Fast Matrix Multiplication by Group Algebras

A Master's Thesis
submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the
Degree of Master of Science
by

Zimu Li
January 24, 2018
Approved

Padraig Ó Catháin Thesis Advisor

Professor Luca Capogna
Department Head

Abstract

Based on Cohn and Umans' group-theoretic method, we embed matrix multiplication into several group algebras, including those of cyclic groups, dihedral groups, special linear groups and Frobenius groups. We prove that $S L_{2}\left(\mathbb{F}_{p}\right)$ and $P S L_{2}\left(\mathbb{F}_{p}\right)$ can realize the matrix tensor $\langle p, p, p\rangle$, i.e. it is possible to encode $p \times p$ matrix multiplication in the group algebra of such a group. We also find the lower bound for the order of an abelian group realizing $\langle n, n, n\rangle$ is n^{3}. For Frobenius groups of the form $C_{q} \rtimes C_{p}$, where p and q are primes, we find that the smallest admissible value of q must be in the range $p^{4 / 3} \leq q \leq p^{2}-2 p+3$. We also develop an algorithm to find the smallest q for a given prime p.

Key words: fast matrix multiplication, group-theoretic method, representation theory, cyclic group, dihedral group, special linear group, Frobenius group.

Acknowledgement

This work would not have been possible without the support of the Department of Mathematical Science, Worcester Polytechnic Institute. I am especially indebted to Dr. Padraig Ó Catháin, Assistant Professor of the Department of Mathematical Science, who gave me numerous advises along the whole research. Also, I am grateful to Michael D Malone and Kyle George Dunn who gave me technical support.

Contents

1 Introduction 1
2 Representation theory of abelian groups 4
3 Embedding polynomial multiplication in a group algebra 8
4 Embedding Matrix Multiplication in a Group Algebra 10
5 Lower bounds for the complexity of matrix multiplication using a group algebra 16
6 Cyclic groups and dihedral groups 19
7 Bounds on the smallest group realizing $p \times p$ matrix multiplication 23
8 Matrix multiplication with Frobenius groups 27
9 Future work 33

Chapter 1

Introduction

A natural question in computer science is to bound the computational complexity of standard mathematical tasks. This thesis is concerned with the complexity of matrix multiplication. In many models of computation, multiplication is much more expensive then addition. So for simplicity, we only count the number of multiplications when we measure the time complexity of a computational task. We will use the \mathcal{O} notation to help us measure the number of multiplications. For two functions $f(n)$, $g(n): \mathbb{N} \rightarrow \mathbb{N}$, we write $f(n)=\mathcal{O}(g(n))$ if there exits $c \in \mathbb{R}$ such that $f(n) \leq c g(n)$ for all sufficiently large n. In our case, f is the number of multiplications in an algorithm for $n \times n$ matrix multiplication.

Given two $n \times n$ matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, where $a_{i j}$ and $b_{i j}$ are in field $F=\mathbb{C}$. In general cases, F could be any field, we use \mathbb{C} in our research to simplify the problem. We want to calculate the product of $A B=\left(c_{i j}\right)$. The naive matrix multiplication algorithm is:

$$
c_{i j}=\sum_{m=1}^{n} a_{i m} b_{m j}
$$

This algorithm takes n multiplication to calculate each entry. Thus it takes n^{3} multiplications to compute $A B$.

Definition 1. Suppose that a matrix multiplication algorithm takes about $\mathcal{O}\left(n^{\omega}\right)$ multiplications, then $\mathcal{O}\left(n^{\omega}\right)$ is the time complexity of this algorithm and ω is the complexity exponent.

By this definition, the time complexity (we also use complexity to refer time complexity below) of the naive algorithm is $n^{3}=\mathcal{O}\left(n^{3}\right)$.

In 1969, Volker Strassen found the first fast matrix multiplication algorithm in [14] which has complexity exponent smaller then 3.

Assume $A=\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right), B=\left(\begin{array}{ll}b_{1} & b_{2} \\ b_{3} & b_{4}\end{array}\right)$ and $A B=\left(\begin{array}{ll}c_{1} & c_{2} \\ c_{3} & c_{4}\end{array}\right)$. Compute the following seven products:

$$
\begin{aligned}
& p_{1}=\left(a_{1}+a_{4}\right)\left(b_{1}+b_{4}\right) \\
& p_{2}=\left(a_{3}+a_{4}\right) b_{1} \\
& p_{3}=a_{1}\left(b_{2}-b_{4}\right) \\
& p_{4}=a_{4}\left(b_{3}-b_{1}\right) \\
& p_{5}=\left(a_{1}+a_{2}\right) b_{4} \\
& p_{6}=\left(a_{2}-a_{1}\right)\left(b_{1}+b_{2}\right) \\
& p_{7}=\left(a_{2}-a_{4}\right)\left(b_{3}+b_{4}\right)
\end{aligned}
$$

This seven products surprisingly give us all entries of $A B$ as their linear combination:

$$
A B=\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right)=\left(\begin{array}{cc}
p_{1}+p_{4}-p_{5}+p_{7} & p_{3}+p_{5} \\
p_{2}+p_{4} & p_{1}+p_{3}-p_{2}+p_{6}
\end{array}\right)
$$

It uses 7 multiplications instead of 8 to calculate 2×2 matrix multiplication and 7 is also the optimal number for 2×2 matrix multiplication [2]. The optimal number of multiplication for 3×3 matrix multiplication is somewhere between 19 and 23 . The larger the matrix is, the harder to find the optimal number of multiplication. However we can apply Strassen algorithm to $n \times n$ matrix multiplication by regard $n \times n$ matrix as 2×2 block matrix.

Theorem 1 (Proposition 1.1 in [2]). One can multiply $n \times n$ matrices with $\mathcal{O}\left(n^{\log _{2} 7}\right)$ multiplication.

Later in 1987, Strassen improved the complexity from $\omega<\mathcal{O}\left(n^{2.81}\right)$ to $\omega<$ $\mathcal{O}\left(n^{2.48}\right)$ using laser method [15]. However it is still not the lowest upper bound of ω. A variant Strassen's algorithm from Coppersmith and Winograd makes a great improvement to $\omega<\mathcal{O}\left(n^{2.376}\right)$ [5] in 1990. This number stood as the best upper bound of ω for more then 20 years before Virgina V. Williams set the new record as $\omega<\mathcal{O}\left(n^{2.373}\right)$ in 2014 [17]. Many researchers believe that for every $\epsilon>0$ there exists a $N_{\epsilon}>0$ such that matrices of size larger then N_{ϵ} can be multiplied in $\mathcal{O}\left(n^{2+\epsilon}\right)$.

All algorithms above are based on Strassen's Algorithm, however, Henry Cohn and Christopher Umans developed a group-theoretic approach to bound the complexity exponent of matrix multiplication [4]. They embedded matrix multiplication into group algebras and accelerated the calculation by decomposing the corresponding representations. They used the pseudo-exponent to measure the complexity and they
also showed how to match the bound $\omega<\mathcal{O}\left(n^{2.376}\right)$ using group-theoretic method [3]. Since their approach is relatively simple and almost entirely separate from Strassen's Algorithm, our research is based on group-theoretic approach. Instead of focus on finding the bound of the exponent ω, we look into several type of groups and try to find the smallest group to embed matrix multiplication and also try to measure the efficiency.

Chapter 2

Representation theory of abelian groups

In this chapter, we will introduce the representation theory of abelian groups with some basic definitions and some theorems used in our research.

Definition 2. A representation of a group G on a vector space V over a field F is a group homomorphism from G to $G L(V)$. That is, a representation is a map $\rho: G \rightarrow G L(V)$ such that,

$$
\rho\left(g_{1} g_{2}\right)=\rho\left(g_{1}\right) \rho\left(g_{2}\right), \text { for all } g_{1}, g_{2} \in G
$$

The dimension of V is called the dimension of the representation.
Definition 3. Let \mathbb{C} be the complex field and G be a finite group. The group algebra $\mathbb{C} G$ is the set of all linear combinations of finitely many elements of G with coefficients in \mathbb{C}.

Definition 4. Let $\mathbb{C} G$ be an group algebra and V be a finite dimensional complexvector space. Suppose for every $v \in V$ and $x \in \mathbb{C} G$ that a unique $v x \in V$ is defined. Assume for all $x, y \in \mathbb{C} G, v, w \in V$ and a complex number c that

1. $(v+w) x=v x+w x$
2. $v(x+y)=v x+v y$
3. $(v x) y=v(x y)$
4. $(c v) x=c(v x)=v(c x)$
5. $v 1=v$

Then V is a $\mathbb{C} G$-module.
Let G be a finite group and V be a $\mathbb{C} G$-module, then the map: $G \rightarrow G L(V)$ given by $g \rightarrow \rho_{g}$, where $\rho_{g}(v)=v g$, defines a representation of G on V. On the other hand, given a representation $\rho: G \rightarrow G L(V)$ we have a linear action of G on V given by $v g=v \rho(g)$.

Definition 5. A $\mathbb{C} G$-module V is said to be irreducible if it is non-zero and it has no $\mathbb{C} G$-module apart from $\{0\}$ and V. If V has an $\mathbb{C} G$-submodule W which is not $\{0\}$ or V, then V is reducible. A representation $\rho: G \rightarrow G L(n, \mathbb{C})$ is irreducible if the corresponding $\mathbb{C} G$-module V given by

$$
v g=v(g \rho) v \in V, g \in G
$$

is irreducible; and ρ is reducible if V is reducible.
Definition 6. Let G be a finite group and \mathbb{C} be the complex field. The representation $g \rightarrow[g]_{B}$ obtained by taking B to be the natural basis of $\mathbb{C} G$ is called the regular representation of G over \mathbb{C}.

Definition 7. Given $\mathbb{C} G$-modules V and W, for $c \in \mathbb{C}, v_{1}, v_{2} \in V$ and $w_{1}, w_{2} \in W$, define the operations as follows:

1. $\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right)=\left(v_{1}+v_{2}, w_{1}+w_{2}\right)$
2. $c\left(v_{1}, w_{1}\right)=\left(c v_{1}, c w_{1}\right)$

Then $\{(v, w): v \in V, w \in W\}$ is a $\mathbb{C} G$-module called the direct sum of V and W, denoted by

$$
V \oplus W
$$

Definition 8. Given groups $(G, *)$ and (H, \triangle), the direct product $G \times H$ is defined as follows:

1. $G \times H=\{(g, h): g \in G, h \in H\}$
2. The option on $G \times H$ is defined component-wise:

$$
\left(g_{1}, h_{1}\right) \cdot\left(g_{2}, h_{2}\right)=\left(g_{1} * g_{2}, h_{1} \triangle h_{2}\right)
$$

where $g_{1}, g_{2} \in G$ and $h_{1}, h_{2} \in H$.
$(G \times H, \cdot)$ satisfies the axioms for group.
In the following paragraphs we will prove that every $\mathbb{C} G$-module of finite abelian group G with dimension n is direct sum of n irreducible $\mathbb{C} G$-module with dimension 1. Which also means that the regular representation matrix of every $\mathbb{C} G$ - module for finite abelian group G is diagonalizable.

Theorem 2. If G is a finite abelian group, then every irreducible $\mathbb{C} G$-module has dimension 1.

Proof. Let G be a finite abelian group, and V be an irreducible $\mathbb{C} G$-module. And let ρ be a representation: $\rho G \rightarrow G L(V)$ such that, $\rho\left(g_{1} g_{2}\right)=\rho\left(g_{1}\right) \rho\left(g_{2}\right)$, for all $g_{1}, g_{2} \in$ G. Since $\rho\left(g_{1}\right) \in G L(V)$, suppose that $\lambda \in \mathbb{C}$ is the eigenvalue of $\rho\left(g_{1}\right)$ with eigenvector $v \in V$. Left multiplying by $\rho\left(g_{2}\right)$ on both sides, we have

$$
\begin{align*}
\rho\left(g_{2}\right) \rho\left(g_{1}\right) v & =\lambda \rho\left(g_{2}\right) v \\
& =\rho\left(g_{1}\right) \rho\left(g_{2}\right) v \tag{2.1}
\end{align*}
$$

since G is abelian. Therefore $\rho\left(g_{2}\right) v$ is also a eigenvector of $\rho\left(g_{1}\right)$. Since g_{2} can be any element in $G, \rho\left(g_{1}\right)$ act like a complex scalar and $\operatorname{dim} \rho=1$. It also means that λ-eigenspace is a $\mathbb{C} G$-submodule of V which dimension is equal to 1 . Since V is a irreducible $\mathbb{C} G$-module, $\operatorname{dim} V=1$.

In the following paragraphs, we will prove that regular representations of finite abelian groups are diagonalizable.

Theorem 3 (Chapter 9 in [7]). Every finite abelian group is isomorphic to a direct product of cyclic groups.

Theorem 4 (Chapter 8 in [11]). If G is a finite group and field F is \mathbb{C}, then the $\mathbb{C} G$-module V can be decompose as:

$$
V=U_{1} \oplus U_{2} \oplus \ldots \oplus U_{m}
$$

where U_{i} are irreducible $\mathbb{C} G$-submodules.
Theorem 5. Every $\mathbb{C} G$ - module of finite abelian group G with dimension n is a direct sum of n irreducible $\mathbb{C} G$-submodules with dimension 1 .

Proof. Let V be a $\mathbb{C} G$ - module of finite abelian group G. According to Theorem 4 We can decompose V as:

$$
V=U_{1} \oplus U_{2} \oplus \ldots \oplus U_{m}
$$

where U_{i} are some irreducible $\mathbb{C} G$ - module. By Theorem 2 , $\operatorname{dim} U_{i}=1$ for $i=$ $1,2, \ldots m$

Corollary 1. The regular representation matrix of every $\mathbb{C} G$ - module for finite abelian group G is diagonalizable.

Proof. According to Theorem 11, we can decompose every finite abelian group G as

$$
G=C_{n_{1}} \times C_{n_{2}} \times C_{n_{3}} \times \ldots \times C_{n_{m}}
$$

where $C_{n_{i}}$ is a cyclic group generated by c_{i} of order n_{i}. Let

$$
g_{i}=\left(1,1, \ldots, c_{i}, \ldots, 1\right) \text { where } c_{i} \text { is in ith position. }
$$

Then we have $G=\left\langle g_{1}, g_{2}, \ldots, g_{m}\right\rangle$, with $g_{i}^{n_{i}}=1$ and $g_{i} g_{j}=g_{j} g_{i}$ for all i, j. Let $\theta: G \rightarrow G L(n, \mathbb{C})$ be an irreducible representation of G. By Theorem $2, n=1$. Then for every g_{i} we have:

$$
\theta\left(g_{i}\right)=\left(\lambda_{i}\right) \text { where } \lambda_{i} \in \mathbb{C}
$$

And since $g_{i}^{n_{i}}=1$ and $\lambda_{i}^{n_{i}}=1$. For $\forall g \in G$, we have $g=g_{1}^{i_{1}} g_{2}^{i_{2}} \ldots g_{m}^{i_{m}}\left(i_{r}\right.$ is integer $)$, which deduce:

$$
\theta(g)=\theta\left(g_{1}^{i_{1}} g_{2}^{i_{2}} \ldots g_{m}^{i_{m}}\right)=\left(\lambda_{1}^{i_{1}} \lambda_{2}^{i_{2}} \ldots \lambda_{m}^{i_{m}}\right)
$$

where λ_{i} is an $n_{i}^{t h}$ root of unity. There are $n_{1} n_{2} \ldots n_{m}=n$ of such irreducible representations, and no two of them are equivalent. Let θ_{i} denote such irreducible representations. Let $\rho: V \rightarrow G L(n, \mathbb{C})$ be the regular representation of $\mathbb{C} G$ - module, then since Theorem 5 we have:

$$
\rho(v) \text { is a linear transformation from } \theta\left(x_{1}\right) \oplus \theta\left(x_{2}\right) \oplus \ldots \oplus \theta\left(x_{n}\right) .
$$

Where x_{i} is distinct elements in G. Which also means $\exists n \times n$ matrix M such that

$$
M^{-1} \cdot \rho(v) \cdot M=\left(\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right)
$$

Chapter 3

Embedding polynomial multiplication in a group algebra

In this chapter, we will embed a subset of polynomial ring $\mathbb{C}[x, y]$ into the group algebra $\mathbb{C} G$ for a suitably chosen abelian group G. Efficient multiplication of $\mathbb{C} G$ elements gives an algorithm for multiplication of polynomials in subquadratic time. The matrix multiplication embedding can just analogise the polynomial multiplication embedding.

Let $P_{1}(x, y)$ and $P_{2}(x, y)$ be defined as follow:

$$
\begin{aligned}
& P_{1}=\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} a_{i j} \cdot x^{i} \cdot y^{j} \\
& P_{2}=\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} b_{i j} \cdot x^{i} \cdot y^{j}
\end{aligned}
$$

And let $G=C_{2 m-1} \times C_{2 n-1}$ be a finite abelian group and $\mathbb{C} G$ be the group algebra. Assume $C_{2 n-1}=\left\langle c_{1}\right\rangle$ and $C_{2 m-1}=\left\langle c_{2}\right\rangle$. Given the partial embedding $\phi: \mathbb{C}[x, y] \rightarrow$ $\mathbb{C} G$ as follow:

$$
\begin{aligned}
& \phi\left(P_{1}\right)=\sum_{i=0}^{n-1} \sum_{i=0}^{m-1} a_{i j} \cdot c_{1}^{i} \cdot c_{2}^{j} \\
& \phi\left(P_{2}\right)=\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} b_{i j} \cdot c_{1}^{i} \cdot c_{2}^{j}
\end{aligned}
$$

We can easily conclude that the coefficient of $x^{i} y^{j}$ in $P_{1} P_{2}$ is equal to the coefficient of $c_{1}^{i} c_{2}^{j}$ in $\phi\left(P_{1}\right) \phi\left(P_{2}\right)$. Therefore, in order to calculate the polynomial multiplication,
all we need to do is calculate every coefficient of $\phi\left(P_{1}\right) \phi\left(P_{2}\right)$. We will use regular representation of the group algebra to calculate $\phi\left(P_{1}\right) \phi\left(P_{2}\right)$.

Assume $\left[c_{1}^{i} \cdot c_{2}^{j}\right]_{B}$ denotes the regular representation of group element $c_{1}^{i} \cdot c_{2}^{j}$ in G. Then:

$$
\begin{aligned}
\rho\left(\phi\left(P_{1}\right)\right) & =\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} a_{i j}\left[c_{1}^{i} \cdot c_{2}^{j}\right]_{B} \\
\rho\left(\phi\left(P_{2}\right)\right) & =\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} b_{i j}\left[c_{1}^{i} \cdot c_{2}^{j}\right]_{B}
\end{aligned}
$$

Let $x_{i j}$ be an entry of $\rho\left(\phi\left(P_{1}\right)\right) \cdot \rho\left(\phi\left(P_{2}\right)\right)$. Then $x_{i j}$ is equal to the coefficient of the term $c_{1}^{i} c_{2}^{j}$ in $\phi\left(P_{1}\right) P_{2}^{*}$ which is also the coefficient of $x^{i} y^{j}$ in $P_{1} P_{2}$.

Corollary 1 shows that $\rho\left(\phi\left(P_{1}\right)\right)$ and $\rho\left(\phi\left(P_{2}\right)\right)$ are diagonalizable, and we can use fast Fourier transform (FFT) to diagonlize them. A FFT is an algorithm that can computes discrete Fourier transform (DFT) in $\mathcal{O}(n l o g n)$ time. And we can use the matrix form of DFT to diagonalize $\rho\left(\phi\left(P_{1}\right)\right)$ and $\rho\left(\phi\left(P_{2}\right)\right)$. Since our work is focus on group-theoretic methods, we will not go into $F F T$ and $D F T$. You can find more details about them in [9].

Theorem 6. If G is a finite abelian group of order n, then we can multiply $\alpha, \beta \in \mathbb{C} G$ in time $\mathcal{O}(n \log n)$.

Proof. Let G be a finite abelian group and $\alpha, \beta \in \mathbb{C} G$. Suppose ρ is the regular representation in G. By Corollary 1, $\rho(\alpha)$ and $\rho(\beta)$) are diagonalizable. And since $\rho(\alpha)$ and $\rho(\beta)$ use the same representation, there is a matrix M diagonalize both of them. Then we can calculate $\rho(\alpha) \cdot \rho(\beta)$ as follow:

$$
\begin{array}{r}
\rho(\alpha) \cdot \rho(\beta)=M^{-1}\left(\begin{array}{ccc}
a_{1} & & \\
& \ddots & \\
& & a_{n}
\end{array}\right) M M^{-1}\left(\begin{array}{lll}
b_{1} & & \\
& \ddots & \\
& & b_{n}
\end{array}\right) M \\
=M^{-1}\left(\begin{array}{lll}
a_{1} & & \\
& \ddots & \\
& & a_{n}
\end{array}\right) \cdot\left(\begin{array}{lll}
b_{1} & & \\
& \ddots & \\
& & b_{n}
\end{array}\right) M
\end{array}
$$

Using $F F T$, we can diagonalize $\rho(\alpha)$ and $\rho(\beta)$ in $\mathcal{O}(n \log n)$ time. The complexity of multiply two diagonalized matrices is $\mathcal{O}(n)$. Then we can conclude that the complexity of $\alpha \cdot \beta$ is $\mathcal{O}(n \log n)$.

By Theorem 6, the group-theoretic methods of the fast polynomial multiplication reduce two-variable polynomial multiplication complexity from $\mathcal{O}\left(m^{2} n^{2}\right)$ to $\mathcal{O}(m n \log m n)$

Chapter 4

Embedding Matrix Multiplication in a Group Algebra

We will explain how to embed the $n \times n$ matrices A, B into the group algebra $\mathbb{C} G$. Given subsets S_{1}, S_{2}, S_{3} of $G,\left|S_{i}\right|=n$, let

$$
\begin{aligned}
A^{*} & =\sum_{s_{1} \in S_{1}, s_{2} \in S_{2}} s_{1}^{-1} \cdot s_{2} \cdot A_{s_{1} s_{2}} \\
B^{*} & =\sum_{s_{2} \in S_{2}, s_{3} \in S_{3}} s_{2}^{-1} \cdot s_{3} \cdot A_{s_{2} s_{3}}
\end{aligned}
$$

We use elements in S_{1}, S_{2} to label the rows and columns of A and use S_{2}, S_{3} to label the rows and columns of B.

Example 1. Let $G=C_{2} \times C_{2} \times C_{2}$, and this three cyclic groups of order 2 are generated by x, y, z respectively. We will give a simple example of embedding 2×2 matrices multiplication into G.

Let $A=\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right), B=\left(\begin{array}{ll}b_{1} & b_{2} \\ b_{3} & b_{4}\end{array}\right)$ and $S_{1}=\{1, x\}, S_{2}=\{1, y\}, S_{3}=\{1, z\}$.
First we label the first row of A as 1 and second row of A as $x \in S_{1}$, the first column of A as 1 and second column of A as $y \in S_{2}$. Similarly, we label the first row of B as 1 and second row of B as $y \in S_{2}$, the first column of B as z and second column of A as $z \in S_{3}$. Then, for instance, $a_{1}=A_{11}, a_{2}=A_{1 y}, a_{3}=A_{x 1}$ and $a_{4}=A_{x y}$. We also can label rows of $A B$ as $1, x$ and column of $A B$ as $1, z$ (we will prove it later).

Then we embed A and B into $A^{*}, B^{*} \in \mathbb{C} G$:

$$
A^{*}=1 \cdot 1 \cdot a_{1}+1 \cdot y \cdot a_{2}+x^{-1} \cdot 1 \cdot a_{3}+x^{-1} \cdot y \cdot a_{4}=a_{1}+a_{2} y+a_{3} x+a_{4} x y
$$

$$
B^{*}=1 \cdot 1 \cdot b_{1}+1 \cdot z \cdot b_{2}+y^{-1} \cdot 1 \cdot b_{3}+y^{-1} \cdot z \cdot b_{4}=b_{1}+b_{2} z+b_{3} y+b_{4} y z
$$

We need to find S_{1}, S_{2}, S_{3} for G before we embed matrices and the following property gives a guideline of finding them.

Definition 9 (Triple-product property). Suppose $\left|S_{1}\right|=n,\left|S_{2}\right|=m,\left|S_{3}\right|=p$ are three subsets of group G. Let $Q_{i}=\left\{s v^{-1} \mid s, v \in S_{i}\right\}$ for $i \in\{1,2,3\}$. For every $q_{i} \in Q_{i}, q_{1} \cdot q_{2} \cdot q_{3}=1$ if and only if $q_{i}=1$. If such S_{1}, S_{2}, S_{3} satisfy triple-product property in G, then we say that G realize $\langle n, m, p\rangle$.

If all S_{1}, S_{2}, S_{3} are subgroups of group G, we can check whether it satisfy tripleproduct property in a more straightforward way.

Theorem 7. Suppose S_{1}, S_{2}, S_{3} are three subgroups of group G that satisfy tripleproduct property. Then for every $x_{i} \in S_{i}, x_{1} \cdot x_{2} \cdot x_{3}=1$ if and only if $x_{i}=1$.

Proof. Let S_{1}, S_{2}, S_{3} be subgroups of G, then $Q_{i}=\left\{s v^{-1} \mid s, v \in S_{i}\right\}=S_{i}$ since S_{i} are subgroups. By the definition of the triple-product property, for every $x_{i} \in S_{i}$, $x_{1} \cdot x_{2} \cdot x_{3}=1$ if and only if $x_{i}=1$ implies that S_{1}, S_{2}, S_{3} satisfy triple-product property.

Corollary 2. Suppose S_{1}, S_{2}, S_{3} are three subgroups of group G that satisfy tripleproduct property. Let $T=\left\{s_{1} s_{2} \mid s_{1} \in S_{1}, s_{2} \in S_{2}\right\}$, then $\left|T \cap S_{3}\right|=1$

Proof. It is trivial that $1 \in T \cap S_{3}$. Assume that $\left|T \cap S_{3}\right|>1$, let $x \in T \cap S_{3}$ be an non-trivial element. Then $x^{-1} \in S_{3}$. Since $x \in T$, there exits $s_{1} \in S_{1}$ and $s_{2} \in S_{2}$ such that $s_{1} s_{2}=x$ and $s_{1} s_{2} x^{-1}=1 . x^{-1} \neq 1$ contradict Theorem 7. Then $\left|T \cap S_{3}\right|=1$.

We embed matrices to group algebras since we want that the product of A^{*} and B^{*} can somehow give us all the entry of $A \cdot B$. As long as S_{1}, S_{2}, S_{3} satisfy the triple-product property, $A^{*} \cdot B^{*}$ will give all the information we need.

Theorem 8. If subsets S_{1}, S_{2}, S_{3} of G satisfy the triple-product property, then the entry $A \cdot B_{s_{1} s_{3}}$ is equal to the coefficient of $s_{1}^{-1} s_{3}$ in $A^{*} \cdot B^{*}$.

Proof.

$$
A^{*} \cdot B^{*}=\sum_{s_{1} \in S_{1}} \sum_{s_{2}, v_{2} \in S_{2}} \sum_{s 3 \in S_{3}} s_{1}^{-1} \cdot s_{2} \cdot v_{2}^{-1} \cdot s_{3} \cdot A_{s_{1} s_{2}} \cdot B_{v_{2} s_{3}}
$$

If $s_{1}^{-1} \cdot s_{2} \cdot v_{2}^{-1} \cdot s_{3}=s_{1}^{-1} \cdot s_{3}$, we have term $s_{1}^{-1} s_{3}$ in $A^{*} \cdot B^{*}$ and the coefficient of $s_{1}^{-1} s_{3}$ is

$$
\sum_{s_{1} \in S_{1}} \sum_{s_{2}, v_{2} \in S_{2}} \sum_{s 3 \in S_{3}} A_{s_{1} s_{2}} \cdot B_{v_{2} s_{3}} .
$$

By the definition of the triple-product property

$$
\begin{align*}
& s_{1}^{-1} \cdot s_{2} \cdot v_{2}^{-1} \cdot s_{3}=s_{1}^{-1} \cdot s_{3} \\
\Rightarrow & s_{1} \cdot s_{1}^{-1} \cdot s_{2} \cdot v_{2}^{-1} \cdot s_{3} \cdot s_{3}^{-1}=1 \tag{4.1}\\
\Rightarrow & s_{2}^{-1} \cdot v_{2}=1
\end{align*}
$$

Then the coefficient of $v_{1}^{-1} v_{3}$ equal to $\sum_{s_{1} \in S_{1}} \sum_{s_{2}, v_{2} \in S_{2}} \sum_{s 3 \in S_{3}} A_{s_{1} s_{2}} \cdot B_{s_{2} s_{3}}$ which is $A \cdot B_{s_{1} s_{3}}$.

In the following paragraphs, we will show a example of embedding multiplication of 2×2 matrix into dihedral group.

Definition 10. A dihedral group is the group of symmetries of a regular polygon. The dihedral group of a regular n-side polygon is

$$
D_{2 n}=\left\{r, s \mid r^{n}=s^{2}=1, s r s=r^{-1}\right\}
$$

where r is the rotation symmetry of order n and s is the reflection symmetry. The dihedral group of a regular n-side polygon has order $2 n$.

Let $D_{8}=\left\{1, r, r^{2}, r^{3}, s, r s, r^{2} s, r^{3} s\right\}$. Let $S_{1}=\{1, s\}, S_{2}=\{1, r s\}, S_{3}=\left\{1, r^{2} s\right\}$, then we have $s_{1} \cdot v_{1}^{-1} \cdot s_{2} \cdot v_{2}^{-1} \cdot s_{3} \cdot v_{3}^{-1}=1$ if and only if $s_{i} \cdot v_{i}^{-1}=1$ satisfy the triple-product property. We can embed matrix multiplication to S_{1}, S_{2}, S_{3}. Let

$$
\begin{aligned}
A & =\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right) \\
B & =\left(\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right)
\end{aligned}
$$

Let elements in S_{1} and S_{2} represent the row and column of A respectively and S_{2} and S_{3} represent the row and column of B. Then we have

$$
\begin{gathered}
A^{*}=a_{1} \cdot 1 \cdot 1+a_{2} \cdot 1 \cdot r s+a_{3} \cdot s \cdot 1+a_{4} \cdot s \cdot r s \\
B^{*}=b_{1} \cdot 1 \cdot 1+b_{2} \cdot 1 \cdot r^{2} s+b_{3} \cdot r s \cdot 1+b_{4} \cdot r s \cdot r^{2} s
\end{gathered}
$$

We can calculate the entries of $A B$ by calculate corresponding coefficient of $A^{*} \cdot B^{*}$

$$
\begin{aligned}
A^{*} \cdot B^{*}= & a_{1} \cdot b_{1}+r^{2} s \cdot a_{1} \cdot b_{2}+r s \cdot a_{1} \cdot b_{3}+r s \cdot r^{2} s \cdot a_{1} \cdot b_{4} \\
& +r s \cdot a_{2} \cdot b_{1}+r s \cdot r^{2} s \cdot a_{2} \cdot b_{2}+r s \cdot r s \cdot a_{2} \cdot b_{3}+r s \cdot r s \cdot r^{2} s \cdot a_{2} \cdot b_{4} \\
& +s \cdot a_{3} \cdot b_{1}+s \cdot r^{2} s \cdot a_{3} \cdot b_{2}+s \cdot r s \cdot a_{3} \cdot b_{3}+s \cdot r s \cdot r^{2} s \cdot a_{3} \cdot b 4 \\
& +s r s \cdot a_{4} \cdot b 1+s r s \cdot r^{2} s \cdot a_{4} \cdot b_{2}+s r s \cdot r s \cdot a_{4} \cdot b_{3}+s r s \cdot r s \cdot r^{2} s \cdot a_{4} \cdot b_{4} \\
= & \left(a_{1} \cdot b_{1}+a_{2} \cdot b_{3}\right)+r^{2} s \cdot\left(a_{1} \cdot b_{2}+a_{2} \cdot b_{4}\right) \\
& +s \cdot\left(a_{3} \cdot b_{1}+a_{4} \cdot b_{3}\right)+r^{2} \cdot\left(a_{3} \cdot b_{2}+a_{4} \cdot b_{4}\right) \\
& +r s \cdot\left(a_{1} \cdot b_{3}+a_{2} \cdot b_{1}+a_{3} \cdot b_{4}+a_{4} \cdot b_{2}\right) \\
& +r^{3} \cdot\left(a_{1} \cdot b_{4}+a_{2} \cdot b_{2}+a_{3} \cdot b_{3}+a_{4} \cdot b_{1}\right)
\end{aligned}
$$

Let Φ be a map: $\mathbb{C} G \rightarrow \mathbb{C} G$ such that, $\Phi\left(\sum a_{g} \cdot g\right)=\sum_{g \in S_{1} \cdot S_{3}} a_{g} \cdot g$. Then

$$
\begin{aligned}
\Phi\left(A^{*} \cdot B^{*}\right)= & \left(a_{1} \cdot b_{1}+a_{2} \cdot b_{3}\right)+r^{2} s \cdot\left(a_{1} \cdot b_{2}+a_{2} \cdot b_{4}\right) \\
& +s \cdot\left(a_{3} \cdot b_{1}+a_{4} \cdot b_{3}\right)+r^{2} \cdot\left(a_{3} \cdot b_{2}+a_{4} \cdot b_{4}\right)
\end{aligned}
$$

In this case, terms $\left(a_{1} \cdot b_{1}+a_{2} \cdot b_{3}\right), r^{2} \cdot\left(a_{1} \cdot b_{2}+a_{2} \cdot b_{4}\right), r^{2} s \cdot\left(a_{1} \cdot b_{2}+a_{2} \cdot b_{4}\right)$ and $s \cdot\left(a_{3} \cdot b_{1}+a_{4} \cdot b_{3}\right)$ are the terms which coefficients provide the entries of $A \cdot B$. Therefore, as long as we have $\Phi\left(A^{*} \cdot B^{*}\right)$, we will have $A \cdot B$.

By taking the matrices relative to the basis $\left\{1, r, r^{2}, r^{3}, s, r s, r^{2} s, r^{3} s\right\}$, we can obtain the regular representation of D_{8} :

$$
\rho(s)=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \tag{4.2}\\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \quad \rho(r)=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

The regular representation of A^{*} and B^{*} are linear combinations of representation of group elements:

$$
\begin{gathered}
\rho\left(A^{*}\right)=a_{1} \rho(1)+a_{2} \rho(r) \rho(s)+a_{3} \rho(s)+a_{4} \rho(s) \rho(r) \rho(s) \\
\rho\left(B^{*}\right)=b_{1} \rho(1)+b_{2} \rho^{2}(r) \rho(s)+b_{3} \rho(r) \rho(s)+b_{4} \rho^{3}(r)
\end{gathered}
$$

$$
\rho\left(A^{*}\right)=\left(\begin{array}{cccccccc}
a_{1} & 0 & 0 & a_{4} & a_{3} & 0 & 0 & a_{2} \tag{4.3}\\
a_{4} & a_{1} & 0 & 0 & a_{2} & a_{3} & 0 & 0 \\
0 & a_{4} & a_{1} & 0 & 0 & a_{2} & a_{3} & 0 \\
0 & 0 & a_{4} & a_{1} & 0 & 0 & a_{2} & a_{3} \\
a_{3} & 0 & 0 & a_{2} & a_{1} & 0 & 0 & a_{4} \\
a_{2} & a_{3} & 0 & 0 & a_{4} & a_{1} & 0 & 0 \\
0 & a_{2} & a_{3} & 0 & 0 & a_{4} & a_{1} & 0 \\
0 & 0 & a_{2} & a_{3} & 0 & 0 & a_{4} & a_{1}
\end{array}\right) \quad \rho\left(B^{*}\right)=\left(\begin{array}{cccccccc}
b_{1} & b_{4} & 0 & 0 & 0 & 0 & b_{3} & b_{2} \\
0 & b_{1} & b_{4} & 0 & b_{3} & 0 & 0 & b_{2} \\
0 & 0 & b_{1} & b_{4} & b_{2} & b_{3} & 0 & 0 \\
b_{4} & 0 & 0 & b_{1} & 0 & b_{2} & b_{3} & 0 \\
0 & 0 & b_{2} & b_{3} & b_{1} & b_{4} & 0 & 0 \\
b_{3} & 0 & 0 & b_{2} & 0 & b_{1} & b_{4} & 0 \\
b_{2} & b_{3} & 0 & 0 & 0 & 0 & b_{1} & b_{4} \\
0 & b_{2} & b_{3} & 0 & b_{4} & 0 & 0 & b_{1}
\end{array}\right)
$$

As we can see, both $\rho\left(A^{*}\right)$ and $\rho\left(B^{*}\right)$ are 8×8 matrices which are much bigger then original 2×2 matrices. However, both of them have special properties which enable efficient multiplication. This example is too small to give a speed up; we just use it as a illustration of embedding.

Based on 4 , we can decompose the $\mathbb{C} G$ - module A^{*} and B^{*} into the direct sum of irreducible $\mathbb{C} G$ - submodule. However, since D_{8} is not an abelian group, we can not decompose A^{*} and B^{*} into $\mathbb{C} G$ - submodules of dimension 1 . The following Theorems shows how to decompose $\mathbb{C} G$ - module even G is not abelian.

Theorem 9. Suppose V is a $\mathbb{C} G$ - module such that:

$$
V=U_{1} \oplus U_{2} \oplus \ldots \oplus U_{r}
$$

where U_{i} are irreducible $\mathbb{C} G$ - submodules. If U is any irreducible $\mathbb{C} G$ - submodule, then the number of $\mathbb{C} G-$ submodules U_{i} with $U_{i} \cong U$ is equal to $\operatorname{dim} U$.

Theorem 10. Let $V_{1}, V_{2}, \ldots, V_{k}$ form a complete set of non-isomorphic irreducible $\mathbb{C} G$ - module. Then

$$
\sum_{i=1}^{k}\left(\operatorname{dim} V_{i}\right)^{2}=|G|
$$

Then let us decompose A^{*} and B^{*} into direct sum of irreducible $\mathbb{C} G$-submodule. Since $\left|D_{8}\right|=8=1+1+1+1+2^{2}$, we can decompose A^{*} and B^{*} as following:

$$
\begin{aligned}
& A^{*}=A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{4} \oplus A_{5} \oplus A_{6} \\
& B^{*}=B_{1} \oplus B_{2} \oplus B_{3} \oplus B_{4} \oplus B_{5} \oplus B_{6}
\end{aligned}
$$

Where dimension of $A_{1}, A_{2}, A_{3}, A_{4}, B_{1}, B_{2}, B_{3}, B_{4}$ is 1 and dimension of A_{5}, B_{5} is 2 . Then we can block diagonalize $\rho\left(A^{*}\right)$ and $\rho\left(B^{*}\right)$.

$$
\begin{aligned}
& \rho\left(A^{*}\right)=\rho\left(A_{1}\right) \oplus \rho\left(A_{2}\right) \oplus \rho\left(A_{3}\right) \oplus \rho\left(A_{4}\right) \oplus \rho\left(A_{5}\right) \oplus \rho\left(A_{6}\right) \\
& \rho\left(B^{*}\right)=\rho\left(B_{1}\right) \oplus \rho\left(B_{2}\right) \oplus \rho\left(B_{3}\right) \oplus \rho\left(B_{4}\right) \oplus \rho\left(B_{5}\right) \oplus \rho\left(B_{6}\right)
\end{aligned}
$$

Where $\rho\left(A_{1}\right), \rho\left(A_{2}\right), \rho\left(A_{3}\right), \rho\left(A_{4}\right), \rho\left(B_{1}\right), \rho\left(B_{2}\right), \rho\left(B_{3}\right), \rho\left(B_{4}\right)$ is a complex number $(1 \times$ 1 matirx), and $\rho\left(A_{5}\right), \rho\left(B_{5}\right), \rho\left(A_{6}\right), \rho\left(B_{6}\right)$ are 2×2 irreducible representation of irreducible $\mathbb{C} G$ - submodules.

Chapter 5

Lower bounds for the complexity of matrix multiplication using a group algebra

In [4], Henry Cohn and Christopher Umans introduced the pseudo-exponent of a group G to measure efficiency of the largest possible matrix multiplication which can be embedded in $\mathbb{C} G$.

Definition 11. The pseudo-exponent $\alpha(G)$ (or α) of a non-trivial finite group G is the minimum of

$$
\frac{3 \log |G|}{\log n m p}
$$

over all n, m, p (not all 1$)$ such that G realizes $\langle n, m, p\rangle$.
Example 2. We have already show that D_{8} can realize $\langle 2,2,2\rangle$. Actually, $\langle 2,2,2\rangle$ is the largest $n m p$ that D_{8} can realize. In other words, assume D_{8} can realize $\langle n, m, p\rangle$ then $n m p \leq 8$. Therefore, $\frac{3 \log \left|D_{8}\right|}{\log n m p} \geq \frac{3 \log \left|D_{8}\right|}{\log 8}=3$. Then $\alpha\left(D_{8}\right)=3$.
Lemma 1. Let α be the pseudo-exponent of a finite group G. Then $2<\alpha \leq 3$.
Proof. Let S_{1}, S_{2}, S_{3} be subsets of finite group G and $Q_{i}=\left\{s v^{-1}: s, v \in S_{i}\right\}$ for $i \in\{1,2,3\}$. G always realize $\langle 1,1| G,\left\rangle\right.$ through $S_{1}=\{1\}, S_{2}=\{1\}$ and $S_{3}=G$. Thus $\alpha \leq \frac{3 \log |G|}{\log |G|}=3$.

As for the lower bound, assume G realize $\langle n, m, p\rangle(n m p>1)$ with S_{1}, S_{2}, S_{3}. According to the definition of the triple product property, for any $s_{1}, v_{1} \in S_{1}$ and $s_{2}, v_{2} \in S_{2}, v_{1}^{-1} s_{2} \neq s_{1}^{-1} v_{2}$, which implies that $|G| \geq n m$. Let $T=\left\{q_{1} q_{2}: q_{1} \in\right.$ $\left.Q_{1}, q_{2} \in Q_{2}\right\}$, then $T \cap Q_{3}=\{1\}$. Therefore, $|G|=n m$ only if $p=1$, otherwise we
need more elements in G to avoid non-trivial intersection. Similary, $|G| \geq m p$ and $|G| \geq n p$ with equality only if $n=1$ or $m=1$. Thus $|G|^{3}>n^{2} m^{2} p^{2}$ and $\alpha>2$.

Theorem 11. If G is a finite abelian group, then $\alpha(G)=3$.
Proof. Let G be a finite abelian group, and assume that G realize $\langle n, m, p\rangle$ with subsets $\left|S_{1}\right|=n,\left|S_{2}\right|=m,\left|S_{3}\right|=p$. Define map $\phi: S_{1} \times S_{2} \times S_{3} \rightarrow G$ such that $\phi\left(s_{1}, s_{2}, s_{3}\right)=s_{1} s_{2} s_{3}$ where $s_{i} \in S_{i}$. We will prove that ϕ is an injection by contradiction.

Assume that ϕ is not an injection and $s_{1} s_{2} s_{3}=v_{1} v_{2} v_{3}$ where $s_{i}, v_{i} \in S_{i}$. Thus,

$$
\begin{align*}
1 & =s_{1} s_{2} s_{3}\left(v_{1} v_{2} v_{3}\right)^{-1} \tag{5.1}\\
& =s_{1} v_{1}^{-1} s_{2} v_{2}^{-1} s_{3} v_{3}^{-1} \tag{5.2}
\end{align*}
$$

which contradicts the definition of the triple product property.
Since ϕ is a injection, $|G| \geq n m p$. Then $\frac{3 \log |G|}{\log n m p} \geq 3$ and $\alpha(G)=3$.
Recall $\mathcal{O}\left(n^{\omega}\right)$ is the time complexity of the fast matrix multiplication. Lemma 1 shows that the range of α is similar to the range of ω. We can regard the pseudoexponent as an approximation of ω, and pseudo-exponent even can bound ω under specific condition. When embedding a matrix multiplication into a group algebra $\mathbb{C} G$, we convert a problem of multiplying matrices of size $|G|^{1 / \alpha}$ into a problem of multiplying a collection of matrices($\mathbb{C} G$ - modules) of size d_{i}. The later needs about $\sum_{i} d_{i}^{\omega}$ multiplications while the former takes about $|G|^{\omega / \alpha}$ multiplications. The following theorem shows that $\sum_{i} d_{i}^{\omega}$ is an approximate upper bound for the complexity of multiplying matrices of size $|G|^{1 / \alpha}$.

Theorem 12 ([4]). Suppose that G has pseudo-exponent α, and the irreducible representation degrees of G are d_{i}. Then

$$
|G|^{\omega / \alpha} \leq \sum_{i} d_{i}^{\omega}
$$

$|G|^{1 / \alpha}$ is the size of the largest matrix multiplication that can be embedded into $\mathbb{C} G$ and $|G|^{\omega / \alpha}$ is roughly the number of multiplication needed. By Theorem 10, $\sum_{i}\left(d_{i}\right)^{2}=|G|$, then $\sum_{i} d_{i}^{\omega} \geq \sum_{i}\left(d_{i}\right)^{2}=|G|$. Thus. we can use α as an approximation of ω

Notice that degrees of irreducible representations are essential to control ω. Here we define γ, so that $|G|^{1 / \gamma}$ is the maximum character degree of G.

Corollary 3. Let G be a finite group. If $\alpha(G)<\gamma(G)$, then

$$
\omega \leq \alpha\left(\frac{\gamma-2}{\gamma-\alpha}\right)
$$

Proof. Let $\left\{d_{i}\right\}$ denote the irreducible representation degrees of G. Recall Theorem $10, \sum_{i}\left(d_{i}\right)^{2}=|G|$,

$$
\begin{align*}
|G|^{\omega / \alpha} & \leq \sum_{i} d_{i}^{\omega-2} d_{i}^{2} \\
& \leq|G|^{(\omega-2) / \gamma} \sum_{i} d_{i}^{2} \tag{5.3}\\
& =|G|^{(\omega-2) / \gamma+1}
\end{align*}
$$

which also suggests that $\omega / \alpha \leq(\omega-2) / \gamma+1$. Then we conclude that $\omega \leq \alpha\left(\frac{\gamma-2}{\gamma-\alpha}\right)$, if $\alpha(G)<\gamma(G)$.

We can strictly bound ω with α. However, the condition $\alpha(G)<\gamma(G)$ require that the maximum degree of irreducible representation smaller then $\sqrt[3]{n m p}$. Since this Corollary 3 is not sufficient, we can still use α to approximate ω even if $\alpha(G) \geq$ $\gamma(G)$.

Chapter 6

Cyclic groups and dihedral groups

If a cyclic group G can realize $\langle n, m, p\rangle$, then all groups which contain G as subgroup can realize $\langle n, m, p\rangle$.

Definition 12. Define $C_{n}=\left\langle a \mid a^{n}=1\right\rangle$ as the cyclic group of order n, where a is called the generator of C_{n}, also denote as $C_{n}=\langle a\rangle$.

Theorem 13. For every $\langle n, n, n\rangle$, there exist a integer N such that all cyclic groups of order $\geq N$ realize $\langle n, n, n\rangle$. Also $N=\mathcal{O}\left(n^{3}\right)$.

Proof. Let G be a cyclic group of order N and a be its generator. Assume q_{2}, q_{3} are primes such that $n<q_{2}$ and $q_{3}>(n-1)\left(1+q_{2}\right)$ Let S_{1}, S_{2}, S_{3} be subsets of G as following:

$$
\begin{gathered}
S_{1}=\left\{1, a, a^{2}, \ldots, a^{(n-1)}\right\} \\
S_{2}=\left\{1, a^{q_{2}}, a^{2 q_{2}}, \ldots, a^{(n-1) q_{2}}\right\} \\
S_{3}=\left\{1, a^{q_{3}}, a^{2 q_{3}}, \ldots, a^{(n-1) q_{3}}\right\}
\end{gathered}
$$

Define Q_{1}, Q_{2}, Q_{3} as following:

$$
\begin{gathered}
Q_{1}=\left\{x y^{-1}: x, y \in S_{1}\right\}=\left\{a^{-(n-1)}, \ldots, 1, a, \ldots, a^{(n-1)}\right\} \\
Q_{2}=\left\{x y^{-1}: x, y \in S_{2}\right\}=\left\{a^{-(n-1) q_{2}}, \ldots, 1, a^{q_{2}}, \ldots, a^{(n-1) q_{2}}\right\} \\
Q_{3}=\left\{x y^{-1}: x, y \in S_{3}\right\}=\left\{a^{-(n-1) q_{3}}, \ldots, 1, a^{q_{3}}, \ldots, a^{(n-1) q_{3}}\right\}
\end{gathered}
$$

Then in order to prove S_{1}, S_{2}, S_{3} satisfy triple product property, we only need to show that for every $x_{i} \in Q_{i}, x_{1} x_{2} x_{3}=1$ only if $x_{i}=1$. Since q_{2}, q_{3} are primes, then $x_{i} x_{j}=1(i, j=1,2,3$ and $i \neq j)$ only if $x_{i}=x_{j}=1$. And since $q_{3}>(n-1)\left(1+q_{2}\right)$, let $k_{1} \in[-n+1, n-1], k_{2} \in[-n+1, n-1]$ be 2 integers, we have $-p_{3}<k_{1}+k_{2} p_{2}<p_{3}$.

In order to avoid warp, we need $|G| \geq(n-1)+(n-1) q_{2}+(n-1) q_{3}$. Then we conclude that $x_{1} x_{2} x_{3}=1$ only if $x_{i}=1$, and G realize $\langle n, n, n\rangle$. By Theorem 20, the smallest prime larger then n is about $n+\mathcal{O}(\log n)$. So set $q_{2}=n+\mathcal{O}(\log n)$, then $q_{3}>(n-1)\left(1+q_{2}\right)=(n-1)(1+n+\mathcal{O}(\log n))=\mathcal{O}\left(n^{2}\right)$ and

$$
\begin{aligned}
|G| & \geq(n-1)+(n-1) q_{2}+(n-1) q_{3} \\
& >(n-1)+(n-1)(n+\mathcal{O}(\log n))+(n-1)(n-1)(1+n+\mathcal{O}(\log n)) \\
& >n^{3}-n+\left(n^{2}-n\right) \mathcal{O}(\log n)
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \frac{-n+\left(n^{2}-n\right) \mathcal{O}(\log n)}{c n^{2} / \log n}=1$, then $|G| \geq n^{3}+\mathcal{O}\left(n^{2} / \log n\right)$ which implies $N=n^{3}+\mathcal{O}\left(n^{2} / \log n\right)$.

We have shown that $|G| \geq n^{3}$. Since the complexity of multiplication in the group algebra is at least $\mathcal{O}\left(n^{3}\right)$, these embedding will not lead to fast matrix multiplication algorithm. By Theorem 11, $\alpha(G)=3$ is a lower bound on the complexity of matrix multiplication.

As for dihedral group, we find the irreducible representation degrees first.
Lemma 2. [Corollary 21.20 [11]] Let G be a finite group and ρ an irreducible representation of G. Let N be an abelian normal subgroup of G. Then the degree of ρ divides the index $|G: N|$.

Theorem 14. The degree of irreducible representation of dihedral groups are 1 or 2.
Proof. Let $G=D_{2 n}=\left\{r, s \mid r^{n}=s^{2}=1\right.$, srs $\left.=r^{-1}\right\}, N=C_{n}$ and ρ be an irreducible representation of G. Then N is an abelian normal group of G. By Lemma 2, degree of ρ divide $|G: N|=2$. Then ρ has degree 1 or 2 .

Lemma 3 (Chapter15 in [11], page 152). The number of conjugacy classes in a group is equal to the number of irreducible representations.

Let $G=D_{2 n}=\left\{r, s \mid r^{n}=s^{2}=1, s r s=r^{-1}\right\}$ be a dihedral group of order $2 n$. If n is odd, r^{i} conjugates only to r^{-i} for $i \in\{1,2, \ldots,(n-1) / 2\}\left(s r^{i} s^{-1}=\right.$ r^{-i}). Since $r^{i} s r^{-i}=r^{2 i} s$, elements in form of $r^{i} s$ are all in one conjugacy class, where $i \in\{0,1,2, \ldots, n-1\}$. Adding the trivial conjugacy class $\{1\}$, there are $(n+3) / 2$ conjugacy classes. If n is odd. If n is even, r^{i} conjugates only to r^{-i} for $i \in\{1,2, \ldots, n / 2-1\}\left(s r^{i} s^{-1}=r^{-i}\right)$. However, there is no element pairing $r^{n / 2}$, so $\left\{r^{n / 2}\right\}$ is also a conjugacy class. Since $r^{i} s r^{-i}=r^{2 i} s$ and n is even, there are two conjugacy classes $\left\{r^{2 i} s \mid 0 \leq i \leq(n-2) / 2\right\}$ and $\left\{r^{2 i+1} s \mid 0 \leq i \leq(n-2) / 2\right\}$. Adding the trivial conjugacy class $\{1\}$, there are $n / 2+3$ conjugacy classes if n is even.

By Lemma 3, we have the number of irreducible representations of dihedral groups. Then, combine it with Theorem 10, we have irreducible representation degree as follow:

Degree	Even n	Odd n
1	4	2
2	$\mathrm{n}-2 / 2$	$\mathrm{n}-1 / 2$

character degree of dihedral group
According to the table above, we can reduce a matrix multiplication problem into a collection of 2×2 matrix multiplication and several complex number multiplication, which can not only provide pseudo-exponent strictly smaller than three but also strictly bound ω by α.

It is trivial that if C_{k} can realize $\langle n, n, n\rangle$, then $D_{2 k}$ can realize $\langle n, n, n\rangle$. However, $\left|D_{2 k}\right|=2 k$ is about $\mathcal{O}\left(n^{3}\right)$ which can not lead to any efficient embedding. Therefore, we use the following algorithm to check the triple-product property for dihedral groups and try to find the smallest $D_{2 k}$ realizing $\langle n, n, n\rangle$.
Let $\left|S_{1}\right|=\left|S_{2}\right|=\left|S_{3}\right|=n$ be subsets of dihedral group $G, Q_{i}=\left\{s v^{-1} \mid s, v \in S_{i}\right\}$ for $i \in\{1,2,3\}$.
for non - trivial $x \in Q_{1}$ do
for non - trivial $y \in Q_{2}$ do
for non - trivial $z \in Q_{3}$ do

$$
\text { if } x y z=1 \text { then }
$$

G can not realize $\langle n, n, n\rangle$. end if end for
end for
end for
This algorithm is very naive and inefficient. Even if we check triple-product property from $k=n^{2}$ to larger k, it still took hours to find the smallest $D_{2 k}$ realizing $\langle 3,3,3\rangle(k=14)$. The reason is that there are $\binom{2 k}{n} \sim \mathcal{O}\left(\frac{(2 k)^{n}}{n^{n}}\right)$ subsets of order n in $D_{2 k}$. Then when $k=n^{2}$, there are $\binom{2 k}{n} \sim \mathcal{O}\left((2 n)^{n}\right)$ subsets of order n which means the complexity of traversing the subsets of $D_{2 k}$ is $\mathcal{O}\left((2 n)^{n}\right)$. Therefore, as long as we can not find some methods which can avoid traversing the subsets of $D_{2 k}$, checking triple-product property for group through subsets will be very expensive.

The best embed situation is not for $\langle n, n, n\rangle$ but $\langle n, m, p\rangle$. It is given by Marcus Lang in [12]: G can always realize $\langle m, 2,2\rangle$, where $m \leq \frac{2 n}{3}$. Following is a table of best embed situation and pseudo-exponent along with γ for some dihedral groups:

n	$\operatorname{Best}\langle m, p, q\rangle$	$\alpha(G)$	γ
12	$\langle 8,2,2\rangle$	2.75	4.58
13	$\langle 8,2,2\rangle$	2.82	4.70
14	$\langle 9,2,2\rangle$	2.79	4.81
15	$\langle 10,2,2\rangle$	2.77	4.91
16	$\langle 10,2,2\rangle$	2.82	5.00
17	$\langle 11,2,2\rangle$	2.80	5.09
18	$\langle 12,2,2\rangle$	2.78	5.17
19	$\langle 12,2,2\rangle$	2.82	5.25
20	$\langle 13,2,2\rangle$	2.80	5.32

pseudo-exponent of dihedral group

Chapter 7

Bounds on the smallest group realizing $p \times p$ matrix multiplication

In the definition of the triple-product property, S_{i} can be any subset of the group. When restrict subsets to subgroups, we can use Theorem 7 to decide whether a group can realize $\langle n, n, n\rangle$ which is more straightforward.

In this section, we try to find the smallest groups which can realize $\langle p, p, p\rangle$ for prime p with subgroups S_{i}. The Sylow Theorems give fairly detailed information about the maximal Sylow p-subgroups of a finite group G. Then we can come up with a lower bound for order of the groups.

Theorem 15 (Sylow Theorems, Theorem 12.1, [6]). Let G be a group of order $p^{n} m$, where p is prime and $\operatorname{gcd}(p, m)=1$. Let n_{p} be the number of Sylow p-subgroups of G. Then the following hold:

1. n_{p} divides m, which is the index of the Sylow p-subgroup in G.
2. $n_{p} \equiv 1(\bmod p)$.
3. $n_{p}=\left|G: N_{G}(P)\right|$, where P is any Sylow p-subgroup of G and N_{G} denotes the normalizer.
4. If P is a Sylow p-subgroup of G and Q is any Sylow p-subgroup of G then there exists $g \in G$ such that $Q \leq g P g^{-1}$, i.e., Q is contained in some conjugate of P In particular, any two Sylow p-subgroup of G are conjugate in G.

Lemma 4. If S_{1}, S_{2}, S_{3} are subgroups in G that satisfy the triple-product property, then $\left|S_{i} \cap S_{j}\right|=1$ for distinct $i, j \in\{1,2,3\}$.

Proof. Let S_{1}, S_{2}, S_{3} be subgroups in G that satisfy the triple-product property. Assume $\left|S_{1} \cap S_{2}\right|>1, x \in S_{1} \cap S_{2}$ and x is not identity, then $x^{-1} \in S_{1} \cap S_{2}$ since both S_{1}, S_{2} are groups. For $1 \in S_{3}, x x^{-1} 1=1$ where x and x^{-1} are not identity. This contradicts to Theorem 6. Then we can conclude $\left|S_{1} \cap S_{2}\right|=1$. Similarly, $\left|S_{i} \cap S_{j}\right|=1$ for distinct $i, j \in\{1,2,3\}$.

By Lemma 4, it is safe to say that if a group can realize $\langle p, p, p\rangle$ with subgroups, it needs at least 3 different subgroups of order p.

Theorem 16. Let S_{1}, S_{2}, S_{3} be three subgroups of a group G. If S_{1}, S_{2}, S_{3} satisfy the triple-product property and G realize $\langle p, p, p\rangle$ for prime $p \geq 3$ with subgroups S_{1}, S_{2}, S_{3}, then $|G| \geq p^{2}$

Proof. If p^{2} divides $|G|$, then the theorem holds trivially So suppose that $|G|=p m$ where $\operatorname{gcd}(p, m)=1$

Let $p \geq 3$ be a prime and S_{1}, S_{2}, S_{3} be subgroups of order p in group G. Assume G realize $\langle p, p, p\rangle$ with S_{1}, S_{2}, S_{3}. Then G has at least three subgroups S_{1}, S_{2}, S_{3} of order p. According to part 2 in Theorem $15, n_{p} \geq p+1$.

We claim that intersection of any two Sylow p-subgroups of G are trivial. Assume P and Q are two Sylow p-subgroups of G, and $P \cap Q$ are nontrivial. Then for every $x \neq$ identity, if $x \in P \cap Q, x^{-1} \in P \cap Q$ which implies that $P \cap Q$ is a subgroup of P and Q. However, order of P and Q are prime p suggesting that only subgroup of P and Q are trivial group and themselves.

Since the intersection of any two Sylow p-subgroups of G are trivial, there are $(p-1)(p+1)=p^{2}-1$ elements of order p. Then $|G| \geq p^{2}$.

In the following paragraphs, we will look into special linear groups and projective special linear groups. We will prove that both $S L_{2}\left(\mathbb{F}_{p}\right)$ and $P S L_{2}\left(\mathbb{F}_{p}\right)$ can realize $\langle p, p, p\rangle$.

Theorem 17. Let G be the group $S L_{2}\left(\mathbb{F}_{p}\right)$ of 2×2 matrices with entries in \mathbb{F}_{p} and determinant is 1. Then $|G|=p^{3}-p$ and G realize $\langle p, p, p\rangle$ through subgroups S_{1}, S_{2}, S_{3} of order p.

Proof. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$, then $a, b, c, d \in \mathbb{F}_{p}$ and $a d-b c=1$. In order to find the order of $|G|$, we only need to calculate the number of possible combinations of a, b, c, d.

1. Assume $a, b, c, d \neq 0, a d=m$ and $b c=m-1$ for $m \in \mathbb{F}_{p}$ and $m \neq 0,1$. Thus there are $p-2$ possible m and for each m there are $(p-1)(p-1)$ possible combinations of a, b, c, d. Then the total number of combinations in this case is $(p-2)(p-1)(p-1)$
2. Assume $a d=0$ and $b c=p-1$, there are $2 p-1$ combination of a, d and $p-1$ combinations of b, c. Then the total number of combinations in this case is $(2 p-2)(p-1)$
3. Assume $a d=1$ and $b c=0$, just similar to case 2 , the total number of combinations in this case is $(2 p-2)(p-1)$.

Sum the result of 1,2 and 3, we conclude that $|G|=(p-2)(p-1)(p-1)+2(2 p-$ 2) $(p-1)=p^{3}-p$.

Let
$S_{1}=\left\{\left.\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right) \right\rvert\, x \in \mathbb{F}_{p}\right\} S_{2}=\left\{\left.\left(\begin{array}{ll}1 & 0 \\ y & 1\end{array}\right) \right\rvert\, y \in \mathbb{F}_{p}\right\} S_{3}=\left\{\left.\left(\begin{array}{cc}1+z & z \\ -z & 1-z\end{array}\right) \right\rvert\, z \in \mathbb{F}_{p}\right\}$
It is trivial to say that S_{1} and S_{2} are subgroups of order p in G. Let B, C be any matrices in S_{3}, then $B=\left(\begin{array}{cc}1+z_{1} & z_{1} \\ -z_{1} & 1-z_{1}\end{array}\right), C=\left(\begin{array}{cc}1+z_{2} & z_{2} \\ -z_{2} & 1-z_{2}\end{array}\right)$ where $z_{1}, z_{2} \in \mathbb{F}_{p}$. Assume $B^{-1}=\left(\begin{array}{ll}b_{1} & b_{2} \\ b_{4} & b_{3}\end{array}\right)$ where $b_{1}, b_{2}, b_{3}, b_{4} \in \mathbb{F}_{p}$ Multiply B, C and calculate B^{-1} :

$$
\begin{gathered}
B C=\left(\begin{array}{cc}
\left(1+z_{1}\right)\left(1+z_{2}\right)-z_{1} z_{2} & z_{2}\left(1+z_{1}\right)+z_{1}\left(1-z_{2}\right) \\
-z_{1}\left(1+z_{2}\right)-z_{2}\left(1-z_{1}\right) & z_{1} z_{2}+\left(1-z_{1}\right)\left(1-z_{2}\right)
\end{array}\right)=\left(\begin{array}{cc}
1+z_{1}+z_{2} & z_{1}+z_{2} \\
-\left(z_{1}+z_{2}\right) & 1-\left(z_{1}+z_{2}\right)
\end{array}\right) \\
B^{-1}=\left(\begin{array}{cc}
-z_{1}+1 & -z_{1} \\
z_{1} & 1+z_{1}
\end{array}\right)
\end{gathered}
$$

Therefore $B C, B^{-1} \in S_{3}$. And since $B=I$ when $z_{1}=0, S_{3}$ is also a subgroup of G.
By Theorem 6, we need to check that for any $s_{i} \in S_{i}, s_{1} s_{2}=s_{3}$ if and only if s_{i} are all identities.

$$
\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
y & 1
\end{array}\right)=\left(\begin{array}{cc}
1+x y & x \\
y & 1
\end{array}\right)
$$

Then we have $\left(\begin{array}{cc}1+x y & x \\ y & 1\end{array}\right)=\left(\begin{array}{cc}1+z & z \\ -z & 1-z\end{array}\right)$ if and only if $x=y=z=0$ which implies that s_{i} are all identity.

The order of $S L_{2}\left(\mathbb{F}_{p}\right)$ group is $p^{3}-p \leq p^{3}$ which is good. However, we can still improve it by using the group $P S L_{2}\left(\mathbb{F}_{p}\right)$.

Corollary 4. Let G be a $P S L_{2}\left(\mathbb{F}_{p}\right)$ group of order $\frac{1}{2}\left(p^{3}-p\right)$, then G realize $\langle p, p, p\rangle$ with subgroups of order p.

Proof. Let $S L$ be a $S L_{2}\left(\mathbb{F}_{p}\right)$ group, $Z=\left\{-I_{2}, I_{2}\right\}$ and $G=S L / Z$. Then G is a $P S L_{2}\left(\mathbb{F}_{p}\right)$ group. Assume G realize $\langle p, p, p\rangle$ for prime $p \geq 3$ with subgroups S_{1}, S_{2}, S_{3}, then $S_{i} \cap Z=\{I\}$. Let $\rho: S L \rightarrow G$ be an homomorphism. Then $\rho\left(S_{i}\right) \sim S_{i} /\{I\} \sim S_{i}$, for $i \in\{1,2,3\}$. By the First isomorphism theorem, $S_{i} \sim S_{i} /\{I\}$ for $i=1,2,3$ where $S_{1} /\{I\}, S_{2} /\{I\}, S_{3} /\{I\}$ are subgroups of order p in G. Then G realize $\langle p, p, p\rangle$ with subgroups $S_{1} /\{I\}, S_{2} /\{I\}, S_{3} /\{I\}$.

Theorem 18. Suppose that G is the finite group of smallest order that realize $\langle p, p, p\rangle$ for prime p through subgroups of G. Then $p^{2} \leq|G| \leq \frac{1}{2}\left(p^{3}-p\right)$

Proof. Let G be the smallest group that realize $\langle p, p, p\rangle$ for prime p through subgroups. By Theorem 17, $|G| \geq p^{2}$. And by Corollary $4,|G| \leq\left|P S L_{2}\left(\mathbb{F}_{p}\right)\right|=$ $\frac{1}{2}\left(p^{3}-p\right)$

Now, we have a lower bound and an upper bound for the smallest group to realize $\langle p, p, p\rangle$. However the lower bound $|G| \geq p^{2}$ is not that good, since all the groups we discussed have order about $\mathcal{O}\left(p^{3}\right)$ and no way near $\mathcal{O}\left(p^{2}\right)$.

Chapter 8

Matrix multiplication with Frobenius groups

Frobenius groups are an important class of finite groups with a well developed theory. With the properties of Frobenius groups, we developed a special method to check whether it can realize $\langle p, p, p\rangle$ and found the smallest Frobenius groups in form of $C_{q} \rtimes C_{p}$ realizing $\langle p, p, p\rangle$ in a efficient way.

Definition 13. A finite group G is a Frobenius group if G is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point; and some element fixes exactly one point.

Definition 14. Let G be the set of ordered pairs (h, k) with $h \in H$ and $k \in K$, and let Φ be a homomorphism from K into $\operatorname{Aut}(H)$. Then define the following mutiplication on G :

$$
\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)=\left(h_{1} h_{2}^{\Phi\left(k_{1}\right)}, k_{1} k_{2}\right)
$$

where $\Phi\left(k_{1}\right)$ denote the (left) action of K on H determined by Φ. Then G is called the semidirect product of H and K denoted by $G=H \rtimes K$.

The proof of $G=H \rtimes K$ is a group can be find in [6] page 176.
An alternate definition can be found in [11] page 286 which implies that $G=$ $C_{q} \rtimes C_{p}$, where q, p are primes and $q=k p+1$, is a type of Frobenius group. We check groups with small order and find out that $C_{3} \rtimes C_{2}$ (also known as symmetric group of three points) is the smallest group to realize $\langle 2,2,2\rangle$ and $C_{7} \rtimes C_{3}$ is the smallest group to realize $\langle 3,3,3\rangle$. Therefore, we want to look into this type of groups and try to find the smallest $C_{q} \rtimes C_{p}$ to realize $\langle p, p, p\rangle$

According to Dirichlet's prime number theorem, there are infinite primes in form $k p+1$ since $\operatorname{gcd}(1, p)=1$. Combined with the Chebotarev Density Theorem, we can approximate the number of primes in form $k p+1$ in a interval.

Theorem 19 (Dirichlet's Theorem on Primes in Density version,[16]). Let $a, n \geq 1$ be positive integers with $(a, n)=1$. Then the natural (resp. Dirichlet)density of primes p such that $p \equiv a(\bmod n)$ in the set of all primes of \mathbb{Z} is $\frac{1}{\phi(n)}$.

Theorem 20 (Prime Number Theorem,[13]). Let $\pi(x)$ be the prime-counting function that gives the number of primes less or equal than x. for any real number x. Then $\frac{x}{\log x}$ is a good approximation to $\pi(x)$:

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{\frac{x}{\log x}}=1
$$

By Theorem 19 and Theorem 20, there are about $\left(\frac{p^{2}}{\log p^{2}}-\frac{p}{\log p}\right) \frac{1}{\phi(p)}=\frac{p(p-2)}{(2 \log p)(p-1)} \approx$ $\frac{p}{2 \log p}$ primes between p and p^{2} ensuring that there are many groups of the form $C_{q} \rtimes C_{p}$ in the interval $p^{2} \leq|G| \leq p^{3}$.

The order of $C_{q} \rtimes C_{p}$ is $p q$, thus we need to express smallest q in terms of p or at least find a bound of q in terms of p.

Theorem 21. Let G be a Frobenius Group of $C_{q} \rtimes C_{p}$ where $p>5$ and q are primes, G always have subsets $S_{1}, S_{2}, S_{3} \in G$ such that $\left|S_{i}\right|=p$ and S_{1}, S_{2}, S_{3} satisfy triple-product property if $q>p^{2}-2 p+3$.

Proof. Consider G as a permutation group and each element of G is a permutation of p points. Let $S_{1}=G_{0}, S_{2}=G_{1}$ and $S_{3}=G_{t}$, then S_{1}, S_{2}, S_{3} are all Sylow psubgroups of order p and we can check triple-product property by Theorem 7. Also we have $S_{1} \cap S_{2}=\{1\}$.

Let $T=\left\{x_{1} x_{2} \mid x_{1} \in S_{1}, x_{2} \in S_{2}\right\}$, then $|T| \leq p^{2}$. Every non-trivial element of S_{1} fixes point 0 and every non-trivial element of S_{2} fixes point 1 . Since $|T \backslash\{1\}| \leq p^{2}-1$, $\left|S_{1} \backslash\{1\}\right|=p-1,\left|S_{2} \backslash\{1\}\right|=p-1$ and $S_{1}, S_{2} \subseteq T$, then non-trivial elements in T fix no more then $p^{2}-1-2(p-2)=p^{2}-2 p+3$ points.

Let S_{3} be the stabilizer of a point that is not fixed by any nontrivial element of T, then $S_{1} \cap S_{3}=S_{2} \cap S_{3}=T \cap S_{3}=\{1\}$.

In the following paragraphs, we will find a lower bound for q such that $C_{q} \rtimes C_{p}$ can realize $\langle p, p, p\rangle$.

Lemma 5. Let $G=C_{q} \rtimes C_{p}$, where p, q are primes, be a Frobenius group, and let $G_{p o l y}=\left\{a^{i k} x+t \mid a^{i k} \in C_{p}, t \in C_{q}\right\}$ be a group under composition of function but NOT multiplication of polynomial. Then G and $G_{\text {poly }}$ are isomorphic.
Proof. Let \mathbb{F}_{q} be a finite field, and let be the additive group of \mathbb{F}_{q}. The multiplicative group of \mathbb{F}_{q} is cyclic of order $q-1=k p$. Let C_{p} be the unique subgroup of \mathbb{F}_{q}^{*} of order p. With respect to a generator a of \mathbb{F}_{q}^{*}, we have $C_{p}=\left\langle a^{k}\right\rangle$. Then we can write G as $G=\left\{\left(a^{i k}, t\right) \mid a^{i k} \in C_{p}, t \in C_{q}\right\}$.

Let $\phi: G \rightarrow G_{\text {poly }}$ be a map such that for $g=\left(a^{i k}, t\right) \in G$:

$$
\phi(g)=a^{i k} x+t
$$

It is trivial that ϕ is bijective. For any $g_{1}, g_{2} \in G$, let $g_{1}=\left(a^{i k}, t_{1}\right), g_{2}=\left(a^{j k}, t_{2}\right)$, thus $g_{1} g_{2}=\left(a^{(i+j) k}+t_{1} a^{j k}, t_{1}+t_{2}\right) . \phi\left(g_{1}\right)=a^{i k} x+t_{1}$ and $\phi\left(g_{2}\right)=a^{j k} x+t_{2}$, thus $\phi\left(g_{1}\right) \circ \phi\left(g_{2}\right)=a^{j k}\left(a^{i k} x+t_{1}\right)+t_{2}=a^{(i+j) k} x+t_{1} a^{j k}+t_{1}+t_{2}$. Then we can conclude that $\phi\left(g_{1} g_{2}\right)=\phi\left(g_{1}\right) \circ \phi\left(g_{2}\right), G$ is isomorphic to $G_{\text {poly }}$.

By Lemma 5 we can represent $C_{q} \rtimes C_{p}$ as a group of polynomials. And the Lemma below shows a polynomial-wise triple-product property.
Lemma 6. Let p and $q=k p+1$ be primes, and let $G=C_{q} \rtimes C_{p}$. For $t \in \mathbb{F}_{q}$, the subgroups G_{0}, G_{1}, G_{t} realize have the triple-product property if and only if

$$
\begin{equation*}
x^{k} t-y^{k}+(1-t)=0 \tag{8.1}
\end{equation*}
$$

has a unique solution.
Proof. By Lemma $5 G$ is isomorphic to $G_{\text {poly }}=\left\{a^{i k} x+t \mid a^{i k} \in C_{p}, t \in C_{q}\right\}$. Define $G_{t}=\left\{a^{i k}(x-t)+t \mid a^{i k} \in C_{p}, t \in C_{q}\right\}$. Then G_{t} is the subgroup of $G_{p o l y}$ which fixes the point t. It has order p by the Orbit Stabilizer Theorem.

Let $S_{1} \cong G_{0}, S_{2} \cong G_{1}$ and $S_{3} \cong G_{t}$ where S_{i} are Sylow p-subgroups of G. Define $T=\left\{x_{1} x_{2} \mid x_{1} \in G_{0}, x_{2} \in G_{1}\right\}$ then

$$
T=\left\{a^{(i+j) k} x-a^{j k}+1 \mid a^{i k}, a^{j k} \in C_{p}\right\}
$$

Since S_{i} are Sylow p-subgroups of $G,\left|S_{i} \cap S_{j}\right|=1$ for distinct $i, j \in\{1,2,3\}$. So do G_{0}, G_{1} and G_{t}. By Theorem 7 , if $T \cap G_{t}=\{1\}$ then S_{1}, S_{2}, S_{3} satisfy triple-product property.

Let $p(x) \in T \cap G_{t}$, then $p(t)=a^{(i+j) k} t-a^{j k}+1=t$. Regard $a^{(i+j) k}$ as x^{k} and $a^{j k}$ as y^{k}, then $p(t)=t$ is just same as equation 8.1. Thus, the order of $T \cap G_{t}$ is equal to the number of solution of equation 8.1. We conclude that if equation 8.1 has unique solution then G realize $\langle p, p, p\rangle$.

The Hasse-Weil Bound is a famous result from number theory which bound the number of solutions to polynomial over a finite field.

Theorem 22 (Hasse Weil Bound [8]). If the number of points on the curve C of genus g over the finite field \mathbb{F}_{q} of order q is N, then

$$
|N-(q+1)| \leq 2 g \sqrt{q}
$$

In this case, we can regard $a^{(i+j) k} t-a^{j k}+1$ as a curve, then the number of solutions of the equation 8.1 is just the number of points on the curve over \mathbb{F}_{q}. And genus

$$
\begin{aligned}
g & =\frac{(k-1)(k-2)}{2}-d \\
& =\frac{\left(\frac{q-1}{p}-1\right)\left(\frac{q-1}{p}-2\right)}{2}-d \\
& <\frac{\left(\frac{q}{p}\right)\left(\frac{q}{p}\right)}{2}=\frac{1}{2} \frac{q^{2}}{p^{2}} .
\end{aligned}
$$

Theorem 23. Let G be a Frobenius Group of $C_{q} \rtimes C_{p}$, then G can realize $\langle p, p, p\rangle$ only if $q \geq p^{\frac{4}{3}}$.

Proof. Let N be the number of solution of the equation 8.1. By Theorem 22, N should satisfy the following inequality:

$$
|N-(q+1)| \leq \frac{q^{2}}{p^{2}} \sqrt{q}
$$

Let $N=1$, we have $q \geq p^{\frac{4}{3}}$. Then we can conclude that if $q<p^{\frac{4}{3}}$, then $N>1$ for all t. In this case, we can not find S_{1}, S_{2}, S_{3} satisfy triple-product property.

By Theorem 21, $C_{q} \rtimes C_{p}$ realize $\langle p, p, p\rangle$ if $q>p^{2}-2 p+3$, while by Theorem 23 , $C_{q} \rtimes C_{p}$ can not realize $\langle p, p, p\rangle$ if $q<p^{\frac{4}{3}}$. The proof of Theorem 23 also gives us an efficient method to check triple-product property. Then we developed the following algorithm to check triple-product property for given $C_{q} \rtimes C_{p}$:
Let \mathbb{F}_{q} be finite feild of order q and $\left(\mathbb{F}_{q}, \cdot\right)=\langle a\rangle$.Let $X=\left\{a^{i k} \mid i \in[1,2, \ldots, p-1]\right\}$ where $q=k p+1$.

$$
\text { for } \begin{aligned}
t & \in[2,3, \ldots, q-1] \text { do } \\
Y & =\{t x \mid x \in X\} \\
Z & =\{t+x-1 \mid x \in X\}
\end{aligned}
$$

$$
\begin{aligned}
& \quad n=Y \cap Z \\
& \quad \text { if } n=1 \text { then } \\
& \quad C_{q} \rtimes C_{p} \text { realize }\langle p, p, p\rangle . \\
& \text { end if } \\
& \text { end for }
\end{aligned}
$$

In this algorithm, $Y \cap Z=1$ lead to $a^{i k} t-a^{j k}+1=t$ which suggest that $\left|T \cap S_{3}\right|=1$. Thus we conclude that $C_{q} \rtimes C_{p}$ realize $\langle p, p, p\rangle$ if $n=1$.

Following table show some result including the smallest q for some prime p and $\alpha(G)$ for $G=C_{q} \rtimes C_{p}$.

p	q	$\alpha(G)$
101	3637	2.78
103	2267	2.67
107	2141	2.64
109	2399	2.66
113	2713	2.67
127	3049	2.66
131	3407	2.67
137	4933	2.73
139	5839	2.76
149	7451	2.78
151	4229	2.66
157	3769	2.63
163	5869	2.70
167	5011	2.66
173	6229	2.70
179	4297	2.61
181	5431	2.65
191	6113	2.66
193	6563	2.67
197	7487	2.69
199	11941	2.77
211	8863	2.70

pseudo-exponent of Frobenius group
According the proof of Theorem 21, if p^{2} nontrivial elements in T fix no more then $q-1$ points, then $C_{q} \rtimes C_{p}$ realize $\langle p, p, p\rangle$. The well-known Coupon collector's problem can be a good analogy of this problem.

Theorem 24 (Coupon collector's problem, chapter 8.4 in [10]). Suppose that you throw balls into n distinguishable bins. After throwing $\mathcal{O}(n \log n)$ balls, every bin is non-empty with high probability.

We can regard q points as different bins and p^{2} as number of balls thrown. By Theorem 24, if

$$
\begin{equation*}
p^{2} \leq q \log q \tag{8.2}
\end{equation*}
$$

there is a high chance that at least one bin is empty, which also implies that at least one points can not be fixed by nontrivial elements in T. Rewrite $8.2, q \geq \frac{p^{2}}{\log q} \geq \frac{p^{2}}{\log p}$. Then we can conclude that the smallest q such that $C_{q} \rtimes C_{p}$ realize $\langle p, p, p\rangle$ is about $\mathcal{O}\left(\frac{p^{2}}{\log p}\right)$. The following graph also implies the same result.
smallest q for $41 \leq p \leq 211$ such that $C_{q} \rtimes C_{p}$ realize $\langle p, p, p\rangle$

In this graph, p is x -axis and q is y-axis. The blue broken line links point (p, q), where $41 \leq p \leq 211$ and q is the smallest prime such that $C_{q} \rtimes C_{p}$ realize $\langle p, p, p\rangle$. The red curve is the graph of $q=\frac{p^{2}}{\log p}$.

Chapter 9

Future work

Question: Smallest groups realizing $\langle n, n, n\rangle$ through subgroups
In Chapter 6, we have found bound for the smallest group realizing $\langle p, p, p\rangle$. If we want to implement this methods to a practical algorithm, the next step is finding the smallest groups realizing $\langle n, n, n\rangle$. We believed that the smallest groups realizing $\langle p, p, p\rangle$ with subgroups are:

- $S L_{2}\left(\mathbb{F}_{p}\right)$, when $p=5$.
- $P S L_{2}\left(\mathbb{F}_{p}\right)$, when $p=7,11,19,23,43$.
- $C_{q} \rtimes C_{p}$, when $p \geq 13$ and $p \neq 19,23,43$.

Finding the smallest group realizing $\langle p, p, p\rangle$ and $\langle q, q, q\rangle$ gives a bound or even the smallest group realizing $\langle p q, p q, p q\rangle$ via the following result.
Lemma 7. [4] If N is a normal subgroup of G that realizes $\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ and G / N realizes $\left\langle m_{1}, m_{2}, m_{3}\right\rangle$, then G realizes $\left\langle n_{1} m_{1}, n_{2} m_{2}, n_{3} m_{3}\right\rangle$.

Lemma 7 provides a great property which can be used to prove the triple-product property for large groups with complicated structure. Combining it with Sylow Theorems, we may prove the triple-product property for groups such that $|G|=p^{k} m$.

Question: Improve the bound for $C_{q} \rtimes C_{p}$
In Chapter 7, we represent group elements of $C_{q} \rtimes C_{p}$ by polynomials and check the triple-product property by counting the number of solutions. Besides the HasseWeil Theorem, Laszlo Babai also gave us the following Theorem.

Theorem 25 ([1],page 19). Let $k \mid q-1$ be an integer, $A_{1} A_{2} \subseteq F_{q}$, and let N denote the number of solutions of the equation

$$
x+y=z^{k} \quad\left(x \in A_{1}, y \in A_{2}, z \in \mathbb{F}_{q}^{\times}\right)
$$

Then

$$
\left|N-\frac{\left|A_{1}\right| A_{2}|(q-1)|}{q}\right|<k \sqrt{\left|A_{1}\right|\left|A_{2}\right| q}
$$

He combined Fourier transform and characters theory to discuss the number of solution of equations over finite abelian group. Although, in our case, his result is not as suitable as the Hasse-Weil Theorem, if we could modify this conclusion to suit our case, it might yields better bounds for q.

Question: Smallest groups realizing $\langle n, n, n\rangle$ through subsets

In Chapter 5, we show the embedding to cyclic groups which are normal subgroups of some larger groups. Based on Lemma 7, we can discuss the triple-product property of $C_{m} \times K$ or $C_{m} \rtimes K$. However, since the pseudo-exponent of cyclic groups are 3 , there is a great chance that groups which have cyclic normal subgroups are not the smallest groups realizing $\langle n, n, n\rangle$. Also we develop a very naive algorithm to check whether G realize $\langle n, n, n\rangle$ through subsets. If we can avoid traverse subsets of G, there will be a efficient algorithm to find smallest groups realizing $\langle n, n, n\rangle$.

Question: Better upper bounds for ω

In our research, we did not focus on the upper bound on the complexity exponent ω which is the hottest topic of fast matrix multiplication among researchers. In Chapter 3, we show how this group-theoretic embedding converts matrix multiplication into $\mathbb{C} G$ - modules multiplication. And also the relations between pseudoexponent and ω is based on the representation theory which gives the decomposition of $\mathbb{C} G$ - modules. If there are more efficient algorithms to multiply $\mathbb{C} G$ - modules, we will find a better method to bound ω which might lead to a better upper bound.

Bibliography

[1] L. Babai. The fourier transform and equations over finite abelian groups. lecture note, Department of Computer Science, University of Chicago, 2002.
[2] M. Bläser. Fast Matrix Multiplication. Number 5 in Graduate Surveys. Theory of Computing Library, 2013.
[3] H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans. Group-theoretic algorithms for matrix multiplication. Proceedings of the 46 th Annual Symposium on Foundations of Computer Science, 23-25 October 2005, Pittsburgh, PA, IEEE Computer Society, pp. 379-388, 2005.
[4] H. Cohn and C. Umans. A group-theoretic approach to fast matrix multiplication. Proceedings of the 44 th Annual Symposium on Foundations of Computer Science, 11-14 October 2003, Cambridge, MA, IEEE Computer Society, pp. 438-449, 2003.
[5] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symbolic Comput., 9(3):251-280, 1990.
[6] D. S. Dummit and R. M. Foote. Abstract algebra. John Wiley \& Sons, Inc., Hoboken, NJ, third edition, 2004.
[7] J. B. Fraleigh. A first course in abstract algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1967.
[8] H. Hasse. Zur Theorie der abstrakten elliptischen Funktionenkörper. I. Die Struktur der Gruppe der Divisorenklassen endlicher Ordnung. J. Reine Angew. Math., 175:55-62, 1936.
[9] M. Huhtanen and A. Perämäki. Factoring matrices into the product of circulant and diagonal matrices. J. Fourier Anal. Appl., 21(5):1018-1033, 2015.
[10] R. Isaac. The pleasures of probability. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1995. Readings in Mathematics.
[11] G. James and M. Liebeck. Representations and characters of groups. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1993.
[12] M. Lang. Group theoretical methods of matrix multiplication and new upper bounds on the triple product capacity of dihedral and generalized dicyclic groups. http://theory.stanford.edu/~virgi/matrixmult-f.pdf, 2014.
[13] D. J. Newman. Simple analytic proof of the prime number theorem. Amer. Math. Monthly, 87(9):693-696, 1980.
[14] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354-356, 1969.
[15] V. Strassen. Relative bilinear complexity and matrix multiplication. J. Reine Angew. Math., 375/376:406-443, 1987.
[16] N. G. Triantafillou. The chebotarev density theorem. Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2015.
[17] V. V. Williams. Multiplying matrices in $\mathcal{O}\left(n^{2.373}\right)$ time. Stanford University, http://theory.stanford.edu/~virgi/matrixmult-f.pdf, 2014.

