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Abstract

The focus of this thesis is formulation and development of a mathematical framework
for the solution of the contingency constrained optimal power flow (OPF) based on
sequential quadratic programming. The contingency constrained optimal power flow
minimizes the total cost of a base case operating state as well as the expected cost of
recovery from contingencies such as line or generation outages. The sequential quadratic
programming (SCP) OPF formulation has been expanded in order to recognize
contingency conditions and the problem is solved as a single entity by an efficient interior
point method. The new formulation takes into account the system corrective capabilities
in response to contingencies introduced through ramp-rate constraints. Contingency
constrained OPF is a very challenging problem, because each contingency considered
introduces a new problem as large as the base case problem. By proper system reduction
and benefits of constraint relaxation (active set) methods, in which transmission
constraints are not introduced until they are violated, the size of the system can be
reduced significantly Therefore, restricting our attention to the active set constraint set

makes this large problem significantly smaller and computationally feasible.
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1 Introduction

1.1 Background and Motivation

Optimal power flow (OPF) as an optimization method for an energy management
system (EMS) control center was developed in the 1960s and 1970’s and since then has
been an important function as a standard application. The classical OPF formulations
were pioneered by Carpentier [1] and Dommel and Tinney [2]. Since then a great deal of
research has been done and various optimization techniques have been used in order to

find efficient solutions to this non-linear optimization problem.

OPF is a tool used for both the operation and planning of a power system. It can be
intuitively explained in the following way. If we are to supply a given demand, and if we
have generation units committed (participating in the dispatch), OPF gives an answer as
to how much power each unit has to produce (dispatch) as well as how to adjust
transformer settings in order to supply demand most economically, while respecting all

the constraints imposed on the system.

PL1 PL2

Fig. 1. Five-bus power system



The five bus network Fig. 1. will be considered as an example. Generators Py, Py Py3 are
dispatchable sources of active and reactive power. For now let’s assume that control
variables are just active power generation Py, Py Py3. Buses 3 and 5 are purely load
buses Pri, Pro. The OPF problem is to minimize total cost of generation (Pgi, Py and Pg3)

while satisfying the scheduled load, voltage, line flow and generation limits.

OPF is a computationally intensive tool when analyzing many generation plants,
transmission lines and demands. Finally the engineering constraints and economic
objectives for system operations are combined by formulating and solving the optimal
power flow problem. OPF is used in economic analysis of the power system as well.
Also, the OPF problem, besides generation dispatch, computes short-run marginal costs
for each resource used in providing power as well as at each bus, which can be helpful in
the design of transmission pricing and expansion policies. Marginal cost is considered an
important concept in the design of emerging markets. However, it must be recognized
that OPF marginal costs are static snapshots of the system conditional on one assumed set
of supply and demand. In order to reflect multiple time periods (even for a few hours)

OPF marginal prices would be calculated very often.

A contingency is a loss of one or more transmission equipment and/or generation units.
Loss of a transmission line is usually due to a storm or automatic relaying action. The
occurrence of a contingency is unpredictable; therefore it is of great importance for a
system to operate in a such a way that corrective actions can be taken. Contingency
analysis is often the most time-consuming function in an Energy Management System
(EMS). A transmission system is said to be “secure” if it could continue to provide power

that meets demand even if a contingency were to occur.

In the case of a generation outage, the lost generation will be supplied by the remaining
generators, according to some specified redistribution pattern. Some plants need
significant time to increase power and can not respond promptly to the contingency

occurrence. It may be not possible to rely entirely on the economically most attractive



plant to increase the output as fast as necessary; thus other, more expensive plants must

be used at least temporarily.

The OPF formulation can include constraints that represent operation of the system after
the occurrence of contingencies. Contingency constrained OPF tells how to dispatch
power capacities and controlled components of the system if serious disturbances were to
occur anywhere in the system. This solution of the OPF problem takes into account the
security of the system and also allows the OPF to dispatch the system in defensive

manncr.

The list of all possible contingencies is very long, and considering all of those would be
demanding in time as well as computational sense. Therefore it is important to distinguish
those contingencies which produce post-contingency violations, and reduce the constraint
list to those that results in violation. Most of the cases have no violations and can be
disregarded. We have to find a way to select contingencies in such a way that only those
that are likely to result in an overload or voltage limit violation will actually be studied in

detail. The other cases will go unanalyzed.

Contingency constrained OPF may have many different scenarios, and involve simulation
of system flows for each possible major disruption to the system, including an unplanned
power outage, or a line outage (caused by lightning strike for example). If some
disruptive event would be particularly problematic, special dispatch patterns including
load shedding should be considered. In that case load shedding can be incorporated as a
control as long as it is given an artificially high cost. Otherwise, the cheapest solution

would be to shed as much load as possible.

If K is the total number of contingencies considered, each step of the algorithm requires
solution of K+1 quadratic programming problems (one for each contingency and base

case). Therefore efficient solution of this very large optimization problem is crucial.



1.2 Contribution of the Thesis

A mathematical framework for the sequential quadratic programming-based
contingency constrained OPF is given. A potentially big problem is solved as a single
entity using an interior point method and constraint relaxation (active set) method. This
formulation takes into account the system corrective capabilities in response to
contingencies. A program based on the proposed framework was written and contingency

cases that consider line outages have been studied.

1.3 Outline of the Thesis

e Chapter 2 starts with an overview of the OPF. In particular, it defines basic
terms associated with the OPF problem like operation objective, constraints,
interior point method, and constraint relaxation. A sequential quadratic
programming algorithm for base case OPF is reviewed. The chapter concludes
with the formulation of a fast decoupled version of sequential quadratic
programming.

o Chapter 3 gives a step by step formulation of sequential quadratic
programming-based contingency constrained OPF. The chapter concludes with
an outline of the algorithm.

e Chapter 4 presents numerical results, from applying the algorithm to the IEEE
14 and 30 bus networks, with concentration on line outages.

e Chapter 5 summarizes the thesis and discusses directions for future work.



2 Sequential Quadratic Programming Based Optimal Power
Flow

2.1 Introduction

In this chapter, an overview of the OPF problem formulation will be given and
methods used in its solution will be explained. The sequential quadratic programming
(SQP) approach to the base case OPF as presented in [5], [6] will be briefly reviewed and
a formulation based on decoupled power flow will be derived. The major feature of the
SQP formulation is that the algorithm is divided into an outer linearization and an inner
optimization loop. The system to be solved in the inner loop is of the size of the active
set, which is potentially small.

The main benefit of the fast decoupled formulation is that the Jacobian matrix and some
of the terms calculated through the iterative process are constant, greatly reducing the

computational effort in factorization.

2.2 Operational objectives

As mentioned at the beginning, the OPF formulation has a single objective function.
The most common objective functions are: minimum cost of operation, minimum active
power transmission losses, minimum deviation from the specified point, minimum
number of controls rescheduled. The most common objective function to be minimized is
the cost of operation, which will be our objective function as well. The objective function
usually depends on variables with direct cost (power generation) and variables without
direct cost (voltage magnitude). Load shedding can be incorporated in the objective as
well. It must be incorporated via a very high cost; otherwise the cheapest solution would

be to shed as much load as possible.



The minimum cost of generation objective function is a sum of the costs of the generators
participating in the dispatch. A critical part of this formulation is modeling the cost
curves. The cost of thermal units is derived from the heat-rate curves which are quite
often far from convex. Because convexity of the objective function is one of the
assumptions for optimization methods employed in the solution of the OPF problem, a
first approach is to approximate cost curves as convex polynomials. Other
approximations, such as using an arbitrary number of linear segments are acceptable as
well.

In our formulation cost curves are approximated by a quadratic polynomial of the form:
c (P, )= apz, +bp, +c¢

where p, is in MW (or per unit) output of the generator and a, b, ¢ are constant

coefficients.

2.3 Constraints

As we stated, the OPF is a constrained optimization problem. The set of constraints
can be divided into equality constraints and inequality constraints. The equality constraint
set typically consists of power balance (active and reactive) at each node of the network
which result from Kirchhoff’s current law.

Another set of constraints are inequality constraints, which are usually limits resulting
from network component limitations. A common set of inequality constraints consists of:

e Generator power constraints (P and Q)

e Line power constraints (P)

e Voltage, tap ratios, and phase shifter angle constraints

Generators are rated by maximum apparent power (S,,,,) which they can produce. The
combination of P, Q produced by a generator must obey the apparent circle equation
P*+0’<S’?

max *

The maximum active power (Pnqy) produced by generator is limited by



the turbine’s physical limits, while maximum reactive power (Q.y) is often determined
so that heating of the rotor is within a prespecfied tolerance. Likewise, a minimum
generation level is usually specified. Therefore for each generator in the network is

subject to the following constraints:

Pkmin SPk SE{max
Q;nin S Qk S Q]?mx

Besides generators, transformers provide an additional means of control of the flow of
both active and reactive power. There are two types of controllable transformers: tap
changers and phase shifters, although some transformers regulate both the magnitude and
phase angle. Controllable transformers are those which provide a small adjustment of
voltage magnitude, usually in the range +£10% or which shift the phase angle of the line
voltages. A type of transformer designed for small adjustments of voltage rather than for

changing voltage levels is called a regulating transformer.

2.4 Mathematical formulation of the OPF

Optimal power flow is formulated mathematically as the following constrained

nonlinear optimization problem:

minimize c(x,u)
subject to g(x,u)=0 (1)
f(xu)<0

The objective function is a scalar function. Two types of variables appear in the above
optimization problem: x is a set of state variables (voltage magnitudes v and phase angles
0 for each node in the network) and u is the set of controllable quantities in the system

(generator outputs, adjustable transformers)

{VJ 2n
X = xeR
0



where n denotes the number of nodes (buses) in the network.

u= ueR™

where n, is the number of control variables: active power (py) reactive power (gp) tap

changing transformers (#,) phase shifting transformers(o).

The equality constraints g(x,u) are power balance equations (active and reactive) for each
node in the network, occasionally augmented by a few special equality constraints such
as specifying voltage at voltage controlled buses.

Inequalities f(x,u) are the limits on the control variables u, and the operating limits on the
power system. Limits on the control variables are known as a “hard” limits (i.e., violation
of these limits is not allowed) and operating limits are known as “soft” limits (i.e., small
violations are tolerable). The set of inequality constraints prevent of dispatching

generation that will lead to violating system limits.

In the past three decades, various optimization techniques have been proposed to solve
the nonlinear OPF problem expressed in (1). A few implementations have been very
successful. Difficulties with various techniques usually either from unacceptable time
consumption for a problems involving large power networks. Techniques that are
proposed can be categorized as:
e Gradient methods — these were the first approach to solving OPF and showed
very slow convergence properties
e Sequential linear programming (SLP) algorithms based on the linearization of the
original OPF problem. In an outer linearization loop the objective function and
constraints ( power flow equation ) are linearized. The SLP problem is of the

form:



minimize clAx+c! Au
subject to G A+G Au=-g
FA+FAu<-f

e Sequential quadratic programming (SQP) algorithms use the second order
derivatives to improve the convergence rate. At each outer iteration the objective
is approximated as a quadratic with a linear constaraint set. This SQP problem is
solved iteratively until convergence is attained.

The above techniques vary in speed, cost of computation, and convergence properties.

In order to solve the optimization problem stated in (1), we have to develop necessary
conditions for a minimum of the objective function subject to the given constraints.
Therefore we will form the Lagrange function. The Lagrange function is formed by
adding constraint functions multiplied by an undetermined multiplier vector (Lagrange
multiplier A and w) to the objective function. It is very important that Lagrange
multipliers can be viewed as the optimization variables of auxiliary optimization
problems, called dual problems, which will be helpful in applying interior point methods.
The dual problem objective has the same optimal value and has as optimal solutions the
Lagrange multipliers of the original problem.

Before defining the Lagrange function, we will convert the inequality constraint to
equality constraint by adding a nonnegative slack variable (s). With the introduction of a

slack variable the OPF is formulated as:

minimize c(x,u)
subject to g(x,u)=0
f(xu)+s=0

s20
The Lagrangian function for this problem is:
L=c(xu)+Ng(xu)+n (f(xu)+s)

The necessary conditions for an extreme value of the objective function results when we
take the partial derivative of the Lagrange function with respect to each variable and set

those derivatives to zero. Those conditions are known as Karush-Kuhn-Tucker (KKT)
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conditions. Convergence is attained when the Karush-Kuhn-Tucker necessary conditions

for optimality have been satisfied within practical accuracy.

where: I1

G

x

G

u

F

X

F

u

The structure of the above Jacobian matrices is discussed in Appendix I

VL=Vc(xu)+GAr+F'n=0

VL=V c(xu)+Gr+F n=0

V.L=g(x,u)=0

V.IL=f(xu)+s=0

V. L=TIs=0

s,mt=>0

=diag(m,)

_ og(x,u)

Oox

_og(x,u)
ou

=6f(x,u)

ox

:af(x,u)

ou

{complementary slackness condition}

2nx2n
G eR

2
G, eR"™

n,x2n
F.eR

n.xn,
F eR

The complementary slackness condition means that whenever the constraint f(x,u) < 0 is

slack (meaning that f{x,u) < 0 and consequently s > 0) the constraint = > 0 must not be

slack (meaning that m = 0) and vice versa.

Although a first idea to solve the above system of KKT conditions might be by direct

application of Newton’s method, experience shows that the domain of convergence can

be quite small in many cases, a condition that ultimately leads to failure to converge. A

more reliable and powerful is idea that of a barrier function and an interior point method.
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2.5 Interior Point Method

The interior point method was developed by Nerendras Karamarkar in 1984 for linear
programming, although many of the component ideas were known earlier. Experience
indicates that the interior point method is algorithm of choice when solving large-scale
problems, which OPF definitely is. The algorithm used for years for solving linear
programming problems is the simplex method, which moves from one vertex of the
feasible region to another while constantly attempting to improve the value of the
objective function. An interior point method implies that progress towards a solution is
made through the interior of the feasible region rather than its vertices. Karamarkar
discovered how to trace such a path quickly.

There are three versions of the interior point method algorithm, the primal, the dual and
the primal-dual. The primal-dual algorithm has been found to be very robust and is the
method we use in this work.

The framework for developing an interior point method consists of three important parts:

e A barrier method for optimization with inequalities

e The Lagrange method for optimization with equalities

e Newton’s method for solving the KKT conditions
After the transformation of inequality into equality constraints and introducing slack
variables, one expands the cost function with a barrier function. The barrier or penalty
function accommodates nonnegativity constraints on slack variables. A barrier function is
continuous and grows without bound as any of the slack variables approach 0 from
positive values (from the interior of their feasible region). The most common example of

barrier function and the form we will use is

b(w,s)=—p) Ins,
i=1

where 1 is a scalar parameter called the barrier parameter. The value of u is varied as the
solution of the OPF progresses.

After introducing the barrier function, we can write the modified OPF formulation:
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n
minimize c(x,u)— “Z Ins,
i=1

subject to g(x,u)=0
f(x,u)+s=0

The Lagrange function for this problem is:

ch(x,u)—uzn:lnsi+kTg(x,u)+nT(f(x,u)+s)

i=1
and the KKT conditions are:

V. L=V c(xu)+G A+Fn
VL=V, c(xu)+Gr+F'n
V.L=g(xu)

V. L=f(xu)+s

VSLz—ul+ni fori=1...n
S.

1

The complementary slackness condition in the primal-dual interior point formulation is

replaced by:
Ils =pe

where e is a vector of ones of appropriate dimension.

In general terms, the next step would be to apply Newton’s method to the KKT
conditions, in other words to linearize the KKT conditions. Those linearized KKT
conditions can be interpreted as KKT conditions of the quadratic Lagrangian function,
and that is the origin of the name “sequential quadratic programming” (SQP). At each
iteration the linearized KKT conditions are the KKT conditions of a quadratic
subproblem. More details about the solution process will be deferred to later chapters.

While the concentration will be on the SQP techniques presented in [5], [6].



13

2.6 Constraint Relaxation Method

In order to make the OPF algorithm efficient another very important method known
as a constraint relaxation or an active set method will be employed. In this technique, we
ignore constraints until they are violated. Thus the set of active inequality constraints is
identified by the set of indices of the constraints that are satisfied as equations (i.e.

f(x,u)=0). The set of inequality constraints whose indices lie in the active set are said

to be active or binding while the remainder are inactive. The inactive constraints may be
ignored. The Lagrange multipliers for inequality constraints become nonzero only when
the inequalities become active (binding) or all in the active set.

Generally, only a small percentage of the total transmission constraints become
active, greatly reducing the size of the system. Numerical examples presented in [14]
show significant reduction in problem size achieved in practice by the active set method.
The aim of the algorithm must be to discover which constrains are active. A heruristic
such as adding to the active set just the most violated of the newly constraints and
discarding the remaining violations has proven to be very efficient. Thus, the algorithm to
be explained in chapter 3 will rely on an active set method, one of the key tools in
building an efficient algorithm. For the contingency constrained OPF active set is built

for each contingency as well as for the base case.

2.7 Full AC case

The OPF formulation considered is:

n
minimize c(x,u)— uz Ins,
i=1

subject to g(x,u)=0
f(x,u)+s=0

The Lagrangian function for this problem is:



L= c(x,u)—uz:lnsi +Ng(xu)+n’ (f(xu)+s)
i=1
and the KKT conditions are:

V.L=V c(xu)+GA+F n=0
VL=V c(xu)+GAr+F'n=0
V.L=g(x,u)=0
VIL=f(xu)+s=0

VSL:—MLHTI.:O fori=1...n,
S

l

In the general AC case the matrix G, has following block matrix form:

G, G
Gx — [ Py Pa]
G, Gy,
Including a power balance equation for the reference bus (subscript » denotes the

reference bus), and linearizing the above KKT conditions will produce

W A+W, Au+GIA+GIL, +F n=b,
W Ac+W, Au+GA+GILN +F/'n=b,
G.Ax+G,Au=b,

G Ax+G Au=b

FAx+FAu+s=b,

[1Se = pe

The right hand side is:

b, ==V c(xu)
b ==V c(xu)
b, =

—g(x,u)

)
3)
4
)
(6)
(7

14
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b, =-g,(x.u)
brc :_f(x’u)

The Hessian matrix (Wi, Wy, Wi, W) 1s a symmetric matrix of second partial
derivatives. Each element of the Hessian terms is a linear combination of the second
partial derivatives of the power flow equation. The elements of the Hessian matrix
represent the coupling between the variables 0, V, transformer turns ratio against each
other and are usually very small. This property is exploited in the decoupled formulation
of OPF [9] where second order terms are set to zero. The formula for the Hessian

elements follows:

o’g.. L 0% f,
Wxxzvzc(xu)+2[ g‘” ot ‘gzq’inJ+Zaﬁn.

gpl a gql

w, =V + ,
w = Vie(xu) Z axau " avau

;/

" z 6x6u i

WLLX = W)CZT;

2
ou = ou’

62 ) n, 2 ‘
W, =V:c(x, u)+2( gp' ot Eu inJ+Zaﬁni

In the above system the reference bus power balance equation is included through terms
G,x, Gy, and A,. Recall that the power flow Jacobian is singular; therefore the power
balance equality for the reference bus is replaced with an equality constraint forcing the
reference bus angle to be zero (see Appendix I).

If we express A and Ax from equations (2) and (4) we will get

Ax — W‘CX Gf B bx _W‘CMAM _Gz}-c}\‘r _E‘CTTE (8)
A6 o b, —G,Au

X

Substituting equation (8) into the equations (3), (5), (6), (7) yields the following reduced

system:
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W, Au+G ., +Fn=b,

Em Au = l;,

FAu+s= I;n

[1Se =pe
The definitions of the terms in the reduced system and the computational procedure for
their calculation can be found in Appendix III. A more detailed derivation can be found

in [6].

If we expand the above system of equations about s and © we get:

WMMAM + C_;rix’r + F_‘MTATE = b_lt - F_‘HTTE
G, Mu=b,
F Au+As=b_—Se

[TAs + SAmt = pe —TI1Se

If we eliminate As from the last equation
As =TT (e —T1Se — SAn)

The system in matrix form will be:

V7uu EI‘Z FMT Au u - FHT TE
G, 0 0 [x|=| b ©
F 0 —IT"'S)\An b, —ull e



_(Au
y= A,
b,
b}”

I;n :I;n —ull e

The system (9) can be rewritten in the following way:

u'pu F' Yy (b-F'n
F  -II'S\An b,
Its solution can be written:

y=U"'D'U"(b-F'n—-F"An)

Fy-TI"'SAn=5_

after substitution of equation (10) into (11) and some algebra we get:

(-T'S—FU DU TF Ar=b,-FU DU (b - F'r)
To calculate An from the above equation, introduce

F=UTF"
where F is calculated by fast forward substitution

U'F=F"

Now equation (12) can be solved by writing it as
(-T1"'S—F'D'F)An=b,—F'D'U b +F'D 'Fn
(-T1'S-C)Ar=b,~F' Db +Cr

where

C=F'D'F

(10)

(11)

(12)

(13)

17
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51 = Uirbl

In order to calculate An from equation (13), a U'DU factorization of the symetric matrix
IT"'S — C must be performed. The latter is potentially a small dense matrix with the size of

the active constraint set. When we have calculated Arn, we can obtain As

As =T1""(ue —T1Se — SAn)

and y can be calculated in three steps (forward/backward substitution and division by
diagonal) from the equation (10).
Now that we have Au and A, , therefore Ax and A can be calculated as well from equation

(8). The complete algorithm can be found in [6].

2.8 Fast Decoupled case

What the decoupled power flow does is decomposes the load flow problem into real
and reactive subproblems. A fast and reliable load flow calculation based on the
decoupling of the active and reactive subproblems may be essential for the
computationally intensive contingency constrained OPF. This section will give
formulation of the sequential quadratic programming OPF based on fast decoupled power

flow.

The formulation of the fast decoupled OPF is the same as for the AC case

n
minimize c(x,u)— uz Ins,
i=1

subject to g(x,u)=0
f(xu)+s=0

where power balance equations g(x,u)=0 are defined according to fast decoupled power
flow [9] approach:

B'AO=AP



B'AV = AQ
The matrices B" and B" are defined in Appendix I

The problem Lagrangian with logarithm barrier function is:

L(x,u,h,m)=c(x,u) —uilnsi + M g(xu)+ ' (f(xu)+s)

i1
The KKT conditions from the problem Lagrangian are given by:
VL=V c(xu)+GA+F'n=0
VL=V c(xu)+GA+F'n=0
V,L=g(x,u)=0
VIL=f(xu)+s=0
V.L=1Is=pe

Recall that in the general case, the matrix G, has form:

G G
GX — [ Py Pa j
G, Gy,

while in the decoupled power flow case the matrix G, can be written in the 2x2 block

o _ 0 G,) (0 B
G, 0 ) B 0

The linearized KKT conditions with respect to x and u only are:

matrix form

W Au+W Ax+G A+GIN +F'n=b,

uu ux

W Au+W Ax+GIA+G A +F n=b,
GAu+G Ax=b,
G Ax+G, Au=b

FAu+FAx+s=b,

19
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I1Se = pe

where right hand side is:

b, ==V c(xu)
b ==V c(xu)
b, =—g(x,u)
b, =-g,(xu)
by ==f(xu)

The Hessian terms as defined for general case can be further simplified in the decoupled
case. The second order derivatives corresponding to both equality and inequality

constraints are zero. Therefore:

WXX = v)zcxc(x’u)
Wvu = v)zcuc(x’u)
Wux = WxYL;

W, = Viuc(x,u)

The generator cost function as defined is quadratic and depends just on the control
variables u; thus the only nonzero term is W,, =V c(x,u), and it is constant due to the

quadratic cost function.

Our system will have following form:

W Au+G A+G.A +F 'n=h, (14)
G'A+G\ +F n=b, (15)
G,Au+G Ax=b, (16)
G Au+G Ax=b (17)
FAu+F Ax+s=b, (18)

[1Se = pe (19)
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System reduction will be conducted first with the expression for A and Ax from equations

(15) and (16). That process yields:

G, o)A\ [ b -G Au
0 G'){n) (6" -G'n —F'n

S B -

. (G,
The matrix ( 0

T
X

J in the fast decoupled model is a constant matrix and is factored
only once.

Substitution of (20) into the remaining equations of the system is the next step. Equation

(14) can be rewritten as:

ru r

Ax
W, Au+(0 Gj)( N j+ G +F'n=b,
After substituting equation (20) it has form:

et ofs 3] (M0

+G/ N +Fn=0b,

ru r

The following variables are introduced

-1
w0 af T o) (G

Rer-o 0 (2

X u



-1
a0 af &) 7]

Equation (14) can be rewritten

W Au+G '\ +F 'n=b,

ru r

Next, equation (17) can be rewritten in the matrix form:
Ax
G, Au+(G, 0) ( J =b,

substituting equation (20) into (17) gives

G,-(G,. 0) 6. 037G, Au—(G,, 0) G, 0370 A
f— ) u f— ) —
ru rx O Gj O rx O G;‘ Gz; r
G, 0)'(0 G, 0)'(b
-G, 0)| ° =b -G, 0)| ° *
( rx )(0 G:J (FXTJTE r ( rx )( 0 G;‘j (bxj
The following variables for the modified equation (17) can be introduced

et ol 2[5

0 G') (o

_ G. 0\Y'(b
br:br_(er 0)(0 GT] [b}»J

and following two terms are equal to zero

(G, 0) (Cf;‘ GW]

22
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With terms defined above equation (17) can be rewritten

G . Au=>b

ru r

Equation (18) in the matrix form can be rewritten in the following way:
Ax
F Au+(F, 0)( N j+s =b_

Substituting equation (20) into (18) yields

o off 88w of% 1)

F 0)(GOX ;](;T]Hs:bn—(m 0)(G0x C?T]l[b?

X

The following variables can be defined:

-1

. G, 0) (G,
F=F=(F 0 " )|,

_ G, 0Y'(»
ch :brc _(Fx 0)[ 0 GT bkj

and following two terms are zero

(F, 0>[C§ c?]m
(F, 0{% SJW

With terms defined above equation (18) can be rewritten
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A

FAu+s=b,

u

In order to prove that our system is symmetric we have to show that ]:“MT =F.

From the definition of term F, follows

— G=' 0 0
F=F—-(0 F) *
u u (0 r)[ O G_TJ[G“J

applying block multiplication yields
F_;l = El _FXGX_TGM
and taking transpose of the above term yields
FT :FT _GTG—IFT
The same set of operations can be performed on term Fu

. G>' 0 )G
F=F—(F 0) * “
u u ( x ){ O G_TJ[ 0 j

F, =F -F.G.'G,

FT=FT _G'GTFT

G, is symmetric matrix therefore follows G_' =G.” which ultimately leads to the

conclusion that F" = F

Now the reduced quadratic problem will have the same form as in the AC case but with

terms ¥, and (_?m that will remain constant during iteration process.

W Au+G '\ +F 'n=b,
G, Au =l;,

F Au+s :I;n

[1Se = pe
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Detailed computational procedure for calculation of terms in the reduced system can be

found in Appendix III. Expand this system of equations about s and &

ITAs + SAnt = pe —11Se

Eliminate As from the last equation
As =T1""(ue —T1Se— SAn)

and substitute in the rest of the system to obtain:

w o GI  F' YAu b —F'n

G, 0 0 |x|=| b (1)
F 0 -II''S|\An b, —ull e

The next step is the same as for the full AC case explained before, with the observation

that the U'DU factorization is performed just once because the matrices ,, and G, are
constant

urpy =[P Gn
G, 0

ru

and following variables introduced:
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S
=

i

I;n =h_—ull'e

S

Then, system (21) can be rewritten on following way

u'pu F" \(y) (b-F'n
F -11's)\an) | b

Following the same steps as in full AC case Ar is solved from the following equation
(-T1'S-C)Ar=b,~F' Db +Cn

When we have calculated An, we can obtain As
As =T1""(ue —T1Se— SAn)

and y.

Finally, Ax and A can be calculated as well from equation (20):

(¢ GO ple K

Partitioning Ax and A as shown below. Call the right hand side of the equation a vector g,

and partition it similarly:

9,

A A
A8 A, 93
q,

Because we are dealing with decoupled power flow equations, we need only to find LU
factors of the blocks B" and B” in above block matrix. This simplification is another
computational savings.

This computation can be conducted as follows
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B'=U/DU,
B"=U,D,U,

0 B 0 0)Av) (g
B" 0 0 0| A6] |q,

0 0 0 B"||A,| g,

0 0 B 0)ir,) (g,
B'AB=gq, & U'DU,A0=gq,
B"Av=g¢q, = UlD,U,Av=gq,
B"AN,=q; & U, D,U, AL, = g,
B'AL,=q, < UDU AN, =q,

Each of the unknowns AO, Av, AL,, ALq is calculated by forward/backward substitution

and division by the diagonal.
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3 Contingency Constrained OPF via Sequential Quadratic
Programming

3.1 Introduction

A contingency is an unpredictable disturbance to the transmission or generation
facilities. Contingency constrained OPF recognizes the need to operate the system
successfully, i.e. within operating limits when a contingency occurs. It has been
recognized that with the basic OPF formulation it may not be possible to keep the system
in a normal state after a contingency occurs.

By introducing contingencies into the problem we are introducing uncertainty.
Contingency constrained OPF answers how to dispatch power capacities and control
components of the system to accommodate serious disturbances anywhere in the system.
This optimization problem is a cumbersome computational problem when all possible
contingencies are considered.

Contingency constrained OPF can be formulated on two ways:

e so called ‘safe’ or ‘preventive’ contingency constrained OPF, which does not

allow any rescheduling in response to a contingency

e contingency constrained OPF with corrective rescheduling which allows control

actions shortly after the occurrence of a contingency
A first possible approach to contingency constrained OPF is the following framework, in

which the base case is simply expanded to include contingency constraints.

minimize c(x,u)
subject to g(x,u)=0
f(xu)<0
g.(x,u )=0 o=1..k

fo(x,u )<0 =1,k
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where: x is the pre-contingency (base case) state vector, x,, is the post-contingency state
vector for contingency ® and u is the control vector for the base case as well as for each
contingency case. Solution of this constrained optimization problem is so-called ‘safe’
solution, which means that the control vector u is calculated such that the system operates
successfully under all contingencies. This formulation, does not take into account the
ability to change control settings in the event of a contingency. An approach which
allows adjustment of control variables after the occurrence of a contingency is known as
a corrective rescheduling method.

The importance of corrective rescheduling will be illustrated in the following simple
example presented in [4]. In a simple power system shown on Fig. 2.1. generators 1 and 2

are participating in a dispatch to supply a 200 MW load at bus 2.

Generator Min. Generation [MW] Max Generation [MW] Incremental cost [$/MW]
1 50 200 1
2 0 120

Table 2.1. Generator data

Line Max. line flow [MW)]

1 100

2 120

Table 2.2. Line data

9
(1)

2
I:'L

(2

Fig. 2.1. Two-bus System

Since generator 1 has the lower incremental cost, a pure economic dispatch yields

following solution:
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1 2
200 100 —> 0

F'mC)__’ . -—C‘_ ) P=  Cost 200
100 —> —l

200
Fig. 2.2. Pure economic dispatch

Now consider a contingency in which line 2 (notice that line 2 has higher capacity) is out.
Performing ‘safe’ contingency constrained OPF will result in the dispatch shown in Fig.
2.3. That dispatch guarantees that the system will operate successfully under the base

case and the contingency case.

1
100 50 —r 100

"o (o — F—(V) P Cost 300
50 — —l

200
Fig. 2.3. ‘safe’ solution

It can be seen from Fig. 2.3. that an increase in security comes with an increase in cost,
because the more expensive generator 2 participates in the dispatch and the less
expensive generator 1 has a lower output than if the contingency did not occur.

Finally, consider a corrective rescheduling method. Suppose that the corrective
capabilities of generators 1 and 2 are 40 MW and 35 MW respectively, meaning that each
can increase its generation by these amounts in response to a contingency occurrence.
This expression is known as a generator ramping constraint and can be formulated as the

constraints

<40MW

‘pgl - P;

<35MWwW

c
‘ng_ng
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This situation will allow the cheaper generator 1 to dispatch at a higher generation value
than that obtained by the ‘safe’ solution; the preventive dispatch will produce lower

operating cost. This scenario is presented in Fig. 2.4.

1 2
135 675 —

Py C)__’ . E@ P, Cost 265
67.5 — —l

200
Fig. 2.4. Contingency constrained dispatch with corrective rescheduling

It is easy to demonstrate that contingency constrained dispatch with corrective
rescheduling will not lead to overloads in the case of a line outage because generator 1
can be redispatched to a lower value according to its ramp rate constraint. Therefore the
same level of security is obtained with a lower production cost (265 instead of 300).
From the previous example it can be noticed that the formulation without redispatch is a
conservative formulation. That formulation is conservative because it forbids post-

contingency changes in control settings.

Contingency constrained OPF with rescheduling is implemented by adding additional set
of constraints to the base case problem formulation. Each additional set describes a
contingency by a set of power balance equations, inequality constraints, and a new type
of constraint known as ramp-rate (or coupling or intertemporal) constraints. These ramp-
rate constraints take into account the system’s corrective capabilities after the outage has
occurred.

The problem formulation that includes ramp-rate constraints is known as OPF with post-
contingency corrective rescheduling. The post contingency state of the power system is
that immediately after a contingency occurs in which some line limits, bus limits or other
constraints might be violated. In this state some corrective actions must be taken, which
place the system in a secure state. This problem was first presented in [4] using Bender’s
decomposition, although without modeling the probability of occurrence of the different

contingencies.
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3.2 Mathematical formulation of the contingency constrained OPF

The contingency constrained OPF problem may be formulated as a single
optimization problem which includes a base case and a set of contingency cases coupled
with intertemporal constraints (ramp-rate generator limits).

The mathematical formulation of contingency constrained OPF with corrective

rescheduling is as follows:

minimize c(xu)+ E,fc,(u,)}

subject to g(x,u)=0

f(x,u)<0

g.(x,,u,)=0 o=1..k M
fo(x,,u,)<0 o=1..k

h(uu,)<0

where:
g (x,u) — power balance equations for base case

f(x,u) — set of inequality constraints for base case

Zo (X0, Uy) — power balance equations for each contingency case
Jfo (xo, Uy) — set of inequality constraints for contingency case

h (u, u,) — ramp-rate constraints

E,, — denotes expected value

o — 1is the set of possible contingencies ®w=1...k

The objective function in (1) includes the total cost of operation in the pre-contingency or
base case as well as the expected cost of recovery from all contingencies. The additional
set of state and control variables (x4,u,) consists of the state variables under contingency
and the control actions (post-contingency control adjustments) taken in response to

contingency .
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As mentioned before, the number of possible contingencies (including multiple outages)
can be enormous. Not all contingencies have the same likelihood of occurrence, which
leads us to assigning a probability to each contingency considered. Thus, by modeling
contingency probabilities we can formulate the optimal power flow as a stochastic
programming problem. This formulation is also called the stochastic OPF. We may
assign a probability of an outage which in general is not a uniform; e.g., some lines are
more prone to outages due to lightning than others.

Because we are dealing with a finite set of events, the expected value is computed by

summation

k
E,lco(u,)i =2 poc,(u,)
o=1
Furthermore, if we assume a linear cost function for each contingency, we have
k
Em{cm(um)}: zpmdcﬁum
o=1

Now let us introduce ramp-rate constraints. Ramp-rate limits are inequality constraints of

the following form:

éﬁu—uwSZ o=1.k

where A and A are lower and upper ramp-rate limits on change in generation level. The

ramping constant A is usually defined as a percentage of generator capacity (i.e. 10% —

15%)

The set of ramp-rate constraints on each contingency can be organized on following way:
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with dimension (2ngx1)

The contingency constrainted OPF will be solved as a single entity by an interior point
method. The general OPF formulation can be transformed by introducing slack variables

(s, S, 0) and transforming inequality constraints into equality constrains.

minimize c(xu)+ E,lc,(u,)}
subject to g(x,u)=0
f(x,u)+s=0
Zol X0ty ) =0 o=1,..k )
fi(x,u,)+s,=0 o=1,..,k
h(u,u,)+c =0

s20, 5,20,0 =0 o=1,.k

The slack variables must be non-negative; these non-negativity constraints will be

imposed by adding a logarithmic barrier function to the objective

k Meg,

- u(ilnsi - Z Zlnsml_ - ilncl}
i=1 o=1 i=l i=1

The barrier parameter p is a positive number that is forced to decrease to zero iteratively;
ne, N, are the number of inequality constraints for the base and contingency cases

respectively; and 7, is the number of ramp-rate constraints.

The resulting Lagrangian function for the above problem, with a logarithmic barrier

function for the interior point method, is:
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L=c(xu)+Ng(xu)+n'( f(x,u)+s)+

k
+Z [}\’7(-» gu)(xu)’um) + TEZ-) (fm(xw’uu)) + Sm) + pmdufum]—i_ (3)
o=1

+y" (h(uu,)+c )—u(ilnsi—zk: ilnsm‘_ —nZlnGi]
i=1

i=1 o=l i=1

The stationary point of the Lagrangian function (3) is the solution of following system of

KKT conditions:

V.L=V c(xu)+GA+F 'n=0 4)
VL=V c(xu)+Gr+F'n+Hy =0 (5)
V.L=G, A, +F, m,=0 (6)
V,L=G, h+F, n,+H,y +p,d,=0 (7)
V.L=g(x,u)=0 (8)
VLI=f(xu)+s=0 )
meL:gw(xm,um)=0 (10)
V..L=f(x,u,)+s,=0 (11)
V. L=h(uu,)+c =0 (12)
VI=n—puS'e=0 (13)
VS(ULZ%—MS;‘?:O (14)
Vo L=y—pze=0 (15)

§20, 5,20, 620

for o=1...k

where: S =diag(s) S, =diag(s,) , X=diag(c) and e is vector of ones of

appropriate dimension; i.e. e = (1 .. .l)T
Any point that satisfies above (KKT) conditions is said to be a first-order critical point

for the problem The last three of these conditions (13), (14), (15) are known as



36

complementary slackness conditions. The KKT conditions represent a system of
nonlinear equations.
The first step in a solution process is to apply Newton linearization; therefore, the KKT

conditions will be expanded about x, u, x t,

W Au+W _Ax+GIA+Fln=-V c(xu) (16)
W Au+W Ax+GA+F n+H'y ==V c(xu) 17)
W, Au,+W,  Ax, + G;\‘mkm + Fwim n, =0 (18)
W, bu,+W,  Ax,+G L, +F, n,+H,v =-pd, (19)
G Au+G Ax=-g(xu) (20)
FAu+FAx+s=—f(xu) (21)
wau, Ax, + G% Au,=-g (x,u,) (22)
F% Ax, + qum Au,+s,=—f.(x,.u,) (23)
HAu+H, Au,+c =-h(u,u,) (24)
[1Se = pe (25)
IT1, S, e=pe (26)

[Xe=pe (27)
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3.3 Forming a quadratic subproblem

Now we will pose the question: For which optimization problem are these the KKT

conditions? First take a look at a Lagrangian that gives the above KKT conditions

Ax w, W, 0 0 )\ Ax
Au | 1] w,. W 0 0 | Au

L=V r \Y% r 0 dT + — AX-T A T AXT A T ux uu +
( C, c, Po u)) Ax, 2( u ® Mw) 0 0 WH meu( Ax,
Au,, 0 0 w, W;mu( Au,

((((((

+ N (G Au+GAx+g(xu)) + n' (FAu+FAx+s+ f(x,u))+
+ KZ(G% Ax, + quw Au, + gm(xw,uw)) + ng(me Ax,+F, Au,+s,+ fw(xm,um))+
+yT(HuAu +H, Au,+c +h (u,um))

k o

- p[ilns[ —Z Zlnsmi —nZln GiJ
i=l1 i=1

o=l i=1

Now we can formulate a quadratic programming subproblem given the above Lagrangian
function. The linearized KKT conditions given in (16) — (27) are the KKT conditions for

the quadratic programming (QP) problem:

minimize
Ax w. W

Au w 0 0 Au

(vel vl 0 pdl) +%(AxT Au' AT Au]) e Wi

X

Ax, o o0 w. . W |Ax,
Au,, o o w. W, \Au,

o=l i=1

- },{ilnsi - Zk: ilnsm’ - ilncl)
i=1 i=1
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such that GAu+GAx=-g(xu)
FAu+FAx<—-f(xu)
G% Ax, + G% Au,=-g (x,.u,)
F% Ax, + qum Au,<—f (x,u,)
HAu+H, Au,<-h (u,u,)

Because the Jacobian matrix is defined as in Appendix I without a power balance
equation corresponding to the reference bus, we have to include that power balance
equation as well. Therefore, we will add an additional term reference bus in both the base
case and the contingency cases.
Base case:

Ar Lagrangian multiplier for reference bus active power balance

G,.  row vector (1x2n) — gradient of active power balance equation at reference

bus with respect to state variables
G,,  row vector (1xn,) - gradient of active power balance equation at reference

bus with respect to control variables

Contingency case:
hor  Lagrangian multiplier for reference bus active power balance

G,. row vector (1x2n) - gradient of active power balance equation at reference

bus with respect to state variables

G,.  row vector (1xny,) - gradient of active power balance equation at

reference bus with respect to control variables

W Au+W _Ax+GIA+GIA +F n=b, (28)
W Au+W, Ax+Gh+GA, +F/n+H 'y =b, (29)
W, Bu,+ W, A, +Gy L, +Gy, A, +F, m,=b, (30)
W, Au,+W, Ax, + G;m A, + Gi% A, + Fmiw n,+H,y =b, (31)

G Au+G Ax=b, (32)
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G, Au+G, Ax=bh, (33)
FAu+FAx+s=b, (34)
G, Ax,+G, Au,=b, (33)
G, Ax, +G,, Au,=b, (36)
F, Ax,+F, Au,+s,=b, 37)
HAu+H, Au,+c =b, (38)
[1Se = pe (39)
IT1, S, e=pe (40)
[Ze=pe (41)

The right hand sides of the above system can be denoted:

b. ==V c(x,u)
b, ==V c(xu)
b, =0

b, =-r.d,

b, =-g(xu)
b, =-g.(xu)
b, ==f(xu)

b?\.m :_gm(xm’um)
bmr :_gmr(xu)’uu))
bﬂ.’m =_f(,0(x(,0’u(x))

b, ==h (u,u,)

We notice that introducing the reference bus resulted in two more equations, (33) for the
base case and (36) for the contingency cases. Equations (28) to (41) form a system of

nonlinear equations for the interior point formulation.
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The above system will be solved in a way similar to [6] and reviewed in chapter 1. The

approach is to eliminate Ax, A, for the base case and Ax,, , A, for each contingency case.

Equations (28) and (32) can be rewritten in the matrix form:

WXX G.Z‘ Ax — bx - W’CMAu - Gi‘r;\’r - FXTTC (42)
G, 02 b, -G, Au

X

The corresponding contingency equations (30) and (35) can also be rewritten in the

matrix form:
Vmexw Goia-r Axw bxw - Vva,uw Aum - Gufrv }\‘mr - Fo)il cho 43
G, 0 J(n,) b, -G, Au, )

Before we embark on equation solving we should keep in mind that the inverse of the

2x2 block matrix from equations (41) and (42) has the following structure.

MR

With this property many of the terms in the following derivation will be zero. Now

substitute equations (42) and (43) in the rest of the system equations.

First equation to be rewritten is equation (29)
W, A+, G )@x} G'A +F'n+H'y =p"
Substituting equation (42) into above yields
W s, G;)Ug: %]{[ZNVZJA@]X@”

+GIN +F'n+H!y =b,



-, ar

0

T -1
/4
Wuu ) Wxx Gx xu
G, 0 G,

ai-tr. o) (%

G 0 0

Au +(W G’

}kﬂr
R AR

n+H' b
s

In the previous equation, the following variables can be introduced:

—(W GT) W, GXT I(quj
“ G 0 G,

N\
6,040, " %)%
G, 0 G,

W =W,

uu

b,=b,-(W, G

ux u

Q

) Wrx G)Z- B bx
Gx 0 b?»

T71
E=ﬂ—@;®€m QJ(mﬂ

G 0 G

X

with these terms, equation (29) can be rewritten as:

Wobu+Gh, +Fln+HJy =b,

equation (31) in the matrix form:

w, . Au,+ (Wu

Yy =b,

@

Ax
. G )(k“’J+G£,M Mop +F, T, +H,

®

Similarly, substituting equation (43) into above yields

W G
[t

I

b

X

b,

J+

(44)
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-1
+(Wumx G, m)(é:x” Gg} (ZJ+
-1
va -, o ){72::, GOJ (Goj
-1
[t ol [ onty -

-1
oot e[ [
_ Ve G [P
N :Gm,m—(Gwm 0)[6‘:” 0 [GJ
- w,. G (W,
£, =F, -(F, 0)[(}:( OmJ qu]

Finally equation (31) can be rewritten as

W, Au,+G" A, +F, n,+H vy =b, (45)

Uyl



Next equation is (33):

Ax
G, Au+(G, 0) ( N J =b,

Substituting (42) into (33) gives

r\7! T T
b\ (W F

G, Au+(G, 0) Wee G =[P | © A - |n|=b,
G, 0 b, ) \ G, 0 0

The following matrices are introduced:

T -1
5”14 = Gm - (GI’X O) (Wxx Gx J (quj
G, 0)\G,

following matrix inversion structure following two terms are zero

TN\ AT
(er 0) WXX GX j ( Gl’x j
G 0 0

X

™\ -1
( er 0 ) W’Cx Gx J [ Fx j
G. 0 0

X

Finally equation (33) can be rewritten as

43



G, Au=bh (46)

equation (34) in the matrix form:
Ax
F Au+(F, 0)[ N j+s =b,

following the substitution of (42) yields

w_ 'Y [(b\ (W, G’ F!
EAu+(F. 0)] = == - Au—| ™A —| © In|+s=0b,
G, 0 b, ) \ G, 0 0
W 7\ W 7\7! b
E—(F, o) * O, “Au+(F, 0) W G -
G 0 G, : G, 0) b

X

w_ 6T (G7 w. GTY'(FT
—(F. o)( = ] ( "X]x,—(FX 0)[ j [ )‘Jn+s:bﬁ
G 0 0 G 0 0

X X

The following matrices are introduced:

=
Rer-te o G ()
G 0 G

X u

T -1
bt -(F, o)[Wm G«fj (b]
G. o) (b

X

-1
W, G , o
Because of the structure of {Gx’” (;‘ J , the following two identities are true:

pY

-1

W
F O XX X X :0
(x ) G 0 0

* G 0 0



finally equation (34) can be rewritten as

FAu+s=»b

u i

The equation (36) is written as:

., o)ﬁx‘”j +G,, Au,=b,

[a]

substituting (43) into (36) gives

-1
/4 G! b /4 G’

G 0 XoXe (Dxu, Xo _ Yoy A _ Q)er)
( or,, )( G, 0 ] [(bxj [G%J Ho { 0

+ G, Au,=b,,

Furthermore since

(47)
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and

6. o )[Rz
o G, 0 0

Equation (36) can be rewritten as

Al/l(,l\) = EUJV

(ur“m

The last equation to be modified is (37)

(Fm 0) (A}wa] + qum Au, +s,=b,

(o]

substituting (43) into (37) yields

-1
VVXX G£ bx Wvu GT4 FT
. O)(wa 0 J H’?HG JA%_( o‘°jk‘°’_[ 0“}“‘"}

+F, Au,+s,=b_

R
( ) w,. G, B F! ( ) w.. G, ) b,
_ waw 0 (Gmk“ O» ( Omjnm =b_—\F, U 0 (Gmkw 0 } (bk

The following matrices are introduced:
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Since

and

Equation (37) reduces to:
F, Au,+s,= l;nm (49)

(O]

Equations (44) — (49) together with unmodified equations (38) — (41) form reduced
system.

3.4 Solving reduced system

Reduced system of equations is:

W Au+G\ +F'n+H'y =b,
Wy Dy +G! A +F) m,+H Yy =b,
(_?mAu:l;r

_uAu+s:l;n

G. Au,=b
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where:

170)”m Au,+s, :5%
HAu+H, Au,+c =b,
[1Se = pe

I1,S,e=pe

I'X e=pe

I' =diag(v,)

Y =diag(c,;)

48

The first step in solution of the reduced system is to expand system about s, s, T, T, and

o which yields:
W, bu+Gh, +F/An+Hy =b,~F/n
W, Au,+G. h, +F, At ,+H, vy = l;um -F, =,
G, Mu=b,

F, Au,+As,=b, ~S,e
HAu+H, Au,+Ac =b —Xe
[TAs + SAt = pe —I1Se

IT As, +S An, =pe—1I1_S e

'\ +Z Ay =pe-T'ZX e

Variables As, As,, Ac can be expressed from the last three equations

As =TT (ue —T1Se - SAn)
ASUJ = H;)l (ue_H(DSUJe_S(DATE(}))
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Ac =T'(ue-T'S e-% Ay )

The next step is to eliminate the slack variables As, As,, Ac from the above reduced
system

After performing that operation the reduced system will have following matrix form:

W, G, F 0 0 0 H () (b,
G, O 0 0 0 0 0 A, b,
F, 0 -II''S 0 0 0 0 An | | b,
o o o W, G F Hy || Au, |=|b,
0 0 0 G, 0 0 Ao | | Bo
0 0 0 F s, o |lam, | |6
H,2o 0 o H o o -z /la) 5

where the right hand side vectors are:

b,=b,~F/n

b, =b., ~F, 7,
l;n = l;n —ull e
l;n,,, =b, —ull'e
Ey =b, —ul’ e

The above reduced system is still unacceptably large due to significant number of control
variables (u,u). It would be computationally easier to express each of control variables
Au and Au, and further reduce the size of the system. As mentioned before, it is well
known that only a small number of the total inequality constraints become active, which
makes system significantly smaller. The size of the active constraint set is the size of the
Lagrange multiplier vectors m and m, respectively, therefore reduced system after
eliminating control variables (u, u,) will be the size of active sets corresponding to each

contingency.



Solving above system is conducted in two stages. First consider base case block

Wo Gi. FE \(Au) (H] B,
G, 0 0 A |+ 0 |Ay=]b
F 0 -I's)lax) | 0 b,

Define

U'pu  FT y HT by—F'n
5 + Ay = -
F ~I1"S || An 0 b,
Above system is solved on following way:
y=U"'D'UT(by—F'n—H"Ay-F"An) (50)
Fy-TI"'SAn=h_ (51)

after substitution of equation (50) into (51) and some algebra we get:

(TS - FU D UTF An—FU DU TH Ay =

=b,-FU'D'U” (b, - F'r) )

to calculate Ar from the above equation we introduce following:

50
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Since Fis sparse, F calculated by fast forward substitution.
Equation (53) can be calculated as follows
(-TI'S—F'D'F)An+F'D'UH Ay =b,~F' DU " (b, F'r)
(-TT'S—F'D'F) An+F'D'U"H Ay =b,—~F'D'U b+ F'D'U T F'x
(-T1'S—F'D'F) An+F'D'U A Ay=b,—~F'D"'U b, + F'D"'Fn
(-T1'S—R) A+ F'D'HAy =b,— F' Db, + Rn (54)
where
R=F'D'F
H=UTH"
go = U_Tbo
Therefore H is calculated by performing column by column forward substitution and b
is calculated by a single forward substitution
For the general formulation we define following terms
C,=-TT"'S-R
vI=F'D'H

7 :En —FTD’IEO + Rm

Each contingency block can be analyzed in the same fashion



VVuu C_?mTr FmT” Au,, H! ISM

G, 0 0 A, [+| O |Ay=|b,,

F, 0 -I.'s, ||An 0 b,
. W G
UwDo)Uo) = —~T "
G 0

Then

u'pu, F! vo ) (H! b,—F'n
+ Ay = A
Fm - H;)ISOJ ATE(D 0 bﬂm

The above system is solved in the following way:
v, =U,'D,)U. (b~ F/n,—HAy—F!Ar,) (55)

F,y,-T,S,An, =b_ (56)

after substitution of equation (55) into (56) and some algebra we get:

(1S, - F,U;' DU F AR, — FIU, DU AT Ay =

b, ~F,U;'D;'U;" (b, - F'x) 7

To calculate An,, from the above equation we introduce following:
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F,=UJF] or  F=FU,}
U'F =F" F, is calculated by fast forward substitution

now equation (57) can be calculated as follows

(-11.'s, - F'D;'F, ) An, + F' DU H Ay =b, ~F'D;U;" (b, - F/w,)
(-11,'s, - F'D;'F,) A, + I D,'U; Al Ay = b, ~F/D,'U,"b, + . D,'U, Fln,

(-11.'s, - F'D;'F, ) An, + F' DU, H Ay =b, - F'D;'U;"b, + F. D;'F, x,

(-11.'s, - R,) A, + E'D;'H Ay =b, —~FD;'b, +R,m, (58)
where

R,=F/D,'F,

H,=U,H]

b,=U,'b,

As in the base case I-NIw is calculated by performing column by column forward

substitution and Ew is calculated by a single forward substitution

Contingency terms for the general formulation are

C,=-I1S, - R, o=1...k
vI=F'D'H, o=1..k
r,=b —F!D'h, +R,m, o=1..k

The last equation of the reduced system is:



H,Au+H, Au,~T"'S Ay=b,
can be rewritten as
I:Iy+1:1w y, TS Ay :Z;Y
substituting (50) and (55) into above equation yields

HU'D'U (b~ F'n—H"Ay—F"An)+
+H,U,'D,'U; (b~ Fln,~H! Ay~ F/An, )-T7'S Ay=b,

~HU'D'UTF'AR—H, U,'D;'U,"F Ar, —
(AU D UTAT + B, U DU AT + TS Ay =
=bh ~HU'D'U"h,~H,U,'D;U; b, + HU'D'UF'n+ H,U,'D;U; FIx,

~H'"D'F An—-H'D]'F, An, —

—(B"D'H +A D]H,+T'E Ay =

=b —~H" DB~ H! D,'b,+ H'D'F n+H! D,'F,x,
V,An+V,An, + (A" D'H +H D', +T"'S )y =
=—b, +H" Db+ H! D,'b, ~V,n~V,m,

For the general formulation it will be useful to define following terms

k
M=H"D'H+Y HID)H, +T"'S

o=1

. - - ko - k
r,==b +H"D"'by+> HID,'b,~V,n=> V,r,
=1

w=1

if we denote base case as a case with index zero (o = 0) above terms can be written in
more compact form
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k
M= H!D'H +T"'S
=0

" k k
~r o
r=-bh +> A'D;'h, - V,n,
®=0 ®=0

therefore last equation can be rewritten as:

Vo A+ V, An, + MAy =r,

3.5 General contingency constrained OPF formulation

The general formulation with block matrices defined above can be written:

Co vy
¢ 7

¢ A

G W

Wn oo e M

Am,
Am,
Am,
Am,
Ay

55

A procedure for the solution of the above bordered diagonal system suggested in [7] is

the following

Since the first K+1 equations have form

CAn, +VI Ay=r,
we can express A, as
Am, = C;l(rm - VmTAy)

The last equation can be written:

k
> V,Am, +MAy=r,

®=0

substituting equation (59) into above equation, results in

(39)
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k
S V,CMr — VI Ay)+ MAY =1,
®=0

k k
D VClr, =D V,CVa Ay + MAy =,
=0

»=0

k k
(M -> VmleVmTjAy =r,-> V,C'r, (60)

©=0 =0
To calculate Ay from the above equation we have to introduce following operations:
first factor each diagonal block by:

C,=UDU

(0] [O D O)]

therefore
V,U, DUV, =K,D,'K,

where K, =U_"V! is calculated by column by column back substitution and term

7, =U_"r, is calculated by single back substitution

vU.'D,)U,r,=K!D.'F.

[} [OIO]

therefore equation (60) can be rewritten:

=0 =

k k
(M —~ ZKUfDlemjAy =r,— > K.D,'F,
®=0

Ay can now be easily solved and then the Am; is solved from (59)
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3.6 Algorithm Description

The outer loop algorithm can be outlined as:

Initialize x, u, Xq, Ue

while (KKT conditions > €)
Calculate c, f, g, G, W for base and each contingency
Do the inner loop algorithm
Calculate KKT conditions

end

The inner loop algorithm can be outlined as:

Initialize s, 7, s, T, for enforced violations
Build F,,R,, H,,b,.C,.V..r, 0=0...k
Build M, r,

C,=UIDU, o=0...k

K, =U.VI ©=0..k
Initialize p
while p>¢
Calculate Ay from
(M —~ Zk: K! D;ijAy =r - Zk: K!D]'r,
©=0 ©=0
Calculate Am, Am,, from
(-TT'S—R) An=b, ~ F*D'b, + Rn— F" D" Firy

(-11.'S, - R,) An, =b, ~F/D;'b, + R, — F' D' Ay



Calculate As As,, and o from
As =TT (ue —T1Se — SAn)
As, =TT (ue -I1, S, e-S Am, )
Ac =F’1(},Le—l“ Ye—2 Ay )
Update «t, s and

T
K+l TS

Up date o o = m
g

Update following terms

C. =-IL'S, - R, ©=0...k
l;nm:l;%—ul'[;le 0=0...k
r,=b —F'D.'b, +R,x, 0=0...k

end
Calculate Au , A; , Aug , Aor from

Au
A

”

j U DU (by-F'n—H"Ay-F"An)

Au

r

Calculate Ax and Ax,, from
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A\ (W, GIY'(b,~W,Au~Glh, ~Fln
r)lG, o b, -G Au

X

A'xm W;wxm G(Z)L B bxw - VVX(UM“) ALl(.l) - Gz;rx }\‘wr - Fth TCOJ
A ) |G 0 b, -G, Au,

o oy,

Check for new violations

while new violations-0

Initialize s, T, Sq, Te

Build F, ®=0...k for the new violations

Build columns F,R, F[,E),CO,K),FO

Build F,,R,,H,,b,.C,.V,.r, w=0..k
Build M,r,

C,=UDU, o=0...k

K,=U.VT ©=0..k

Initialize p
while p>¢

Calculate Ay from

Calculate Ar, Ant,, from

Calculate As As,, and o from

Update t, s and

Update p

Update following terms

C, =-I1'S, - R, 0=0...k
l;nngﬁm—uﬂ;le 0=0...k

r.=b —F'D.'h. + R, w=0...k



k
M=) H!D/'H,+T"'S
=0

. k - _ k

r,==b, +Y H.D)'b,-> V,m,
®=0 ®=0

end

Calculate Ax and Ax,, from

Check for new violations

end while new violations

60



4 Simulation results

61

The algorithm was tested on two cases the IEEE14 and IEEE 30 bus networks. The

ramp-rate constraints coefficient, A, is defined as 10% of the generating capacity of each

generator. In performing the contingency constrained algorithm, only line outages have

been considered. The results of the algorithm are presented by comparing the total cost of

a base case solution with the total cost of the contingency case solution for the various of

contingency cases considered. The total cost of each contingency case is normalized by

the cost of the base case.

4.1 IEEE 14 bus network case

Fig. 4.1. IEEE 14 bus network

IEEE 14 bus network

Case Number of contingencies n. | CC OPF cost [p.u] Cost increase [%]

1 5 1.0458 4.58

2 7 1.0634 6.34

3 12 1.0892 8.92
Table 4.1. Cost comparison for IEEE 30 bus. “CC OPF” is contingency constrained OPF.
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4.2 1EEE 30 bus network case

30 (39)

(37)
(28 (35)

#0)

s

o

Fig. 4.2. IEEE 30 bus network

IEEE 30 bus network
Case Number of contingencies n. | CC OPF cost [p.u] | Costincrease [%]
1 10 1.0521 5.21
2 14 1.0773 7.73
3 21 1.1196 11.96

Table 4.2. Cost comparison for IEEE 30 bus
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5 Conclusion and Future Work

5.1 Conclusion

Contingency constrained OPF is a very challenging and computationally demanding
optimization problem. The number of contingency cases considered can be very large.
Each contingency considered introduces a new problem as large as the base case.
Therefore, efficient solution of CC OPF is crucial. This work presents a new formulation
based on sequential quadratic programming. The algorithm is based on an interior point
method and constraint relaxation or active set method. Restricting our attention to the
active constraint set makes this large problem significantly smaller and computationally

feasible.

5.2 Future work

There are several directions in which the research presented here can be extended.

o Include load shedding as a control variable

o From chapter 3 it can be seen that the decomposition technique applied in
the development of CC OPF produces promising framework for solving
large power system cases. In order to apply the proposed algorithm to
practical size networks (118 bus, 300 bus test cases and larger) we need to
improve computational efficiency by employing sparse matrix techniques.

o Develop a fast-decoupled implementation of the algorithm

o Monte Carlo simulation with importance sampling combined with CC
OPF in large networks shows promise to be a good technique in analyzing

multiple contingencies
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Appendix I: Power Balance, Jacobian and Hessian Equations

P—
PN

I Q;‘;‘ z..zr..+jxg

gy

For power flow equations:

Active power flow

P, =gV’ —g;,VV,cos0—bVV sin®

ij
Reactive power flow

) .
Q; =—bV;" +b,;V}V;c0s0-g, V'V, sin®

If we denote 6=0,-6, (angle difference)

P]:f(V], Vg,e)

Power flow Jacobian and Hessian have following form:

azpl 62P] azpl
oV  ovev, oV,00
o°P, o°P, 0°P,

ov,ov, oV,  oV,00
o’ P, o’ P, °R
o0ov, ooV, 00’

VER(,.7,,0)=

where:

OP, }
6_1; = 2gijVi —gijVj cose—bl.jVj sin©

1
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P.
a_; = _glel COSe_b!‘jV; sin e

J

oF, .
—o =&V, sin®=bV ¥, cos®

2
1
2
2

In can be shown that element

is zero, so that Hessian matrix has following form:

azpl azpl 82P]
oVl  oviev, ov,00
o°P, 0 o’P,

ov,ov, ov,00
oA o’P op
ooV,  ovov, o8’

VR,.7,.,0)=

The same set of equations can be written for the reactive power flow Q,;=f(V;,V>,0)

Similar equations can be written for the to end of the line P,=f(V;,V>,0)

azpz azpz
ov,ov, oV,00

52P2 azpz 82]_)2
ov,ov, oV,  oV,00

o’p, OB 0P,

o0ov, oeoV, o0’

ViP(V,.V,,0)=

The same set of equations can be written for the reactive power flow O,=f(V;,V>,0)

Power balance equation
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SF,+ B =P, =0
J

Let’s denote above power balance equation for node i as g;(x,u)=0 and form vector of
dimension 2n whose elements are power balance equations for active and reactive power
at each node in the network.

Therefore power balance Jacobian can be defined as a matrix of first partial derivatives of

power balance equation with respect of state variables. Mathematicaly this is:

G :8g(x,u)

2nx2n
: G eR
ox

The number of rows is 2n because we have active and reactive power balance at each
node, and the number of columns is 2n because we have 2n state variables (voltage

magnitude and phase angle at each bus)

G G
GX =[ PV PQJ
Gy Gy,
Block matrices Gp, Gp, Goy Go, have dimension nxn (and have bus admittance sparsity

structure).

dr, dh, ar, dF,
~av. v, av, av
ar, def L9 dB
av, “av, av, av
= ap, ap, < <ap  dP,
., —~ v, av
VA S
., av, ~av

Because of the property of power network, most of the partial derivatives in the above
matrix would be zero.
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dan, - dp, 4R, dP,
~ 46 db, o, a0,
v, car dr,
4 “do, do. a0,
GPa - de ] dP/2 . dR . dj)jﬂ
40 de, ~ 46, a0,
F A AR
40 de, ) ¥y

J

The above matrices are singular, therefore reference bus must be introduced. Every
network has a reference bus (bus with phase angle equal to zero). For reference bus
instead of equality constraint for active power balance, we impose constraint which says
reference angle equal to zero, therefore if we chose bus one to be reference bus (common

case although any bus can be reference), first row in matrix Gp, instead a form

drn dp, 4R, 4P,
~dv, dV, dv. v,

has a following form:
(() 0 - 0 - ())

Also first row in matrix Gp, instead a form

dar 4B, | dh, 4B
=40, do, do. do.

has a following form (where 1 stays for a reference bus)

(1 0 -~ 0 - 0)

Power balance Jacobian with respect of control variables (#) can be defined as follows:

Gu — ag(xau) Gu c SRan”"
ou

and written in following block matrix structure:
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GPu j
G, =
( GQU

where
%)
Gpu — gPa(;)u) Gpu e iRnxnu
0gy(x,u) en
Go, =—42 = Gy, € R

Block matrices Gp, and Gy, are build on following way:

1 (i,j)  i- generator bus
J — position of Pg in n, vector
OP,
a_tl] (Lk) 1-transformer line from bus
G, =97 k — t, control in n, vector
adll (j,k)  j—transformer line to bus
ot, k — t, control in n, vector
1 (i,j)  1- generator bus
J— position of Qg in n, vector
00, :
] (Lk)  I—transformer line from bus
G, = at, k — t, control in n, vector
20, (j,k)  j—transformer line to bus
ot, k — t, control in n, vector
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Appendix II: Fast Decoupled Power Flow

Applying Newton’s method to the power flow equation results in the most robust power
flow algorithm. Drawback to its use is the fact that the terms in the Jacobian matrix must

be recalculated each iteration. Linearized power balance equations can be stated as

follows:
i OP ﬁ: OP
AP =3 —LA0, +Y —AV, (1)
~op, " Hov, f
N o0, N aQ.
AO. =Y —=LAQ, + Y =LAV, 2
0, ;aek A ;(Wk f )

or in the matrix form

AP\ (H N)( A9
AO) \J LAV
Fast decoupled formulation [9] is obtained by neglecting the coupling submatrices N and

J according to the following assumptions:

e . . P
e real power is little influenced by changes in voltage magnitude S_V

. e : : 0
e insensitivity of reactive power to changes in phase angle a—g

Recall power flow equations for both active and reactive power:
P, =g,V —g,VV, cosO-b, VYV, sin0
Q, =-b, V> +b,VV, cosO—g,VV,sind

where 6=0,-0; is a angle difference

Partial derivatives of the power balance equation are as follows:

aa%:Vin(gik sin®—b, cose) 3)



00

o = —Vl.(gl.k sin®—>b, cos 9) (4)

In practical power system following assumptions are almost always valid:

cosO~1 and g, sinb<<b,

Therefore following equations are a good approximation of (3) and (4)

E =-V.V.b, ®)
% = _Vinbik (6)
o, Vi

The power flow adjustment according to (1) and (2) can be written

_op

APi _erk
0,

ap =00 AV
aVk/Vk V.

After substituting (5) and (6) in the above equations

AF, = _VinbikAek (7)
A
AQI = _Vinblk Vk (8)
V,

Following simplification will be made:
e Equations (7) and (8) will be divided by V;

e We will assume V= 1

Therefore equations (7) and (8) will have following form

AP,

71- =—b, A, (€))
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AQ,
—L =-h AV, 10
I/l. ik k ( )
Equations (9) and (10) can be generalized in a following matrix form
AR
Vl - bll blz - bln Ael
AP,
722 _ 11721 _bzz _?211 A92 (11)
A.Ijn - bnl - an - bnn Aen
V.,
AQ,
Vl _bll _blz _bm AVI
A
V%z _ _[.721 _{722 _[:72n A:VZ (12)
A.Qn - bnl - bn2 - bnn A Vn
Vn

Matrix equation (11) can be simplified with a assumption 74<<x; Finally equations (11)

and (12) can be written as:

AP
— =B'A
v
A
20 _ B'AV,
v

Terms in the B’ matrix are:

1 . . .
B, =——  assuming a branch from i to k (zero otherwise)
Xik
ﬁ; 1
Bi=) —
k=1 Xk
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Appendix III: Matrix Calculation Details

This appendix will present efficient way to calculate variables which appear in both base

and contingency case as well as terms which appear in fast-decouple formulation.

AC Case

Let’s group terms which we have to calculate into two groups.

-1
__ w._ Gl (W
W =W, =l Gl)| 7 | ()
G 0 G,
w, GT\'(W,
G,=G,—(G, 0)] = " ||~ 2
+=G.,-(G, )[Gx oqu 2)
F -F —(F 0) VVxx GxT ) Ww (3)
u u X Gx 0 Gu
Next set of equations:
-1
— w_ G') (b
b,=b,-(w. GI)| " || 4)
G, O b,
-1
_ w_ G\ (b
b=b,-(G, 0)| ™ | |" (5)
G, 0 b,
-1
_ w._ G') (b
by=b—(F, 0)| * " | (6)
Gx 0 b?»
if we perform LU factorization of the following block matrix
T
U'DU = (Vg"" (i)" J U has dimension (4nx4n)

and define following variables
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g"=(G, 0) of dimension (1x4n)
F=(F. 0 of dimension (n.x4n)

equations (1) — (6) can be rewritten

w,=w,-K'U'D'UT'K

G,=G, -g"U'D'UK

F =F -FU'D'U"K

b =b -K"U'D'U"b

b,=b —g"U'D'UTh

b.=b -FU'D'U"b

let’s simplify calculation by introducing following variables:

M=U"K
¥ =g U
R'=FU™
y:U_Tb

Matrices M and R can be calculated by performing column by column forward

substitution and vector x and y by forward substitution through following equations:

UM=K

U'x =g



U'R=F"
U'y=b
Therefore equations (1) - (6) can be finally calculated by:
W =W, —M"D'M
G,=G, —x"D'M
F =F —-R'D'M

b =b —-M"D"'y

u u

b,=b —x"D"y

b,=b,—R'D'y
Fast-decouple case

The following matrices are considered in the fast-decoupled case:

F =F —(0 F)Gx oY (o (7)
o “lo ') \G

¢ -6,-0 ¢ )% ° (0 (8)
u ~ “u [ 0 G)Z" G

_ G, 0Y'(b

b,=b -0 GI) * * 9
u u ( u )( O GTj (bv] ( )

_ G. 0Y'(n
b =b,—(G,, 0)(0* ij [;J (10)



. G. 0)'(b

Matrix F\ can be written in the following block matrix form

E‘c = (FV Fa)
where
F= of (x,u) FeR™
ov
F - of (x,u) FeR™
00

G
Block matrix G, = (Gp ”] is defined in Appendix I

qu
Reference bus Jacobian can be written as

er = (GI’V Gra)

where
Grv _ agr(x,u) Grv c ER1><n
ov
Gm _ ﬁgr(x,u) Gra c ERl><n
00

Matrix G, is of the form

G -[0 B
B 0

B’ and B”are symmetric which means B’ = B"" and B"" = B""

(1)

Recall also that B" and B” are factored according to the following two expressions just

once for the entire iterative process.
B'=U/DU,

B"=UD,U,
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Considering equation (7)

_ G, 0Y'(o0 .
F :F _(0 F) O GT G :Et _FxGx Gu

u

- 0 BH—T G
F =F —\F, F "I|\=F -FB'G —-FB"'G
u u ( v a) (B,_T 0 ](un J u a pu v qu

F, =F,-F,B"'G, -FB"G,

1 1
F, =F,-F (u'pyu,)'G, -FUipU,) G,
F =F -FU'D'U" G, —F, U,'D;'U," G,

Calculation of the above expression is facilitating by calculating F;, F», G;, G, via

column by column forward substitution in a following way

FU'=F' <  U'F =F'
F U, =F] < UJE=F
Uu'aG, =G, < U/G =G,
U, G, =G, < UG =G,

Therefore F, is calculated by
F; =k, _ETDI_I G, _FzTDz_le

Next is equation (8)

_ G, 0Y[(0 .
Gru =Gru _(0 er)[ 0 GT] [G JzGru _erGx Gu

u

. 0 Bn—T G
G, =G, —-\G, G "1=G, -G BTG -G B"'G
ru ru ( rv ra ) [B,_T 0 j(un j ru ra pu ry qu
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6)‘” = Gru - GV(IB’_IGPM - GrvB"_leu

-G, -G, (UIT DU, )’1 G, -G, (U , DU, )71 G,

(_;ru = Gm - Gmel D171 U;TGPM - Grv U;I D;I U;TGCIM

In order to calculate (_?m vectors g; and g, have to be obtained via forward substitution

Gra l]f1 = ng < Ungl = G)Z;
GrvU;IZgZT = UZTgZZG;:/
Finally equation (8) can be calculated by

(_;ru =G, _ngDl_l G, _ng Dz_ll G,
Equation (9) can be simplified as
_ G, 0Y)'(b
b=b,—-(0 )| = | |7 |=b,-G'G."b,
0 G b

— 0 B”_T bv r— "—
b, =b,-(G", G;,)(B,T . ][b szu ~G"B""b, -G" B""b

a

b,=b,-GLB""'b, -G B"'b,

l;u = bu - Gun (UITDIUI )_lbv - G;u (U2TD2U2 )_1 ba

b,=b,-GLU D/'U"b, -G U;' D;'U,"b,

qu
Matrices G3 and Gy are calculated via column by column forward substitution and vectors
b; and b, via forward substitution

G'U =G! e U'G,=G

qu qu

GZHU;1 =G/ = U!G, =G,



Equation (9) is calculated on following way

Eu =b,~G;D'b -G, D;'b,

Bn—l O

Equation (10)
5b -G of% °)
r = “r rx 0 Gz‘
r—1
RS R 1

b,,

b)»

j:b,_c;
b

X

G—l

rx X

b)»

=b,-G,B"'b,,—G, Bb,

l;r =b, -G, (U2TD2U2 )_1 b, -G, (U1TD1U1 )_1 by,

b, =b,-G,U,' D;'U,"b, -G U D' U, b,

vectors g3, g4, b3, by are obtained performing

GU, =g <
GU " =g, <
U,"b,, =b, =S
U" b, =b, =S

Thus, variable b, is calculated
Er =b,—g; D;'b, g, D'b,

Finally equation (11)

forward substitution

U,g,=Gy,
U/g,=G,
UTb, =b,,
Ul b, =b,,
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_ 0 B(—l b

b‘]‘[ = bT[ - (Fv Fa ) { r—1 j v = bT': - FaBﬂilb)‘p - FvBrilb)Lq
B 0 b?»q

b_n = bn - Fa (UzTDzUz )_lbxp - Fv(UlTDIUl )_lbkq

b, =b,-G,U;'D;'U;"b, ~G,U;' D;'U; b,

b,=b,~FU;' D;'U;"b, —~ F U D' U["b,,

Following two matrices F5 and F4 are obtained via column by column forward
substitution

F,U;' =F/ &  UIF =F]

a

FU'=F <  U/F,=F

Finally

Err =b,~F/D,'b, ~F/ D" b,
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Appendix IV: Implementation of the Active Set Method

Solution if feasible if there is no new violated constraints. Now our concern is how to
facilitate computation if new violated constraint is found? When new violated constraint
is found, we have to build additional columns of matrix F as well as to update matrices
where matrix F appears (i.e., F).

Now we will show how this can be done with not too much extra work:

First we have to calculate F .., and F), ,.,, (row vector) for each new violated constraint.

xnew CGL) dimension (n,%x2n)
ox

unew — w dimenSion (l’lv)(nu)
u

where 7, 1s the number of new violated constraints

Matrix F appears in the following terms:

F=UTF" or Fr=FU™

New F matrix will be denoted by F,,, and will include new violated constraints

F =UTFT

new new

FT _ F_;AT F_;tTnew
new 0 O

Next term to be calculated is:

— W (_;T ) "
FuneW:Funew_(Fxnew O){(_;xx 6] (C_;uj

X

and



remember from Appendix II

F,.=F .. —(F. 0U'DU'K

u new X new

F = (FX ow O) of dimension (n,x4n)
calculating
R'=FU"

and if we recall
M=UT'K
equation

F =F —-FU'D'UTK

u new u new

F =F —R'D'M

u new u new

Finally,

F _ U—T FvuT F_;Tnew
new 0 0

F_ can be written in the following block matrix form

new

F;lew = (F F’)
we just need to perform forward substitution (fast forward substitution) on additional
columns corresponding to new violated constraints and calculate F’

T

_ (F _
UTF' :{ “(;"””J F' has dimension (4nxn,)
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