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Abstract 

As 5G networks increase in popularity, so do their security concerns. This report will 

be focused primarily on 5G Spoofing Attacks and proposes a way to prevent this. This is done 

by taking advantage of the Global User Temporary Identifier (GUTI), Random Access Control, 

and other aspects of 5G specifications to create a connection to a User Equipment (UE) that 

would accept 5G data packets and hold them from an adversary gNB. The original plan for this 

project was to create a 5G network and design spoofing and targeted attacks; however, several 

issues with the OAI software prevented this plan from materializing. Because of this, the latter 

part of this project shifted its focus to creating a network of sensor nodes to collect data from 

5G networks that would allow for further analysis. 
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Executive Summary 

This report outlines the team's efforts in setting up a 5G network to create a spoofing 

attack that would expose 5G vulnerabilities and the subsequent shift to developing a scalable 

spectrum sensing analysis network. The initial approach involved using OpenAirInterface 

(OAI) and srsRAN to establish a 5G network, but both attempts faced various challenges and 

ultimately did not yield a functional network. 

The team encountered multiple issues with OAI, including the lack of the AVX2 

instruction set in the initial computers, difficulties with virtual machines, and communication 

problems between the User Equipment (UE) and the network. Although the team managed to 

get a UE registered and connected to the gNB, it did not receive an IP address from the core 

network, preventing it from effectively communicating with the network. 

Similarly, the team faced difficulties with srsRAN, including unreliability and 

inconsistent connections between the UE and the gNB. The team attributed the lack of success 

with OAI and srsRAN to outdated documentation and limited resources. 

As a result, the focus shifted to a new project: developing a scalable spectrum sensing 

analysis network. The goal was to create a network of hardware nodes capable of collecting 

5G spectrum data and making it available for predictive analysis. The sensor nodes would 

gather data using a software-defined radio (SDR) and send it to a server node for analysis. 

The project had two primary milestones. The first was establishing a single sensor 

node communicating with a local server. This allowed the team to concentrate on adequately 

acquiring and transmitting data with minimal errors. It also helped to ensure correct server-

client connections and error-free data transmission. The second milestone was to expand the 

system to include multiple sensor nodes, all sending information to the same server. The 
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server could aggregate the data and analyze the 5G channel by receiving samples from 

multiple sensor nodes. 

To implement the project, the team used an Ettus Research USRP X310 connected to a 

high-performance server via high-speed ethernet for the initial test. As the number of nodes 

increased, four Ubuntu 20.04 desktop computers, each equipped with a 7th Generation Intel 

Core i7 and an Ettus Research USRP B210 connected via USB 3.0, were deployed. 

Two primary Python programs were developed on the software level, one for the 

sensor side (client side) and one for the server side. The sensor side focused on data 

acquisition from an SDR and sent the acquired data to the server side using the "socket" 

Python module, facilitating the creation of a Berkeley socket. The server side received the 

packaged data continuously from all active sensor nodes, decoded it, and stored it with a 

timestamp for future analysis. 

The team initially aimed to expose 5G vulnerabilities through spoofing attacks but 

faced several challenges with OAI and srsRAN. The focus shifted to developing a scalable 

spectrum sensing analysis network, which involved creating sensor nodes to collect and 

transmit 5G spectrum data for predictive analysis. The project was implemented in two 

milestones, first by establishing a single sensor node and then expanding the system to include 

multiple sensor nodes. 

In conclusion, despite the initial challenges with OAI and srsRAN, the team 

successfully pivoted to develop a scalable spectrum sensing analysis network. By 

implementing a robust system capable of analyzing the 5G spectrum through data aggregation 

from multiple sensor nodes, the team has laid the groundwork for future research and 

development in 5G communication and analysis.
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[1] Introduction 

[1.1] Motivation 

 In a world full of growing demand for speed, reliability, and global communication via 

5G networks, our team aims to tackle the neglected question of network and information 

security. Recent forecasts suggest that by 2030, more than 25 billion Internet of Things (IoT) 

devices will be used worldwide. As a result, there is an ever-growing concern about whether 

current security procedures can provide the necessary protection for users [1].  

Our team focused on the Transmission Layer of the 5G architecture, commonly 

referred to as the Transportation or Network Layer, where communication channels serve to 

route data to the correct final destination. Protocols within the Transmission Layer complete 

data processing tasks such as mining, aggregation, and encoding.   

The scalable spectrum sensing network project provided an opportunity to improve 

communications analysis by adding additional sensing nodes. This primarily concerns the 

Physical, or PHY, layer of the 5G architecture, where carrier frequencies and resource block 

lengths are more relevant. 

[1.2] Technical Challenges 

 The 5G standard provides various features that make security attacks more difficult to 

perform compared to its predecessor, 4G. Our goal was to test 4G LTE vulnerabilities in a 5G 

environment, specifically spoofing or man-in-the-middle (MITM) attacks, so that future 

improvements can be made to 5G architecture. Toward the end of the project, the team 

pivoted to another 5G-focused challenge. We aimed to create a scalable sensor network to 
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analyze 5G data. Having multiple sensors send data to a server to be analyzed will be 

difficult, given the amount of data collected from the sensors [2]. 

[1.3] Notable Hardware 

   Ettus Research USRP B210 SDRs Implementation 

 Two USRP B210 SDRs were used to construct the gNB and UE. The software 

OpenAirInterface was used to develop a 5G cellular network connecting the gNB SDR and 

UE SDR. Additionally, these SDRs were used to add nodes to the sensor network after the 

project switch.  

   Ettus Research USRP X310 SDR and Sensor Nodes Implementation 

 The X310 was primarily used in the second project, where the team used it to test run 

initial sensor collection code. It was chosen for its superior performance over the B210 to 

remove any bottlenecks during development.  

[1.4] Report Organization 

 This report consists of five chapters. Chapter 1 describes the project’s motivation, an 

overview of technical challenges, and the most utilized hardware devices, as seen above. The 

Chapter 2 will cover details on the overall 5G architecture, components, and vulnerabilities 

while describing OpenAirInterface. Chapter 3 will present how the team tried to implement 

the open-source 5G base station. Chapter 4 will explain how the team implemented a 

spectrum sensing analysis network. These chapters include the problem statement, proposed 

solution, implementation, and a description of the results. Finally, the report will conclude by 

summarizing the project and presenting a few recommendations and research possibilities for 

the future. 
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[2] Overview of 5G Technology 

 This chapter outlines the structure of 5G networks. It begins by explaining the overall 

5G architecture, detailing the components of a 5G network, and comparing 5G networks to 

4G networks. The chapter then provides an overview of 5G vulnerabilities and the security 

principles that they compromise. Finally, the chapter describes OpenAirInterface and how it is 

used to set up a 5G network for testing purposes.  

 [2.1] 5G Architecture 

5G cellular networks are designed to provide faster connectivity, increased bandwidth, 

and better security compared to 4G. It consists of the same three components as the previous 

generation: 5G Core Network (5GCN), Next Generation Radio Access Network (NG-RAN), 

and User Equipment (UE). The 5GCN uses a cloud-aligned service-based architecture (SBA) 

to support authentication, security, session management, and traffic aggregation from 

connected devices. The 5GCN is composed of multiple components that make up its 

architecture, including the User Plane Function (UPF), Data network (DN), operator services, 

Internet access or third-party services, Core Access and Mobility Management Function 

(AMF), Authentication Server Function (AUSF), Session Management Function (SMF), 

Policy Control Function (PCF), Unified Data Management (UDM), and Application Function 

(AF). These components can be seen in Figure 2.1.1 and Table 2.1 [3].   
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Figure 2.1.1 5GCN System Architecture. A more detailed visual of the system utilized in the 

project is found in Section 2.4, with divisions of the types of Network Functions 

The NG-RAN comprises base stations, also known as access nodes or gNodeBs 

(gNBs), which are connected to the same 5GCN. The purpose of the NG-RAN is to connect 

individual devices to other parts of a network, which may include any type of UE [11]. A UE 

is any piece of equipment designed for use by an end user, such as cellphones, laptops, 

tablets, or any other remotely controlled machine. The primary difference between 4G and 5G 

architecture is that 5G architecture uses service-based communications between user plane 

and control plane services. This enables more effortless scalability and flexible deployments 

[1]. The service-oriented architecture in 5G technology allows components to request a new 

network entity to discover and communicate with each other over application programming 

interfaces. The architecture enables each network function to communicate with every other 

function [12]. 
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Table 2.1 5G architecture components with descriptions 

Architecture Component Description 

Authentication Server 

Function (AUSF) 

Receives authentication requests from the AMF, interacts with the UDM 

to obtain authentication vectors for processing 5G authentication, 

validates network responses to determine if authentication was 

successful, and handles re-synchronization procedures [4] 

Unified Data Management 

(UDM) 

A centralized way to control network user data [5] 

Access and Mobility 

Management Function 

(AMF) 

Receives all connection and session related information from the UE 

Also handles connection and mobility management tasks [6] 

Policy Control Function 

(PCF) 

A platform that governs the implementation of policy control and 

charging rules. Also enables end-to-end policy management based on 

network parameters, implements slice-based policies for applications, 

and offers advanced analytics for improved services [7] 

Session Management 

Function (SMF) 

Responsible for interacting with the decoupled data plane, creating, 

updating, and removing PDU sessions, and managing session context 

with the UPF [8] 

 Application Function (AF) A control plane function within the 5G core network that provides 

application services to the subscriber [9] 

User Plane Function (UPF) Responsible for routing and forwarding user plane gNB packets to the 

external data network, and also handles downlink packet buffering and 

downlink data notification triggering [9] 

Data Network (DN) Identifies Service Provider services, Internet access, or 3rd party services 

[10] 

In contrast to its predecessor LTE, which used the MME for both, the 5GCN separates 

mobility and session management. The AMF is a control plane function responsible for 

mobility management and provides UE location information. It can retrieve information such 

as status changes, time zone shifts, and location shifts, which can be narrowed down using 

filters. Additionally, it frequently interacts with subscriber databases to determine whether the 

subscriber is allowed on the network. When a device is signaled to the network, the AMF 
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provides a temporary identity. It also manages security context, access authentication, 

connection management, and registration management [13]. The SMF is another control plane 

function that creates and manages many sessions based on network regulations sent by the 

PCF. This includes allocating IP addresses to UEs using information received from the UPF. 

The UPF is always running to and from the gNB and Core Network, making it an ideal point 

to enforce QoS (Quality of Service) and policy enforcement. The policy control function 

regulates the AMF and SMF by checking whether the network meets the active conditions. To 

have an effective 5G Core Network, all these functions must run together on a designated 

COTS server or device [14]. 

 An overall example of 5G architecture can be seen in Figure 2.1.1. 5G architecture 

considers indoor and outdoor scenarios and prevents signal loss by restricting penetration 

through walls. Using an array of antennas, 5G addresses can be evenly distributed across all 

antennas. Users indoors can communicate using indoor access points, while outdoor users 

connect via large antenna arrays. Although very complicated, the 5G architecture has been 

designed to provide higher speeds, less latency, capacity for a more significant number of 

connected devices, less interference, and better efficiency than that of the 4G architecture.  

 There are two ways to implement current 5G technology: standalone and  non-

standalone. The non-standalone implementation allows for a smoother transition to 5G 

technology, as a previously used 4G core can serve as a 5G headend. This configuration was 

designed to facilitate a seamless transition from the previous generation. The standalone 

version of 5G is a completely independent network configuration that does not rely on a 4G 

EPC. The industry has found significant use for both versions of 5G technology.  
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[2.2] 5G Physical Layer  

 The 5G physical (PHY) layer serves as the foundation for a 5G network. This layer 

can support a broad range of frequencies, ranging from under 1 GHz to 100 GHz, and 

supports various deployment methods such as pico cells, micro cells, and macro cells. The 

New Radio (NR) protocol has developed constantly since April 2016, with the standardized 

name for the protocol being 3GPP. The first public release of  3GPP NR (Release 15) was in 

June 2018. The protocol is designed so that any future release of the NR is backward 

compatible, referred to as forward compatibility of NR.  

 NR supports a wide range of different modulation schemes, including quadrature 

phase shift keying (QPSK), 16 quadrature amplitude modulation (QAM), 64 QAM, 256 

QAM, and π/2-BPSK. These modulation schemes work with both downlink and uplink, 

except for π/2-BPSK, which only works with uplink [15].  

 NR uses a cyclic prefix OFDM (CP-OFDM) for both uplink and downlink. Using the 

same waveform for both uplink and downlink simplifies the design, particularly for device-to-

device communications. The CP-OFDM operation is similar to the OFDM used in 4G LTE, 

but 4G LTE can only use a fixed 15 kHz subcarrier. The CP-OFDM numerology supported by 

NR is scalable, allowing it to access a wide range of frequencies and deployments. The 

subcarrier spacing is specified by a range of 15 ∗ 2𝑛 kHz, with n being an integer. Each CP-

OFDM signal contains data payloads inside OFDM symbols and cyclic prefixes [15]. These 

prefixes are created to eliminate intersymbol interference from the previous symbol. Usually, 

two types of cyclic prefixes are used: normal or extended. A third extended prefix is also 
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available but rarely used. The 3GPP Release 17 supports seven subcarrier spacings [16], as 

shown below in Table 2.2.  

Table 2.2.1 Subcarrier spacings available as of 3GPP Release 17 

n 𝛥𝑓 =  15 ∗ 2𝑛 𝑘𝐻𝑧 Cyclic Prefix 

0 15 Normal 

1 30 Normal 

2 60 Normal, Extended 

3 120 Normal 

4 240 Normal 

5 480 Normal 

6 960 Normal 

 

The scalable nature of NR subcarrier spacings means that it would be possible to add 

much higher mmWave frequencies in future releases [16].  

 5G requires advanced error correction techniques for channel coding [17]. To fulfill 

the 5G communication requirements,  NR uses low-density parity check (LDPC) codes for 

data transmission and polar codes for control signaling [15]. The LDPC codes implemented 

for NR utilize a rate-compatible structure. This structure allows for HARQ operation using 

incremental redundancy and transmission at different code rates. The use of LDPC code also 

allows for higher throughput, low power dissipation, and low latency [17]. The encoding and 

decoding of both LDPC and polar codes are too detailed to cover in this report. Overall, the 

schemes chosen offer a favorable tradeoff of performance and complexity.  
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The 5G architecture’s physical layer can be broadly separated into two types of 

elements: channels and signals. First among the channels are the Physical Downlink Shared 

Channel (PDSCH) and Physical Uplink Shared Channel (PUSCH), both of which work to 

carry user data between the UE and the base station. Next are the Physical Downlink Control 

Channel (PDCCH) and Physical Uplink Control Channel (PUCCH). The former is used for 

transmitting control information to the UE, such as the scheduling of uplink and downlink 

transmissions and their modulation and format. The latter allows the UE to send control 

information to the base station, such as scheduling requests and channel state information. 

The Physical Broadcast Channel (PBCH) contains the Master Information Block (MIB), the 

crucial system information that is broadcasted to the UE so it can access the network. Last 

among the PHY layer channels is the Physical Random Access Channel (PRACH). The UE 

uses this to send identification information about itself to the base station it is attempting to 

connect to.  
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Table 2.2.2 5G physical channels with descriptions 

5G Physical Channels Description 

Physical Downlink Shared Channel 

(PDSCH) 

The main physical channel used for unicast data 

transmission. Also transmits paging information, 

random-access response messages, and delivers 

system information [18] 

Physical Uplink Shared Channel 

(PUSCH) 

Used to carry the user data and optionally the Uplink 

Control Information (UCI) [19] 

Physical Downlink Control Channel 

(PDCCH) 

Used for downlink control information, scheduling 

decisions, and scheduling grants enabling 

transmission on the PUSCH [18] 

Physical Uplink Control Channel 

(PUCCH) 

Used to carry the UCI with the Channel State 

Information (CSI) reports, the HARQ feedback, and 

the Scheduling Requests (SR) [19] 

Physical Broadcast Channel 

(PBCH) 

Carries part of the system information, required by 

the device to access the network [18] 

Physical Random Access Channel 

(PRACH) 

Transmits an initial random access preamble 

consisting of sequences used for channel access [20] 

 

 In addition to channels in the PHY layer, various signals are utilized. These can be 

delineated into the reference signals and the synchronization signals. The synchronization 

signals consist of the Primary Synchronization Signal (PSS) and the Secondary 

Synchronization Signal (SSS). These two signals, along with the PBCH described above, 

make up the Synchronization Signal Block (SSB). This block is used for synchronizing the 

timing and frequency of communication between base stations and mobile devices.  
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Figure 2.2 The Synchronization Signal Block (SSB), divided into various subcarriers. Each 

OFDM symbol, or Resource Block, is composed of 12 subcarriers defined during the gNB-

UE connection process. These Resource Blocks are used to send information such as the 

synchronization information in the PSS and SSS or the scheduling defined in the PDCCH. 

Other than synchronization signals, various reference signals are integral to the 5G 

PHY layer. The first of these is the Demodulation Reference Signal (DM-RS), which the UE 

uses to demodulate incoming transmissions from the base station and read their contents, 

operating in both uplink and downlink connections. Next is the Channel State Information 

Reference Signal (CSI-RS), which is only used for downlink communication. It allows a UE 

to acquire information on the channel state, track time/frequency, perform beam management, 

and uplink reciprocity-based precoding. The Sounding Reference Signal (SRS) is only used 

for uplink communication and is utilized by the base station primarily to estimate the quality 

of the channel over a wide bandwidth. 
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[2.3] 5G Vulnerabilities 

With the massive push for Internet of Things connectivity comes an increase in 

devices such as smart homes, smart cars, and smart cities. These devices are connected to the 

same network, which can potentially increase the number of eavesdropping devices, denial of 

service attacks, and unwanted private data collection devices. Furthermore, since older 

devices often do not have the same security protocols, it endangers the privacy and security of 

those connected to that network. 

  The PHY layer comprises multiple channels and signals that offer varying levels of 

susceptibility to spoofing and jamming attacks. The PSS and SSS, which were described in 

the previous section, are used together to transmit the Physical Cell ID and signal timing. 

These signals also contain certain criteria for the handover process, such as power levels [21]. 

If an adversary wishes to cause a denial of service (DoS) attack on a particular UE, they may 

broadcast false PSS/SSS signals at a higher power level than the base station being spoofed. 

This can capture the UE and prevent its signals from reaching the base station. An attack 

targeting this part of the PHY layer can cause a denial of service while the UE is still 

performing its cell search. 

 Another vulnerability that exists in 5G technology is related to device capability 

information. Altaf Shaik, a graduate student at the Technische Universität Berlin and Kaitiaki 

Labs, conducted testing on 5G networks and was able to capture device capability 

information. This is because device capability information is sent to the base station before 

any security measures are implemented. This information is unencrypted and can be viewed 

as plain text [22]. This information can enable mobile network mapping, bidding down, and 
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battery draining. Shaik used a fake base station to determine certain characteristics of a 5G 

device, such as the baseband processor and modem. One can draw conclusions about the 

device with the model number of the modem and its features, such as voice codecs for phones 

or a lower power mode for IoT devices. This may include identifying security vulnerabilities 

prone to a specific radio component, device type, or device model. With this information, an 

attacker can plan a tailored strike [22].  

Table 2.3.1 The taxonomy of different cellular vulnerabilities 

Device Type Threat 

IoT Denial of Service, Data Breach, SQL/Code Injection, Brute Force Attack 

Cellular Device Phishing, Data Breach, Man in the Middle Attacks, Malware, DNS Tunneling  

Applications Denial of Services, Data Breach, SQL/Code Injection 

 

 Unlike mobile network mapping, bidding down and battery drain attacks can be 

executed by using a man-in-the-middle relay [22]. Bidding down involves altering the RAN, 

which determines the speed at which the UE can receive information. For example, an iPhone 

that can receive 1 GB/s can be altered to only receive 2 MB/s. Carrier Aggregation and 

MIMO enablement can be removed to worsen the performance of fast devices, or the 

frequency band information can be changed to prevent device roaming. In battery drain 

attacks, the power-saving mode parameters are altered so that a device is never in sleep mode 

and is constantly searching for a connection. This attack works on devices that send little data 

over an extended period. Disabling power-saving mode abilities was found to decrease the 

battery life of devices by a factor of five [22]. 
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Table 2.3.2 The different security principles of the 5G vulnerabilities 

Security 

Principle 

Threat Impact 

Confidentiality AKA Attack, Unsecured DNS Paging 

Broadcast 

Spoofing, Malware dropping MITM 

Location Determination 

Integrity Silent Downgrade AKA Attack Phone/SMS snooping, Subscriber 

Impersonation 

Availability Spectrum Slicing Attack, Botnet Attack 

Paging Attack 

Performance Degradation, Denial of 

Service 

 

 In the paper “Overview of 5G Security and Vulnerabilities,” Shane Fonyi breaks down 

5G vulnerabilities as shown in Table 2.5. The first category Fonyi describes is confidentiality. 

Confidentiality refers to the privacy of information and the authorization of people to access it 

[23]. In terms of networking, this could include text messages, phone calls, files, emails, and 

any other type of internet traffic [24]. Ensuring confidentiality is an essential part of any 

functional network. To ensure confidentiality, authentication and key agreements are used. 

Authentication validates that the network or device is who it claims to be through certificates. 

Key agreements occur when the network and device put in place the necessary cryptographic 

keys so that only they can decrypt traffic between each other. These techniques help prevent 

information from being sent and read by the wrong device [25]. Research conducted on 

authentication and key agreement has revealed weaknesses in the system that allow for “false 

base station attacks and IMSI catchers through non-protected identity request mechanisms and 

authentication failure messages” [24]. These protocols allow attackers to connect to a network 

while pretending to be a different valid user. This is possible because the keys in the key 

exchange are transported insecurely when the device is roaming [24].  
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Attackers can also learn about a user's cellular usage through an attack on the 

predictability of the sequence number of a device. The sequence number grants access to 

private information, and with it, an attacker can find out information like the time spent on the 

phone, the number of texts sent, the user’s location, and the schedule. While some of these 

security issues originated in 4G networks, they still exist in 5G because backward 

compatibility is necessary. Man-in-the-middle attacks are one such issue that carried over 

from 4G networks. In this type of attack, an adversary device can listen to the conversation 

between two devices to obtain private information like personal data, banking information, or 

passwords [26]. Fonyi states that this is possible in 5G because base stations can reuse old 

keys from previous sessions that appear legitimate to various UE devices. The hole in the 

authentication and key agreement protocols allows for StringRay or other IMSI catchers [24]. 

DNS traffic was also found to be insecure in 5G networks, which can lead to an array of 

issues like stolen credentials, the deployment of remote malware, and other problems [24].  

Fonyi also asserts that the location of a user can be discovered through the 

broadcasting of the Temporary Mobile Subscriber Identity (TMSI) assigned to a user by the 

Mobile Management Entity [24]. The TMSI is given to users to support subscriber identity 

confidentiality. In theory, a user’s TMSI should be changed frequently to prevent security 

breaches; however, this does not happen in reality. Fonyi argues that when there are multiple 

services waiting for the UE, the UE requests a base station to broadcast a paging message that 

contains the TMSI. An attacker can then sniff traffic on the network to determine the paging 

interval of the UE, which further allows the attacker to track where the UE is located. This is 

a serious flaw in 5G technology, as it is a privacy and safety concern for each user. 
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 The second area of concern described in Fonyi’s paper deals with integrity. Integrity 

in computer networks ensures that data is not modified or deleted by unauthorized users. Data 

integrity can be preserved by backing up files and encrypting data when it is being sent [27]. 

Message signatures are a method that ensures data is not altered after being sent. The 

consequences of data being changed from source to destination can vary greatly. Fonyi asserts 

that message alteration is possible in 5G networks. He describes that in “the current model, 

message authentication provides the verification of the source; however, there is no protection 

against the duplication or modification of the message” [24]. An attack that deals with 

integrity is message spoofing. Message spoofing is the process of sending a message to a user 

while claiming to be a friendly source. These attacks include DNS, website, IP address, and 

email spoofing [28]. Fonyi claims that spoofing attacks are possible through the 

authentication and key agreement holes described earlier. The last attack on integrity Fonyi 

asserts is possible in 5G networks is a silent downgrade attack where a “malicious base station 

may be able to force the UE to downgrade to GSM, an older and less secure communication 

protocol, exploiting the pre-authentication messages” [24].  

 The last security principle of 5G vulnerabilities is availability. Availability is a 

principle that guarantees that a service, application, or data will be available to a user when 

needed [29]. To avoid attacks on availability, redundancy paths and failover strategies must 

be incorporated into a system. Availability is often considered the most important ability of an 

application because, without availability, there is no application at all. A real-life example of 

availability would be cell phone service. Without service, a user cannot communicate with 

anyone, which can be a safety concern if help is needed. Within 5G networks, there is the 

possibility of distributed denial of service (DDoS) attacks. A DDoS attack, as described 
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above, is when an adversary attempts to bring down a service by overloading the system with 

a large amount of data from a large number of devices. These attacks are hard to prevent and 

exist in 4G networks as well [24]. The rise of IoT devices allows for these attacks to become 

more devastating.  

 As described above, there are 5G vulnerabilities in all three principles of information 

security. An array of attacks are possible, and there is still a lot of work to be done in 5G to 

fix the various issues. The current 5G infrastructure allows for attacks on confidentiality, 

where an adversary can obtain private data or information. Attacks on integrity, where an 

attacker can change data being sent that may lead to catastrophic results, and attacks on 

availability, where a botnet of devices can send a large amount of data to a service to overload 

the system and bring it down. The lack of foolproof security opens the door for attackers to 

create and plan new attacks that could have a global impact.  
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[2.4] OpenAirInterface (OAI) 

 OpenAirInterface (OAI) is an open source platform developed by the 

OpenAirInterface Software Alliance (OSA) to support mobile telecommunication systems 

like 4G and 5G and their development. OSA’s goal is to gather a community of developers 

and work together to build Radio Access Network (RAN) and Core Network (CN) 

technologies [30]. OSA provides a GitLab repository containing all former and current 

projects and software.  

 

Figure 2.4.1 OAI’s 5G CN’s non-roaming reference architecture, divided into the primary 

Network Functions (NFs). The Core NFs are the components of the 5G CN which have the 

most direct interaction with a user. For example, the AMF is used to validate a user’s 

enrollment with a network provider as it connects to different gNBs. The Subscriber/Data 

Management NFs contain more security and enrollment information. This includes the AUSF, 

which receives authentication requests from the AMF and communicates with other portions 

of the CN for security purposes. Lastly, the signaling NFs allow for a network provider to 

connect the rest of the NFs and handle headend functions. 

 The team used the development branch of the OAI repository to build and create a 5G 

RAN system containing both the physical (PHY) and high layers for a gNodeB (gNB) and 

User Equipment (UE). The gNB PHY layer contains the PSS, SSS, PDCCH, PDSCH, 

PUCCH, PUSCH, and PRACH. The gNB high layer contains the MAC, RLC, PDCP, RRC, 
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X2AP, GNAP, F1AP, and GTP-U. The UE PHY layer contains software to receive and 

decode the PSS, SSS, PDCCH, and PDSCH information and generates data for the PUCCH, 

PUSCH, and PRACH. The UE high layer contains the MAC, RLC, PDCP, RRC, and NAS. 

These two systems are connected using a software-defined radio (SDR). The CN for the 5G 

RAN system was also created using repositories developed and provided by OSA (Figure 

2.4). The CN currently supports the following network elements: Access and Mobility 

Management Function (AMF), Session Management Function (SMF), User Plane Function 

(UPF), Network Repository Function (NRF), Authentication Server Function (AUSF), 

Unified Data Management (UDM), Unified Data Repository (UDR), Network Slicing 

Selection Function (NSSF), and Network Exposure Function (NEF) [31]. All three systems 

are run on Linux machines, with the CN and gNB being connected by an ethernet switch and 

gNB and UE being connected by SDR. OAI supports both a non-standalone mode and a 

standalone mode for the gNB (Figure 2.5) [30]. This project used the standalone method and 

bypassed the need for an EPC or LTE interface to connect the UE and CN.  
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Figure 2.4.2 OAI’s 5G RAN operating in standalone mode. As shown, OAI supports the 

Centralized Unit/Distributed Unit (CU/DU) split. The CU provides RRC and other protocols, 

while the DU deals with the MAC layer and portions of the PHY layer. The RAN then 

connects with the AMF and other authentication CN components.  

OpenAirInterface provides three important directories: openair1, openair2, and 

openair3. Each of these directories has its own significance to the system. Openair1 is the 

location of the code that handles UE scheduling processes and the PHY layer of our network. 

Functional code for X2AP, RRC, driver, PHY UE interface, and in-depth documentation can 

be found in the openair2 directory.  

[2.5] Chapter Summary 

 This chapter outlined the structure of 5G networks, discussed 5G’s architecture, the 

physical layer, the vulnerabilities that 5G networks currently have, and the current 

implementation methods we used (OAI). The architecture and physical layer were designed 

for higher speeds, less latency, the capacity for a more significant number of connected 
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devices, less interference, and better efficiency [32]. Although 5G provides advancements, 

new vulnerabilities have been exposed, which a man-in-the-middle attack could exploit. Due 

to the increased flexibility and autonomous features added to 5G, an adversary base station 

can easily replicate signals sent out by “real” base stations. In doing so, the adversary base 

station becomes a new node in the network, controlling traffic routing and possibly accessing 

private information. To assist in researching the possibility of this attack, the team planned to 

use OAI to implement the needed RAN, CN, and UE. The 5G network would use OAI’s 

standalone functionality to minimize confusion between 4G and 5G vulnerabilities. 
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[3] Open Source 5G Base Station Implementation 

[3.1] Problem Statement 

The project's original goal was to demonstrate security vulnerabilities in 5G base 

stations. The team had to construct a 5G cellular network utilizing free, open-source 

programs. The two most notable options were OpenAirInterface (OAI) and srsRAN. OAI was 

initially favored in A term due to the previous experience and expertise held by multiple 

members in WiLAB. The team then used part of B term to experiment with srsRAN due to 

suggestions based on its improved documentation and stability.  

There are several complexities involved in tricking a UE into connecting to the 

adversarial gNB. For example, the initial uplink connection can involve either “Contention 

Based Random Access” (CBRA) or “Contention Free Random Access” (CFRA), depending 

on the implementation. In CBRA, the UE first sends a preamble to the gNB, which response 

with the same preamble and additional timing and identifier information. In CFRA, the UE is 

assigned a preamble by the gNB, and it must send a request for the same timing and 

identifying information. After the preambles are sent back and forth identically, frequency 

and time resources are allocated.  

Several steps later, the Global Unique Temporary Identifier (GUTI) is sent from the 

UE. This allows for UEs to connect more anonymously. It can be changed to a new random 

identifier periodically, depending on the implementation by the carrier. This could have added 

complexity as the adversarial node may need to update on a similar cadence to maintain the 

base station ruse. Additional problems can arise when the gNB is required to send a security 

header containing the K-gNB key, an identifier defined by the Access and Mobility 



 

 

23 

 

Management Function (AMF). Due to this key coming from the carrier, it is among the 

primary concerns when fooling a UE. 

[3.2] Implementation  

Implementation of OAI began on three older (prior to 2013) desktop computers. These 

computers were going to be used as an initial test for installing and running a CN, gNB, and 

UE. The computers were unable to install the most recent version of OAI, as they did not have 

Advanced Vector Extensions 2 (AVX2) functionality. AVX2 is a vectorization extension 

added to the Intel x86 instruction set that allows for single instruction multiple data 

instructions over vectors of 256 bits [33]. When installing OAI with a processor that does not 

support AVX2, the installation will stop when attempting to install the soft-modem package. 

The AVX2 requirement was discovered after posting a question on the openair5g-devel 

mailing list from OAI [34].  

After the AVX2 issues, the team made the switch to virtual machines that had the 

required instruction set. Following OAI’s documentation, the team was able to successfully 

install and build the UE, gNB, and core network on the virtual machines. The team continued 

to follow the documentation, and the core network, gNB, and UE were all set up and made 

ready to run. A test bench was set up with two USRP B210s, a Bulipu GPS Clock for a PPS 

signal, a signal generator for a 10 MHz wave, and an OctoClock Clock Distribution Module 

to connect the entire system together.  
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Figure 3.2.1 The test bench setup includes two B210 SDRs connected to the gNB PC and UE 

PC with USB 3.0 cables. The SDRs are connected to an OctoClock that supplies a PPS signal 

from the GPS clock and a 10MHz reference clock from the signal generator. 

The Bulipu GPS Clock generator was inconsistent; the GPS lock would randomly 

disengage, so the team used an already established roof antenna with a Jackson Labs GPS 

clock to fix the issue. With everything ready, the team began testing and tried to connect the 

core network to the UE. Unfortunately, the team was not able to connect the two. After this 

disappointing discovery, the team pivoted to trying srsRAN, a different open-source software 

suggested by a graduate student. 

To maintain momentum with OAI, the team was divided in two: one team working 

with OAI and another with srsRAN. Like OAI, the team attempted to get srsRAN functional 
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and running on virtual machines. By following srsRAN’s documentation, the core network 

and gNB were successfully set up.  

There were several steps taken to get the core network functional. The first step was 

downloading Open5GS, an open-source core network program. This software contained many 

of the same components that OAI’s core network had, such as NRF, AMF, SMF, AUSF, 

UPF, AUSF, UDM, UDR, and NSSF containers. After the containers were set up, WebUI was 

installed to add and edit subscriber information. Upon completing the installation, the 

configuration files of Open5GS were edited to match the use case of the team. The team then 

entered SIM card information into the WebUI by visiting http://localhost:3000 and logging 

into an admin account. The last step before testing was enabling IP forwarding and adding a 

route to the IP table so the UE could connect.  

Once Open5GS was configured and ready to run, the gNB was the new focus. For 

simplification purposes, the team decided to implement the gNB using ZMQ virtual radios. 

Edits were made to the “enb.conf” file so that it would be able to find and connect to the core 

network. This was done by changing the MCC, MNC, and MME parameters to match that of 

the core network. To enable ZMQ, the “device_name” argument was changed to “zmq.” After 

changing these parameters, the LTE cells in the “rr.conf” file were commented out and the 5G 

NR cell was added from srsRAN’s documentation.  

The Open5GS install allowed the core network functions to run automatically on 

startup. Once the core network was confirmed to be working, the gNB was started. 

Unfortunately, the first attempt proved to be unsuccessful. The first step taken to solve the 

issue was to double-check the instructions and the parameters that we needed to change. After 

http://localhost:3000/
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doing so and still being unsuccessful, the team looked towards other resources and the 

srsRAN mailing list to further investigate what the issue was. After substantial research, the 

team decided to switch out the edited configuration files with example files from srsRAN. 

After switching these files out, the team saw immediate success. 

Figure 3.2.2 The message displayed after successful connection of the gNB and core 

network. This was achieved by using the example configuration files provided by srsRAN 

[35]. 

 Once the core network and gNB were connected, the team shifted its focus to the UE. 

Similarly to the gNB, the UE was installed using a simple command and configured in a 

separate file. ZMQ was enabled by changing the “device_name” argument, exactly as 

described for the gNB. The namespace was then set to “ue1,” as instructed by srsRAN’s 

documentation. Next, the LTE carriers were disabled, the NR bands were enabled, the release 

version of the application was set to 15, and the USIM credentials were set. Lastly, the 

network namespace was created. 

 As with the gNB, the UE did not see success upon initial testing. Despite following 

the directions closely, the team was unable to get the expected output. The expected output 

depicted by srsRAN is shown below. After realizing that the UE was not connecting to the 

gNB, the team began searching for solutions to the issue. One of the first actions the team 

took, learning from the gNB experience, was switching out the “ue.conf” file entirely with the 
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one from the srsRAN documentation. Unfortunately, this did not resolve the issue as it did 

previously. Troubleshooting continued by searching online for similar issues discovered by 

other users. Some relevant articles were found, but the changes that were suggested did not fix 

the error. Many articles suggested changing the gain values, which did not seem to have any 

impact. The installation process was repeated multiple times in the hope that a small detail 

was overlooked. YouTube tutorials were also followed diligently. After taking all of these 

steps, the team concluded that the configuration and setup were not the issues.   

 

Figure 3.2.3 The correct output when the UE is attached to the core network and gNB. This 

output should appear just below the dialogue of the gNB connected to the core network [35]. 

 Due to the lack of experience with the virtual radio and its minimal relevance to a 

fully functioning project, the team retried the connection using SDRs. The SDR used for both 

the UE and gNB was the Ettus Research USRP B210, which required USRP Hardware 

Drivers (UHD). These were then connected via coaxial cables with SMA connectors. A clean 

install of the core network, gNB, and UE was completed, and the ZMQ steps were replaced 

with arguments to specify the UHD device instead. After switching to the B210s, the team 

witnessed sporadic success. From time to time, the UE would fully connect to the gNB. 

During the times when the UE was not able to connect to the gNB, the gNB had an output 

similar to the one shown below in Figure 3.2.4. The console also printed  “Attaching UE,” 

followed by an increasing sequence of periods. After reading the log files from the UE and 
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gNB, the team noticed a large number of late packet sequences. After further researching the 

cause of this online, the team discovered that the root cause of the issue was computing 

power. 

 

 

Figure 3.2.4 The terminal output when the UE failed to connect. Both of these outputs 

would continue to print out to the console until the program was shut down [36]. 

 Once the team decided to focus on computing power, the team double-checked that 

the CPU governor was set to performance mode and that C states were disabled. When the 

issue persisted, the team reassessed the hardware in use. The team discovered that the virtual 

machines were only utilizing two CPU cores each. To address this issue, other virtual 

machines on the same computer were deleted or had some CPU cores removed. These cores 

were then added to the virtual machines for the core network, gNB, and UE. After making 

these changes, the core network and gNB had four CPU cores and the UE had two. The gNB 

and CN required more cores due to their greater computational requirements. While there was 

a decrease in the number of late packet sequences, there was still no consistent connection 

between the UE and gNB. After consulting with advisors and AFRL, the team decided to try 
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to switch from virtual machines to “bare-metal” hardware. The team checked out laptops from 

WPI’s ATC department with quad-core 8th generation Intel Core i7 processors. The core 

network, gNB, and UE software were installed on the devices, and the configuration files 

were replaced by those provided by srsRAN. The team also made sure C-States were disabled 

and that the performance governor was enabled. Using B210s, the gNB and UE still would 

not connect. Adjusting the receiving and transmitting gains did not prove successful. With no 

success with srsRAN, the team decided to switch focus back to OAI on taking advantage of 

prior experience within the WiLab. 

 The two laptops, one running the OAI gNB and the other the OAI UE, were 

connected to separate B210s. The B210s were then connected with 30 dB attenuators. This 

setup was able to connect the core network to the gNB and the gNB to the UE by adjusting 

the Rx and Tx gain values in the UE configuration file. Once the gNB and UE were 

connected, another issue emerged; the hardware was once again not powerful enough to run 

the system. The log files were filled with “late” messages, meaning there was an overflow of 

information that the computer could not keep up with. The team ensured that the SDRs were 

operating on the correct channel using a spectrum analyzer and validated the signals by using 

an oscilloscope. Once both of those were determined to be correct, we believed it was once 

again a computing power issue. To resolve this, we switched from the laptops to more 

powerful desktops that were well above the recommended minimum CPU specifications. The 

OAI gNB and UE were then successfully installed on the desktops, and the CN was once 

again connected to the gNB. The gNB and UE were also able to connect with few or no late 

messages.  
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[3.3] Results 

 After implementing the techniques described above, we were unable to get OAI fully 

operational. Originally, we could not get the gNB connected to the core network. Fortunately, 

after enabling IP forwarding and adding the IP route to the table, we connected the two. The 

AMF logs on the core network indicated that the gNB was connected. Once that was 

connected, we worked to get the UE attached to the gNB. This process proved to be much 

more difficult. The UE and gNB were able to detect each other, but the UE was never fully 

registered with the core network.  

 Initially, the gNB detected the UE, but they did not connect. This issue was fixed by 

changing the Rx and Tx gain values systematically, allowing us to find the optimal values to 

enable a gNB to UE connection. The core network was put into debug mode to uncover more 

errors. The AMF displayed that the UE had initialized registration, indicated by “5GMM-

REG-INITIATED”. The SMF logs revealed that the core network could not authenticate the 

UE, and the subscriber information was reassessed and corrected to match the USIM and the 

SMF database.  
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Figure 3.3.1 SMF logs displaying an authentication error with the AUSF. This was resolved 

by reviewing the OPC and key, two important identifiers for connecting a UE to a network. 

This progressed the connection to “5GMM - REGISTERED”. This was one step 

before a proper connection and receiving an IP address. The final output should have read 

“5GMM-Connected,” and the core network would have then assigned an IP address. The team 

struggled with finding solutions and even went so far as to attempt an identical install as the 

previous year's MQP team. After discovering missing components in the year-old commits, 

the team decided to pivot to the new project. 
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[3.4] Summary 

 The initial goal for the team was to get a 5G network operational and create a spoofing 

attack that would expose 5G vulnerabilities. In order to do so, the team first attempted to use 

OAI to create a 5G network. Unfortunately, the team ran into a variety of issues that 

prevented OAI from becoming functional. For example, the initial computers that were used 

lacked the AVX2 instruction set as described above. Vague and undescriptive errors 

elongated the time it took for the team to discover the cause of the issue. After switching back 

to laptops, the team was still unable to get the UE and the network to communicate. Explored 

in parallel with OAI, srsRAN did not provide results either. Despite following the 

documentation provided by srsRAN exactly, the team was unsuccessful with both ZMQ and 

physical SDRs. After this, the team realized that computing power might be the issue. 

However, increasing the number of CPU cores on the virtual machines did not make much of 

a difference. Finally, the team switched to physical laptops and desktops. The main reason for 

this switch was that virtual machines often cause issues that are difficult to debug and add 

performance overhead, as described by members of AFRL. 

For OAI, the team was able to get a UE registered and connected to the gNB, but did 

not receive an IP address from the core network. This prevented the UE from actually being 

able to communicate with the network. For srsRAN, the team was unable to get the UE to 

attach to the gNB consistently. Despite rarely connecting, srsRAN was not reliable nor 

operational. The team was unable to get either software working due to a lack of updated 

documentation and resources. As a result, the team switched gears to a different focus: a 

spectrum sensing analysis network. 
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[4] Proposed Spectrum Sensing Analysis Network  

 

[4.1] Problem Statement: Aggregating data into one place 

The goal of the new project was to develop code for a scalable network of hardware 

nodes to collect data about the 5G spectrum and make it available for predictive analysis. As a 

brief overview, a sensor node collects data using a software-defined radio (SDR) and then 

sends that data to a server node for analysis. The server node could also be responsible for 

sending commands to the sensor nodes to change their behavior. 

The sensor node is capable of continuously receiving data from specified frequencies 

and bandwidths using the UHD library. The data is then segmented into time chunks of 1 ms 

as that is the length of one radio subframe. The analysis will be performed on the data to 

reduce the amount of data to need to be transported. The final operation of the sensor node is 

to package data for transport and send it to the server node. The data is encoded into a series 

of bytes so that the sensor nodes can efficiently send data.   

The server node then receives the packaged data continuously from all active sensor 

nodes and decodes the data. The decoded data is then stored and time stamped so that it may 

be analyzed and combined between nodes later. 

[4.2] Proposed Solutions  

 The project had two primary milestones, with the first comprising the bulk of the 

work. For the first milestone, there needed to be a single sensor node communicating with a 

local server. With this simplified path, the team could focus on properly acquiring data and 

transmitting it with few errors. The data, 5G Band 13, had to be divided into single radio 
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subframes and converted to the frequency domain. For all cases, a radio subframe has a length 

of 1 millisecond but is composed of multiple slots, which vary based on the numerology [40]. 

On the transportation layer, the server had to be correctly connected to the client and ensure 

that the data sent between them had no errors. To reduce the network bandwidth and server 

storage requirements, the frequency data were downsampled. Lastly, the server only needed to 

store packets from a single client, allowing sensor node identifiers to be momentarily 

deprioritized. 

 

Figure 4.2: Block diagram for single and multi node spectrum sensing 

 The second milestone was to expand this system to multiple sensor nodes, all sending 

information to the same server. After receiving samples from multiple sensor nodes, the 

server will be able to aggregate the data to analyze the 5G channel. Average power will be 

sent to prove this concept, but this could theoretically be expanded to other communication 

characteristics. Combining data from multiple sources requires that the samples must be taken 
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at the same time, thus requiring sent data to be timestamped. To reduce the scope of the 

project, the team will not be trying to combine any data. Rather, the team will just send and 

store data on a server. 

[4.3] Implementation 

 The project required specific hardware in increasing quantities as the solution 

expanded to scale. For the initial test, an Ettus Research USRP X310 was connected to a high-

performance server via high-speed ethernet. To avoid confounding variables, the system 

remained on a shelf in WiLab. Increasing the number of nodes required additional PCs. One 

Ubuntu 20.04, 7th Generation Intel Core i7 equipped desktop computer was deployed with an 

accompanying Ettus Research USRP B210 connected via USB 3.0.  

The software level consisted of two primary Python programs, one for the sensor side, 

also referred to as the client side, and one for the server side. Connecting the two nodes was 

the “socket” Python module, which enabled the creation of a Berkeley socket. A Berkeley 

Software Distribution (BSD) socket is an API developed at the University of California, 

Berkeley, in the 1980s and later incorporated into TCP/IP standards [37]. These sockets allow 

both the server and client to send and receive information [38]. The sensor side's primary 

function is data acquisition from an SDR, which it then sends via socket. For data acquisition, 

the team utilized the most configurable method featured on the PySDR website to tune the 

radio to the targeted 5G channel [39]. For this project, Band 13 was chosen. This Frequency 

Division Duplex (FDD) band uses the 751 MHz channel for downlink and the 782 MHz 

channel for uplink with a 10 MHz bandwidth. According to the 5G specification, each radio 

subframe is 1 ms long [40]. After being sampled, these downlink packets were stored in a 
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NumPy array using the maximum SDR buffer size. They were then sent continuously to the 

server storage program. The two python scripts used ChatGPT as a reference when building 

portions of the code [41]. 

 The sensor code uses a simple yet effective implementation of socket programming in 

order to send the data to the server. The first step in this process was to create the client socket 

and connect to the server address. This step can be seen below: 

 
Figure 4.3.1 The client socket connecting to the server. This is an essential step for sending 

the data. 

The next step in the process was sending the data in a continuous fashion. It was 

important to ensure that data was being received by the client and sent to the server in real-

time. In order to accomplish this, an endless while loop was used that continuously collected 

data and sent it to the server. Initially, the team erroneously placed the commands to start and 

stop the data stream inside this while loop, causing unnecessary overruns. This corrected 

portion of the code can be seen below: 
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Figure 4.3.2 The data is streamed and encoded as a byte string. The first boxed line shows the 

function being called and the second demonstrates data being sent to the server. 
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An important aspect of the code above is the encoding aspect. Encoding the 

information as a byte string allows the information to be accurately sent to the server. As 

depicted above, the code streams the data to the server in real-time until manually stopped.  

The server code is slightly more complex than the sensor socket code because it needs 

to support multiple clients. The server code consists of one main function called “newClient.” 

The function takes in a client socket and a client address. The first action the function takes is 

making a file based on the address of the client. The file is then opened, and data is received.  

 
Figure 4.3.4 Function for each new client that creates a file to write to based on their address.  

The data received from the client is then written to the file that was created and 

opened. If the data inflow ever stops, the code then breaks out of the loop and the client 

socket is finally closed. 
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Figure 4.3.5 The server writes the data to the file. Once data is no longer received, the loop 

breaks and the socket is closed. 

 Before the function for the new clients could be effectively used, the server itself had 

to have been set up. Similar to the client code, the socket was first created and bound to an 

address. The server was configured to listen for up to ten connections, and once everything 

was ready, “Listening” was printed out to the console as an indication that clients could start 

connecting.  

 
Figure 4.3.6 The server creates a socket and binds it to an address. Up to ten clients or sensors 

are currently supported by the server. 
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 Once the server socket was set up and ready for clients, thread support had to be 

implemented. First, an infinite while loop was introduced so the server could continuously 

search for new clients. When a new client does try to connect, the server accepts the 

connection and prints the address of the client to the console. This is helpful because it allows 

the team to study how many clients are connecting and watch their output files in real-time. 

Finally, threading is started using the newClient function. The client socket and client address 

are passed into the function as described above. The thread is started and appended to the list 

of threads created in the prior figure. Lastly, at the end of the while loop, the code goes 

through each thread in the list of threads, checking if it is still alive. If the thread is not alive, 

it is terminated. 

 
Figure 4.3.7 The server looks and connects to new clients continuously. Each client gets its 

own thread to run the “newClient” function on. 
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The team encountered various obstacles when constructing the code above. For 

example, sending data between sockets requires encoding to a byte string. The initial tests 

revealed truncated arrays stored in the server. Initially, the problem was misdiagnosed as a 

problem with the encoder, resulting in the testing of several alternatives. The team first tried 

“Pickle,” a module that converts Python objects to a byte stream. This introduced 

performance issues, resulting in an overrun on the sensor node and truncated data after 

unpickling on the server. Additional solutions were explored, with JSON being unsuitable due 

to its inability to send complex data and MessagePack having issues with the default numpy 

array data type. It was later noticed that printing the output of the samples array on the sensor 

node itself resulted in a visually truncated array in the console. Despite the visual appearance, 

the length of the array was still the correct value. Exploring all our options, 

“np.set_printoptions(threshold=9999)” was employed to remove any visual truncation. This 

ultimately solved our problem, correctly displaying the entire array on the server.  

The team worked to implement a more efficient way to process the signal before 

sending it to the server node. The most computationally intensive piece of code was the 

downsampling portion, the final code for downsampling can be seen in figure 4.3.2. Initially, 

an inefficient for loop was used for downsampling.  

Figure 4.3.8 The initial method used to downsample frequency domain samples. This method  

was found to be inefficient. 

 The next method the team used was the reshape function from the NumPy library. 

This method allowed us to manipulate the array so that a for loop was unnecessary for 

downsampling.  
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Figure 4.3.9 The next method used to downsample frequency domain samples. This method  

was also found to be inefficient. 

 The team's final method to downsample was using the resample_poly command 

supplied by the SciPy library. This command upsamples clipped_samps by the up_factor, a 

zero-phase low-pass FIR filter is applied, and then it is downsampled by the down_factor. 

This was the most efficient method the team could find, but was still too inefficient for its 

intended purpose.  

 
Figure 4.3.10 The final method used to downsample frequency domain samples. This method  

was found to be the most efficient. 

 

 The team also found that the fftshift command used during signal processing was also 

computationally intensive. Fftshift is a command that shifts the zero frequency component to 

the center of the array. To reduce overruns, this operation was removed and could be run in 

the future to shift the array.  

 Last to be implemented was the ability to increase the number of attached nodes. To 

determine the source of each data collection, the team settled on using each sensor node’s IP 

address. This provided information on which computer was sending data, assisting in 

troubleshooting and data verification.  

[4.4] Results 

The fundamental goals of the projects were achieved. Each sensor node is able to 

capture one millisecond of data, the time length for a single resource block on 5G Band 13. 
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This time domain data was then converted to the frequency domain using the NumPy FFT 

function. The progression of the frequency data can be seen in Figure 4.4. From left to right, 

the frequency data was captured, then refined by removing the spike at the center frequency. 

To reduce storage and network bandwidth bottlenecks, the array was then downsampled by 

repeatedly taking averages of approximately 20 data point chunks. Unfortunately, this aspect 

of the program resulted in overruns, as discussed later. 
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Figure 4.4 Progression of signal processing. (1) The program begins by taking an FFT 

of the 1 ms of samples, the previously defined length of a resource block. (2) It then continues 

by removing the unnecessary middle spikes. (3) The final step takes several samples, 

approximately 20 at a time, and creates an array with those averages. 
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Each node can then continuously send data to a storage program via a BSD socket. 

This process was executed with an SDR locally and from a different computer 

simultaneously, thus accomplishing the multiple node goal. Each node is identified on the 

server by utilizing the node’s IP address, with a port number and time stamp added to discern 

different sessions.  

 While the core functionality is largely operational, there are a few ways the team fell 

short. The most notable is a performance issue. On each run of the continuous while loop, a 

for loop is required to downsample the frequency array. Omitting this step results in only 

occasional overruns on the SDR, but the added repeated processing of the downsampling loop 

causes constant overruns on both B210 and X310 systems. This could be resolved with a 

more appropriate process or algorithm. Another aspect of the project that is partially working 

is a couple of lines used to rework the array. Without it, the array is converted to a string with 

multiple columns and opening and closing brackets, making conversion back to a NumPy 

array more difficult. This was removed to reduce processing on the node side to improve the 

number of overruns.  

 Other goals were not reached. Ideally, each sample should be accompanied by a 

timestamp so the data can be properly combined on the server. Should this add too much 

overhead, the time could be recorded every several samples. This was deprioritized to 

improve the overrun problem. Additionally, the team did not create server control of the 

nodes. Ideally, this would include the ability to start and stop the sensor and to set the 

sampling and center frequencies. Other options could be added, like how much the array 

would be downsampled. 
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[4.5] Chapter Summary 

  The new goal of the project was to develop code for a scalable network of hardware 

nodes to collect data about the 5G spectrum and make it available for predictive analysis. The 

server node is able to accept multiple nodes at once and receive data simultaneously through 

these nodes. The sensor node acquires data constantly on a specified frequency and 

bandwidth, converts the data to the frequency domain, downsamples the data, and then sends 

the downsampled data to the server.  

 The system was tested using a two-node setup, one on the same device as the server 

and the other on a different device, both connected to the server through socket programming. 

Both devices were able to connect successfully to the server and send data to the server. The 

major limitation of the system is that the signal processing on the sensor node is too 

computationally intensive, which causes overflows on the node. This overflow causes the data 

stream to be interrupted and frames to be cut short. The team worked on optimizing the signal 

processing to try and reduce the number of overflows.  

  



 

 

47 

 

[5] Conclusion & Future Work 

 

[5.1] Conclusion 

 The project’s initial aim was to demonstrate security flaws in 5G base stations by 

utilizing OAI and srsRAN. The team was able to successfully install OAI gNB and UE, as 

well as have a CN running on a dedicated server. By the end of this period, the team had 

managed to link the UE and gNB, but the UE would not fully register with the CN. After 

browsing through OAI’s mailing list and the database file and applying possible fixes, the UE 

was able to register to the CN but without an IP address. Without the IP address, the team 

could not continue the project. The team also attempted to use srsRAN. This time the CN 

would connect to the gNB, but the gNB could not connect to the UE. The team tends to think 

more computing power would have potentially fixed the issues with srsRAN.  

For C-term, the team decided to alter the goal to utilize multiple hardware nodes and 

an SDR to collect data about the 5G spectrum over a server for predictive analysis. To expand 

the number of nodes, four Ubuntu 20.04 desktop computers with the USRP B210 SDR were 

deployed. Additionally, the team used two Python programs, one for the sensor side and the 

other for the client side.  

[5.2] Future Research 

 Based on the experiences and findings from this project, there are several potential 

areas of future research and paths of improvement that could be explored. For the open source 

5G base station, one could explore different combinations of software. While the Open5GS 

core network seemed fine on its own, perhaps it would have created a functional system if 
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coupled with OpenAirInterface’s gNB platform. Additionally, exploring the original intent of 

the project with an already functional open-source 5G network could prove valuable. The 

continuous data aggregation shown by the team later in the project could be expanded in a 

few key ways. Firstly, the system could be controlled and tuned from the server. This could 

allow a user to specify the targeted signal on every remote node from a single interface. Next, 

improving the efficiency of the sensor node would be helpful in reducing overruns and 

maintain a more consistent data flow.   
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APPENDIX A:  OpenAirInterface Tutorial 

To get to the point we achieved, a precise set of steps were followed consistently. The 

first step was to image three computers to certain versions of ubuntu. For the gNB and UE, 

Ubuntu 16.04.07 was used, whereas the core network utilized 18.04. Once the computers 

were imaged, steps were taken to get the devices prepared to run OAI. The first step taken 

was to install a low-latency kernel, as described by OAI’s documentation. In order to do so, 

the following command was run:  

sudo apt-get install linux-image-lowlatency linux-headers-lowlatency  

 After this, the BIOS was accessed on each computer. In the BIOS, hyperthreading, 

Intel SpeedStep, and C-State were all disabled. P-State and C-State also needed to be disabled 

in Linux. In order to do so, the grub file was accessed using the following command: 

sudo nano /etc/default/grub 

In the grub file, the “GRUB_CMDLINE_LINUX_DEFAULT” line was edited to become: 

GRUB_CMDLINE_LINUX_DEFAULT="quiet intel_pstate=disable" 

After this line was edited, the grub was updated: 

sudo update-grub 

Next, the following command was run and the file was edited in accordance with OAI’s 

documentation:  

sudo nano /etc/modprobe.d/blacklist.conf 

The following line was added to the end of that file:  

blacklist intel_powerclamp 

Next in the power management process was disabling CPU scaling. Cpufrequtils was installed 
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and edited to put the governor in performance mode by using the commands below:  

sudo apt-get install cpufrequtils 

sudo nano /etc/default/cpufrequtils 

This line was added: 

GOVERNOR="performance" 

Finally, ondemand daemon was disabled as instructed by OAI’s documentation: 

sudo update-rc.d ondemand disable 

sudo /etc/init.d/cpufrequtils restart 

The team was able to check that C-State was disabled with the following commands: 

sudo apt-get install i7z 

sudo i7z 

“sudo i7z” should output something similar to the figure below:  
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Figure 6.1 OAI’s depiction of what “sudo i7z'' should output. C0% is the only column that 

should be being used and the CPU should not change much. 

After these steps were completed, the team ran into issues after rebooting. Sometimes, the 

computer would reboot to grub as depicted below. To solve this issue, the team used a 

command which restarted the GNOME display manager: 

sudo /etc/init.d/gdm restart 
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Figure 6.2 After power management steps were completed, rebooting sometimes resulted in 

grub. Restarting the GNOME display manager fixed this issue. 

 After the power management steps were completed, the team moved onto the actual 

OAI installation and setup. To install the OAI software for the gNB and UE, the commands 

below were run. The first step was to install git and use it to clone OAI’s repository. 

sudo apt install git 

git clone https://gitlab.eurecom.fr/oai/openairinterface5g.git 

cd openairinterface5g 

sudo git checkout develop 

With the software finally installed, the team prepared to build it. The commands below were 

used to build the software: 

sudo source oaienv 

cd cmake_targets/ 

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgitlab.eurecom.fr%2Foai%2Fopenairinterface5g.git&data=04%7C01%7Ccjstevens%40wpi.edu%7C41fad57a9dbc4f3233a208d98505ebde%7C589c76f5ca1541f9884b55ec15a0672a%7C0%7C0%7C637687082758835514%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=FgIY7So4Z2y1JD8vb1%2FsPqF6piNVjbiENUOevcsHYkA%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgitlab.eurecom.fr%2Foai%2Fopenairinterface5g.git&data=04%7C01%7Ccjstevens%40wpi.edu%7C41fad57a9dbc4f3233a208d98505ebde%7C589c76f5ca1541f9884b55ec15a0672a%7C0%7C0%7C637687082758835514%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=FgIY7So4Z2y1JD8vb1%2FsPqF6piNVjbiENUOevcsHYkA%3D&reserved=0
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sudo ./build_oai -I -w USRP --eNB --UE --nrUE --gNB 

A couple of times the build would crash due to a uhd library error. This error took a lot of 

research and debugging to determine what the cause was. The team was able to find a one-line 

solution that solved the issue immediately. The line is displayed below and only needs to be 

pasted into the terminal: 

sudo apt-get -o Dpkg::Options::="--force-overwrite" install libuhd4.2.0 

Once the software was successfully built, the team traveled to the build folder to run the 

software:  

cd cmake_targets/ran_build/build 

The team used two separate commands to run the gNB and UE. These commands were used 

from the year’s prior MQP team. They are depicted below:  

gNB: 

sudo ./nr-softmodem -O ../../../targets/PROJECTS/GENERIC-NR-

5GC/CONF/gnb.sa.band78.fr1.106PRB.usrpb210.conf --sa -E --usrp-tx-thread-config 1 

UE: 

sudo ./nr-uesoftmodem -r 106 --numerology 1 --band 78 -C 3619200000 --sa -E -O 

../../../targets/PROJECTS/GENERIC-NR-5GC/CONF/ue.conf --clock-source 1 --time-source 

1 --ue-txgain 20 --ue-rxgain 87.5  --ue-fo-compensation  --nokrnmod 1 --dlsch-parallel 8 

The “--ue-txgain” and “--ue-rxgain” were two parameters we had to experiment with to get 

the UE and gNB to connect. Note the steps prior to the two commands above were followed 

for both the gNB and the UE.  

 To set up the core network, a different set of instructions were followed. First, Docker 

and Python were installed on the machine. Both items are essential in setting up a core 
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network. The following commands can be used to install them:  

sudo snap install docker 

sudo apt-get install python3.6 

Once these two items were downloaded, the next action the team took was to set up a docker 

account. This allowed the team to pull images of the different containers. Once the account 

was created, docker was logged into using: 

sudo docker login 

Next, images were pulled from docker using instructions from OAI’s documentation. The 

commands below were all run individually: 

sudo docker pull oaisoftwarealliance/oai-amf:v1.5.0 

sudo docker pull oaisoftwarealliance/oai-nrf:v1.5.0 

sudo docker pull oaisoftwarealliance/oai-spgwu-tiny:v1.5.0 

sudo docker pull oaisoftwarealliance/oai-smf:v1.5.0 

sudo docker pull oaisoftwarealliance/oai-udr:v1.5.0 

sudo docker pull oaisoftwarealliance/oai-udm:v1.5.0 

sudo docker pull oaisoftwarealliance/oai-ausf:v1.5.0 

sudo docker pull oaisoftwarealliance/oai-upf-vpp:v1.5.0 

sudo docker pull oaisoftwarealliance/oai-nssf:v1.5.0 

sudo docker pull oaisoftwarealliance/oai-pcf:v1.5.0 

sudo docker pull oaisoftwarealliance/oai-nef:v1.5.0 

sudo docker pull oaisoftwarealliance/trf-gen-cn5g:latest 

Once the images were all pulled, the team cloned the software for the core network using the 

following command: 
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git clone --branch v1.5.0 https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed.git 

With the repository cloned, the team entered into the directory and ran the “syncComponents” 

script. 

cd oai-cn5g-fed 

sudo git checkout -f v1.5.0 

sudo ./scripts/syncComponents.sh 

Finally, the individual containers were built by running the commands below. The team 

ensured that the file paths were correct. Errors were thrown because the “ubuntu” file was 

named “ubuntu18” in some cases: 

sudo docker build --target oai-amf --tag oai-amf:v1.5.0 \ 

               --file component/oai-amf/docker/Dockerfile.amf.ubuntu \ 

               --build-arg BASE_IMAGE=ubuntu:focal \ 

               component/oai-amf 

sudo docker image prune --force 

sudo docker build --target oai-nrf --tag oai-nrf:v1.5.0 \ 

               --file component/oai-nrf/docker/Dockerfile.nrf.ubuntu \ 

               --build-arg BASE_IMAGE=ubuntu:jammy \ 

               component/oai-nrf 

sudo docker image prune --force 

sudo docker build --target oai-spgwu-tiny --tag oai-spgwu-tiny:v1.5.0 \ 

               --file component/oai-upf-equivalent/docker/Dockerfile.ubuntu \ 

               --build-arg BASE_IMAGE=ubuntu:20.04 \ 

               component/oai-upf-equivalent 
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sudo docker image prune --force 

sudo docker build --target oai-smf --tag oai-smf:v1.5.0 \ 

               --file component/oai-smf/docker/Dockerfile.smf.ubuntu \ 

               --build-arg BASE_IMAGE=ubuntu:22.04 \ 

               component/oai-smf 

sudo docker image prune --force 

sudo docker build --target oai-ausf --tag oai-ausf:v1.5.0 \ 

               --file component/oai-ausf/docker/Dockerfile.ausf.ubuntu \ 

               component/oai-ausf 

sudo docker image prune --force 

sudo docker build --target oai-udm --tag oai-udm:v1.5.0 \ 

               --file component/oai-udm/docker/Dockerfile.udm.ubuntu \ 

               component/oai-udm 

sudo docker image prune --force 

sudo docker build --target oai-udr --tag oai-udr:v1.5.0 \ 

               --file component/oai-udr/docker/Dockerfile.udr.ubuntu \ 

               component/oai-udr 

sudo docker image prune --force 

sudo docker build --target oai-upf-vpp --tag oai-upf-vpp:v1.5.0 \ 

               --file component/oai-upf-vpp/docker/Dockerfile.upf-vpp.ubuntu \ 

               component/oai-upf-vpp 

sudo docker image prune --force 

sudo docker build --target oai-nssf --tag oai-nssf:v1.5.0 \ 
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               --file component/oai-nssf/docker/Dockerfile.nssf.ubuntu \ 

               component/oai-nssf 

sudo docker image prune --force 

sudo docker build --target trf-gen-cn5g --tag trf-gen-cn5g:latest \ 

               --file ci-scripts/Dockerfile.traffic.generator.ubuntu18.04 \ 

At this point in the process, the team switched to following documentation from Northeastern 

university: 

https://openairx-labs.northeastern.edu/deploying-oai-in-5g-standalone-mode/ 

Following Northeastern’s instructions, parameter “MNC” was set to 99, 

“SERVED_GUAMI_MNC_0” to 99, “PLMN_SUPPORT_MNC” to 99, “SD_1” to 1, and 

“OPERATOR_KEY” to c42449363bbad02b66d16bc975d77cc1 in the “docker-compose-

basic-nrf.yaml” file under “oai-amf” on the core network. Under “oai-spgwu,” parameter 

“MNC” was also set to 99. In the “openairinterface5g/targets/PROJECTS/GENERIC-NR-

5GC/CONF/gnb.sa.band78.fr1.106PRB.usrpb210.conf” file on the gNB, the following 

changes to parameters were made: tracking area code to 0xa000, “mcc” to 209, “mnc'' to 99, 

“sd” to 0x010203, and the second “sd” to 0x1. Using the command “ifconfig,” the team was 

able to find the IP address of the device as well as the interface name. The parameters 

“GNB_INTERFACE_NAME_FOR_NG_AMF,” 

“GNB_IPV4_ADDRESS_FOR_NG_AMF,” “GNB_INTERFACE_NAME_FOR_NGU,” and 

“GNB_IPV4_ADDRESS_FOR_NGU” were all updated accordingly in the same file. In order 

for the UE to be able to register with the core network, the following line was added to the 

“oai_db.sql” file in the docker-compose directory on the core network: 

INSERT INTO `users` VALUES 
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('2089900007487','380561234567','55000000000001',NULL,'PURGED',50,40000000, 

100000000,47,0000000000,1,0xfec86ba6eb707ed08905757b1bb44b8f,0,0,0x40, 

'ebd07771ace8677a',0xc42449363bbad02b66d16bc975d77cc1); 

The following commands were run on both the gNB and core network in order to allow them 

to connect: 

sudo sysctl net.ipv4.conf.all.forwarding=1 

sudo iptables -P FORWARD ACCEPT 

Finally, on the gNB, a route was added to the core network. The command to add the route 

can be found below:  

sudo ip route add 192.168.70.128/26 via (core network address) dev (gNB address name) src 

(gNB address) 

The parentheses were filled in with values specific to the team's implementation and will 

differ for newer iterations of this project. The core network was started and stopped with the 

following commands: 

sudo python3 ./core-network.py start-basic 

sudo python3 ./core-network.py stop-basic 

The team checked for gNB and UE connections using the last command below: 

sudo docker logs oai-amf 

When attempting to connect the UE to the gNB, the team sometimes received the error “Slot 

offset K2 (2) cannot be less than DURATION_RX_TO_TX (5).” Searching through the 

mailing list did not provide a solution to this issue. After further research, the team discovered 

a change that fixed the issue. In the file, “openairinterface5g/targets/PROJECTS/GENERIC-
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NR-5GC/CONF/gnb.sa.band78.fr1.106PRB.usrpb210.conf,” another line of code was added 

below the line “nr_cellid = 12345678L;” Underneath it, the following line was inserted:  

min_rxtxtime=6; 

This addition to the code solved the aforementioned error immediately.   
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APPENDIX B: Multi Node Spectrum Analysis 

Sensor Node Program: 
# import for SDR 

import uhd 

import numpy as np 

import sys 

from scipy.signal import resample_poly 

# import for server client 

import socket 

 

clThreads = [] #keep track of threads 

 

#Set print options for sending the string of samples 

np.set_printoptions(threshold=99999) 

np.set_printoptions(precision=5) 

 

#All sample processing actions 

def sample_processing(samples, samp_down_size): 

 

    samples_f = np.abs(np.fft.fft(samples)) #Perform FFT, no FFT shift as it is too 

computationally intensive 

    

    clipped_samps = samples_f[(2*np.max(samples_f[0:2000]) > samples_f)] # Remove 

largest magnitude values 

         

    #Down sampling 

    up_factor = len(clipped_samps) 

    down_factor = samp_down_size 

    samples_down = resample_poly(clipped_samps, down_factor, up_factor) 

 

    packets = str(samples_down).encode() #Encode samples for transmission 

    clSoc.sendall(packets) #Send packet to server 

 

#Load usrp image 

usrp = uhd.usrp.MultiUSRP() 

 

#Set socket for data transmission 

clSoc = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

srAdd = ('10.2.0.10', 3105) 

 

#connect client to server address 

clSoc.connect(srAdd) 

 

num_samps = 10000 # number of samples received 
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center_freq = 751e6 # Hz 

sample_rate = 10e6 # Hz 

gain = 30 # dB (max is 31.5dB for x310) 

 

duration = num_samps/sample_rate # seconds 

samp_down_size = 200 #num_samps must be divisible by samp_down_size 

 

# Set RX and TX values 

usrp.set_rx_rate(sample_rate, 0) 

usrp.set_rx_freq(uhd.libpyuhd.types.tune_request(center_freq), 0) 

usrp.set_rx_gain(gain, 0) 

 

# Set up the stream  

st_args = uhd.usrp.StreamArgs("fc32", "sc16") 

st_args.channels = [0] 

metadata = uhd.types.RXMetadata() 

streamer = usrp.get_rx_stream(st_args) 

 

# Set up receive buffer 

buffer_size = streamer.get_max_num_samps() # buffer_size set to maximum possible 

recv_buffer = np.zeros((1, buffer_size), dtype=np.complex64) 

 

# Start Stream 

stream_cmd = uhd.types.StreamCMD(uhd.types.StreamMode.start_cont) 

stream_cmd.stream_now = True 

streamer.issue_stream_cmd(stream_cmd) 

 

#Main function 

run = True 

while(run == True): 

 

    #Recieve Samples 

    samples = np.zeros(num_samps, dtype=np.complex64) 

    for i in range(num_samps//buffer_size): 

        streamer.recv(recv_buffer, metadata) 

        samples[i*buffer_size:(i+1)*buffer_size] = recv_buffer[0] 

    #Process Samples 

    sample_processing(samples, samp_down_size) 

    run = True 

 

#When the code is stopped, end the stream for complete packet reception 

stream_cmd = uhd.types.StreamCMD(uhd.types.StreamMode.stop_cont) 

streamer.issue_stream_cmd(stream_cmd) 

print("Exiting Gracefully") 

sys.exit(0) 
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Server Side Programming: 

import socket 

import threading 

import numpy as np 

import datetime 

 

# get the current date and time 

now = datetime.datetime.now() 

 

#function for collecting chunks of data from each file 

def newClient(clSoc, clAdd): 

    date_string = now.strftime("%Y-%m-%d_%H:%M") 

    #make a new file based on client address 

    newFile = f"Data/{clAdd[0]}_{clAdd[1]}_{date_string}.txt" 

    with open(newFile, 'wb') as fi: 

        while 1: 

            info = clSoc.recv(2048) #Recieve data from client 

            if not info: 

                break 

            #write chunks to the file as soon as its recieved 

            fi.write(info) 

            fi.write(b'\n') 

 

        #close socket when data stops 

    clSoc.close() 

 

#make threads array for all new clients 

clThreads = [] 

 

#make and bind the server socket to localhost 

host = socket.gethostname() 

ipAddr = socket.gethostbyname(host) 

print("IP Address:", ipAddr) 

srSoc = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

srAdd = (ipAddr, 3105) 

srSoc.bind(srAdd) 

np.set_printoptions(threshold=9999) 

#listen for connections 

srSoc.listen(10) 

print("Listening...") 

 

#continue to... 

while 1: 
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    #accept new clients 

    clSoc, clAdd = srSoc.accept() 

    print("New Client: ", clAdd) 

 

    #call newClient function with client address info and start a new thread 

    clThread = threading.Thread(target=newClient, args=(clSoc, clAdd)) 

    clThread.start() 

    clThreads.append(clThread) 

 

    #remove threads when they are dead 

    for clThread in clThreads: 

        if not clThread.is_alive(): 

            clThreads.remove(clThread) 
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