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Abstract 

The importance of two-phase heat transfer for thermal management of aerospace avionic systems 

has become increasingly important as these systems have become miniaturized. Embedded active 

cooling systems are used to remove heat from processors and other electronic components and 

transferring this heat to radiators or other heat exchangers. As the characteristic dimension of flow 

channels for two-phase flow becomes comparable to bubble size, the mini-channels (< 3 mm) used 

to direct the cooling fluid can complicate nucleate boiling heat transfer. Bubbles can encounter 

other heated walls, rapidly expanding and greatly reducing heat transfer as well as causing pressure 

oscillations and flow instabilities. The use of eletrohydrodynamic (EHD) effects, through the 

introduction of non-uniform electric fields, can help mitigate this problem by altering the behavior 

of nucleating bubbles.  

A combined experimental and computational study was undertaken using HFE-7100, an 

engineered fluid used in heat transfer applications, to investigate the potential for enhancement of 

nucleate boiling using EHD effects induced by applying a non-uniform electric field. In the 

experimental study, a minichannel was constructed consisting of an upper and lower copper 

electrode and glass side walls to allow visualization. The channel height and width were 3mm and 

4.76 mm respectively, representative of the minichannel regime. The upper electrode was 

grounded while the lower electrode was heated and biased to high voltage. Optical imaging 

combined with post-processing and statistical analysis was used to quantify the effect of EHD on 

the bubble behavior. Bubbles were found to form preferentially on nucleation sites resulting from 

imperfections in the heated copper surface over artificially created nucleation sites. When a high 

voltage is applied across the electrodes, the electric field enhancement along the rim of the 

nucleation site is believed to influence the force balance on the forming bubble and thereby 
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influence the bubble departure size and frequency. EHD forces also act on the bubble surface as a 

result of the variation in permittivity between the liquid and vapor phases, altering its shape as has 

been previously reported in the literature. Test results are presented that demonstrate that the 

application of EHD increases the nucleation site density on the heated surface and increase the 

bubble departure frequency from individual sites. In addition, test results are presented to show 

that EHD forces alter the shape of bubbles during growth and the vertical position of the detached 

bubbles as they are carried along in the cross flow.  

To better understand the underlying phenomena affecting the bubble shape and departure 

frequency, a numerical simulation of the bubble growth and departure was performed using 

COMSOL multiphysics software customized to incorporate a user-defined body force based on 

the Maxwell Stress Tensor. Tracking of the bubble surface, including coalescence and breakup 

was incorporated using the phase field variable method in which the Navier-Stokes and heat 

transfer equations are solved for each phase of the fluid. Results from the simulations confirmed 

the sensitivity of the bubble elongation and neck formation to the nucleation site geometry, 

specifically the angle along the rim where field enhancement occurs. The enhanced constriction of 

the bubble neck resulted in early detachment of bubbles when compared to simulations in which 

EHD was not applied. This finding provides some insight into the higher bubble departure 

frequency and nucleation site density observed in the experiment. The results from the combined 

experimental and numerical study suggest that EHD enhancement may provide a mechanism for 

extending the use of nucleate heat transfer to minichannels, thereby enabling additional options 

for cooling in compact, embedded systems.  
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1. Introduction 

1.1. Thermal Control Overview 

Energy usage is a rapidly growing aspect of modern life, yet due to current global phenomena 

such as pollution, resource scarcity, and climate change, there has been considerable scrutiny in 

how we generate and use energy, and how to dispose of waste by-products. In the United States, 

at the turn of the 20th century, 9.4 quadrillion BTUs were consumed in the form of coal, wood, 

natural gas, and petroleum. As of 2009, this increased by nearly an order of magnitude to 91.5 

quadrillion BTUs of consumption [1]. In 2007, approximately 58% of this energy consumption 

was wasted in the form of waste heat (i.e. losses to system inefficiencies) [2]. In particular, energy 

generation results in a considerable waste heat problem, with up to 70% of the energy used to 

generate electricity being wasted as waste heat.  

One particular, modern example of this phenomena is in the operation of data centers. Data 

centers are rapidly becoming an essential part of consumer and commercial spaces, with the rise 

of cloud computing, storage, and an increased use of connected services. In a whitepaper by 

Emerson Network Technologies [3], it is estimated that up to 37% of energy use in a data center 

is used for cooling the equipment inside. Specifically, the heat generated by data center 

components has risen considerably not just because of the increased demand, but also because of 

the increased speed of today’s processors. This is explained partially by Moore’s Law, which 

quantifies the observation that due to technological innovation, the number of transistors able to 

fit in a given space on an integrated circuit (IC) approximately doubles every two years [4]. As far 

back as 1965, Gordon Moore postulated that heat dissipation would become a problem with the 

continued development of integrated circuits. However, somewhat incorrectly, he assumed that 
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due to increasingly shrinking transistors, the same power input would be used to achieve a higher 

speed compared with a system with reduced dimensions. In the 1960’s it may have not been 

possible to envision that power dissipation would dramatically increase over time. Azar [5] notes 

that while this increase in power dissipation appears counterintuitive to the original prediction of 

Moore, the rapid increase in processing speed and the performance-driven requirement to increase 

the number of elements on a silicon wafer pushes IC designs towards more powerful designs, 

rather than efficient. Azar further notes that due to this increase in performance, it can be extremely 

challenging to meet the thermal management needs of these devices on an increasingly shrinking 

scale. 

The thermal management of computing components is not only important from a waste energy 

management standpoint, but also from a safety and performance standpoint. Increased power 

dissipation in these components leads to higher operating temperatures. Even within the 

specifications of a given component, continually high operating temperatures (near the upper part 

of a specified temperature range) may lead to a degradation in performance, relative to lower 

temperature operation [6]. Higher temperatures can also increase the rate of component failure, 

leading to increases in the Mean Time To Failure (MTTF) of components [7]. Should operating 

temperatures be high enough in a liquid cooled system, component failure can arise from thermal 

crises such as chip dryout (in which the cooling fluid is evaporated too quickly to cool a surface) 

and runaway temperature, where an expected cooling medium is unable to keep a component cool, 

and temperatures continue to rise far past safe operating conditions. 

All categories of electronics (aerospace, commercial, consumer) have seen a drive towards 

smaller, more efficient systems. This increasing portability of computer systems makes thermal 

management even more important, as cooling technologies must evolve to ensure that systems can 
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get smaller while performance increases. Historically, large heat sinks and fans (with a 

characteristic size several orders of magnitude larger than the processors they were cooling) were 

used in desktop computer systems to maintain adequate ventilation. Kakaç discusses the evolution 

of these cooling systems over time [8]. For most electronic systems, this ranged from careful 

design (by placing power-generating components away from hot spots) to heat sinks, fans, with 

the most demanding applications requiring fluid cooling. This can range from single-phase 

pumped fluid loops to immersed components in non-conductive fluid. The rise of smartphones, 

embedded systems (systems that exist within a larger mechanical system and perform a specific 

function), and laptops means that using large heat sinks and fans may soon no longer be adequate 

or possible due to the compact design of these components. Additionally, the electrical power 

available for large, active cooling devices is limited in cases where the device itself has limited 

battery capacity [6]. Not only do the small, constrained spaces of these devices prevent the use of 

these large cooling systems, but an increase in the relative power dissipation of these systems has 

driven the adoption of new technologies. The power density of these components eventually 

became high enough that larger and more efficient heat sinks, followed by mounted fans, and 

eventually pumped fluid loops were needed. Looking forward, the expected continued decrease of 

component size, as well as an increase in relative performance and computing power, will 

necessitate more advanced means of cooling than the current state-of-the-art.  

While data centers are one example of cost-sensitive and widespread equipment, component 

size is typically not a concern in data centers that can take up entire warehouses. Systems such as 

those used in embedded aerospace applications lead to high heat flux situations on a small scale, 

and without adequate cooling, component power can be limited. Engines, embedded computers 

and other systems, especially in space, require significant heat rejection to operate efficiently and 
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safely. Nucleate boiling is often recognized as being an extremely efficient form of heat transfer. 

Heat transfer systems that utilize nucleate boiling can achieve higher heat fluxes at lower wall (i.e. 

component) temperatures, which could lead to the more efficient management of small systems. 

However, nucleate boiling can be difficult to implement in these systems, due to their small size. 

While the physics and behavior of nucleate boiling is well understood on a macro scale, smaller 

scale systems can lead to different physical effects, making nucleate boiling an attractive, albeit 

unpredictable heat transfer option.  

1.2. Objectives of This Research 

The goal of this study was to explore how nucleate boiling heat transfer can be utilized on very 

small scales, as well as possible means of control or enhancement. Kandlikar [9] notes that several 

passive methods exist for the enhancement of nucleate boiling, including increasing nucleation site 

densities and utilizing structured, designed surfaces. These methods are well-known, but are not 

flexible in meeting demands that may change. Contrary to the passive methods noted by Kandlikar, 

active methods of nucleate boiling enhancement allow for customization of heat transfer 

performance, and can be scalable to different sizes. These methods include vibration, centrifugal 

forces, and electrohydrodynamic forces (EHD). While these methods require an external power 

source, EHD is attractive in that it requires no additional moving parts (to avoid the inherent 

unreliability of mechanical moving parts). EHD has a legacy of being utilized in a variety of 

systems, being explored as a pumping mechanism, as aa means of increasing pool boiling heat 

transferred, and as a means of enabling nucleate boiling in microgravity [10] [11] [12]. The 

objectives of this study were to create a model that to explore whether nucleation site geometry 

could influence bubble growth and detachment with EHD, and with suitable design of the 

nucleation site, the application of a divergent electric field can influence the frequency of bubble 
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detachment in an embedded-scale size system. The second main objective was to create a physical 

experiment that could reliability demonstrate and measure the impact that EHD has on bubble 

growth and detachment, and do so in a device that would more closely approximate a real-world 

EHD-enhanced nucleate boiling solution. We also aim to quantify the importance of the nucleation 

site height and geometry relative to the overall channel height with respect to increasing the 

detachment frequency, and the feasibility of using an artificial nucleation site to generate and 

impact (with EHD) in an approximate real-world device.  

The modeling efforts were used to guide the experimental work, which explored the impact of 

a cross flow on EHD-enhanced nucleate boiling, what this boiling looked like in the presence of 

many densely packed nucleation sites, and to determine some challenges and lessons learned if 

this were to be applied to a real-world system. This work characterized nucleate boiling under the 

influence of non-uniform electrics fields in minichannels, and the results used to provide 

recommendations for the development of a future system. Performance results, as well as lessons 

learned, are provided so that future work may further develop a EHD-enhanced nucleate boiling 

system.  
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1.3. Organization of the Thesis 

This thesis is organized in the following manner. First, in Chapter 2, a background discussion 

of the problem, as well as an extensive literature review of the relevant topics will be presented. 

Next, in Chapter 3, a numerical model will be described and results from simulations presented. 

Chapter 4 will present the experiment designed to investigate the EHD-enhanced nucleate boiling 

and associated results. Finally, in Chapter 5, conclusions and recommendations for future work 

will be presented 
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2. Background 

Understanding the nature of EHD-enhanced nucleate boiling requires a background of fluid 

mechanics and heat transfer (in the form of the physics of nucleating bubbles), as well as an 

understanding of electrohydrodynamics, the interaction between electric fields and a fluid. A 

thorough understanding of these phenomena is necessary in order to develop a computational 

model of an EHD enhanced nucleate boiling system, as well as to develop an effective experiment. 

2.1. Physics of Nucleating Bubbles 

In the pursuit of more efficient boiling, many designs for heat transfer devices often turn to the 

phenomena of nucleate boiling. It is recognized that in a system, nucleate boiling can increase the 

performance of a heat transfer device [13] due to the energy required to change the phase of a 

fluid. Boiling involves the formation of vapor bubbles on a heated surface, via phase change from 

the liquid medium. For this study, both pool boiling and flow boiling in minichannels are 

examined, where the former relates to boiling occurring in a quiescent fluid medium, and flow 

boiling pertains to boiling occurring in enclosed channels with a bulk fluid flow. Nucleate boiling 

Figure 1: Example of a typical boiling curve, with the critical point 

denoted by a star. 
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can be described by identifying different regions with different properties, governed by the wall 

superheat (the temperature of the heated surface relative to the saturation temperature of a 

surrounding fluid) and the heat flux from that surface. These boiling regions are described in a 

notional nucleate boiling curve in Figure 1, which shows a typical pool boiling curve for the 

purpose of illustration (the curve is similar for flow boiling). 

Initially, in the absence of any nucleation, free convection is the dominant form of heat transfer 

from the superheated wall to a fluid (Region I). In this region, buoyancy governs the circulation 

of warmer fluid away from the heated surface. Free convection involves no phase change and 

requires gravity to drive buoyant forces. As wall superheat, ΔT, increases, the onset of nucleate 

boiling will occur with the presence of isolated bubbles (Region II). These will begin to form 

within cavities, which may be pits or scratches on the surface or artificially fabricated to enhance 

nucleation. Further increases in ΔT lead to bubble coalescence in the form of columns and jets 

(Region III). Between Region III and IV is the critical heat flux point (marked by a star in Figure 

1). After the critical heat flux point, film boiling starts to occur (Region IV and V), characterized 

by a thin layer of vapor film on the heated surface, sharply decreasing the heat transfer 

enhancement from by nucleating bubbles in a liquid. Film boiling can lead to chip dryout and a 

rapid decrease in the heat flux from the surface of the chip. 

In the situation described above [Figure 1], the process of critical heat flux and the departure 

from nucleate boiling can occur very rapidly. Any increases in excess wall temperature past the 

critical point are marked by a transition to film boiling. The lack of distinct bubble departing from 

the surface would lead to a decrease in heat flux, exacerbating the further increase in wall 

temperature. This apparent feedback loop would lead to a rapid onset of this critical heat flux, as 

well as a potential “thermal emergency” in which the capability for a nucleate boiling device to 
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remote heat from a chip is diminished to the point where the chip overheats to a damaging 

temperature. 

Specifically, in the case of minichannel boiling, work by Kandlikar [13] suggests that bubbles 

may encounter other heated walls and expand at lower wall superheats than would normally be 

required for the onset of the critical heat flux. Should this occur, the departure of nucleate boiling 

would occur even more rapidly due to the constrained channels, and the ability for slugs blocking 

the flow to expand very quickly. Additionally, minichannel nucleate boiling is characterized by 

flow oscillations, which jeopardizes any cross flow that would carry bubbles out of a constrained 

channel, further exacerbating the onset of critical heat flux. 

The extension of nucleate boiling into minichannels is the primary goal of this work. The 

optimal design condition for a heat transfer device is one which operates at a point on the curve 

with a ΔT just below that corresponding to the critical heat flux point. In order to influence the 

characteristics of nucleate boiling in minichannels, this study aims to explore modifying the 

behavior of nucleating bubbles in order to influence the overall boiling conditions. Varying the 

geometry of the surface in which nucleating bubbles will form is one way of accomplishing this. 

Nucleate boiling most predictably occurs on a cavity or imperfection on a surface. Bubbles tend 

to form on these imperfections, which contain trapped gas or vapor that serve as bubble nuclei. 

While these cavities can be present on any surface, controlling their geometry can offer additional 

means of controlling heat flux. Controlling the departure time, diameter, and growth rate of a 

nucleating bubble may have effects such as preventing coalescence. Preventing horizontal 

coalescence may provide a means of delaying the onset of downstream bubble coalescence and 

film boiling, and may allow for more densely backed nucleation sites. The existence of more 

cavities with trapped gas can lower the excess wall temperature required for nucleation. 
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Eastman [14] describes the force balance on a nucleating bubble, helping to clarify what causes 

detachment. Several forces act on a growing bubble, where there is an equilibrium condition (with 

respect to attachment). As soon as this equilibrium condition is no longer satisfied, the bubble 

detaches. 

This force balance is illustrated in Figure 2. In this figure, 𝐹𝑖 represents inertial forces on the 

bubble, 𝐹𝑏 the buoyant forces, 𝐹𝑑  the drag force from the surrounding fluid, 𝐹𝑝 the internal pressure 

forces, and 𝐹𝑠 represents the surface tension forces acting to keep the bubble attached to the bottom, 

heated surface. Should any of the forces acting upwards (buoyancy), or normal to the surface 

(pressure) exceed the forces that hold the bubble to a surface (drag, surface tension), the bubble 

will detach 

2.2. Electrohydrodynamics 

Electrohydrodynamics (EHD) is the study of the interaction between fluids and electric fields 

[15]. Electrokinetic phenomena comprised the earliest discoveries of the field of 

Electrohydrodynamics, starting in the 18th century [16]. These early experiments included the 

development of the first electric battery, the voltaic pile. Later developments included 

𝐹𝑠  

𝐹𝑖  

𝐹𝑏  𝐹𝑑  

𝐹𝑝 

𝑅 

𝐹𝑠  

Figure 2: Force balance on nucleating bubble on heated surface. 
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advancements made by Reuss (discussed in [16]), in which the phenomenon of electro-osmosis 

was observed before any theoretical descriptions had been made, or the underlying phenomena 

understood. These early experiments were described as being simple to carry out, leading to a large 

increase in further electrokinetic experimentation by other scientists, acting to further the 

understanding of such phenomena.  

More recently, the application of EHD to the enhancement of heat transfer has seen 

increased interest. EHD enhancement methods can be non-invasive to the fluid domain. Most of 

these studies focus on the application of EHD to dielectric refrigerants. Jones [12] notes that as 

early as 1975, the underlying physics associated with the enhancement of fluid-liquid heat transfer 

due to non-uniform electric fields had been known for years.  

Additionally, the use of electrostatic forces to manipulate fluids was explored in space, in 

order to manage propellants in microgravity. Jones [17], in a technical report written for NASA 

Marshall Space Flight Center, explores the application of electrohydrodynamics in reduced and 

microgravity situations, including the separation of components in heterogeneous fluids, liquid 

containment and transfer, fiber drawing, enhancing crystal growth, and mixing otherwise 

immiscible fluids [12].  

Jones notes that one of the most prominent applications of EHD in a microgravity situation 

are for liquid orientation within a device. EHD forces can be used to provide a body force that can 

approximate a terrestrial gravitational field. This line of research has been explored additionally 

by Snyder [18]. In that study, it is noted that two-phase boiling heat transfer can be much more 

efficient than single phase systems, especially in weight and size constrained spacecraft thermal 

management systems. Without terrestrial gravity (and buoyant forces), however, there are no 

means for bubbles to be removed from a heated surface, leading to runaway heat transfer and 
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thermal crisis. Snyder uses EHD to simulate this buoyant force, enabling nucleate boiling where 

otherwise impossible. Particularly for spacecraft, EHD is of particular interest as there are no 

moving parts, and can lead to robust, fault-tolerant designs. 

A subset of the described EHD forces are dielectrophoretic forces. The dielectrophoretic 

(DEP) force is defined as the “translational motion of neutral matter caused by the polarization 

effects in a non-uniform electric field.” [19] While this phenomenon is mentioned in prior studies, 

the first serious attempt at naming, characterizing, and studying the specific behavior of neutral 

matter when subjected to non-uniform electric fields can be attributed to Pohl [20] in the 1950’s. 

Pohl notes that DEP does not depend on ionized or charged particles, but rather arises due to the 

redistribution of charges within particles themselves. He also notes that these particles tend to 

move toward regions of higher field intensity, except in cases where the particle has more 

polarizability than the medium (where particles move away from regions of higher field intensity) 

2.3. Present Work 

Several studies will be examined in this section that have explored the potential benefits that 

nucleate boiling can have in the enhancement of heat transfer. Zuber [21], in a 1959 thesis, noted 

that developments in nuclear systems and rockets necessitated the need for very high heat transfer 

rates in constrained spaces. He notes that using forced convection (single-phase) would require 

exceedingly high fluid velocities, and therefore high pressure drops. This would increase the need 

for complicated pumping equipment and operational complexity. As a solution to this, he proposes 

that nucleate boiling can help achieve these same heat transfer rates with much lower fluid velocity.  

While nuclear reactors and rockets still exist as potential application, considerably smaller 

systems such as electronics necessitate a similar need for high heat transfer performance, but in 

much smaller spaces. Misale [22] also notes that confined pool boiling has become a topic of 
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increasing importance, due to the prevalence of high-performance, compact heat exchanging 

devices. El-Genk [23] specifically notes the increases in CPU performance as it relates to transistor 

density, also increasing heat dissipation. Specific to CPUs, not only is temperature control vital to 

operating efficiently, but excess temperatures could destroy a CPU through several means, 

specifically melting solder joints or outgassing. El-Genk notes that these thermally-related failures 

can occur with alarming frequency if CPU temperatures exceed a given recommended value by 

just a few degrees centigrade. While many CPUs can achieve the desired level of cooling using 

passive or air-cooling (such as those found inside cellphones or desktop computers) embedded 

aerospace systems may need something more advanced. El-Genk specifically identifies dielectric 

liquids such as FC-72 as a potentially effective heat transfer fluid, specifically because the fluid 

must be in contact with the CPUs themselves and the boards they are mounted on. In conducting 

fluids, careful care must be taken to ensure that shorts are not caused between components. 

Misale [22] also discusses fluids utilized in these confined pool boiling studies. Specifically, 

that study discusses the benefits of HFE-7100, another dielectric and liquid, as a fluid choice. 

Advantages mentioned are low saturation temperatures, chemical compatibility with other 

materials, and low toxicity. 3M [24], the provider of HFE-7100, also notes it’s high boiling point, 

low surface tension, stability in both the thermal and chemical sense makes it useful in many 

aspects of industry. Other studies [23] have used fluids such as FC-72, but Misale notes a shift 

towards HFE-7100. Described as a hydroflouroether fluid, it is preferable due to its superior 

environmental characteristics. The EPA characterizes HFE-7100 as having little to no contribution 

to ozone formation in the atmosphere.  

Some other current work relating to enhancing nucleate boiling heat transfer using EHD and 

DEP was undertaken by Patel [25]. In that study, it was noted that boiling processes do not function 



14 

 

in microgravity and cannot be used in a heat transfer device. Overcoming this limitation is possible 

by using electric forces, particularly DEP. Patel notes that bubbles in a highly non-uniform field 

can be polarized, causing a surface charge redistribution on the surface of the bubble. Patel 

expanded on this by utilizing a so-called DEP electrode installed above a heater. The electrode 

consisted of a stainless steel plate with 17 grooves, each 510um wide. This was designed to 

increase the non-uniformity of an applied electric field so that bubbles could escape from the 

surface of the heater underneath. Using this design, a combination of EHD conduction pumping 

and DEP forces led to an increase of up to 1217% in the heat flux from the surface.  

This study aims to expand on the DEP enhancement of nucleate boiling by utilizing electrodes 

that do not require a separate apparatus from the heated surface. The intent in the present study is 

to trigger the departure of smaller bubbles at a higher departure frequency, so as to prevent 

blocking of the channel. This is a different goal than to drive the bubbles once separated. The 

detached bubbles are assumed to be carried away in the cross flow. 

One example of current work in this area is in work by Sunder and Tomar [29]. Sunder and 

Tomar discuss the possibility of using submerged needles to influence premature detachment in 

bubbles. In that study, bubbles were injected into a fluid domain. That study establishes a 

precedence for using embedded, integrated structures to influence detachment, but does not discuss 

this detachment in the presence of boiling, or in a minichannel. Further work is necessary to expand 

this work to discuss the feasibility of heat transfer devices utilizing their technique. Additionally, 

work by Son and Dhir [53] investigated methods of simulating boiling computationally (on the 

order of a single bubble) without the implementation of EHD.  

Using many of the principles described in those studies, this study aims to expand on the DEP 

enhancement of nucleate boiling by utilizing electrodes that do not require a separate apparatus 
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from the heated surface. By doing this, it may approximate a real-world device more accurately in 

that there may not be space for separate structures in a channel.  

The current work presents a case for exploring how nucleate boiling can be used to enhance 

heat transfer. Specifically, the usefulness of dielectric fluids presents a convenient tie-in with the 

use of EHD effects to enhance heat transfer. As outlined in Section 2.2, EHD is promising for a 

number of reasons, but there is little existing work on how EHD can be used to enhance heat 

transfer in small, confined spaces such as minichannels. In this study, a numerical modeling 

chapter is presented to explore some ways in which EHD effects can be exploited to enhance 

nucleate boiling heat transfer. Additionally, experiments were carried out that attempt to 

approximate a real-world EHD-enhanced nucleate boiling device, in order to characterize how 

EHD can be used to influence nucleate boiling heat transfer. Ultimately, this study should add to 

the long lineage of successful and promising studies about how EHD can be used to enhance heat 

transfer in a wide array of applications.  

The primary contributions of this study were to: 

 Investigate how EHD can influence nucleating and detached bubbles in a heated 

minichannel 

 Develop an integrated model incorporating electrostatics, heat transfer, and fluid 

dynamics to model nucleate boiling in a minichannel with EHD 
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3. Numerical modeling 

 Today’s rapid miniaturization of electronics and systems (as used on micro and nano-scale 

satellites) does not come with a proportional decrease in the amount of waste heat generated. In 

applications where size and cost are at a premium, it is necessary to ensure that thermal 

management is accomplished as inexpensively and compactly as possible [26]. Processors 

embedded in aerospace systems can lead to high heat flux conditions over a small scale, and 

without adequate cooling, component power can be limited. Embedded computers and other 

subsystems, especially in space, require significant heat rejection to operate efficiently and safely. 

Nucleate boiling is one of the most efficient means of heat transfer, but its implementation can be 

inefficient or impractical with hardware on the mini- or micro-scale. Restricted channels can lead 

to rapid bubble growth and flow oscillations, leading to a thermal runaway effect, where expanding 

vapor removes the cooling capacity of fluid and nucleating bubbles.  

Kandlikar [27] discusses the issue of large pressure drops and unpredictable heat transfer 

performance related to flow boiling in small scale (mini- and micro- channel) heat transfer devices. 

Minichannels are defined in the literature as having hydraulic diameters from 200µm to 3mm, 

while microchannels have hydraulic diameters on the order of 10µm to 200µm. In minichannels, 

three flow patterns are encountered during flow boiling: isolated bubbles, confined bubbles, and 

annular flow, which can lead to undesirable operating conditions such as large, transient, pressure 

drops. The large pressure drops found in these channels are due to expanding bubbles pushing the 

interface downstream and upstream of the heated area. 

Brutin et al. [28] performed an experimental study of convective boiling in minichannels 

using channels with a hydraulic diameter of 889µm, and a working fluid of n-pentane. In one test, 

bubbles are created through normal nucleate boiling and then begin to coalesce into slugs. This 
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generates an over-pressure (i.e. a sudden rise in pressure upstream) that reduces the flow rate in 

the system. Bubbles continue to grow until the channel is blocked. After this occurs, the large slugs 

force the direction of the flow back towards the channel entrance, leading to an entirely vapor-

filled channel. The authors note a surface temperature rise due to the lack of fluid and heat-

removing nucleating bubbles. This operating condition persists for a period of time after which the 

entire channel has built up enough upstream pressure to expel the vapor slug. After this, the channel 

re-fills with liquid, and the process is repeated. 

Unstable heat transfer, as noted by Brutin, would not be suitable for sensitive aerospace 

applications. Flow oscillations can lead to unpredictable heat transfer performance due to periodic 

surface temperature rises, and chip dryout can cause a runaway effect that damages equipment. 

Any invasive means of controlling and influencing this phenomenon could lead to additional 

complexity in the form of moving parts or impurities in added components. Invasive methods 

could include internal structures to modify flow behavior, vibrating the entire structure, or 

including complex pumps or other moving parts. Lubricants used in these moving parts could seep 

into the channel and add impurities. One possible method of non-invasive control is through 

externally-applied, non-invasive, EHD forces. Many studies have used EHD as a means of 

controlling, enhancing, or enabling nucleate boiling. Jones utilized electric fields to enhance 

single-phase convection (inadvertently triggering nucleate boiling at lower wall superheats) [9]. 

Additionally, Snyder et al. explored the use of an EHD phenomenon known as dielectrophoresis 

(DEP) as a means of enabling nucleate boiling in microgravity [18]. Other studies discuss isolated, 

injected bubbles being influenced by uniform DC fields [29], or large-scale EHD-enhanced pool 

boiling [19], but to the best of the author’s knowledge, there are no studies that computationally 

investigated EHD-enhanced nucleate boiling in the presence of a geometrically influenced, altered 
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nucleation site boiling in non-uniform electric fields in the minichannel regime. The studies cited 

here did not allow for methods to investigate the runaway heat transfer from chip dryout, the 

relationship between channel height and electrode geometry in the presence of other nucleating 

bubbles and low channel heights, or implement computational models that can explore the effect 

of changes to nucleation site geometry. This modeling study will present a method for modeling 

the growth and premature detachment of nucleating bubbles in the presence of an externally 

applied electric field. In addition, based on these results, the potential feasibility of using EHD 

forces to improve nucleate boiling in minichannels will be discussed in the presence of a small, 

constrained channel and artificial nucleation sites.  

 A model that couples the physics of heat transfer, nucleate boiling (two-phase flow), and 

electrohydrodynamics was necessary to study the growth and detachment of bubbles in the 

minichannel regime. First, understanding how nucleate boiling can improve heat transfer is 

necessary. This behavior can be generalized in the nucleate boiling curve (Figure 1), introduced 

and described in Section 2.1. The superheat, Δ𝑇, plotted on the x-axis, represents the excess wall 

temperature (the difference between wall temperature and saturation temperature of a fluid). As 

this increases, the heat flux from the surface to the fluid varies considerably based on the boiling 

regime characteristic of a particular range of excess wall temperature (𝑇𝑤 − 𝑇𝑠𝑎𝑡). These regimes 

are identified in Figure 1.  

 The modeling work in this study approximated boiling on a hypothetical, heated “chip”, or 

processor, which may have a heat sink or other interface between it and a fluid regime. A 

representation of this chip design is shown in Figure 3. 
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Figure 3: Hypothetical heat generating chip. 

 Heat transferred from a heat generating chip to a fluid can also be approximated by the curve in 

Figure 1. In the absence of any nucleation, free convection is the dominant form of heat transfer 

(Region I), in which buoyancy governs the circulation of warmer fluid away from the chip-fluid 

interface. As wall superheats increase, the onset of nucleate boiling will occur with the presence 

of isolated bubbles (Region II) filling the Fluid region. Further increases in ΔT lead to bubble 

coalescence in the form of columns and jets (Region III). Between Region III and IV is the critical 

heat flux point (indicated by a dot). After the critical heat flux point, film boiling starts to occur 

(Region IV and V), leading to chip dryout and a rapid decrease in the heat flux on the surface of 

the chip  

The optimal design condition for convective heat transfer from a device is an operating 

point located on the boiling curve with a superheat value just below that corresponding to the 

critical heat flux point. In order to influence the characteristics of nucleate boiling in minichannels, 

this study explored modifying the behavior of nucleating bubbles in order to influence the overall 

boiling conditions. Varying the geometry of the surface in which nucleating bubbles will form is 
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one way of accomplishing this. Nucleate boiling most predictably occurs on a cavity or 

imperfection on a surface. Bubbles tend to form on these imperfections, which contain trapped gas 

or vapor that serve as bubble nuclei. While these cavities can be present on any surface, controlling 

their geometry can offer additional means of controlling nucleation, and therefore heat flux. 

Controlling the time between bubble departures, bubble diameter, and growth rate of a nucleating 

bubble may have effects such as preventing coalescence. Preventing horizontal coalescence may 

provide a means of delaying the onset of downstream bubble coalescence and film boiling, and 

may allow for more densely packed nucleation sites. Here, horizontal coalescence is defined as 

what happens when a bubble coalesces with a bubble from an adjacent site while still nucleating, 

as opposed to downstream coalescence which occurs when an upstream detached bubble coalesces 

with a downstream nucleating bubble. The existence of more cavities with trapped gas can lower 

the excess wall temperature required for nucleation.  

 A bubble attached to a solid surface creates a boundary between three phases. The 

boundary between these three phases defines a local angle, which is determined by a condition of 

Figure 4: Change in contact angle along edge of an orifice (adapted from 

Figure 5.3 in Ref. [31]) depending on interface location (red or green lines) 

The phases are labeled for the 𝜃1 angle. 

Liquid 

Vapor 

Solid 
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mechanical equilibrium. This equilibrium will, in general, depend on the properties of the phases 

in a complex way. In the context of a numerical model, it is necessary to define this interaction in 

terms of the contact angle behavior. However, the complex interaction at the three-phase contact 

line can make modeling the growth of a bubble from a nucleation site difficult [31]. Cattide et al. 

studied the sensitivity of bubble detachment from orifice diameters on the order of the bubble 

detachment size. In that work, the bubble interface was found to bind to an orifice rim during its 

growth prior to the time of detachment, and the interface shape at the three phase contact line can 

be determined based on that orifice size and not the contact angle. This relationship is illustrated 

in Figure 4, in which contact angles can be different depending on where in an orifice they attach 

to, while maintaining the same neck diameter. Alternatively, bubble detachment from a 

comparatively small cavity is defined only by the three phase contact angle between the surface, 

liquid, and vapor, and will also govern bubble base diameter during growth. This bubble base 

diameter can be difficult to determine without a robust model for the three-phase contact line in 

addition to a bubble growth model. This study investigates bubbles that grow and detach from 

orifices which have a diameter within an order of magnitude of the predicted departure diameters, 

due to the difficulty in determining contact angles for smaller nucleation sites.  

Another means of delaying the onset of film boiling is to prevent large bubble slugs from 

forming downstream in a small channel. Higher heat fluxes increase the rate of bubble generation, 

leading to larger bubble diameters [32]. While maintaining smaller bubble departure diameters 

during boiling may lead to a lower heat flux in a channel, the presence of smaller detached bubbles 

may delay downstream coalescence under the influence of a cross flow, which in turn could delay 

the onset of transition or film boiling. Studies by Siedel [33] and Cattide [31] utilize porous upper 

electrodes to generate electric fields, allowing detached bubbles to pass through, away from the 
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heated surface. Kandlikar [34] notes that one of the fundamental issues related to nucleate boiling 

in minichannels is the possibility that growing or detached bubbles can encounter other heated 

walls, resulting in rapid expansion. This provides the motivation for studying the detachment of 

bubbles from a surface under the influence of EHD forces. The effect of a solid upper electrode on 

the growth of a bubble under EHD forces will be investigated. The geometry and evolution of the 

interface of a nucleating bubble in a small channel is integral to this analysis. 

3.1. Objectives 

Specifically, the goals of the numerical portion of the study aim to accomplish the following: 

 Provide a means of studying bubble detachment on the mini-scale, coupled with 

electrodynamics and heat transfer physics 

 Investigate nucleation site geometry as a means of controlling the growth and detachment 

of bubbles in a mini-channel 

 Assess the feasibility of using EHD forces to control nucleate boiling characteristics in a 

representative minichannel 

 Develop a model to capture the evolution of the interface of a growing bubble, and the 

coalescence and detachment between multiple bubbles 

 

3.2. Model Description 

 Two-phase flows can be modeled with averaging techniques, looking at average void fractions 

within a volume [36]. However, in order to study the effect of EHD on a nucleating bubble and its 

interaction with a structure, a more comprehensive approach must be taken that can capture the 

deformation of the bubble interface.  
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There are several methods available to modeling multiphase flow. Recognizing that interface 

tracking is necessary in properly modeling two phase flow, Chung [37] recognizes that volume 

tracking methods, front tracking, level set, phase field can be all used for this, as well as other 

methods like particle-based formulations, moving meshes, and boundary integrals. One of the 

more common methods is volume tracking, or Volume of Fluid (VOF) methods that conserve a 

volume fraction function in a domain. This method solves the Navier Stokes equations and is 

capable of modeling compressible or incompressible flows. As described by Chung, the VOF 

formulation involves either re-meshing a grid as the fluid displaces or to constantly redefine 

element properties based on volume fraction. 

Compared to the phase field method chosen here, the VOF method has some key differences 

and capabilities. In a study comparing multiphase flow methods by Anderson et al. [38], it is noted 

that VOF methods are similar to diffuse interface methods (like phase field) in that complex 

boundary shapes and topological changes can be described more readily than moving-mesh 

methods. However, it is noted that VOF methods must supplement the equations of motion with 

boundary conditions at the “free surface”, or the free boundary that exists between the immiscible 

fluids being modeled. While Anderson notes that applying these boundary conditions is applicable 

to a wide variety of applications, there are situations where the VOF method is not appropriate. 

Modeling bubble coalescence requires a different type of model. 

 Level set methods paired with the Navier-Stokes equations offer this ability. The Level Set 

Method (LSM) was developed by Osher et al. in 1988 as a means of numerically defining phase 

fronts propagating with a curvature dependent speed [39]. The phase field approach is similar to 

level set, with additional transport equations defining the motion of the interface being the primary 

difference between the two [40]. A phase field or level set variable (𝜙) can define one of two 
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phases with a gradual discontinuity in a solver (Figure 5). Unlike the LSM, the phase field 

approach eliminates the need for a moving mesh while capturing accurate interface dynamics, as 

well as providing the ability to model external body forces. This approach allows for the coupling 

of heat transfer physics, contact angle determination, and electrohydrodynamics on a nucleating 

bubble. 

 

Figure 5: Illustration of the phase field variable through a vapor packet in a liquid medium. 

Many methods exist for modeling two-phase flow in the presence of an electric field, but 

any method chosen must be able to capture complex interface dynamics. Methods based on the 

work done by Pohl [19], in which EHD forces are calculated on bodies assumed to be dielectric 

particles within a medium (See derivation and explanation provided in Pohl) would not be 

appropriate for capturing the deformation of bubble interfaces. Cattide et al. and Melcher [41] 

found that a Maxwell-stress tensor derived body force is the most useful in modeling nucleate 

boiling in the presence of an electric field. The Maxwell Stress Tensor (MST) is a tensor describing 

the stresses induced by electromagnetic fields interacting with a body with a given permittivity. In 

the discussion that follows, one derivation of the MST is described that starts with the Lorentz 
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Force Equation (LFE) (Equation 1). The LFE describes the interaction between a charged particle 

and electric and magnetic fields. 

 𝑭 = 𝑞[𝑬 + 𝒗 × 𝑩] (1) 

Where F is a force, E is an external electric field, B is an external magnetic field, and v is the 

instantaneous particle velocity. Any study exploring the effects of an electric field on a deforming 

medium must account for an extended interface. One such approach provided by Jackson [42] 

sums the momenta of every particle in some volume to determine the collective force (per unit 

volume) on a group of particles. Equation 2, worked out by Jackson, is an expression that can be 

used to calculate the force per unit volume at a single point in some medium with permittivity ɛ 

due to the presence of either a non-uniform electric field or a uniform electric field and a non-

uniform permittivity. This derivation starts with a sum of all momenta of every particle in a 

volume. Using Gauss’s law and Ampere’s law, that expression can be re-written in terms of the 

electric displacement field, introducing relative permittivity to the equation [36]. A complete 

derivation of (2) is provided in Jackson [42] following from Eq. 1, the LFE. 

 
𝑭𝒗 = 𝜖𝜖𝑜 [𝑬(𝛁 ⋅ 𝑬) + (𝑬 ⋅ 𝛁)𝑬 −

1

2
∇(𝜖𝜖𝑜𝐸

2)] 
(2) 

Equation 2 defines the force per unit volume due to an electric field, but its implementation cannot 

account for local forces deforming certain parts of that volume (i.e. a bubble interface). The 

derivation described requires assuming a bulk volume, with no way to describe the magnitude of 

the force at discrete locations on a surface. Instead, a stress tensor can be more useful for the 

determination of boundary deformation. Equation 2 can be written in a different form to express 

the relationship fields that cause the forces, stresses that act on an area, and volumetric forces.  
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Equation 3 is the common form of the MST, 𝜏𝐸 . The derivation of the MST from the LFE 

(Eq. 1), and how it relates to the force per unit volume (Eq. 2), is presented in Jackson [42] 

 
𝝉𝐸 = 𝜖𝜖𝑜 (𝑬𝑬 −

1

2
𝐸2𝑰) 

(3) 

The MST, written in terms of the electric field and relative permittivities, is used to express the 

electric field-induced stress on a surface in terms of a tensor, which can be incorporated into a 

numerical solution more readily than a volumetric force could be. The volumetric force can be 

recovered by calculating the divergence of the MST, and is shown in Eq. 4. 

 𝑭𝒗 = ∇ ⋅ 𝝉𝐸  (4) 

Taking the divergence of the MST (Eq. 4) yields the same volumetric force equation as the one 

derived directly from the Lorentz Force equation (Eq. 1). Another formulation to calculate the 

force on a dielectric body in a field is the Korteweg-Helmholtz force density, described by Stratton 

[43] and Melcher [41]. This form (Eq. 5) of electric force equation is based on a principle of energy 

conservation (described in Melcher [41].) and are described as being broadly applicable to many 

problems. 

 
𝐹𝑣 =  𝜌

𝑓
𝐸 −

1

2
𝐸2𝛻𝜖 +

1

2
𝛻 [𝐸2𝜌

𝛿𝜖

𝛿𝜌
] 

(5) 

The first term represents the force acting on free charge (density) in an electric field, which is 

known as the Coulomb Force. The second represents the dielectrophoretic force. The 

dielectrophoretic force is the force exerted on a dielectric body in a non-uniform electric field. The 

third term represents the electrostriction force, and only arises in fluids with gradients in the 

permittivity. It is the electrostriction force that is responsible for the deformation of a dielectric 

material. Typically, a material will elongate in the direction of an electric field. This expression 

would be of great use in studying how a bubble deforms under an electric field, but the exact nature 
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of this deformation would be difficult to determine during a simulation of nucleation. As a bubble 

grows, its changing interface location influences the electric field (as the bubble has a different 

permittivity than the medium). Cattide et al.[31] note that form of Equation 5 is of little use in the 

presence of an interface between two phases because it cannot capture the interface behavior under 

EHD forces, meaning that a description of the body force based on the MST (stress tensors) is 

necessary, as opposed to one acting on an entire volume. Also shown in Melcher [41] is a 

derivation of the MST from Eq. 5, demonstrating the link between multiple electric field force 

formulations (such as ones derived from the LFE). Of particular relevance to this study is the effect 

that the bubble interface itself can have on the applied electric field, an effect not captured in 

Equation 5 in its current form. The transition in permittivity between the vapor and liquid phases 

can influence the electric field, leading to a force despite the absence of a non-uniform electric 

field. To investigate the influence that external (nucleation site and channel) geometry can have 

on an electric field, while in the presence of the distorting effect of the bubble’s own interface, one 

must be able to include the effect of a changing and dynamic interface by utilizing a solution that 

is based on the MST. 

These geometrically-enhanced electric field non-uniformities can help increase the magnitude 

of the EHD force on a liquid-vapor interface. The manner in which the MST is derived from the 

LFE is provided in Jackson [42], and forms the basis of the equations used in study. Since the force 

depends on the gradient of the relative permittivity (last term in Equation 5), the force is only 

imparted to the liquid-vapor interface. In two-phase flow, this force arises naturally from the 

difference in permittivity between a vapor phase and a liquid phase. Non-uniformities in the 

externally applied field can increase the magnitude of this force at specific points on the interface. 

The MST-derived volumetric force has been shown to increase greatly in magnitude in the 
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presence of external electric field non-uniformities [29]. In Section 3.4, the development and 

results of a model to capture the effects of an electric field on a nucleating bubble is presented. 

This model consists of the form the EHD volumetric force equation given by Eq. 5, applied at the 

interface of two fluids with differing permittivities. The MST is implemented alongside the phase 

field variable to model a stress on the fluid interface. 

3.3. Methodology 

 Practical implementation of this model required striking a balance between the inclusion 

of the required physics and computational speed. The simplest approach that would still capture 

the behavior under study was to use a planar, 2-dimensional (2-D) model that couples the three 

physics modes of heat transfer, two-phase flow, and electrohydrodynamics. However, a planar 2-

D model has shortcomings in that it cannot accurately model realistic surface tension forces due 

to the unphysical nature of infinitely long cylindrical bubbles. In addition, the boundary conditions 

for the planar 2-D phase field method cannot accurately capture the surface tension at the liquid-

vapor-solid interface. For this reason, an axisymmetric 2-D model was chosen to allow a more 

realistic representation of the surface tension forces. However, this approach precludes the 

inclusion of drag forces from a cross flow, as well as studying the interactions between multiple 

bubbles in a long channel. The inclusion of such phenomena would require the development of a 

3-dimensional (3-D) model, and while too computationally expensive for the present work, could 

be considered in follow-on work.  

 The model simulations were intended to study the detachment of bubbles from artificial 

nucleation sites in order to explore the sensitivity of bubble size and detachment frequency to 

applied potential, channel and nucleation site geometry. The key independent variables are the 

applied potential and the geometric parameters of the artificial nucleation site as shown in Figure 
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6. The primary variables in the geometry of the nucleation site are the radius of the fillet, the height 

of the indented cone, and the angle the cone makes with the bottom electrode.  

 COMSOL Multiphysics [35]was used for this study. COMSOL allows for the coupling of 

multiple physics environments, as well as the ability to parametrically define geometry. 

Additionally, COMSOL allows for the modification of any of the governing equations to in order 

to encompass the desired physical phenomena. Three physics modules were utilized: Two-phase 

flow (phase field), Heat Transfer in Fluids, and Electrostatics. The boundary conditions and 

governing equations in each physics module are detailed in Sections 3.4.1-3.4.3. 

3.4. Model Geometry 
 

The relevant geometric features and boundary conditions of the simulation domain are 

presented in Figure 6. Each electrode is defined as constant potential boundary conditions in the 

electrostatics module, and also as a wetted wall in the Two-phase flow module. Pressure boundary 

conditions are also prescribed at the electrode surfaces, as well as the initial vapor interface 

between the fluid domain and the vapor domain. The heated electrode is represented in the heat 

transfer module as a constant heat flux.  

 

Figure 6: Relevant model features. 
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3.4.1. AC/DC module, Electrostatics Interface 

The AC/DC module within COMSOL contains a specific interface for electrostatics problems, 

featuring domain and boundary condition selections related to electrostatics. This module solves 

Maxwell’s equations over a domain to find the electric potential. For the assumed, axisymmetric 

2-D solution, the COMSOL solver assumes spatial dependence in the r- and z-directions only, and 

no change in the azimuthal or φ-direction. The electric field is defined in terms of the gradient of 

the potential V. 

 𝑬 = −∇𝑉 (6) 

Also, the electric displacement field defines the relationship between the electric field and the 

relative permittivity, as shown in Eq. 7 

 𝑫 = 𝜖𝑜𝜖𝑟𝑬 

 

(7) 

Where 𝜖𝑟 is the relative permittivity of a domain or material, and 𝜖𝑜 is the relative permittivity of 

vacuum. In this model, the permittivity is assumed to be isotropic. The electric field is found from 

Gauss’ Law (Eq. 8) in a domain with a permittivity 𝜖𝑜𝜖𝑟 

 −∇ ⋅ (𝜖𝑜𝜖𝑟𝑬) = 𝜌𝑣,𝑒 (8) 

where 𝜌𝑣 is the charge density in a volume (zero in this model as the fluid is assumed to contain 

no free charges). In order to account for the change in permittivity between the vapor and liquid 

phases, two different relative permittivities must be defined, 𝜖𝑙 and 𝜖𝑣 ,representing the 

permittivity of the liquid and permittivity of the vapor. Most gases can be approximated with a 

relative permittivity of constant 1, which is the same as a vacuum [45]. Typically, COMSOL 

applies permittivities to pre-defined material domains, however this approach doesn’t allow for 
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application of the phase field method and EHD effects within an electrostatics domain. The 

material properties at a given location are defined fully in the laminar two-phase flow (phase field) 

interface, with fluid properties attributed to the labels of “Fluid 1” and “Fluid 2” applied to each 

fluid phase. However, these material properties are not global (within the COMSOL environment) 

and so are not applied in the Electrostatics Interface. Certain properties (such as temperature, 

density, etc.) can be used as inputs in one module after being solved for in another, but topological 

changes (such as bubble shape) do not update within the Electrostatics Interface. In order to 

incorporate the permittivity change into the governing equations found in the Electrostatics 

Interface, the permittivity can be related to the volume fraction (which does update within the 

Electrostatics Interface after being solved in the two-phase flow solver), and defined globally as: 

 ∀𝑓𝑣 (𝜖𝑣) + ∀𝑓𝑙(𝜖𝑙) =  𝜖𝑟 (9) 

Where 𝜖𝑟 is the permittivity applied to the entire domain, and ∀𝑓𝑣 and ∀𝑓𝑙 are the volume fractions 

of the vapor phase and liquid phase respectively. The boundary condition on the lower electrode 

(Figure 6) prescribes the condition 𝑉 = 𝑉𝑜, where 𝑉𝑜 is a constant DC potential. The upper 

electrode represents the grounded plate, where 𝑉 = 0. The side walls of the domain are set to a 

zero charge boundary condition, in which 𝒏 ⋅ 𝑫 = 0. Physically, this last boundary condition 

implies that the electric field is perpendicular to a boundary, so that the effects of the interior 

boundaries do not reach as far as the external boundary, or that as the solution moves further away 

from the region of interest, there is no more change in the electric field. 
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3.4.2. Multiphase Flow Module, Laminar Two-Phase Flow (Phase Field) 

Interface 

The phase field method allows for interface tracking and basic fluid-fluid-solid interaction. The 

Laminar Two-Phase Flow (Phase Field) interface solves the incompressible Navier-Stokes 

equations in a domain, tracking the position and velocity of an interface between two fluid phases 

[40]. For convenience, from here on the laminar two-phase flow (phase field) interface will be 

referred to as the “LTPFPF interface.” The justification for using the incompressible form is based 

on work from Smolianski [46], which validated their assumption for several reasons, most notably 

the low Mach numbers in the domain (less than 0.3). The LTPFPF method serves to track the 

interface between two homogenous fluids, while solving the mass transport equations between 

phases.  

In the liquid phase, the terms of the incompressible Navier-Stokes equations, shown in 

Equation 10, are solved. In the vapor phase, the incompressible Navier-Stokes equations were 

solved alongside the continuity equation, Equation 11 (as opposed to the more correct 

compressible equations), to reduce the computational complexity of solving compressible 

equations. The assumption of incompressibility is justified due to the small time scale over which 

the simulation takes place, and the small changes in pressure and temperature inside the fluid 

(which would affect density). The continuity equation, Equation 11, is also solved for the 

conservation of mass in both phases (modified for transport, shown later in the section) 

 
𝜌

𝜕𝒖

𝜕𝑡
+ 𝜌(𝒖 ⋅ ∇)𝒖 = ∇ ⋅ [−p𝐈 + μ(∇𝐮 + ∇𝐮T)] + 𝑭𝒈 + 𝑭𝒔𝒕 + 𝑭𝒆𝒙𝒕 + 𝑭  

(10) 
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 ∇ ⋅ 𝒖 =  0 (11) 

In Eq. 10, the terms on the left represent inertial forces. On the right, the first term represents 

viscous forces. The remaining terms represent all relevant external body forces. Gravity, surface 

tension force, any other external contribution, and a user-defined volumetric force are all defined. 

The COMSOL CFD User’s manual [47] defines these terms. The surface tension force 𝑭𝒔𝒕 is 

defined as: 

 𝑭𝒔𝒕 = 𝛻 ⋅ (𝜎(𝑰 − (𝒏𝒏𝑻))𝛿)  (12) 

Where the 𝛿 interface function (distinct from the Kronecker Delta Function 𝛿𝑖𝑗) applies the force 

only to the interface: 

 𝜹 = 𝟔|𝛻𝜙||𝜙(1 − 𝜙)|  (13) 

The MST-derived force (Eq. 2) is incorporated as the user-defined volumetric force to impose a 

force per unit volume on the transition zone between the liquid and vapor. Solving the Navier-

Stokes equations alone are not enough to define a moving interface. The phase field method 

implemented by COMSOL tracks an interface by solving two more transport equations, one 

equation for the phase field variable, and one for a mixing energy density. These equations (Eq. 

14 and Eq. 15) are based on work done by Cahn and Hilliard [48]. 

 𝑑𝜙

𝑑𝑡
+  𝒖 ⋅ ∇𝜙 = 𝛻 ⋅

𝛾𝜆

𝜖2
∇ψ 

(14) 

 

 
𝜓 = −∇ ⋅ 𝜖2∇𝜙 + (𝜙2 − 1)𝜙 + (

𝜖2

𝜆
)

𝜕𝑓𝑒𝑥𝑡

𝜕𝜙
 

(15) 
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Where 𝜆 is the mixing energy density and 𝜖 is a capillary width term (both terms defined below) 

[49]. The variable 𝜓 is a placeholder variable that links Eqs. 14 and 15, as they are derived from 

one equation originally. These two equations come from the Cahn-Hilliard Equation (Eq. 16): 

 𝑑𝜙

𝑑𝑡
+  𝒖 ⋅ ∇𝜙 = 𝛻 ⋅ 𝛾∇G 

(16) 

Where G is a chemical potential (molar energy, not a pressure) measured in Pascals 

 
𝐺 = 𝜆 [−𝛻2𝜙 +

𝜙(𝜙2 − 1)

𝜖2
] 

(17) 

Equation 17 is broken up into Eqs. 14 and 15 so it can be solved by the COMSOL phase field 

interface. The inclusion of the mixing energy density is another primary differentiator between the 

level-set method and the similar phase field method, in that its inclusion helps avoid an arbitrary 

liquid-vapor interface smoothing function, in which the interface is defined manually. As 

described by Yue [49], the mixing energy is a parameter that captures the fact that the interface’s 

structure is determined by forces on the molecular level. Relating back to the “capillary width” 

described earlier, an ɛ value approaching zero would mean that the smoothing governed by the 

mixing energy would approach the limit of a sharp interface. The capillary width and mixing 

energy density are related to the surface tension as shown in Equation 18, also derived by Yue: 

 
𝜎 =

2√2

3

𝜆

𝜖
 

(18) 

Additionally, 𝛾 is a paremeter defined in Yue as the mobility. In COMSOL, this is related 

to 𝜖 through the equation 𝛾 = 𝜒𝜖2 where 𝜒 is the mobility tuning parameter (set to 1 by default, 

controllable in the COMSOL interface). The mobility parameters help determine the time scale of 

the solution [47]. Set too low, and the interface will be driven further way from (phase) 

equilibrium, where if set too high, the interface will be forced to its equilibrium state. Equilibrium 
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is defined as a state where the interface has zero chemical potential. This relates to mass flux, in 

that Yue assumes that the mass flux is governed by the gradient of the chemical potential. This 

parameter helps govern the time scale of the diffusion. 

The manner in which the interface is actually tracked is discussed in a paper by Yue [49]. 

One key to tracking an interface in a diffuse-interface model (such as the phase field) is through 

the incorporation of a mixing energy. This mixing energy is used to capture the interactions 

between molecules due to intermolecular forces between separate materials of a different 

composition (such as two phases). In the Cahn – Hilliard equations, the mixing energy is a function 

of the phase field, 𝜙. It is stated that since the mixing energy helps define the interaction between 

molecules of the phases, surface tension can also be incorporated. The location at which this phase 

field variable is zero denotes the “center” of an interface with a user-prescribed thickness. 

Modifying this value of thickness did not influence the solution. The velocity of this interface, and 

therefore the location, is tracked using the Cahn-Hilliard equation. This can be changed based on 

the motion of one phase (such as the vapor expansion when boiling) or bulk flow. 

The interface is tracked using the two phase field equations described earlier in the section 

(Equations 14 and 15). These equations help define the advection of the interface (governed by 

variable ϕ) which moves throughout the domain. As the interface moves, the values on either side 

quickly transition to a constant value (representing liquid or vapor), and properties are defined by 

what the value of the phase field variable is. During boiling, if the volume of the vapor expands 

on one side of the interface, it helps move the interface velocity, accelerating it away from the 

growing vapor region and simulating bubble growth. This occurs in conjunction with surface 

tension, EHD forces, and normal stresses to track the shape and location of the interface. 
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The phase field method is important for the present work due to the necessity of capturing 

the coalescence of bubbles. Jamet [50] discusses the limitations of discontinuous interface 

modeling. While assuming the thickness of the interface is much smaller than the scale size of the 

phenomena being studied in the problem, it gives rise to invalid assumptions. One such assumption 

pertaining to the choice of the LTPFF model has to do with bubble coalescence. Defined as a 

situation where two bubbles merge to form a single bubble, coalescence is impossible to model in 

a discontinuous system. Jamet notes that in this case, the phase field model is singular and not well 

defined 

The mechanism of bubble coalescence with this model is described in Yue [49]. Yue 

describes past studies that had to account for the recombination of interfaces by artificially 

removing the film separating two coalescing bubbles. This can influence the dynamics and 

behavior of the new body, depending on how and when the artificial separation occurs. Yue notes 

that the breakup and re-coalescence of bubbles arises naturally from the Cahn-Hilliard equations 

used by COMSOL’s implementation of the LTPFF interface. Additionally, Yue further notes that 

the physical reality of bubble recombination is influenced by the Van der Waals’ forces between 

molecules at the interfaces. The Cahn-Hilliard equations represent the physical reality of bubble 

interaction in their representation of the fluid interface, effectively modeling the true physics of 

the breakup and recombination process. 

The boundary condition for the channel wall (Indicated in Figure 6, as the “Heated 

Electrode”) in COMSOL is set to be a “wetted wall” boundary condition, in which the interface 

between the three phases is allowed to move along the wall (simulating bubble growth) and the 

contact angle must be prescribed. The boundary condition at the sides of the channel (with no cross 

flow) can be prescribed as hydrostatic (gage) pressures: 
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 −𝑔𝑐𝑜𝑛𝑠𝑡𝜌𝑙(𝑦 − ℎ𝑖) = 𝑝0 (19) 

Where the 𝑦 dimension represents the height of the channel at a given mesh element, ℎ𝑖 

represents the total height of the channel, and gravity, represented by the gravitational constant 

𝑔𝑐𝑜𝑛𝑠𝑡, acts in the negative z-direction. The model can also prescribe a constant pressure in the 

entire domain, or along the outlet sides of the channel as a function of the channel height. Pressure 

must vary as a function of channel height in order to account for the hydrostatic pressure 

difference. Prescribing a constant pressure along the outlet (assuming it is between the two 

electrodes) would be unphysical as it would not take any hydrostatic pressure into account. 

Equation 15 captures the maximum gage pressure desired in the channel when the vertical distance 

equals zero (i.e. at the bottom of the channel). At the top of the channel, the gage pressure 

corresponds to zero. 

The notation “Fluid 1” and “Fluid 2” are used to identify the phase of the domain in 

COMSOL in the LTPFPF interface. In this model, the volume fraction of Fluid 2 (liquid) is defined 

in terms of the phase field variable using Equation 16 (where the subscript “l” denotes the liquid 

phase), 

 
∀𝑓𝑙

= min(𝑚𝑎𝑥 (
[1 + 𝜙)

2
] , 0,1) 

(20) 

which bounds the volume fraction to between 0 and 1. Correspondingly, density and dynamic 

viscosity can be found in the domain with the relation (with X representing either property and the 

subscript identifying the property at a given phase) 

 𝑋 = 𝑋𝑙 + (𝑋𝑓 − 𝑋𝑙)∀𝑓 (21) 

This expression defines a fluid property within regions of pure liquid and vapor, as well as the 

transitional interface. The two-phase flow interface allows for the inclusion of a volumetric force 
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in the Navier-Stokes equations. As described earlier, the externally-applied volumetric force for 

this work is found from the divergence of the MST. Studies have different approaches for 

incorporating the MST into the solver, with some [11] requiring manual definition of derivatives, 

unit normal, and interface thicknesses, where more “custom” solutions [29] require manual 

definition of derivatives and unit normals. COMSOL is able to differentiate the electric field 

components directly, allowing for a more direct solution of the volumetric force equation utilizing 

the MST (Eq. 4).  

In order to implement the volumetric electric force into COMSOL, the 𝐹𝑟 and 𝐹𝑧 

components of the force must be written in terms of the gradients of the electric field. COMSOL 

has the ability to differentiate the electric field with respect to the spatial coordinates throughout 

the domain. This allows the MST to be expressed as a 3x3 tensor (for the 2-D problem), from 

which with the divergence of the MST, which defies the volumetric force, can be applied to the 

problem-appropriate z- and r- components. The divergence of a tensor field S in cylindrical polar 

coordinates is provided in [51]: 

 
∇ ⋅ 𝑺 =

𝜕𝑆𝑟𝑟

𝜕𝑟
𝒆𝑟 +

𝜕𝑆𝑟𝜃

𝜕𝑟
𝒆𝜃 +

𝜕𝑆𝑟𝑧

𝛿𝑟
𝒆𝑧 +

1

𝑟
[
𝜕𝑆𝜃𝑟

𝜕𝜃
+ (𝑆𝑟𝑟 − 𝑆𝜃𝜃)] 𝒆𝑟 + ⋯ 

1

𝑟
[
𝜕𝑆𝜃𝜃

𝜕𝜃
+ (𝑆𝑟𝜃 − 𝑆𝜃𝑟)] 𝒆𝜃 +

1

𝑟
[
𝜕𝑆𝜃𝑧

𝜕𝜃
+ 𝑆𝑟𝑧] 𝒆𝑧 + ⋯ 

 
𝜕𝑆𝑧𝑟

𝜕𝑧
𝒆𝑟 +

𝜕𝑆𝑧𝜃

𝜕𝑧
𝒆𝜃 +

𝜕𝑆𝑧𝑧

𝜕𝑧
𝒆𝑧 

(22) 

Assuming radial symmetry, partial derivatives in the 𝜃 direction vanish. 

 
∇ ⋅ 𝑺 =

𝜕𝑆𝑟𝑟

𝜕𝑟
𝒆𝑟 +

𝜕𝑆𝑟𝑧

𝛿𝑟
𝒆𝑧 +

𝑆𝑟𝑟 − 𝑆𝜃𝜃

𝑟
𝒆𝑟 +

𝑆𝑟𝜃 − 𝑆𝜃𝑟

𝑟
𝒆𝜃 +

𝑆𝑟𝑧

𝑟
𝒆𝑧 + 

𝜕𝑆𝑧𝑟

𝜕𝑧
𝒆𝑟

+
𝜕𝑆𝑧𝑧

𝜕𝑧
𝒆𝑧 

(23) 
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The components of a stress tensor can be written out in polar coordinates as 

 
𝜏 =  

𝜏𝑟𝑟 𝜏𝑟𝜃 𝜏𝑟𝑧

𝜏𝜃𝑟 𝜏𝜃𝜃 𝜏𝜃𝑧

𝜏𝑧𝑟 𝜏𝑧𝜃 𝜏𝑧𝑧

 
(24) 

The tensor above can be simplified by neglecting terms with an azimuthal dependence. The terms 

that remain after simplification allow for the 𝐹𝑟 and 𝐹𝑧 components of the EHD force to be 

determined and applied to the entire domain (using Eq. 3, the MST and Eq. 4, its divergence). 

Since the force depends on the divergence of the electric field as well as the permittivity, only the 

region in which the permittivity changes (the phase field transition region) is affected by the EHD 

force. This is consistent with results from Sunder and Tomar [29], where the volumetric force is 

only applied to the transition region of the domain. Using indicial notation, the MST (Eq. 2) can 

be expressed as the following (where the 𝐸2 term is an implicit dot product): 

 
𝝉𝐸 = 𝜖𝜖𝑜 (𝐸𝑖𝐸𝑗 −

1

2
𝛿𝑖𝑗𝐸

2) 
(25) 

The full 3D tensor is given in Equation 22. For this particular problem, any 𝐸𝜃 components vanish 

due to the lack of any azimuthal electric field components. Additionally, the Kronecker delta 

function vanishes if 𝑖 ≠ 𝑗, but remains for 𝜏𝜃𝜃. In the case of 𝜏𝜃𝜃, the first term in Equation 25 

vanishes, but the second term remains. [52] 

 𝝉𝐸

=

[
 
 
 
 
 

 

𝜖𝜖𝑜 (𝐸𝑟
2 −

1

2
(𝐸𝑟

2 + 𝐸𝑧
2)) 0 𝜖𝜖𝑜(𝐸𝑟𝐸𝑧)

0 𝜖𝜖𝑜 (−
1

2
(𝐸𝑟

2 + 𝐸𝑧
2)) 0

𝜖𝜖𝑜(𝐸𝑧𝐸𝑟) 0 𝜖𝜖𝑜 (𝐸𝑧
2 −

1

2
(𝐸𝑟

2 + 𝐸𝑧
2))]

 
 
 
 
 

 

(26) 
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As shown in Eq. 4, the divergence of this Maxwell Stress Tensor is the volumetric EHD force. 

Applying the divergence of a tensor field as given by Eq. 23 to the MST given by Eq. 25, the force 

vector can be found: 

 
𝐅 =  ∇ ⋅ 𝝉𝐸 = [

𝜕𝜏𝑟𝑟
𝐸

𝜕𝑟
+

𝜏𝑟𝑟
𝐸 − 𝜏𝜃𝜃

𝐸

𝑟
 + 

𝜕𝜏𝑧𝑟
𝐸

𝜕𝑧
] 𝒆𝒓 + [

𝜏𝑟𝑧
𝐸

𝑟
+

𝜕𝜏𝑟𝑧
𝐸

𝜕𝑟
+

𝜕𝜏𝑧𝑧
𝐸

𝜕𝑧
] 𝒆𝒛 

(27) 

 

Implementation of this equation in COMSOL can result in singularities near 𝑟 = 0. In order to 

avoid this non-physical behavior, the components of the force can be set to zero for values of r 

smaller than a specified limit, using the following statement. 

Force, r − component (units of m): 𝑖𝑓(𝑎𝑏𝑠(𝑟 > 𝑡𝑓 , 𝐹𝑟 , 0) 

Force, z − component: 𝑖𝑓(𝑎𝑏𝑠(𝑟 > 𝑡𝑓 , 𝐹𝑧 , 0) 

Where 𝑡𝑓 = 1𝑒 − 7. As defined by Eq. 27, this externally-applied, volumetric force is applied to 

the entire domain although it will only act upon regions with a sharp change in permittivity 

(defining the fluid interface). In addition to this volumetric force, there is a gravity force defined 

in the negative z-direction through the entire domain. 

3.4.3. Heat Transfer Module, Heat Transfer in Fluids Interface 

In COMSOL, the Heat Transfer in Fluids interface of the Heat Transfer module models heat 

transfer in fluids, including convection, conduction, and radiation. Neglecting radiative heat 

transfer for this case, the energy equation for the domain is given by: 

 
𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
+ 𝜌𝐶𝑝𝒖 ⋅ ∇𝑇 = ∇ ⋅ (𝑘∇𝑇) + 𝑄 

(28) 
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where Q represents any additional heat gain or loss of the system. The bottom electrode is given a 

prescribed, constant heat flux 𝑞" =  𝑞0, and the domain is initially at saturation temperature to 

achieve boiling at the start of a simulation. This model utilized a constant heat flux boundary 

condition at the bottom as opposed to a constant temperature boundary condition. Using a constant 

heat flux at the bottom boundary better approximates the heat gain from a chip. A constant heat 

flux boundary condition in the model sets up future work to add in conjugate heat transfer from a 

solid surface to the liquid. In this future work, a heat generating component (i.e. electronic chip) 

would be assumed to dissipate a constant amount of heat. Realistically, an interface would exist 

between the chip itself and the fluid. In that case, with a constant heat flux boundary condition, the 

temperature of that interface could be more accurately determined. While out the scope of this 

model, the change of that interface would be more useful in studying the operation of a heat transfer 

device, due to the expected reduction in surface temperature due to an increase in heat flux with 

the application of EHD. 

At the sides of the channel, the thermal boundary condition set to an “Outflow” condition. This 

will allow only convective heat transfer to occur at the boundary. At the upper electrode, there is 

no conduction or convection allowed (adiabatic). This assumes that the bulk of the heat transfer 

will happen through the channel sides, and that convective effects through the top electrode are 

negligible. 

 Ensuring that bubbles coalesce properly, as well as not developing discontinuous interfaces is 

a challenge that must be addressed. Jamet [50] mentions this challenge as it pertains to modeling 

of nucleate boiling. The modeling of bubble coalescence using the LTPFPF interface is addressed 

in Section 3.4.2, but another challenge arises in dealing with the critical location within the 

transition zone of the bubble. This location is where the temperature properties of both phases are 
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equal, and phase change is assumed to occur. In a bubble, the vapor temperature is both lower 

than, and higher than the critical point at the interface, with the interface representing the transition 

between the two phases. Jamet notes that discontinuous models cannot handle the modeling of the 

critical point accurately. Following Son and Dhir [53] the governing equations can be written 

assuming laminar flow, and the liquid-vapor interface can be maintained at a saturation 

temperature better approximate where the critical location is, and to ensure phase change occurs 

there.  

 According to Kandlikar [9], an increase in heat flux or superheat leads to a larger number of 

active nucleation sites as well as a higher frequency of bubble detachment from those sites. Son 

and Dhir [53], noted that the rate of vaporization (the mass flux from the liquid surface) must be 

calculated to use in the heat transfer equation. From their study, the rate of vaporization is 

described by: 

 
𝑚̇ =

1

𝐻𝑙𝑣
𝒏 ⋅ (𝑘𝑙∇𝑇l − 𝑘𝑣∇𝑇𝑣) 

(29) 

Where 𝑘𝑙  and 𝑘𝑣 represent the thermal conductivity of the liquid and vapor, respevtivley, 𝑇l and 

𝑇v represent the temperature of the liquid and vapor, respectively, and n is the unit normal. 

However, it is noted that the temperature gradient at the interface will be small, and may make 

estimating mass flux in this manner difficult. Son and Dhir [53] discuss the representation of the 

mass flux vector at the interface, using conservation equations.  

 
𝒎̇ = 𝜌(𝒖𝒊𝒏𝒕 − 𝒖) =

𝑘𝛻𝑇

ℎ𝑓𝑔
  

(30) 

Where ℎ𝑓𝑔 is the latent heat of vaporization, 𝒖𝒊𝒏𝒕 is the interface velocity vector, and 𝒖 is the 

surrounding velocity vector. To simplify the model, the mass flux can be approximated. Following 
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from the work of Son and Dhir, a COMSOL-developed model [54]describing boiling problems 

proposed the following estimation. In that example, mass flux can be approximated as follows 

 
𝑚̇ = 𝐶𝜌𝐿

𝑇 − 𝑇𝑠𝑎𝑡

𝑇𝑠𝑎𝑡
 

(31) 

Eq. 31 is an approximation based used to estimate the mass flux from one phase to another 

(described as being similar to setting a heat transfer coefficient on a boundary). The parameter C 

is a constant, set to a value large enough to keep the temperature at the liquid-vapor interface at 

the saturation temperature, but not too large in order to introduce numerical solution instabilities. 

C, combined with the temperature ratio term, serve as a tunable parameter that can approximate 

the interface velocity in a basic manner. If the surrounding liquid temperature corresponds to 

saturation, there will be no mass flux. While it is difficult to model the exact rate of phase change 

with this approximation, it allows for the relative behaviors (between simulations with different 

potentials or channel heights) to be modeled to ensure a valid comparison of bubble growth or 

contraction. The parameter C was chosen to be large enough to ensure solution completion (leading 

to numerical instabilities otherwise), and remained constant between every simulation (0.04 m/s). 

 Bubble expansion occurs due to the volume of the vapor expanding as liquid undergoes phase 

change through the bubble interface. In the model, this is achieved by modifying the mass 

conservation equation across the interface. As described above, the continuity equation accounts 

for the phase change from liquid to vapor, and the equation parameter C is chosen to ensure that 

the interface remains fixed at the saturation temperature. Although the boundary fluid is at the 

saturation temperature, the vapor in the bubble, or the liquid outside the bubble, will have a 

temperature variation solved for by COMSOL. Within the COMSOL software, the temperature 

solved in the Heat Transfer in Fluids interface is used to change the density of the fluid (which 

changes with temperature and phase). As the fluid expands, the bubble is seen to “grow”. 
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 Without modification, the form of the heat transfer equation included in COMSOL (Eq. 28) 

does not include an energy gain or loss term resulting from phase change between a liquid and 

vapor phase, as it is typically employed to govern single phase heat transfer. The energy exchanged 

as a result of the mass flux (Eq. 30) undergoing a phase change is incorporated into the energy 

equation (Eq. 28) as Equation 32: 

 
𝑄 =

𝑚̇𝛿Δ𝐻𝑣𝑙

𝑀𝑤
 

(32) 

Where the delta function 𝛿 given by Equation 13 ensures that the heat gain or loss from phase 

change is only applied to the interface [47]. This ensures that any mass flux only occurs along the 

transition region defined by the delta function, i.e. the liquid-vapor interface. 𝐻𝑣𝑙 is the molar 

enthalpy of vaporization (J/mol), and 𝑀𝑊 is the molecular weight of the vapor. 

 Additionally, the continuity equation was modified to include the mass flux (at the interface). 

The velocity of the interface is calculated with Equation 33, based on reference [56], where the 

right hand side is a simplification of the average density, mass flow rate through the interface, and 

the delta function: 

 
∇ ⋅ 𝒖𝒊𝒏𝒕 = 𝑚̇𝛿 (

1

𝜌𝑣
−

1

𝜌𝐿
) 

(33) 

Where 𝑚̇ is the rate of vaporization given in 
𝑘𝑔

𝑠⋅𝑚2, 𝛿 is the interface approximation given in 
1

𝑚
, and 

𝜌𝑣 , 𝜌𝐿 are the vapor and liquid densities, respectively, in 
𝑘𝑔

𝑚3

̇
. This equation follows from the mass 

conservation equation derived by Son and Dhir [56] to account for volume expansion due to phase 

change, which was derived from an energy balance at the interface and mass continuity 

 
∇ ⋅ 𝒖 =

𝒎̇

𝜌2
⋅ 𝛻𝜌 

(34) 
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Together, Equations 30 through 34 define the interface of liquid and vapor to be held at the 

saturation temperature, and will also account for the phase change from liquid to vapor in both the 

continuity equation and energy equation. These equations are incorporated into the model as a 

“weak contribution.” As described in Ref. [47] weak contribution is an additional contribution to 

an equation, using the “weak formulation,” which is a means of altering the solution criteria of an 

equation in COMSOL. In a problem where the solution to an equation may be discontinuous near 

a boundary (such as in this case, along the interface), the weak formulation transforms a differential 

equation into an integral equation to approximate a solution as opposed to requiring an exact 

solution. Here, it is used in this manner to modify the continuity equation at the fluid interface 

described by the delta function 𝛿. Anywhere else in the solution, the right hand side of the 

continuity equation (Eq. 34) is still equal to zero. At the interface between the liquid and the vapor, 

however, the mass flux of vaporizing fluid can now be used to describe the velocity of the interface. 

 The three physics environments form the bulk of the model description. In COMSOL, the 

geometry was defined parametrically to facilitate making changes to the geometry. To reduce 

simulation time, the solution is calculated only in the fluid domain (i.e. the electric fields in the 

solid electrodes is not evaluated), assuming a lumped, 2-D heating domain (with no thermal 

conductivity or temperature gradient inside). The addition of any extra solid heating element is 

beyond the scope of this study. To reduce the complexity of the model, the heat transfer through a 

solid phase was not solved. In a higher fidelity model (in the context of a real device), the heat 

generating chip and the fluid channel would be modeled and heat transfer through each solid 

material would be analyzed, and the associated temperature drops found. By neglecting this, the 

model in this study effectively assumes there are no losses in the heat transfer path from a uniform, 

heat generating chip and the fluid. Future models could incorporate this, allowing for a more 
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accurate determination of chip temperatures. This would also require a discussion on conduction 

losses to other attached structures, radiative losses to the surroundings, and convective losses (in 

the case of a terrestrial heat transfer device). It is important to note some of the limitations of this 

approach. In a 2002 paper, Kandlikar [34] notes that there was little distinction between types of 

small diameter channel boiling related to mini- and micro-channels. As per Kandlikar’s definition, 

a conventional channel has hydraulic diameters above 3mm, minichannels consist of hydraulic 

diameters of 200um to 3mm, and microchannels from 10 to 200um. In particular, his study on 

boiling microchannels finds that surface tension effects can become increasingly more significant, 

with small liquid slugs forming uniformly spaced apart in the channel, and very small (10-20um) 

diameter bubbles can form. The surface tension effects on walls cannot be captured by this type of 

model due to the lack of a contact angle submodel. Additionally, boiling these channels can be 

accompanied by severe pressure fluctuations due to vapor expansion in constrained spaces. In this 

model, the lack of outside influences changes what would be realistic.  

 Solutions were run for 100ms, with time steps of 1ms. This time step was varied in order to 

ensure that the solution did not change as a function of the time step, and was chosen to balance 

solution accuracy and speed. In COMSOL, the mesh is controlled by the solver itself, using finer 

mesh elements near sharper geometric features and the initial interface. 
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3.5. Reference Case Description 

 A baseline case was defined to use as a basis for comparison of the simulation results in this 

study. The working fluid was chosen to be HFE-7100, a refrigerant hydrofluorocarbon. A 

numerical study by Kunkelmann and Stephan [58] found bubble growth times on the order of 16ms 

with departure diameters of 2.3mm for HFE-7100 bubbles. This was within 20% of experimental 

results observed in prior studies as noted in that paper. The Kunkelmann and Stephan study used 

a method similar to the one outlined above, with a level-set type interface tracking coupled with 

an evaporation source term. Integral to any model of nucleate boiling is the definition of the contact 

angle between the liquid, the solid (structure), and the vapor. That study also found 

(experimentally) a contact angle of 40 degrees for the liquid-solid-vapor interface, measured 

counter-clockwise from the solid to the vapor interface of a nucleation bubble for an HFE-7100 

bubble on a copper surface. HFE-7100 was chosen due to its effectiveness as a heat transfer fluid, 

as well as its dielectric properties. Additionally, HFE-7100 has a low toxicity and a low boiling 

point (61 ºC). The liquid region in the simulation is assumed to be at a pressure of 500mbar to 

more closely match the study performed by Kunkelmann (as it most closely approximated the 

setup used in this study) on HFE-7100 boiling [58] The reference geometry (Figure 7) uses the 

Figure 7: Description of Geometry, with variables representing 

important geometric features. 
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Kunkelmann and Stephan study as a baseline assuming the values given in in Table 1. For 

reference, Figure 8, shows the same pit, inside the full simulation domain, in order to show the 

relationship of the pit size to the height and width of the channel.  

 

Figure 8: Nucleation site inside the entire fluid domain. 

Table 1: Assumed Parameters for Baseline Case. 

 

Where 𝑟𝑖 and 𝑟𝑜 define the inner and outer radii of the nucleation site, 𝑑𝑠 describes the height of 

the nucleation site above the channel base, 𝑟𝑓 describes the radius of the fillet, 𝜃 describes the 

angle of the conical rim forming the nucleation site, and ℎ𝑐 describes the height of the channel. 

Note that for the baseline case the cavity will correspond to a cylindrical pit below the surface of 

the heated channel. Additionally, the time step was chosen to be 1ms, with simulations run for a 

duration of 100ms. A case naming convention for the simulations will be adopted to more readily 

ℎ𝑐 𝑟𝑓 𝑟𝑜 𝑟𝑖 𝑑𝑠 𝜃 𝑉𝑜 

3 mm 0.02 mm 0.2 mm 0.2 mm 0.3 mm 0° 0 kV 
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identify which parameters were assumed in a given simulation. Cases will be identified in the 

following manner: 

𝑉𝑜[kV]_ℎ𝑐[mm]_ 𝜃[degrees] 

where the variables will be replaced with numeric values, using the units shown above in brackets. 

 This baseline geometry was chosen in order to maximize the magnitude of the force on the neck 

of the bubble. Sharper geometric features give rise to higher gradients in the electric field, leading 

to forces of a higher magnitude than that made by relatively shallow features. Past studies ([29] 

[61] [11]) have found that features with sizes on the order of the bubble diameter lead to EHD 

forces that can impact the entire bubble. However, in this study, in order to minimize the impact 

that the structure would have on the fluid flow (which is not modeled), smaller geometric features 

were chosen; the height of the nucleation site is an order of magnitude less than the height of the 

channel. Despite the rapid fall off of in the EHD force with distance from edges or corners of 

electrodes, it was anticipated that the neck of the forming bubble, which will be located along the 

conical rim in Figure 8, would be the most effective location to impart the EHD force. The results 

from the simulation are analyzed to investigate the effect of geometry and applied EHD forces on 

bubble detachment frequency and size at detachment. 

3.6. Results 

The COMSOL model allows for ease in the variation of the applied potential for different cases as 

well as easily varied geometric parameters, including the angle that the cavity makes to the bottom 

electrode. The output of the solution file is saved as a GIF format, where a separate MATLAB 

script is used for post processing. The solution is deterministic, i.e. it only depends on the input 

parameters and does not have a random element. The MATLAB script utilizes the image analysis 

toolbox in order to analyze the area, centroid, number of objects, and evolution of each frame of 
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the solution (prescribed to match a time step), and results can be plotted accordingly. The following 

results are organized as follows. First, the bubble detachment frequency, as it is influenced by 

EHD, is explored. Next, the influence of EHD and an artificial nucleation site on bubble 

coalescence is explored, followed by detachment in more constrained channels of differing 

heights. Finally, the neck behavior of the detaching bubbles under the influence of EHD forces is 

explored. 

3.6.1. The Impact of EHD on Detachment Frequency  

 In order to interpret and quantitatively present the bubble evolution, detachment, and 

coalescence in each trial, a graphical method of depicting bubble evolution was devised. Figure 9 

shows a representative visualization of the bubble growth and detachment process, along with a 

graphical representation of total vapor volume in the domain. The bottom panel shows the vapor 

volume in the domain over a continuous range of time. The numbered regions, along with the 

vertical lines, are extended volumes of vapor represented by the upper panel, where a visualization 

is given of the vapor in the channel.  
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 Region I denotes the growth of a vapor packet inside the cavity. As this packet expands 

(representing the growth of a bubble), the volume of vapor is shown to grow as well. Regions II 

and III denote a condition in which a vapor packet detaches from the nucleation site, becoming a 

distinct bubble. Region III (solid line) represents the vapor left in the cavity, while Region II 

(dotted line) represents the volume in a bubble that detaches and impinges on the top wall. Region 

III vapor will continue to grow due to the heat flux being applied, while Region II will remain 

nearly constant due to its being adjacent to a location adjacent to a surface with no inward heat 

flux. Further along in the solution process, Region IV represents a situation where the two vapor 

packets coalesce, and continue to grow outward as one continuous unit. During this time, these 

packets and bubbles can exhibit oscillations in their radius and shape, as the inertial effects of 

coalescence take hold. 

 

Figure 9: Visualization and Plotting of Bubble Detachment. 



52 

 

 

 

Figure 10 Sensitivity of bubble evolution to nucleation site cone angle. a 

(top, Case 2_3_50) 50° cone, b (bottom, Case 2_3_0) 0°cone. Each line 

style within a stated potential represents a distinct vapor region. 
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 In this section, it was found that the application of EHD, in conjunction with an artificial 

nucleation site, served to increase the rate at which bubbles detached. Plots (as described above) 

are provided to back this up with data from several models, with different potentials and cone 

angles. Additionally, screenshots of model results are provided to show what the bubbles look like 

as they nucleate.  

 

Figure 11: Zero degree (0) (baseline) cone angle 

Data from solutions of the baseline case are shown in Figure 10. There are two lines per 

each constant potential, representing a distinct vapor region. In Figure 10a, for example, at 

approximately 36 ms there is a detachment event, with the circle-marker line representing a vapor 

region resembling Region III in Figure 9. The original line shows a large drop in volume to 

represent the detached vapor, which resembles Region II. With 𝜃 = 0° (geometry shown in Figure 

11) the effect of EHD on the growth rate and detachment frequency is minimized. In these plots, 
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detachment is defined as the point in which a “tracked” vapor packet (i.e. one continuous line on 

the graph) exhibits a discontinuity, i.e. loses large portion of its volume in a discontinuous manner. 

For example, in Figure 10a, a detachment event occurs at 34ms, where the line with the x symbols 

has a sharp drop in volume. For this case, corresponding to 2 kV of applied potential (2_3_50), the 

line with the o symbols represents a second vapor packet growing in tandem with the original 

vapor packet. Without the application of EHD, bubbles are seen to detach every 18ms in Figure 

10a. With the application of EHD, bubble detachment is seen every 9ms. Based on these findings, 

EHD appears to increase the departure frequency of the bubble in the presence of a cone, but for 

the baseline case there appears to be no effect, and possibly a negative correlation (i.e. the EHD 

serves to decrease the detachment frequency. 

 Additionally, the effect of the “orifice bounding,” in which the edge of the bubble is 

attached the rim surface of the nucleation site, was found to have a large effect on the neck (i.e. 

Figure 12: Comparison of bubble neck behavior with 2kV of potential, comparing 0 

(left, Case 2_3_0) and 50 (right, Case 2_3_50) cone angles at 19 ms. 
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minimum) diameter of a detaching bubble by plotting bubble growth on a flat channel surface 

(Figure 10b). This radius data, combined with images of the nucleating bubbles, allows for a 

visualization of bubble behavior during growth, and now it may influence volume. 

Without an orifice with a cone angle, the bubble tends to form a larger neck (i.e. larger diameter 

attached region to the heated surface). In Figure 10b, the volume of the nucleating bubble is less 

than that of the zero-degree cone angle case (2_3_0), at nearly all stages of growth.  

 In Figure 10b, the bubble volume as a function of time for the two potential (0kV and 2kV) 

cases are nearly identical during the growth of the bubble up to 30ms. As suggested in Section 2, 

bubble volumes are expected to remain similar during growth both with and without the 

application of EHD. However, with the application of an external electric field, bubble growth 

begins to slow, as evidenced by a lessening of the slope in Figure 10a, and a detachment is seen 

nearly 10ms before the (0_3_50) case (of 0 kV). Additionally, detached bubbles have a much 

smaller maximum volume under the influence of an external electric field than those that are 

attached, as evident by inspection of the volume at the point of detachment in Figure 10. However, 

bubble elongation when under the effect of EHD can prevent detachment in a small channel. While 

the baseline geometry case (Figure 8 and Table 1) can sustain detachment events (in spite of an 

increasing vapor volume in the channel), the cases with an externally applied electric field exhibit 

a cessation of detachment events after 65ms, with the exception of one small event around 90ms.  

 A representative screenshot from the model output is shown in Figure 13. On the left, 

bubble growth just before a period of detachment is shown (34ms). On the right, bubble 

detachment is shown at the next point in time (35ms). Here, the interface is shown to represent a 

gradual detachment, with evidence of a brief, but noticeable area where the interface is halfway 

between liquid and vapor. 
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Figure 13: Visualization of Detachment Event for 2kV, 50º Cone case (Case 2_3_50). 

The relative change in volume vs. time can help characterize detachment events, and also 

reveals the onset of separation, i.e. the point in time at which the equilibrium condition between 

buoyancy and surface tension breaks down, leading to a detachment event. This is discussed in 

Section 2.1. The rate of change of bubble volume vs. time always change directly before a 

detachment event (with the growth rate slowing prior to the detachment). Using MATLAB as a 

post-processing tool allows for more exact determination of bubble detachment and relative sizes 

than a visual inspection would, and expands the post processing capabilities of a COMSOL model 

far beyond what is normally possible. However, a plot of vapor volume alone does not fully define 

the nature of a detaching bubble.  
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3.6.2. The Impact of an Artificial Nucleation Site and EHD on Bubble 

Coalescence and Shape 

Identifying changes in detachment frequency alone does not quantify all of the influence that EHD 

has on a nucleating bubble. As outlined in Section 3.2, an MST-based approach to calculating 

forces on a bubble under EHD is necessary as the bubble will deform, changing the shape of the 

electric field. Additionally, as two bubbles coalesce, the field is further impacted near the point of 

coalescence. To account for this, the MATLAB script used to calculate bubble volumes was 

modified to scan each frame of the solution, and to detect the maximum radius or height of a 

growing vapor packet in the domain vs. time. In these plots, the simulation video exports of 

r 

Domain 

Vapor 

Packet 

Centerline 

Figure 14: Maximum radius determination within MATLAB image processing. 
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detaching bubbles are discretized into binary images, where the vapor region is defined as a “1”, 

and the liquid region a “zero.” This is accomplished via the MATLAB image processing toolbox. 

These binary images can be analyzed one row of pixels at a time, in order to determine at what 

maximum distance the vapor region extends out into the width of the channel. Figure 14 shows a 

diagram of what this process looks like, where the vapor packet is represented by a collection of 

pixels with one binary “on” (or 1) value. As the MATLAB scrip sweeps out along the radius from 

the centerline at every height, the width of the last vapor pixel is stored. This process repeats for 

every frame within a simulation video. These values are then analyzed to determine how wide the 

bubble was at any given point in time, and what the maximum width was at every point. 

Kanlidkar [34] notes that bubble coalescence can lead to annular slug flow, leading to instabilities 

in heat transfer performance. As was seen in a comparison of bubble volumes, the introduction of 

an artificial nucleation site influences the shape of a detaching bubble. Additionally, an artificial 

nucleation site in conjunction with EHD serves to impact bubble behaviors further. The importance 

of this to heat transfer enhancement is evident if nucleation is assumed to occur at several sites in 

close proximity on a heated surface. Growing bubbles, which can have a rapidly expanding 

diameter could influence other adjacent growing bubbles and cause early (before detachment) 

coalescence events. EHD can help control this effect by influencing not only detachment 

frequency, but by controlling the shape during bubble growth. The bubble width data during 

nucleation is stored and plotted vs time, shown in Figure 15. These plots show the maximum radius 

(as defined by Figure 14) of all vapor in the domain over time, with each line representing a single 

solution (as defined by potential or channel height). 
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Figure 15: Comparison of bubble growth radii for 50º cone (a (top), height variation with 

constant 2kV potential (Case 2_3_50 and Case 2_2.5_50), b (bottom) potential variation constant 

3mm height, (Case 2_3_50 and Case 0_3_50)).  
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Figure 16: Maximum radius comparison for 0 cone angle, 3mm height (Case 2_3_0 and Case 

0_3_0). 

Figure 16 shows the comparison of maximum bubble radii during the growth and detachment 

process. For the case with a 0 cone angle (i.e. a perfectly cylindrical cavity) bubble radii are 

relatively constant (with and without EHD) until 10ms into the solution, where impact with the 

upper electrode causes compression and expansion of the vapor. This behavior is shown in Figure 

17. In the case of a 50º cone angle, bubble radii remain similar (between 0kV and 2kV) from 

inception to nearly 30ms into the solution. Additionally, with a cone present, the variation of 

bubble radii over time is influenced by detachment events more so than with a 0 cone angle. With 

a 0 cone angle (Figure 16), bubble radii remain more stable over time (less oscillations), while a 

50º cone angle means that detached bubble exhibit rapid changes in radii due to multiple 

detachment and coalescence events. 
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Figure 17: Series of screenshots from a solution (2kV, Height 3mm, Case 2_3_0)) showcasing 

bubble interaction with top electrode (phase field variable plotted, vapor phase corresponding to 

a value of “1”, liquid phase to a value of “0”). 

This behavior is evident when comparing the multiple snapshots in time of the 50 test (Figure 18) 

and 0 test (Figure 19). After these detachment events, the maximum vapor region radius tends to 

reach a near constant value. However, with a non-zero cone angle, the maximum radius is much 
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smaller than the case without the artificial nucleation site. In both cases, the presence of EHD 

minimizes the maximum radius that a bubble achieves during the solution. 

 These images, combined with the quantifiable data, show how a bubble can grow, detach, 

and coalescence with EHD. This model allows for a study of how multiple bubbles present in a 

small space can be impacted by EHD, and how it changes the maximum vapor radius as they grow. 

Without coalescence, bubble shapes are also shown to be influenced by EHD.  

 

Figure 18: Several snapshots during the 2kV, 50 cone angle simulation demonstrating multiple 

detachment and coalescence events (Case 2_3_0). 
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Figure 19: Several snapshots during the 2kV, 0 cone angle simulation demonstrating no 

detachment and coalescence events (Case 2_3_0). 

3.6.3. EHD-influenced Detachment Behavior in Different Channel Heights 

For a channel height of 3mm, the upper end of the minichannel regime, bubble detachment 

occurs frequently with the application of EHD. As the channel height is reduced, bubble 

detachment is less frequent, as evidenced by the stability of the radius over time (Figure 15b). At 

the onset of the simulation, both the 3mm and 2.5mm cases exhibit the same growth profile, which 

is to be expected. However, as the nucleating bubble makes contact with the upper surface of the 

channel, the behavior begins to diverge. In the plot of volume vs. time (Figure 20), a lower channel 

height yields no distinct nucleation events. Interestingly, the rate of bubble growth in Case 

2_2.5_50 (2.5mm channel height) is slower than that of the 3mm channel height (Case 2_3_50). 

This may be due to the fact that when bubbles detach, it is easier for the next bubble to continue 

nucleating. When comparing the maximum radius of each, the case corresponding to the lower 

channel height (Case 2_2.5_50) exhibits some oscillatory patterns, as the bubble makes contact 
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with the upper electrode. However, the lack of additional nucleating bubbles coalescing with other 

bubbles already in contact with the top electrode means that the value of the maximum radius 

remains more stable. 

The influence of channel height on bubble detachment is clear. With EHD, a bubble in a larger 

channel has more room to grow and detach. In a smaller channel, bubbles impact the top wall 

earlier than in a smaller channel, and while the total vapor amount in the channel is conserved for 

a time, detachment does not occur as the bubble does not have sufficient space to form a neck.  

3.6.4. The Influence of an Artificial Nucleation Site and EHD on Neck 

Behavior 

 The application of an electric potential results in a non-uniform electric field due to the cone, 

which accentuates non-uniformities in the electric field close to the neck of a detaching bubble. 

Figure 21 shows a detaching bubble subject to a 2kV electric field versus one with no applied 

Figure 20: Comparison of bubble growth vs. Channel Height (Case 2_2.5_50 and 

2_3_50). 
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electric field 19 ms after simulation start. The neck in the presence of an electric field is shown to 

be pushed further into the nucleation site, and is thinner than a neck without an electric field. This 

matches the claims made by Sunder [29] in which a non-uniform field applied near the neck of the 

bubble can have the effect of pushing the interface down in the nucleation site, while applying 

additional force to the neck itself. It was found that the detachment of a nucleating bubble is a 

function of its neck size, and the model results suggest the effect that forcing the neck inwards has 

the effect of facilitating early detachment. Siedel [33] notes that a pressure gradient tends to force 

liquid inwards towards the neck, influencing detachment.  

 With the application of EHD, this process can be accelerated as the neck already exhibits a 

concave shape. In the above Sections, any influence of EHD on the shape or detachment frequency 

of the bubble can be attributed to the neck behavior. Narrower necks lead to earlier detachment, 

and in the case where a neck is not allowed to narrow (Section 3.6.3), bubble detachment does not 

occur.  
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Figure 21: Comparison of bubble neck behaviors at t=19ms 

(a (top) Case 0_3_50, b (bottom) Case 2_3_50). 
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3.7. Conclusion 

With an applied electric field and artificial nucleation site, the bubble volume at detachment is 

less than it would be for the baseline case. Typically, this would be expected to decrease the 

magnitude of the heat flux (should the departure frequency remain the same), which depends on 

bubble departure diameter. However, in a minichannel, these smaller bubbles could lead to a delay 

in the onset of bubble coalescence and large slugs forming. The presence of larger detached 

bubbles could negatively influence heat transfer, in the case of large slug coalescence and 

impingement on other heated walls. Should a cross flow exist, the smaller bubbles as a result of 

EHD and an artificial nucleation site may be more easily carried away, and be more manageable 

in a small channel. Additionally, the frequency of bubble detachment is increased both with an 

artificial nucleation site, and with the application of EHD. 

One goal of these simulations was to determine how early bubble separation could occur 

under the influence of EHD forces, with multiple bubbles nucleating and detaching in a constrained 

channel. A secondary effect of attempting to accelerate nucleating bubbles away from a surface is 

the elongation of detaching bubbles. While they may impinge on an upper surface more frequently, 

narrower bubbles can delay coalescence for a series of densely packed artificial nucleation sites, 

during initial bubble formation and nucleation. Depending on the application, these consequences 

may be negative, or positive. In the case of densely packed nucleation sites, elongation could 

prevent horizontal coalescence, delaying the formation of a vapor layer on the electrode. However, 

in more constrained channels, elongated bubbles may impinge on the upper surface faster than 

regularly nucleating bubbles. In the case of minichannels with upper, heated walls, these elongated 

bubbles may expand faster as they come into contact with an upper wall, leading to a thermal crisis.  
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The presence of an artificial nucleation site heavily influences the evolution of a detaching 

bubble. The nucleation can influence detachment by governing how the bottom of the bubble neck 

attaches to the bottom surface. The application of an external electric field alone has little effect in 

the detachment of a bubble (in the conditions of this model), but if coupled with a specially 

designed artificial nucleation site, detachment shape and frequency can be significantly influenced.  

The model was able to successfully capture coalescence and breakup. As previously stated, 

a continuous model was chosen in order to capture bubble coalescence. The phase field method 

has the advantage of enabling this while avoiding some of the shortcomings of other computational 

methods. In a moving-mesh method, the significant morphological changes brought about by 

breakup and coalescence would require a re-mesh at every step, leading to a high computational 

expense. 

Dupuy et al. [55] mention that in Cahn-Hilliard models (such as COMSOL’s 

implementation of the phase field tracking) when two interfaces being to approach, there first 

exists a “draining” of the fluid between the interfaces. Next, the interfaces rupture and reconnect 

due to a numerical singularity, and then continue to expand as required by solution of the Navier 

Stokes Equations for each phase.  

In practice, this was observed. As bubbles approached each other, the interfaces would 

begin to combine. Due to the use of a diffuse interface, eventually two distinct mid-points (𝜙 = 0) 

would combine to form one, which would be pushed apart by surface tension forces (which tends 

to keep bubbles spherical). Additionally, breakup occurred similarly. As a bubble grew and a neck 

formed, the side components of the neck would touch, forming one interface, immediately 

followed by breakup. 
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Future work would require this model be extended to a physical experiment, where additional 

challenges would have to be considered. Fabricating the proposed geometry could prove to be 

difficult, while applying an electric field across a channel should be easy. It is unknown if a bubble 

would be able to reliably nucleate and grow on an artificial nucleation site. While the modeling 

can establish a baseline for how a bubble might grow on a nucleation site, it would be difficult to 

determine the feasibility of this without performing further experiments.  

One goal of the simulations was to lay the groundwork for a reliable, computational method 

of predicting bubble detachment. The strategy outlined here allows for a coupling of the three 

underlying physical phenomena. Based on this, several areas of future work can be identified that 

would increase model fidelity, and more closely approximate physical reality. While a 2-D 

axisymmetric model is simple, compared to a 3-D simulation, it cannot capture effects such as 

multiple nucleation sites or cross flow. Future studies will expand on this work in order to create 

a robust 3-D model. The inclusion of cross flow will allow for a more detailed study of bubble 

coalescence in the presence of multiple nucleation sites, as well as bubble coalescence downstream 

of any nucleation sites. Finally, the inclusion of a more robust contact angle model (for the three 

phase point) would be necessary for a more realistic approximation of forces.  

One limitation of the model is that some of the more sophisticated aspects of bubble heat 

transfer are not incorporated. Cooper and Lloyd [57] discuss the existence of a “microlayer” in a 

1969 study. During bubble growth, heat can be removed from the heated surface due to a thin 

liquid microlayer evaporating beneath the surface of the bubble.  
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Figure 22: Description of Liquid Microlayer [56] UCLA 2002 

This is described in Equation 35 

 𝛿 = 0.8√𝜈𝑙𝑡 (35) 

Where the thickness δ of the microlayer at a given location is a function of the liquid viscosity 𝜈𝑙 

and the time t it took the bubble to grow to a given size. 

By neglecting the microlayer, the cooling effect associated with evaporation of the fluid in this 

microlayer beneath the bubble is not incorporated in the model. Hänsch and Walker [58]. note that 

the microlayer is best represented at a scale two orders of magnitude less than the macro-boiling 

region, making implementation of this layer into CFD interface tacking methods difficult. 

Additionally, this formulation is still difficult even in the presence of a triple line submodel 

(between liquid vapor and solid phase). Due to the lack of a contact angle submodel, incorporating 

the microlayer submodel would be even more difficult. Functionally, this means that in a real-

world situation, bubble departure would be retarded as the extra cooling inhibits growth [59]. As 

a result, in this model, bubble departure frequencies may be overestimated both with and without 

EHD.  
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The model created in this study is built on, and derived techniques from, other studies on 

similar phenomena. These other studies, such as that by Sunder [29], use injected vapor into a fluid 

domain to model bubble detachment (with no boiling model incorporated). This work shows that 

using COMSOL, these three (electrostatics, heat transfer, fluid dynamics) physics formulations 

can be combined, leading to a model that has the potential of more accurately capturing the relevant 

physics. Additionally, other studies, such as that by Jamet [50] and Son and Dhir [53], use a similar 

formulation (phase field) to model boiling in a domain, but without EHD effects. Results from 

these studies helped guide the integrated model used in this study. 

Other studies incorporated additional improvements that were not included here. Addition of 

a microlayer and a more robust contact angle submodel, as well as a 3D formulation would result 

in a higher fidelity model of bubble growth. The inclusion of a heat transfer submodel could allow 

for more accurate temperature determination of a heated chip, and allow for temperatures to be 

determined on the chip if the geometry is changed.  

To the best of the author’s knowledge, a model that combines the three physics modes 

(electrostatics, heat transfer, and fluid dynamics) in one model has not been attempted in this 

manner. It ties in with the other attempts described above, but takes many of those models an 

additional step by incorporating the combination of multiple physics submodels. The use of 

COSMOL multiphysics can add significant value to future modeling efforts. COMSOL allows for 

governing equations to be modified for more advanced efforts, while remaining accessible to many 

users. In addition, COMSOL models could be more readily extended to three dimensions, 

requiring less effort than custom models. In even more forward looking efforts, COMSOL could 

be used to model an entire integrated system in 3D (at significant computational expense). 
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Additionally, experimental work should be carried out to study the effects of multiple 

nucleation sites, possible fluid impurities, and cross flow in a well-defined channel. In the chapter 

below, the experimental work is described that aims to expand on some of the modeling work in 

this chapter.  
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4. Experimental Investigation of EHD Effects on Nucleate Boiling 

 Results from the numerical study presented in Chapter 3 suggest that the application of non-

uniform electric fields to bubbles in the minichannel regime can influence nucleate boiling 

characteristics. Nucleate boiling is one of the most efficient means of heat transfer, but its 

implementation can be inefficient or dangerous to hardware on the mini- or micro-scale (see 

Chapter 2). Boiling in dimensionally restricted channels can lead to rapid bubble growth and flow 

oscillations, resulting in a thermal runaway effect, where large regions of expanding vapor remove 

the cooling capacity of fluid and nucleating bubbles. Without the cooling capacity of the fluid for 

which these systems are designed, high temperatures can lead to degraded performance or 

permanent damage. With this in mind, a greater understanding of nucleate boiling in the 

minichannel regime is required. 

The experimental component of this study was designed to explore the growth and detachment 

of nucleating bubbles in the presence of an externally applied electric field, a promising means of 

influencing, or even controlling, two-phase flows. Specifically, the feasibility of using EHD forces 

to enhance and control nucleate boiling in minichannels will be investigated in the presence of a 

cross flow, artificial nucleation sites, and electric field non-uniformities. The experiments were 

designed to reveal the challenges of EHD-enhanced nucleate boiling in a minichannel in order to 

better understand potential implementation of the technique. 

4.1. Objectives 

 Many other studies of nucleate boiling are concerned with overall heat transfer coefficients 

between the heating element and the bulk fluid [22]. In this study, the modification of heat transfer 

coefficients was of secondary importance compared to investigating the behavior of the growth 

and detachment of a nucleating bubble. At the minichannel scale, the heat transfer performance 
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can depend heavily on the behavior of the detaching bubbles, as the system can often be at the 

tipping point of runaway heat transfer [34]. As part of this study of the growth and detachment 

behavior of nucleating bubbles under the influence of an electric field, unique nucleation site 

geometries and test conditions (applied potentials) are explored to understand the effect they have 

on flow or pool boiling in confined channels, with respect to the overall boiling conditions in an 

entire channel. 

 In addition to studying bubble growth on a single, artificial nucleation site, studying the entire 

surface upon which bubbles freely nucleate can help researchers better understand how an applied 

electric field can influence the performance of the device at the macro scale, i.e. over a larger 

heated region containing hundreds of nucleation sites. Results from the modeling study presented 

in Chapter 3 suggest that these local non-uniformities can increase the frequency of detaching 

bubbles while minimizing their volume at the respective, single nucleation site [29]. However, the 

effect of these local non-uniformities on the overall boiling behavior from many sites, over the 

surface of an entire heated channel, is unknown. To better understand this overall behavior, the 

channel used in this work was designed to approximate a real-world device. Many other studies 

that examine the effect of an applied electric field on boiling do so with structures embedded in an 

apparatus designed for pool boiling [10] without a cross flow, or with bubbles of gas (not vapor), 

injected into the system [29]. In order to better approximate a real-world device, the apparatus in 

this work used a common conducting surface (the channel “bottom”) as the biased electrode and 

the heated surface containing the nucleation sites. This led to some practical challenges in the 

application of a high potential while connected to a heater. Additionally, a cross-flow was required 

in order to reproduce the drift of individual bubbles and larger vapor packets in a channel. Finally, 
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this work eliminated the need to externally inject bubbles of gas into the channel by using 

nucleation on a heated surface to create bubbles of vapor as would occur in an actual application. 

 The physical size of the channel used in these experiments corresponded to what is referred to 

as the miniscale in the literature [34], occupying the region between the conventional and micro- 

scale fluid flow regimes in channels. This scale regime is of particular interest, as there are several 

detrimental effects that can result from nucleate boiling that are not seen at the macro-scale. The 

minichannel regime is defined by the smallest (assuming non-circular) channel dimension [34], as 

opposed to the hydraulic diameter of the channel. For example, if a rectangular channel has a width 

within the minichannel regime but a longer length, it would be considered a minichannel. The 

study of boiling in the micro- or nano-scale, is much more difficult to image and was beyond the 

scope of this study. 

 The objectives of the experimental investigation of EHD effects on nucleate boiling were 

specifically to: 1) investigate the feasibility of using artificial nucleation sites to initiate and control 

nucleate bubble growth in an EHD-enhanced minichannel heat transfer device (with cross flow), 

2) investigate the effect of EHD on nucleation site density, nucleating bubble shape, and bubble 

departure frequency 3) investigate the behavior of detached bubbles in a channel with EHD 

4.2. Experimental Setup 

4.2.1. Introduction 

 The test apparatus used for this work needed to be capable of superheating a working fluid to 

produce nucleation while supporting two electrodes to create the electric field. In addition, a pump 

was required to induce cross flow, an optical system to visualize bubble growth, a reliable data 

acquisition system to monitor and record voltages and temperature, and a flow channel to allow 

visualization while at the same time minimizing the possibility of leaks and contamination. This 
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section describes the design and construction of this apparatus, as well as some of the lessons 

learned during its construction. 

 Prior to apparatus design, the constraints of the system had to be defined. Foremost, the working 

fluid needed to be dielectric, with a high permittivity and optical clarity. Optical clarity was a 

necessity due to the imaging requirements of the study. Based on the physics discussed in Chapter 

3, a relatively large difference in permittivity between the liquid and vapor medium increases the 

magnitude of the force on a bubble under the influence of EHD forces. In this study, the fluid used 

to satisfy the above criteria was HFE-7100 (discussed at length in Section 2.3).  

 The design of the experimental apparatus follows the fluid choice; as material choice is limited 

by compatibility with HFE-7100. In addition to the characteristics listed above, HFE-7100 is 

relatively safe to handle and compatible with many common materials, so the apparatus does not 

require extensive safety features specifically related to the fluid used [24]. Additionally, the low 

boiling point (61C) of HFE-7100 helped drive the material choices for construction.  

 In addition, the apparatus had to be designed to allow conditioning of the fluid prior to testing. 

Typically, this could mean filtration, degassing, and preheating. Similar to previous work [63], the 

HFE-7100 was not degassed prior to testing. In some studies, degassing a fluid prior to use would 

ensure no other vapor is introduced into the system. Because the fluid was not pumped in a loop, 

degassing was deemed unnecessary. In addition, the need for filtration was eliminated by operating 

the channel in an open-cycle mode in which only fresh fluid is used and then discarded. To ensure 

that most, if not all, the length of the channel could be used for nucleate boiling, the apparatus was 

designed to preheat the fluid before entry in the fluid channel. 
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Figure 23: High-level diagram of experimental setup. 

4.2.2. Apparatus Design 

 Given the outline of the experimental apparatus described above, a device was designed that 

features transparent fluid channel side walls with the top and bottom walls acting as electrodes. 

The device also included an inlet, and outlet, temperature sensing of the fluid and heated channel, 

and electrical isolation for components floated at a high potential. A basic diagram of this test 

apparatus is shown in Figure 23. This diagram indicates the key electrical, fluidic, and 

instrumentation interfaces used. A SolidWorks model (side, isometric, and exploded view) of the 

actual channel and support is shown in 24a and 24b. The experimental apparatus was designed to 

be relatively low-cost and quick to fabricate so that multiple test articles with different size channel 

and nucleation site geometries could be evaluated should the need arise. The entire channel 

assembly is made up of five basic components: mold fixtures, unheated entry length channel, 

copper electrodes, glass viewing windows, and mounting plates. The unheated entry length 

channel is upstream, where the fluid enters the channel assembly. There, it can develop into a fully 

Fluid Inlet  

Temperature sensing 
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developed flow before entering the visualization region. The mold fixtures hold in a potting 

compound that was used to keep the channel rigid. The fluid enters the channel comprised of a top 

and bottom copper electrode, and viewing glass on either side. Downstream, the fluid leaves the 

channel from the outlet into a reservoir. Initial versions of the design called for a custom-milled 

aluminum enclosure, but the complexities involved in its construction as well as the inflexibility 

in its design led to the creation of the present configuration. A design based on the use of 3D 

printed support molds was adopted in order to allow for ease in fabrication of channels with 

differing height.  
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Figure 24: (a) top, isometric view (b) bottom, exploded isometric view (one bottom mounting 

plate shown for clarity), copper electrode is 3”x1”x3/16” (for scale). 
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 Fabricating the apparatus first required a selection of height for the channel (the width is fixed), 

and the number and geometry of any artificial nucleation sites to be formed into the channel 

bottom. As confirmed through modeling, a convex, hollow cone-shaped cavity could provide local 

non-uniformities around the cavity to impart an electrohydrodynamic force on a nucleating bubble. 

Several studies find this as well: Siedel [33] mentions boiling of n-pentane with a few K superheat, 

at a site 500m in diameter and 180m deep. Bonjour [64] also uses indentation with a cone-point, 

generating a 200m diameter and 280m deep hole. Bonjour et al. notes that while natural 

nucleation sites are on the order of 10’s of m, experimental work on artificial sites typically use 

diameters from 400 to 1300m. In that study, Bonjour et al. powers the heater for over a half an 

hour prior to testing to “activate” the sites, at which time the applied heat flux is decreased, leading 

to stable boiling from one site. Based on this past literature, a copper electrode with a nucleation 

site on the order of 500m was desired. The preparation of this copper is described below. 
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4.2.3. Copper Preparation: Polishing and Fabrication of Artificial Nucleation Site 

As shown in Figure 23 and Figure 24, the top and bottom surfaces of the channel are electrically 

conducting and made from copper. The copper used was bar stock of high purity copper obtained 

from McMaster Carr (Multipurpose 110 Copper, 1” x 3/16” x 12”), cut down to size. Since the 

copper stock was already correct in two dimensions (1” and 3/16”), cutting would not risk altering 

or damaging the already flat surface. The copper surface is prepared so that the surface finish is as 

uniform as possible in order to allow reliable comparison of boiling characteristics at different 

locations. Each piece of copper is sanded identically, with sandpaper grits of increasing fineness. 

Five successive sanding steps were applied, with compressed air being used to clean the surface 

between each step to remove debris, so as to not damage the surface in successively higher-grit 

sanding operations with larger particles left from the previous sanding operation. Initially, a 

polishing compound (Never-Dull Magic Wadding Polish) was used on all sides of the copper to 

finish the surface. However, examination under a microscope showed that the polishing material 

was more abrasive than the finest grit sandpaper, leading to isolated scratches and other 

undesirable features on the surface. The procedure was therefore modified so that the polishing 

Figure 25: Copper surface with no finishing. 
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compound was used only on the wide sides of the copper (i.e. the parts of the copper not in contact 

with the fluid), to provide a clean surface on which to adhere the glass sides. It was not deemed 

necessary to sand the sides, as the silicone adhesive would be enough to fill in gaps. Additionally, 

if the sides were sanded, it could compromise the fit within the mold. Once the copper surface has 

been sanded to the finest grit, it is ultrasonically cleaned to remove any other impurities. An 

example of a copper surface without finishing is shown in Figure 25. While this piece was not used 

as the electrode, it serves as a useful comparison point for how a surface can change after being 

treated. The curved vertical line is a feature of the copper sample (originally used as a vacuum 

seal). It is approximately 300m wide (for scale). 

 A cone shaped cavity was produced by mechanical indentation, using a spring-loaded 

center punch, such as a Starrett Spring-Impact Center Marking Punch, model 18C. The spring 

action of the punch was found to deform the copper excessively, creating cavities that were on the 

order of 1-2mm wide. In order to create cavities on the order of micrometers (a size which was 

confirmed to work in the model) the center punches were instead used by manually pressing the 

tip lightly into the copper. The size of the artificial site was chosen to satisfy the criteria that a 

bubble bound to the orifice. In the model, this was accomplished simply by creating a site on the 

order of expected detachment diameters found in literature. In the experimental study, the order of 

the cavity size was initially determined by reviewing what size nucleation site would allow for 

bubble inception based on the literature. Griffith and Wallis [28] developed an expression for an 

“inception superheat”, in which bubbles can form on a surface 

 
𝛥𝑇 =

4𝜎𝑇𝑠𝑎𝑡

𝜌𝑣ℎ𝑙𝑔𝐷𝑐
 

(36) 
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Where 𝐷𝑐  is the cavity mouth diameter. Larger cavity diameters lead to inceptions at lower wall 

superheats. Using the properties of HFE-7100 in Eq. 36 (assuming a 4C superheat), and using the 

HFE-7100 value of 125,000 J/kg for ℎ𝑙𝑔 , bubbles can form on a cavity mouth diameter of 5um. 

From the literature, the average departure diameter for a representative study using HFE-7100 

from a copper surface was 550um. Due to the desire to have a bubble bind to an orifice that is on 

the order of the detachment diameter, a cavity only 5um in diameter would not be adequate. In 

order for the site geometry to influence the neck behavior, bubbles should be encouraged to 

nucleate from and attach to larger sites. It was observed in the model that cavities of diameters 

significantly less than that of the bubble detachment diameter would cause bubbles to no longer 

bind to the outer lip, and continue growing on the flat surface. To account for this, the artificial 

nucleation site was designed to be conical due to the indentation from a center hole punch. Ideally, 

the center of the cone would consist of a cavity on the order of the calculated diameter, bubbles 

would grow, and bound to the large part of the cavity (on the order of the detachment diameter). 

Initially, results were promising. During initial trials with quiescent fluid, bubbles were able to 

form inside a larger cavity, expanding rapidly and bounding to the orifice (a method discussed by 
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Gerlach [65]). This much larger nucleation site was ineffective with a cross flow, however, and 

bubbles did not reliably nucleate within the site. This may have been due to the cooling effects of 

a modest cross flow, especially in the presence of the raised portion of the nucleation site, acting 

as miniature fins.  

An image of the site, taken with a Meiji UNIMAC Macrozoom lens on a Panasonic Lumix GF3 

camera was then used with ImageJ image processing software [66] to inspect and determine the 

final diameter of the cavity.  

Figure 27: Depression created by designed indentation pin. 

Figure 26: Mechanical Indentation Device 
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Initial attempts at creating an artificial nucleation site involved modifying the end of a 

center-hole punch to mechanically indent nucleation sites with a desired profile in the copper 

surface. The idea behind this approach was that the contour desired for the nucleation site could 

be formed by indenting the copper surface with the “negative” of the contour, machined into a 

custom made punch with an indentation surface made from a harder metal. This indentation formed 

a “mesa” shape in the copper, into which the nucleation site would be punched. The indenter was 

fabricated by replacing the metal tip of a commercially available punch with a custom tip. The tip 

was formed by turning down a small section of a steel rod on a lathe and drilling a small hole in in 

the center using a #73 (0.61mm diameter) drill bit. This custom tip was then installed in the punch 

as shown in the process of forming a particular nucleation site geometry in the copper surface 

using an indenter is somewhat crude and at best forms only an approximation of the desired shape. 

Figure 28 shows several views of the indenter tip, along with the critical radii and depth. Figure 

29 shows a photograph of the resulting nucleation site on a copper sample. The large indentation 

in the center was made using the custom punch, compared to indentations made from an 

unmodified center hole punch. 

Ultimately, this nucleation site was unsuitable. While it was desired to later drill out the 

nucleation site in the middle, the depth of the “trough” around the raised portion was not large 

enough. It was desired to have a deeper channel around the site itself, in order to enhance the EHD 

effects observed in the results presented in Chapter 3. Due to this, the approach needed to be 

modified to first create a deeper channel. A second approach was devised consisted of using metal 

ferrules (VICI Valco), which could be pressed into the copper surface to make an indentation with 

approximately the correct cavity profile. 
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Figure 28: Center punch (units in inches), with front, top, side and isometric views. 

 

Figure 29: Indentation created by custom center punch piece. 

These ferrules are originally used for compression seals in tubing. The ferrules used were 

1/32” inner diameter at the tip, which led to holes being pressed in the copper. In metric units, the 

entire site was 1.52mm in diameter, where the center plateau was 0.76mm in diameter. The depth 
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of the “trough” between the two was 0.35mm. This depth was set by using the Starrett center hole 

punch set to its lowest pressure setting. As shown in Figure 6 from Chapter 3, the desired 

nucleation site consists of a center hole, where the bubble nucleates, surrounded by a ridge, which 

serves the purpose of intensifying the electric field and hence the EHD effect on the bubble surface. 

The hole in the center was created by pressing the punch-pin extremely lightly, i.e. by resting the 

pin on the surface and pushing down but not allowing the punch-pin to spring punch. This created 

holes width a diameter of 0.37mm. Depth was difficult to determine, but is observed to be less 

than the depth of the trough at 0.35mm. The custom punch-pin tip was a good exercise in 

nucleation site fabrication, the metal ferrules used offered a much tougher pressing medium (i.e. 

one that would not deform after several pressings), and offered a much smaller difference between 

inner and outer radii, leading to a narrower and deeper channel around the site itself. Typically, 

ferrules were observed to last approximately 10 pressings before deforming enough to require a 

new ferrule.  

 In addition to the nucleation site, the copper needs more preparation before the channel can 

be assembled. As seen in Figure 23, a heater and temperature sensing capability are required. 

Figure 32 is a diagram of the setup, showing a cross section of how the heater interfaces with the 

copper electrode. To better ensure thermal contact between the heater cartridge and the copper 

electrode, the heater was recessed deep inside the copper. A hole was drilled into the bottom 

electrode to allow for a device to act as an embedded interface between the cartridge heater and 

the copper electrode (approximately 1” deep). The thermocouple should be embedded inside the 
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bottom copper electrode as well, so a small (~1mm) diameter hole is drilled close to the hole for 

the heater, approximately 1/4:” deep inside the copper electrode.  

 

Figure 30: Indentation created by metal ferrule, 0.58mm diameter wire 

shown for scale on the electrode used in the experiment. 

Figure 31: Metal ferrule used to create indentation in copper. 
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Figure 32: Diagram of heater setup, cross section of the fluid channel. Shown is the copper 

reducing cylinder, allowing for a ¼” heater to make good contact with the 3/16” thick bottom 

electrode. 

 Once the copper channel was polished, the nucleation sites could be formed in the copper 

as described above. The copper channel electrodes were inserted into a standard bench vise, with 

padding placed on either side to protect the surface finish. Once firmly in place, a ruler was used 

to measure and mark out where the nucleation sites would be located. Nucleation sites start 

approximately 15mm from the inlet, with marks spaced approximately 10mm equidistant from 

each other. The manual hand-method of placing the nucleation sites resulted in a slight inaccuracy 

in placement (Figure 33), however the spacing between these sites was not considered critical. 
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Figure 33: Using the center punch to create nucleation sites in a bench vise. Nucleation sites are 

numbered sequentially (from channel inlet, left in this image). 

4.2.4. Channel Assembly 

 Assembly of the test channel involves numerous steps, and requires careful preparation to 

ensure consistent and leak-free construction. As shown in Figure 34, the channel is formed by two 

pieces of copper bar stock, forming the top and bottom conducting surfaces, and two glass slides 

serving as viewing ports for the high speed camera video.  
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 Construction of this channel assembly requires care in order to ensure that the adhesive material 

does not impinge in the viewing area. The glass slides must be bonded correctly to the copper, or 

else fluid leaks through. Cyanoacrylate (CA) Glue was originally considered as a means of bonding 

the glass to the copper due to its strength and short cure time. However, upon curing, the CA glue 

resulted clouding of the glass, spoiling the ability to visualize bubbles. As a result, Dow Corning 

700 (DC 700) Silicone Sealant [67] was used as the primary adhesive, with small amounts of CA 

glue used as far away from the viewing area as possible for structural strength, preserving visual 

acuity. While the DC 700 did not have enough rigidity on its own to maintain channel structural 

integrity while being assembled, its more viscous nature prevented seepage into the channel, and 

no clouding was observed. A fixture, shown in Figure 26, was built to aid in the assembly of the 

channel electrodes and side windows. Assembly consisted of placing a glass slide, which would 

become one of the side windows, inside the fixture, between two rigidly mounted glass slides used 

as alignment aids. The remaining parts of the assembly fixture were made from styrene. The 

bottom copper electrode is placed snugly into the alignment slides, with a thin line of DC 700 

Figure 34: Copper electrodes with glass walls. 
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along the glass slide creating a seal. Small amounts of CA glue behind this seal hold it together. 

Once cured, the assembly is flipped and the process repeated for the top electrode. 

 

Figure 35: Channel construction with alignment fixture, one glass slide and bottom electrode 

shown. 

 Once assembled, these four pieces (comprising the channel itself) are held together and 

supported by insulating posts on either end made from a dielectric potting compound. These posts 

also provide support for the tubing used for the flow delivery to and removal from the channel, as 

well as supports for mounting the channel to a supporting structure. The potting compound is 

832HT High Temperature Epoxy Encapsulating and Potting Compound (MG Chemicals) [68]. To 

form the supporting posts, the potting compound is poured into molds made from ABSplus, printed 

on a Statasys Dimension 1200ES Rapid Prototyping Machine [69]. Of great importance was the 
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ability to reuse the 3D printed molds, to facilitate a quick experimental turnaround when making 

new channels. Originally, it was desired to find a lubricant that would allow for the potting 

compound to separate easily from the mold. Graphite powder and WD-40 were attempted, with 

little success. Eventually, it was found that a layer of Vaseline petroleum jelly could be used 

effectively to facilitate separation of the printed molds from the potting compound once cured. The 

Vaseline was applied liberally to the inside of each mold prior to pouring the potting compound. 

After curing, the Vaseline enabled the mold fixture to be easily removed. Earlier attempts at 

removing the mold without this lubricant were unsuccessful, resulting in incomplete mold removal 

or damage to the structure. 

 

Figure 36: Vaseline assisted mold removal. 
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Figure 37: Construction of the test channel. Forms are shown clamped together while potting 

compound sets. 

A completed channel is shown finishing the curing process in Figure 37. The vise grips hold the 

sides of the mold together, creating a seal so the highly viscous potting compound can’t seep out 

the sides before curing. Discussed in later sections are the Unheated Entry Length shown (white 

structure to the left of the channel), as well as tubing used for the fluid outlet. These are positioned 

using slots in the mold, designed so that repeatability in the channel assembly can be maintained. 

4.2.5. Fluid Delivery and Support Structure 

 With channel construction complete, the rest of the apparatus was assembled, starting with the 

fluid delivery system. A syringe pump was used to generate the fluid cross flow in the channel 

[71]. For a given channel geometry and desired volumetric flow rate, controlled by the syringe 

pump settings, the velocity can be estimated in the channel. For this work, a New Era Pump 
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Systems NE-300 syringe pump [72] was used with a flow rate range of 0.73 ∙  10−3 L/hr – 1500 

mL/hr. The syringe pump is shown in Figure 38. 

 

Figure 38: Back of fluid pump syringe, after exhausting all fluid. 

 All tests used a volumetric flow rate of 4 ml/min resulting in a velocity in the range of 4.75 

mm/s inside the channel (assuming a 3mm tall and 4.76mm wide rectangular channel). The 

volumetric flow rate was set in the syringe pump, while the mean velocity in the channel was 

determined by dividing the volumetric flow rate by the channel cross sectional area. The average 

velocity in the channel is necessary in order to ensure that the fluid flow in the channel is laminar, 

in order to provide more consistent test conditions.  

As a part of this setup, it was determined that a preheater was necessary in order to control the 

temperature of the fluid, as well as an unheated entry length to settle the fluid after an abrupt area 

increase. Before the experiments commenced, it was postulated that the fluid may not heat up 

quickly enough from ambient temperature to saturation temperature in the channel itself. To 
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account for this possibility, a preheater was designed and described. Additionally, an unheated 

entry length is necessary to maintain the temperature of the fluid while it fully develops.  

 It was determined that depending on the selection of flow rate, the outlet temperature of the 

fluid would change as it passed through a preheater. A plot was generated (Figure 39) that 

compared the outlet fluid temperature with the Reynolds number, in order to ensure the fluid 

remained at an acceptable temperature while keeping the Reynolds number below the transition 

range (in a tube) of 2000, helping guide the selection of volumetric flow rate. 

 

Figure 39: Outlet temperature and Reynolds number (in inlet tube) vs. volumetric flow rate in 

tube, for a 1ft long tube with a tube ID of 0.0065in. Assumed 20 C inlet fluid passing through a 

copper tube immersed in 60C water. 

 To generate these plots, the problem was set up as a heat transfer problem between a quiescent 

fluid bath surrounding a pipe containing a fluid with a prescribed mass flow rate (using techniques 

in [2]).  
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Several other studies utilize a fluid loop, in which fluid downstream of a heater is expelled into a 

reservoir, in which it is cooled, re-heated, and supplied again through an inlet [73][32][74]. In 

order to reduce complexity, and because only a relatively small quantity of HFE-7100 is used in 

each test, the flow system in these tests was operated in an open-loop configuration, with outlet 

fluid being collected, after which it could be discarded. A similar approach has been used in other 

EHD tests [75]. 

 Because of the low (room) temperature of the fluid supply, and the need to avoid variations in 

the supply fluid temperature resulting from variation in the ambient temperature, it was necessary 

to incorporate a means of controlling the temperature of the fluid entering the channel. Depending 

on the inlet temperature of the fluid, it would take some time before the fluid reached a high enough 

superheat to initiate nucleate boiling while travelling along the heated length. The fluid inlet 

system was designed to allow the fluid to be heated to the saturation temperature prior to entry 

into the channel. To accomplish this, a fluid preheater was installed in order to raise the 

temperature of the fluid. The preheater consisted of a copper coil inserted in a beaker, a hot plate 

connected to an on-off PID controller, an Omega CN242-DC1-R2 [76]. This controller was used 

to set a water bath to a prescribed temperature. The controller allows the user to enter a temperature 

set point, and the controller displays the reading from a thermocouple being used to measure the 

controlled temperature. The PID controller automatically adjusts the power provided to the heater 

in order to keep the control thermocouple as close to the set temperature as possible. A 0.065” 

inner diameter copper tube is coiled through the water bath, which is placed directly downstream 

of the syringe pump. A thermocouple placed approximately 300 mm upstream of the channel inlet 

measures the fluid temperature entering the test section (i.e. the initial superheat). This system was 

designed to provide flexibility in performing experiments, and to ensure that bubbles were 
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generated in a consistent manner. Through preliminary testing, a preheat of 30C was found to be 

adequate to allow boiling to begin as soon as the flow entered the heated channel. As will be 

discussed in Section 4.4, during testing it was observed that no preheat was necessary for the 

specific set of conditions used in these tests. With the fluid supplied at ambient temperature (22 

C), the applied heat flux and channel length were adequate for stable nucleate boiling to occur in 

the center of the channel (longitudinally). 

 In order to achieve consistent channel inlet conditions, a laminar flow with a well-developed 

velocity profile was desired. However, the design of the feed system led to a discontinuity in area 

between the supply tube and the square channel. Pak [77] discusses the case in which a small inlet 

expands suddenly into a larger channel, and how the length of the inlet must be carefully 

considered to allow for adequate flow development.  

 

Figure 40: Sudden area expansion, leading to turbulent flow within a fluid channel. Left, an 

isometric view of the fluid inlet tube and flow direction into the channel. Right, a diagram of a 

sudden expansion as it would look in the channel. 

Figure 40 illustrates how this could occur in the channel setup. Schetz [78] discusses sudden 

expansions, and experimental correlations developed from his experiments suggest a channel 
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length of greater than 7 step sizes downstream of the area change is necessary to justify neglecting 

the turbulent effects of a sudden expansion. Based on this previous work and the guidelines 

provided, a settling channel, or “entry length” was designed to insure laminar flow entering heated 

channel used for testing. The unheated entry length (UEL) was constructed with the same channel 

dimensions as the heated portion, which could be changed based on the dimensions of the channel 

being used. The UEL is a rectangular channel, long enough to allow the flow to develop a uniform, 

laminar velocity profile after passing through an upstream, abrupt expansion. The sudden 

expansion occurs due to the area discontinuity where the circular copper tubing connects to the 

rectangular channel. The UEL was also designed to insure a relatively low Reynolds number flow 

(on the order of 100-200 to achieve average flow velocities on the order of 1cm/s through the test 

section).  

 

Figure 41: Unheated entry length construction. 

This entry length was constructed by first milling a rectangular channel of the same dimensions at 

the heated portion into one ½” by ½” by 1ft piece of nylon stock (a material identified to be 
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compatible with HFE-7100 as well as having low thermal conductivity). Next, an identical, non-

milled piece of nylon is attached to the milled piece (Figure 41). This is lined up with the heated 

channel, and secured with friction and stands (to counteract gravity pulling on the assembly during 

potting compound curing). Lastly, the potting compound cures to hold the entry length channel in 

place.  

4.2.6. Heating and Biasing System 

This experimental apparatus required electrical biasing of the heated surface, as opposed to 

having a separate structure floated at a high potential, such as a wire or mesh embedded in the 

fluid. This required special care in the integration of the heater. Because of the high voltage (2 - 3 

kV) applied to the heated electrode, the surrounding support structure, the cartridge heater, which 

is controlled by a VARIAC Type 3PN1010 transformer, as well as the thermocouple in the heated 

channel and its associated electronics, had to be isolated from the high voltage. For most of the 

components, this was accomplished by using electrically insulating materials. The potting 

compound is electrically insulating, meaning that the high potential is constrained to the bottom 

electrode. However, most electrically insulating materials would also retard heat transfer. Since 

the channel bottom (electrode) required heating to initiate nucleation, any connected heater would 

be ineffective in raising the temperature of the boiling surface enough to start the boiling process 

had it been isolated with an electrically insulating material. To resolve this, a thin sheet of 

aluminum nitride was used to electrically insulate the heating surface from the high potential while 

all allowing satisfactory heat conduction (Figure 43). Aluminum nitride features a dielectric 

strength of 17kV/mm [70], meaning that with expected potentials at a maximum of 3kV, a sheet 

of aluminum nitride approximately 170m would be enough to insulate the connected electronic 

components. An aluminum nitride sheet of 380m was used for this isolation. In addition to its 
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electrically insulating properties, aluminum nitride has good thermal conductivity, between 140-

180 W/mK [70], on the order of standard aluminum alloy, a material known for good heat transfer 

characteristics. An 80 W cartridge heater, (1” long, ¼” Diameter, McMcaster Carr) was used to 

provide heat to the bottom surface of the channel. Based on a heater input from an 80W heater at 

a VARIAC setting of 56%, the total flux from the heater is estimated to be 44.8 watts. Radiative 

losses are deemed to be negligible, and convective losses occur from the exposed parts of the 

copper. This includes the exposed part of the rectangular electrode (with a total area of 

approximately 23.4 cm2), and the area of the cylinder itself (estimated to be 10.1 cm2. Using a 

simplified convection equation, relating convection coefficient h, total surface area A, and 

temperature difference between a surface and quiescent air 𝛥𝑇, the total heat lost to convection is 

estimated from Equation 37. 

 𝑄̇ = ℎ𝐴(𝛥𝑇) (37) 

 Assuming a free convection coefficient of 10 W/m2 K [2], and a temperature difference of 80 

C (if ambient temperature is 20 C, and the temperature directly outside of the heater is 110C) 

heat lost to convection is assumed to be 2.72 watts. This means that a total flux of approximately 

116 kW/m2 is transferred into the fluid. This is assumed to be uniform due to the high thermal 

conductivity of copper. 

 As shown in Figure 43, the cartridge heater connects to the heater surface via a reducing 

cylinder, with one end small enough to be inserted into a blind hole in the bottom of the heated 

channel electrode, and another wide enough to accommodate the heating element, which is inserted 

into another blind hole machined in the bottom of the reducing cylinder.  

 To incorporate the aluminum nitride electrical isolator, the copper reducing cylinder was cut 

horizontally, and the sheet of aluminum nitride was placed between the two halves. To ensure 
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good thermal contact between each half, a thermal paste (GE Electronics Thermal Grease [79]) 

was applied to each side of the aluminum nitride to facilitate heat transfer. 

 

 

With a fluid flow rate of 4 ml/min, a cartridge heater temperature of 140C corresponded to heated 

channel surface temperature of approximately 70C, a data point used to assist in determining 

which cartridge heater temperature set points led to lower (i.e. closer to saturation temperature) 

wall temperatures. The cartridge heater temperature feedback is determined by the thermocouple 

placed directly above the copper enclosure, before the aluminum nitride sheet (Figure 43). The 

heater power is adjusted with a VARIAC, and set up with a temperature controller that can use a 

relay to switch the heater on and off to maintain a set point temperature. It was found that better 

control response was obtained with a VARIAC setting of 56% (with 120VAC in), which helped 

to avoid large temperature swings. To ensure good thermal contact, the thermocouple bead is 

Figure 42: Copper reducing cylinder. 
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embedded in the layer of thermal paste, pressed firmly between the aluminum nitride sheet and the 

reducing cylinder.  

 

4.2.7. Power Supply and DAQ System  

 Results from the modeling efforts presented in Chapter 3 suggest that potentials on the order of 

3kV would be enough to deform the bubbles to a detectable extent. High potentials must be 

generated in a way that is safe, measurable, and repeatable. It was determined that a manually 

controlled power supply would preclude rapid set-point changes in potential while simultaneously 

monitoring other test conditions. In addition, a manually-controlled power supply would make it 

difficult to control the transient ramping characteristics (e.g. rise-rate) of applied potentials. It is 

also more difficult to accurately record the real-time voltage being applied to the device during a 

ramping event if the control was achieved through manual adjustment.  

 To meet these requirements, a computer-controlled power supply with a custom made user 

interface was utilized. This custom power supply unit, assembled from a previous project, consists 

of a rack-mounted case, utilizing a Spellman CZE30PN2000 power supply capable of generating 

Figure 43: Thermocouple setup on reducing cylinder. 
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30kV at 300A. This unit was attractive due to its remote programming and monitoring capability 

for voltage and current. The power supply is connected to a NI USDB-6008 DAQ controller to 

allow control via LabVIEW. Controls are integrated into a master LabVIEW monitor, giving the 

user the ability to control and monitor the potentials being applied the electrode. Past experience 

with high voltage, microfluidic systems suggested that arcing of the electrodes in the presence of 

very high voltage can be a problem. As a safety precaution, the LabVIEW control can limit the 

voltage applied to the system to an arbitrary value lower than the 30kV maximum. The power 

supply output was verified with a high voltage probe and a Fluke multimeter. 

 The dotted box in Figure 23 denotes the components that will also be at a high potential 

alongside the electrode. Due to the need for physical instrumentation links, the test setup required 

additional components to be electrically floated to high potential. To address this, an isolation 

amplifier is placed between the electrode and those components. The AMC1100 isolation 

transformer, as well as the TAC-80K thermocouple amplifier both are floated at high potential 

during testing. These components have a maximum potential limit, which will depend either on 

their technical specifications, or the initiation of a corona discharge somewhere in the circuitry 

(usually at sharp points). Given that the LabVIEW software (as described above) can provide an 

arbitrary safety limit, the limit must be chosen to prevent formation of a corona discharge, or one 

from exceeding the maximum allowable voltage differential for the isolation amplifier. A limit of 

4kV was imposed on the system, due to the limits of the isolation amplifier (which has a transient 

maximum of just above 4kV), and the observation of damaging discharge occurring at above 4kV. 

 A data acquisition (DAQ) system was used to monitor and collect data. The inclusion of a DAQ 

card for was required in order to allow for a rapid, automatic measurement of temperature and 

voltage data. In many applications, isolated voltage measurements can be manually recorded using 
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a digital voltmeter that floats at the potential of the measured component [80]. In this study, data 

is measured over a period on the order of 1 second, making manual temperature measurements 

impractical. The dangers of an electrode at a high potential to the heating element also apply to 

any sensors on the electrode. Attaching a thermocouple to the high potential electrode leads 

required isolation of the signal to protect the computer, which cannot float at the high potentials 

of the electrode.  

 Isolation amplifiers were used to safely monitor the temperature transducer signal by isolating 

the DAQ system from the high potential [81]. Other solutions considered included coil 

transformers and optical isolation techniques, but these are typically rated for voltages too low for 

this study, or have are prohibitively expensive, respectively. The AMC1100 isolation amplifier 

[82] was chosen due to its low cost, precision, and simplicity. Isolation amplifiers are rated with 

both working voltages and transient on-times and peak voltages. The AMC1100 itself is a small 

integrated circuit (IC), requiring further design to implement it into a usable device. The isolation 

amplifier was mounted on a circuit board within an enclosure to facilitate connections. The 

enclosure with the AMC1100 installed is shown in Figure 44. The device utilizes a plastic project 

enclosure, with holes drilled on either end to accept a high-potential voltage input. The signal data 

passes through the IC in the middle (shown on a PCB with required resistors), and then is routed 

to a low-potential output.  
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 While its working voltage is specified at 1200V, the AMC1100 has a maximum isolation 

voltage rating of 4250V. For this study, the duration of high potentials (i.e. considered anything 

above 1000 V) never exceeded the 60s transient on-time that the maximum isolation voltage 

specifies. The ±250mV input voltage range allows for data acquisition from a thermocouple 

amplifier calibrated to 1°C/mV, with an acceptable error. Of particular concern was powering the 

isolation amplifier, which requires a power source on both halves of the chip (high-potential side, 

and low-potential side). On the isolated, low-potential end, it would be possible to power the device 

with an external power supply, but using a lab power supply on the high-potential end would 

require additional isolation, as the power supply would itself have to float at a high potential. The 

AMC1100 IC 

Low-potential 

output (with 

laboratory 

ground) 

High-potential 

input 

Figure 44: AMC1100 Isolation Device construction, showing the high potential input, Isolation 

amplifier, and low potential output. 
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AMC1100 requires between 4.5 and 5.5 volts on the high-side, and 2.7 and 5.5 volts on the low-

side. Based on the relatively low voltage requirements of the chip, the isolation amplifier (both 

high and low sides) can be powered from 9V batteries with voltage reduced by a splitter, as shown 

on diagrams in (Appendix A, also shown: voltage divider calculations). Using batteries eliminated 

the need for additional isolation of laboratory power supplies.  

 

Figure 45: AMC1100 Isolation Device construction, including two separate batteries (for high- 

and low- potential chip sides). 
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Figure 47: Data isolation system diagram. 

AMC1100 

Isolation Device 

(Box) 

Figure 46: AMC1100 Isolation Device (box) shown in a protective Plexiglas 

container, alongside other components shown in Fig. 44 expected to float at high 

potential. 
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The data isolation system was set up according to the diagram in Figure 38. Connected to the 

“common” node inside the AMC1100 device is a connection to the laboratory ground, to protect 

the downstream components in the event of an electrical short or device failure. The physical 

arrangement of the entire data isolation system is shown in Figure 46. The device, alongside 

other components on the high-potential side, is kept in an insulated (Plexiglass) enclosure for 

safety. 

Lastly, the AMC1100 Isolation device was designed to prevent potential corona discharge 

on sharp elements in the box, such as wire ends or chip leads. To achieve this, Performix Liquid 

Electrical Tape was spread over these sharp points. This can be seen below in Figure 48. 

The thermocouple amplifiers are Omega TAC-80K devices calibrated to a resolution of 

1C/mV (and verified through calibration with boiling water and ice). The amplifiers are required 

to condition or amplify the (microvolt) raw signal from a Type-K thermocouple, to a level that 

meets the input specifications of the DAQ. Under ideal circumstances, these thermocouple 

amplifiers would be installed “behind” the isolation amplifier (i.e. they would not be subject to 

high potential), in order to be protected from high voltages. However, the output noise of the 

AMC1100 is rated at 3.1 mVrms. For the temperature range of interest (20-80°C), a Type K 

thermocouple has an output of 0.2-4mV. With a specified amplifier gain of 8, the expected output 

for these temperatures from the AMC1100 would range from 1.6-32mV, with each degree 

difference 



110 

 

 

Figure 48: Liquid Electrical Tape spread over possible corona discharge prone locations (wire 

ends, sharp points, etc.). Not shown is the underside of the PCB, which is also protected with 

liquid electrical tape. 

corresponding to approximately 500μV, below the noise threshold of the AMC1100, leading to 

inaccurate temperature measurements. Amplifying the signal before isolation means that each 

degree difference is on the order of 8mV, higher than the noise threshold. When coupled with the 

isolation amplifier, the output must be calibrated to ensure accuracy. The calibration curve is 

shown in Figure 49, and incorporated into the LabVIEW VI, by modifying voltage input according 

to the curve. The fluid inlet temperature amplifier was factory calibrated to 1mV/C, but the 

inclusion of the isolation amplifier in addition to the thermocouple amplifier connected to the 

copper electrode introduces the possibility of additional uncertainty or offset to the factory 

calibration. Utilizing boiling water and an ice bath, the new calibration curve for the entire system 

was determined by collecting temperature data from an ice bath three times, and comparing each 

voltage measurement to a known quality (from a handheld Fluke thermometer using the same 
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thermocouple). Next, the procedure is repeated using boiling water. Each of the three runs for each 

are averaged with each other, and compared to the “known quantity” voltage found from the Fluke.  

 

Figure 49: Thermocouple amplifier calibration curve. 

Additionally, the two averages each had a standard deviation of 6.5mV, which is less than 1C 

when accounting for the gain. The error bars are too small to observe on the above graph. 

Interpretation of results requires the quick and accurate acquisition of test conditions such as 

temperature.  

 Thermocouple placement must accurately capture the temperature of the heated copper surface 

without affecting the boiling in the channel or the velocity profile of the cross flow. While 

capturing the exact temperature of the surface would be ideal, it is difficult to accomplish without 

influencing the boiling in the channel. Placing a thermocouple outside of the channel itself is 
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necessary for data acquisition. A thermocouple placed on the edge of the copper surface would be 

affected by convection and ambient temperature. The bottom copper electrode is assumed to be 

isothermal, so that a thermocouple placed in a hole in the inside will be enough to characterize the 

relative temperature at the boiling wall. Thermocouple placement is shown in Figure 51.  

Figure 51: Thermocouple Placement. 

Figure 50: Channel Mounting Apparatus. 
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4.2.8. Imaging System 

An imaging system was required in order to capture bubble behavior with sufficient spatial and 

temporal resolution to allow for quantitative analysis. Being able to resolve the evolution of the 

nucleating bubbles required use of a camera with a relatively high frame-rate. A typical, standard 

camera (e.g. Panasonic Lumix GF3) has a frame rate ranging from 30-60fps, corresponding to 33-

17ms per each frame of video. With time between bubble detachment from a single site on the 

order of 100ms, a standard camera would be inadequate to capture detachment events or bubble 

deformation. A high-speed camera was therefore required. The camera used was an Edgertronic 

SC1, a portable, professional grade high-speed camera. The Edgertronic features a frame rate of 

up to 17,791 fps, dependent on the resolution of the camera and background lighting conditions. 

Typically, a resolution of approximately 900x400 pixels corresponds to a frame rate of 1500fps. 

With an expected bubble detachment on the order of 100ms, this frame rate provided adequate 

temporal resolution to visualize bubble detachment and growth, as well as a spatial resolution high 

enough for post-processing [83]. The Edgertronic uses a standard Nikon F-mount lens, so an F-

mount to C-mount adapter was utilized to pair the camera with a Meiji UNIMAC Macrozoom with 

a magnification range of 0.7 to 4.5. The working distance of the lens is 94mm, and the depth of 

field ranges from 0.82 to 0.12mm. Integral to the visualization of bubble detachment is the lighting 

during the experiment. In order to maintain a fast shutter speed (corresponding to a high video 

frame rate) adequate illumination is necessary to achieve a satisfactory balance between shutter 

speed, ISO, and aperture. Together, these three settings are referred to as the “exposure triangle”, 

due to their dependence on one another. An increase in the shutter speed of the camera means less 

exposure time on the senor, requiring a wider aperture for more light. The microscope lens used 

governs the aperture size, so any increases in shutter speed must come with an accompanying 
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increase in ISO, or an external light source. Increasing ISO can introduce more noise into the 

system, so increasing external lighting is the best way to achieve a fast shutter speed. Three light 

sources were used: A ring light (Stocker Yale Model 20), an overhead light in the fume hood used 

for the tests, and a standard fluorescent desk light. Additionally, the camera was positioned at an 

angle approximately 15 degrees raised above the parallel to the ground. This is done to reflect 

more light back into the camera from the bottom of the copper electrode, and to more easily bring 

bubbles of interest into focus, due to the lenses’ narrow depth of field.  

 Images from the high-speed camera were used to collect quantitative and qualitative data. 

Quantitative data was extracted from image analysis of the video files. MATLAB’s Image 

Processing toolbox was used to post-process the resulting videos. MATLAB allows for custom 

scripting in order to calculate estimated bubble volume, radius, detachment frequency, and shape.  

Figure 52: Final Lab Setup (1: Image capture computer 2: data collection computer 3: fume hood 

and test setup 4: high-speed camera 5: high voltage power supply. 
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 The final laboratory setup is shown in Figure 52. Item 1 is the image collection computer, 

connected to the high-speed camera via a direct Ethernet connection. Item 2 is the data collection 

computer, connected to the DAQ and thermocouples, and the controlling computer for the power 

supply. Item 3 is the channel support structure. Item 4 is the high speed camera, and item 5 is the 

power supply, thermocouple amplifier, and isolation amplifier. All items are contained under a 

fume hood, in an air conditioned laboratory.  

4.3. Methodology 

As described in Section 1.3, the objectives of this work were to investigate the possible 

enhancement of nucleate boing subject to EHD effects. Of particular importance is the effect of 

electric fields on nucleation site density (i.e. the number of active nucleation site on the electrode), 

size and position in the channel of bubbles that have separated, nucleating bubble shape and 

evolution prior to separation, bubble departure frequency and size at departure. The possibility of 

influencing, if not controlling, bubbles may lead to the delay of the onset of critical heat flux in a 

minichannel. Misale [22] defines the onset of the critical heat flux as the point at which increases 

in a controlled heat flux leads to noticeable rises in a surface temperature.  

 The tests presented followed a similar overall procedure. To investigate the effect that a 

non-uniform electric field has on the detachment of bubbles, it was necessary to first achieve steady 

state boiling in the channel, with a modest cross flow applied. With a uniform temperature along 

the copper channel bottom, a steady stream of bubbles is expected to flow out of the channel and 

out of the apparatus. In any particular test, bubble detachment is observed for a period of a few 

seconds. When the electric field is applied, bubble detachment is observed again for a few seconds. 

Within the scope of this study, the variables changed between studies were electric potential, 

polarity, and the time in which a potential was applied. Once the thermocouple and power supply 
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data signals have been calibrated as discussed in Section 4.2.6, the methodology for a specific test 

is as follows: 

1. Physical Setup of Experimental Apparatus 

First, the channel with the desired height to be used was identified and installed into the test 

apparatus. The potting compound incorporated metal standoffs (isolated from the high potential) 

that facilitated attachment to the test stand (Figure 53). With the channel in place, the inlet copper 

connection of the unheated entry length was connected to the outlet of the fluid pre-heater 

assembly, via Swagelok connections (which were pre-torqued prior to installation), shown in 

Figure 54. These connections (compression fittings) ensure no fluid leaking occurs. 

2. Setting of Desired Control Test Conditions (per case) 

With the physical setup complete, the test conditions need to be set. The controller temperature 

for the bottom electrode heating element is set, as well as the controller temperature for the fluid 

pre-heater prior to the unheated entry length. Unlike pumped-fluid systems, the syringe pump 

requires some fluid priming in order to obtain uniform flow in the visualization portion of the 

channel. Priming is complete when fluid flows through the outlet steadily, and no vapor or air 

bubbles are observed in the channel. Once the flow rate is set, the channel is monitored to ensure 

that there are no air bubbles in the channel (due to the channel being void of any fluid between 

runs) before any heating is applied or tests started. 



117 

 

 

Figure 53: Channel section of apparatus showing metal support standoffs embedded in potting 

compound (protruding from bottom of each post). 

 

Figure 54: Fluid Connections between syringe pump and fluid preheater. 

Fluid Outlet 

Fluid Inlet 

Swagelok 

Connections 
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3. Initial camera focusing 

 The high-speed camera requires careful setup to ensure clear imaging of bubbles in the channel. 

While ideal camera placement would be such that the lens is completely perpendicular to the 

channel walls, this is unworkable in practice. Any lens that has a relatively large zoom (i.e. longer 

focal length, such as those like the microscope lens used here), must also have an aperture fast 

(large) enough to receive sufficient light for an acceptable image. This results in a narrow depth 

of field for the image, which is large enough to bring the entire diameter of a nucleation site area 

info focus (greater than 1mm), but not large enough to encompass the entire thickness of the 

channel (4.76 mm). Functionally, only the extreme edges of the channel were still blurred. While 

this was acceptable for visualization, it made brining the camera into focus difficult. Due to the 

small depth of field of the camera and microscope lens combination, it would be impossible to 

focus on any single region of interest on the bottom electrode without knowing where bubbles 

nucleate first, especially given the effect of refraction. Figure 55 illustrates the refractive issue 

when imaging through a fluid medium [84]. With the channel evacuated of fluid, the camera would 

have its field of view distorted by the glass pane (as shown by the solid arrow inside the channel). 

While focusing the camera to account for this would be possible, the addition of fluid would distort 

field of view in a different manner (shown by the dotted arrow), requiring further focus adjustment. 

Additionally, with the microscope lens characterized by a very narrow depth of field, it can be 

more difficult to achieve satisfactory focus even with the bubble locations known. This can be 

beneficial as the blurring of the foreground and background (relative to bubbles) makes subsequent 

image analysis easier.  

4. Channel Priming and Camera Refocusing 
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 Depending on the conditions in the channel, obtaining focus on a particular region of interest 

may be difficult. The test procedure is designed to account for these differences. During 

experiments, the camera is typically focused with an empty channel to ensure that the visualization 

area is correct. Next, the channel is primed with fluid by turning the syringe pump on and waiting 

for the channel to fill, as well as waiting for all bubbles to clear from the channel. With fluid 

flowing through the channel during this priming phase, the camera is then again re-focused to 

ensure that the center is within focus (where a majority of bubbles are expected to form). During 

this time, the copper electrode is reaching a steady state temperature with heat applied. Boiling 

will begin to occur once the wall temperature reaches the saturation temperature.  

 

Figure 55: Effect of refraction through fluid on focusing point in channel. 

 

5. Data Capture Setup 

Once a steady state has been reached with respect to the electrode temperature, data capture 

system is initiated. The LabVIEW interface allow for customization of the data export filenames, 

to facilitate association of the numerous files with the corresponding high speed videos in post-

processing. The nucleation site being visualized is recorded (based on the numbering scheme 

assigned to each site, described in Figure 33), as well as the channel height. Site numbers are 
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counted up sequentially from the channel inlet. Additionally, the “record time” (i.e. timestamp of 

the data collection initiation) is recorded in the LabVIEW data file. This study is based on 

achieving clear visuals of bubbles, and the primary motivation of utilizing a LabVIEW data capture 

system is to record what test conditions correspond with each high-speed video in as accurate as a 

manner as possible. The “record time,” of which is part of the data file, is set to match the exact 

recording time of the high speed camera. This means that at every time step of the high-speed 

video, the corresponding fluid inlet temperature, wall temperature, and electric potential can be 

determined. The LabVIEW VI is shown in Figure 56.  

 

Figure 56: LabVIEW virtual instrument (VI). 

On this virtual control panel, the display labeled “Temperature 1” and “Temperature 2” monitor 

the heated (channel bottom) electrode temperature and inlet fluid temperature (if applicable). The 

“Voltage_0” display is a graphical representation of the last 100ms of temperature data from the 

thermocouples. At the onset of the study, voltages were controlled manually using the slider 

controls in the upper right portion of the VI. However as described earlier, it was determined that 

a more controllable method of raising the potential in the system was necessary to isolate some 

effects that were being seen in bubble behavior. To this end, the LabVIEW VI was modified in 
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order to allow for input of a maximum potential, a “start” and “end’-of-ramping time (seen in the 

upper left corner of Figure 56). Since the LabVIEW VI was already set up with a timer to record 

the current time during a test, a LabVIEW script was created to automatically control the input of 

the power supply sub-VI. Depending on the time of recording, the applied voltage can change. 

Before the time when the voltage ramping is to begin, the “ramp from” time (𝑅𝑓), the voltage 

applied is zero, to record the baseline bubble behavior with no potential applied to the channel. If 

the current time (𝑡𝑐) is greater than 𝑅𝑓, but less than the “ramp to” time (𝑅𝑡), the applied voltage 

will be a linear function of current time 𝑡𝑐. If the current time is greater than both 𝑅𝑡 and 𝑅𝑓, the 

applied voltage will be that of the specified maximum, 𝑉𝑜. This logic can be seen in Figure 57.  

 

Figure 57: LabVIEW timer logic used to control voltage ramping. 

The control to initiate recording of the data is located above the graphical temperature display 

on the VI. The “Test Number” control is used to assign a unique number to each file and ensures 

that output files are distinct and do not over-write old outputs. The “Set Time” control governs 

how long the program should capture data for, while the “Current time” display serves as feedback 

to the user about how long the process has been running (displaying current time 𝑡𝑐). Upon the 
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selection of the “record” button, the VI automatically records temperature, potential, and current 

data, and saves to a comma delimited file. Current data may be used to examine the isolation 

characteristics of the fluid, as well as any changes that occur with the application of an electric 

field. The filename contains information identifying the current date (automatic), which test 

apparatus is used (if applicable), the artificial nucleation site as visualized by the high-speed 

camera, and the test number. On the right side of the VI are the controls for the power supply, 

which is controlled by a sub-VI, created as part of an earlier project. The complete block diagram 

of the VI is provided in Appendix 8.1.3. Once a test is over, if a new test is to be performed with 

the channel already heated and the pump primed, then steps 3-5 are repeated using the new test 

conditions. 

4.3.1. Image Analysis 

 After tests are completed, video files and data files are examined for qualitative data. 

Qualitative data is useful for developing generalizations on bubble behavior in the channel, and 

can help support certain conclusions. However, quantitative data is necessary to support certain 

findings, such as the effect of EHD on nucleation site density, bubble size, and bubble departure 

frequency. The primary vehicle for data collection was high-speed video, which is difficult to 

analyze without specific tools. MATLAB (with the Image Processing Toolbox) is utilized to 

SnapshotsTrialsCases

Case #1 Trial #1 Snapshot

SnapshotTrial #2

Snapshot

Figure 58: Testing hierarchy used to identify specific tests. 
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perform image analysis on the resulting video files. In this section, the nomenclature used for 

identifying and labeling specific tests is laid out. The notational hierarchy is shown Figure 58.  

 The series of tests performed are broken down into Cases, Trials, and Snapshots. At the most 

basic level, a snapshot is a moment in time of a given trial. A trial consisted of multiple attempts 

within the conditions of a given Case. Different sets of trials, corresponding to different sets of 

controlled parameters is are referred to as Cases. In this study, within a given Case, the enabled 

potential voltage (i.e. the “on” potential), the polarity, and the rate at which a potential is enabled 

are purposefully varied. The Cases comprise a specific set of polarities and applied potentials. The 

conditions measured (fluid inlet temperature, heater set point, and channel geometry) remain the 

same between all Cases. Within every trial, the EHD state (“on” or “off”) will be specified. A 

numbering scheme is identified to easily identify the trial being studied. From the onset of the test, 

trials were numbered sequentially (starting from Trial#1), regardless of their test conditions. After 

Figure 59: Data collected during a typical trial. Wall temperature of the 

bottom electrode (top), channel bias potential (middle), current (lower). 
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an initial period of debugging trials, a series of cases were identified (starting from Case#1), 

serving as groupings of trials that share the same test conditions.  

Because of the inherent variation in the behavior of any single bubble, a statistical approach 

was used in conjunction with the image analysis. The relative size of the channel leads to many 

bubbles in the field of view, many of which can be blocked by large vapor slugs. With a statistical 

approach, bubble characteristics can be characterized with statistical distributions which better 

allow for uncertainty analysis. Additionally, the limitations of the imaging equipment mean that 

only a portion of the channel can be captured during a trial, further necessitating statistical analysis. 

Within the Edgertronic software, the video capture resolution can be defined. In this study, 992 

x 400 pixels gave the best balance between clarity, maximum allowable frame rate, and saved 

image size. Given a scale of 100 pixels per mm, this corresponds to a capture area of 9.92 x 4 mm. 

This comprises the visible area on which image analysis is conducted. The visible area is defined 

as the width of the entire visible channel, right of the artificial nucleation site, as deep into the 

channel as visualization allowed. This area is calculated to be a rectangular patch, with an area of 

47.2 mm^2 on the bottom electrode. 

Several methods are developed to process data for critical areas. Bubble nucleation site density, 

departure frequency, and size are all important characteristics to be studied. The approach taken is 

one of mainly manual identification of bubbles or site of interest, with automation used to speed 

up data analysis. To prepare a video file for post-processing, it is first loaded into MATLAB. A 

MATLAB script can break up a video file into individual frames, and save each as a .jpg file. Due 

to the extremely large sizes of these file collections (thousands of photos and hundreds of 

megabytes), future MATLAB scripts should extract specific portions of these files into temporary 

directories for speed  
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The script to assist in calculating nucleation site density is shown in Appendix 8.3.1. To 

calculate nucleation site density, a range of frames in which to analyze video is determined. 

Typically, this corresponds to the frames in which EHD is on or off, excluding any transition 

period, as determined by the saved data files from LabVIEW. An example of this is shown in 

Figure 59. Frames F#0 to F#1500 would serve as the range where EHD is off, while frames from 

F#1500 to F#4300 are discarded as they are during a transition period.  

 Frames from F#5000 to F#6500 are included so that there are an approximately equal 

number of frames with and without EHD. With each range specified, a temporal resolution is also 

specified to keep user input to a minimum. This discretizes the range of frames into a certain 

number of discrete points in which bubbles will be counted. With frames ready to be analyzed, the 

script walks the user through the process. Each snapshot (as determined by the temporal resolution 

setting) is inspected and the number of currently visible nucleating bubbles are counted. The values 

presented are a count of nucleation sites, where a density can be inferred by using the visualization 

area (defined earlier in this section as 47.2 mm^2). 

 

Figure 60: Selecting nucleating bubbles within a custom MATLAB GUI. Green marks denote 

selected bubbles. 
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A nucleating bubble is defined as a bubble which is still attached to the bottom electrode, 

regardless of size, and growing. Bubbles are selected by clicking, and a counter is also placed to 

ensure that bubbles aren’t counted twice. This interface is shown in Figure 60. Once all bubbles 

are selected in a given snapshot, the script automatically loads the next snapshot, and the process 

Figure 61: Example of statistical nucleation site density. 

Figure 62: Diagram of nucleating bubble, detaching upward as to pass through the 

control volume (dotted line) boundary. 
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is repeated. With all snapshots analyzed for nucleating bubbles, the results are presented 

statistically, with a clear example (with distinct variation between peaks) shown in Figure 61. The 

statistical approach is further expanded upon in Section 4.3.3. 

The next subjects for image analysis were the positions of free floating bubbles in the channel. 

These bubbles are counted in a similar manner as above, except that now their x and y coordinates 

in the channel were also recorded when selected. Free-floating bubbles are selected if they are not 

touching an electrode and are visible, regardless of size. The script (listed in Appendix 8.3.2) uses 

a similar method as described above, but each bubble that is selected has the coordinates of the 

marker stored and plotted Bubbles are selected as close to the centroid of the visible bubble outline 

as possible.  

Another object for image analysis was the determination bubble shapes and sizes. Based on 

modeling results and the literature, it was anticipated that the application of EHD would 

consistently alter the shapes of nucleating bubbles, elongating them in the direction of the electric 

field.  

The final investigation for which image analysis was utilized was in measurement of the 

nucleating bubble departure frequency. The method used to determine departure frequency follows 

from a study by Euh [87] in which bubble departure frequencies could be determined through 

image analysis of image intensities. A control volume is defined around a nucleation site, through 

which bubbles will pass through as they nucleate. Given the nature of the experiment (with a front 

facing light source), bubbles will always have a characteristic bright spot at their center. As this 

bright spot passes through one side of a control volume, an automatic MATLAB script (listed in 

Appendix C) is used to plot the image intensity of that control volume boundary over time. The 

bright spot would correspond to a spike in image intensity, representing the passing of a bubble. 
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Depending on how the control volumes are positioned, this spike will correspond to the detachment 

and evacuation of a bubble, representing a nucleation event. Figure 62 illustrates this.  

4.3.2. Uncertainty Analysis 

The measurement of spatial coordinates (for bubble sizes and position) and times (for departure 

frequencies) derived from image data are subject to error and uncertainty. When measuring length 

or coordinates, uncertainty can be introduced as a result of several factors. The uncertainties arise 

from several sources. Based on work by Gerardi [88], two primary sources are specific to image 

analysis problems. First, there is uncertainty due to the resolution of the camera. Also, there exists 

some uncertainty due to the coordinates chosen to represent bubble positions or shapes. These 

uncertainties form the basis of the uncertainty analysis for measuring lengths.  

 When the standard deviation, or standard error of mean (SEM) are presented, they are 

calculated in MATLAB using the following equations. The standard deviation is found from [85] 

 

S = √
1

N − 1
∑|𝐴 − 𝜇|2
𝑁

𝑖=1

  

(38) 

Where 𝑆 is the standard deviation, 𝐴 is the vector to be observed made up of 𝑁 elements, and 𝜇 is 

the mean. For the SEM, the standard deviation is divided by square root of the number of elements 

[86]. 

 
SEM =

S

√N
  

(39) 

In this study, the measured quantities are either position (selected coordinates) or number of 

observed bubbles. For measuring selected coordinates, the user uses a cursor to select positions 

based on visualization. Specifically, the edges of the bubbles are blurred due to the resolution of 
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each image. When selecting these bubble edges manually, this means there is a range of pixels for 

which the bubble edge appears to exist. This results in an uncertain area of approximately 5 pixels, 

or 50m This represents the uncertainty in coordinates presented. Due to the repeated 

measurements, this error does not compound, so final position averages presented could vary by 

up to 50m. This applies to all coordinate measurements. Time between bubble departures varies 

by the temporal resolution of the video, which can be found by dividing the number of frames per 

second. This corresponds to an uncertainty of 670s. 

When counting nucleation sites for the purpose of measuring nucleation site density, the largest 

source of uncertainty stems from the ability to consistently identify the active sites to be included 

in the analysis. In addition, because the site density is the ratio of site number and the sampled 

area, uncertainty in either the number of counted sites or the area being sampled can contribute to 

the overall uncertainty. A statistical analysis is chosen in (as described in Section 4.3.3) to account 

for the population sampling. Additionally, if results were analyzed again by re-counting the 

number of bubbles within a trial, it was found that there was a maximum variation of only 1 to 2 

bubbles. The methodology required counting bubbles both with EHD on and off under the same 

visual conditions, so the impact of over- or under-counting is minimized. 

4.3.3. Statistical Analysis 

Because of the stochastic nature of boiling and bubble formation, the behavior of any 

individual bubble does not necessarily reflect the effect of EHD when applied to a heated channel 

where hundreds or thousands of bubbles could be forming and detaching every second. For this 

reason, a statistical approach is required in which the effect of EHD on populations, suitably 

sampled, can be used to make inferences. 
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 From Reid [30], a statistic is used to enhance the quality of data, and assist in its 

interpretation. Means, maxima, or likelihoods can all be found using a statistical approach. In this 

study, a series of null (𝐻0) and alternative (𝐻𝐴) hypotheses will be presented for a number of 

statements. For the purposes of this study, each result sub-section (4.4.X) claim a specific 

alternative hypothesis, where the “null”, or inverse of those statements are the “status quo” null 

hypotheses (i.e. the inverse of each result is the expected behavior of bubbles in the channel in the 

absence of EHD). Statistical data will serve to reject or accept the null hypotheses as claimed and 

derive a meaningful result.  

When performing analysis, a series of tools can be used to determine a difference in the means. 

This is accomplished with the 𝑝 −value of a test, or the probability of observing a statistic in 

relation to the significance level. Should a 𝑝 −value be significantly smaller than the significance 

level, the null hypothesis will be rejected. There are simple ways to estimate 𝑝 −values and reject 

the null hypothesis, and if those fail, more rigorous methods are used. 

When means are plotted, error bars are included to represent the uncertainty. While 

overlapping standard deviations may suggest a difference in results, the best way of verifying a 

significant difference in means is with an overlap in confidence intervals, or with the standard error 

of mean [89]. Should error bars (defined by the standard error of mean value) overlap, it guarantees 

that 𝑝 >0.05. Should a comparison of error bars not yield this simple criteria, another approach can 

be used. 

 To test the null hypothesis of more similar means, a Student’s t-test [91][30] will be 

utilized.  
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(40) 

Where 𝑡 is the test statistic used to test the null hypothesis, 𝜇1, 𝜇2 are the sample means, 𝑠𝑥, 𝑠𝑦 are 

sample standard deviations, and 𝑛,𝑚 are sample sizes. In this test, a significance level 𝛼 is defined. 

[92] The significance level represents the probability of an observation falling into the rejection 

region of 𝐻0. In using the two sample t-test, a default value of 0.05 is assumed for 𝛼. The two 

sample t-test is means of determining if the differences between two means are from random 

variable distribution or not [93]. If variances are not found to be equal between means, 

considerations must be made in regards to the t-test. The MATLAB implementation allows for the 

test to take place with unequal variances.  

Interpretation of the t-test results require an analysis of the confidence intervals. 

Confidence intervals specify the 95% confidence range that a difference of means (𝜇1 −

𝜇2) between two trials will lie in. This range is specified in this study by “𝑐𝑖 lower” and 𝑐𝑖 higher”. 

Should that range include a zero value (representing no difference in the means), it can be assumed 

that there is no statistical difference between a set of two means within the given confidence 

interval [93]. The confidence interval can be provided alongside the statistical analysis as a way 

of verifying the magnitude of the difference of the means, as opposed to a simple check.  

 Most hypotheses presented relate to the state of the electric field in the channel. Typically, 

the two sets of data that will be compared are between an electric field in the channel (at varying 

strengths), and the case of no external electric field. Should the two sample t-test find that the null 

hypothesis is rejected for a particular case, the alternative hypothesis presented in the result 

heading is accepted as a statistically significant finding.  
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4.4. Results 

As described earlier, the objectives of the experimental study were to characterize the effect of 

electric fields on nucleation site density, size and position in the channel of bubbles that have 

separated, nucleating bubble shape prior to separation, bubble departure frequency and size at 

departure. In most of the tests, the heated surface functioned as the positive electrode, however the 

polarity of the electrodes could be changed in order to study the effects of external field polarity 

on the nucleate boiling.  

 Initial trials were carried out to determine a baseline for behavior, and to help guide subsequent 

tests, as well as to allow for general debugging of the apparatus. Trials were run with multiple 

cases sorted into two categories: potential bias, and ramping speed. A table of these trials is 

presented in Table 2. Boxes in the table corresponding to a given “enabled” potential, bias, and 

enabling speed are identified as sequential Cases. Trials belonging to a given case are denoted as 

sequential numbers within each box. In this study, results will be discussed using the Trial 

identifier, where this table can be used to refer back to which case they belong to. More detailed 

information, such as potential ramping time, wall temperature, and current (during the entire length 

of a trial) can be found in Appendix 8.1.4.  



133 

 

Table 2: Unique test numbers (corresponding to a “Trial”) utilized in statistical analysis. 

 Throughout this section, a “baseline” configuration and set of test conditions, listed in Table 3, 

serves as a reference set of conditions with which to compare results. More detailed test conditions 

for any trials used for analysis are given in Appendix 8.1.2.  

Bias Voltage [V] 

Heater HV, Ramped 

Trial# 

Heater GND, 

Ramped 

Trial# 

Heater HV, 

Abrupt 

Trial# 

Heater GND Abrupt 

Trial# 

57 

60 

63 

Case#1 

66 

69 

72 

Case#4 

N/A 

Case#7 

N/A 

Case#10 1000 

2000 

58 

61 

64 

Case#2 

67 

70 

73 

Case#5 

N/A 

Case#8 

Case#11N/A 

4000 

59 

62 

65 

77 

Case#3 

68 

71 

74 

76 

Case#6 

N/A 

Case#9 

Case#12 
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Table 3: Reference conditions. 

Flow Rates 4 ml/min 

Channel Height 3mm 

Polarity Bottom/HV 

Fluid Pre-heat Yes 

Applied Heat Flux ~45 W (subject to small convective 

or radiation losses) 

Fluid Entry Temperature 24C 

 

Qualitative data uses a notation of “F#XXXX” to denote a specific high-speed camera 

video frame when referring to snapshots of each trial. The area of visualization for all data 

collected was chosen to be the area surrounding the 3rd artificial nucleation site, located 

approximately 36 mm downstream of the inlet to the heated channel, which has a total length of 

75 mm. This site was easier to image clearly compared with sites closer to either end of the channel. 

Closer to the channel outlet, large vapor slugs made visualization of bubbles impossible on the 

bottom channel. Closer to the channel inlet, the nucleation density was less (as fluid entering the 

channel is not yet at saturation temperature), which made visualization more difficult.  

4.4.1. What is the Effect of EHD on Nucleation Site Density? 

The EHD effect serves to increase the relative density of nucleation sites from the bottom 

electrode (relative to the baseline configuration). EHD, as it was previously referred to in this 

study, is terminology used to quantify the effect that an electric field has on a fluid. For 

visualization, Test#35 was chosen as the representative case, due to good visual characteristics and 
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a good representation of many effects explored in these results. As Test#35 was a part of the initial 

debug tests it is not used in statistical analysis, and not included Table 2. However, for reference, 

its test conditions are noted in Figure 63. 

 

Figure 63: Trial#35 Test Conditions. 

In Test#35, the density of nucleating bubbles can be seen in Figure 64,prior to the activation of an 

external electric field. Figure 64 shows a snapshot of nucleate boiling under no external electric 

field, for the baseline set of conditions, early in the trial. 
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Figure 64: Trial#35, t=3.4ms, no EHD. 

Later, at 100ms into the test and with EHD, the number of nucleation sites is seen to increase, 

and the boiling is observed to be more chaotic. This behavior can be seen in the snapshot shown 

in Figure 65.  

 

Figure 65: Trial#35, t=100ms, EHD. 

Figure 66, Figure 67, and Figure 68 show the distribution of observed detachment events 

over a constant area, with and without an EHD effects. These histograms were obtained by 

evaluation of three different trials during which the EHD was switched on partway through (to 

maintain test condition continuity). Each result is derived from a sampling and analysis of 98 (for 

1KV or 2KV trials) or 34 (for 4kV) snapshots within a single trial. For the first three trials, the 
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MATLAB script (Appendix C) analyzes between F#5001 and F#6501 (with EHD on), and F#0001 

and F#1501 (with EHD off). Spacing is set to 30 frames, meaning that a sample of nucleation site 

density is taken every 30 frames. Notably, the wall temperature may vary between trials in a given 

case, due to the inability for the controller to maintain a heater temperature set point. The changes 

of a few degrees between Trial runs may lead to a difference in nucleation sites. While this effect 

is not noticed during the time a trial is run (5 seconds was not long enough to see this sweeping 

change), it is noticeable between trial ones. To account for this, another trial was also analyzed, 

with a wall temperature closer to that of Trial#62. Trial#69 was run in order to analyze how a 

difference in wall temperature in conjunction with an applied electric field of low magnitude can 

influence nucleate boiling density. Due to a large vapor slug, frames 5700 to 7200 were analyzed. 

Functionally, this makes no difference, as it was observed that nucleation site density appeared the 

same during this range.  

While the heating system was adequate to maintain constant temperature during the 

running of a test, it was susceptible to long-term variations between trials (the time between trials 

was often as long as 5-10 minutes). Since trials may have different wall temperatures (due to these 

fluctuations), it is important to note the comparisons between means during a given trial, with and 

without EHD effects. Table 4 shows a summary of each test with number of samples, mean values, 

standard errors of mean, and standard deviations. 
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Table 4: Nucleation site density statistics for three different trials. 

 0kV 1kV 2kV 3kV 

Number 

of 

Samples 

49  Trial#61 

49  Trial#60 49  Trial#61 19  Trial#62 49  Trial#60 

14  Trial#62 

Mean 

8.9798  Trial#61 

6.4082  Trial#60 10.8776  Trial#61 23.8947  Trial#62 6.1020  Trial#60 

15.7143  Trial#62 

SEM 

0.1556  Trial#61 

0.1842  Trial#60 0.2771  Trial#61 0.8089  Trial#62 0.1577  Trial#60 

0.4118  Trial#62 

STDEV 

1.0895  Trial#61 

1.2897  Trial#60 1.9433  Trial#61 3.5260  Trial#62 1.1039  Test#60 

1.5407  Test#62 
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Figure 66: Comparison of nucleation site density between 1000V and 0V (Trial#60). 

 

Figure 67: Comparison of nucleation site density between 2000V and 0V (Trial#61). 
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Figure 68: Comparison of Nucleation site density between 4000V and 0V (Trial#62). 

Here, the number of nucleation sites in the visualization area is shown to increase with the 

application of EHD. Bubbles are chosen if they meet the following criteria: a) are not observed to 

be on the extreme front or back of the channel (in case they are leaking in from the sides) b) are 

attached to the bottom electrode and c) are entirely within the visual area (partial bubbles will not 

be counted). For the “No EHD” case, there were approximately 7 nucleation sites depending on 

the wall temperature.  

Table 5: Statistical results for EHD enhanced nucleation density increase (1000V vs. 0V) for 

Trial#60. 

Condition n 
Mean 𝝁 

[mm] 
Variance 

𝒄𝒊 

lower 
𝝁𝟏 − 𝝁𝟐 

𝒄𝒊 

higher 

Difference 

in Means 

1: EHD on 49 6.4082 1.6633 

-0.1753 0.3061 0.7875 No 

2: EHD off 49 6.1020 1.2185 
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Table 6: Statistical results for EHD enhanced nucleation density increase (2000V vs. 0V) for 

Trial#61. 

Condition n 
Mean 𝝁 

[mm] 
Variance 

𝒄𝒊 

lower 
𝝁𝟏 − 𝝁𝟐 

𝒄𝒊 

higher 

Difference 

in Means 

1: EHD on 49 10.8776 3.7764 

1.2662 1.8980 2.5297 Yes 

2: EHD off 49 8.9796 1.1871 

 

Table 7: Statistical results for EHD enhanced nucleation density increase (4000V vs. 0V) for 

Trial#62. 

Condition n 
Mean 𝝁 

[mm] 
Variance 

𝒄𝒊 

lower 
𝝁𝟏 − 𝝁𝟐 

𝒄𝒊 

higher 

Difference 

in Means 

1: EHD on 19 23.8947 12.4327 

6.1216 8.1805 10.2393 Yes 

2: EHD off 14 15.7143 2.3736 

 

To further explore the role of channel temperature, another trial was analyzed (Trial#69) and 

results are presented in Figure 69 and Table 8. This trial had a much higher wall temperature than 

Trial#60, which also featured a ramping up to 1000V.  
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Figure 69: Comparison of nucleation site density between 1000V and 0V (Trial#60). 

The statistical data for Trial#69 is presented below. 

Table 8: Statistical results for EHD enhanced nucleation density increase (4000V vs. 0V) for 

Trial#69. 

Condition n 
Mean 𝝁 

[mm] 
Variance 

𝒄𝒊 

lower 
𝝁𝟏 − 𝝁𝟐 

𝒄𝒊 

higher 

Difference 

in Means 

1: EHD on 49 10.0612 3.1420 

-1.0507 -0.4286 0.1936 No 

2: EHD off 49 10.4898 1.6718 

 

 

4.4.2. How can EHD Influence the Position in the Channel of Bubbles that Have 

Separated? 

During testing, it was observed that bubbles “center” in the channel, depending on their size 

before the application of an EFF. Centering, in this context, is defined as the behavior in which 
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bubbles appear to rest at equilibrium between both channels, nor do they float to the top of the 

channel as they would under typical circumstances. 

 

Figure 70:Trial#59, F#1753, EHD off. 

 

Figure 71: Trial#59, F#4716, EHD Enabled (4kV). 

Upstream, nucleating bubbles were seen to coalesce and form larger bubbles that would float 

towards the top of the channel, due to buoyancy. However, the application of EHD serves to 

change the behavior of some of these bubbles as they float downstream. Figure 71 shows the same 

test with the application of EHD, where larger, detached bubbles tend towards the center of the 
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channel and steady there (steadily). Figure 70 shows the same trial, without EHD. Note that all 

larger, detached are either resting at the top of channel, or traveling there. 

This behavior showcases an interesting uniformity in the detached bubble behavior. During 

the transition to a high-voltage potential, the bubbles gradually drift downward from the top of the 

channel wall, overcoming buoyant forces but remaining approximately midway between the two 

electrodes. Additionally, horizontal bubble spacing remains uniform, until coalescence occurs 

between two neighboring bubbles.  

In certain cases, bubbles detach from the bottom electrode, being to rise, and then abruptly begin 

to drift back down towards the bottom electrode, to reach a final equilibrium position 

approximately midway between the two channels. This behavior is captured in Figure 72. Starting 

at F#4194, a bubble is shown nucleating. At F#4208, the bubble is shown detaching and rising 

towards the upper electrode. In F#4223, the bubble is shown in transit. F#4230 shows the bubble 

reaching an apex, with an elongated shape. After this, the bubble begins to descend toward the 

bottom electrode. Frame F#4240 shows the bubble in descent, where it eventually coalesces with 

another bubble. For clarity, the bubble in question is outlined by a red line.  
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Figure 72: Trial#35, F#4194-4240. 

In Trial# 57, 58 and 59, the same behavior is also observed to occur in varying degrees 

with the strength of the applied electric field. The image in Figure 73 compares the large vapor 

packets between three cases, 1kV, 2kV and 4kV of potential, at a specific snapshot in time.  

 

Figure 73: Comparison of large vapor packets between three potentials (from left to right: 1 kV, 

2 kV, 4 kV) (from left to right, Trial#57, Trial#58, Trial#59). 

On the left of Figure 73, the 1kV snapshot (F#5381, Trial#57) exhibits large bubbles 

organized in a line, remaining within 0.4 mm of the top surface of the channel. Detaching bubbles 

are observed to have their upward motion retard as they approach the upper electrode, slowing 

down as they get closer. In the second case, bubbles are observed to occupy a space lower down, 
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approximately 1.2 mm from the top of the channel (F#5137, Trial#58). In the case of 4 kV of 

applied potential, bubbles exit in the middle of the channel (F#5169, Trial#59), and are still 

observed to drift downward from the upper surface. Interestingly, nucleating bubbles from the 

bottom surface (in some cases) detach to coalesce with bubbles on the upper electrode.  

 

Figure 74: Bubble height in channel as a function of potential. N (number of snapshots) =24 for 

1kV, 26 for 2kV, and 20 for 4kV. Error bars represent the standard deviation of the set of 

measurements 

Figure 74 shows bubble heights in the channel as a function of the applied potential. The results 

are shown statistically, due to the chaotic conditions in which bubbles grow. Each bar above 

represents uncertainty in a representative series of bubbles from each trial (shown as 1 standard 

deviation of the average position). This is distinct from the uncertainty in an individual 

measurement, which is discussed in Section 4.3.2. Within a case, a trial is identified with a given 

potential. This trial is broken up into several snapshots, where bubbles are counted and their 
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coordinates recorded. At least 20 snapshots are counted (exact amounts listed in figure caption), 

with as many bubbles as are visible counted to compile the statistical data.  

4.4.3. Does the Polarity of the Electrodes Affect the Behavior of Nucleating Bubbles? 

To isolate the root cause of the centering behavior of large vapor bubbles in the channel, the 

polarity of the electrodes was varied between cases. This was accomplished by moving the high 

voltage clip to the upper electrode, and clipping the grounded wire to the bottom post.  

 

Figure 75: Reversed polarity setup. The red wire is the high potential, black is ground. 

To observe the effects of reversed polarity, the magnitude of the potential was raised in the 

middle of a trial (in both a controlled, and abrupt manner). An example of the acquired data during 

a trial can be seen in Figure 76. 
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Figure 76: Ttrial#37, example of data acquired during a trial. 

At F#2242 (in Figure 76), the effects of the electric field are first noticed on the bubbles (in the 

video) despite there being a potential starting at F#1631. Interestingly, the point at which the 

effects of the electric field are observed in the bubble behavior is the same point that the current 

in the channel peaks (F#2100), and begins its decline back to an equilibrium of approximately 

4µA. The periods between F#2242 and F#2503 in the video, show bubbles exhibiting a slow 

detachment from the upper electrode, and begin to center in the channel. However, at F#2503, the 

bubbles then begin a very sharp descent to the bottom electrode, at the moment when the potential 

surpasses 3.4kV. During the next 100 frames, the bubbles descend and detach to the bottom 

electrode, and begin a much more chaotic and violent boiling (shown in Figure 77). During this 

time, the channel is filled with a significantly more vapor, and the current in the channel settles on 

a much lower equilibrium value of 1µA.  
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Figure 77:Trial#37 Chaotic Boiling during a rapid potential increase with reversed polarity. 

The increase in the electric field under these reversed polarity conditions did not increase 

the nucleation site density at as high of a rate as the previously discussed case corresponding to 

the baseline conditions. In Test#37, the increase in electric field affects the large vapor packets but 

does not appear to increase the nucleation site density. Instead, the chaotic nature of the boiling 

made any statistical analysis difficult, as very few bubbles were available to perform statistical 

analysis on.  

More trials were run to delve more into the possible effects of polarity reversal, with 

differing test conditions. Since the bubbles were observed to drift down toward the higher voltage 

electrode at lesser potentials, a 5 second (real-time) trial was carried out at a much lower potential, 

approximately 1kV. As expected, the bubbles detach from the upper (now positively biased) 

electrode, and maintain a “floating” position of 5 µm, from the top of the bubble to the upper 

electrode, but do not center themselves in the channel, nor do they descend as much as when the 

potential is at a higher magnitude. This behavior is seen in Figure 78. 
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Figure 78: Trial#38, low potential bubble "hovering" between two electrodes. 

This behavior, however, is not as clear in the event of a slow, controlled “ramping” of the high 

potential over a period of 2 seconds. When slowly raised, the reversed polarity case seems to 

exhibit little change from the standard polarity case. In both, bubbles detach from the upper 

electrode and settle into a position between the two electrodes. At lower voltages, bubble shapes 

remain relatively constant, and they appear to settle into a position slightly higher than equidistant 

between the two electrodes (possibly due to EHD forces not being able to entirely overcome 

buoyancy forces). At higher potentials, the shape of the bubbles are more chaotic, and while they 

appear to be more centered in the channel, it is harder to characterize their dynamics in the presence 

of such turmoil.  

4.4.4. How can EHD Influence Nucleating Bubble Shape and Evolution Prior to 

Separation? 

 As anticipated, the shapes of the bubbles are significantly affected by the application of an 

external electric field. Figure 79 (Test #35) shows an example of this. On the left, a nucleating 

bubble without any EHD grows in a circular shape, due to pressure forces on the inside. With the 

application of EHD, the bubble elongates as it grows.  
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Figure 79: Comparison of bubble shapes without (left) and with (right) EHD (4kV). Bubble 

outlines are shown in red for clarity (Trial#35). 

 Figure 80 and Figure 81 show the bubble height and width as a function of an applied potential. 

Any uncertainty in these measurements is due to the uncertainty in where bubble edges are, 

discussed in Section 4.3.2. The two lighter color shades denote EHD and no EHD, where the 

darkest color in the graph denotes where the data overlaps. The data is acquired following the 

methods described in Section 4.3.1, where at several snapshots, bubbles have their upper, lower, 

left and right bounds marked, with the location data of each mark saved and assigned to each 

bubble. This data is post-processed by counting the number of bubbles with dimensions falling in 

a given bin (each bin is 0.01mm wide) and plotted on a histogram. 
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Figure 80: Distribution of bubble heights while nucleating, comparing EHD (4kV) and no EHD, 

for Trial#59. 

 

Figure 81: Distribution of Bubble widths while nucleating, comparing EHD (4kV) and no EHD, 

for Trial#59. 
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Table 9: Statistical Analysis for Bubble Height Comparison (Trial#59). 

Condition n 
Mean 𝝁 

[mm] 
Variance 

𝒄𝒊 

lower 
𝝁𝟏 − 𝝁𝟐 

𝒄𝒊 

higher 

Difference 

in Means 

1: EHD on 70 0.1982 0.0045 

0.0699 0.0886 0.1073 Yes 

2: EHD off 81 0.1096 0.0020 

 

Table 10: Statistical Analysis for Bubble Width Comparison (Trial#59). 

Condition n 
Mean 𝝁 

[mm] 
Variance 

𝒄𝒊 

lower 
𝝁𝟏 − 𝝁𝟐 

𝒄𝒊 

higher 

Difference 

in Means 

1: EHD on 70 0.1132 0.0012 

-0.0016 0.0106 0.0228 No 

2: EHD off 81 0.1026 0.0016 

 

4.4.5. Does the Bubble Departure Frequency Increase Under EHD Forces? 

Upon examining some nucleation sites (with favorable visualization characteristics, as well as with 

sites that exist in the same location between EHD and no EHD cases) it is noted that the application 

of an electric field significantly increases the departure frequency. Before the high potential is 

applied, bubbles can be observed departing from the surface once they reach a particular height at 

a relatively constant frequency. Once the high voltage is applied, bubbles immediately begin 

departing the surface at a much higher frequency. Due to the chaotic nature of boiling in the 

channel, this phenomenon is hard to characterize. However, one representative site was chosen in 

a trial with good visualization characteristics that allow for image analysis to take place. While the 

software approach for measuring image intensity worked as expected, the performance of that 

system in chaotic conditions (with many other bubbles) was limited. Section 4.3.1 explains this 

process in further detail. 
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Figure 82: Image intensity (corresponding to the passage of a bubble) of a bubble from a single 

site vs. real-time elapsed during Trial#59, EHD off. 

 

Figure 83: Image intensity (corresponding to the passage of a bubble) of a bubble from a single 

site vs. real-time elapsed during Trial#59, EHD on. 
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 The frequency data for EHD is much harder to obtain due to the chaotic nature of boiling in 

the channel, and the crowded field of view. Additionally, due to the additional bubbles being 

generated at higher potential, less time was available for a clear view of nucleating bubbles from 

one site. However, the increase in departure frequency can be observed in spite of the difficulty 

in obtaining a large set of data. Additionally, the intensity used to calculate peaks varied due to 

the changing optical characteristics of the channel as a result of the chaotic bubble motion. In the 

case where EHD was applied, intensity values for peaks decreased to 50 (out of a possible 255, 

where 255 corresponds to a pure white pixel), which was also verified by observing the video. 

For these cases, bubbles departing the control volume were the metric used to define nucleation. 

Due to the coalescence of bubbles horizontally with EHD, it was difficult to use the upper bound 

of the control volume to define detachment. Instead, a bubble passing through the right face of 

the control volume served as a detachment metric.  

 The above figures provide image intensities over time, comparing EHD to a no-potential case. 

Within each trial, the number of departures over a given 𝛥𝑡 (chosen to be 25 ms) were counted, 

from which a frequency for that given site was calculated. The frequency is calculated by dividing 

the number of departure events 𝑁 by the time span, 𝛥𝑡. This is shown in Equation 41. 

 
𝑓 =

𝛥𝑡

𝑁
 

(41) 

A histogram of these is presented (to within one significant figure) in Figure 84, with the statistical 

data presented in Table 11 
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Figure 84: Histogram of detachment frequency during Trial#59, comparing 4kV and 0kV 

Table 11: Statistical data for bubble departure frequency, Trial#59. Uncertainty of 3𝜇𝐻𝑧 due to 

time error 

Condition n 
Mean 𝝁 

[Hz] 
Variance 

𝒄𝒊 

lower 
𝝁𝟏 − 𝝁𝟐 

𝒄𝒊 

higher 

Difference 

in Means 

1: EHD on 22 34.5 1568 

0.97 20 39.0 Yes 

2: EHD off 22 14.5 387 

 

4.5. Discussions 

4.5.1. Results Discussions 

The results in Section 4.4 related to bubble deformation, are consistent with results 

observed in other studies reviewed in Chapter 2. These results shown in Section 4.4, serve to 

explore the effects of EHD enhanced nucleate boiling in a minichannel, with a cross flow. As 

outlined in Section 4.1, the experimental component of this study was designed to explore the 

growth and detachment of nucleating bubbles in the presence of an externally applied electric field. 
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Some of the most significant challenges encountered in applying EHD to enhance nucleate boiling 

in a minichannel are discussed below. 

 What is the effect of EHD on the nucleation site density? 

First, the application of an electric field led to EHD forces in nucleating bubbles, increasing 

the nucleation site density of the heated electrode. While the inability for the controller to maintain 

the temperature set point makes it difficult to determine the magnitude in which EHD can increase 

nucleation sites, the numerical data supported the hypothesis that nucleation site density increases 

do occur, and at a more statistically significant rate with higher potentials. An increase in 

nucleation site density serves to increase the heat flux away from a surface, given a higher 

incidence of departing vapor from a surface. Kweon [94][95] notes that bubbles are attracted 

towards weaker electric fields, serving to force them away from the wall in which they are 

nucleating. Depending on the design of the channel, this effect could be exploited to a greater 

extent to increase the heat flux removed over a smaller surface area. In this study, it was found that 

the nucleation site density increase did not occur for potentials below 2 kV. 

 How can EHD influence the position in the channel of bubbles that have separated? 

Initially unpredicted by the modeling efforts in Chapter 3, detached bubbles in the channel 

exhibited a neutrally buoyant behavior during the application of an electric field to induce an EHD 

force. This behavior can be exploited in a real-world device, in order to control nucleate boiling 

effects in a minichannel under EHD. As mentioned earlier (Chapter 2), detached bubbles in a 

minichannel may attach to other heated surfaces, rapidly expanding and leading to thermal 

runaway effects. In these small channels, it can be assumed that any other surfaces may be heated, 

due to close proximity of other heated surfaces. By controlling the position of bubbles in a channel, 
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this effect can be mitigated. If detached bubbles in a channel can be kept away from other heated 

surfaces while EHD serves to increase nucleation site density (and therefore heat flux), greater 

performance could be obtained. As potential was increased, bubble positions drifted towards the 

center of the channel. 

 Does the polarity of the electrodes affect the behavior of nucleating bubbles? 

The polarity of the electric field was originally anticipated to change the behavior of EHD 

influenced bubbles, but testing showed this was dependent on the rate at which the revered bias 

was applied. Abrupt increases in the potential, during initial tests, showed that reversed polarity 

led to chaotic nucleate boiling in the channel. Once potential increases were changed in a more 

controlled manner, this effect was not observed. In Section 4.5.2, a possible explanation is 

presented as to why this may occur, but it would be useful to note that in a real-world device, the 

manner in which an electric field is applied (i.e. speed in which it is activated) is operationally 

important. 

 How can EHD influence nucleating bubble shape and evolution prior to separation? 

As predicted by the modeling results in Chapter 3, the bubble shape was influenced by 

EHD effects in a minichannel, similar to the influence seen in pool boiling situations reported in 

the literature (Chapter 2). Consistent with these other findings, the extent to which this occurs is 

dependent on the magnitude of the electric field. Interestingly, for the flat surface, the bubble 

heights increase with the application of an electric field, but the widths of the bubbles remain the 

same, suggesting that the volume of bubbles in the channel is higher with EHD than without. While 

the bubble volumes may increase under EHD forces, nucleation departure frequencies were seen 

to increase as well, which serves to increase heat flux from the surface. 
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 Does the bubble departure frequency increase under EHD forces? 

The departure frequency was also shown to be influenced by the application of EHD. 

Figure 84 shows this statistically, but the image intensity plots in Figure 82 and Figure 83 give a 

more comprehensive overview of the exact behaviors. Without EHD, the departures are uniformly 

spaced in time, with few departure frequency values observed. With EHD, the bubble detachment 

is more chaotic, occurring very quickly in some parts of the trial, and more slowly in others. 

However, the statistical analysis shows that overall, there is a difference in the average departure 

frequencies over the entire trial, to within 95% confidence.  

4.5.2. Secondary Effects 

 While not explicitly related to the enhancement of nucleate boiling in minichannels, other 

effects were observed. In many cases, the current was observed to change considerably while the 

system came to equilibrium after the potential was raised. Very early attempts at these trials led to 

current leakage problems, in which the potential was limited by the current capability of the power 

supply. The Spellman unit is capable of 15kV at 150uA, and initially, the system was only able to 

sustain around 1kV. During these trials, it was impossible to sustain any meaningful EHD effects, 

due to the low limit of the maximum voltage. By slowly raising the voltage, as opposed to an 

abrupt transition, it was found that these arcing events did not occur. Later, during the more 

controlled transition tests, it was observed that the current during the transition period seems to be 

related to the transition time, as well as the rate of transition. In the trials where the potential was 

raised over a 2 second period, the average value of the current during that time was constant at 1-

3uA, depending on the maximum voltage. During the trial where the current was raised over a 1 

second period, the value of the current was observed to be 5uA. When the voltage was ramped at 

a constant rate, the value of the current during that time remained relatively constant. For trials in 
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which the potential was raised logarithmically (Figure 8) with time, the current was observed to 

peak as high as 20uA for a 4kV maximum potential, a peak value never observed in cases where 

the voltage was increased at a lower rate. 

While one of the initial efforts of this study was to explore the nucleation and detachment 

of bubbles from an artificial nucleation site, those results were inconclusive. While early trials run 

in quiescent fluid resulted in bubbles forming and nucleating from these artificial sites, the tests 

including cross flow did not yield this behavior. Bubbles did not grow at all from these artificial 

sites, instead growing on the flatter, smoother surface on the copper. On the occasions that bubbles 

were observed to grow, detach, and bound to the orifice of the inside of the artificial site, they 

appeared to grow and detach at larger diameters than the bubbles that were growing on the flat 

surface. This may be due to the behavior discussed at the beginning of Chapter 3, in which a bubble 

can bind to the outer orifice and continue growing. The fabrication approach used to form the 

artificial nucleation sites was limited to sites on the order of 700µm in diameter. This is smaller 

than the bubble widths at separation as measured in Section 4.4.4. Different nucleation site sizes 

could be explored either making sites bigger, or much smaller than the average width of 

detachment, to study if bubbles would more readily form on artificial sites. 

As mentioned in Section 4.2.3, the artificial nucleation site did not function as planned. In 

passing, it was observed that bubbles may attach to the site as they pass through the channel and 

grow, but this was not repeatable. In addition, bubbles appeared to form and grow in the “trough” 

around the site itself. While the fabrication methods presented here are useful for future work 

looking to create artificial sites in copper, more work would need to be done to ensure that bubbles 

would nucleate and grow in the site in a reliable manner. 
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The application of an electric field affects the nucleate boiling in a minichannel significantly. 

When constrained by the presence of an upper electrode wall, vapor packets downstream of 

nucleation sites tend to drift towards the centerline of the channel. Work done by Kandlikar [34] 

found that one fundamental problem with nucleate boiling in minichannels is the presence of other 

heated walls.  

The effect of centering detached bubbles in the channel, seen in Result 4.4.2 were not expected 

initially, based on the modeling efforts. It was determined that there may be several more forces 

acting on the bubble than were originally anticipated: It had been expected that the MST-derived 

forces would deform the bubble, which was observed for both baseline and reversed, controlled 

ramped polarity cases. Additional effects were observed however, such as the effect on detached 

bubbles. A possible explanation for this is presented in Section 4.5.3. More interestingly was the 

effect seen when the polarity was reversed. With the bottom electrode at a high potential and an 

abrupt voltage transient, bubble motion is observed that is likely not fully a result of only MST-

derived forces. 

The polarity of an EHD-enhanced minichannel boiling system must be carefully selected 

depending on the conditions in which a real-world device operates. Kweon [94] notes that the two 

most important properties that effect EHD forces are conductivity and permittivity. Additionally, 

that study notes the important of the charge relaxation time in EHD forces. When electric fields 

are applied to boiling Freon-113 for example, the charge relaxation time is on the order of 10 

seconds whereas the time a single bubble inception and detachment is on the order of 10ms, so 

EHD forces are dominant on bubble behavior. With HFE-7100, the charge relaxation time is 

calculated to be on the order of 2ms, so likely there are more than just dielectrophoretic forces at 

work. 
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 This was also echoed in work by Wang. [96] Wang found that if the charge relaxation time 𝜏𝑒 

is much, much larger than the characteristic time of the system (e.g. bubble detachment period) 𝜏𝑐, 

the liquid can be treated as an insulator and the electric field is distributed equally between the 

vapor and liquid phases. Conversely, if the charge relaxation time is much less than the bubble 

detachment time, the liquid is considered “conducting” in that the electric field is excluded from 

the liquid medium, and the voltage drop occurs at the liquid vapor interface (where free charges 

exist). In the case of this study, (Trial#59) bubble detachments are on the order of 100 frames, or 

approximately 16ms. Due to the timescales of this study, the free charges on the interface will have 

some effect on the detaching bubbles. Yagoobi [10] discusses the forces on a nucleating bubble. 

In that study, the bubble grows from a heated, grounded electrode in a non-uniform field. As 

Yagoobi noted, the dielectrophoretic forces reshape the bubble as it grows. Additionally, he notes 

that the bubble may be moved around the surface of the heater due to a non-uniform electric field 

distribution around the bubble (which happens due to the bubble deforming the field). Yagoobi 

notes that once the bubble departs from the heated surface, the Coulomb force attracts the bubble 

towards the energized electrode (for a length of time defined by the relaxation parameter). 

This study echoes many results from the Siedel thesis [33], in that bubbles elongated under 

EHD. Siedel also notes that the electric field had no clear impact on the volume of any detaching 

bubbles in that test setup. However, that study focused on much higher potentials than were 

considered in this work, and without a bias applied to the heated surface.  

Finally, the presence of EHD gives rise to an increased density of nucleation sites. While 

quantifying exactly how this increase in the density of nucleation sites can influence the wall 

temperature, the presence of more nucleation sites could lead to a lower wall temperature at the 

surface based on the principles discussed in at the start of Chapter 3. In small or constrained 
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systems, this could be the difference between an overheating chip, and a chip functioning well 

within its parameters.  

In a microgravity situation, results would differ considerably. Without the buoyant force 

afforded by a gravitational field, bubbles would be unable to detach from the surface, as they would 

not overcome surface tension forces. However, the simplified calculations in this chapter (using 

the approximate relations derived by Pohl [19]) suggest DEP forces will have a magnitude on the 

order of the buoyant forces. These forces act towards the outer edge of the electrode. In practice, 

in microgravity, bubbles growing more towards the center of the channel (in regions of a more 

uniform electric field) would not be expected to overcome their surface tension forces and detach. 

Snyder utilized divergent electrodes to overcome this, successfully enabling nucleate boiling in 

microgravity conditions. Future work could re-create the experimental setup in this study with 

divergent electrodes, gaining both the advantage from the DEP force (driving bubbles towards a 

particular equilibrium position), effects due to narrow electrodes, and the divergent forces from 

the non-parallel nature of the electrode, which could serve to repel the bubble from the region 

where the electrodes are closer together.  

Of note is the choice of incorporating an electrode design with two parallel plates. A straight 

rectangular channel was chosen to try and isolate the effects of the small-scale nucleation sites on 

bubble detachment, and not to manipulate individual bubbles as seen in skewed electrode EHD 

enhancement devices [18]. The motivation of such a geometry was to evaluate the benefits of these 

nucleation sites in a more conventional, rectangular channel, separate from the EHD forces that 

arise from divergent electrodes. A cross flow is relied on (as it would be in a pumped fluid heat 

transfer device) to remove bubbles away from the boiling surface, as opposed to relying on EHD 
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effects in a divergent electrode device. Future work could incorporate the effects seen in this study 

with those of a divergent electrode to manipulate bubbles without a cross flow. 

While the heat flux leading to bubble growth is applied by the electric heater through the 

channel bottom, the fact that a non-zero leakage current was measured introduces the possibility 

that ohmic heating, due to current passing through the fluid, could have contributed to fluid heating 

and hence bubble growth. In order to assess the likelihood of this, a simple calculation was 

performed in which the maximum leakage current measured (maximum current of 𝐼𝑚𝑎𝑥 = 35 ∙

10−6 A, was observed in Trial #35, listed in Appendix 8.1.4) was assumed to have been conducted 

completely through the fluid. For this calculation, the fluid column in the channel is treated as a 

“slab” of length 76.2 mm (the channel length), width 4.76 mm (the channel width) and height 3 

mm (the channel height). The fluid represents a circuit element with resistance given by  

 
𝑅 = 𝜌

ℎ

𝑤𝐿
 

(42) 

where 𝜌 is the resistivity of the fluid (i.e. reciprocal of the conductivity). The ohmic dissipation 

(Joule heating) is then given by  

 𝑄𝐽𝑜𝑢𝑙𝑒 = 𝐼𝑚𝑎𝑥
2 𝑅 (43) 

 For the HFE-7100 fluid used, the conductivity is 0.93 S/m, corresponding to a resistivity of 

1.08 Ω m. R is found to be 8.93 Ω. For the maximum leakage current observed, this corresponds 

to a Joule heating of 1.09 ∙ 10−8W, which is 9 orders of magnitude less than the applied electric 

heater power of 45.4 W. For this reason, it is unlikely that Joule heating played a significant role 

in heating of the fluid and bubble growth. 

4.5.3. Experimental Explanation via Further Modeling Work 

The phenomena outlined in result 4.4.2 were not anticipated by the modeling work 

undertaken in Chapter 3. The model developed there was more concerned with single nucleating 
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bubbles and the effect of EHD at the base, so additional phenomena noted that concerned other 

bubbles in the channel must be explained more thoroughly. At the onset of the experimental work 

the electric field in the channel was assumed to be uniform in the direction of the flow. Figure 85 

details an isometric view of the channel. One of the underlying assumptions of the computational 

model was that the phenomena is assumed to occur primarily in two dimensions (r and ). For the 

experimental work, the initial assumption was that the EHD forces would act only in the Y-Z 

direction, due to features only in the Y-Z plane. However, from a mathematical standpoint, 

detached bubbles were not predicted to center in the channel in a purely two-dimensional system 

as they were observed to do experimentally. In order to fully explain any EHD effects seen, the 

channel must be viewed and analyzed in all directions, especially in the Y-X plane (as opposed to 

the initial 2-D assumption). 

 

Figure 85: Isometric Channel View. 
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While the field may be uniform in the Y-Z plane as originally theorized, it appears from our 

observations of detached vapor packet behavior that there are significant non-uniformities in the 

Y-X plane. In order to explain this fully, a 2-D, steady model was developed in COMSOL to study 

the effect of narrow aspect ratio of this geometry on the electric field in the channel.  

As opposed to the more detailed approach for finding EHD forces on bubbles outlined in 

Chapter 3, a more basic approach was taken as outlined by Pohl [19]. Equation 44 is derived by 

Pohl as 

 
𝑭𝒆 = 2𝜋𝑎3𝜖1𝜖0 (

𝜖2 − 𝜖1

𝜖2 + 2𝜖1
)𝛻|𝑬|2  

(44) 

where 𝑎 represents the radius of a dielectric sphere, and 𝜖1, 𝜖2 represent the relative permittivities 

of two media (1 and 2, respectively), 𝜖0 represents vacuum permittivity, and 𝑬 is an external, 

electric field. This solves for 𝑭𝒆 , the net force on a sphere. This equation is incorporated into 

COMSOL in a similar manner as described in Section 3, although is applied in post-processing 

and utilizes calculated values for the electric field. This simplified force equation, as derived by 

Pohl [19] can model the force felt by a discrete bubble. However, the derivation states that this 

relies on the assumption of a continuous, spherical body. In a more realistic scenario, bubbles 

would deform based on the application of an electric field [25]. Should these bubbles deform, it 

would change the nature of the electric field surrounding the bubble, further impacting the force 

felt by the bubble. If the effects of EHD are to be more accurately modeled on a nucleating bubble, 

a more rigorous approach must be taken to calculate the force. A model must be developed that 

can address the deformation of the bubble, similar to the one utilized in Chapter 3, to get a better 

understanding of how the bubble would deform in a channel of this nature. 
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The geometry in this model is provided in Figure 86. All material properties are defined 

for each domain, approximating their real-life material counterparts. Quartz glass is assumed for 

the channel viewing glass, copper assumed for the electrodes, HFE-7100 for the interior domain, 

and air assumed for the outside domain. The only material properties used in the model are relative 

permittivities, given in COMSOL standard material properties [35] or from the material properties 

of HFE-7100 [24]. Due to the relatively simple model used for EHD forces, only relative 

permittivities are needed in the domain required to calculate forces. 

 

Figure 86: COMSOL model used to investigate electric field non-uniformity in the X-Y plane 

(dimensions in meters). Copper seen in yellow, quartz glass seen in light blue, and dark blue 

represents the fluid domain. 
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The basis for this model was from earlier work undertaken by the author, studying the effects on 

geometry on non-uniform fields. A small sample of this work is shown here, using Eq. 30 as a 

basis for determining what the magnitude of the force would be on a small particle some distance 

away form a needle (Figure 87). That work applied Eq. 30 along the centerline of the positively 

charged needle, extending from the ground plane below to the tip of the needle. Exact values for 

parameters varied, but a general form of the electric field is shown in Figure 88. These results 
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Figure 87: Example needle geometry. 

Figure 88: Example of a calculation of electric field strength from 

a ground plane to the tip of a needle (located 5mm higher), 

comparing a COMSOL solution vs. an analytical solution. 
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suggest that the rate of change of the electric field increases rapidly approaching a relatively sharp 

geometric feature. Work by Svitek [98] provides the analytic solution for this case, validating the 

simple needle model shown here. Based on results like these, it was determined that sharp points 

or features in a material can lead to highly non-uniform electric fields, increasing the magnitude 

of the force on a sphere due to the dependence on the electric field gradient seen in Eq. 30.  

Based on that work, and the model described above, this further study in COMSOL aimed 

to prove the effect that some local non-uniformities might have on bubble behavior in a channel 

similar to that used in the Section 4. Early in this computational work, a mesh was auto-generated 

by COMSOL and refined until no changes were seen in the solution.  

 

Figure 89: Visualization of mesh resolution in the domain, showing increased density in the 

regions of interest. 
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The mesh in Figure 89 is based on the model shown in Figure 86, with a domain large enough 

outside the area of interest to preclude any influence. The areas of increased mesh density represent 

the areas of interest in the model, the sharp geometric features. 

 A steady-state study is performed with these mesh parameters to study how an electric field 

behaves under those conditions. A surface plot is presented showing a “force” (based on Eq. 30) 

at any given point in a field that would be felt upon a hypothetical sphere. For simplicity, these 

spheres represent dielectric bubbles.  

 

Figure 90: Potential in the channel, scale in Volts. 
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Figure 90 shows the electric potential in the channel, assuming the top electrode is at 3kV and the 

bottom is ground, with a zero-charge boundary condition applied to the edges of the domain. In 

this visualization, the edges of the domain are not shown in order to better visualize the behavior 

of the electric field near the geometric features (fillets at the edge of the electrodes). X and Y 

coordinates given in meters, as shown on the sides of the domain. While the change in potential 

inside the channel is relatively linear (away from the glass), this changes at the corners of the 

channel, with the natural copper electrode filleting and the transition to the air and glass domain 

leading to a rapid change in the electric field (i.e. a large gradient). Using the Pohl approximation 

as given in [19] and Eq. 30, a map of the force on a given particle can be provided in the domain. 

This is shown in Figure 91. 
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Figure 91: Force felt on a particle under EHD (3kV). Electrodes and glass sides are labeled, with 

the fluid domain comprising the rest of the solution domain. 

Assuming 700m diameter particles, a relative buoyant force of 3N would be felt by a 

large vapor packet (i.e. sphere) on the side of the channel. From the figure above, a force of this 

magnitude would be felt by a bubble at a reasonable distance away from the channel wall, 

approximately one millimeter. These forces act to push a bubble away from either electrode, 

leading to the “centering” behavior of detached bubbles observed in Section 4.4.2. With a reduced 

applied voltage, the magnitude of the force felt by the bubble is much less, resulting in a bubble 
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that may not come to equilibrium in the center of the channel, but rather more towards the top 

electrode. This behavior was also observed experimentally. 

 

Figure 92: Force on a particle (1kV). 
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5. Conclusions & Future Work 

 While the study was unable to experimentally verify the efficacy of artificial nucleation 

sites, the information collected about bubble behavior in minichannels under the influence of an 

artificial electric field will be very important for future studies implementing these devices in real 

world applications. Several of the phenomena observed and characterized could be exploited to 

enhance nucleate boiling. Additionally, the objectives of determining how EHD can influence 

nucleating bubble growth and behavior, as well as the behavior of detached bubbles in an EHD-

enhanced minichannel heat transfer device were met. 

Overall, this study shows how EHD effects can be used to influence nucleate boiling in 

minichannels. EHD can influence bulk boiling behavior, which can be implemented in many 

devices. However, the unique challenges associated with the implementation of EHD boiling 

enhancement in minichannels requires an understanding of how individual bubbles behave while 

boiling, and not just overall heat flux from a heated surface to a fluid. In this study, Chapter 3 

serves to describe one approach to modeling EHD effects on bubble growth and detachment 

computationally, paving the way for future work to develop more accurate and complex models. 

Chapter 4 of this study guides future work by identifying important EHD related boiling 

phenomena, and some of the problems associated with building such devices. Together, these 

results can be used to continue studies on EHD enhanced nucleate boiling in minichannels. 

While it is difficult to quantify exactly how bubble detachment could improve heat flux directly 

(due to more accurate temperature measurements at the wall, or a more consistent input heat flux), 

the results of this study address some of the shortcomings of nucleate boiling in minichannels 

explored in Chapter 2. The effect of the field on already detached bubbles could lead to greatly 

improved boiling characteristics. By manipulating these already detached bubbles, the chance for 
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them to attach to another heated surface and continue to expand is greatly diminished. 

Additionally, this study serves as justification that EHD enhancement effects seen in pool boiling 

situations could also work under a constant cross flow, and in a constrained channel. 

The final results of this study suggest an ability for EHD to control boiling in minichannels, 

although more work should be done to characterize exactly how this would occur. In Chapter 3, 

the artificial nucleation site was found to influence bubble detachment. While this exact approach 

could not predict exact heat transfer rates, bubble growth rates, or detachment frequencies (in an 

absolute sense), the results are useful when comparing how EHD can impact bubble detachment 

parameters, and also would be useful in driving the design of nucleation sites. 

Some aspects of the experimental work (as they relate to the modeling work) were 

inconclusive, due to the difficulty in growing and detaching bubbles from artificial nucleation sites 

in particular. However, the results were positive in comparing bubble shapes under the influence 

of EHD, as the modeling predicted that bubbles would elongate. Additionally, results pertaining 

to detached bubble behavior in a minichannel under EHD were very interesting, and could be 

reliably applied to future devices that aim to control nucleate boiling.  

An additional positive result comes from some of the lessons learned in developing this model 

and experimental approach, as challenges faced in this study would be faced by any future attempt 

at developing an EHD-enhanced minichannel heat transfer device. The challenges faced in the 

modeling include combining three separate physics (electrostatics, fluid flow, and heat transfer). 

The model presented in this study could be used as a solid foundation for which to build a more 

realistic, accurate boiling model. The lessons learned in the experimental portion are more 

numerous, and are outlined below. 
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5.1. Lessons Learned 

Many of the techniques employed here in the construction of an EHD enhanced nucleate 

boiling device can be used to aid in the design of future experimental hardware. While sanding the 

copper surface seemed straightforward, care had to be taken to ensure that the surface was as 

smooth as possible. Figure 93 gives an example of the copper electrode surface pre-sanding and 

post-sanding at the finest grit available.  

 

 

Figure 93: Comparison of finished copper. 
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Counter-intuitively, the original procedure to sand, polish, and clean the copper led to a rougher 

surface finished. It is expected that the polishing compound used damaged the copper surface more 

than the final surface roughness after sanding.  

 Another important lesson learned from the experimental work was how to account for the 

difficulty in biasing the heated electrode. As outlined in Section 4.2.6, one of the biggest challenges 

in biasing the heated electrode is that the cabling used to power the heater grounds the electrode, 

and the high potential could damage any data-collection equipment connected to the electrode. 

The approach used in this study, an isolation amplifier, has several advantages over other 

approaches. Other approaches include using indirect means of heating the biased electrode, which 

could include a laser or other radiative heat source. In addition to being expensive, using these 

methods would not solve the practical problem of having biased electrodes near sensitive 

equipment. In general, the isolation amplifier worked exactly as indented. Should the applied 

potentials exceed its maximum limits, however, equipment was observed to be damaged.  

 In addition to experimental set-up lessons learned, the results suggested that future design 

of an EHD-enhanced nucleate boiling device should be careful in how the geometry is designed. 

Initially, bubbles were expected to only be influenced by the artificial sites, and the elongation 

they undergo in a uniform field. However, the behavior noted in Section 4.4.2 shows that the 

narrow width of the channel (relative to the length) gave rise to a non-uniform force, causing 

bubbles to “hover” in the middle of the channel. This was originally not expected, as the electric 

force was only considered in the Y-Z plane (Figure 85). In future designs, these effects would have 

to be considered, and channels should not only be modeled in two dimensions. While a two-

dimensional model was useful in characterizing bubble behavior, it would not be able to capture 

the nature of a real-world device.  
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5.2. Future Work 

Initially, based on the modeling work, it was anticipated that bubbles would be able to form on the 

artificial nucleation site and detach while under the influence of EHD. This particular test setup 

was unable to verify this conclusion from the modeling work, although it is able to characterize 

bubble elongation and influence on detached bubbles on the scale of the entire channel, which 

would be useful in the implementation of a real-world device. Future work can expand upon this, 

and use the techniques developed here to continue and validate the modeling work. Additionally, 

the experimental techniques used here are conducive to rapid geometric variation (channel heights, 

etc.), which could be used to further explore the parameter space. The results show that there is a 

significant effect on boiling in a minichannel with EHD with a cross flow, and more work should 

be done to further expand upon this.   
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8. Appendices 

8.1. Appendix A: System Design Background & Trial Details 

8.1.1. Isolation Amplifier Design Background 

The following information was used to help guide the voltage divider resistor choices used in the 

isolation amplifier box. Resistors are chosen to satisfy the specified voltage inputs, but also to 

ensure maximum battery life.  

Table 12: Isolation Amplifier Properties used in Calculation [82]. 

Parameter Test Conditions Min Typ Max Unit 

VDD1 high supply 

 

 4.5 5 5.5 V 

VDD2 low supply  2.7 5 5.5 

 

V 

𝐼𝐷𝐷1 high current   5.4 8 mA 

𝐼𝐷𝐷2 low current 4.5 <VDD2<5.5  4.4 7 mA 

𝑃𝐷𝐷1 high power diss.   27 44 mW 

𝑃𝐷𝐷1 low power diss. 4.5 <VDD2<5.5  22 38.5 mW 
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Figure 94: Voltage Divider Resistances ©C.R. Nave [99]. 

𝑉𝑜𝑢𝑡 = 𝑉1 (
𝐼𝑅2

𝐼(𝑅1 + 𝑅2)
) =

𝑉1𝑅2

𝑅1 + 𝑅2
 

𝑉𝑜𝑢𝑡 = 𝑉1 (
𝐼𝑅2

𝐼(𝑅1 + 𝑅2)
) = 𝑉1

(𝑅2||𝑅𝐿)

(𝑅1 + 𝑅2 ||𝑅𝐿) 
  

𝑅2||𝑅𝐿 =
𝑅2𝑅𝐿

𝑅2 + 𝑅𝐿
 

The specifications can be used to solve for the internal resistance 𝑅𝐿 (which is not given). Using 

“typical” conditions, the power dissipation in the AMC1100 will be 27mW with a potential of 5V. 

𝑃 =
𝑉2

𝑅𝐿
 

Solving for the internal resistance: 

𝑅𝐿 = 925.9𝛺 

Assuming this, and given that the voltage input into the divider will be 9V, we can solve for the 

two resistors in the voltage divider.  

Arbitrarily setting 𝑅1 = 550Ω (this corresponds to the maximum amount so that the “open circuit” 

does not exceed 5.5 with a small safety factor) 
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𝑉𝑜𝑢𝑡 = 𝑉1(𝑅2||𝑅𝐿)/ (𝑅1 + 𝑅2||𝑅𝐿)  

5[𝑉] = 9[𝑉] (𝑅2||𝑅𝐿)/(550𝛺 + 𝑅2||𝑅𝐿)  

687.5 =  (𝑅2||𝑅𝐿) 

𝑅2||𝑅𝐿 = 687.5 =
𝑅2𝑅𝐿

𝑅2 + 𝑅𝐿
 

𝑅2 = 2670.12𝛺 

𝑅1 and 𝑅2 are found. Given this, the potential for a theoretical “maximum case” can be calculated, 

given an input voltage of 9V and a chip loading corresponding to “maximum” conditions, which 

is 44mW and 5.5V (corresponding to a 𝑅𝐿 = 687.5) 

𝑅2||𝑅𝐿 =
𝑅2𝑅𝐿

𝑅2 + 𝑅𝐿
= 546.72 

𝑉𝑜𝑢𝑡 = 𝑉1(𝑅2||𝑅𝐿)/ (𝑅1 + 𝑅2||𝑅𝐿)  

𝑉𝑜𝑢𝑡 =  9[𝑉] (𝑅2||𝑅𝐿)/(550𝛺 + 𝑅2||𝑅𝐿)  

𝑉𝑜𝑢𝑡 = 4.488 

Still well within specifications. With these resistors, the total power consumed by the entire device 

can be found. The total resistance “seen” by the battery is a series of 𝑅1 and (𝑅2||𝑅𝐿), which is 

337.5Ω. 

𝑃 =
𝑉2

𝑅
 

𝑃 = 240[𝑚𝑊] 

Solving for the current, we can use the energy stored in the battery to find total battery life.  
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𝑃 = 𝐼2𝑅 

𝐼 = 26.67[𝑚𝐴] 

Given that the minimum AMC1100 input voltage is 4.5V, this corresponds to a 𝑉1 battery 

input of 8.1V. According to this plot, at a 100mA current (for a factor of safety), this means that 

the battery has an approximate life of 50mAh before dropping below that voltage. This would 

correspond to a battery life of around two hours continuous. Considering the device will only be 

powered on before high voltage events (lasting a few seconds at most), this should be acceptable. 

Realistically, the energizer has a total capacity of approximately 500mAh for a 40mA drain, which 

would mean that the capacity before dropping below 8.1V would be much less.  

For the low side: 

The specifications can be used to solve for the internal resistance 𝑅𝐿 (which is not given). Using 

“typical” conditions, the power dissipation in the AMC1100 will be 22mW with a potential of 5V. 

𝑃 =
𝑉2

𝑅𝐿
 

Solving for the internal resistance: 

𝑅𝐿 = 1136.36𝛺 

Assuming this, and given that the voltage input into the divider will be 9V, we can solve for the 

two resistors in the voltage divider.  

Arbitrarily setting 𝑅1 = 680Ω (this corresponds to the maximum amount so that the “open circuit” 

does not exceed 5.5 with a small safety factor) 

𝑉𝑜𝑢𝑡 = 𝑉1(𝑅2||𝑅𝐿)/ (𝑅1 + 𝑅2||𝑅𝐿)  
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5[𝑉] = 9[𝑉] (𝑅2||𝑅𝐿)/(680𝛺 + 𝑅2||𝑅𝐿)  

850 =  (𝑅2||𝑅𝐿) 

𝑅2||𝑅𝐿 = 850 =
𝑅2𝑅𝐿

𝑅2 + 𝑅𝐿
 

𝑅2 = 3373𝛺 

 

 

Figure 95: Schematic of Isolation Amplifier Circuit. 
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8.1.2. Table of Trials 

Trial Name EHD Polarity Fluid 

Temperature 

In [C] 

Wall 

Temperature 

[C] 

Test#1 Debug, no 

conditions 

recorded 

(white boxes)  

   

Test#2     

Test#3     

Test#4     

Test#5     

Test#6     

Test#7     

Test#8     

Test#9     

Test#10     

Test#11     

Test#12 Yes  46   

Test#13 No  46  

Test#14 No    

Test#15 Yes    

Test#16 No    



201 

 

Test#17 Yes    

Test#18 Yes    

Test#19     

Test#20     

Test#21     

Test#22     

Test#23     

Test#24     

Test#25     

Test#26     

Test#27     

Test#28     

Test#29     

Test#30     

Test#31     

Test#32     

Test#33     

Test#34     

Test#35 Yes Baseline 24.6 See Appendix 

8.1.4 

Test#36     

Test#37     

Test#38     
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Test#39     

Test#40     

Test#41     

Test#42     

Test#43     

Test#44     

Test#45     

Test#46     

Test#47     

Test#48     

Test#49     

Test#50     

Test#51     

Test#52     

Test#53     

Test#54     

Test#55     

Test#56     

Test#57 1000V, 2s 

linear ramp 

Baseline 24.6 See Appendix 

8.1.4 

Test#58 2000V, 2s 

linear ramp 

Baseline 24.6 See Appendix 

8.1.4 
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Test#59 4000V, 2s 

linear ramp 

Baseline 24.6 See Appendix 

8.1.4 

Test#60 1000V, 2s 

linear ramp 

Baseline 24.6 See Appendix 

8.1.4 

Test#61 2000V, 2s 

linear ramp 

Baseline 24.6 See Appendix 

8.1.4 

Test#62 4000V, 2s 

linear ramp 

Baseline 24.6 See Appendix 

8.1.4 

Test#63 1000V, 2s 

linear ramp 

Baseline 24.6 See Appendix 

8.1.4 

Test#64 2000V, 2s 

linear ramp 

Baseline 24.6 See Appendix 

8.1.4 

Test#65 4000V, 2s 

linear ramp 

Baseline 24.6 See Appendix 

8.1.4 

Test#66 1000V, 2s 

linear ramp 

Reversed 24.6 See Appendix 

8.1.4 

Test#67 2000V, 2s 

linear ramp 

Reversed 24.6 See Appendix 

8.1.4 

Test#68 4000V, 2s 

linear ramp 

Reversed 24.6 See Appendix 

8.1.4 

Test#69 1000V, 2s 

linear ramp 

Reversed 24.6 See Appendix 

8.1.4 
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Test#70 2000V, 2s 

linear ramp 

Reversed 24.6 See Appendix 

8.1.4 

Test#71 4000V, 2s 

linear ramp 

Reversed 24.6 See Appendix 

8.1.4 

Test#72 1000V, 2s 

linear ramp 

Reversed 24.6 See Appendix 

8.1.4 

Test#73 2000V, 2s 

linear ramp 

Reversed 24.6 See Appendix 

8.1.4 

Test#74 4000V, 2s 

linear ramp 

Reversed 24.6 See Appendix 

8.1.4 

Test#75 400V, 3s 

linear ramp 

Reversed 24.6 See Appendix 

8.1.4 
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8.1.3. LabVIEW VI  
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8.1.4. Selected Trial Test Conditions 

Within this study, a subset of all trials conducted were used for statistical analysis, or for snapshots 

to be presented visually. The full test conditions for all trials used in this manner are provided here 

(Trial#35, Trial#57, Trial#58, Trial#59, Trial#60, Trial#61, Trial#62, Trial#63, Trial#69). 

 

Figure 96: Test Conditions for Trial#35. 
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Figure 97: Test Conditions for Trial#57. 

 

Figure 98: Test Conditions for Trial#58. 
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Figure 99: Test Conditions for Trial#59. 

 

Figure 100: Test Conditions for Trial#60. 
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Figure 101: Test Conditions for Trial#61. 

 

Figure 102: Test Conditions for Trial#62. 
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Figure 103: Test Conditions for Trial#63. 

 

Figure 104: Test Conditions for Trial#69. 
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8.2. Appendix B: Debugging and Setup Validation 

 Initial tests were to verify the viability of the apparatus construction method, capturing images 

with a high speed camera, and ensuring that the heater can adequately bring the bottom electrode 

to a temperature enough to boil HFE-7100. The first tests of this system will be on a flat sheet of 

copper in order to ascertain how well the setup can capture bubble growth and departure in a small 

channel.  Initial tests did not include the use of the fluid pump or unheated entry length, instead 

corresponding to pool boiling in a constrained channel, with a relief hole for vapor. 

 Further tests ensure that the system is able to maintain such a large potential across both surfaces 

without arcing. (show current vs. potential) Floating the bottom electrode at high potentials 

required careful consideration. First, the isolation equipment must be tested to ensure that any 

components downstream of it would not be damaged, and that the output sensor voltage remains 

consistent with the input signal voltage.  While the AMC1100 was able to protect downstream 

components from transient overvoltages, there was no guarantee that floating the thermocouple at 

a high potential would yield the same measurement result. As a test for a constant voltage source, 

a AA battery was used with a voltage divider consisting of 1.5kΩ and 150Ω resistors. The resulting 

144mV supply voltage is passed through the isolation amplifier device, where an expected gain of 

8 yields an output of 1.129V (corresponding to a “calculated” input voltage of 141.1mV corrected 

for gain) for an error of 2.0%. Next, the AA battery is floated at increasingly higher temperatures 

to ensure the output does not change, shown in Figure 105. 
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Figure 105: Verification of isolation amplifier effectiveness. 

At its most severe swing, the output voltage changes by 0.001mV, a 0.09% difference when 

compared to the magnitude of measured output, which lends confidence to the accuracy of the 

isolation amplifier device both under the application of an external electric field, and when 

subjected to repeat tests.   
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8.3. Appendix C: MATLAB Scripts Used in Analysis 

8.3.1. BubbleCounter.m 

%% Image Processing Automation 
%This script allows for manual bubble counting within a video 

  
clc 
clear 
close all 
%% Add path of interest 
%Points script to location where a given case's discretized frames are 
%stored 
path = '1466641636'; 
% %Add the path to the current folder 
addpath(path) 

  

  
%% State frames of interest 
dialog = sprintf('Are the Selected frames with or without EHD?'); 
button = questdlg(dialog, 'Select Case', 'Without EHD', 'With 

EHD','Cancel','Cancel'); 
if strcmpi(button, 'With EHD') 
    EHD = 'EHDon'; 
else if strcmpi(button, 'Without EHD') 
        EHD = 'EHDoff'; 
    end 
end 
%Choose the frame range in which to perform analysis 
%Typically, do one set pre-EHD, and one post-EHD 
%Frames chosen should not include any ramping 
FrameStart = 5001; 
FrameEnd = 6501; 
%Resolution in which to display and analyze images 
spacing = 30; 

  
FrameVector = FrameStart+spacing:spacing:FrameEnd 

  
WidthVector = zeros(1,FrameEnd-FrameStart) 

  
for j = 1:length(FrameVector) 
    if j==1 
        fstart = FrameStart; 
    else 
        fstart = FrameVector(j-1) 
    end 
    fend = FrameVector(j) 
    numfiles = fend-fstart; 

     
    % Only copy frame(fstart) to frame(fend) files to a temporary directory 
    %Crease a temporary directory 
    mkdir('temp') 
    addpath('temp') 
    %"Base" filename in which to construct image filenames 
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    filebase = 'frame'; 
    filenum = fstart; 

     

     
    %% Copy range of files from directory to the temporary folder 
    %assign a string number 
    number =  num2str(filenum); 
    %Append string number to filename 
    filename = strcat(path,'/',filebase,number,'.jpg'); 
    %Copy file to temporary directory 
    copyfile(filename,'temp') 

     

     

     
    %% Manual image processing on each 
    cd('temp') 
%Display each image (as dictated by the "spacing" variable, and count the       
%number of markers representing nucleating bubbles. Each bubble can and may 
%be counted twice, as taking a large number of samples will average out 
%bubbles nucleating and departing 

     
    %Shorten filename (because temp directory is the root) 
    filename(1:11) = []; 
    imshow(filename) 
    hold on 
    counter = 0; 

     
    dialog = sprintf('Select currently nucleating bubbles. Hit "Enter" when 

done'); 
    title(dialog, 'FontSize', 14); 
    button = questdlg(dialog, 'Continue?', 'OK', 'Cancel', 'OK'); 
    drawnow;    % Refresh screen to get rid of dialog box remnants. 
    if strcmpi(button, 'Cancel') 
        return; 
    end 

     
    while counter < 100 %automatically stops for too many bubbles 
        % User clicks one point.  If no point is selected, loop will end 

         
        [bubblex,bubbley] = ginput(1); 
        if isempty(bubblex) 
            break; 
        end 

         
        % Put a cross over the point. 
        plot(bubblex, bubbley, 'g+', 'MarkerSize', 24, 'LineWidth', 3); 
        % Increment the count. 
        counter = counter + 1 

         
    end 

     

     
    numbubbles(j) = counter 
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    cd .. 

     
end 

  
%% Post Processing 
%Save data to a figure 

  
clearvars -except EHD WidthVector j FrameStart FrameEnd spacing FrameVector 

path numbubbles 
%% Delete temporary directory 
%Delete folder and all contents 
rmdir('temp','s') 
%Refresh MATLAB to ensure file can be created again 
rehash() 

  

  
exportfilename = strcat(path,'_',EHD,'.txt') 
T = table(numbubbles) 
writetable(T,exportfilename) 

  
figure 
histogram(numbubbles,10) 
xlabel('Number of Nucleation Sites') 
ylabel('Frequency') 

  

 

8.3.2. BubbleCounter_wPosition.m 

%% Image Processing Automation 
%This script allows for manual bubble counting within a video 

  
clc 
clear 
close all 
%% Add path of interest 
%Points script to location where a given case's discretized frames are 
%stored 
path = '1466641070'; 
% %Add the path to the current folder 
addpath(path) 

  

  
%% State frames of interest 
dialog = sprintf('Are the Selected frames with or without EHD?'); 
button = questdlg(dialog, 'Select Case', 'Without EHD', 'With 

EHD','Cancel','Cancel'); 
if strcmpi(button, 'With EHD') 
    EHD = 'EHDon'; 
else if strcmpi(button, 'Without EHD') 
        EHD = 'EHDoff'; 
    end 
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end 
%Choose the frame range in which to perform analysis 
%Typically, do one set pre-EHD, and one post-EHD 
%Frames chosen should not include any ramping 
FrameStart = 5001; 
FrameEnd = 6501; 
%Resolution in which to display and analyze images. Spacing allows for the 
%above range to be broken up into smaller ranges 
spacing = 100; 

  
%Vecor containing specifc frame counts 
FrameVector = FrameStart+spacing:spacing:FrameEnd 

  
%Loop through each smaller frame range, as defined by the spacing variable 
for j = 1:length(FrameVector) 
    %Determine the frame in which to start analysis 
    if j==1 
        fstart = FrameStart; 
    else 
        fstart = FrameVector(j-1) 
    end 
    fend = FrameVector(j) 
    numfiles = fend-fstart; 

     
    % Only copy frame(fstart) to frame(fend) files to a temporary directory 
    %Crease a temporary directory 
    mkdir('temp') 
    addpath('temp') 
    %"Base" filename in which to construct image filenames 
    filebase = 'frame'; 
    filenum = fstart; 

     

     
    %% Copy range of files from directory to the temporary folder 
    %assign a string number 
    number =  num2str(filenum); 
    %Append string number to filename 
    filename = strcat(path,'/',filebase,number,'.jpg'); 
    %Copy file to temporary directory 
    copyfile(filename,'temp') 

      

     
    %% Manual image processing on each 
    cd('temp') 
    %Display each image (as dictated by the "spacing" variable, and count the 
    %number of markers representing nucleating bubbles. Each bubble can and may 
    %be counted twice, as taking a large number of samples will average out 
    %bubbles nucleating and departing 

     
    %Shorten filename (because temp directory is the root) 
    filename(1:11) = []; 
    imshow(filename) 
    hold on 
    counter = 0; 
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    %Dialog with instructions.  
    dialog = sprintf('Select "floating" bubbles. Hit "Enter" when done'); 
    title(dialog, 'FontSize', 14); 
    button = questdlg(dialog, 'Continue?', 'OK', 'Cancel', 'OK'); 
    drawnow;    % Refresh screen to get rid of dialog box remnants. 
    if strcmpi(button, 'Cancel') 
        return; 
    end 

     
    while counter < 100 %automatically stops for too many bubbles 
        % User clicks one point.  If no point is selected, loop will end        
        [bubblex,bubbley] = ginput(1); 
        if isempty(bubblex) 
            break; 
        end 

         
        % Put a cross over the point. 
        plot(bubblex, bubbley, 'g+', 'MarkerSize', 24, 'LineWidth', 3); 
        % Increment the count. 
        counter = counter + 1 

         
        %% Plot bubble locations as a function of the current frame and the 

counter number 

               
        posarray(counter,:,j) = [bubblex bubbley] 
    end  

     
    numbubbles(j) = counter 

     
    cd .. 

     
end 

  
%% Post Processing 
%Save data to a figure 

  
clearvars -except posarray EHD WidthVector j FrameStart FrameEnd spacing 

FrameVector path numbubbles 
%% Delete temporary directory 
%Delete folder and all contents 
rmdir('temp','s') 
%Refresh MATLAB to ensure file can be created again 
rehash() 

  

  
%% Plot the average height of each bubble (erase zero entries) 
catarray = posarray(:,:,1) 
exportfilename1 = strcat(path,'hoverposition_',EHD,'.txt') 
for k = 2:length(posarray(1,1,:)) 
    catarray = cat(2,catarray,posarray(:,:,k)) 
end 
T = table(catarray) 
writetable(T,exportfilename1) 
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heights = posarray(:,2,:) 
heights(heights==0) = [] 
numentries = length(heights) 
height_stdev = std(heights) 
averageheight = mean(heights) 

  
data = [averageheight,height_stdev] 
exportfilename = strcat(path,'heights_',EHD,'.txt') 
T1 = table(data) 
writetable(T1,exportfilename) 
  

8.3.3. BubbleWidth.m 

%% Width of bubbles at detachment 
%This script will allow the user to identify bubbles just before 
%detachment, and then plot the widths and heights of each bubble at that moment 

  
clc 
clear 
close all 
%% Add path of interest 
%Points script to location where a given case's discretized frames are 
%stored 
 path = '1466641636'; 
% %Add the path to the current folder 
 addpath(path) 

  

  
%% State frames of interest 
dialog = sprintf('Are the Selected frames with or without EHD?'); 
button = questdlg(dialog, 'Select Case', 'Without EHD', 'With 

EHD','Cancel','Cancel'); 
if strcmpi(button, 'With EHD') 
    EHD = 'EHDon'; 
else if strcmpi(button, 'Without EHD') 
        EHD = 'EHDoff'; 
    end 
end 
%Choose the frame range in which to perform analysis 
%Typically, do one set pre-EHD, and one post-EHD 
%Frames chosen should not include any ramping 
FrameStart = 5001; 
FrameEnd = 6501; 
%Resolution in which to display and analyze images 
spacing = 100; 

  
FrameVector = FrameStart+spacing:spacing:FrameEnd 

  
WidthVector = zeros(1,FrameEnd-FrameStart) 

  
%initialize the number counter for each bubble 
    numbubble = 1 
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%% Select 4 points per bubble, going clockwise from the base 
for j = 1:length(FrameVector) %j is the number of frames 
    if j==1 
        fstart = FrameStart; 
    else 
        fstart = FrameVector(j-1) 
    end 
    fend = FrameVector(j) 
    numfiles = fend-fstart; 

     

     

     

     
    % Only copy frame(fstart) to frame(fend) files to a temporary directory 
    %Crease a temporary directory 
    mkdir('temp') 
    addpath('temp') 
    %"Base" filename in which to construct image filenames 
    filebase = 'frame'; 
    filenum = fstart; 

     

     
    %% Copy range of files from directory to the temporary folder 
    %assign a string number 
    number =  num2str(filenum); 
    %Append string number to filename 
    filename = strcat(path,'/',filebase,number,'.jpg'); 
    %Copy file to temporary directory 
    copyfile(filename,'temp') 

     

     

     
    %% Manual image processing on each 
    cd('temp') 
%Display each image (as dictated by the "spacing" variable, and count the 
%number of markers representing nucleating bubbles. Each bubble can and may 
%be counted twice, as taking a large number of samples will average out 
%bubbles nucleating and departing 

     
    %Shorten filename (because temp directory is the root) 
    filename(1:11) = []; 
    imshow(filename) 
    hold on 
    counter = 0; 

     
    dialog = sprintf('Select currently nucleating bubbles. Hit "Enter" when 

done'); 
    title(dialog, 'FontSize', 14); 
    button = questdlg(dialog, 'Continue?', 'OK', 'Cancel', 'OK'); 
    drawnow;    % Refresh screen to get rid of dialog box remnants. 
    if strcmpi(button, 'Cancel') 
        return; 
    end 

     



220 

 

    while counter < 100 %automatically stops for too many bubbles 
        % User clicks one point.  If no point is selected, loop will end 

         
        [bubblex,bubbley] = ginput(1); 
        if isempty(bubblex) 
            break; 
        end 

         
        % Put a cross over the point. 
        plot(bubblex, bubbley, 'g+', 'MarkerSize', 24, 'LineWidth', 3); 
        % Increment the count   

         
        counter = counter + 1 

         
        posarray(counter,:,j) = [bubblex bubbley] 
        %if 4 locations have been counted, save as one bubble coordinates 

         
        if mod(counter,4)==0 
            bubblewidth= posarray(4,1,j) - posarray(2,1,j) 
            bubbleheight = posarray(1,2,j) - posarray(3,2,j) 
            bubblestats(numbubble,:) = [bubblewidth bubbleheight] ; %save the 

height and width in each column, with each row representing a new bubble 
            numbubble = numbubble + 1 
            counter = 0 ; %reset counter 
            clear posarray  
        end 

         

         
    end 

         
    numbubbles(j) = counter 

         
    cd .. 

     
end 

  
%% Post Processing 
%Save data to a figure 

  

  
clearvars -except posarray bubblestats numbubble EHD WidthVector j FrameStart 

FrameEnd spacing FrameVector path numbubbles 
%% Delete temporary directory 
%Delete folder and all contents 
rmdir('temp','s') 
%Refresh MATLAB to ensure file can be created again 
rehash() 

  

  

  
exportfilename = strcat(path,'_','bubbledimensions',EHD,'.txt') 
T = table(bubblestats) 
writetable(T,exportfilename) 
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figure 
histogram(numbubbles,10) 
xlabel('Number of Nucleation Sites') 
ylabel('Frequency') 

  

8.3.4. Frequency 

 
%% Frequency 

%This script automates the statistical analysis of bubble departure frequency 

  
clc 
clear 
close all 
%% Add path of interest 
%Points script to location where a given case's discretized frames are 
%stored 
path = '1466641636'; 
%Add the path to the current folder 
addpath(path) 

  

  
%% State frames of interest 
%Choose the frame range in which to perform analysis 
FrameStart = 410; 
FrameEnd = 810; 
spacing = 400; 

  
FrameVector = FrameStart+spacing:spacing:FrameEnd 

  
WidthVector = zeros(1,FrameEnd-FrameStart) 

  
for j = 1:length(FrameVector) 
if j==1 
fstart = FrameStart; 
else 
    fstart = FrameVector(j-1) 
end 
fend = FrameVector(j) 
numfiles = fend-fstart; 

  

  

  

  
% Only copy frame(fstart) to frame(fend) files to a temporary directory 
%Crease a temporary directory 
mkdir('temp') 
addpath('temp') 
%"Base" filename in which to construct image filenames 
filebase = 'frame'; 
 filenum = fstart; 
%Copy range of files from directory to the temporary folder 
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i=1 
movcount = 1 
for i=1:numfiles+1 
    %assign a string number 
    number =  num2str(filenum); 
    %Append string number to filename 
    filename = strcat(path,'/',filebase,number,'.jpg'); 

     
    %Copy file to temporary directory 
    copyfile(filename,'temp') 

     
    %% Crop images if desired (Set Control Volume) 
    I = imread(filename); 
    tempfilename = strcat('temp/',filebase,num2str(filenum),'.jpg'); 
    delete(tempfilename) 
    if i == 1 %open crop tool 
        [I2,rect] = imcrop(I); 
        imwrite(I2,tempfilename); 
    else 
        I2 = imcrop(I,rect); 
        K2 = rangefilt(I2); 
        imwrite(K2,tempfilename); 
        imshow(K2) 

         
        M(movcount) = getframe; 

           
        %Vectors to define intensity line 
        imsize = size(K2); 

         
        hi = imsize(1); 
        wi = imsize(2); 

         
        Intens = improfile(K2,[0 wi],[hi*.2 hi*.2]); 
        maxIntens(movcount) = max(max(Intens)); 
        movcount = movcount + 1; 
        clear Intens 
    end 
         %Count to next file number 
    filenum = filenum + 1; 
end 

  
%% Compute Spacing 

  
figure 
framerate = 1492; %fps 
times  = linspace(0,length(maxIntens),length(maxIntens)) / framerate * 1000 
plot(times,maxIntens) 
hold on 
findpeaks(maxIntens,times,'MinPeakProminence',40) 
xlabel('Time [ms]') 
ylabel('Intensity') 
axis([0 max(times) 0 max(maxIntens)*1.1]) 

  

  
[pks locs] = findpeaks(maxIntens,'MinPeakProminence',40); 
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framereate = 1492; %fps 
timespacing = diff(locs/1492); %seconds, distance between detachment events 
meantime = (mean(timespacing)) * 1000 
freq = 1/(mean(timespacing)) 
timeserror = std(timespacing) * 1000 
freqerror = 1/std(timespacing) 
%% Post-Processing 
firstpoint = ans(1,:) 
secondpoint = ans(2,:) 

  
width = secondpoint - firstpoint 

  
WidthVector(1,j*spacing-(spacing-1):j*spacing) = width 

  
clearvars -except WidthVector j FrameStart FrameEnd spacing FrameVector path 
%% Delete temporary directory 
%Change directory up one level 
cd .. 

  
%Delete folder and all contents 
rmdir('temp','s') 
%Refresh MATLAB to ensure file can be created again 
rehash() 

  
end 

  
Frames = FrameStart:1:FrameEnd-1 

  

  
figure 
plot(Frames,WidthVector) 
xlabel('Frame Number') 
ylabel('Width [px]') 
axis([FrameStart FrameEnd 20 45]) 

  

 

 

 

 

 


