
A Food Network
A Graphical Exploration of Food Recipes

William MacDonald Carr

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Masters of Science

in Data Science

July 2022

APPROVED:

Professor Yanhua Li, Major Thesis Advisor

1

Contents

………………..Abstract 3
………………..Acknowledgement 3
………………..Background & Motivation 4
………………..Problem Statement 5
………………..………………..Graph Data 5
………………..Dataset 6
………………..Nodes 6
………………..………………..Node Features 6
………………..………………..………………..Hierarchical Feature Algorithm 7
………………..Edges 11
………………..………………..Edge Representation Algorithm/SGT 12
………………..………………..Graph Data Structure 13
………………..Graph Model 14
………………..………………..Results 15
………………..Contributions 15
………………..Challenges 15
………………..Further Work 16
………………..………………..Hypergraph 17
………………..Bibliography 18
………………..Tables and Figures 19

2

Abstract

This paper presents several approaches of converting food recipe data into graph data
structures. We attempt to model these recipes using a directed rooted tree graph network. With
this data structure we are able to give a standardized structure to food recipes - which in turn
makes them tractable to a variety of machine learning algorithms. Previous attempts at
analyzing food recipe data have viewed this problem fundamentally as a Natural Language
Processing problem - this view however does not take advantage of the inherent structure
already within food recipes. The goal of this paper is to begin the exploration of potential graph
architectures which can be applied to food recipes - and hopefully extrapolated to processes in
other domains which lend themselves easily modelable by these data structures.

Terms: Graphs,Data Structures,Machine Learning, Culinary

Acknowledgements

I would like to thank my wife, Helen, for being so helpful and understanding while I chipped
away at this project. I also want to thank my baby Claire - for patiently waiting for me while I
spent countless hours at my computer.

3

Background & Motivation
Food is life. We all eat everyday in order to survive - and recipes are the directions to put

together these creations. As such most people have inherent expert level intuition as to which
food ingredients pair well - e.g bread and butter and not MSG and cod - and yet to our
knowledge there is yet no model built specifically for food recipe data. Additionally, there is no
standard data structure by which to encode recipe data nor is there a single repository for food
recipes - e.g. Wikipedia of Recipes. This paper seeks to open the door to the exploration,
curation and study of food recipes from a standardized format.

Food is in many ways analogous to human language - both are simultaneously vessels
and integral components of culture. Just as languages evolve over time, so too do cuisines.
Ingredients are borrowed; techniques are passed down and flavor pairings melded - but on the
other hand countless recipes are lost to the ages merely because no one is transcribing them.
These ingredients and recipes reveal the daily lives of individuals as well as broad historical
trends. Food gives another lens through which to view and study human migration, culture,
religion as well as non-human factors such as weather, climate, earthly phenomena (e.g.
volcanoes, droughts, etc.) and even cosmological events.

The original motivation for this project stemmed from personal experience dealing with
numerous online recipes. Each website has its own layout, presentation and set of instructions.
In general the recipes (instructions) are buried between walls of text which oftentimes are
irrelevant to the recipe. There are many websites though, which display simplistic and
straightforward recipes but these websites are disparate and disconnected. They often tend to
be cuisine specific and small in scope (e.g. online Amish cooking recipes, Chinese vlogger
recipes,etc.) A common thread throughout all these sources is the lack of standardization.
Especially when it comes to how to break down a set of instructions into its component steps.
The exact same recipe could be three steps on one website, while five on another.

This realization that there was apparently no standardized way of describing the
preparation of a dish led me to ponder on ways such a process could be modeled. This lack of
standardization is understandable as there is an incredible level of complexity and nuance in the
sourcing, preparation and ultimate construction of a recipe. Thus attempting to apply the cold,
calculating and precise approaches prescribed by mathematics to food seems akin to mixing
olive oil and vinegar - pun intended. Nevertheless this does not mean that this process can not
be modeled. A model ipso facto can never perfectly match reality, but if it can give us a better
understanding and perspective into phenomena we are trying to study then it is a useful* model
which can inform further exploration and inquiry.

Another motivation behind standardizing food recipes is that it would facilitate the
creation of an online repository for food recipes. Data stored in this repository would need to
adhere to certain standards/data structures - not solely for conformity's sake but rather to allow
for easier exploration and analysis both for human users and computer algorithms.
We envisage this as something similar to Wikipedia whereby anyone can create and submit a
recipe which can be tagged, ranked and reviewed by others. User submitted data can be used
to further train models. Ultimately, our hope is that with sufficient data, appropriate feature
labeling and a representative model we can use machine learning algorithms to generate
realistic synthetic food recipes. These food recipes could be generated according to conditional

4

inputs/restraints based on the user. For example, Chinese recipes with avocado and bacon -
these may not exist so the model should try to generate some recipe which has both bacon and
avocado but also has elements which make it similar to Chinese food.

When this is tied together with other systems we could create some very interesting
applications. For example a phone application that can give you recipes based on the food in an
image (e.g. in the refrigerator). We also imagine a program that could determine which recipes
to use such that it optimizes some metric - e.g. minimize waste, maximize nutrition, minimize
time, etc. This could be impactful in large feeding situations - such as mess halls, homeless
shelters, refugee camps, etc.

Problem Statement
As mentioned in the Motivation section of this document, one of the purposes of this

research is to open the door to the exploration and mapping of food recipes in a standardized
format. The hope of this is that we will then be able to use this data to analyze recipes from a
data-centric perspective.

As an initial step toward this direction, we present a graph structure for food recipes. Using
this architecture we wish to transcribe and convert said recipes into a format where we can
apply machine learning techniques to predict whether a given recipe is Real or Fake (synthetic).
More specifically, we wish to train a MLP Classifier on graphical data of the form: G(V,E,u),
(vertices, edges, universal features) such that it will be able to distinguish Real Recipes from
Synthetic (Fake) Recipes.

This data structure, which we will further expound upon later in the paper, uses directed
tree graphs to model the recipes. We also propose a hypergraph structure to model recipes.
This data structure has not been fleshed out in as much detail as its lower-dimensional analog -
but we suspect this data structure should allow for us to model and describe complex
interactions between multiple entities more fully and accurately. This idea will be explored
towards the end of our paper. Additional data structures such as dynamic graphs, flow networks,
etc. were explored and should still be considered as candidate data structures for modeling food
recipes.

Graph Data
Graph data is notoriously difficult to work with but at the same time it is one of the most

universal and fundamental data types. At their most basic, graphs simply represent relations
between entities. This flexibility allows graphs to model a wide variety of relations and
phenomena. Graph data is commonly encountered in network analysis, social networks,
chemistry, knowledge graphs and even image recognition - images can be viewed as a lattice of
nodes. (See Figure 1).

Graph data’s complexity lies in the fact that it has very few assumptions regarding the
structure of the data (See Figure 2). Data used for most machine learning models is
standardized in its input size (e.g. MNIST 28 x 28) or if not, can often be made so via padding,
etc. Getting a standardized representation for graphs, however, is a much thornier issue. Not
only is the structure of graphs dependent on both nodes and edges, but nodes and edges can

5

each contain feature information as well. In order to obtain a standardized representation we
can employ a variety embedding techniques

Dataset
The data used in this project was pulled from a variety of food recipe websites online. In

the original scope of the project, it was intended to make full use of a dataset of ~18,000 recipes
directly from FoodNetwork.com. Ultimately however, due to the difficulties of parsing each recipe
fully and accurately we instead relied on a manual process of transcribing recipes. These
recipes largely consisted of sauces, rubs and other recipes which themselves are often used in
cooking (e.g. chicken stock). Attention was made to include a variety of recipes from different
regions/cultures - that being said, there is a bias towards more Western orientated recipes.

Our data is organized in a graphical structure - where each recipe corresponds to a
directed rooted tree graph G(V,E,u). Each node vi V represents an ingredient used in the∈
recipe - e.g. broccoli, salt, etc. Each edge, ei E, corresponds to a sequence of actions∈
performed on an ingredient or collection of ingredients. The graph label, u, contains feature
information about the graph as a whole - in our case u represent whether a recipe is real or fake
- represented by 0 or 1 respectively. We will further define these concepts below.

Nodes
Under our construction, every node is one of two types - base ingredient node or

aggregation node. Base Ingredient nodes denoted by ℐ - are defined as a pure,unadulterated
ingredient which itself is not a recipe. For example, broccoli,corn,beef,water,tea and pumpkin
seeds, are all base ingredients - while ketchup, soy sauce and ice are what we call functional
ingredients. In order to incorporate these functional ingredients into our recipes, we developed
an iterative process which deconstructs a functional ingredient into its component graph which
is then woven back into the original graph structure.

Since most recipes involve functional ingredients, almost all graphs are generated using
this deconstruction process. Many functional ingredients require multiple iterations to get to their
base ingredient form - e.g. Heinz 57 Sauce is made with ketchup which in turn is made with
vinegar - (and that in turn is made from a vinegar culture and alcohol). The reason for this
tedious and exhaustive process is so that all component nodes can exist in the same node
feature space - this is expounded upon below in the Node Features section.

More specifically, Under our construction, the set V of nodes can be subdivided into two
types - namely base ingredients and aggregations - denoted by ℐ and Σ,. Note |Σ| = |ℐ| =n,
where n is the dimension of the feature space for the nodes . All aggregation nodes, by
definition exist to aggregate information on their neighbors and do not contain any inherent
feature information themselves, hence all elements of Σ = { 0n} - n-dimensional zero vector.

Node Features
The features of the ingredient nodes are a concatenation of four separate ingredient

features- namely the ingredients’ relative location on an extended taxonomic tree; the
structure/form of the ingredient; the ingredients flavor profile and its age.

6

The extended taxonomic tree of life corresponds to each ingredient’s position on an
extended biological tree of life. We hope to capture the idea of similarity or distance between
various nodes in the tree of life. In this way ,for example, we can quantify the idea that a jellyfish
is more similar to a squid than it is to a potato. The structural component corresponds to the
form which the ingredient takes on. This is used to distinguish between roots, flowers, stems,
bones, meat et cetera. This is also similarly organized in a hierarchical tree structure (albeit
smaller) like the tree of life. For example if we were to compare a pumpkin vs. pumpkin seeds -
under this construction both ingredients’ taxonomic features would be the same, however their
structural/form features would be different (as well as flavor profile). The final features, flavor
profile and age are comparatively simple - flavor profile is a one hot encoded vector
representing the presence (or absence) of various flavors - and age is an ordinal variable (can
be treated as continuous) representing whether an ingredient is young, mature, etc.

Faithfully converting these features in a coherent and useful manner necessitated
exploring a variety of embedding techniques.Specifically, one of the difficulties faced here is how
to represent the idea of distance on a graph structure. Originally given that our tree of life was in
a graph structure we decided to employ various graph walking techniques to try to approximate
the topology of the graph structure. However these approaches faced significant issues to
approximating the structure due to both the graph's size and the fact that the graph walking
algorithms do not take explicit advantage of the hierarchical structure of the data. For example
the distance from animal to fungus is a larger distance than the distance from cat to dog -since
more nodes need to be hopped en-route from cat to dog, the calculated distance from cat to dog
will be larger - i.e. d(cat,dog) > d(animal,fungus).

Animal to Fungus: animal→biotic→fungus
Cat to Dog: cat→felis→felidae→carnivora→ canidae→canis→dog

Various techniques can be employed to help ameliorate this problem - such as additional
connections (e.g. between cousin nodes), weighted walks, etc. Tweaking these algorithms may
have led to more acceptable embeddings, however we felt that continuing down this path was
akin to trying to fit a square peg in a round whole. Rather than artificially massage the data into
an acceptable form, we sought out other embedding techniques which take advantage of the
hierarchical structure of the data.

Hierarchical Feature Algorithm
Given that these features have an inherent biological, hierarchical nature we decided to

try to incorporate concepts from genetics to approximate the idea of distance between the
elements (nodes) of the graph. In our loose approximation of genetic biology, we assume a child
node inherits its parent node's (each node has one and only one parent node) genetic code
(represented by a string) and that it has some change to its code, making it different from its
parent. The amount of change is proportional to the hierarchical level of the parent/child node.
In this way we can get a representation which encapsulates the idea of genetic distance - the
distance between two nodes.

To get a more concrete understanding of what is going on, we present a toy example below:

7

Node Earth Africa Asia Kenya Bhutan China Nairobi Beijing Hong
Kon0

Shanghai

Index x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Level 3 2 2 1 1 1 0 0 0 0

#Char 4 3 3 2 2 2 1 1 1 1

Here the #Char is simply defined by the relation ; f#Char(Level)= 1 + Level.

More generally wecan define f#Char(Level) as any strictly increasing function satisfying the
following properties:

1. f#Char(Level_a) f#Char(Level_b) iff Level_a Level_b.≥ ≥
2. f#Char(Level) Z+∈

Examples of such functions include c (constant), , where .⌊𝑙𝑜𝑔(𝑥)⌋ ⌊𝑥𝑎⌋ 𝑎 ≥ 0

We have chosen our f#Char(Level) = ⌈ ⌉ , our intuition is that there is an increasing1. 5𝐿𝑒𝑣𝑒𝑙

difference between nodes in each successive hierarchical level, we keep the base low - 1.5 - so
as to give sufficient weight to parent nodes, while still allowing nodes occupying lower levels on
tree to make an impact as well.

8

Given a root node, R of a tree T whose nodes are ordered, we assign strings to each node as
follows:

For each node in G, assign a unique number 0,...k-1, where k = |G| - we will represent the root
node with x0 by convention, i.e. number(R) = 0.

Algorithm:

Total String Length = f#Char()
𝑙𝑒𝑣𝑒𝑙=0

𝑀𝑎𝑥 𝑇𝑟𝑒𝑒 𝐷𝑒𝑝𝑡ℎ

∑ 𝑙𝑒𝑣𝑒𝑙

Remaining Length = f#Char()
0

𝐷𝑒𝑝𝑡ℎ

∑ 𝑙𝑒𝑣𝑒𝑙

for node in Tree:
string = ‘’
level = Level(node)
node_index = index(node)
child_node = node.child
if child_node:

characters = xnode_index * f#Char()
0

𝑙𝑒𝑣𝑒𝑙

∑ 𝑙𝑒𝑣𝑒𝑙

else:
characters = xnode_index * f#Char()𝑙𝑒𝑣𝑒𝑙

string = characters
parent_node = node.parent
while parent_node:

level += 1
node_index = index(parent_node)
characters = xnode_index * f#Char(level)

` string += characters
parent_node = parent_node.parent

return string

The approach was as follows, first establish the graph structure of the tree of life (See
Figure 3) - we did this by merging the lineages of every ingredient used in the recipe data set.
Note that this tree of life is not in 100% concordance with the Tree of Life in biology. The first
major difference is the size - our tree is deeper (Starting from Non-Life ending in Sub varieties)
though much less broad. Our tree's increased depth is to account for all the things we used as
ingredients (e.g. salt, MSG, varieties of peppers, etc.). As for its breadth, since our tree was
constructed from its constituent pieces (lineages), any ingredient which does not show up in our
data will not be incorporated (sorry humans, anteaters, poison ivy, etc.) in the process.

9

Other techniques and algorithms do exist which give a much more accurate and full
representation of the data, but for our purposes, due to the limitations of computing and DNA
records we use the aforementioned.

After creating this hierarchical tree structure data structure - based on the taxonomic tree
of life - we draw further inspiration from the field of genetics by giving a string representation to
each node on said tree - more on these later.
Our basic idea is to use a sequence of letters or characters to represent the genetics of a given
point on the node. At each subsequent sub level in the hierarchy we assume there is a smaller
contribution to this "genetic code". There exist 11 rungs in our extended taxonomic tree. As
noted above we assumed that each successively higher level makes a larger contribution to the
genetic code for a given node.

We start by using one character to represent the difference between subvarieties and
subsequently increase the number of characters added by 50% per hierarchical level (rounded
up) of the number of additional/changes we make to the genetic code. Each node has its own
unique character which contributes to the genetic code of not only itself, but also for any nodes
which descend from that node. (Refer to the toy example above for a more visual explanation of
how the process works). Our original most basic node "everything" - the root node - contains
160 characters (all x0). As we continue to traverse the graph starting from the root node, Each
node makes its own contribution proportional to its position in the hierarchy. Note that each node
in the hierarchical tree of life may or may not be used in the data set. For example the
biological order lago morpha is not used in the dataset however rabbits and hares which belong
to that order are used- one reason why this is important is that certain recipes call for generic
ingredients which can not be easily represented by a single species (e.g. recipes calling for fish,
meat, berries, etc.).

After assigning each node a 160 character string we can now begin to measure distance
between the various nodes (strings). To compare the distance between the strings to one
another we use a Hammond distance or edit distance metric. After computing the distances
between each pair of nodes, we can now begin to place these nodes in a metric space relative
to another. However, since the dimension of this feature space is so large we wish to further
transform the data into a less sparse feature space. We wish to reduce the size of this feature
space in a way that preserves both the global and local structure of the data. A variety of
dimensional techniques exist, but we ultimately chose to use UMAP as it not only preserves a
good balance of both local and global structures but it is also compatible with a Hammond
distance metric. Using this we reduced the size of the feature space from ~ 800 to 11. We
settled on 11-dimensional projection after testing other projection techniques and finding that a
11 dimensional PCA representation explained 95% of the variance (as when compared to the
original) - unfortunately since UMAP relies on more topological techniques it cannot be
compared in the same manner. Even when projecting this to 2 dimensions (See Figure 4) we
can see that the projection does an excellent job at preserving the structure of the data - the
differences between the groups of data can clearly be seen.

We employed similar techniques to embed the features of the structure/form
components of the ingredients. This feature space was reduced from 100 dimensions to 5.
After all these features have been calculated we concatenate them together to give us the
feature vector of the nodes.

10

Edges
Thus far we have yet to discuss a key component of the graph representation of the

recipes - the edges. Under our construction, the edges in our graph represent a sequence of
actions. This decision to model the edges as sequences of actions is not an immediately
obvious one. Under our initial construction, actions were represented as nodes, however this
was not internally consistent - as it forced the nodes to model two fundamentally different
objects (actions and ingredients). And correspondingly this structure made it difficult to have a
harmonious interpretation of what information is stored in the graph’s edges. Seeking to fix this
we devised another data structure where each edge contained information about one action.
This too had issues as it caused much of the graph to consist of empty sigma nodes (See
Figure 5). To overcome this issue, we define one edge as a sequence of actions. The hope in
doing such not only reduces the total number of edges and nodes in the graph, but packs more
information into each edge.

Figure 5

As described above, our edges contain information on the sequence of actions
applied to an ingredient or combination of ingredients (sigma node). The challenge is
how to represent these sequences of actions in vector form. Our goal is to find an
embedding which clusters similar action sequences together. There are two main
challenges that we encountered in attempting this. First is how to group similar actions
together. If we treat the actions simply as categorical data we lose a significant amount
of information as each action is equally distant from one another - when that is hardly
the case. For example, dice is much closer to chop than it is to strain. Another challenge
is that edges are sequences and hence the order is important - i.e. blend,bake ≠
bake,blend.

11

SGT
In order to address both these challenges, we once again draw inspiration from

the field of genetics. But it is important that we first introduce the basics of this algorithm
so that the reader will be able to more easily follow the logic we use to transform the
edge data. Sequence Graph Transform, or SGT is an algorithm which allows
comparison between variable length string data. SGT captures both local and long-term
dependencies - which can be adjusted by hyperparameter κ. This algorithm computes
the coincident similarity or distance between all two character pairings for a set of
strings. In this way we can transform the sequences to a metric space more applicable
for doing machine learning. SGT has found a variety of use cases - such as comparing
genetic sequences or identifying user behavior on the internet (recording a sequence of
key/mouse strokes).

Now that we have laid the groundwork we will introduce our approach to convert
these sequences of actions into a vectorized form. We first collected and categorized all
the actions. From this we ascertained that we could represent any action as being some
combination of any of 13 elemental base actions to represent a single action- much in
the same way a molecule can be viewed as combinations of their constituent atoms.
These 13 base actions are: spin,cut ,press, pull, heat, cool, bring together, air, remove
air, water, remove water,split and reverse split. Each of these elemental actions is
represented by a unique character which are the constituent blocks of any action. These
characters can be combined together in a variety of sequences to create a vast
assortment of potential actions. We also introduce an additional blank space character
which allows us to pad the string representations - the purpose of which is to allow us to
represent the intensity elemental actions. We can also similarly represent the duration
of an action with the length of the string. Note that the description above is in reference
to a singular action. To create a string representation of a sequence of actions we
simply concatenate the string-form of each action.

dice,mix
CCCCD---CCCCD---CCCCD---CCCCD---CCCCD---CCCCD---CCCCD---CCCCD---CCCCD---CCCCD---CCCCD---C
CCCD---B---

chop,cut,mix
C---C—CC--CC--CC--CC--CC--
CC--CC--CC--CC--CC--CC--CC--CC--CC--CC--CC--CC--CC--CC--CC--CC--CC--CC--CC-----B---B---B---B---B---B---B
---B---B---B---B---B---B---B---B---B---B---B---B---B---B---B---B---B---

Elemental Actions - B:Spin C: Cut D:Press

12

Here B,C,D represent elemental actions and ‘-’ is a space holder which effectively
increases the distance elemental actions are from one another (this allows us to imbue the
concept of intensity of actions into the embedding). Each string is composed of repeating blocks
of 4 characters which are repeated twelve times (chosen for divisibility) - the purpose of which is
to allow for the representation of multiple actions concurrently in a string (e.g. blend = spin +
cut) as well as to lessen the effect that strings from the tail-end have to the distance overall
contribution - this is analogous to having a larger dataset so the distribution is more normal.

Once we have our string representations for each sequence of actions occurring in the
dataset we can perform SGT and transform our strings into a vectorized form - thereafter we
apply UMAP once again to reduce the dimensionality of the data and in turn make it more
tractable to machine learning algorithms (Figure 6).

Graphs
With these definitions in hand we are ready to begin our delve into the graphs. As

mentioned earlier in the paper all graphs are composed of two node types - base ingredient
nodes and aggregation nodes but the majority of recipes contain functional ingredients which
are themselves ingredients. We have devised an algorithm which breaks the functional
ingredients into their recipe form and then reinserts this graph into the preexisting structure. It is
best to view this construction from the perspective of edges (See Figure 6).

G = F_1 + {(e['start],e['end])|e['start]!=F_1; e['end']!=F_1 for e in G} +
{(e['start'],F_1_terminal)|e['end']=F_1_terminal for e in G} +
{(F_1_terminal,e['end'])|e['start']=F_1_terminal for e in G}

Terms: f - functional ingredient (a recipe often has many)

- the graph of the ith functional ingredient (from list of all functional ingredients)𝑓
𝑉
(𝑖)

G - graph

Algorithm to deconstruct graph G:

While ∈ V: (While there exists a functional ingredient in the deconstruction)𝑓𝑘

F = 𝑓
𝑉
𝑘

U = {(e['start],e['end])| e['start]!=F_1; e['end']!=F_1 for e in G}

edges in graph G which are not connected to node 𝑓𝑘

S = {(F_1_terminal,e['end'])|e['start']=F_1_terminal for e in G}

nodes in graph G which start from node 𝑓𝑘

E = {(F_1_terminal,e['end'])|e['start']=F_1_terminal for e in G}

nodes in graph G which terminate at node 𝑓𝑘

13

NOTE THIS E is a variable NOT the Ɛ of G(V,Ɛ)
G = F + U + S + E

V = G(V)

Graph Models

As a proof of concept for this graph structure, we trained two models to be able to
distinguish real and fake (synthetic recipes). The first of these models is based on
the GraphNetwork algorithm developed by Battaglia et al. (2018): Relational inductive biases,
deep learning, and graph networks. This algorithm as described below is a type of message
passing algorithm which successive aggregates the node, edge and global features of a graph.
This hidden state representation of the graph essentially represents each constituent part of the
graph in respect to its place amongst the other constituent parts - here a constituent part can be
a node, edge or the global label.

14

https://arxiv.org/pdf/1806.01261
https://arxiv.org/pdf/1806.01261

The second model we experimented with was a\ k-GNNs. The basic idea behind the k-GNN is
for some graph G(V,E), for every subset of equal degree k |V|, learn an embedding for each of≤
the individual nodes - subsets of degree one -and then use this embedding to learn embeddings
for each pair of nodes - subsets of degree two.We iteratively, continue this process until we
reach the graph level itself and we can continue no further. In this way we build a hierarchical
understanding of the nodes in the network - note this model does not use edge features in the
calculation. For a more complete description of the model please refer to paper Weisfeiler and
Leman Go Neural: Higher-order Graph Neural Networks Morris et al.

Overview of Update Algorithm for k-GNNs
V(G) | |t| = k}[𝑉(𝐺)]𝐾 = {𝑡∈

(s) =𝑁 𝑡 ∈ [𝑉(𝐺)]𝐾 | |𝑠 ∩ 𝑡| = 𝑘 − 1{ }
(s) =𝑁

𝑙
𝑡 ∈ 𝑁(𝑠)|(𝑣, 𝑤) ∈ 𝐸(𝐺); 𝑣 ∈ 𝑠\𝑡; 𝑤 ∈ 𝑡\𝑠{ }

(s) = (s)𝑁
𝐺

𝑁(𝑠)\𝑁
𝐿

Training
Following training, we find the classification capability of the model to be decent but still has

much room for improvement. Further model architectures should be explored. There are a
variety of issues which we believe may limit the predictive power of this model. Namely,

1. Aggregation Function for Message Passing
a. Currently using avg(incoming nodes) - other aggregations e.g. max, RNN or some other

permutation invariant function
2. Increase Feature Space Dimension

a. Edge or Node - either add new features or increase the embedded dimensions

15

3. Add pertinent graph label data
a. This is will passed throughout the network - the hope is that this feature

information may help to better identify the graphs
4. Use less realistic synthetic data

a. Synthetic data is being created by drawing from the distribution of used
ingredients. The end result is that many of the “Synthetic” recipes are quite
realistic. E.g. (names are made up)

i. STICKY CHILI - chili powder~75%,salt~12.5%,water~12.5%,mix
ii. SALTY BRINE - salt~2%,water~98%, mix
iii. ONION SALT - salt~75%,onion powder~25%

Results
Using a basic form of the Message Passing model we were able to achieve 95% train

accuracy and 83% test accuracy in classification. After training we find our kGNN model to have
98.4% train accuracy and 85.82% test accuracy which seems to indicate that the model is
overfitting the data. We have tried reducing the epochs run and the number of convolutional
layers, but these however slightly reduce the accuracy on the test data. We have also tried
merging together sigma nodes which only connect to other sigma nodes - this actually
decreased the accuracy. We believe this might be due to the merging of nodes causing the
edges to contain longer action sequences which in turn makes them less common and hence
harder to learn.

Contributions
The primary contribution of this research is the novel graphical representation of food

recipes. Previous work has used NLP based techniques to attempt to create recipes however
there are significant barriers - due to the computer only understanding the superficial relation
between words or tokens corresponding to the ingredients some information is inherently lost.
This paper hopes to address this issue more directly by organizing recipes into a standard
structure where the basal level elements are natural* food items rather than words or tokens
representing those items.

Challenges
There were multiple challenges faced in the process of converting the recipes over to a

standardized format. The first challenge was determining how to represent each recipe in a
generic structure - that is to identify and prescribe the most basic building blocks of the data
structures representing each recipe. The final graph structure employed in this thesis represents
only the most recent iteration in data structure.

As described in the DataSource section, there were difficulties parsing the original
dataset obtained for this project. In order to ensure the model was trained on accurate data, we
ended up manually parsing each recipe. Examples of these difficulties included non-standard

16

writing styles, foreign words and unspecific/unclear vocabulary. Most Natural Language Models
are trained on datasets such as Reddit,Wikipedia, etc. which is a very different style than that of
a food recipe- additionally numerous recipes had additional verbiage which threw the models
off- e.g. various asides about how much their Nona loved to cook this dish with lard instead of
butter, etc. Other issues encountered included the use of foreign language words as recipes
coming from different cultures often use the words of their home tongue - e.g. jiuqu, aloo,
glaçage — similarly some words have multiple names - e.g. coriander/cilantro.

Further Work
Before this model can be developed for other purposes, its own accuracy and

shortcomings should be addressed. Further work on this model can be broken into two
categories - data related and model related.

Given that the dataset for recipes is rather small ~700 and that many recipes were
transcribed owing to them being ingredients themselves in another recipe (e.g. chicken stock,
vodka, ketchup) we still have a rather limited exposure to the almost countless varieties of
potential recipes. Aside from simply expanding the dataset, we can also augment the data by
adding additional label data - i.e. Sauce,Vietnamese. As these labels propagate through the
network they may aid in positively identifying recipes. We could also further add more features
to our nodes - such as nutritional information and the presence of various compounds.

Other data structures may also be explored- such as multigraphs or hypergraphs.
Hypergraphs may be promising as they model connections between sets which seems naturally
suited to this task. Other models should also be explored which might be better suited to
modeling some of the types of relationships present in a food recipe. The first type of model that
comes to mind is RGCN - Relational Graph Convolutional Neural Network - however further
work needs to be done to clearly define all the types of relations.

Should this model be developed to a sufficient level of accuracy, there are a multitude of
interesting use cases - such as generating synthetic recipes. One such idea is to develop a
model which creates recipes which can be rated by human users which it in turn uses to further
improve and refine itself.

We considered using temporal graphs to model the recipes but there were several
issues with that approach. First, each recipe has multiple components which can be composed
asynchronously - almost in a Gannt like fashion. Second, many steps don’t have a prescribed
time - e.g. chop onions. Third is that recipe times are a rule of thumb and not a clearly defined
metric - e.g. cook until browned. These factors could likely be better modeled with a temporal
graph, but due to the scope of this project we did not further explore this route.

We imagine several scenarios where the data structures displayed throughout this paper
may see application.

Domain Nodes Edges

Supply Chain Components/Parts Fabrication Steps

Geology Elements/Minerals Geologic Forces

17

Pathology Organic Structures Influences/Effects

Hypergraph Structure
Like an after dinner aperitif we present to you a hypergraph structure to model recipes.

The structure is similar to graph construction but differs in two significant ways.
Most obviously is that the Hypergraph Construction allows for edges connecting more

than two nodes together. This in a way allows us to treat the subcomponents of the data
structure more like sets (collections of items) rather than individual pairwise components. For
example, in a spice blend a hypergraph may only require one edge to represent the combination
of the elements. Furthermore, this edge will connect ALL the base ingredients and as such
information will be shared more directly between the nodes. Not only does this construction
reduce the number of edges but it facilitates more efficient message passing through the
network.

The second significant difference between these two constructions is that our
hypergraph would contain two edge types - Action Sequences and Combinations. This
breakdown was chosen as the action mix occurred in many action sequences and had the
overall effect of artificially inflating the similarity between many action sequences. That is, the
embedding of {“cut”,”bake,boil”,”stir”} will represent the action sequences more accurately than
an embedding of {“cut,mix”,”bake,boil,mix”,”stir,mix”}.

If we were to classify this type of network it could be categorized as a Relational
Hypergraph. Aside from the differences explained above, the other components are quite similar
- nodes represent base ingredients and edges represent action sequences (or combinations).
(Figure 7)

18

Bibliography
1. Digitizing National Cuisines: Cookies Recipes as Conceptual Graphs, Dmitri Dmitriev - Institute of

Linguistic Studies, Russian Academy of Sciences St. Petersburg, Russia
2. Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks, Morris et al. 2018
3. Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. Bronstein et al

2021.
4. Semi-Supervised Classification with Graph Convolutional Networks, University of

Amsterdam, Thomas N. Kipf and Max Welling. 2017
5. Sequence Graph Transform (SGT): A Feature Embedding Function for Sequence Data

Mining, Chitta Ranjan et al. 2016

6. A Survey on Deep Learning-Based Vehicular Communication Application,Chia Hung Lin
et al. 2021

7. Understanding graph embedding methods and their applications, Mengjia Xu 2020.
8. Constrained Generation of Semantically Valid Graphs via Regularizing Variational

Autoencoders, Teng Fei Ma et al. 2018
9. A Comprehensive Survey on Graph Neural Networks, Zongwu et al. International

Academy of Electronics Engineers, 2019.
10. Can AI Create Molecules?. Drug discovery is a long and tedious… | by MIT-IBM Watson

AI Lab | Medium. Accessed on June 10th, 2022
11. Network of Thrones: Recapping Season 7 and Predicting Season 8 — Benjamin

Campbell (benjaminwcampbell.com) Accessed on June 10th, 2022
12. [2012.08019] Understanding graph embedding methods and their applications (arxiv.org)

Accessed June 13th, 2022.

19

https://medium.com/@MITIBMLab/can-ai-create-molecules-324c140981e6
https://medium.com/@MITIBMLab/can-ai-create-molecules-324c140981e6
https://www.benjaminwcampbell.com/blog/2019/3/7/data-dragons-and-predictions-for-game-of-thrones
https://www.benjaminwcampbell.com/blog/2019/3/7/data-dragons-and-predictions-for-game-of-thrones
https://arxiv.org/abs/2012.08019

Tables and Figures

Figure 1
[2012.08019] Understanding graph embedding methods and their applications (arxiv.org)

Figure 2

Figure 3

20

https://arxiv.org/abs/2012.08019

21

Figure 4 - Two dimensional embedding of taxonomic tree

Given limited dimensionality quite good mapping - note alligator is being mapped with seaweed
- this likely because alligator is a solitary branch and it has to be grouped somewhere. As you
can see it does a pretty good job at grouped like with like.

22

Figure 5

Figure 6 - Graph Representation of Soy Sauce

23

Figure 7 - Side by Side comparison of Hypergraph vs Graph Data Structure

Graph of Soy Sauce compared to potential hypergraph structure. Note to convert to hypergraph
structure we will incorporate the weight into the nodes. Additionally there are now two types of
hyperedges (COMBINE and action) - represented by green and red respectively.

Figure 8 - Graph Representation of Recipe Rendered via NetworkX

24

25

