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Abstract

This project discusses the intensity and survival probability derived from Credit Default Swaps
(CDS). We utilize two models, the reduced intensity model and the Shift Square Root Diffusion
(SSRD) model. In the reduced intensity model, we assume a deterministic intensity and
implement a computer simulation to derive the company’s survival probability and intensity
from the CDS market quotes. In the SSRD model, the interest rate and intensity are both
stochastic and correlated. We discuss the impaction of correlation on the interest rate and
intensity. We also conduct a Monte Carlo simulation to determine the dynamics of stochastic
interest rate and intensity.
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1 Introduction

In 1997 one team from JP Morgan Chase invented the credit default swap (CDS). A CDS is a
contract between two counterparties. It was designed to shift the risk to a third party ensuring
protection against default. Default occurs when a company fails to make payments owed to
some entity. The buyer of the CDS makes a series of payments to the seller and in exchange
receives a certain cash amount if a credit instrument defaults. CDS can be used for hedging,
speculation, and arbitrage. The spread of a CDS is the annual amount that the protection buyer
pays to the protection seller over the length of the contract. As shown in figure 1.1, a CDS is
t.,t . If no

purchased at time t, and regular premium payments are made at timest ,t ,, 1 ;..

a+l?
default occurs, then the buyer continues paying premiums at t;, and so on until the end of the

contract at timet, .

Protection buyer

v

R R

t to. b, ot

a a+l e I

v

Protection seller
Figure 1.1. Schematic of CDS if no default occurs

However, if default happens at timet;, the protection seller pays the buyer for the loss, and the

buyer stops paying premiums, as illustrated in figure 1.2.
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v
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a a+l

v

Protection seller

Figure 1.2. Schematic of CDS when default happens



2 CDS Payoffs [1]

Based on the default time of a company and the corresponding protection payment date, the
payoff of a CDS is divided into two parts: the premium leg and the protection leg. We define a
set of parameters before our analysis. First a timeline with equally spaced intervals is created,

as shown in figure 2.1, and the interval widths are o, =T, T, ,, i€[a,b]. We also define

B(t '
D,T)= ®) as the discount factor, where B(t) =ej‘ ““ is the bank-account numeraire, I is

B(T)
the instantaneous short interest rate, and 7 is the first default time of company. We also define
T4 as the first T; that follows the first default timez, Lg;as the protection payment when

default happens, R as the premium payment in exchange for the protection against the default

probability, and1; _,_;;as an indicator function.

R

T, Ty o T Ty Ty

v

Figure 2.1. Timeline of the payoff

2.1 Running CDS

For a Running CDS (RCDS), the protection payment rate R is exchanged at specific times or
when default happens in exchange for a single protection payment. The amount L is paid

when default happens.

The premium leg is given by:

b
D(t, 7)(r =Ty )Rl cecry + 2, DT Ry -

i=a+l

The protection leg is given by:
L ceery D7) Lo -

Therefore the discounted payoff for a RCDS is given by:

b
Meeos,, = D )E =Ty )R cny + O, D T)@RYry ~ L cocry DIt )L - (2.1)

i=a+l



2.2 Postponed Payoffs Running CDS (PRCDS)

In this case, the protection payment L, is paid at the first T, after the default time, i.e. T, .

The discounted payoff at T, is given by:

b b
HPRCDSa‘b = Z D(t,T)a; Rl{rzTi}__z 1{ri,1<rgTi}D(t’Ti)LGD . (2.2)

i=a+l i=a+l

2.3 Postponed Payoffs Running CDS 2

There is another postponed payment form in the CDS. In this case, one more R payment is

made as compared to the postponed payoffs running CDS. The discounted payoff at the
contract initial time is given by:

b

b
Hpchas&b = z D(t, T, R1{1>TH} __Z 1{'ri,1<rsTi}D(thi)LGD . (2.3)

i=a+l i=a+l

2.4 CDS Forward Rates

The CDS forward rate R, , (t) is defined as that value of R that makes the value of the discounted
CDS payoff equal to zero at time t, which is determined by:

CDS,, (t,R,» (1), Lep) = E[TI()|G, | = 0.

In the above equation, I1(t) is the discount CDS payoff at timet, formulated in section 2 by
(2.1), (2.2) or (2.3). G =R vo({r<u},u <t) ! denotes the information on the default free

market up to time t and the exact default time if default happens. To simplify the computation,
it is better to switch the filtration to the default-free market by using the following equation:

1
CDS, , (t,R, , (1), Lgp) = E[TI(1)|G, | :ﬁ E[TIM)|F, . (2.4)

! G({Z‘ < U} u< t) denotes the sigma-algebra of the default time before time t.



3 Poisson Process

In this project, we use a Poisson process to describe the default time of a company. The default
time can be viewed as the first jump of a Poisson process. Based on the nature of the intensity
function, the Poisson process can be classified as time homogeneous Poisson process, time
inhomogeneous Poisson process, and a Cox process. We will recall some important facts about
these processes in the following text.

3.1 Time Homogeneous Poisson Process [

A time homogeneous Poisson process is defined as process with stationary independent
increments and initial value of zero.

The time between two consecutive jumps are independently and identically distributed as an

1
exponential random variable with mean—, where y is constant in time. If we define the default
time 7 as the first jump and Q{} denotes the probability of an event, then:
Q{r e[t t+dt)|r >t} =ydt. (3.1)

Thus, the probability of default happening indtinterval knowing that default has not taken
place so faris ydt . The survival probability to time ttherefore is given by:

Q{r >t} =exp(—1). (3.2)
Also, the probability of defaulting time between time S andt is:

Qs <z <t}=exp(-ys)—exp(—yt) (3.3)

3.2 Time Inhomogeneous Poisson Process 1]

In this case we consider that the intensity y(t) is deterministic and time varying. We assume

the intensity to be positive and piecewise continuous function in time. We define:

)= 7(u)du. (3.4)

10



By inverting the function, we can obtain the default time 7 by using a standard exponential
random variable ¢&:

r=T"(&).
The probability of default occurring in the next dt time interval is:
Q{r elt,t+dt)|z >t} =y (t)dt. (3.5)

We can easily get the survival probability up to timet:

t
Qlr > th=exp(-T(1)) =exp(- 7(5)ds). (3.6)
Similarly, the survival probability between time t and Sis:

Qs <7z <t}=exp(-I'(s))—exp(-I'(t)). (3.7)

3.3 Cox Process'!

Different from the previous two processes, the Cox process assumes a time varying and
stochastic intensity 4,. We can still get a similar formula in the computation of the survival

probability.

The cumulated intensity to time tcan be expressed as:

t
Alt) = jo A,ds . (3.8)
The probability that the company will default in the next dt interval is:
Q{reltt+dt)r=t,F}=Adt, (3.9)
where F, contains the default free market information up to time t shown in section 2.4.

The probability that the default time 7 of the company is greater than t is:

Q{r>t}=QIA() 2 A) =Q {A(r) > I;l(s)ds} - [Q{A(r) > I;/I(s)ds}

Ft] (3.10)

The cumulated intensity at default time A(z) =& is an exponential random variable which is

independent of K, thus

11



E [Q{A(T) > I;/I(s)ds}

Ft} = E[Q{(S > I;/i(s)ds}} =E [ej‘:us)ds}. (3.11)

4 Reduced Intensity Model

There are several models that deal with CDS to explore the intensity and survival probability in
detail, such as structural models and the reduced form models. They both are used to model
credit risk. Structural models are based on the complete knowledge of a detailed information
set. They were developed by Black, Scholes, and Merton ™ In contrast, the reduced form
model invented by Jarrow and Turnbull is based on the information set available to the market
2 In this chapter, we mainly focus on the reduced form intensity model to determine the
intensity and the survival probability by using the CDS forward rates market quotes.

4.1 Assumption™

In the reduced form model, we assume the default time is the time-inhomogeneous Poisson
process, which means the intensity y(t) is deterministic and piecewise constant in time:

7(t)=7i for te[Ti—UTi)l

and the cumulated intensity function at timet is:
t n
I'(t)= jo y(u)du =Y ydt.
i=1

In this intensity model, we also assume that the interest rates and the default time are
independent. We are only concerned about the value of the running CDS at the contract initial
time. As for the postponed running CDS, we can derive the formula in similar manner.

4.2 Methodology [1]

To calculate the CDS value, we need to apply the filter change equation (2.4) for the purpose of
simplification.

12



— 1{r>t}
ODS45 (. Run 1) Loo) = g E Mo (O

1

{r>t}
=0 EID(t, ) =T, )R L . +§ D, T)4R, 1y — Ly .o, Dt 7)Lg
Q{T>t|Ft} |: (t,7)( (7)1) b{T, <r<T, } — (t,T) b2} — AT, <r<T,} (t,7) D

] Zau ab |:D(tT){r>T}

i=a+1

d

_1{7—”}{ |:D(t T)(T ()1)1 <r<T,}
Q{r>tF} T

~LeoE 1,y O )| R |
(4.2)
Iqcps (t) is the discounted CDS payoff at time t defined in equation (2.1).
Considering the situation at initial time O,
CDS,,(0.R, . Lep)
=%{RwE[Dw =Ty Moy |+ Za 2 E[DOT)r, | (4.2)
~Lg.E [ . <1<T}D(0,T)]}
Since we assume independence between the default time and the interest rate,
E[ DO, Ty | = E[DO.T)]E[Lr; |, (4.3)

and the protection leg term of the running CDS formula (4.1) is:

~LooEllg, ey DO, )] = ~Loo EL[” 1 cr ;DO DL vt

) ; (4.4)
= Lo ., EIDODEM a0 = ~Leo |, PO.NQz €t t+lt)
Applying equation (3.5) and (3.6), we obtain:
Q{r e[t,t+dt)}=Q{r e[t,t+dt) - > 3Q{r > t} = y(t)dtexp(~ j; ¥(s)ds). (4.5)
Thus, put (4.5) back into (4.4), we can rewrite the equation (4.4) as:
Lo, POy () exp(-; (s)ds)du. (46)
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By assuming the piecewise constant intensity rate y : y(t) = y,for t €[T, ;, T,), the above formula

(4.6) becomes:

—Leo Zb: Vi J.TTI P(O,u)exp(-T';, -y (u-T,,))du, (4.7)

i=a+l '

T; j
where I'; = L y(s)ds = z 7,0, is defined as the cumulative intensity.

i=a+l

The premium leg of the running CDS in formula (4.1) is:

b
Ra,bE[D(OYT)](T_Tﬂ(r)—l)E[l a<T<Tb}]+ z Q; Ra,bE[D(O’Ti )]E[l{rzTi}]
i=a+l . (48)
T
=Rup ] POOE-T,)Qfr < [t.t+dt)}+ D aR,,POT)Q{r>T}
a i=a+l
Using the discretization of y as the defined piecewise constant y; defined above, (4.8)

becomes:

b T b

Ra,b Z Vi L PO,u)(u-T._)exp(-I', -7 U-T,,))du+ Ra,b Z P(0,T)e; exp(-T7). (4.9)
i=a+1 i i=a+1

Therefore we obtain a discretized scheme of a running CDS payoff at time 0 in the reduced

intensity model:

CDS,, (0. R, Lo T)

SRY A [ POUDU-T )T, —7u-T Ddu+RY POTIaoxp(-T)  (4.10)
b

T
—Leo 7 J‘Ti—l P(0,t)exp(-T";, —y;(u-T_,))du

i=a+l

5 Shifted Square Root Diffusion (SSRD) Model

In this chapter, we consider the situation with a stochastic intensity and a stochastic interest
rate. This model was proposed by Brigo and Alfonsi in 2003, The Cox-Ingersoll-Ross model is
applied in SSRD to describe the dynamics of interest rate and intensity.

14



5.1 Assumption

Since the intensity is stochastic in this model, the default time of a company can be viewed as
the first jump of a Cox process. We denote the stochastic intensity as 4, and the stochastic

interest rate as', .

5.2 CIR++Short Rate Model

We can write the short rate as the sum of two parts, a deterministic function ¢ and a

Markovian process X;" :

=X+t a). (5.1)
According to the CIR model, the dynamics of short rate X can be written as:

dx* = K(0—x)dt + oy X AW, (5.2)
where o is the parameter vectora = (K, 60,0, X;) .

The zero coupon bond price derived from the CIR model is:

T E{ef*(s)‘” Ft} = A(t,T,a)exp(-B(t,T,))x,), (5.3)
where:

]

B(t,T,a) = 2(exp{(T —t)h} -1)

~2h+(k+h)Eexp{(T -t)h}-1)’

And h=+k?*+25? .

15



5.3 CIR++ Intensity Model !

By using an approach similar to that in section 5.2, we can separate the intensity into a
deterministic function and a stochastic process,

A=Y +o(t. ), (5.4)
and the dynamics of y/ can be written as:

dy/ =x(u—y/)dt+vyy/dzZ,, (5.5)
where Bis the parameter vector 8 = (k, 1,0, Y?).

If the correlation between the short rate and intensity is o, then the two stochastic processes

have the following relationship:

dw,dz, = pdt .

5.4 Methodology 1l

We compute the discounted CDS payoff at time t in the SSRD model:

CDS, , (t,R, , (t), L )=1“—>”E[H ®)[F]
ab\"1 " tab ! D Q{T>t| Ft} RCDS t

1 b
{r>t}
==Y EID(t,r)(r T, )R, 1 +3 D(t,T)aR, Loy —1: Dt 7)Lg
Q{r>t|F} { ()7 =Tp)2)Rap L, cocry i;l (tT)erRa b1y —Lir, <oery D 7)o

F@

The premium leg of the above formula can be written as,

1{r>t} ;
E| D(t. ) ~Ty) 1) Rapdr,ceny + 2, DETIR, Loy

d

Q{T > t| Ft} i=a+l
1 R o b
o>t} Nab b
= E D(t,s)(s =T s )1{TE[S,S+dS)} + Z D(thi)ail{rz } F}
Elexp(—[ 2,ds)|F] _La 1 S g
1 _.R i

E

y

b

{r>t} Nab To

= EIE |: D(t’ S)(S _Tﬂ(s)—l)l{re[5,5+d5)} + Z D(t’Ti )ai 1{f2T}
E[exp(~ j; 2,ds)|F ] ITa v |

e}

16



1 _.R [T 0

{r>t} ' ‘a,b b

= E| [ D(S)(S Ty a)E | Legsseasy| . F}+E{§ D(t,T)E |1,
E[exp(_J‘gt/lst”Ft]{ J.Ta ot |:{ : o T:| [ i=a+1 I:( i

1)

Ft}r E{Zb: D(t,T)e;, Q{r >T|F. } Ft}}

i=a+l

- e[ [T D0 Ty )0
= n ; , 50 r €[5, 5+ds) | F. X
E[EXp(—IO ASdS) Ft] -

= l{m}lRa'b {E I ; D(t,s)(s—TmsH)exp(—fﬂudU)ﬂst‘ Ft]+ E{Zbl D(t, )z, exp(-| " 2,du) Ft}}
Efexp(-[ Ads)R1L W ° S 0
F}}

b

T, s s T T
=1 4R { La (s—Tﬂ(S)_l)E[exp(— [ rduyexp(-[ Audu)/lsds‘ Ft} > aiE[exp(—jt r,du)exp(~[ ' 4,du)

B

T, S b T
=1, ,Rys La (s-Tﬂ(S)_l)E[exp(-L (r, +/1u)du)/tsds‘Ft}+ > aiE[exp(-L (r, + 4,)du)

i=a+l

Similarly, we can also calculate the protection leg,

Tt L T e | AL CE RN
2 <t<T, ! D"t ' DH{re[s,s+ds t
Q{r>t|R} E[exp(—f; isd3)|Ft} a
1{r>t} To |
- " = E|:E|:IT D(tfs)LGDl{re[s,SerS)} FTb Ft:|
E exp(—joﬂsds)“:t ) _
1{r>t} I To |
= : = Lok .[T D(t’S)E[l{re[s,wds)} R, F‘}
E exp(—f0 A,ds)|F, - _
1

v T (NS ILGOL L OIS [
E exp(—jofisds)“:t -

1{r>t} [T s
— : —LeoE| [ D(t,s)exp(-| A,du)ids Ft}
E exp(—joxlsds)|Ft o
1 b s s
= (>t} LGDE[_L: exp(- L rudu)exp(—j0 A,du)A.ds Ft}

_ t _
E exp(—_[0 A,ds)|F,

Ty S
Lo, E| 00 (5, 4 2,)c)

F } ds
(5.6)

Therefore we can rewrite the CDS term as a function of interest rate I, and intensity 4, :

17



CDSa,b (t’ Ra,b (t)’ LGD)

T, S
=L, 4Rap {La (s _Tﬂ(s)—l) E [eXp(_L (r, + 4,)du) A

Ft}ds

T, s
=14 {Ra,b La (s _Tﬂ(s)—l) E [eXp(_L (r, +4,)du) A

Ft}ds}

Ft}ds+ 3 aiE[exp(— [ (r, +2,)du)

i=a+1

F}}

e Leo ) E 0P (0 )

Ft}ds+ R, aiE[exp(— [ (r,+2,)du)

i=a+l

d

Lo} E| expl-] (1 + A,

(5.7)

5.5 Lack of Correlation Case in SSRD Model

Under the uncorrelated assumption, we can separate the expectations on the interest rate and
the intensity in (5.7), thus

CDSa,b (t, Ra,b (t), LGD)

=1 {Ra’b J'TTb (s-T,)E [exp(—'ftS r,du) Ft} E [exp(—.[ts A,0u) 4| F, } ds
+ Ra,bzb: o,E [exp(—f r,du) Ft} E [exp(—fi 2,du) Ft} 58
—LGDJ.TTL’ E [exp(—.ftS r.du) Ft} E [exp(—.ftS A,du)A | F, } ds}

We know that E [exp(—.[tS r,du) Ft} = P™(t,s), (5.9)

and from (5.4) in the CIR++ intensity model we know that:

d

R | -eo-[ o AP ey, )

E [exp(— fzudu)

R~ exp-J (57 + 0. e

. . (5.10)
~exp(- plu AAE | exp(- y/c)

Next, to simplify the above formula, let us first review some facts in the CIR++ model.

In the Cox process we have

18



Q(r>t)= E{ejoi(s’ds] (5.11)
Substituting the intensity formula into (5.11), we obtain:

[ a(s)ds [ yBepct.pyds [ gt B)ds —Ié’s
Q(r>t)= E{e Jyee }: E{e Jostwocens }:e Jootee E{e Joes } (5.12)

Meanwhile, we have the data from market quotes that:
Q(r >t),, =™, (5.13)

To calibrate the market data into the model, we equate (5.12) and (5.13). The deterministic
function ¢(t, ) in the CIR++ intensity model can be derived as:

_["yds
Yt p) = J:¢(S,ﬂ)ds =T + In[E{e Joe D =T ®©+INPRO,t,y,, B). (5.14)
Through (5.14), we can simplify the expression of (5.10) as below:

E|exp(- [ 2| | ~exo(- [ plu WP 5., )

= exp(T e () +IN PR (0,1, Yy, B) ~ T ()~ IN PR (0,5, ¥, B)) PO (8,5, ¥, B)

P (0.8, Y, 8) pern
P%(0,s,Y,. B)

(5.15)

= eXp(_(rmkt (S) - rmkt (t)))

=exp (_(kat (S) - kat (t)))

(.5, Y, )

Also,

E [exp(—fﬂhdu)is

d s
Ft} - E{E(exp(— I ﬂudu))
= (XP(~(T ()T () (5.16)
= Vinkt (S) exp(_(rmkt (S) _rmkt (t)))

Ft} =%E[exp(—f ﬁudu)}

After putting (5.9), (5.15) and (5.16) into (5.8), a discrete computation scheme of the CDS
payoff is obtained:
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CDS, (R, (1) Leo)

=L 4 { Rab J‘TT: (s _Tﬂ(s)—l) pm (t,8)7mq (S) EXP (_(rmkt (8) T (t))) ds

+Rop Z o P™(t,T,) exp(_(rmkt (M) -T e (t))) Lo J‘TT: P™ (1, T)7 e (5) exp(_(rmkt (8) T (t))) ds}

i=a+l

(5.17)

Comparing the CDS payoff formula from the deterministic intensity model (4.10) with the one
from the stochastic intensity model (5.17), we find that the two expressions are consistent, i.e.
under the no correlation condition, the assumption of deterministic intensity and stochastic

intensity lead to exactly the same result [,

5.5.1Numerical Scheme !

In the previous chapter we have derived the running CDS formula for a piecewise constant
intensity in an integral form. Here we develop it into a discrete form which is convenient for
computer simulation.

CDS,,(0,R, Lgp)

=R A" 0T DPOWED(T,, —(U-T, )du+RY. PO.T ) exp(-T)

i=a+1 i=a+1

—Lep Z 7 J.TT; P(0,t)exp(-I";; —»,(u—-T_,))du

i=a+l i

=R Zb: 7 (T =TL)POT)exp(-Iy = (T =T )T -T ) +R Zb: P(0,T))e; exp(-T;)

i=a+1 i=a+1

—Leo Z PO T)exp(-T, =7 (T =T )T -T.,)

i=a+l

=R Zb: 7P, T)exp(-T)e’ +R Zb: P(0,T))e; exp(-T) — Lgp Zb: 7P, T)exp(-T')e;

i=a+1 i=a+1 i=a+1l

(5.18)

T; i
where ¢, =T, =Ty, and T, = [ ' y(s)ds = > (T, ~T,.)7; .

k=1

As we mentioned in section 2.4, the CDS forward rate R, (0) makes the discounted payoff

formula (5.18) equal to zero at t = 0. Therefore, to get the intensities, we can plug the market
quotes of the CDS forward rate for different maturities into (5.18) and solve for y, .
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For example, we assume the starting time of the CDS contractis atT, =0, and let the end of the
contract T be 1 year, 2 years, 3 years... etc. We also set up the discrete time T, quarterly. For
the market quotesR;;(0), we can get the first year intensities y,, 7,,7,, 7, by solving the

equation:
CDSo,ly(O’ R(?{llf/T’LGDWl:?/z:?/s:h):O- (5.19)

For the second year, by using the market CDS data and the first year intensities derived from
(5.19), we can solve for the intensities of the second year:

CDSO,Zy(O’ R(g\{lz‘ifT’ LGD'7/1172173174;75 =V =77 :7/8) =0. (5.20)
Therefore, for the n™ year intensities, we can just plug in the CDS forward rates and solve the

equations iteratively.

5.5.2Simulation Results

Below we present some numerical examples, based on historical IBM, and Dell CDS data®"e,

(a) IBM CDS Calibration, Oct. 28th, 2008

Recovery Rate=40%

Maturity Tb(yr)|Maturity (date)| R(0,Tb)
0.5 2009-4-28 39.1
1 2009-10-28 | 47.327
2 2010-10-28 | 54.669
3 2011-10-28 | 63.894
4 2012-10-28 | 72.652
5 2013-10-28 | 77.16
7 2015-10-28 | 77.472
10 2018-10-28 | 79.439

Table 5.1. Maturity dates & corresponding CDS quotes in bps of IBM on Oct. 28th, 2008
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Date Intensity Surviv.a-I
Probability

2009-4-28 0.0065 0.9967
2009-10-28 0.0093 0.9921
2010-10-28 0.0104 0.9819
2011-10-28 0.0139 0.9683
2012-10-28 0.0169 0.9521
2013-10-28 0.0163 0.9367
2015-10-28 0.0131 0.9124
2018-10-28 0.0144 0.8739

Table 5.2. Calibration with piecewise constant intensity of IBM on Oct. 28th, 2008

Figure 5.1. Piecewise constant intensity y calibrated on CDS quotes of IBM, Oct. 28th, 2008

Piecewise Constant Intensity
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Sunvival Probability
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Figure 5.2. Survival probability from calibration on CDS quotes of IBM, Oct. 28th, 2008

Table 5.1 gives the CDS forward market rates of IBM for different maturities (0.5 year to 10
years) on Oct. 2008. We calibrate these data into the discrete equation (5.18) to calculate the
intensity and default probability within 10 years. Table 5.2 gives the corresponding numerical
results of the intensity and default probabilities. Then we plot the simulation result of the
intensities and survival probabilities data in Figure 5.1 and Figure 5.2.

(b) 1BM CDS Calibration, Dec. 12ed, 2011

Recovery Rate=40%

Maturity Tbh(yr)|Maturity (date)| R(0,Th)
1 2012-12-12 18.73
2 2013-12-12 24.00
3 2014-12-12 | 32.00
4 2015-12-12 39.00
5 2016-12-12 45.17
7 2018-12-12 56.66
10 2021-12-12 67.67

Table 5.3. Maturity dates & corresponding CDS quotes in bps of IBM on Dec. 12nd, 2011
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Date Intensity Surviv.a-I
Probability

2012-12-12 0.0031 99.69%
2013-12-12 0.0049 99.20%
2014-12-12 0.0081 98.40%
2015-12-12 0.0102 97.40%
2016-12-12 0.0120 96.24%
2018-12-12 0.0150 93.39%
2021-12-12 0.0168 88.80%

Table 5.4. Calibration with piecewise constant intensity of IBM on Dec. 12nd, 2011

Piecewise Constant Intensity
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Figure 5.3. Piecewise constant intensity y calibrated on CDS quotes of IBM on Dec. 12nd, 2011
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Figure 5.4: Survival probability from calibration on CDS quotes of IBM on Dec.12nd, 2011

Table 5.3 gives the CDS forward market rates of IBM for different maturities (1 year to 10 years)
on Dec. 2011. Table 5.2 gives the corresponding numerical result of the intensity and default
probabilities. We also show the intensity and probability curve in Figure 5.3 and 5.4.
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(c) Dell CDS Calibration, Aug 22nd, 2008

Recovery Rate=40%

Maturity Th(yr) [Maturity (date)| R(0,Tb)
0.5 2009-2-22 30.9
1 2009-8-22 36.345
2 2010-8-22 44.44
3 2011-8-22 | 56.817
4 2012-8-22 65.173
5 2013-8-22 72.996
7 2015-8-22 76.434
10 2018-8-22 | 80.395

Table 5.5. Maturity dates & corresponding CDS quotes in bps of Dell on Aug. 22nd, 2008
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Date Intensity Surviv.a.l
Probability

2009-2-22| 0.0051 99.74%
2009-8-22 | 0.0070 99.39%
2010-8-22| 0.0088 98.52%
2011-8-22| 0.0139 97.16%
2012-8-22| 0.0155 95.67%
2013-8-22| 0.0182 93.95%
2015-8-22| 0.0145 91.26%
2018-8-22| 0.0155 87.10%

Table 5.6. Calibration with piecewise constant intensity of Dell on Aug. 22nd, 2008

Piecewise Constant Intensity
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Figure 5.5. Piecewise constant intensity y calibrated on CDS quotes of Dell on Aug. 22nd, 2008
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Figure 5.6. Survival probability from calibration on CDS quotes of Dell on Aug. 22nd, 2008

Similar to the calibration of IBM, Table 5.5 gives the CDS forward market rates of Dell for
different maturities (0.5 year to 10 years) on Aug. 2008. Table 5.6 shows the corresponding
intensity and default probabilities. Figure 5.5 and 5.6 lines all the data in time.

(d) Dell CDS Calibration, Dec. 12nd, 2011

Recovery Rate=40%

Maturity Tb(yr)|Maturity (date)| R(0,Tb)
1 2012-12-12 | 67.50
2 2013-12-12 84.50
3 2014-12-12 | 100.50
4 2015-12-12 | 120.00
5 2016-12-12 | 137.57
7 2018-12-12 | 161.52
10 2021-12-12 | 178.66

Table 5.7. Maturity dates & corresponding CDS quotes in bps of Dell on Dec. 12nd, 2011
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Date Intensity Survival Probability
2012-12-12| 0.0114 99.87%
2013-12-12 0.0173 97.18%
2014-12-12 0.0228 94.99%
2015-12-12 0.0313 92.07%
2016-12-12| 0.0371 88.71%
2018-12-12 0.0404 81.83%
2021-12-12 0.0405 72.46%

Table 5.8. Calibration with piecewise constant intensity of Dell on Dec. 12nd, 2011

Piecewise Constant Intensity
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Figure 5.7. Piecewise constant intensity y calibrated on CDS quotes of Dell on Dec.12nd, 2011

28



Sunival Probability
100% .

950 — 4 -

0%~~~ 4~

85% | - - -

75% - - - -

[
|
|
|
|
B
|
|
|
|
80% - --+----
|
|
|
|
i
|
|
|
|

70%
Dec-11 Dec-12 Dec-13 Dec-14 Dec-15 Dec-16 Dec-17 Dec-18 Dec-19 Dec-20

Figure 5.8. Survival probability from calibration on CDS quotes of Dell, on Dec. 12nd, 2011

Table 5.7 gives the CDS forward market rates of Dell for different maturities (1 year to 10 years)
on Dec. 2011. Table 5.8 shows the corresponding intensity and default probabilities. Figure
5.7and 5.8 show the change of intensity and default probabilities in time.

Based on the simulation results, we can analyze the company information for IBM and Dell in
different time periods separately. For IBM we find that the intensities did not change
dramatically within the 10 year period. The survival probabilities derived from 2008 and 2011
have a similar curve, which also means that the company is showing a steady performance and
status. For Dell, the 10-year survival probability in 2008 is 87.10%;however, the 10-year survival
probability drops to 72.45% in 2011. By comparing the data in 2008 and 2011, it demonstrates
a decline for Dell in business performance.

5.6 Correlation Case in SSRD Model

In this section, we consider a more general case, in which we can put a correlation factor
between the short rate and stochastic intensity. We will discuss the effects on the stochastic
short rate and intensity processes in the different correlations scenarios.

To simulate the dynamics of the short rate and stochastic intensity, we first need to derive the
parameters in the short rate CIR++ model and the intensity CIR++ model separately. The

parameter a=(k,t9,a,xg)in the CIR++ short rate model can be derived from the market

guotes of the interest rate products, such as caps, floors and zero coupon bonds. Similarly, the
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parameters [ = (x, 1,0, yoﬁ) in the stochastic intensity model can be obtained by the market

price of the credit default swap products. In this project we will not demonstrate a detailed
procedure and scheme on the parameter derivation. Instead, we just use the data given in the
Brigo and Mercurio’s book. g

Recovery Rate=25%

Maturity Th(yr) I\:Ij::;;y R(0,Th)
1 2004-12-20 1450
3 2006-12-20 1200
5 2008-12-20 940
7 2010-12-20 850
10 2013-12-20 850

Table 5.9. Maturity dates & corresponding CDS quotes in bps of Parmalat on Dec. 8th, 2003

According to the calibration to the Parmalat CDS data and Cap prices, Alfonsi gets the below
parameters to describe the dynamics of short rate and intensities in the CIR++ model on Dec.
8th, 2003"):

ok =0.528950, = 0.0319904, o = 0.130035, X, =8.32349x10°°
Bk =0.583307, 1 =0.0149846, v = 0.0479776, y, = 0.192973

We will use the above data to simulate the correlated short rate and stochastic intensities and
conduct the comparison and analysis in the following sections.

5.6.1Discretization Scheme of Short Rate and Intensities

We first discretize the dynamics of X and y in the CIR++ model by using the parameter vectors
o and . Brigo and Alfonsi have proposed an implicit Euler schemes and derived the

corresponding explicit schemes for the process in 2003,

The implicit Euler schemes are:
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i+l

2
Ko, =X (0= -k (0 =) + oy, (W, - W)
2
L
=Y k)G ) oY (2, -2, (520

tia

dWdZ = pdt

To obtain an explicit expression, we need to solve for the above equations:

a (O-(\/\/t+1 _Wti ) +\/A71,J2

2(1+k(t., 1))

where (5.21)
2

A, = o’ (th -W, )*+ 4(th( + (ke_%)(tnl —t))@+k(t,, 1))

i+l

Similarly,

2
y{,’ _ U(Zt”1 _Zt,)+«/A .

i 21+ x(t,, —t.))

where (5.22)
2

Ny =Ry, 2P A+ =)t ) A A )

We know the standard Brownian motion W, has a normal distribution N(0,t), and the
increments W, =W, have a normal distribution N(0,t—s). To get two correlated standard

Brownian motions, we need to generate two independent standard Brownian motion pathsW,

and V, first, and then let Z, = pW, ++/1— p?V,. Thus the two Brownian motions W, and Z, have

a correlation of p.

To construct the path in figure 5.9 and 5.10 below, we first generated two correlated standard
Brownian motions by the method mentioned in the above paragraph. Then we apply the

numerical formula in (5.21) and (5.22) to discretize each time step of X, and Y,. Here we let the

time step to be a quarter of a year, which is 0.25 in the simulation.
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Figure 5.9. The dynamics of x in short rate model from Parmalat CDS data on Dec. 8th, 2003
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Figure 5.10. The dynamics of y in intensity model from Parmalat CDS data on Dec. 8th, 2003
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In the next step we need to derive the deterministic functions ¢(t,«) and ¢(t, £) in equation
(5.1) and (5.4).

For ¢(t,«) in the CIR++ model, we have:

(0CIR (t,a) — fmkt (O,t)— fCIR (O,t,a)

where:
mkt mkt __ pMmkt
f mkt (O,t) - _ ap (O!t) - _ P (O’ti+1) P (O't|) (523)
ot ti+1 _ti
_ 2
FOR (0,1, o) = 2k0) exp{th}-1 « 4h” exp{th}

20+ (k+)(Eexp{i}—1)  ° [2h+ (k+ h)(exp{t} -]

h=+vk? +20?

Therefore, we can obtain ¢(t,«) by substituting the market data of the zero coupon bonds for

different maturities and o = (k,8,0,X; ) into (5.23).
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Figure 5.11. The deterministic function in the CIR++ short rate model
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As for ¢(t, ), because of its deterministic feature, we can set up an equation for ¢(t, #) under

the condition of zero correlation. The most straight forward approach is to implement equation
(5.14) into the discretization scheme:

> 8. B =Y 1 +In(PR Oy, B))

i=a+l i=a+1

where P“?(0,t, ytﬁ,ﬂ) is the bond price derived from the CIR model with parameter vector £ :

PCIR (O,t, ytﬂ’ﬂ) — A*(O,t,ﬂ) eXp(_B*(O’Lﬁ))yt)

with:

A'(0,t, B) = *Zh eXD{EHh )t/*z}
2h +(x+h )(EXp{th }_1)

B"(0.t, ) = 2(exp{th"} -1)

2"+ (xc+h")(exp{th”} - 1)

and h" =vx? +20° _
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Figure 5.12. The deterministic function in the CIR++ intensity model
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5.6.2Correlation Effect on Interest Rate and Stochastic Intensity

Here we choose different p to explore the effects of the correlation on the interest rate and

stochastic intensity. We consider three cases:

1. Interest rate and stochastic intensity have no correlation (0).

2. Interest rate and stochastic intensity have a negative correlation (-1).
3. Interest rate and stochastic intensity have a positive correlation (1).

As mentioned in the 5.6.1, we generate two correlated standard Brownian motions path first.
We fix one Brownian motion path and change the other path by varying the correlation
coefficient between them. Then we can observe the changes in the dynamics of y as shown in
the below figure.

dynamics of y

—— — Rho=0
—*— Rho=-1
—&— Rho=1 | |

Figure 5.13. Comparison of the intensity with different correlation to interest rate
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From the simulation results in Figure 5.13, we find out that the three curves are quite close to
each other, especially after 1 year. Therefore we can come to the conclusion that the
correlation does not affect the dynamics of y much. In such case, we can ignore the correlation
between the interest rate and intensity when calibrating them into the CDS.

5.6.3 Monte Carlo Simulation

Monte Carlo methods are stochastic techniques based on the use of random numbers and
probability statistics to investigate problems. In this project we implemented Monte Carlo
methods to simulate the dynamics of the interest rate and stochastic intensity.

In the simulation we use the same Parmalat CDS data on Dec. 08th, 2003™ and the
corresponding derived parameter vectors & and £ shown in section 5.6. A correlation of 0.3 is
used in this simulation. We generate 10,000 sample paths to implement the Monte Carlo
method.
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Figure 5.14. Monte Carlo simulation of interest rate in SSRD model
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stochastic intensity
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Figure 5.15. Monte Carlo simulation of stochastic intensity in SSRD model

From the simulation results, we discover that the stochastic interest rate has some oscillation
during the first year, then displays a steady increase in the following years. As for the stochastic
intensity, the peak shows in the first year, which means that the Parmalat company faces a
default crisis during the first year. The intensity is oscillating but smaller after year 1. This
means that the company comes into a relatively steady situation compared to the first year.

6 Conclusion

In this paper we introduced the basic concept of CDS, and explained the premium payment,
protection payment and the relationship between the two. Then we presented a reduced form
(Intensity) model based on the time-inhomogeneous Poisson process. We used the market
instrument CDS and bonds prices to infer the implied default probabilities from market quotes.
A computation scheme was developed to calculate the corresponding intensity and survival
probability from the market data for several companies. Then we investigated the features of
the SSRD model. We showed that when there is no correlation between the interest rate and
stochastic intensities, the SSRD model have the same results with the reduced intensity model.
We also simulated the dynamics of the interest rate and stochastic intensity using the Monte
Carlo method.
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