

BNP Paribas: Enterprise Architecture

A Major Qualifying Project Report

Submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements of the

Degree of Bachelor of Science

by

Zhen He, Computer Science and Actuarial Mathematics

Joe Servi, Mathematics

Project Sponsor: BNP Paribas

Submitted to:

On- Site Liaisons: Scott Visconti

Arjun Kohli

Project Advisors: Professor Arthur Gerstenfeld, Department of Management

Professor Dan Dougherty, Department of Computer Science

Professor Jon Abraham, Department of Mathematics

Submitted on

Thursday, January 12, 2012

Page | i

Abstract

The goal of the project, sponsored by the Global Equities and Commodity

Derivatives (GECD) at BNP Paribas, was to create a graphical management

application that allows the group to better visualize a wide array of system flows. It

was required for the application to have bi-directional communication with internal

BNP databases and clearly show any possible problems with the data, such as an

overloaded server. The outcome of the project is an integrated application that

graphically displays and interactively manages business flows and their underlying

data and builds performance/capacity dashboards.

Page | ii

Acknowledgement

There were many people involved with the Enterprise Architecture project both

from BNP Paribas and Worcester Polytechnic Institute. Foremost we would like to

thank Mr. Scott Visconti, our sponsor, who oversaw the project from the BNP Paribas

side. Also Mr. Arjun Kohli, the project manager, who managed the day to day

operations of the project. We want to extend our gratitude towards Professor Arthur

Gerstenfeld, director of the Wall Street Project Center, for creating such an energizing

experience. Along with Professor Gerstenfeld, we want to thank Professors Dan

Dougherty and Professor Jon Abraham, our faculty advisors, for their continued

support and advice and assistance in our final report and presentation. Finally we

thank everyone in the GECD division of BNP Paribas who lent their advice, support

and opinions concerning the eventual destination of the project. Thank you.

Page | iii

Authorship

At the tool evaluating phase of the project, Zhen He took full credit of the

development in ApEx and Graphviz and Joe Servi took full credit of the development

in Visio and Data Modeler. At the formal development stage of the project, Zhen He

and Joe Servi made equal contributions to the development in the final product of this

Enterprise Architecture project.

The writers are listed to the right of the corresponding sections of this report.

Abstract – Zhen He and Joe Servi

Acknowledgement – Joe Servi

Executive Summary – Zhen He

Introduction – Zhen He and Joe Servi

Background – Zhen He

Requirement – Zhen He

Business Uses – Zhen He

Development Phase I – Zhen He and Joe Servi

Development Phase II – Zhen He and Joe Servi

Results – Zhen He

Conclusion – Joe Servi and Zhen He

Appendix – Zhen He

References – Zhen He

Since Zhen He is a double major, she will be doing additional 1/3 unit of work

related to this project in the next academic term (January 2012 – March 2012).

Page | iv

Executive Summary

BNP Paribas’ Global Equities and Commodity Derivatives (GECD) division

offers a variety of industry leading financial products. To keep its businesses running

successfully, the division relies on various internal applications (systems) and

hardware that conduct and support many business operations to function correctly and

efficiently. IT managers and infrastructure teams need to have a firm control over the

health of these applications and hardware within the context of different business

flows. Whenever there is a performance problem, they should be informed right away.

For years, however, managers kept track of business flows and performed

capacity planning manually. It was extremely costly and inefficient.

To achieve automation and increase efficiency in this area, BNP Paribas IT

managers wanted to visualize their entire “enterprise architecture” and perform

capacity management accordingly. At the same time, Human Resources managers and

Business managers also sought a better visualization of the organization for their own

purposes. Obviously, the existing database level of presentation of the data could not

meet their need.

With this said, this project aimed to help BNP Paribas to visualize and manage

their “enterprise architecture”. The goal of the project was to develop a

well-integrated application which addresses two key problems – visualization and

capacity management. It should have four basic components of implementation. The

first component is to automatically extract data from the database and feed it into a

data management interface. The second component is to create the visualization. The

third and fourth are graph interactivity and capacity analysis respectively. The final

component can be further broken down to two parts – to reflect the health of any

entity on the graph and to build a detailed performance dashboard for application or

hardware.

The project entailed two phases. At the first phase, which is a tool evaluating

phase, a variety of tools and technologies were reviewed. Two major visualization

tools – Graphviz and Microsoft Visio were assessed at this phase. Oracle Application

Page | v

Express (ApEx) was tested as a potential application interface. Major components of

implementation were explored on each of these tools as thoroughly as possible. Key

functions were implemented and demos on dummy data were given to the

stakeholders of the project.

Research on the tools showed that Graphviz has its strength in representing

structural information (Gansner, Emden R., Eleftherios Koutsofios, and Stephen

North). It is powerful in positioning optimization and rich in graphical attribute

options. The simplicity of the input file Graphviz takes in to render the graph also

made it easier to automate the whole process. These were all crucial merits that would

help the final build of the application.

Microsoft Visio, by contrast, is strong in graph interactivity including drag and

drop. It was relatively difficult to automate the graphing process with Visio, however,

and testers had to optimize positioning explicitly in the development of the tool.

While graph interactivity was good to have in the product, it was not a necessity.

Complexity in automation and extra work for positioning nodes and links in the graph,

on the other hand, represented significant flaws in the tool.

As the single tool tested as an application interface builder, ApEx performed well.

It is web-based, specialized in database applications, fast to develop, and easy to

deploy and administrator.

At the end of the first phase, testers of the project concluded that the combination

of Graphviz and ApEx seemed to be the next step to go given the timeframe. Based on

the analysis provided by the testers, the management agreed with this conclusion. The

project then moved to the second phase. It was a formal development phase where full

capacity of the two tools was explored and the final product was built.

By the end of the project, a well-integrated visualization and data management

application was built. The application has the following features: Visualization based

on User Selection, Graph Interactivity, Capacity Metrics, Summary View & Detailed

View, Processes Sub-graph, and Data management. It also has other functionalities

including User Log, Saved Diagrams, and Graphical Attribute Management.

Page | vi

The application is a good blend of different technologies. Three major tools, six

programming languages, and other technical concepts were deployed and practiced.

Graphviz, SQL Developer, and ApEx, as the graphing tool, the programming

environment, and the application interface developer respectively, were heavily used

and well integrated to function as a unit. Towards the end of the project, the

visualization was incorporated into the application interface with all the behind-screen

functionalities generated by Graphviz still supported. At this point, Graphviz and

ApEx were completely merged into one application.

One important part of the project is the process data to be visualized. It consists

of two parts – enterprise entities that constitute the business flows and relationships

among entities that preserve business logic. There are five types of entity data –

Application, Hardware, Organization Unit, People, and Process. These five enterprise

entities, together with the intricate relationships among them make up the various

hierarchical diagrams the visualization generated.

There are many business uses of the product. In general, the uses can be grouped

into three categories.

 Performance Management (Capacity Analysis)

 Personnel Management (Organization Chart)

 Technical Management (Processes Sub-graph)

In the future, the management can conduct efficiency analysis, optimize resources

allocation, and expand or retract businesses based on the information.

Page | vii

Table of Contents

..

Abstract ... i

Acknowledgement ... ii

Authorship.. iii

Executive Summary .. iv

1. Introduction ... 1

2. Background ... 4

2.1. BNP Paribas and GECD .. 4

2.2. Data of Interest .. 5

2.3. Technologies Review .. 7

2.3.1. Tools ... 7

2.3.2. Programming Languages ... 8

3. Requirements .. 10

4. Business Uses.. 13

4.1. Performance Management... 13

4.2. Personnel Management ... 13

4.3. Technical Management ... 13

5. Development Phase I: Tools Assessment, Prototyping ... 15

5.1. ApEx + Graphviz – in-house development ... 15

5.1.1. Pre-analysis on the tool ... 15

5.1.2. Technology used ... 15

5.1.3. Database and Sample data .. 16

5.1.4. Development in Graphviz ... 16

5.1.5. Development in ApEx ... 20

5.1.6. Two way interaction .. 26

5.1.6. Evaluation ... 29

5.2. Visio – in-house development ... 33

5.2.1. Hierarchical Design ... 33

5.2.2. Free Form Design .. 33

5.2.3. Semi-Free Form Design... 33

5.2.4. Methodology ... 34

5.2.5. Bi-directional Interface ... 37

Page | viii

5.3. Oracle Data Modeler – in-house development .. 39

5.3.1. SQL Developer Investigation .. 39

5.3.2. SQL Developer Conclusions ... 39

6. Development Phase II: Formal Development of Final Product 40

6.1. Detailed Design Plan ... 40

6.1.1. User Interface Design .. 40

6.1.2. Database Design... 42

6.2. Technology Used ... 43

6.2.1. Software ... 43

6.2.2. Programming Language ... 43

6.2.3. Technical Support .. 44

6.3. Architecture ... 44

6.4. Data ... 44

6.5. Methodology ... 45

6.5.1. The implementation of user preferences .. 45

6.5.2. Improvement on graph interactivity ... 45

6.5.3. Embedment of graph in the application ... 46

7. Results ... 48

7.1. Major functions and capabilities implemented ... 50

7.2. Summary of functions ... 55

8. Conclusion .. 57

Appendix A .. 58

Appendix B .. 60

Appendix C .. 61

References .. 63

Page | 1

1. Introduction

BNP Paribas’ Global Equities and Commodity Derivatives (GECD) division

offers a variety of industry leading financial products and services including equity

derivatives and commodity derivatives, indices and funds, and research and brokerage

services. To keep its businesses running successfully, the division relies on various

internal applications (systems) and hardware that conduct and support business

operations to function correctly and efficiently. IT managers and infrastructure teams

need to have a firm control over the health of these applications and hardware within

the context of different business flows. Not only do they need to get alerts right away

when a system or a server signals a performance problem, but also to understand how

an over-capacity server can impact any particular flow.

Previously, managers of BNP Paribas kept track of business flows and perform

capacity planning manually. A few years ago, right before this project was conceived,

the company had once attempted to perform capacity analysis on applications and

hardware. In order to draw useful conclusions, process data (data that constitutes a

business flow and usually can be visualized as a flow diagram) had to be manually

entered into Casewise, an external tool BNP used for business process analysis,

management, modeling, enterprise architecture etc. This took the company nearly a

year for the data to be in place. However, the results went out of date shortly after

useful analysis was done. It was too costly and inefficient. After that, the company

abandoned the way and sought for more automation in this area.

On May 6th, 2010, the financial world was briefly shaken by what has come to be

known as the ‘2010 flash crash.’ In a hectic day of trading, the Dow Jones Industrial

Average plunged 998.5 points in a few minutes only to recover its losses several

minutes later. No conclusive reason was ever agreed upon as to the cause of this

hyper-volatile string of events, but the day sent a reverberating pulse through the

financial industry calling for something to be done.

As a consequence, it became more important for BNP Paribas IT managers to

Page | 2

manage their entire “enterprise architecture” to prevent another ‘flash crash’ from

happening again. Managers wanted to get a better sense of how the organization,

business application, and infrastructure components participate in various business

flows. However, the existing database level presentation of the data could not meet

their need. Process data was still presented in raw database tables. Relationships

between the data were still referenced by index. By scanning rows after rows of a

table, one could hardly tell anything useful in terms of how the two business entities

are connected, not to say perform any useful analysis on their performance. It was

difficult to piece together the entire network of interconnected data and to manage

capacity was almost impossible.

With this said, the project aimed to help BNP Paribas visualize and manage their

“enterprise architecture”. The goal of the project was to develop a well-integrated

application which addresses two key problems: an all-in-one-place visualization, and

convenient capacity analysis. The application graphically displays business flows and

interactively manages their underlying data. It also builds performance/capacity

dashboards on business entities within the context of any flow.

The application has four basic components of implementation. The first

component is to automatically extract data from the database and feed it into a data

management interface. The process consists of making queries to the database and

transforming its raw relational form into a more presentable format displayed in the

user interface. The second component is to graph the data. The graph should be able

to establish relationships at different levels. For example, if it currently displays a

general view with processes as elements, after drilldown, it should reveal what is

going on underlying each of the processes. The third component is graph interactivity.

The graph should allow for simple user interactions. Based on user selection and

preferences, the graph should collapse or expand a node, hide part of the picture, or

roll up or roll down at a particular level. The final component is capacity analysis.

This component involves two parts. One is to reflect the health of any entity on the

graph so managers spot the problem at the first sight of the picture. The other is to

Page | 3

build a detailed performance dashboard. The dashboard lists performance statistics on

certain capacity attributes measured against predefined thresholds.

 To implement the application, the plan of the project entailed two phases. The

first phase is a tool evaluating phase. Two major visualization tools – Graphviz and

Microsoft Visio were assessed at this phase. Oracle Application Express (ApEx) was

also tested as an application interface. After some analysis, the combination of

Graphviz and ApEx proved to be the right solution. The project then moved on to the

second phase which is a formal development phase. Full capacity of the two tools was

explored at this phase and the final product was built.

Page | 4

2. Background

In this section, background of the company, BNP Paribas and its division, GECD

are briefly discussed. The data to be visualized in this project is introduced and

candidate tools and technologies that were used to build the application are reviewed.

2.1. BNP Paribas and GECD

A leader in global banking and financial services, BNP Paribas is one of the six

largest banks in the world. The US site of the company has a very strong Corporate &

Investment Banking business. BNP Paribas Global Equities & Commodity

Derivatives, an arm of BNP Paribas Corporate and Investment Banking, offers

custom-made derivatives on equity and commodity underlyings worldwide. It brings

together three complementary business lines of Structured Equity, Flow & Financing

and Commodity Derivatives.

 Structured Equity: provides structured solutions to a broad group of personal

and business customers, banking networks, insurance companies and pension

funds. It provides customized or exchange-traded structured products to meet

their needs in capital protection, yield and diversification.

 Flow and Financing: covers products and services required by institutional

investors to implement their investment, hedging, and portfolio optimization

needs in a multitude of markets and underlyings. These products and services

encompass flow derivatives, stock lending, prime brokerage and execution, as

well as Asian equities research and brokerage.

 Commodity Derivatives: offers a full range of price risk management

solutions on underlyings including energy, metals and soft commodities. The

OTC (Over-The-Counter) group provides liquidity and market-making

services, while the Futures team provides global clearing and financing tools

for listed commodity futures and options to the corporate and institutional

client base of BNP Paribas.

To support these important businesses, over 1400 front office staff work under

GECD, numerous applications (systems) and servers keep running, and hundreds of

Page | 5

business flows are going behind.

2.2. Data of Interest

One important part of the project is the process data to be visualized. Process data

contains valuable information about business flows. It consists of two parts –

enterprise entities that constitute the business flows and relationships among entities

that preserve business logic. There are five types of entity data.

 Application – system where business activities are carried out. A typical

example is High Volume Trading Platform.

 Hardware – infrastructure unit that supports applications, i.e. switch ports,

servers.

 Organization Unit (OU) – business component and department that is either a

group of business users or an IT support team of applications or hardware, i.e.

GECD, CIB. OU is usually an intermediate node in an organizational

hierarchy.

 People – individual employees. They are usually end leaves in an

organizational hierarchy.

 Process – collection of Applications, Hardware, and OUs. Process is an

integral and independent subpart of a business flow.

The most important entities are Application (system), Hardware (server), and OU.

They make the majority of a business flow. The first two are also main targets for

capacity analysis. Capacity dashboards are built around the performance of an

Application or Hardware entity.

Another thing notable about an Application or Hardware entity is the distinction

between its physical instances and the master entity itself. The master entity is a

conceptual existence representing one particular type. For example, MktFeed is a type

of Exchange Feed application. However, there is no single application called

“MktFeed” running in reality. What actually perform the type of business operation

are its physical instances. They are NYCE feed, ARCA Feed, and Nasdaq Feed, each

responsible for one market. Each physical instance might be used by a different OU

Page | 6

and participate in a different business flow. Therefore, it makes sense to distinguish

them to manage their capacity separately. It also makes sense to look at all instances

as one master entity in a summary view.

Process is a relatively special entity among the five. It is a composite entity made

up of the interconnected entities. The elements of a process act as a whole for one

business purpose.

Various relationships exist between enterprise entities to indicate business logic.

Relationships include hardware to application, application to application, hardware to

organization unit, and organization unit to organization unit. Relationships make up

chains and chains make up networks that are part of the entire business hierarchy. The

simplified hierarchy can be illustrated by the following diagram:

Figure 1: Hierarchy.

The hierarchy starts with organization units, for example, BNP Paribas or GECD.

These OUs usually take charge of some business process, which consists of

OU OU OU

People People People

OU

Process

Application

Hardware Hardware Hardware

Application

Page | 7

interconnected applications and hardware that support them. The process can flow

into other processes or business entities at the same level. The process can also flow

down into another group of OUs, usually the infrastructure teams that support the

hardware in the process. The hierarchy keeps running down until reaches the ends

where individual employees under a particular OU reside.

To see samples of real data, readers can refer to table Computer System,

Infrastructure, ProcessID (for entities) and Relation Classification, Map

Infrastructure to System (for relationships) in Appendix C.

2.3. Technologies Review

A variety of technologies contributed to the development of the project, either at

the tool assessment stage or in the formal development phase. Five tools and six

languages are included here. Below is a literature review to each of them.

2.3.1. Tools

Graphviz

Graphviz, short for Graphviz Visualization Software, is a set of open-source tools

provided by AT&T Labs Research for drawing graphs and networks. The software

takes in the description of the graph in a simple text language called DOT, which can

then be rendered into a variety of useful formats, such as JPEG and SVG (for web

pages), with different layout options including “spring model”, radial, and circular

layouts. In the market, Graphviz is known as industry-standard graph visualization

software. It has many important applications in networking, bioinformatics, software

engineering, database and other technical areas.

ApEx

Oracle Application Express (Oracle ApEx) is a fast application building tool

based on the Oracle databases (Oracle Application Express). It requires no installation

on the user side and can be used as pure web-based development. It can be used for

building departmental-style applications with a dozen users, but can also scale up to

handle thousands of users (Oracle Application Express). The framework itself adds

very little overhead to each page request so the performance is only affected by the

Page | 8

efficiency of the SQL queries built in the application.

Microsoft Visio

Microsoft Visio is a commercial diagramming program for Microsoft Windows

that uses vector graphics to create diagrams. It has developer capabilities which allow

the application to integrate with Visual Basic to produce automated responses. Visio

comes with a large number of shape templates that correspond to different popular

designs such as implementing an employee hierarchy. Visio focuses a variety of

simplistic measures while maintaining a graphically pleasing display.

Oracle Data Modeler

SQL Developer Data Modeler is a unique, free data and database modeling tool,

which provides a full range of utilities to support all data modeling needs. Data

Modeler uses the .XML coding language to produce a graphical diagram. Data

Modeler displays relationships between various entities, and allows the user to make

simple data manipulations from the graphical level.

2.3.2. Programming Languages

Python

Python is a general-purpose, high-level programming language. It is designed to

emphasize code readability. Its use of indentation for block delimiters is unique

among popular programming languages. It has remarkable programming power which

includes large standard library and comprehensive modules. Similar to Scheme, Ruby,

and Perl, Python is also a dynamic language. It is often used as a scripting language,

although it can be applied to non-scripting contexts. The reference implementation of

Python is free and open source software and has a wide community-based

development model.

DOT Language

DOT is a plain text graph description language. It is a way to describe graphs.

The files that use DOT language usually end with .gv or .dot. Many programs can

process DOT files, including dot, neato, fdp, and circo. Most of the programs are part

of the Graphviz package.

Page | 9

SQL

SQL (Structured Query Language) is a programming language for managing data

in relational database management systems (RDBMS). It has a variety of capabilities

including data insert, query, update and delete, schema creation and modification, and

data access control. It is the most widely used database language.

PL/SQL

PL/SQL (Procedural Language/Structured Query Language) is Oracle

Corporation’s procedural extension language for SQL and the Oracle relational

database. It is designed specifically for the seamless processing of SQL commands.

Server-side PL/SQL is stored and compiled in Oracle Database and runs within the

Oracle executable. As one of the three key languages embedded in the Oracle

Database, it automatically inherits the robustness, security, and portability of Oracle

Database.

HTML

Technically speaking, HTML (Hyper Text Markup Language) is not a

programming language. It is a markup language that uses tags to describe web pages.

HTML documents are equivalent to web pages. Web browsers read these documents,

interpret the content by HTML tags, and display them as web pages.

JavaScript

JavaScript is a prototype-based scripting language. It is primarily used in the

client side, implemented as part of a web browser to provide enhanced user interfaces

and dynamic websites. Besides web pages, it has other applications such as PDF

document.

Page | 10

3. Requirements

The requirement of the project came from three major areas:

Dashboard on System (Application) Performance

 System Monitor

List of Systems

 System Cartography

 Systems by Function

 Systems by Business Unit

List of Servers

 Server Cartography

 Servers by System

(BNP Paribas. “Enterprise Architecture Overview.”)

The first requirement was to build dashboards to monitor system (application)

performance. This was the step stone to capacity management. In order to build

performance dashboards, the systems and the hardware (servers) that support them

needed to be understood with the context of business flows. That was where the

second and third requirements came in – to visualize the list of systems and servers.

The visualization was not necessarily a messy picture with everything included but

could be part of the entire organization within certain contexts. Systems could be

viewed with the context of business function or business unit while servers with the

context of system.

 The requirements also included what the visualization ideally should look like.

The following picture is a business flow of systems with performance dashboards.

Page | 11

Figure 2: Graph Example from Requirements.

(BNP Paribas. “Enterprise Architecture First Phase – a tool for capacity management.”)

The example shows systems (nodes) and feeds (links) between them. Note that

the three applications, Edge, FORCE, and EDGE Trader have their corresponding

capacity dashboards (metrics) displayed by side. The dashboards summarize how the

application performs within a period of time, measured by key aspects like Memory

and CPU. One of the applications, Edge, is color-coded in red because based on the

performance statistics it is diagnosed as currently over capacity.

Recall that the background section elaborated on the difference between a master

entity of an application or a server and its physical instances. Correspondingly,

requirements of the project also emphasized on the distinction between a summary

graph and a detailed graph. The application that was to be developed was required to

implement both of the two.

Edge

Feed Handler

Market Feed

Mkt Info

Order

EDGE Trader

PRIMO

ValRisk

Market Match

Mkt Info

Order

FORCE

Order Ack & Fill

O
rder

O
rd

er A
ck &

 F
ill

Pos &
 T

ra
de

Risk

P
&
L

T
rad

e &
 P

o
s

 Min Mx Avg 99%

RT (ms) 1.5 13.2 11.8 12.2

Fill Ratio 42% 78% 65% 70%

Memory 05% 45% 34% 41%

CPU 08% 72% 55% 63%

 Min Mx Avg 99%

RT (ms) 5.7 14.2 12.2 14.0

Fill Ratio 42% 78% 65% 70%

Memory 35% 79% 71% 75%

CPU 20% 79% 65% 69%

 Min Mx Avg 99%

RT (ms) 7.5 15.2 12.8 14.2

Fill Ratio 42% 78% 65% 70%

Memory 05% 72% 55% 61%

CPU 12% 72% 57% 66%

 Power

Page | 12

Figure 3: Detailed View. A detailed graph would display every individual instance.

(BNP Paribas. “Enterprise Architecture First Phase – a tool for capacity management.”)

Figure 4: Summary View. A summary graph only shows the master entity.

(BNP Paribas. “Enterprise Architecture First Phase – a tool for capacity management.”)

Edge 1

Feed Handler 1

Futures Feed

ARCA/NYSE Feed

NASDAQ Feed

Mkt Info

Mkt Info

Mkt In
fo

Order

Order

Order

EDGE Trader 1

PRIMO

ValRisk

Futures Match

ARCA/NYSE Match

NASDAQ Match

Feed Handler 2

Edge 2

Edge 3

Edge 4

M
kt Info

Mkt Info

M
k
t In

fo

Mkt In
fo

Mkt Info

Mkt Info

Mkt Info

Mkt Info

EDGE Trader 2

EDGE Trader 3

EDGE Trader 4

Ord
er

O
rd

er

O
rd

er

O
rd

er

FORCE 2

FORCE 3

FORCE 1

Order Ack & Fill

Order Ack & Fill

Order Ack & Fill

O
rd

e
r

O
rd

e
r

O
rd

e
r

O
rd

e
r

O
rd

e
r A

c
k
 &

 F
ill

O
rd

e
r A

c
k &

 F
ill

O
rd

e
r A

c
k
 &

 F
ill

O
rd

e
r A

c
k
 &

 F
ill

P
o
s
 &

 T
ra
d
e

P
o
s
&
 T
ra

d
e

P
o
s
&

Tr
ad

e

P
os

 &

T
ra

de
Risk

P&L

T
rad

e &
 P
o
s

Risk

P&L

Trad
e &

 P
o
s

Risk

P
&

L

T
ra

d
e
 &

 P
o

s

Risk

P
&
LT

ra
d

e
 &

 P
o

s

 Power

Edge

Feed Handler

Market Feed

Mkt Info

Order

EDGE Trader

PRIMO

ValRisk

Market Match

Mkt Info

Order

FORCE

Order Ack & Fill

O
rder

O
rd

er A
ck &

 F
ill

Pos & Trade

Risk

P&
LT

rad
e &

 P
o
s

 Power

Page | 13

4. Business Uses

The requirements came from stakeholders each with their own need from the same

application. In general business uses of the application can be grouped into three

categories.

 Performance Management

 Personnel Management

 Technical Management

4.1. Performance Management

This is the most important business use of the three. If a server is over capacity, it

gets reflected on the graph by the color. The manager sees the alert and wants to see

what is going on with that server. He would be able to drill down to see the

performance metrics (dashboards) built for that server. It is a log showing detailed

information about how the server performs over a period of time. Any problematic

record is highlighted so the manager could spot it at the first sight. Since the server is

graphed within the context of a business flow, the problem is understood with

reference to other entities the server is connected to. This use can be applied to

systems (applications) and hardware (servers).

4.2. Personnel Management

 One of the interested parties of the data is Human Resources. They are interested

in organizational charting to improve personnel management. The graph shows a clear

relationship between organization units and people under them. It is easy for HR

people to see what position each employee falls in within the entire organization. Any

personnel update can be reflected in the graph. The graph also shows what application

or infrastructure component any employee currently has access to. If an employee

moves from one department to another, what to deprive him of and what to grant him

is easy to see from the graph. This helps to make access granting in a huge

organization more regulated.

4.3. Technical Management

 Similar to people in an org chart, processes can be shown in detail on the graph.

Page | 14

Managers can analyze the elements and the flow between them in a particular process.

They can also see how one process interacts with other business flows. Together with

performance management, managers are able to conduct efficiency analysis, optimize

resources allocation, and expand or retract businesses.

A full list of interested parties and business uses can be seen in table Interested

Parties for Data in Appendix B.

Page | 15

5. Development Phase I: Tools Assessment, Prototyping

5.1. ApEx + Graphviz – in-house development

In this part of the tool analysis, Graphviz was tested as a graphing engine and

ApEx as a data management interface. In order for the two separate tools to act as an

integral application, their interactivity with each other was also tested.

5.1.1. Pre-analysis on the tool

Candidacy of Graphviz

 Embedded with optimized positioning algorithm

 Standard in representing structural information

 Rich in custom options

Candidacy of ApEx

 Fast development

 Specialized in building applications from database

 Web-based

 Easy to deploy (end users access the application through a URL)

 Easy to administrator (scalable for thousands of users)

5.1.2. Technology used

Programming Languages

 Python – automated the generation of input files in the DOT language.

 SQL – embedded in the Python script to make database queries. It was also

widely used in ApEx as the source for many standard components such as

Interactive Report.

 PL/SQL – a major developing language in ApEx together with SQL. It

provided the source for ApEx Processes and communicated between database

references and application references.

 HTML – customized the displaying features both in Graphviz and ApEx.

Software

 Python 2.7 – recommended bugfix release of Python.

 Graphviz-2.28 – latest stable release of Graphviz.

Page | 16

 Oracle Application Express 4.1 – latest release of Oracle Application Express

 Oracle SQL Developer – manages the data in database from a development

level.

5.1.3. Database and Sample data

For the purpose of evaluating the tool, an Oracle database called

“GECD_EnterpriseArchitecture” was set up, along with nine tables filled in. There

were four types of Enterprise Entities: Application, Server, RoleTeam, and Employee

and five types of relationships: Application to Application (AA), Application to

RoleTeam (AR), Application to Server (ASERVER), Server to RoleTeam (SR), and

RoleTeam to Employee (RE). There were two major relationship chains, one for

business user teams, and the other one for infrastructure teams. They can be illustrated

by the following flows.

Figure 5: Two Flows in Graphviz testing.

Although the sample data used at this stage was largely simplified from the real

data, it preserved the essential hierarchical structure of the business flows and sufficed

for the testing purpose.

5.1.4. Development in Graphviz

5.1.4.1. Database connection

cx_Oracle, a Python extension module, allows access to Oracle and provides

Python database API (Application Programming Interface). The following code used

the module to establish the connection and fetch the data.

Application

Server

RoleTeam

(support team)

Employee

Application

RoleTeam

(user team)

Employee

Page | 17

Import cx_Oracle

conn = cx_Oracle.Connection (“EA_APP/EA_APP@GECD_EnterpriseArchitecture”)

Cursor = conn.cursor()

5.1.4.2. DOT language and the graph

This section is to illustrate what basic format of file Graphviz takes as input and

what the outputted graph looks like. In sample.txt file, write a piece of code as

follows:

digraph myGraph {

nodeA;

nodeB;

nodeA ->nodeB;

}

 Figure 6: Sample Graph I

In the example, myGraph is declared as a digraph, which means links are directed

with arrows pointing the direction. Inside ‘{}’ is where the nodes, links, and their

attributes are defined. Here two nodes, nodeA and nodeB, and one link from nodeA to

nodeB are created in the graph.

Instead of manually inputting the data and formatting it in the text file, python

code automated this process and generated the graph systematically.

5.1.4.3. Automation Procedure Architecture

The following flow shows the automatic drawing process that was coded in the

Python script.

Figure 7: Automation Procedure Architecture.

5.1.4.4. Implementation Design: move along different levels of relationships

Structural information of interest does not usually consist of one level of

relationships. As to graph a multi-level relationship correctly, for example the

Data Selection

•Make
database
queries

Data
Transformation

•Format data
into "node"
and "link"

Data Expansion

•Move along
the
relationship
chain for
multi-level of
reationships

Data Output

•Output the
graph in the
DOT
language

Page | 18

relationship of application-server-role/team, a way to pass the result of the first

SELECT statement (for application - server) to the second statement (for server-

role/team) was necessary.

There were two possible ways to pass the variables. The first one was to select all

the data needed for graphing in one single chunk of code. This was equivalent to

creating a master table with all the entities and linkage information assembled. The

second option was to have each relationship in its individual SELECT statement

implemented in separate functions in Python and pass the variables in function calls.

In this way, the ‘variable passing’ was done dynamically at runtime.

The first way was technically simpler. However, it had the major drawback of

inflexibility. Simply by varying the number of levels to visualize in the graph and the

structure of the relationship chain could produce many different graphs. Writing

SELECT statements for each of them was not a good practice of software engineering.

There was a lot of repetition involved. The code was also hard to maintain in the long

term and scale poorly. In contrast, the second way was much more flexible. It dealt

with one level of relationship at a time and generates multi-level graphs by reusing

each level and put them together. The variation was encapsulated at a higher level

where it was easier to accept user input and dynamically created new combinations.

The second design option was implemented. Each relationship had its own

function where only one level of data was selected. The function prepared for next

level data selection by returning the list of destination node ids. When the next level

function took in the list as a parameter, it used the list as part of WHERE clause and

began another cycle of selection. Here is some sample code:

Page | 19

Figure 8: Selection Function. The function took application ids as input, formatted them and

used them in the selection statement.

Figure 9: Process function. The function recorded this level of information to the output text

file and returned the nodes for next level.

5.1.4.5. Functions

By the end of coding in python, the following aspects were explored and (or)

implemented.

1) Customized colors and shapes for different levels.

In terms of varying the appearances of nodes and edges, Graphviz has a variety of

options to choose from including shapes, colors, and styles (Node Shapes). Here is a

simple example to illustrate how it works.

digraphmyExample {

nodeA [shape = box,color = red,style = filled];

nodeB [shape = ellipse, color = blue, style = unfilled];

nodeA ->nodeB;

}

 Figure 10: Sample Graph II.

The Dot language provides over 100 types of attributes to manipulate with (Node,

Page | 20

Edge and Graph Attributes). The full list can be found the documents in

Graphviz.Org.

2) ‘Search’ functionality

Users could select the items they wanted to start the visualization with by

providing the python program with command line arguments. The program

implemented a complete set of Application Programming Interface (API) ready to use.

No matter what type of application would be used in the future to accept user

selection, as long as the type and an id list of nodes were supplied, the program could

generate the desired graph automatically.

3) Expand in three directions: upward, downward and in the same level

Starting from any level with any node, the graph was generated systematically by

expanding upward, downward, or remaining at the same level.

5.1.4.6. Picture Rendering

Graphviz supports a variety of graph formats. To generate a specific type of

format, for example, the JPEG format, navigate to the directory where the dot

executable sits and use the following command:

dot –Tjpg sample.txt –o samplePic.jpg

For other formats, substitute –T{jpg} with other –T options. For example, Svg

files can be generated by using –Tsvg.

5.1.4.7. Sample code and pictures generated

See Appendix A.

5.1.5. Development in ApEx

Very different from the development in Python, development in ApEx involved

little build-from-scratch work. Most of the time, developers clicked on buttons,

specified attributes from dropdown boxes, and wrote small piece of code. ApEx did

all the underneath “dirty” work and provided developers with fancy-looking in-built

components with powerful capacities ready to use.

5.1.5.1. Development Preparation

It is very easy to develop in ApEx. All a developer needs to do is request a

Page | 21

workspace from Oracle and get the username and password set up. After that, login in

from the login page on Apex.Oracle.com website and start developing.

5.1.5.2. Most important features in ApEx

The following is a walk-through of the most important features provided by ApEx.

Interactive Report

Perhaps the most important and useful feature in ApEx is Interactive Report (IR).

It displays a table of records stored in database with columns as the developer chooses.

The content of the table comes from a single SQL SELECT statement. The Report is

very easy to create. A couple of button clicks and attribute specifications produce a

very standard looking report. Functionalities like search/filter, sort, and edit each

record come automatically with nice looking interface.

The following SELECT statement made a report as below:

SELECT AA.ID,

 AA.SOURCE,

 (A1.NAME) FROMNAME,

 AA.DEST,

 (A2.NAME) TONAME

FROM AA,

 APPLICATION A1,

 APPLICATION A2

WHERE AA.SOURCE = A1.ID AND AA.DEST = A2.ID

Figure 11: Interactive Report. The report displays all the records in table AA (Application

to Application) with their names aside.

Page | 22

The major part of the report, the table-like assembly of records, closely resembled

the table AA in the database with more user friendly interface.

The Interactive Report has three inherent functions.

 Search and Filter.

A search on any column of the report can be performed in the search bar below.

Figure 12: Search Bar.

Click on the magnifier to select the column name and type in the string to be

contained in the search results. For example, if the user wishes to search for all the

records whose fromname contains ‘exc’, choose fromname, type in ‘exc’, and click

the button Go:

Figure 13: Search.

Now the report only displays the hits from search result.

Figure 14: Interactive Report after Search. It only displays hits from the search.

If the user wishes to perform a more precise filter on the data, he /she can go to

Page | 23

Actions and select Filter. This opens up a new Filter window where the user can

specify the filtering criteria.

Figure 15: Filter.

 Sort

Sorting on any column is easy. Click on the column name and select or

for ascending or descending sorting.

 Edit on the records

Click on the icon and the user is directed to another page with all the detailed

information about that particular row of record assembled and ready to edit. This is

closely related to another powerful component in ApEx - Form.

Form

Forms are usually used to edit one single record from a database table. They can

be created in bundle with an Interactive Report for a table (form page on table with

report), or by themselves. In either way, there is a way to tell the form page what

record to load from the report. A Form typically looks like this:

Page | 24

Figure 16: Form for Creating. This is for creating a record.

Figure 17: for Editing. This is for editing a record.

If the form page is not created together with the report page, the developer has to

establish the link himself. In the Link Column section of Report Attributes, choose the

Target as Page in this Application and specify the page number of the form page. In

the Name and Value fields, specify the Item name on the form page and the

corresponding value to send from the report page. In this way, the form page knows

which row of record is coming and what information should be loaded. Normally, the

primary key of the table is the “messenger” and all the other fields of information are

filled in automatically.

The analysis on the Interactive Report and Form showed ApEx as a promising

data management interface builder. IR displayed all the records of a table and Form

allowed creating and editing any particular record for that table. The combination of

these two fulfilled the need as to see and change the data. The powerful search/filter

ability of IR also enabled managers to quickly locate a single record or a group of

records without much effort. The selected records could later be used as the input for

Graphviz to begin graphing with.

Page | 25

5.1.5.3. Advanced Interactive Report implementation

In terms of how managers want to use the Interactive Report to select some of the

data to visualize, the standard IR lacks a way to indicate the selection.

Research showed that the right solution to this challenge was to use checkboxes as

a separate column in the report. A PL/SQL package called htmldb_item was used for

this (APEX Check Boxes in Reports Regions). The package creates form elements

dynamically based on a SQL query. The following code demonstrates how to

incorporate the CHECKBOX function into SQL statements.

SELECT HTMLDB_item.checkbox(1,id) CheckBox,

 r.id,

 r.name

FROM ROLETEAM r

Note that in the first line, the CHECKBOX function took in two paramters. The

first one was an index determining which htmldb_application global variable was

used. For example, 1 indicated variable F01 and 2 F02. The htmldb_application

global variable was the variable that kept track of the column of the report and could

be referenced elsewhere in the application. The second parameter was the value of the

checkbox, in this case, the id for table ROLETEAM. Below is the screen shot of the

RoleTeam report with checkbox added.

Figure 18: IR with CheckBoxes.

To illustrate how the checkboxes work, imagine the user checks records with id 1,

2, and 4. Since there are three records selected, htmldb_application.F01.count is 3.

Page | 26

The htmldb_application.F01 (1), htmldb_application.F01 (2), and

htmldb_application.F01 (3) are 1, 2, and 4 respectively. In this way, the selection was

well indexed and could be referenced somewhere else in the application.

The Checkbox solution provided an intuitive way for the user to select the records

and for the interface to accept selection. By using the htmldb_application global

variable, selected records could be referenced and prepared for the next step of action.

5.1.5.4. More Research on ApEx

This section devotes to additional exploration in ApEx at the stage of tool testing.

1) More page Item types

The default item types Text Field and Number Field were not so useful because

users had to remember the entire string in order to edit. In such cases, Select List,

Popup List of Value and Text Field with autocomplete were more helpful.

 Select List - a non-editable dropdown box

 Popup List of Value - a Select List with a pop up window instead of a

dropdown

 Text Field with autocomplete - gives hints while users type in the string.

All three of them helped to make the application more user-friendly.

2) Print out dynamically changing text

When the developer tested on the usage of the checkboxes, there was a need to

print out the values of htmldb_application.F01 variables. It turned out that ApEx has a

region type called ‘dynamic content region’ where the dynamically changing source

can be displayed by function htp.p. The region was also used for debugging purposes.

5.1.6. Two way interaction

5.1.6.1. From Graphviz to ApEx

The biggest obstacle that prevented Graphviz + ApEx from being the right tool for

the project was the static nature of the graph generated by Graphviz. It was believed

by all the testers and developers that the graph provided no way of user interaction

until the midpoint of the project.

Page | 27

The major breakthrough came from the finding that a URL link could be added to

a node in the same place where customized attributes are defined. It was a very faint

connection between the Graphviz and the outside world but it was also a very brilliant

idea.

At the first phase of the exploration, a simple URL (www.google.com) was added

to every node. The modified sample script looks like this:

digraphmyExample {

nodeA [shape = box,color = red,style = filled, url = “www.google.com”];

nodeB [shape = ellipse, color = blue, style = unfilled, url = “www.google.com”];

nodeA ->nodeB;

}

Research showed that the “hot region” for a node is defined as the entire area

bounded by its shape. However, not all of the graph formats are clickable. As the

Graphviz documentation from Princeton.Edu (Graphviz – QED) points out, URL

links are only supported in ps2, cmap, imap and svg formats. Svg format was chosen

later because it could be opened in a web browser.

The URL link was then customized based on the id of the node being clicked.

After it was found that it was possible to embed the id in the link, the URL was

changed to the path of a particular ApEx page. The idea was to direct the user to the

editing page for that particular node.

ApEx page URL

In order to pass in the parameters to the right place of a URL, it is important to

understand the constitution of an ApEx page URL. Note that most of the ApEx

application URLs have a part starting from f?p. There are usually 9 parameters that

can be specified after.

f?p = 1:2:3:4:5:6:7:8:9

1- The application number. To access the current application id, use &APP_ID..

2- The page number.

3- The session. To access the current session, use &SESSION..

4- The request to pass to the destination page.

http://www.google.com/

Page | 28

5- DEBUG. Decide whether the page is run in debug mode or not. either YES or

NO

6- Two values, ‘RP’ for indicating resetting pagination and the other for pages

where cache is reset.

9- Printer friendly. (URL Parameters)

Parameter 7 and 8 are very important. Parameter 7 is a comma separated list of

page items ready to be assigned the values from the comma separated list of values

specified in Parameter 8 (URL Parameters). As in the case here, the URL attached to

any node could be

http://nycs00057970:8080/apex/f?p=100:9:&SESSION.::NO::P9_NODEID:4 (Oracle

Application Express APEX: Passing Values between Screens)

Here the URL linked the node to page 9 of application 100. An Item on that page

called P9_NODEID was set to 4. The page 9 was a form page for editing a node. By

passing the value 4 to the node id on that page, the information of that record could be

pulled out and loaded into the fields of the page, ready for editing. In practice, the

value 4 could be substituted by any variable holding the id. Setting the Parameter 7

and 8 of a page URL like this was extremely critical and useful for the communication

between ApEx and the outside world and within ApEx itself.

Therefore, by manipulating page URL manually and incorporating it in the input

dot script for Graphviz, the one-way interaction from the graph to the data

management interface was established.

5.1.6.2. From ApEx to Graphviz

The ideal way of user interaction from ApEx to Graphviz was to have a button

trigger the drawing procedure. The procedure took the records selected as input and

ran an OS command based on that. A button and a triggering process were not

difficult to implement in ApEx. However, how to invoke the OS command from ApEx

was a problem. There were basically two ways to do this. One was by external

procedure call, and the other was by dbms_scheduler job. In both cases, the command

http://nycs00057970:8080/apex/f?p=100:9:&SESSION.::NO::P9_NODEID:4

Page | 29

would be executed on the same server as the Oracle database resided. After some

research, external procedure calls turned out to be more complicated. Therefore,

dbms_scheduler was chosen.

The possibility to achieve two-way interaction was critical in the assessment of

the tool combination of ApEx and Graphviz. After this founding, for the first time the

tool combination was proven a feasible option.

5.1.6. Evaluation

Graphviz and ApEx have many attributes that made them strong candidates for the

project.

Merits on Graphviz

Based on the pre-analysis, Graphviz was proven to have:

1) Embedded positioning algorithms

By simply specifying in command argument major layout to use (Using GraphViz,

a Brief Tutorial | Orient Lodge), the user gets a nicely displayed graph. Graphviz does

all the intelligent work behind the scene. This largely reduces the amount of

programming work that needs to be done.

2) Great scalability

Graphviz is the industry standard in representing structural information. Its

positioning algorithms optimize the arrangement of the nodes and minimize the

overlapping of the links. This largely increases its scalability for a huge amount of

data, which is the amount the developers would be faced with.

3) Various attribute options

As shown in sample code and graph, Graphviz provides a variety of attributes

including colors, fonts, line styles, and custom shapes that help distinguish between

different types of nodes and links.

Based on the python program, Graphviz was found to assist in automating the

process of feeding data and drawing. As opposed to many other graphing engines, it

requires no more special file format than .txt as input. The syntax of its language,

Page | 30

DOT, is also simple and programmatic. Any programming language can generate the

format automatically without much effort. Furthermore, the separation of the input,

which contains the pure master data, and the rendering process, which outputs master

data together with attribute data, makes the automation even simpler. Developers can

plug their own data at the point of providing the input file without affecting the step of

rendering. Recalling from the requirements, one of the basic components is to

automatically pull out data and graph it. Graphviz satisfies the requirement easily.

Merits on ApEx

ApEx was chosen to complement Graphviz both as a data management tool and a

control panel. Apart from those listed in the candidacy section, the following points

are stressed here:

1) Standard database application builder

ApEx is designed for database applications. The source of many components in

the application is a single SELECT statement. This specialty easily satisfies the need

to build a data management interface above the underlying database.

2) Easy deployment

No installation on the user end is required. As soon as a username and password

are granted by the administrator, the user can login in and play with the tool. This

shortens development cycle and allows easy enhancements even after the application

is in use.

3) Easy development

ApEx provides standard components (i.e. the Interactive Report) that come with

powerful functionalities. All the developers need to do is specify attributes of the

component by filling out forms and selecting from dropdown boxes. It is much faster

than the standard programming way of building up bit by bit in a programming script.

4) Powerful administrative management

As the requirements pointed out, the project was designed to incorporate the need

from different groups of users. In terms of this, ApEx has powerful administrative and

security management capacity. In the Administration section of the application,

Page | 31

different users can be granted different set of permissions. Many components of the

application also have a Security section which prevents certain group of users from

using it.

5) Multi-language supported

ApEx supports not only one language. To interact with database, it uses SQL and

PL/SQL. To render pages within the application, it supports html and javascript. The

latter two languages are also widely used in tweaking the appearance of a standard

component and defining processes or functions to link components.

Merits on the combination

In terms of the combination of the two tools, the bi-directional interaction of

Graphviz and ApEx was established one way by hyperlinks and the other by stored

procedures and dbms_scheduler. In this way, at least on a preliminary stage, Graphviz

and ApEx could be integrated into one united piece of software.

Drawbacks on the combination

There were certainly some downsides in this option. The most obvious one was

the limited user interaction that can be performed on the graph. Most of the desired

actions like create a node, delete a link, and drag and drop could not be done on the

graph. Although the hyperlink approach guaranteed at least some communication

between the graph and its underlying data, the way it worked was still the least

intuitive. The other drawback lay in the development in ApEx. On the one hand,

doing all the dirty work for developers saved development time and was good for

creating standard-looking components. On the other hand, however, it hid necessary

details from developers. Since developers did not know the code that implements

functionalities like search/filter in the IR, it became much more difficult for them to

extend and customize the functionality. In most cases, developers did not even know

where to change some of the attributes although there were actually options in the

dropdown boxes. This could affect the learning curve of the developer and become a

problem at the early stage of the development. The third problem of Graphviz and

ApEx was their separation. Although they could be connected, the combination was

Page | 32

still not functioning as an all-in-one-spot application. Binding them strongly and

embedding the graphs in ApEx page was difficult but definitely the next step to go.

Page | 33

5.2. Visio – in-house development

5.2.1. Hierarchical Design

 The second application investigated Microsoft Visio. Visio was chosen because it

has the capability of heightened user interaction and increased graphical displays

making it a more viable option. Visio has several interfaces that vary in terms of

functionality and automated display . Each interface corresponds to a different

popular template. For example, one can make an employee hierarchy with the

‘Hierarchy Template’. Initially a hierarchical design, which was set up to process

flows and nodes in a user friendly design, was tested. However, the hierarchical

design did not provide the user with the level of freedom that would be needed to

complete future stages of the project .

5.2.2. Free Form Design

Once the hierarchical design was deemed too limiting, a free from design was

investigated. This free form design gave the user complete freedom. With this, a

VBA macro was developed that allowed the user to automatically display a node and

evenly placed and connected dependent nodes around it. However, flaws were found

in this freeform design as well. The free form method would make it difficult to

process large amounts of information, and the information that was processed would

be confounded to a point that didn’t require unlimited user freedom.

5.2.3. Semi-Free Form Design

Finally an option was developed that allowed the user to place nodes freely and

had several organized ways of connecting nodes.

A tutorial can be viewed at:

http://support.microsoft.com/kb/309603

This tutorial demonstrates how to create a template for programmability with

Visio. It creates a simple program that opens up a Visio document, pastes an object on

the screen, saves the documents and quits. Visio VBA language was the main

component of this option. Initially this presented a challenge because there is not

much information available pertaining to this language, aside from the tutorial

discussed earlier. However, the VBA Visio application allows the programmer to

http://support.microsoft.com/kb/309603

Page | 34

record macros. Therefore, the user has the ability to see a script of their actions within

the programming language which is a key component for developing this application

further. This feature also allowed for the discovery of the key VBA Visio commands

which were implemented throughout the rest of project.

5.2.4. Methodology

5.2.4.1. Algorithm For Application Development

To develop the VBA Visio application, a table with employees and their direct

superior was saved in an Excel file. The information from this file was then imported

into Visio so that it was incorporated into a hierarchical display. To ensure that the

employees were displayed in a tight format that avoids overlap an algorithm was

developed. The original algorithm found the root of the hierarchy and gave that

employee a level of 1. The algorithm then went through subordinates and gave each

node a level which corresponds to its distance from the root. Next, the algorithm

would evenly space the most populous level and apply the space to the entire

hierarchy. It then connected all subordinates of the most populous levels, readjusting

the superiors to avoid overlap. Finally the algorithm went through the data, level by

level, placing superiors above the average of its subordinates until the boss was placed

in the top middle. This algorithm provided a visually sound diagram of the

hierarchical structure of the company.

5.2.4.2. Data Presentation

The next stage of VBA Visio development was to take a more comprehensive set

of tables from a sample database that we created, process them through Microsoft

Queries into VBA Visio and present them with Visio. This new set of data contained

nine tables saved in an Excel file: 4 tables listing nodes (Applications, Servers, Teams

and Employees) and 5 tables listing links (Application to Application, Application to

Server, Application to Team, Server to Team and Team to Employee). The highest

level would be the Application level. Applications had servers and teams associated

with them. Servers had teams associated with them and teams had employees

associated with them.

Page | 35

The goal of this stage was to give the user the ability to search for an individual

node of interest. The Visio application would automatically display all of its

dependents and superiors, and for applications it would show other applications that

the chosen application interacted with.

To achieve this goal the first step was to create a master table using Microsoft

Queries that incorporated all the information from the nine tables discussed earlier.

Each row of the master table displayed every employee’s name and ID with the names

and ID of their team members, server (if applicable) and application. The query would

run through the table and the table would be saved as an Excel table which was then

called upon by the VBA Visio application.

After the specific excel table, constructed based upon the initial query, was

imported by VBA Visio, the information from the query needed to be streamlined

directly into the VBA Visio code. A connection was established to allow VBA Visio to

run query scripts and then each line of output from the query was saved into a master

array in VBA Visio. A complimentary step involved replacing the home of the data

tables from Excel to Oracle. A connection had to be established between Microsoft

Queries and Oracle and the queries had to be tweaked to accept data from a different

source.

5.2.4.3. Algorithm Optimization

The next step was to update the pre-existing algorithm to handle the new

dataset. Fortunately, the levels were predefined by node type making the update

possible. Initially, if an employee worked for two teams he would only be displayed

once and he would ideally be placed in a way that made sense for both sub structures.

However making this ideal situation a reality was very difficult because it involved

creating an overlap adjustment algorithm which shifted the position of overlapping

nodes while trying to minimize the width of the entire graph. After experiencing many

different complications with this overlap adjustment algorithm, it was decided that if a

node was part of multiple superiors it would be displayed multiple times on the

graph. This allowed the process to be considerably simplified and was more user-

Page | 36

friendly.

5.2.4.4. Increased User Ability

In the original algorithm, the user only had the capability to select an application

and the application and its dependents would be displayed. The updated algorithm

involved going through the master array and assigning a ‘y location’ to each node

associated with the selected application, based upon the node type (employee = 1,

team = 2 etc.). Then, the algorithm would go through all employees associated with

the application and assign them ‘x locations’ in sequential order. Since the master

array was sorted in the query, this was a relatively simple process and there was no

chance of crisscrossing nodes. Next, the teams, servers and applications were placed

above the average of its dependents similar to the original algorithm. Finally, a

rectangle was created for each node and placed in its respective place given its x and y

location.

Along with effectively organizing nodes, the Visio application offers several

types of linking options. Links can be completely manually created by giving an x and

y coordinate to the start and end points. The links can snap into the bottom, top, left or

right sides of two nodes or a new node and a link can be created as a relationship to an

existing node. It was determined that the snap method was the most effective and

provided the most freedom while not over complicated this part of the project. This

feature was then incorporated into the algorithm so that went through each node

starting with employees and snapped a link between its superior and the node.

Additional logic was added to allow the user to have the root be something other

than application. This new logic also gave the user the ability to display the

application to application level visually. A smaller query was installed into VBA Visio

that made an array containing application to application information and each node

was given an x location that corresponded to its sequenced ID number and centered

around the selected application. Finally, each node was given a color that

corresponded to its node type. This optimization completed the second phase of the

project.

Page | 37

5.2.5. Bi-directional Interface

The next stage of the project was to allow the user to make changes to the

graphical display. These changes must be designed to change the information stored in

the database. It was thought that this would be promising for the Visio application

because it has highly presentable interface. To make Visio a bi-directional application,

three different possibilities were investigated.

The first option involved creating a control panel. This control panel was based

on the display produced by the algorithm. The user is able to add, remove or edit a

node or connection, or even re-center the graph around another node. When a control

is selected it would reprint the graph, while simultaneously updating the database. The

second option was a scanning method. The user would be able to make changes to

the visual interface and press a button that scanned the graph. The program would

compare all the objects to the pre-scanned graph and update the database with all

changes. The final option was to record keystroke events taken by the user and

decipher what the user changed and update the database.

The control panel option was dismissed, because it would be easier to create a

control panel using ApEx/Graphviz. Therefore it was determined that this was not

worth pursuing. The scanning method would only be viable if there was a small

amount of data, otherwise it would be too slow to be an effective method. The key

stroke option proved to be the most optimistic as it did only the necessary amount of

work to complete the task. However, it is important to note that if the database was

smaller, the scanning method would be easier to implement. More information about

the possibilities of a small database application is mentioned in the conclusion of this

section for future use.

Based upon the assessment above, the most effective way to record keystroke

events was to use the already built in ‘record macro function.’ The record macro

function allows the user to make changes to the interface while simultaneously saving

VBA Visio code that would update to include the changes that you made. This means

that if the user reverted back to the pre-change graph and ran the recorded macro it

Page | 38

would produce the same results as the manual changes did. The user could press a

button that would save the old version, press record macro, make necessary changes,

stop the recording and, press a button to save the new information. Ideally this could

be shortened to pressing a button that saves and starts recording, make changes and

press another button that stops recording and saves information. However, those

capabilities were not reached. Instead, when recording was stopped, the user presses a

save button that saves the recorded macro into a text file and then imports the text file

into VBA Visio. VBA then searches the text file for triggers that tell the program that

the user added, removed or edited nodes or connections. It would then take this

command and update the database.

Work was done to explore the display ability of this application. When the user

searches for the initial node structure, the nodes would be placed behind four

translucent different colored screens corresponding to each node type. If the user

wants to manipulate the data, they must click on the ‘prepare to edit’ button which

saves the file as it is and brings the white nodes over the translucent barrier. This

enables the user to move, delete and change the nodes and connections. When

changes were done being made, the user can press ‘commit’ and the database would

be updated and the nodes were again placed behind the barrier.

Finally, when a node was not in edit mode, the user is able to click an invisible button

located above barrier and node itself. Clicking on this button would bring up all

necessary information concerning the node as well as collapse, expand and bring to

front options.

Although Microsoft Visio has many advantages like display ability and high

functionality, it wasn’t chosen as the graphical application for the Enterprise

Architecture problem. This was because it is not a web based application, and can

only deal much smaller amounts of data than needed for this project. Visio would be

a great application for a more containable project involving a single team or process.

Page | 39

5.3. Oracle Data Modeler – in-house development

5.3.1. SQL Developer Investigation

 SQL Developer was the first application used to achieve this project’s goal. SQL

Developer was chosen for this project because it allows the user to drag nodes

(processes and applications) onto a screen and connect them using flows. After the

user makes changes to the information of the screen it will automatically be saved as

a .xml file. The user has the ability to to manipulate the .xml code to hide and show

nodes, delete and create links, and change their source and destination through

manipulation of the .xml code.

5.3.2. SQL Developer Conclusions

Although this application was more interactive with the user, it was not capable

of deleting and creating nodes through the .xml code. These are two major flaws in

this program which makes the application less desirable. After investigation into the

SQL Developer application, it was determine that the user could not control the

graphic interface through the basic code and as a result was not pursued further.

Page | 40

6. Development Phase II: Formal Development of Final Product

6.1. Detailed Design Plan

6.1.1. User Interface Design

Based on the requirements, the following user interface was designed to be

implemented in ApEx.

Page 1: Login page

Figure 19: Login Page Design.

Page 2: Main page with the visualization on the bottom

Page | 41

Figure 20: Main Page Design.

Page 3: Node Editor

Figure 21: Node Editing Page Design.

Page 4: Capacity Management

Page | 42

Figure 22: Capacity Management Design.

Page 1 was the login page. By providing username and password, users could get

into the application. Page 2 was the main panel displayed after the user logged in. All

the information of databases was listed here in the master interactive report. The page

also implemented controllers to interact with the graph. Ideally, the graph was

displayed right below the main table. By clicking on the Edit icon of any record, the

user was directed to Page 3, a form page, where detailed information of that record

was ready to edit. For each record of Application or Hardware, there was a

corresponding Page 4 showing capacity thresholds and metrics.

6.1.2. Database Design

There are six types of enterprise entities in the visualization. Five of them are

represented as “node”, Application, Hardware, Organization Unit (OU), People, and

Process, and one as “edge”, Link. Link is a source-to-destination two dimensional

record, which preserves the relationship of the other five types of entities. Process is a

composited type of node entity. It can not only be displayed as a single node to

illustrate how different Processes interact with each other, but also as a group

containing all the sub entities to show what a particular Process consists of.

How to store these six types of entities in the database was very important. One

idea was to have a master table containing all the records of node type entities and

another table for Link. It was convenient to extract information for the master

interactive report on Page 1 in this way. It was also easier to make references since all

the information is stored at one spot. However, different entities might have totally

Page | 43

different columns. It was hard to accommodate all the needs from different entities in

one table. Furthermore, data of entities were provided by a variety of departments in

the company. For example, data for Hardware was fed by infrastructure teams while

information of People came from an organization chart. Organizing different entities

into separate tables made it much easier to manage data from various sources.

With the analysis above in mind, the database was designed as follows.

Each entity of node type (OU, Hardware, Application, People, and Process) had its

individual table (EA_OU, EA_HARDWARE, EA_APPLICATION, EA_PEOPLE,

and EA_PROCESS).

Link had its own table EA_LINKS with records that establish a relationship from

entity of reference 1 to entity of reference 2. Each Link record had a nullable field

called Process_ID, which indicated whether the relationship belongs to a particular

process.

To feed all the data into the master report on Page 1, EA_APP_VIEW was made

to compile all the records from the six tables and create a temporary “view” of the

entire database. It was created solely by a SELECT statement that put all the data

together. It was not a real table but could be used the same way as a regular table in

the source of the interactive report.

Six tables and one “view” was a very important design decision made in the

project. It realized both the generalization in the master report and the customization

in each of the edit forms.

6.2. Technology Used

6.2.1. Software

Graphviz – Picture Generator

ApEx – Application builder

SQL Developer –Programming environment for stored procedures and database

management

6.2.2. Programming Language

Dot Language – primary language used in input script for Graphviz.

Page | 44

SQL –primary language used to feed data in ApEx components. It was also

heavily used in SQL Developer for database management.

PL/SQL – major language used in conditional expressions and process sources in

ApEx. It was also critical for functions and stored procedures in SQL Developer.

HTML – secondary language used in input script by Graphviz. It also played an

import role in customizing page appearances in ApEx.

Javascript –secondary language used in functions for ApEx.

6.2.3. Technical Support

ApEx was locally installed in a server (nycs00057970:8080) of BNP Paribas. It

was necessary for dbms_scheduler to work because the scheduler needed to execute

OS commands. It was also more convenient to reference local files.

Databases were also moved to the same server.

Oracle package dbms_scheduler was used in a stored procedure to trigger the

graphing process.

6.3. Architecture

Figure 23: Architecture.

6.4. Data

In the formal development of the application, real data was plugged into the

database.

ApEx Graphviz

Trigger Draw

DataBase

Edit/View Metrics

Feed data

Manage data

Draw

Collapse/Expand

Page | 45

6.5. Methodology

This is the section that explains the implementation of the most important features

in the application.

6.5.1. The implementation of user preferences

User preference was a concept that users only saw the part of the data they

selected displayed in a way they prefer. Data could be selected altogether in a

pre-saved diagram or one by one through the checkboxes discussed in Phase I of the

project. The way the data was displayed, either expanded or collapsed, could be

specified in a separate checkbox.

Each graph had its own set of preferences and one user could have multiple

graphs. Therefore user preference could not be stored together with the master data.

Instead, two tables, EA_USERPREFERENCES and

EA_USERPREFERENCEDETAILS were used to keep copies of the master data.

Each copy captured the preferences set by a particular user for a specific graph.

The user preferences table kept track of the relationship between each graph and

its owner. Each record in the table stored high-level information about a graph with a

reference into the table EA_USER, where a specific user could be looked up. Detailed

information of a graph was kept in the user preference details table. Records with the

same reference id which pointed to the same graph made a full copy of the master

data with SELECT/DESELECT and EXPAND/COLLAPSE columns set to user

preference.

On the user interface side, the main report was dynamically populated by the data

copy from the user preference details table based on what saved diagram the user

selected to see. This set of user preferences could then be further tweaked by

checkboxes. By checking the corresponding boxes, the SELECT/DESELECT or

EXPAND/COLLAPSE column of a record was set and the user preference was saved

back to the database. These two fields were critical for the “CRAWL” procedure to

figure out how to generate the graph.

6.5.2. Improvement on graph interactivity

Hyperlinks embedded in sections of a node were more than web page URLs.

Page | 46

They could be used to launch a stored procedure located on the server specified by the

URL. However, embedding stored procedures the same way as regular web page

URLs had the side effect of opening extra windows.

Completely getting rid of the side effect was difficult given the way how URLs

work. The compromised solution was to pop up the target window and immediately

destroy it. This required several steps. Firstly pop up a second window with the target

URL to launch the stored procedure. Secondly destroy the new window. Thirdly go

back to the previous page in the main window since the main window has

automatically changed to a blank page during the first and second steps. By the third

step, it achieved the effect of “staying at the same page”.in the main window.

There were two possible places to implement the changes: the text file taken by

Graphviz as input and the svg file outputted by Graphviz. Research showed that

Graphviz has limited html options (Node, Edge and Graph Attributes). For example, it

lacks the onclick attribute common in html script. This forbade the use of “on-click”

event where the new solution could be possibly implemented. Graphviz also has no

way to render JavaScript, which meant it was impossible to include multi-step

arguments in one single URL.

The new solution was first implemented in JavaScript by directly altering the svg

file Graphviz generated. New arguments were added among the xml code. Later,

however, it was found that although Graphviz did not understand JavaScript, it treated

the code as plain URLs without complaining. When Graphviz rendered the script, the

code got passed on into the xml code in svg. This way it saved another round of

processing of the graph before it got displayed.

At this point, the outgrowth of graph interactivity - the piled-up extra windows

was replaced with a flash of pop-up. This largely improved user experience.

6.5.3. Embedment of graph in the application

Originally, users had to switch between browser pages to interact with both the

ApEx application and the graph. Embedment of graph in the application finally

realized the notion to build an all-in-one-spot application with all technologies well

Page | 47

integrated.

The graph was first included behind the “src” (source) tag of an html region in the

application. The graph was displayed without a problem - graph interactivity was

fully supported within the page. However, the display did not synchronize well with

what was actually stored in the database. Whenever an update was made to the graph,

the svg file was regenerated correctly; however, the display was not always up-to-date.

This posed a serious problem because users never knew if the current visualization

was what they looked for. Many methods were tried including refreshing the page but

none worked. It was believed that there was caching going on behind the screen. What

was specified at the source was not always re-fetched each time the graph itself was

changed.

The solution to this caching problem was to use PL/SQL Dynamic Content Region

to contain the graph. This is a special region provided in ApEx which automatically

refreshes itself whenever its source is changed. The PL/SQL procedures to generate

the graph and load the image were specified in the source. This way the graph

displayed in the page was always the latest version.

The solution brought in striking functionalities to the application surprisingly. One

was “live” graph interactivity. Originally by clicking on a node in the graph to

indicate expanding or collapsing its children, the graph would not instantly change

itself. Users had to go through an intermediate step to redraw the graph in order to see

the updated version. The approach of Dynamic Content Region together with the

hyperlink approach embedded in the graph, however, made the graph live. There was

no extra step to refresh the graph. The graph vividly expanded or collapsed within

seconds of user clicking.

Page | 48

7. Results

At the end of the project, a well-integrated visualization and data management

application was built. This section is a full presentation of the final product.

Following are the most important application pages. These pages were

implemented closely by the detailed design plan.

1) Login page. Users are prompted to this page when the application is launched.

Figure 24: Login Page Implemented.

2) Main page. The main body is the search region where users can specify user

preferences.

Figure 25: Main Page Implemented.

3) Visualization. There is a separate tab called Diagram that is used to display the

graph.

Page | 49

Figure 26: Visualization Page Implemented.

4) Performance Metrics page. It includes both diagrams and charts.

Figure 27: Capacity Page Implemented.

Page | 50

7.1. Major functions and capabilities implemented

The below is a description of major functions implemented on the pages just

displayed.

Database Visualization based on User Selection

Figure 28: User Selection Implemented.

Within the context of a saved diagram, users can select/deselect through

checkboxes the entities they want to include in their visualization. They can further

indicate if the entity is expanded downward to include child entities or collapsed as a

single node. The visualization of the selected entities is then displayed.

Graph Interactivity

The entities on the graph are clickable in four sections, the name section, the “+”

and “-“, and the metrics section. By clicking on the name section, users are able to

edit the entity.

By clicking on the “+” and “-“sections of a node in the graph, users are able to

expand and collapse the node in the next generation of the graph. By clicking on the

metrics (!) section, users are able to view how an Application or Hardware entity

performed over time against the threshold of an attribute (i.e. latency, memory etc.)

Page | 51

Figure 29: Diagram collapsed.

Figure 30: Diagram expanded.

Capacity Metrics

Users can view the capacity metrics of an Application or Hardware entity either

from the editing page of the entity or from the metrics section of the node in the graph.

The metrics are a time-based series of performance statistics measured against certain

attributes (i.e. latency, memory etc). They are presented both in a table and in a line

chart. In the table, the records that pass the thresholds (critical or warning) are

color-coded (red or orange) to highlight the problem.

Summary View vs. Detailed View

Users can choose to see a summary view or a detailed view of their data. A

summary view collapses all the physical instances of an entity into one single node. It

hides unnecessary details from users in the graph. In contrast, a detailed view rolls

down to show every instance of an entity. It is for a thorough examination of the

entity if the summary view signals a problem.

Page | 52

Figure 31: Diagram Rolled up.

Page | 53

Figure 32: Diagram Rolled down.

Processes Sub-graph

Graphviz lends the user the ability to superimpose smaller graphs on top of the

general one using the sub-graph functions. In our project, processes are shown in

sub-graphs, and are shown with a black rectangular box. Entities outside the process

can still connect to links within the sub-graph box. Sub-graphs are used to give the

user information about both the operational hierarchy and process diagrams while

maintaining graphical clarity.

Page | 54

Figure 33: Diagram with Composite Processes.

Database management

Users are able to view the entire database in one master table, create/edit entities,

and create/edit relationships between entities through a data management interface.

They can also choose to synchronize their copy of data with master data if needed.

Page | 55

7.2. Summary of functions

Figure 34: Summary of functions in ApEx interface.

1. Manage the graphical attributes of an entity or a relationship in the graph.

Users can assign colors, shapes, and styles to a node or link.

2. Keep a log of user actions made to the data. The actions include insert, delete,

and update and can be sorted by date.

3. Create an entity of type Application, Hardware, OU, People, or Process.

4. Create a new diagram or edit an existing one. A diagram is a copy of the

master database with a specific set of user preferences. It is equivalent to a

graph in its database format.

5. Go back to any saved diagram under the current selected user.

6. Save any user preferences modification made to the current diagram.

7. Synchronize the current user copy with the master database. The mismatch

between the two comes from create/edit/delete an entity or a relationship. The

synchronization has nothing to do with user preferences.

8. Reset user preference.

9. Search for any particular record(s).

10. Edit an existing entity. Relationships that involve that entity can be edited

from the editing page for that entity.

1 2

3

4

5 6 7 8

9

10

Page | 56

Figure 35: Summary of functions on Super Node*

+: Expand a node so that children of that node are shown in the graph.

-: Collapse a node so that children of that node are hid.

X: Hide the current node.

[Node Name]: Prompt the user to the editing page for the node.

^: Roll up the graph so it displays a summary view.

v: Roll down the graph so it displays a detailed view.

!: Prompt the user to the performance metrics page for the node. This section is

color-coded according to the health of the entity.

*Note that by the end of the project, Super Node as shown above was not fully supported in

the application.

Page | 57

8. Conclusion

BNP Paribas, an international bank with headquarters in Paris, France, sponsored

the Enterprise Architecture Project. The goal of the project was to create a graphical

management application that allows the Global Equities and Commodity Derivatives

group to better visualize a wide array of system flows. It was required for the

application to have bi-directional communication with internal BNP databases and

clearly show any possible problems with the data, such as an overloaded server.

The initial stages of the project involved finding the right set applications to

complete these objectives. A variety of options were explored at this stage. Eventually

it was determined that the combination of Graphviz and ApEx was the tool to use and

all remaining resources were allocated to this strategy.

Throughout the project term, the application was transformed from a concept to a

working prototype that will serve as a basis for further development. During the

formal development portion of the project, many requests for additions to the project

from the stakeholders of the project were translated into code and presented to the

group. At the conclusion of the project, a team was put in place at BNP to continue

development of the tool.

Page | 58

Appendix A

Input (Python code) Output (Graphviz graph)

default(Cursor,

writeFILE)

expandApplication

(Cursor,writeFILE,

None,

[‘VALRISK’])

expandServer

(Cursor,

writeFILE, None,

[‘SerVER1’])

Page | 59

expandRole(Cursor

, writeFILE, None,

[‘bo’])

expandEmployee(

Cursor, writeFILE,

None, [‘Joe’])

Page | 60

Appendix B

Interested Parties for the Data (BNP Paribas. “Enterprise Architecture Overview.”)

Page | 61

Appendix C

Page | 62

(BNP Paribas. “Enterprise Architecture First Phase – a tool for capacity

management.”)

Page | 63

References

Angel, James J., Lawrence E. Harris, and Chester S. Spatt. "Equity Trading in the 21st

Century." 23 Feb. 2010. Print. 25 Sept. 2011.

"Apex – Change Application-Level Default Templates « My Favorite Software

Tools." My Favorite Software Tools. 31 Jan. 2008. Web. 29 Nov. 2011.

<http://stewstools.wordpress.com/2008/01/31/apex-change-application-level-d

efault-templates/>.

"APEX Check Boxes in Reports Regions." Oracle Consulting, Oracle Support and

Oracle Training ByBC Oracle Consulting. Web. 03 Nov. 2011.

<http://www.dba-oracle.com/htmldb/t_htmldb_check_boxes_reports_regions.

htm>.

"APEX CSS Repository: How to Include Background Images Easily Using Data

URIs." Random Insights into Oracle. 11 Sept. 2011. Web. 1 Dec. 2011.

<http://oracleinsights.blogspot.com/2011/09/apex-css-repository-how-to-inclu

de.html>.

BNP Paribas. “Enterprise Architecture Overview.” Print. 24 Jan. 2011. Nov.2011.

BNP Paribas. “Enterprise Architecture First Phase – a tool for capacity management.”

Print. Nov. 2011.

"Cross-Platform Dynamic Graphics and GIS Solutions for Real-Time Data Display."

GLG Toolkit: High Performance Dynamic Graphics for C/C ,AJAX, Java

and .NET. Web. 03 Nov. 2011. <http://www.genlogic.com/products.html>.

Gansner, Emden R., Eleftherios Koutsofios, and Stephen North. "Drawing Graphs

with Dot." Web. 7 Nov. 2011. <http://www.graphviz.org/pdf/dotguide.pdf>.

"GLG Toolkit: Graph Layout Java Demo." GLG Toolkit: High Performance Dynamic

Graphics for C/C ,AJAX, Java and .NET. Web. 02 Nov. 2011.

<http://www.genlogic.com/java2/graph_layout.html>.

"Graphviz - QED." Main Page - QED. Web. 09 Nov. 2011.

<http://qed.princeton.edu/main/Graphviz>.

"Linking – SVG 1.1 (Second Edition)." World Wide Web Consortium (W3C). Web. 07

Dec. 2011. <http://www.w3.org/TR/SVG/linking.html>.

"Manipulating Database Objects Using Oracle Application Express 4.1." Oracle |

Hardware and Software, Engineered to Work Together. Web. 01 Nov. 2011.

<http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/apex/r41/ape

xstart_a/apexstart_a.htm>.

Page | 64

"Nevron Diagram for .NET." Nevron Web Examples. Web. 02 Nov. 2011.

<http://examplesaspnetdiagram.nevron.com/>.

Nevron .NET Vision - Online Documentation. Web. 02 Nov. 2011.

<http://helpdotnetvision.nevron.com/>.

"Node, Edge and Graph Attributes." Home | Graphviz - Graph Visualization Software.

Web. 09 Nov. 2011. <http://www.graphviz.org/doc/info/attrs.html>.

"Node Shapes." Home | Graphviz - Graph Visualization Software. Web. 15 Nov. 2011.

<http://www.graphviz.org/doc/info/shapes.html>.

"Oracle Application Express 4.1." Web. 31 Oct. 2011.

<http://apex.oracle.com/i/index.html>.

"Oracle Application Express APEX: Calling Reusable Pages in Separate

Applications." Oracle Consulting, Oracle Support and Oracle Training ByBC

Oracle Consulting. Web. 14 Nov. 2011.

<http://www.dba-oracle.com/htmldb/t_calling_pages_between_applications.ht

m>.

"Oracle Application Express APEX: Passing Values between Screens." Oracle

Consulting, Oracle Support and Oracle Training ByBC Oracle Consulting.

Web. 09 Nov. 2011.

<http://www.dba-oracle.com/htmldb/t_passing_values_between_screens.htm>

.

"Oracle Application Express." Oracle | Hardware and Software, Engineered to Work

Together. Web. 31 Oct. 2011.

<http://www.oracle.com/technetwork/developer-tools/apex/overview/index.ht

ml>.

"OTN Discussion Forums : Change Colour of Row - Oracle APEX SQL Report."

OTN Discussion Forums. Web. 08 Dec. 2011.

<https://forums.oracle.com/forums/thread.jspa?threadID=883110>.

"Python: Lambda Functions." Web. 28 Oct. 2011.

<http://www.secnetix.de/olli/Python/lambda_functions.hawk>.

"Scripting – SVG 1.1 (Second Edition)." World Wide Web Consortium (W3C). Web.

07 Dec. 2011. <http://www.w3.org/TR/SVG/script.html>.

"SQL INNER JOIN Keyword." W3Schools Online Web Tutorials. Web. 26 Oct. 2011.

<http://www.w3schools.com/sql/sql_join_inner.asp>.

Stubbs, Paul. "Office Add-Ins: Develop Add-Ins For PowerPoint And Visio Using

VSTO." MSDN | Explore Windows, Web, Cloud, and Windows Phone Software

Page | 65

Development. Feb. 2007. Web. 03 Oct. 2011.

<http://msdn.microsoft.com/en-us/magazine/cc163471.aspx>.

"Turn Report Rows into a Multi Column Format through Templates!" APEX

Development. Web. 08 Dec. 2011.

<http://application-express-blog.e-dba.com/?p=55>.

"URL Parameters." Oracle Application Express. 20 Nov. 2009. Web. 09 Nov. 2011.

<http://www.oracleapplicationexpress.com/tutorials/55>.

"Using GraphViz, a Brief Tutorial | Orient Lodge." Orient Lodge | An Eclectic News

Site. Web. 26 Oct. 2011. <http://www.orient-lodge.com/node/3408>.

Vardi, Moshe Y., Ian Barland, and Ben McMahan. "Logic and Database Queries."

Rice University, 31 Aug. 2006. Web. 4 Oct. 2011.

<http://www.cs.rice.edu/~tlogic/Database/all-lectures.pdf>.

"Visio 2010 Add-Ins Overview." Microsoft Vision 2010. Microsoft Corporation, 2009.

Web. 3 Oct. 2011.

<http://visiotoolbox.com/2010/PDFs/visio-2010-add-ins-overview.pdf>.

Wang, Xiaoyun, and Tu Lai Huan. "BNP Paribas: Equity Smart Order Router."

Electionic Projects Collection. Worcester Polytechnic Institute, 29 Nov. 2010.

Web. 4 Oct. 2011.

<http://www.wpi.edu/Pubs/E-project/Available/E-project-112910-121011/unre

stricted/Equities_Smart_Order_Router.pdf>.

Wolf, Patrick. "Opening URL in a New Window." Inside Oracle APEX by Patrick

Wolf. Web. 28 Nov. 2011.

<http://www.inside-oracle-apex.com/opening-url-in-new-window/>.

Wolf, Patrick. "Oracle APEX 4.0: Cascading LOVs/Select Lists." Inside Oracle APEX

by Patrick Wolf. Web. 18 Nov. 2011.

<http://www.inside-oracle-apex.com/oracle-apex-4-0-cascading-lovsselect-list

s/>.

