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Abstract 

In the United States, Traumatic Brain Injury (TBI) has become a major cause of death and 

disability. 56,800 deaths were reported due to TBI in the year 2014. Violent blow, sudden jerk to 

the head or the body are some causes of TBI. Methods to detect TBI at an early stage can help 

reduce emergency visits and even create life-saving experiences. Imaging tests such as 

Computerized Tomography (CT), Magnetic resonance imaging (MRI) and Glasgow Coma Scale 

(GCS) have been widely utilized by doctors and physicians to detect TBI. However, these tests 

often mis-diagnose the injury and are costly as well. Moreover, these tests require active user 

involvement and frequent clinic visits. Smartphones are now ubiquitously owned with powerful 

in-built sensors, making them useful for continuous health monitoring.  

This thesis focuses of using smartphone sensors for detecting TBI at the onset of injury. A 

lot of previous work has focused on understanding TBI by extracting the patterns obtained from 

smartphone sensors. In this thesis, three approaches to understand how the patterns of TBI differ 

from that of Non-TBI users are compared, namely; i) computing hand-crafted features on raw 

sensor data; ii) computing hand-crafted features on pre-processed sensor data; iii) using auto-

encoder based approach using location, gait and balance. The location patterns extracted have been 

taken from the work of Mirco Musolesi. 6 location features, 9 gait and 4 balance statistical features 

were extracted from the location and accelerometer sensor data using different segmentation 

methods. These features were then normalized and classified using machine learning algorithms. 

Hand-crafted feature extraction on raw-sensor data gave the best results on 3rd day - 24 hours 

window size with XGBoost having Sensitivity as 0.889 and Specificity of 1.  For the second 

approach, the best results were obtained using 50% overlap with Random Forest having Sensitivity 

as 0.667 and Specificity of 1. For the auto-encoder based approach, Random Forest performed the 

best on 2nd day with 12 hours of window-size having Sensitivity as 0.778 and Specificity of 0.959. 

Keywords: Mobile Health, Machine learning, Traumatic Brain Injury (TBI) 
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Chapter 1 

Introduction 

From 2006 – 2014, the number of hospitalizations and deaths caused due to Traumatic Brain Injury 

(TBI) have increased by 53%. In 2013, United States faced approximately 2.87 million TBI 

Emergency Department Visits, Hospitalization and Deaths [1]. Based on these numbers, every 

American has more than 1:160 chance of experiencing a Traumatic Brain Injury each year [2]. Of 

the various principal mechanisms of injury, falls, being struck by or against an object and motor 

vehicle crashes, are accounted as the majority causes for TBI among all age groups. Approximately 

47% of the injuries were caused due to a fall and it was observed to be the major cause for young 

children and adults over the age of 65. 21% of the injuries were caused due to sports while 15% 

were caused due to blunt force trauma, 14% accounted for car accidents while 9% due to violent 

physical assaults [2]. 

 

1.1 Effects of TBI  

Traumatic Brain Injury (TBI) - is caused due to a sudden jerk to the head which eventually causes 

damage to parts of the brain [1]. Based on the impact, there are three levels of TBI injury: Mild, 

Moderate and Severe. Concussion is a form of mild TBI and constitutes 75% of TBIs that occur 

each year. Symptoms of mild TBI include headache, confusion, blurred visions, and behavioral 

changes; while that of moderate and severe TBI include vomiting, nausea, slurred speech, 

weakness in legs and arms followed by problems with cognitive abilities [3]. Further, Table 1 [4] 

depicts how Healthcare providers rank TBI based on a person’s level of consciousness and 

memory level. 

 Falls being the major cause of brain injury, 81% of TBI related emergency visits were made 

by persons with age 65 or above [5]. This could be because the senior citizens have limited motor 

ability and poor physical balance. Further, some adults live unaccompanied which leads to the 

inability of seeking immediate medical care. Continuous monitoring of movement for such adults 

can help to provide care instantly while also creating life-saving experiences. 
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Table 1: Classification into Mild, Moderate and Sever TBI 

Mild TBI Moderate TBI Sever TBI 

Conscious or unconscious for 

less than 30 mins 

Unconscious for more than 30 

mins but less than 24 hours 

Unconscious for more than 2 

hours 

Memory loss for less than 24 

hours 

Memory loss from 24 hours to 

7 days 

Memory loss for more than 7 

days 

 

 

1.2 Diagnosing TBI 

Healthcare providers use different tests and measures to diagnose TBI. There is no singular 

significant test that detects TBI and hence several tests are performed and used together to diagnose 

TBI. Apart from the tests, healthcare workers also ask a series of questions that help them assess 

TBI patient’s brain and body function. Below are few of the tests performed by doctors and 

physicians to diagnose TBI: 

1.2.1   Imaging Tests: 

Computed Axial Tomography (CAT or CT): This scan produces cross-sectional pictures 

of the 3-D brain images. This method shows the brain’s density and abnormalities such 

as swelling, bleeds and skull fractures [6]. 

 

Magnetic Resonance Imaging (MRI): This test uses radio waves which makes it more 

sensitive to provide in-depth details. This test in usually performed in Emergency 

Department during the initial treatment after a brain injury [6]. Figure 1 shows the MRI 

of a 66-year-old male after a motor vehicle accident. 
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Figure 1: MRI image of 66-year male after accident showing diffusion on the left-side of the 

brain [7] 

 

Computed Tomography Angiography (CTA): This process provides images of blood 

vessels in the brain and the body to show abnormalities and blockages [6]. 

 

X-ray: This imaging test allows to locate skull fractures [6]. 

 

Electroencephalogram (EEG): This test measures the electrical activity in a person’s 

brain to determine brain activity and detect any suspected seizer of brain activities. Figure 

2 shows the EEG of the 67-year-old man with epileptic seizures who did not remember 

his occurrence of head trauma. 
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Figure 2: EEG of a 67-year man with seizures [8] 

      

1.2.2   Glasgow Coma Scale (GCS): 

This is a brief assessment that helps in determining the next steps to be taken in the 

individual’s care [9]. It provides a way to measure a person’s functioning in three areas: 

 

Ability to speak (V): It measures the ability of the person to speak in terms of speaking 

normally, speaking in a way that does not make sense or cannot speak at all. 

 

Ability to open eyes (E): This measures if a person is able to open his/her eyes or not. 
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Ability to move (M): This measures the ability of the person to move his/her arm 

normally or in response to pain. 

 

 Table 2 shows the GCS questions that are used collectively to make decision and 

monitor a patient’s progress and Table 3 shows the GCS score range as a measure to 

predict the level of brain injury. 

 

Table 2: GCS questions used for evaluating TBI 

(V) Verbal Response (E) Eye Opening (M) Motor Response 

(5) Oriented & converses (4) Natural (6) Follows commands 

(4) Disoriented & converses (3) To voice (5) Localizes to pain 

(3) Inappropriate words (2) To pain (4) Withdrawal to pain 

(2) Incomprehensible 

sounds 

(1) No response (3) Decorticate 

(1) No response  (2) Decerebrate 

  (1) No response 

 

 

Table 3: GCS Score to determine level of injury 

GCS Score Level of Injury 

13 to 15 Mild TBI 

9 to 12 Moderate TBI 

Less than 8 Severe TBI 
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1.3 Problems with Manual Assessment 

Cognitive, emotional, behavioral, and physical impairments are common in TBI patients, however 

in the case of mild TBI, these symptoms are more subtle and less often recognized [10]. Studies 

have shown that only 10% of patients having mild TBI have positive finding on CT [11].  Further, 

these tests are so expensive that even reduction by 10% may yield more than $10 million savings 

each year [12]. Though MRI perform 10 – 20% better than CT [13], there is no evidence of the 

test performing better than CT in terms of mild injury. As majority of the ED visits of TBI cases 

represent mild level i.e. concussion, it is important to assess them accurately to identify cases at 

major risk of complications versus those that can be safely discharged.  

 

1.4 Opportunity: Smartphone to Assess TBI  

Smartphones being ubiquitous, their computing power has paved way to perform various 

operations such as monitoring health and fitness. Modern smartphones have sensors such as GPS, 

accelerometer, gyroscope, location, etc. These sensors provide continuous and real-time based 

human activity identification and assessment which can help categorize simple and complex 

activities. Further, these sensors have low power consumption and higher throughput. The data 

collected from these smartphones when processed, tend to accurately project the behavior of an 

individual which can help the machine learning model learn patterns and draw conclusions. For 

example, using microphone and recording the conversations, an individual’s stress level or 

emotional state can be deduced [14]. Additionally, accelerometer can provide information related 

to a person’s physical activity and movement during sleep. GPS can provide information about the 

location which gives context into variety of activities. Another study captures the accelerometer 

data and facial images to develop a smartphone-based posture monitoring application [15]. 

The symptoms exhibited by a TBI patient are quite different and can be easily distinguished 

with those of Non-TBI patients. For example, a TBI patient has sensitivity to light and trouble 

concentrating which draws the probabilities of reduced screen usage. A patient’s cognitive abilities 

like thinking, reasoning also get affected due to brain injury [16]. Depression being a common 

problem after TBI, nearly two-thirds are affected by it within seven years of injury [17]. The 

symptoms of depression include moving slowly, feeling restless or agitated. Enough evidence 
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exists to prove that location sensors can predict depression symptom severity [18, 19, 20]. This is 

because the features extracted from the location sensor provide behavioral markers that are 

strongly related to the depression symptom severity. 

Gait Problems caused by TBI:  People with TBI have problems with walking, and they 

walk slower than Non-TBI patients. Walking requires multi-level coordination between the system 

and due to the brain injury, the co-ordination system of the body is affected. For instance, using 

GAITRite [27], the authors were successfully able to identify abnormalities and proved that TBI 

patients moved slower than healthy ones. Since gait has an ability to assess the way humans walk, 

the features extracted using gait analysis can help understand conditions affecting their ability to 

walk. Smartphone accelerometers having a strong ability to detect motion, features extracted from 

this sensor helps in identifying TBI patterns. 

Balance Problems caused by TBI: TBI patients have problems with balance due to 

dizziness and lightheadedness. The modified Clinical Test of Sensory Integration and Balance 

(mCTSIB) [30] was able to justify that TBI patients have more sway than healthy ones. 

Smartphone sensors being well capable of identifying falls, one can exploit various smartphone 

sensors to identify patterns of TBI which differ from Non-TBI.  

Depression caused by TBI: Depression is a common problem caused by TBI [21]. Location 

sensors have the ability to capture the GPS positions which can be used to detect the person’s 

location traces and the amount of time spend at different locations. Mood-Traces [21] has been 

correctly able to distinguish depression patterns and has also depicted the potential to identify 

future possibilities of depression. Since, a TBI person shows symptoms of depression like spending 

more time at home and avoiding crowded places, computing features from location data can help 

understand the patterns of depression which is directly linked to TBI. 

Figure 3 shows the general smartphone-based solution that couples smartphone sensors 

with survey-based human participation. The solution consists of passive sensor data collection 

along with in-app questionnaires where the participants submit their symptoms along with the date 

of head injury. This data is then stored into a secure cloud storage from which the features are 

computed and fed to the machine learning pipeline. 

Such a solution can be deployed at various medical centers, sports academies to get more 

insights into the behavioral changes and symptoms faced by a TBI patient. For example, with this 

solution, nurses can monitor a large team of soldiers or civilian patients. As mild TBI is difficult 
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to diagnose, there is a possibility of athletes’ first brain injury getting unnoticed. If no proper 

treatment is received and the athlete gets involved in another head injury, complexity of the case 

increases leading to extremes such as death. In such cases, this mobile solution will help in proper 

monitoring and eventually assist in getting the right aid. 

 

 

Figure 3: General Smartphone-based Solution for TBI detection 

 

1.5 Thesis Goal 

The objective of this thesis is to compare various approaches by extracting location and balance 

patterns along with performing gait analysis. The main contributions of the research are as follows: 

• Explore location features – to examine functional mobility levels and outdoor activity 

of TBI population with the Non-TBI group. 

 

• Explore Gait and Balance features – to examine the motion and balance of TBI 

population with the Non-TBI group.  
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• Finding correlation between TBI and depression – Prior work focuses on location, gait 

and balance patterns to identify depression. Also, since the symptoms depicted by TBI 

population is like those in depression, extend the same set of features to detect TBI 

patterns. 

 

• Comparing various feature extraction approaches – Compare three feature extraction 

approaches, namely, raw sensor data, pre-processed sensor data and autoencoder based 

approach to identify pattern of TBI. 

 

• Running Models – Synthesize Machine Learning and Deep Learning based 

classification to help distinguish smartphone users with TBI. 

 

1.6 Thesis Approach 

The approach consists of using two datasets with total of 23 TBI instances, who have responded 

to various survey questions on daily and weekly basis. Moreover, these responses consist of injury 

date along with sensor data for several days. Here, TBI instances are those who have been in an 

accident or reported an injury to their head and have been diagnosed with TBI by a professional 

during the length of the study.  

Further, to perform accurate classification and identification of patterns, 179 Non-TBI 

users are chosen. Here, Non-TBI users are those who have not reported to be in an accident or had 

a head injury during the length of the study.  

The technique comprises of assessing different feature extraction methods to predict TBI 

as soon as possible from the date of injury. Prediction is achieved by comparing the patterns of 

Non-TBI users and how they differ from those of TBI users. Here, the comparison is mainly based 

on the below three approaches: 

 

i. Performing manual feature extraction on raw sensor data 

 

ii. Performing manual feature extraction with pre-processing on the sensor data 
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iii. Creating a representation of the sensor data 

 

 

1.7   Summary of Prior Work & Novelty of Thesis 

Approach 

As of today, TBI is a clinical testing and hence no single definitive test can confirm its diagnosis 

[21]. CT Scans and MRI are the most common tests to diagnose it. However, the results of these 

tests highly depend on the gap between the injury occurred and test performed. Further, these tests 

are quite unsuccessful in case of mild TBI wherein a patient is diagnosed to be normal. 

Additionally, these tests take longer to predict and are not affordable to everyone. To address these 

issues, sensors can be used to detect TBI at an early stage.  

As cognitive abilities of patients get affected post brain injury, various studies have 

employed the use of smartphones to assess these abilities of TBI patients by quantifying the results 

[22]. Few such techniques include measuring Pupillary Light Reflex (PLR) [23] and using 

smartphone with calendar to inspect effectiveness of a prospective memory aid [24]. However, the 

results obtained are not promising and do not provide enough guidance to the clinical decisions. 

Further, such work also does not take into consideration the inbuilt sensors of the smartphones.  

Another set of studies focuses on using the smartphone sensors such as location with an 

aim to extract patterns such as distance travelled and radius of gyration [18, 26] to identify 

relationship between location sensor data and other illnesses. Nonetheless, they focus on applying 

these patterns to flu or depression as opposed to identifying the patterns of TBI. 

As TBI patients have difficulty with walking and problem maintaining their balance, gait 

and balance patterns have previously been used to understand the variations in TBI patients from 

those of Non-TBI users. Few of those instances include GAITRite; which examines dynamic 

stability by measuring spatial and temporal variability of foot placement [26],  3GDA; that 

evaluates gait disorder by accurately measuring the joint moment  [27].  However, they are done 

in a proctored manner rather than from periodic capturing of sensor data. 

 

 



11 
 

1.8 Main Contributions 

Since, the approach consists of using the inbuilt smartphone sensors such as location and 

accelerometer, the idea is to extract features from these sensors and feed it to a machine learning 

model with an aim to detect TBI at the earliest from the date of injury. Thus, the main contributions 

of this thesis are as follows: 

• Approach I – Creating hand-crafted features from raw sensor data, extract location, 

balance, and gait patterns. 

 

• Approach II – Creating hand-crafted features by performing different types of pre-

processing to extract location, balance, and gait patterns. 

 

• Approach III – Using autoencoders for automatically extracting location patterns from the 

raw input data. To this representation, merge the statistical features of balance and gait 

patterns. 

 

• For each of the above feature extraction approaches, create Machine Learning and Deep 

Learning models that help distinguish TBI patterns from those of Non-TBI. 

 

• Compare the above three approaches; Approach I, Approach II and Approach III, to find 

a solution which is optimal. 

 

1.9   Roadmap 

The following section of this thesis consists of: (1) Related work that discusses specific techniques 

of other work along with the main results/findings. (2) Methodology that presents the hypotheses 

along with experimental conditions and tools used. (3) Evaluation and Results that describe the 

evaluation of the solution coupled with the metrics. (4) Discussion that will talk about learning 

and main take-aways. (5) Conclusion and Future Work that will summarize the main work and 

achievements along with future scope. 
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Chapter 2 

Related Work 

 Prior research on detecting TBI using traditional approaches and smartphones is reviewed 

here with their corresponding findings. 

 

2.1 mHealth 

Shannon B. Juengst and Tessa Hart [28] describe mHealth as the use of mobile communications 

to analyze and treat health conditions. As smartphones are ubiquitous and have wide availability 

of applications, they are used by majority of the individuals. The current healthcare services for 

TBI are limited to emergency visits whereas there is a need for interventions even during the post 

TBI stage. Since, the maintenance of positive health behaviors and managing chronic symptoms 

is critically important post TBI, the author examines the use of mHealth in TBI population to 

identify its use in intervention.  

 The author covered 12 distinct mHealth interventions in 15 distinct studies. Articles were 

identified from multiple sources like PubMed and PsychInfo. Further, all the articles were 

published after 2012 considering the various advances in the smartphone technology. Articles 

included in the review went through two-stage review process. Articles included had the following 

criteria: i) included participants with TBI; ii) involved use of smartphone device as an intervention.  

9 studies had individuals with moderate and severe TBI while 2 had individuals with mild TBI. 11 

studies included adults and 4 had adolescents with TBI.  

 The interventions in the various articles included alerts through text, emails or calendar 

apps followed by reminders to improve goal attainment and alerts for symptom reporting. 

Extensive reviews provided foundation for effectiveness of using mHealth as: i) an alternate 

method for memory impairment, organization, and planning difficulties along with problem-

solving; ii) a tool that supports social and community participation and goal attainment; iii) an aid 

for symptom monitoring and reduction. 
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 While the findings have been promising, it was observed that none of the studies 

specifically investigated the degree of cognitive improvement. Moreover, the study focused on 

using smartphone apps rather than smartphone sensors to assist TBI patients. Also, all the articles 

in the study focused on aiding patients post TBI, rather than trying to predict TBI using the 

smartphones. 

 

2.2 PupilScreen 

Alex Mariakakis, Jacob Baudin [23]  proposed PupilScreen, that measures pupillary light reflex 

(PLR) in quantitative measures to predict the outcome of a person’s traumatic brain injury. 

PupilScreen is a smartphone app accompanied with 3D-printed box that mimics the penlight test 

used by clinicians in emergency situations. Figure 4 shows the VR headset like box that controls 

the position of the box and the lightning that reaches the light. In a penlight test, a clinician directs 

a penlight towards each of the patient’s eye and observes the pupil’s response. It is observed that 

PLR of patients suffering from TBI is lower or not pronounced.   

This study had a dataset of 42 volunteers: 16 males and 26 females. Further, there was a 

balanced mix of iris colors: 17 blue, 20 brown, and 5 with a noticeable gradient between different 

colors. The data was collected using an iPhone SE. The phone is then placed into a slot in the back 

of the PupilScreen box. The PupilScreen app records 8 second video of a person’s eyes as the 

response of pupil to the smartphone’s flash. Later, this video is fed to two different Convolutional 

Neural Networks (CNN). The first architecture estimates the location of the pupil and second 

estimates the diameter of the pupil given cropped images by performing pixelwise segmentation.  

The errors across all users of the first network had a median of 0.43 mm in the Euclidean 

distribution and a 90th of 0.87mm. For the second network, the distribution of absolute errors had 

a median of 0.36mm and 90th percentile of 1.09 mm. Though this error was better than manual 

examination, it was worse than that of a clinical pupillometer. Further, there was a distinguishable 

difference between different iris colors wherein images of brown eyes led to worse results.  
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Figure 4: PupilScreen system that measures PLR and lightning that reaches the eye [23] 

 

 Upon clinical feedback, it was observed that most of the clinicians felt that the existence 

of the box is bulkier. Further, this kind of app is difficult to use on people who went unconscious 

after a TBI. In case of unconscious patient, manipulating the patient’s face could lead to more light 

to pass to the app leading to inaccurate results.  

This methodology only makes use of camera sensor of the Smartphone. Using other 

powerful sensors such as accelerometer and gyroscope to compute gait and balance patterns can 

help understand dynamic posture and coordination during movement as opposed to using the 

PupilScreen which depends on just one factor i.e. PLR to detect TBI. 
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2.3 Mood-Traces 

Mirco Musolesi [25] tries to discover whether mobile phone sensors can be used to monitor 

individuals suffering through depression by analyzing the mobility patterns from the GPS traces. 

This is done using an android application named Mood-Traces, that periodically collects the 

location of the users. The author tries to devise mechanisms and propose a solution that forecasts 

depressive mood changes from the mobility data.  

 The study is based on general population instead of just few individuals that suffer from 

severe depression. The data is collected from 28 users by obtaining the location. Further, Mood 

Traces collects answers to 8 daily questions from the “PHQ-8” depression test which is used a 

ground truth. On average, each user was monitored for 71 days. Upon the data collection, a set of 

mobility metrics is extracted from the mobility traces of the users and a personalized general 

machine learning model is used to predict PHQ scores. Personalized models are achieved upon 

training on the history data of the user and finding the prediction for the next possible hour. Figure 

5 shows the approach of training personalized models where THIST is the duration over which 

mobility metrics are computed whereas THOR represents how much in advance the metrics are 

computed. 

It was observed that the model performed well when 14 history days were taken into 

consideration. Personalized models performed better than the general models however, general 

models could be used when a user installs the app for the first time. Further, upon fixing the number 

of history days, it was observed that there is scope for an early detection of the depressive moods. 

Due to the promising results obtained, it was concluded that there is significant correlation between 

mobility patterns and depressive moods. 
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Figure 5: Approach for building personalized models using Mood-Traces [25] 

 

 Another approach used by this author consists of using autoencoders for automatically 

extracting features from the raw input [29]. This method proposed different input representation 

of autoencoders while quantifying the effectiveness in predicting user’s depressive mood. The 

technique consists of using output of the encoder that consists of compressed input representations 

from the raw input data. The GPS data points are normalized to allow for common pattern 

extraction and then fed to the autoencoder for training. The output of the encoder i.e., the mobility 

metrics is fed to the machine learning model. 

This approach achieved better results as compared to the pervious one, wherein statistical 

features were used to train the machine learning model. To be specific, using mobility metrics such 

as Displacement Representation (DR) and Significant Place Representation (SPR) with activation 

function as ReLU and SVM as machine learning model achieved the best results. This implies that 

the mobility features extracted by using autoencoder are way more effective and can learn the 

representation in much detail. 

Depression is a common problem caused by TBI and therefore, the behavior observed in 

TBI patients is similar to depression. The results obtained in this study seem promising and hence 

we can extract similar location patterns by using statistical as well as encoder-based approach with 

ground truth as TBI patient and Non TBI patient.  
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2.4 GAITRite 

Patients with TBI exhibit problems with balance which can clearly be reflected upon their mobility 

assessment. E.Niechwiej-Szwedo [27] proposed a study that examines the dynamic stability during 

gait in patients with TBI. Even patients with high level of recovery tend to have great variability 

in gait values implying that mobility problems stick with a TBI patient long after the injury.  

 In this study, 20 participants were appointed who had TBI and 20 healthy participants were 

selected. GAITRite model was used to measure the spatiotemporal gait parameters. Each 

participant was asked to perform three walking tasks: i) walk at preferred pace; ii) walk as fast as 

possible; iii) walk with eyes closed at preferred pace.  

 It was observed that TBI patients exhibited greater variability in step time and step length 

for the third task, i.e. walking with eyes closed. Further, step time variability increased when the 

patients were asked to improve their velocity. Thus, it could be concluded that temporal and spatial 

variability of foot placement is significant in TBI patients, particularly when the task became more 

complex. 

 The study indicated gait measurement as a strong indication to distinguish TBI patterns. 

However, the study here was done in a proctored manner instead of continuous passive monitoring 

using the smartphone sensors. The various metrics used in this study could be incorporated in the 

thesis to obtain gait variability using the smartphone sensors. 

 

2.5  mCTSIB 

TBI patients tend to experience balance-related symptoms such as dizziness, unsteadiness, and 

imbalance post injury. Geetanjali Gera [30] proposes the modified Clinical Test of Sensory 

Integration and Balance (mCTSIB) as a tool to observe quality of sway in individuals using 

wearable inertial sensors.  

 The study included athletes who were above the age of 18 years and have sustained a mild 

TBI or have no TBI in the past 6 months. 38 mTBI patients were appointed along with 81 healthy 

subjects. These participants were asked to perform four quiet stance for 30 s with feet close 

together and arms across the chest: i) Eyes Open (EO) firm surface, ii) Eyes Closed (EC) firm 

surface, iii) Eyes Open (EO) foam surface, iv) Eyes Closed (EC) foam surface. Postural sway was 
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computed using the wearable inertial sensor which consisted of a tri-axial accelerometer, a tri-

axial gyroscope, and a tri-axial magnetometer.  

  The results obtained after the study had three important findings: i) at approx. 2 – 3 days 

after the injury, TBI patients had increased postural sway; ii) Eyes closed compared with eyes 

opened had more impairment under foam conditions; iii) Dizziness severity was related to the 

postural sway deficits in TBI. Further, it was observed that the TBI patients were more dependent 

on the vision and thus had difficulty performing tasks which involved closing the eyes. 

 The results of this study show promising results in comparing balance of TBI patients vs 

Healthy ones. Postural sway was an important feature to identify the balance patterns. However, 

this study was also done in a proctored manner rather than using continuous passive monitoring. 

Computing postural sway with various other balance features using smartphone sensors can help 

distinguish and identify patterns of TBI from those of healthy ones. 
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Chapter 3 

Methodology 

3.1 Overview 

This section describes the approach followed to prove the hypothesis. To create a smartphone 

application that could passively detect TBI, classifiers are required that takes input as the location 

and the accelerometer sensors from the user’s smartphone. To build the classifiers, smartphone 

sensor data is required along with their date of head injury. Figure 6 represents the steps involved 

in building the machine learning pipeline for TBI detection. 

  

 

Figure 6: Machine Learning Pipeline for TBI detection 

 

 To gather sensor data and survey data of users, Charles River Analytics Dataset and 

Lockheed Martin Dataset were used. The details of the Data Gathering are mentioned in Section 

3.2. The rest of the section is divided as follows: Section 3.3 explains the Machine Learning 

Analysis. Section 3.4 talks about data pre-processing step; Upon acquiring the data, three different 

approaches were applied; i) Hand-crafted features on raw sensor data; ii) Hand-crafted feature 

extraction with overlapping window sizes; iii) Auto-encoder based representation to extract 

location, gait and balance patterns. This process in explained in Section 3.5; The normalization 
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performed on the data is discussed in Section 3.6 and machine learning classifiers along with 

evaluation metrics are discussed in Section 3.7. 

 

3.2 Data Gathering 

To gather the data required for training the machine learning algorithms, Charles River Analytics’ 

and Lockheed Martin dataset was used. This dataset consists of daily and weekly survey responses 

followed by smartphone sensor data of various users.   

The data gathering was done by the Charles River Analytics company. Initially subjects 

were recruited using Google Ads and Facebook and the inclusion criteria for the participants 

recruited using these platforms were as follows: Individuals over 19 years of age, English speaker 

and owns a smartphone (Android or iOS) with a data plan and Wi-Fi or 3G/4G capabilities and be 

the primary user of the phone. The exclusion criteria were as follows: Individuals under the age of 

19, Non-English speaker, does not own a smartphone with Wi-Fi or 3G/4G capabilities, unable to 

provide informed consent, Employee of the University of Washington, Unwilling to provide access 

to accelerometer and gyroscope sensors, Use of a VPN (virtual private network), Bad 

actors/fraudulent enrollees. Figure 7 shows the distribution of all the participants based on gender.  

 After a participant self-identifies as willing to participate, they need to review an 

information consent that contains all the necessary elements of the consent. After reviewing the 

consent, participants need to fill their demographic information such Sex, Birth Date, Height, 

Weight. Based on the demographic and taking into the consideration the inclusion and exclusion 

criteria, it is determined whether the participant is eligible to continue to the survey. Upon 

recruitment, participants receive a link to download the mobile application. Further, the 

participants provide consent for passive data collection through sensors. Upon downloading the 

application, the participant is prompted to complete a baseline questionnaire regarding the 

participant’s health, mood, physical activity, and smart phone usage. 
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Figure 7: Distribution of participants based on Gender as of Jan 31, 2021 

 

 The recruited participants then use the application for a period of 12 weeks wherein they 

answer to survey responses in the morning (Noon) and in the evening (6:00 PM). These questions 

ask about the participant’s health, mood, employment status, active duty/veteran status, physical 

activity, and smart phone usage. Consent is also requested for voice recordings, still images, and 

videos at various points throughout the study. Figure 8 represents the different types of survey 

questions asked during the study period. This was done using an android/ iOS application 

“mSense”. Figure 9 represents the screen of the application with a survey question. Along with 

this, the app was also responsible for passively collecting the sensor data.  

 Participants received amazon gift cards based on the number of surveys completed and 

continued uploads of passive data from accelerometer and gyroscope. Table 5 and Table 6 

represents and various iOS and Android sensors collected by the mobile application, respectively. 

The mobile application keeps track of the number of assessments completed and the provided 

information is deidentified before it uploads to the server. Once uploaded, each participant receives 

a unique User ID and Device ID. Later this data is also encrypted using FIPS 140-2 approved AES 

cryptographic implementations with 256-bit keys.  
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Figure 8: Daily and weekly surveys asked during the period of 12-week study 

 

The baseline survey includes the demographic questions such as chronic illness, allergies, 

alcohol use, drug use. Surveys consisting of questions related to TBI and Flu included asking about 

flu shot, been in contact with anyone sick, getting tested for flu/COVID-19. The survey also asked 

questions related to sleep patterns, body temperatures, interaction with other people, symptoms 

related to flu, etc. Finally, there was another survey, Static by Day, which was asked on every 

Saturday of the 12-week period. Table 4 shows TBI specific questions asked in the Static by Day 

Survey. Figure 10 shows the symptoms experienced by the TBI participants during the length of 

their study 

 

Table 4: TBI specific Survey Questions 

TBI-related Survey Questions 

Were you in any accidents this week? 

Did you hit your head at all this week? 

What day did it happen? 

Did you become unconscious due to the injury? 

Did you see a doctor for your head injury? 

Did the doctor say you have a concussion? 
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Figure 9: Example Question from one of the surveys asked by mSense 
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Figure 10: Various symptoms experienced by the TBI participants 

 

 

 

Table 5: iOS Sensors 

Operating System Sensor Description 

 

 

 

iOS 

Accelerometer Acceleration of the device in 3-

dimensional space 

Gyroscope Instantaneous rotation around 

the spatial axis 

Magnetometer Device’s orientation relative to 

the Earth’s magnetic field 

Pedometer Calculates step-counting, 

distance travelled 

Altitude Measures altitude data 

Barometer Measures air pressure 

GPS Device’s geographic location  
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Compass Reports device’s orientation 

Accessibility Accessibility features enabled 

on the device such as the 

following: Assistive Touch, 

Voice Over, Switch Control, 

Shake to Undo 

 

 

Table 6: Android Sensors 

Operating System Sensor Description 

 

 

 

Android 

Accelerometer Measures acceleration force 

across the 3-axis 

Gyroscope Measures device’s rate of 

rotation across the 3-axis 

Magnetic Field Measures geomagnetic field 

across x, y and z axis 

GPS Determines user’s physical 

location using latitude and 

longitude 

Pressure Measure the ambient pressure 

Step Counter Counts the number of steps 

taken by the user 

SMS The messages sent and 

received by the user 

Bluetooth Determine if Bluetooth is 

active or not and get its current 

state 
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3.3  Machine Learning Analysis 

Figure 6 shows the machine learning pipeline used for this thesis. Upon data acquisition, it is pre-

processed to obtain the date of injuries. This raw data is then segmented into different timeframe 

and window-sizes and passed to feature extraction step for generating features from this sensor 

data. The feature extraction step uses three approaches to generate features out of the sensor data.  

The extracted features are normalized and then fed to the machine learning models after which the 

results obtained are evaluated. 

 

3.4 Data Pre-processing 

Figure 11 shows the pre-processing steps used to acquire the data for TBI and Non-TBI users. 

 

 

Figure 11: Data Pre-processing to acquire data for TBI and Non-TBI 

 

Acquiring Survey Data: Survey data is pulled from the Secured Cloud Database Storage where all 

the sensor and survey data of the users are uploaded. 

 

Identifying TBI & Non-TBI Users: Upon acquiring all the survey and sensor data from the server, 

TBI and Non-TBI users are identified. Here, TBI users are those who have reported a head injury 

or were in an accident and have been diagnosed with TBI during the length of their survey i.e. 

users who have answered yes to questions like “Were you in any accidents this week?” or “Did 

you hit your head at all this week?” whereas Non-TBI users are those who never reported to be in 
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an accident or had an injury during their survey period i.e. users who answered no or NA to 

questions like “Were you in any accidents this week?” or “Did you hit your head at all this week?” 

 

Head Injury Reporting & Computing of Injury Date: On every Saturday, users respond to survey 

question "Were you in any accidents this week?" and "Did you hit your head at all this week?". If 

they answer “Yes” to any of these, they are asked to report the day on which the injury occurred. 

This weekly based survey is used to infer the injury date of each of the user who have been 

diagnosed with TBI. So, for example, if a user answered yes to the injury question on 25th July 

2020 and mentioned his day of injury as Tuesday, then the injury date is 21st July 2020, which is 

Tuesday in the week of 25th July. Upon performing this analysis, 18 TBI instances were identified 

who were diagnosed with concussion during their 12-week study period.  

 

Pre-processing for Lockheed Martin Dataset:  

Another dataset used for this thesis was Lockheed Martin Dataset. This dataset also 

consisted of TBI users along with users who were diagnosed with various other disease such as 

Flu, Bronchitis. This dataset had 17 TBI users who had responded to the survey question “When 

did the injury occur? (Provide date in MM/DD/YY format OR I don't recall)”. Of the 18 users, 10 

reported I don’t recall or garbage values while only 7 had the injury date. Of the 7, only 4 had good 

sensor data while 3 had missing accelerometer and location sensor data. Figure 12 shows the 

response of TBI users in the Lockheed Martin Dataset. 

 Thus, in total, by combing both the datasets, 179 Non-TBI users were chosen along with 

23 TBI instances. 
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Figure 12: Response to the date of injury in the Lockheed Martin Dataset 

 

3.5 Feature Extraction 

This thesis focuses on extracting features from location sensor data while also extracting gait and 

balance patterns from accelerometer sensor data. Thus, the focus of this work in mainly based 

upon two sensors i.e. location and accelerometer. For each of the approaches, different pre-

processing techniques were used, which will be described below.  

 

3.5.1   Approach I - Extracting features from Raw Sensor Data 

Pre-Processing: 

The pre-processing steps consists of segmentation on the raw sensor data and then applying hand-

crafted features on the sensor data. Table 7 shows the various segmentation length with their 

corresponding window-sizes applied on the raw sensor data. 
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Table 7: Segmentation of Time Series data with corresponding Window sizes 

Time Frame Window Sizes 

24 hours 3 hours 

6 hours 

48 hours 6 hours 

12 hours 

72 hours 12 hours 

24 hours 

 

Extracting Location Patterns: 

GPS sensor aggregates information about user data. The location patterns obtained from this sensor 

data reflects behavioral patterns associated with TBI along with movements to various locations. 

The location metrics used in this have been effectively able to capture the depression patterns [25] 

and since TBI patients tend to depict behavior, which is like depression, these patterns can be used 

to identify TBI patterns at the earliest possibility. Table 8 shows the location patterns extracted 

from the GPS data using different time frame and window sizes. 

 

Table 8: Hand-crafted features extracted from location sensor data 

Feature Formulae Description REF 

Total Distance 

Covered 𝐷𝑇(𝑡1, 𝑡2) =  ∑ 𝑑(𝐶𝑖,

𝑁(𝑡1,𝑡2)−1

𝑖=1

𝐶𝑖+1) 

Here, 𝑑(𝐶𝑖 , 𝐶𝑖+1) is the 

Haversine distance 

between two latitude-

longitude pairs 

[25] 

Maximum 

Distance 

between two 

locations 

𝐷𝑀(𝑡1, 𝑡2) =   𝑑(𝐶𝑖, 𝐶𝑖+1)𝑖,𝑗 ∈{1,.....,𝑁(𝑡1,𝑡2)}
𝑚𝑎𝑥  𝐷𝑀(𝑡1, 𝑡2) represents the 

maximum span of the 

area covered 
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Radius of 

Gyration 𝐺(𝑡1, 𝑡2) =  √
1

𝑇
 ∑ 𝑇𝑖  ∙ 𝑑(𝐶𝑖, 𝐶𝑐𝑒𝑛)2

𝑁(𝑡1,𝑡2)

𝑖=1

 

This feature measures 

the coverage area and 

computes deviation from 

the centroid in the time 

interval [t1, t2] 

Standard 

Deviation of 

the 

displacements 

𝜎𝑑𝑖𝑠

= √
1

𝑁(𝑡1, 𝑡2) − 1
 ∑ (𝑑(𝐶𝑖, 𝐶𝑖+1) −  𝐷𝑑𝑖𝑠)2

𝑁(𝑡1,𝑡2)−1

𝑖=1

 

Here, 𝐷𝑑𝑖𝑠 = 

1

𝑁(𝑡1,𝑡2)
∑ 𝑑(𝐶𝑖, 𝐶𝑖+1)

𝑁(𝑡1,𝑡2)−1
𝑖=1   

 

is the average 

displacement 

The number of 

different places 

visited 

𝑁𝑑𝑖𝑓𝑓(𝑡1, 𝑡2) =  ∑ 𝑚𝑎𝑥 {1 − ∑ 𝐼𝑖𝑗 , 0

𝑗≠𝑖

}

𝑁(𝑡1,𝑡2)

𝑗=1

 

Here, 𝐼𝑖𝑗 is the indicator 

function, which is 1 if, 

 𝐼𝐷𝑖 =  𝐼𝐷𝑗 

Number of 

stops 

𝑑𝑗 = (Ι𝑗 , ∆𝑙𝑗
𝑑𝑒𝑠𝑡) Here, L = {Ij} is the set 

of locations and D = {dj} 

is all destinations at a 

particular geographic 

scale. 

[31, 

28] 

 

Extracting Gait & Balance Patterns: 

A lot of medications prescribed by the professionals after brain injury can cause dizziness, 

lightheadedness, and imbalance. About 30% of the individuals have complained about impaired 

balance and altered coordination. This is because walking and balance involves a complex 

interaction of sensory, motor programming and musculoskeletal systems [33]. An extensive 

evaluation of Gait and Balance will help in detecting TBI as early as possible.   

 Further, the two important goals involved in understanding mTBI are: i) how brain activity 

patterns change after injury; ii) how these changes may reflect true injury severity and clinical 

outcome [34]. And these goals become difficult to achieve due to cost and logistic challenges 

involved in constantly monitoring brain activities. When gait and Balance patterns are extracted 

from the accelerometer sensor data, they reduce the cost and enable effective monitoring of the 
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patient’s brain patterns. Table 9 shows the various gait features and Table 10 shows the various 

balance features extracted from accelerometer sensor data. 

 

Table 9: Hand-crafted gait features extracted from accelerometer data 

Feature Formulae/Method Description REF 

Peak Frequency Peak frequency 𝑓𝑝 is computed by 

smoothing the accelerometer 

using low-pass filter. Then the 

accelerometer data is converted 

by FFT from which highest peak 

of power spectrum is computed. 

Finally, 𝑓𝑝 is detected in the 

frequency space to where power 

spectrum had the highest peak. 

This value indicates the gait 

cycle, i.e. time taken for one 

step 

[35] 

Root Mean Square 

𝑅𝑀𝑆 =  √
∫ 𝑎(𝑡)2𝑑𝑡

𝑡2

𝑡1

𝑡𝑛 −  𝑡1
 

This value indicates the degree 

of gait instability 

Autocorrelation Peak 

𝑅𝑥𝑥(𝑘) =  
1

𝑛 − 𝑘
∑ 𝑥𝑡𝑖

𝑥𝑡𝑖+𝑘

𝑛−𝑘

𝑖=1

 

This indicates the degree of gait 

balance and  

𝑥(𝑡) =  
𝑎(𝑡) − 𝑎𝑚𝑒𝑎𝑛

𝑎𝑆𝐷
 

Coefficient of 

Variance 

𝐶𝑉 =  
𝑡𝑆𝐷

𝑡𝑚𝑒𝑎𝑛
 

This value indicates the degree 

of gait variability 

Step Count 𝑠𝑡𝑒𝑝𝑠 = 𝑛𝑝𝑒𝑎𝑘𝑠 The number of steps walked 

during the period t 

[36] 

Cadence 𝑐 = 60 𝑓/𝑛 c is defined as steps per minute [37] 

Step Regularity 𝑠𝑡𝑒𝑝 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =  𝑅𝑥𝑥(𝐴, 𝐴𝑑1)  This feature shows consistency 

in step-to-step pattern. Here, 

𝐴𝑑1 is first dominant phase shift 

of one step 
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Stride Regularity 𝑠𝑡𝑒𝑝 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =  𝑅𝑥𝑥(𝐴, 𝐴𝑑2) This feature shows consistency 

in stride-to-stride pattern. Here, 

𝐴𝑑2 is the second dominant 

phase shift of one step 

Step Symmetry 𝑠𝑡𝑒𝑝 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦

=  
𝑠𝑡𝑒𝑝 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦

𝑠𝑡𝑟𝑖𝑑𝑒 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦
 

This value indicates the 

symmetry between two steps of 

both legs. 

 

 

 

Table 10: Hand-crafted balance features extracted from accelerometer data 

Feature Formulae Description REF 

Trajectory Length 

𝑇𝐿 =  ∑ 𝑑𝑖𝑠𝑡(𝑃𝑛, 𝑃𝑛−1)

𝑁

𝑛=1

 

=  √

(𝑎𝑥𝑛 − 𝑎𝑥𝑛−1)2 +

(𝑎𝑦𝑛 − 𝑎𝑦𝑛−1)
2

+ 

(𝑎𝑧𝑛 −  𝑎𝑧𝑛−1)2

 

Total accelerometer 

trajectory length measured in 

m/s2 

[38] 

Sway Area 𝑆𝐴 = 𝐶𝑜𝑛𝑣𝑒𝑥𝐻𝑢𝑙𝑙(𝑥, 𝑦, 𝑧) Area spanned from the 

acceleration signals with 

respect to the duration of the 

measurement 

[38, 

39] 

Jerk Index 
𝑗(𝑡) =  

𝑑|𝑎(𝑡)|

𝑑𝑡
 

This feature measures the 

amplitude, smoothness, and 

frequency. 

[38, 

40] 

Entropy 
𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑ −𝑎𝑖 𝑙𝑜𝑔2𝑎𝑖

𝑛

𝑖=1

 
This feature describes the 

nature of point-to-point 

fluctuations in a 

physiological signal. 

[38, 

41] 
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3.5.2   Approach II - Extracting features with pre-processing 

Pre-Processing: 

The pre-processing steps consists of passing the accelerometer data through the low-pass 3rd order 

Butterworth filter. Further, the normal cut-off frequency was computed using cut-off frequency 

and Nyquist frequency. This helped to reconstruct a signal from a sequence of samples to capture 

peaks and troughs of the original waveform. Figure 13 shows the preprocessed accelerometer 1 

day data of healthy user and Figure 14 shows the preprocessed accelerometer data of a TBI user 

post injury. Comparing both the figures, we can clearly see the difference in movements across 

the three axes: x, y and z. For example, the pre-processing helped identify the peak movements for 

both the users. 

The pre-processed accelerometer data was then segmented into different timeframes with 

windows-sizes and overlapping percent. Finally, to this segmented data, hand-crafted features 

were computed. Table 11 shows the various segmentation length with their corresponding 

window-sizes and overlapping sizes applied on the pre-processed sensor data. 

 

Table 11: Segmentation of Time Series data using Overlapping Window sizes 

Time Frame Window Sizes Overlapping Window Size 

24 hours 3 hours 33% 

6 hours 33% and 50% 

48 hours 6 hours 33% and 50% 

12 hours 33% and 50% 

72 hours 12 hours 33% and 50% 

24 hours 50% 

 

Extracting Location Patterns: 

The features mentioned in Table 8 were used to compute location patterns from the Location 

Sensor data. These features were computed over the various segmentation mention in Table 11. 
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Extracting Gait & Balance Patterns: 

The features mentioned in Table 9 and Table 10 were used to calculate Gait and Balance patterns 

from the pre-processed accelerometer data. These features were computed over the various 

segmentation mention in Table 11. 

 

 

Figure 13: Accelerometer Data of Healthy User 
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Figure 14: Accelerometer Data of TBI User Post Injury 

3.5.3   Approach III – Using Autoencoder-based approach 

Mirco Musolesi [29] proposed a novel technique to extract location patterns using input 

representations to predict depression. The research shows that using autoencoder-based features 

for predicting depression was more effective than the hand-crafted features. Since, TBI patients 

depict depression symptoms, the goal of this approach is extract mobility patterns from raw data 

using autoencoder and combine them with statistical gait and balance patterns. Later, compare this 

approach with the previous two approaches to find an optimal method to predict TBI. 

Pre-Processing: 

The pre-processing steps consists of segmentation on the raw sensor data and then using 

autoencoder based approach for location sensor data along with hand-crafted features for gait and 

balance for accelerometer sensor data. Table 12 shows the various segmentation length with their 

corresponding window-sizes applied on the raw sensor data. 

 

Table 12: Segmentation of location time series data with gait and balance window sizes 



36 
 

Time Frame Window Sizes Location + Statistical time 

window frame 

24 hours 3 hours 24 hours + 3 hours 

6 hours 24 hours + 6 hours 

48 hours 6 hours 48 hours + 6 hours 

12 hours 48 hours + 12 hours 

72 hours 12 hours 72 hours + 12 hours 

24 hours 72 hours + 24 hours 

 

 

Extracting Location Patterns: 

Since mobility patterns differ for each person, the first step involves normalizing the location 

sensor data to make them comparable. From the raw sensor data, it gets impossible for an 

autoencoder to learn common compressed representations. Hence, the GPS data is transformed 

into three different representations as follows [29]: 

• Displacement Representation (DR): A vector of distances between all adjacent pairs of 

location is computed which is followed by implementing a normalization function. 

Given (𝑃1, 𝑃2, 𝑃3, ….. ,𝑃N) with N GPS points, displacement vector is defined as: 

𝐷 = {𝑑1, 𝑑2, . . . . . , 𝑑𝑖 , . . . , 𝑑𝑁−1 } 

 with 

𝑑𝑖 = 𝑑𝑖𝑠𝑡(𝑝𝑖 , 𝑝𝑖+1) 

 where dist() is the Haversine distance between two points. 

 Finally, the displacement vector is normalized as follows: 

𝐷𝑀𝑖𝑛𝑀𝑎𝑥 = 𝑀𝑖𝑛𝑀𝑎𝑥 (𝐷) 

 where MinMax() is the minmax scaling function applied to D 

 

• Change in Displacement Representation (CDR): This is a vector that contains ratios of 

distances for all pairs of adjacent points with the distance of the previous points.  

Given (𝑃1, 𝑃2, 𝑃3, ….. ,𝑃N) with N GPS points, change in displacement vector is defined 

as: 
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𝐶 = {𝑐1, 𝑐2, . . . . . , 𝑐𝑖, . . . , 𝑐𝑁−2 } 

with 

𝑐𝑖 = 1 −  𝑑𝑖+1/𝑑𝑖 

where 

di is the distance between two points pi and pi+1 

 

• Significant Place Representation (SPR): In order to obtain this representation, time spent 

at the most significant place is computed. 

More specifically, given a set of GPS points P, stop location is computed using the 

approach presented in [32]. Upon computing the stop location, the time spent by the user 

at these locations is calculated. 

Therefore, given a set of significant places  

𝑆 = {𝑠1, 𝑠2, . . . . . , 𝑠𝑘 } 

Time spent by the user at all places is computed as follows: 

𝑇 = {𝑡𝑠1
, 𝑡𝑠2

, . . . . . , 𝑡𝑠𝑘
} 

 

Extracting gait & Balance Patterns: 

The features mentioned in Table 9 and Table 10 were used to calculate gait and Balance patterns 

from the accelerometer data. These features were computed over the various segmentation mention 

in Table 12. 

Figure 15 presents the architecture of the autoencoder-based approach. The process consists of 7 

steps: 

Step 1: train three generic autoencoders using the three input representations from the training data 

 of all the users. 

Step 2: extract the three trained encoders from these autoencoders. 

Step 3: compute mobility features for the training data by using input representations as input to 

 all trained encoders. 

Step 4: Compute statistical gait and balance features using the various window-sizes mentioned in 

 Table 12. 

Step 5 & 6: Combine the mobility features with the statistical gait and balance with training labels.  

Step 7: Upon combining the features, train the Machine Learning model to obtain trained model. 
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Figure 15: Approach 3 – Using Autoencoder-based approach 

 

3.6 Normalization 

After calculating features using the methods discussed in 3.5, normalization was applied to take 

into account the different variations in walking style of different people. Further, normalization 

helps to get an accurate result. The normalization was done using sklearn’s normalize function, 

with norm = ‘l2’, which computes the distance of the vector coordinate from the origin of the 

vector space.  

Given 𝑥, a vector with 𝑖 components, we define ||𝑥||2, L2 norm as follows: 

 

||𝑥||2 =  √∑ 𝑥𝑖
2

𝑖

=  √𝑥1
2 + 𝑥2

2+ . . . +𝑥𝑖
2 
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3.7 Classification 

3.7.1   Machine Learning Classifiers 

In machine learning, classification is the process of predicting the class (target/label) of given data 

points [42]. Classification belongs to the supervised learning category where the targets are 

provided with the input data. Classifier is an algorithm of classification that maps a function from 

input variables to discrete output variables which are the targets.  

 In this thesis, upon performing feature extraction and normalizing the features, 4 classifiers 

namely; XGBoost, Random Forest, Multi-Layer Perceptron and Stochastic Gradient Descent, 

performance is evaluated and compared to obtain the best results for the classification. These 

classifiers are briefly introduced below: 

 

XGBoost: XGBoost stands for eXtreme Gradient Boosting and is an implementation of gradient 

boosted decision trees which are designed for performance and speed [43]. Gradient Boosting is 

an ensemble technique that provides better models through a combination of reweighting and 

aggregation. In this method the weights of the instances that were incorrectly predicted are 

increased and weights of the correct predictions decreased accordingly. This process is done on 

different samples with modified weights and finally an aggregated classifier is formed. 

 

Random Forest: Random Forest models are kind of non-parametric used for regression and 

classification [44]. It is an ensemble method that uses a group of weak learners to obtain a strong 

and aggregated model. The output of the model is the model of the classes or the mean prediction 

of the individual trees.  

 

Multi-layer Perceptron (MLP): Multi-layer Perceptron is a feedforward artificial neural network 

model that maps set of input data to a set of appropriate outputs [45]. The model consists of fully 

connected layers and each layer consists of neurons that are activated using a non-linear activation 

function. This makes neural networks capable of classifying unknown (noisy or incomplete input) 

pattern with a known (pure and complete) one by analyzing the features shared between the two 

patterns.  
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Stochastic Gradient Boosting: Stochastic Gradient Boosting is based upon gradient boosting, 

which is one of the powerful techniques for building predictive models [46]. Gradient boosting 

consists of three elements; a loss function, weak learners that make predictions and an additive 

model to that adds weak learns for minimizing the loss function.  

Since, Gradient boosting is a greedy algorithm and has high probability of overfitting, 

regularization methods are adopted. One of them is Stochastic Gradient Boosting that performs 

bagging and boosting greedily from subsamples of the training dataset and helps to reduce the 

correlation.  

 

3.7.2   Evaluation Metrics 

To evaluate the results of the machine learning model, performance metrics such as Specificity, 

Sensitivity and F-beta measure were computed. SHAP was used to understand the feature 

importance and output of tree-based models. 

  

Confusion Matrix: 

Confusion matrix helps measure the effectiveness which in turn help evaluates the performance of 

the model. Thus, confusion matrix is a performance measurement for the classification-based 

machine learning algorithms where the output can be two or more classes. Table 13 shows the 

structure of the confusion matrix. 

 

Table 13: Structure of Confusion Matrix 

 Positive (1) Negative (0) 

Positive (1) TP FP 

Negative (0) FN TN 

 

where, 

TP (True Positive): Predicted values correctly identified as actual positive 

FP (False Positive): Predicted values incorrectly identified as actual positive i.e. negative values  

            predicted as positive 

FN (False Negative): Positive values identified as negative 
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TN (True Negative): Predicted values corrected identified as an actual negative 

 

Upon, computing the confusion matrix, we can compute other metrics as follows: 

Sensitivity: This metric measures the proportion of positives that are correctly classified i.e., it 

evaluates the model’s ability to predict true positive for each category. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Specificity: This metric quantifies the proportion of negatives that are correctly classified i.e., it 

evaluates the model’s ability to predict true negative for each category. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

F-beta: This metric evaluates a binary classification model based on the predictions made for the 

positive class. This measure is calculated using Precision and Recall. It is a generalization of F-

Measure which uses a configuration parameter beta in order to give more weight to precision or 

recall. For this thesis, the beta value used is 0.6 which gives higher weight to precision.  

 

 

 

F-beta measure is computed as follows:  

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  
(1 +  𝛽2) ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝛽2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

SHAP (SHapley Additive exPlanations): 

SHAP is a game theoretic approach that explains the output of any tree-based machine learning 

model [47]. It is a high-speed exact algorithm that shows each feature’s contribution either 

positively or negatively and how it pushes the model output. Each observation has its own set of 

SHAP values that increases the model’s transparency. This helps in providing insights into how a 

model can be improved.  
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Chapter 4 

Results 

4.1 Effect of Normalization 

Figure 16 represents the box plots of normalized vs unnormalized for autocorrelation feature on 

Day 1 between TBI and Non-TBI participants whereas Figure 17 represents the box plots of 

normalized vs not normalized for Step Regularity on Day 1. We can see the bad distribution of 

raw data and how normalization helps brings them to a common scale without distorting the 

differences in the range of values or losing information. 

 

 

Figure 16: Data Distribution of Autocorrelation Feature (Not Normalized vs Normalized) 

 

 Figure 18 shows the data distribution of few features before normalization and Figure 19 

shows the data distribution of same features normalized.  From the two different figures, we can 

see how normalization makes data comparable and allows for extraction of common patterns. 
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Figure 17: Data Distribution of Cadence Feature (Not Normalized vs Normalized) 

 

4.2 Classification Results 

This section summarizes the results obtained by following the approach mentioned in Section 3. 

This section is further divided into 3 parts, where results of each of the approaches i.e. i) hand-

crafted features on raw sensor data; ii) hand-crafted features with pre-processing (filtering and 

overlapping) and iii) auto-encoder based approach; are discussed that detect TBI patterns from 

Non-TBI. Table 14 shows results of the best models from each of the approaches with their 

corresponding metrics. 

 

Table 14: Best Results obtained across each approach with their corresponding metrics 

Approach Segmentation Model Sensitivity Specificity F_beta 

Score 

Approach I 3 days; 24 hours window-

size 

XGBoost 0.889 1 0.968 

Approach II 2 days; 12 hours window-size 

and 50% overlap 

XGBoost 0.778 1 0.93 

Approach III 2 days; 12 hours window-size Random 

Forest 

0.778 0.959 0.778 
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Figure 18: Data Distribution of features on 3rd day before normalization 
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Figure 19: Data Distribution of features on 3rd day after normalization 
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Since, each of the feature computed in all the approaches are significantly important, p-values of 

the features are computed along with data distribution performed day-wise i.e., 1st, 2nd, and 3rd day 

after injury to understand how the features co-relate with the target variable. Upon presenting the 

feature analysis, 4 classifiers discussed in Section 3.5 are trained using the different combination 

of timeframe and window-size as shown in table Table 7, Table 11 and Table 12. With each of the 

best results obtained, feature importance of the model is shown that reflects insights into data and 

model to understand which input features are useful at predicting the target variable which in this 

case is TBI or Non-TBI. 

 

4.2.1   Approach I - Extracting features from Raw Sensor Data 

The goal of this approach is to distinguish TBI patterns from Non-TBI using the raw sensor 

data and further compare it with the other two approaches to observe how well the raw sensor data 

approach performs. 

This approach uses the different segment sizes mentioned in Table 7 and performs feature 

extraction by creating hand-crafted location, gait and balance features mentioned in Table 8, Table 

9 and Table 10, respectively. These features were then fed to four different machine learning 

models by splitting the data in the ratio of 3:1 as train as test.   

Figure 20 and Figure 21 shows the data distribution of few features on Day 1, 2 with 6 

hours and 12 hours of window-size, respectively. From Figure 20, we can observe that 

autocorrelation across z follows a normal distribution whereas that of entropy across z is skewed 

towards right. From Figure 21, we can see how coefficient of variance (cv) across x is normally 

distributed for both TBI and Non-TBI users. 

 Figure 22 and Figure 23 shows the Pearson correlation between all the different features 

with the same combination of time frame and window-sizes. From both the figures, we can observe 

that the features are not correlated with each other and thus do not share linear relationships among 

themselves. This helps model to learn thoroughly and generate effective results. 

 Using all the features computed by the method mentioned in approach 3, 4 different 

classifiers were evaluated namely XGBoost, Multi-layer Perceptron, Random Forest, and 

Stochastic Gradient Descent. Figure 24 – 27 shows the performance of each model over a period 

using different segmentation as mentioned in Table 7. 
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Figure 20: Data Distribution of features on Day 1 with 6 hours of window-size 
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Figure 21: Data Distribution of features on Day 2 with 12 hours of window-size 
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Figure 22: Pairwise correlation of features on day 1 with 6 hours window 

 

Figure 23: Pairwise correlation of features on day 2 with 12 hours window 
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Figure 24: XGBoost Classifier Results using Approach I (hand-crafted features on raw sensor 

data) 

 

 

 

Figure 25: Multi-layer Perceptron Classifier Results using Approach I (hand-crafted features on 

raw sensor data) 
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Figure 26: Random Forest Classifier Results using Approach I (hand-crafted features on raw 

sensor data) 

 

Figure 27: Stochastic Gradient Descent Classifier Results using Approach I (hand-crafted 

features on raw sensor data) 
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From the 4 different figures, we can see how the XGBoost model improved over the period 

with more data and the best results were obtained from 3 days with 12 hours and 24 hours window-

size. Figure 28 shows the feature importance of 3 days with 24 hours window-size for XGBoost 

along with their impact on the model. 

For Random Forest, the best result was obtained on 3 days with 24 hours of window. It can 

be observed that Random Forest learnt well over time and Figure 29 shows the feature importance 

for 3 days with 24 hours window-size along with the distribution of impact these features have on 

the Random Forest Model. 

From Figure 28, we can see the SHAP measurement for the XGBoost model. The y-axis 

indicates the variable name in order of feature importance from top to bottom. The x-axis shows 

the SHAP values which indicates the change in log-odds. Each point in the graph represents a row 

from the original dataset.  

 

 

Figure 28: SHAP measurement for XGBoost Model with 3 days, 24 hours of window-size 
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For the XGBoost model, we can clearly see that a high value for RMS, i.e degree of gait 

instability, implies that participants have patterns related to TBI. Similarly, Figure 29 indicates 

SHAP measurement for the Random Forest model. Looking at the figure, we can induce that low 

location values for maxDist indicates that participant has patterns related to TBI. 

 

 

Figure 29: SHAP measurement for Random Forest Model with 3 days, 24 hours of window-size 
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4.2.2   Approach II - Extracting features using Pre-processing 

The goal of this approach is to distinguish TBI patterns from Non-TBI using the pre-processed 

sensor data with different overlapping percent and further compare it with the other two approaches 

to observe how well the pre-processed sensor data approach performs. 

This approach consists of filtering the accelerometer data using a Butterworth filter and 

then performing two different types of overlapping (33% and 50%) with segmentation timeframe 

and window-size mentioned in Table 11. Upon generating the segmented data, location, gait and 

balance features mentioned in Table 8, Table 9 and Table 10 respectively. This data is then fed to 

the machine learning model using train and test data in the ratio of 3:1. 

Figure 30 shows the correlation between different features for the same segment. We can deduce 

that again the features are not highly correlated. Figure 31 shows the data distribution of 3 days 

with 24 hours of window-size and 50% overlap and we can clearly observe the varied distribution 

in each of the features for TBI and Non-TBI users.  

  

 

Figure 30: Pairwise correlation of features on day 3 with 24 hours window and 50% overlap 
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 Figure 32 – 39 shows the results of all the 4 models with different overlapping percent; 

33% and 50%. These overlapping percent were applied to the different segments mentioned in 

Table 11. From the results, we can observe that XGBoost performed the best. The best results were 

obtained on Day 2 with 12 hours of window size and 50% overlap. Figure 41 shows the feature 

importance of the model along with SHAP values. 

 

 

Figure 31: Data Distribution of features on Day 3 with 24 hours window-size and 50% overlap 
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 Random Forest learnt the patterns with more data and over time. The best results for this 

model were obtained on Day 2 with 12 hours of window-size and 50% overlap. Thus, in short, 

both the model gave best results on the same day. Figure 41 shows the feature importance of 

Random Forest model on Day 2 with 12 hours with window-size and 50% overlap with their 

corresponding SHAP values. 

 

 

Figure 32: XGBoost Classifier Results using Approach II with 33% overlap 

 

 

Figure 33: XGBoost Classifier Results using Approach II with 50% overlap 
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 Figure 40 shows the distribution of the data with their corresponding SHAP values for the 

XGBoost model. We can observe that a low trajectory length implies that not much area was covered 

and indicates patterns related to TBI. 

 

 

Figure 34: MLP Classifier Results using Approach II with 33% overlap 

 

 

Figure 35: MLP Classifier Results using Approach II with 50% overlap 
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Figure 36: Random Forest Classifier Results using Approach II with 33% overlap 

 

 

Figure 37: Random Forest Classifier Results using Approach II with 50% overlap 
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Figure 38: SGD Classifier Results using Approach II with 33% overlap 

 

 

Figure 39: SGD Classifier Results using Approach II with 50% overlap 
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Figure 40: SHAP values for XGBoost Model with 2 days, 12 hrs window-size and 50% overlap 

 

Figure 41: SHAP for Random Forest Model with 2 days, 12 hrs window-size and 50% overlap 
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4.2.3   Approach III – Using Autoencoder-based approach 

In this approach, we transform the raw data into three different input representations mentioned in 

Section 3.5.3 and then combine the representations with statistical gait and balance features using 

different segmentation mentioned in Table 12. 

 Figure 42 shows the original distribution of the raw input representation and Figure 43 

shows distribution obtained after training the autoencoder and generating the latent space for the 

Displacement Representation. 

 

 

Figure 42: Raw input representation of Displacement vector 

 

 

Figure 43: Latent space representation of the Displacement vector 
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Figure 44 shows the result of the 4 models of latent space representation combined with the 

statistical gait and balance features. From the figure, we can see that the best results for XGBoost 

were obtained on 3rd day with 24 hours of window-size. Figure 45 shows the feature importance 

along with their corresponding SHAP values. 

 For Random Forest, the best results were obtained on 2nd day with 12 hours of window-

size. Figure 46 shows the feature importance along with their corresponding SHAP values. 

 

 

Figure 44: Results of 4 models using approach III (Using autoencoder-based approach) 
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Figure 45: SHAP values for Random Forest Model with 2 days, 12 hrs window-size 

 

Figure 46: SHAP values for XGBoost Model with 3 days, 24 hrs window-size 
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Chapter 5 

Discussions 

This section discusses the results and learning along with few shortcomings faced while working 

towards this thesis. 

1) Autoencoder & pre-processed Sensor Data Approach helped in earlier prediction:  

Figure 24 – 27, 32 – 39 and 44 show results of Approach I, Approach II and Approach III, 

respectively. The hand-crafted features extracted from the raw sensor data performed the 

best on 3 days with 24 hours of data with XGBoost model i.e after 3 days of the injury 

having specificity as 1 and sensitivity as 0.899. This was probably because with more 

sensor data, the model was better able to distinguish the patterns between TBI and Non-

TBI. The hand-crafted features extracted from the pre-processed sensor data performed the 

best with 50% overlap and was able to give best results on Day 2 with 12 hours of window-

size with XGBoost model. The specificity obtained was 1 and the sensitivity obtained was 

0.778. This was probably because with 50% of overlap, the number of data points increased 

and important events that help understand the TBI patterns were not missed. Using auto-

encoder for the location-based sensors performed the best on Day 2 with 12 hours of 

window-size and Random Forest as the best model. The specificity rate obtained was 0.959 

and the sensitivity was 0.778. Random Forest on the other hand for Raw and Pre-processed 

sensor did not give such good results in terms of detecting the false positives. Improved 

results in this case could be accounted for the latent space representation that helped the 

model understand the location patterns and structural similarities/dissimilarities between 

the two classes. Thus, in line with the hypothesis, it could be concluded that location, gait 

and balance patterns can be used to detect instances of Traumatic Brain Injury. 

 

2) Difficulty with model interpretability: Across, all the three approaches it was observed that 

neural networks did not perform well. This result build on the existing evidence that neural 

networks require larger datasets to work with. Further, since neural networks are like a 

black-box, it was difficult to interpret their internal workings to identify this behavior. 
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Moreover, the progressive splitting of the feature to optimize the information gain would 

have outperformed the neural network’s ability to take probabilistic view towards piece-

by-piece model fitting. Further, 33% overlap did not give good results and did not even 

perform better than the raw sensor data approach. This could be because of the sparseness 

in the data which further led to not capturing important information. 

  

3) Issues with Survey & Sensor Data: The major limitation of this thesis was issues with the data. 

The data selection widely depended on the surveys filled by the user and the sensor data 

collection. Though 2 datasets were taken into consideration, each of them had their own 

limitations. For Lockheed Martin dataset, 18 TBI users were identified, however, only 4 

were taken into consideration. This was because only 7 users had reported a valid injury 

date. Of the 7 users, only 4 had sensor data after the injury date. Thus, only 4 TBI users 

were taken into consideration. For the Charles River Dataset, 45 users had reported a head 

injury or an accident which had led to concussion. Of the 45, a lot of users had reported 

injury twice which led to duplicate counting. Further, a lot of user did not have sensor data. 

This was because, the mobile app used for data gathering had a toggle button that allowed 

the user to stop passive data collection. Due to all this, only 18 users from this dataset were 

taken into consideration. 

 

4) Possible Future Work: Due to ample issues with data, an important aspect of the future 

work would be to have a cleaner dataset. Taking more features into consideration and 

weighing the false positive and true positive correctly would ensure the right customization 

to build the mobile application.  
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Chapter 6 

Conclusion & Future Work 

TBI has led to numerous deaths in the United States. Having a reliable smartphone-based system 

can help minimize the impact and can assist in getting appropriate aid at an early stage. This thesis 

compares three different approaches namely, raw sensor data, pre-processed sensor data and auto-

encoder based approach, using location sensor data along with gait and balance features. Using 

179 Non-TBI users and 23 TBI users, and three approaches with their corresponding results, it can 

be concluded that location sensors can be useful in predicting TBI as their behavior is similar to 

those in depression. Further, gait and balance patterns clearly depict the symptoms of TBI and 

hence can be used effectively for prediction. Tree-based models interestingly learnt the location, 

gait and balance patterns and produced good results for classification. Of the three approaches, 

using raw sensor data best results were obtained. However, if early detection is taken into 

consideration, then Auto-encoder based approach using Random Forest suits the best. 

 

Below is the detailed description of the future work associated with this thesis. 

Developing a mobile application: 

 For future work, the researcher could develop a mobile application by integrating the 

classifiers. Further, the same application that has the survey and passive sensor data collection can 

integrate these classifiers to procure a fully functional mobile application.  

 

Collecting more, high quality data: 

 More data is one of the very crucial part of this thesis and hence, the researcher could work 

along with data gathering party to focus on getting the correct data as that helps in including more 

participants for the study. Errors associated with the injury date and missing sensor data could be 

addressed which would help avoid dropping of TBI users. Moreover, the surveys could be verified 

before they are uploaded to the server. Further, more location, gait and balance features can be 

exploited to extract TBI-related patterns from the user. 
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Explore alternative Segmentation Method: 

 Apart from the segmentation methods mentioned in this thesis, one can experiment with 

sampling at different times of the day. For example, creating features and training models using 

segments as 12 AM to 6 AM, 6 AM to 12 PM noon, 12 PM to 6 PM and 6 PM to 12 AM. Since 

for some users, the health situation deteriorates during specific period of the time, this method can 

help is clearly distinguishing TBI patterns thus leading to better prediction.   

 

Using cost sensitive learning: 

 Developing a mobile application for such would require one to focus on the accuracy build 

using false positives or false negatives. Using cost sensitive learning, one can customize the app 

for healthcare workers where more false positive is taken into consideration whereas the app 

customized for patients should not take into consideration false positives at the cost of false 

negatives.   
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