledge of the wheelchair’s electronics, once it was found 

the interfacing was simple. This interfacing also kept within the modular spirit of the project, and 

an Anderson Power Connector was the only necessary components, and was easy to connect and 

disconnect from the system. 

9.3 Controller 

Overall, the Lenovo ThinkPad laptops worked well for this application. Working with 

both Amazon and Nile on the mobile wheelchair was clumsy, but given that the EposManager 

could not work on Amazon, it was necessary to use both laptops. 

9.4 Wheelchair Joystick 

The CTI Electronics joystick was definitely the right tool for the job, despite the cost. It 

was USB compatible, which worked extremely well for this application. The code developed 

worked well for wheelchair driving, and can be run simply on the Amazon laptop. 

9.5 End Effector 

The custom 3D printed end effector was optimal for use with the CTI joystick. It kept 

within the modular theme since it was easy to attach and remove, and therefore worked well with 

the project. The end effector was passive, not adding bulk to the system and not drawing any 

power. It also served as an experiment to illustrate the usefulness of passive end effectors. 

Though an immobile person would not be able to change out end effectors on their own, they can 

still be useful. 

9.6 Completion of Tasks & Experimental Results 

9.6.1 Drive Joystick 

The highest priority goal for this project involved driving a joystick mounted on the 

wheelchair. While driving using the arm is achievable by executing the control movements 

manually, there are a number of issues that the team came across that stand in the way of 

automating it. To automate the wheelchair driving functions, the team recorded a series of angles 

to play back and fed them into a CommandMessage. Testing yielded that telling the arm to go 
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back and forth between two points in space would never yield the exact same result. The arm 

would move to approximately the same point in space but up to a half inch away from its 

previous location. In an attempt to improve on the repeatability the team ensured that the drive 

cables were did not have slack and were appropriately tightened. This in turn lowered the margin 

of error but not enough to be satisfactorily repeatable due to another issue the team noticed; 

when the power for the arm was cycled, the repeatability of tasks suffered due to the fact that the 

arm drooped slightly then took the new position on power up as its default position. The team 

attempted to work around this by accounting for the droop before power down so that the arm 

would be in its default position even with the droop occurring. However, this wasn't ideal for a 

deployed setup with an actual person occupying the chair. 

The team also had to work around the fact that moving to a position outside of the driving 

range while the end effector was still over the joystick would force the end effector to be caught 

on the joystick and put massive strain on the arm as it attempted to move. This was mitigated by 

adding a flag to the command message and having the arm move to a safe point above the 

joystick before continuing on to the next task.  

Part of the issue with repeatability was the feedback mechanism used by the command 

acceptor. The Robolink arm feedback topic returned integers for angles instead of other number 

types. When the end of arm was over forty-five centimeters away from the rotating joint, the 

resolution for a degree is just under a centimeter, which was not accurate enough. 

 

Circumference of end effector tube:  

                          

Margin of error:  

                                  

9.6.2 Flip Light Switch 

The second priority goal of this project involved flipping a standard height light switch. 

This task proved more complex than initial thoughts portrayed. An incident occurred during an 

experiment when the Robolink was mounted on the chair and run utilizing the Xbox control code 

rather than the Command Message/Command Acceptor code. The Xbox control code crashed 

but the motors continued to run. A team member was sitting in the wheelchair at the time, and 

the arm drove into the team member’s leg. Though not enough force was put on the team 
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member to cause pain or injury, a motor axle for one of the degrees of freedom bent and needed 

replacement. This incident provided valuable information to the team; the arm was potentially 

good for an immobile person, as it would break before causing injury, and the force at the end 

effector was very low.  

This made the team wonder if there would be enough force to flip a light switch. To 

measure the force to flip a light switch, the team utilized a force gauge, hooking the end over the 

light switch. The team had access to two switches in Atwater Kent; old switches which required 

a force of 3 lbf to flip, and new switches which required a force of 2 lbf to flip. Flipping a switch 

on or off took the same amount of force. 

The team conducted an initial experiment with the Robolink arm on the wheelchair 

utilizing the Xbox controller code. The team first placed the wheelchair directly facing a 

standard height light switch. The first problem presented itself; the arm was not long enough to 

reach the wall in front of the chair with the footrest of the chair in its down position, seen below 

in Figure 19: Light Switch With Chair Facing Wall. 

 

Figure 19: Light Switch With Chair Facing Wall 
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The team corrected this by moving the chair at an approximate 45-degree angle with 

respect to the wall, and utilizing the rotational DOF at Joint 0 of the arm to place the end effector 

near the light switch seen in Figure 20: Light Switch with Chair at 45-Degree Angle. The arm 

was then moved to a position such that Joint 2 was at an approximate 150-degree angle with the 

end effector on the light switch. This was done in hopes that the weight of the arm would assist 

in forcing the switch down. Both joints were driven to push downward on the switch 

simultaneously. 

 

Figure 20: Light Switch With Chair at 45-Degree Angle 

This resulted in the end effector simply staying on the light switch. When the wheelchair 

was pulled back from the wall, the end effector was approximately 7 in. lower than the light 

switch on the wall. This shows that the arm was attempting to force the switch down but was not 

exerting enough force to flip the switch. The result was the same for both the old and new 

switches. The team was concerned, as a repeat of the above incident was not desirable and could 

potentially result in another broken motor axle.  
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This prompted the team to perform a calculation of force exerted by the end effector 

assuming the arm was pointed directly upward. The nominal torque for the motor was multiplied 

by the gear ratio to get the output torque from the motors. This was then divided by the radius of 

the motor wheels to find the force exerted after the motor wheels, F1. This force was then 

multiplied by the radius of the rope in the joint divided by the link length to get the force at the 

end of the joint, F2.  This process was repeated until the force at the end effector was found. 

 

                                  

                        

                           

                              

                  

                  

                  

 

From motor: 

                                   

                          

 

                              

                                      

 

End of Link 1: 

                                     

                                                 

 

End of Link 2:  

                                     

                                               

 

End of Link 3 (End Effector): 
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Though this calculation only accounted for one position and was therefore not entirely 

accurate, it showed the minimal force the end effector could exert. This made sense, as it was not 

enough force to hurt a person in the chair or flip a light switch, but it was enough to move the 

high quality joystick. The Robolink utilized for this project used small Maxon Motors to make 

the system more mobile, but were not as strong as the stepper motors igus® generally uses for 

the Robolink. 

The team performed calculations with the Jacobian matrix for the Robolink system to 

prove that the motors could not provide enough torque in multiple configurations. The 

force/torque relation,      , where τ is a vector of joint torques and F is a vector of the forces 

and moments on the end effector, was utilized for these calculations. The team assumed no force 

in the y-plane and that the moments were considered negligible. The forces in the x and z planes 

were calculated using trigonometry and can be seen in Figure 21: Forces on a Light Switch. 

 

Figure 21: Forces on a Light Switch 
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For sets of joint angles, the output torque was compared to the normal torque and stall 

torque for the motors. For the configuration described above, with the arm at a 45-degree angle 

to the wall Table 5: Configuration 1 Necessary Force was generated, where i, the angle between 

Link 1 and Link 2, was in range of 40-70 degrees, and j, the angle between Link 2 and Link 3, 

was in range of 120-150 degrees.  

 

Table 5: Configuration 1 Necessary Force 

Configuration: [45, i, 0, j, 0] 2 lbf Force 3 lbf Force 

Nominal Torque (0.0827 Nm) None None 

Stall Torque (0.782 Nm) None None 

 

This data illustrated that the team’s suspicions were true; no combination of joint angles 

would reach and flip the light switch in this configuration. The team decided to work with 

another arm configuration, seen in Table 6: Configuration 2 Necessary Force, where k, the 
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rotation from the shoulder, was in range of 60-120 degrees, seen below in Figure 22: Light 

Switch With Chair at 90-Degree Angle. 

 

Figure 22: Light Switch With Chair at 90-Degree Angle 

 

Table 6: Configuration 2 Necessary Force 

Configuration: [0, 90, k, 90, 0] 2 lbf Force 3 lbf Force 

Nominal Torque (0.0827 Nm) for 0 < k < 61 deg for 0 < k < 60 deg 

Stall Torque (0.782 Nm) for 0 < k < 71 deg for 0 < k < 67 deg 

 

This configuration was much more promising than the first, as it utilized the motion of a 

stronger joint than the end effector. In the case of a standard height light switch, this 
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configuration would still not work, since k would need to be much closer to 90 degrees. The arm 

could potentially have enough force to flip a lower light switch. 

The team suspects that the Robolink would be capable of flipping other kinds of light 

switches, such as rocker switches like the one shown below in Figure 23: Rocker Light Switch. 

 

Figure 23: Rocker Light Switch8 

9.6.3 Turn Page of Book 

Due to unforeseen delays in the project, the team was unable to thoroughly experiment 

with turning the pages of a book. As a brief experiment, a laptop was placed on the wheelchair’s 

desk, seen in Figure 24: Robolink Typing on Laptop. The laptop was well within the workspace 

of the Robolink, and the end effector of the Robolink could exert enough force to type on the 

keys of the laptop. The team speculates that the Robolink would have been capable of turning the 

pages of a book, given a rubberized end effector. This would have been a useful task to perform, 

as it would majorly improve the quality of life of a person with no mobility.  

                                                 
8 http://www.homecontrols.com/Leviton-LevNet-Self-Powered-Wireless-Light-Switch-Single-Rocker-LVWSS0SD0x 
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Figure 24: Robolink Typing on Laptop 

10 Conclusion 

10.1  Goal Completion  

10.1.1 Task Specifications 

Some of the tasks specifications for this project were met. The arm was able to safely 

drive the wheelchair using the industrial joystick with its custom end effector even with caveats. 

However, the arm was unable to flip a standard height light switch due to the lack of necessary 

force at the tip. The team was unable to test the opening of a book on the desk, however the team 

tested the viability of the workspace that would ultimately be used to open the book and the 

reach of the arm in that workspace. 



40 

 

10.1.2 Design Specifications 

The design specifications for this project were all met. The arm needed to be mounted on 

the wheelchair. The 80/20 Aluminum structure fulfilled this requirement while keeping in the 

modular spirit of the project. The whole Robolink system needed to be mobile on the wheelchair. 

This was achieved by interfacing the arm with the wheelchair’s power supply and utilizing 

laptops to control the system. A passive end effector was 3D printed to interact with the joystick.  

10.2  Societal Considerations 

Through the course of this project, the team needed to address the societal concerns 

revolving around wheelchair mounted robotic arms. These concerns involve ethics, safety, and 

aesthetics of the project.  

The ethical concerns of this project involve the safety of the occupant of this wheelchair. 

The team designed the mounting structure for the arm such that the arm’s workspace remains out 

of the way of the occupant. In addition, it is possible to add software limitations to prevent the 

arm from entering specific areas of the workspace, adding an additional level of safety. As well 

as avoiding the occupant, the end effector of the arm can exert very little force (about ½ lbf). 

This means that the arm will break before it is able to injure an occupant of the wheelchair in 

case of software failure. An emergency stop button has also been added to the cable box of the 

arm that cuts power to all motors controlling the arm. Though the team could not find regulations 

on wheelchair velocity or acceleration, the code that controls the wheelchair’s joystick was 

designed to avoid any sudden acceleration and deceleration in order to provide a smooth ride. 

 

Figure 25: 80/20 Extruded Aluminum 
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The simple mounting design of the arm conforms to the design qualities of the existing 

hardware and is pleasing to the eye. The design consists of non-abrasive materials, such as the 

80/20 Aluminum shown in Figure 25: 80/20 Extruded Aluminum, with smoothed edges to 

improve the quality and safety of the arm. All wiring is away from the occupant and moving 

parts of the chair, keeping the look clean and safe. The passive end effector designed for this 

project is also pleasing to the eye, made of 3D printed red plastic (which can be recycled), 

matching the red headrest of the wheelchair. 

10.3  Future Recommendations 

The team would like to leave suggestions for future work on the Robolink project. The 

most common problem the team encountered was a lack of sufficient motor bracing. The design 

of the cable box did not support the cable wheels from both sides, leading to issues with bent 

motor axles. The cables were very strong, so in a situation where a degree of freedom was forced 

beyond its limit, the axle of the motor for that DOF would bend. The team recommends finding 

some design solution to this weakness for future work on the project. 

Another recommendation involved adding accuracy to the control system for the arm. 

Repeatability and precision were difficult with the control code given by to the team. Joint angles 

were integers of degrees, and were not repeatedly reached between power cycles. The team 

recommends looking deeper into the control software, and potentially adding a feedback loop to 

add more precision to the system. 

An alternative to editing the control software could involve different passive end 

effectors. Since the code cannot provide the precision required for the 3D printed end effector, an 

end effector of a more malleable material could work well, as seen below in Figure 26: 

Malleable End Effector. 
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Figure 26: Malleable End Effector9 

 

  

                                                 
9 http://www.bastiansolutions.com/blog/index.php/2013/06/12/innovative-robotic-end-of-arm-tool/#.UhzpIWRoQx8 
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12 Appendix 

12.1.1 Instructions for Use 

Mounting & Startup: 

o To mount the arm simply slide the 80/20 square pipes into the mounting fixture at the 

back of the CPS chair. The masking tape should line up with the fixture 

o Plugging in (Note: BLUE is PWR; WHITE is GND): 

 Attach Anderson Pole Connector to open 24V rail on CPS chair 

 Attach the Emergency Stop Button to the open dual lock tape on cable box 

 Attach TE Circular Connector 

o Turn on CPS and Robolink 

 If Robolink joints are in their marked startup positions (should point straight 

out), the software limitations will be correct 

 If not, use Ty’s Xbox code (http://robot.wpi.edu/wiki/index.php/Robolink) to 

put it in startup position, then power cycle 

o Running code: 

 https://github.com/robolink 

 To run the Robolink 

 Run roscore 

 Run roslaunch robolink robolink.launch 

 Run roslaunch robolink CommandAcceptor.launch 

 To run the CTI Joystick 

 Run roscore 

 Run roslaunch rad rad2_indjoy.launch 

http://www.youtube.com/
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http://www.youtube.com/
http://www.youtube.com/watch?feature=player_embedded&v=yqOUexGKusg#!
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12.1.2 Repair History / Incident Report 

Broken Motors in White Box: 

 M121594 002 - Broken Hall Sensor 

o Was the spare (6th) motor, never used due to broken sensor 

 M121594 004 - Bent Axle 

o Was the motor for the yellow cable (Joint 3), was found bent on 5/28/13 with 

cable pulled out of metal fastener 

 

Figure 27: Motor Cable Pulled from Fastener 

 M121594 003 - Bent Axle 

o Was the motor for the black cable (Joint 1), axle bent when the code crashed 

while mounted on the CPS chair - the motors continued to run and end effector 

pressed on the leg of the teammate seated in CPS chair. While not enough force 

was exerted to injure the team member, the motor axle bent. After this, the 

emergency stop button was added 

Yellow cable was repaired after the bent axle incident 

 Repair consisted of cutting the cable and knotting on a new piece such that the knot 

remains on the wheel through the range of motion 
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 The knot was a strong sailor’s knot, sewn through several times (green thread), and 

super-glued 

Current status: 

o One motor axle slightly bent, still useable: 

 

Figure 28: Current Motor Axle Bend 
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