

New Worcester North High School: Construction Management and Constructability Analysis

A Major Qualifying Project
Submitted to the faculty of Worcester Polytechnic Institute
In partial fulfillment of the requirements for the
Degree of Bachelor of Science

Submitted By:

Scott MacDonald
Ryan Marques
Matthew Moreau
Sponsoring Agency: Gilbane Building Company

Submitted To:

Project Advisors: Guillermo Salazar
Paramasivam Jayachandran
Date: March 15, 2010

Abstract

This project presents three main deliverables concerning the construction of North High School in Worcester, Massachusetts. These are: a construction management analysis, a construction cost estimate developed by using a Building Information Model, and an alternative design of the retaining wall located near the corner of the auditorium and Building B. In addition, an earned value analysis of two steel oil tank replacements in South Portland, Maine was also conducted.

Authorship Page

1.0 Introduction
2.0 Background
3.0 Scheduling \& Safety
4.0 Project Estimate Using Revit
5.0 Earned Value Analysis
6.0 Retaining Wall Design
7.0 Results and Conclusions

Matt
Matt, Ryan, \& Scott
Ryan \& Scott
Matt \& Ryan
Scott
Matt
Matt, Ryan, \& Scott

Acknowledgments

Our Major Qualifying Project team would like to thank all of the individuals that contributed to us during the duration of our project. Our team would especially like to thank our advisors, Professor Guillermo Salazar and Professor Paramasivam Jayachandran for their help and guidance to completing the project. Our team would also like to thank the Gilbane team that was working on the North High School project, including William Kearney Jr., Melissa Hinton and Don Venerus, for providing us valuable information, including the architect's drawings, and allowing us to attend owner meetings.

Capstone Design Experience Statement

In order to complete the capstone design requirements for this Major Qualifying Project, the group conducted an alternative design for a retaining wall located near the corner of the Building B and the auditorium of the new Worcester North High School in Worcester, Massachusetts. The retaining wall performs load carrying capabilities during construction and at the same time protects lower lying houses from any potential soil falling off of the sixty foot cliff that the wall would be built into. The alternative design for the retaining wall included economic factors as well.

The alternative design of the retaining wall consisted of investigating the advantages and disadvantages different types of retaining walls, determining the vertical and horizontal pressures against the wall as well as the type of soil located on the construction site, and performing a structural analysis. The vertical surcharge of the wall was determined by using the live loads that are typically carried by fire lanes.

The proposed solution for the wall is a cantilever retaining wall with counterforts. Adding counterforts to the wall adds more strength without making the heel slab very long. Also, counterforts are typically added to embankments that are greater than eight meters in height. As some parts of the embankment at the construction site exceeds sixty feet, it was necessary to add counterforts to the retaining wall.

The economic aspects of the proposed solution for the retaining wall was compared with the one actually implemented in the site primarily in terms of the total amount of material and cost required to build both solutions. The economic issues surrounding this retaining wall are rather important as the type of wall was changed from a semi-gravity retaining wall to a smaller in size counterfort retaining wall, costing an estimated $\$ 10,000$ less.

The proposed design addressed the constructability aspects of the retaining wall and the safety aspects of the design process as well. We addressed safety and constructability issues that included wall overturning, base sliding, and soil bearing capacity failures. After investigating these different constructability issues and calculating factor of safety values, we found that our solution exhibits structurally sound qualities and is publically safe as well. The key to successful engineering is analyzing the situation from a public safety point of view, and determining whether a conservative or an aggressive approach should be used for that particular situation.

Table of Contents

Abstract I
Authorship Page II
Acknowledgments III
Capstone Design Experience Statement IV
Table of Contents VI
List of Figures IX
List of Tables XI
Chapter 1- Introduction 1
Chapter 2 - Background 3
2.1 Development of Previous Worcester North High Schools 3
2.2 Demand for a New High School 4
2.3 Development of the Worcester North High project 4
2.4 Project Organization 6
2.4.1 Gilbane Building Company 8
2.4.2 The Maguire Group. 8
2.4.3 The City of Worcester-Architectural Services 9
2.5 Construction Manager at Risk 9
2.6 Project Objectives and Expectations 10
2.7 Prior Challenges 10
Chapter 3 - Project Scheduling and Safety 12
3.1 Safety 16
Chapter 4 - Using BIM (Building Information Modeling) 17
4.1 Getting Started 19
4.2 Foundation 20
4.3 Steel 21
4.4 Quantity Take-Off/Cost Estimate 21
4.5 Concrete and Steel Quantity Takeoff 22
4.6 Steel Estimate. 24
4.7 Concrete Estimate 25
Chapter 5 - Earned Value Analysis 26
5.1 Earned Value Analysis 26
5.2 Project Background 29
5.3 Project Plan 29
5.4 Means/Methods 31
5.5 Project EVA Analysis 35
Chapter 6 - Design and Constructability Analysis of New Retaining Wall 41
6.1 Original Retaining Wall Design-Pre Construction Phase. 41
6.2 Retaining Wall Changes- During Construction 43
6.3 New Cantilever Retaining Wall Design with Counterforts 47
6.4 Preliminary Design 48
6.4.1 General Pressures on the Wall 49
6.4.2 Further Investigation and Shear Calculations 51
6.5 Stability Investigation 51
6.6 Steel Reinforcement 52
6.7 Design of Counterforts 54
6.8 Analysis of Retaining Wall Cross Sections 55
Chapter 7 - Results and Conclusions 57
7.1 North High Estimate 57
7.2 Earned Value Analysis 58
7.3 Retaining Wall 58
7.4 Gilbane/Owner Architect Meetings 61
Works Cited 63
Appendix A: Project Schedule as of March, 2009 64
Appendix B: Schedule January 2010 86
Appendix C: Bid Package Cost vs. Budget Estimate 107
Appendix D: Retaining Wall Design 108
Appendix E: Cullinan’s Retaining Wall Design 141
Appendix F: Monthly Man Hour Totals 142
Appendix G: Capstone Design Proposal 143
Appendix H: Pictures - North High 147
Appendix I: Tank Replacement Project Pictures 156
Appendix J: Revit Takeoff Sheets 166
Appendix K: Development of the WPI Recreational Center 233

List of Figures

Figure 1: Organizational Chart of the Worcester North High project 6
Figure 2: Construction Schedule Change Comparison 13
Figure 3: Floor Plan 14
Figure 4: March 2009 Milestone Schedule 15
Figure 5: North High 3-D Revit Model 18
Figure 6: Revit 3D Model Street View (North Elevation) 19
Figure 7: Revit Model Elevation Levels (Cross section) 20
Figure 8: 2D Ground Floor Plan 21
Figure 9: Foundation Detail 31
Figure 10: Concrete Pour 32
Figure 11: Concrete Footer Finish 33
Figure 12: Tank \#2 Concrete Pour 34
Figure 13: Concrete Hose 34
Figure 14: Concrete Finishing 35
Figure 15: Tank 24 WH Analysis 37
Figure 16: Tank 24 Cost Analysis 37
Figure 17: Tank 23 WH Analysis 39
Figure 18: Tank 23 Cost Analysis 39
Figure 19: Approximate Area of Construction 42
Figure 20: Approximate Area of Cliff 42
Figure 21: Riprap 43
Figure 22: Plan View of New Retaining Wall 44
Figure 23: New Semi-Gravity Retaining Wall 44
Figure 24: Cross Sections of Different Retaining Walls 45
Figure 25: Cullinan's Retaining Wall Design 46
Figure 26: Typical Counterfort Wall 48
Figure 27: Preliminary Design of Retaining Wall (Cross section, in inches) 49
Figure 28: Pressure on the Wall Due to the Surcharge 50
Figure 29: Plan View of Counterfort Wall 54

List of Tables

Table 1: Comparison of Construction Schedules. 12
Table 2: Steel Takeoff. 23
Table 3: Concrete Takeoff 24
Table 4: Steel Estimate 25
Table 5: Concrete Estimate 25
Table 6: Budget Work Hours 35
Table 7: Tank 24 Actual Cost/Budget Cost. 36
Table 8: Tank 23 Actual Cost/ Budget Cost 38
Table 9: Component Weights of Retaining Wall. 52
Table 10: Vertical and Horizontal Bars 53
Table 11: Horizontal and Vertical Reinforcement. 55
Table 12: Volume of Cross Sectional Area 55
Table 13: Cost of Steel Difference. 57
Table 14: Concrete Estimate per CY 58
Table 15: Steel Reinforcement. 60
Table 16: Counterfort Steel Reinforcement. 60

Chapter 1- Introduction

Anywhere in the United States, whether it is in the warm, tropical atmosphere of Florida or the frigid, arctic air of Alaska, structures have been a necessity of living for thousands of years and will continue to be in the future as well. The construction industry is one of the largest industries in the nation contributing to around 5\% of the United States' gross domestic product in 2007(http://www.bea.gov/). Currently with a tight economy, it is more important than ever for management to keep construction projects on time and within budget.

In the construction industry, project management involves the organizing and working with people to identify problems and determine solutions to situations that eventually occurs within the work site. With more sustainable times ahead, many owners are looking to save money on energy, water, waste disposal, and also reducing their carbon footprint and these changes generally reflect on the engineer and designer's ability to stay within a project scope. Not only do managers need to solve problems, but they also need to be a good motivator and communicator in order for a project to become successful. Projects use methods and tools to perform traditional management functions such as earned value analysis, scheduling, estimating, and now there is an increasing use of virtual construction and Building Information Modeling (BIM) to assist the managers in meeting the time, cost, and quality objectives of the project. In 1980, students and faculty of Worcester North High School moved from Salisbury Street in Worcester, Massachusetts to what was then called a temporary location at an old middle school building at 150 Harrington Way. This "temporary location" would serve as such for a period close to 30 years as plans for a new high school building were delayed several times due to lack of funding because the immediate need for a new school was not highly prioritized. Often seen during the last decade, the old middle school building was having trouble withstanding a
growing student population and could not keep up with the major changes in technology that have occurred over the years. Finally in 2003, the project was given the go ahead with the funding coming solely from the city of Worcester. The project for a new Worcester North High School broke ground in 2008 and has an estimated completion date for the fall of 2011. After the bidding process was completed, the city of Worcester selected The Gilbane Building Company as the professional construction manager, Maguire Group Inc. as the owner's project manager, and the city's own architect group, Worcester Architectural Services as the designer.

The 72 million dollar project includes 2 buildings, an auditorium, and gymnasium encompassing a total of 225,000 square feet. A project of this size in the heart of Worcester, Massachusetts requires efficient coordination between the owner, designer, general contractor, and subcontractors in order to be on time and on budget. Since construction started in 2008, there have been many issues with design and subcontractors which may have impacted the cost and schedule of the project

The focus of the report was to investigate and analyze the challenges of the construction of the new Worcester North High School. These are a construction management analysis, a construction cost estimate developed by using a Building Information Model, and an alternative design of the retaining wall located near the corner of the auditorium and building B

Chapter 2 - Background

This chapter presents the general information that is associated with the project. The planning and development of a new high school demands a lot of time, coordination effort, and money. The first part of this chapter discusses some of the history of the old Worcester North High School and the reasons behind the need for building a new, state of the art high school. Also included in this chapter are the general concepts developed for the management of the project, including the parties involved and the type of contract agreed upon between the owner and general contractor.

2.1 Development of Previous Worcester North High Schools

North High School is a four year public high school and is located on 150 Harrington Way in Worcester, Ma. North High is one of five public high schools that are in the city of Worcester and it is responsible for the education of 1,124 students as of October $1^{\text {st }}, 2009$. North High School is home to a diverse student population with 40.0\% Hispanic, 31.7\% White, 19.9\% African American, 7.8\% Asian or Pacific Islander, and 0.6\% Native American. North High School also has a large percentage of its students, 22.2\%, receiving special education services. All previous statistics are stated as of October $1^{\text {st }}, 2009$ by Principal Matthew Morse.

The building in which North High School currently inhabits was built in 1971 to be a Junior High School for the city; however in 1980 it became North High School. Prior to the move to the current site, North High School was located on Salisbury Street but after the move this building was closed and sold to a private developer. The move to Harrington Way was considered to be a temporary solution at the time. In 2000 the Worcester City Council agreed to the construction of a new North High School. The completion of the new North High School is
expected to be done by September 2011, in time for the 2011-2012 school year and finally finishing a 30 year period that was spent in the temporary building.

2.2 Demand for a New High School

The community in the temporary building was long overdue for a new high school. In the year 2000 the Worcester City Council deemed the current building old and worn down, and they decided to go ahead with the plan to construct a new high school. Recent malfunctions of the current building were reported in the press (Worcester Telegram \& Gazette, 2007). According to the article; Lauren E. Morocco, 17, and Kamerin J. Perkins, 18, both seniors, said they're happy future generations won't be subjected to the conditions of the current building, with its broken floor tiles, moldy ceiling tiles, small lockers built into classrooms instead of hallways and lights occasionally sparking (http://www.thefreelibrary.com).

In 2008 Worcester North High School set out to develop an improvement plan for its students from 2008 to 2010. Part of this plan included the building of a new, modern high school that could supply all of its students the proper classrooms and equipment to succeed. As stated in North High School's improvement plan mission statement, "The design plans for a new North High School will provide a facility that thoroughly supports our conversion to smaller learning communities."

2.3 Development of the Worcester North High project

Troubles for the building of a new North High School in Worcester started with the move to a temporary building meant for middle school students in 1980. This switch has lasted for almost 30 years because of lack of funding to build a new high school. Then in the year 2000, the Worcester City Council gave the go-ahead to the building of a new North High School, a project that was long overdue. The original estimated cost for the new Worcester high school was $\$ 50$
million in 2000. This project was slow to start and ran into delays. With the rising construction costs from 2000 to 2006 the estimated cost for this project jumped to roughly $\$ 78$ million.

Then in 2006 the Massachusetts School Building Authority took over the school building aid. The new authority made changes to the states reimbursement schedule for new school projects, changing a Massachusetts's city reimbursement for new schools from 90% to 70%. This new ruling left the city of Worcester with a $\$ 23.6$ million funding gap for the new North High School. The North High project seemed to be dormant again.

In October of 2006 the city manager of Worcester, Michael V. O'Brien, revived the new Worcester North High School project. He unveiled a new plan starting with the reduction of square footage in the school. The plan stated 40,000 square feet was to be removed from the design of the new North High School. This reduction left North High School with 190,000 square feet. Reductions were made in public rooms and classrooms in the building. The reduction shrunk parts of the atrium, reduced seating accommodation in the auditorium from 700 to 425 seats, and the gymnasium capacity to 1,295 people. The 16% shrinkage of the building lowered the overall projected cost from $\$ 78$ million to $\$ 72.8$ million. The redesign of the school delayed the project start date by $21 / 2$ months, town officials however were still confident they could make up this time and stay on schedule to finish in September of 2011 for the beginning of the school year.

The new arrangement set up a new financing plan which would have the state of Massachusetts contribute $\$ 45$ million to the new North High School's project cost. The plan had the city responsible for the remaining $\$ 27$ million. Out of the city's responsibility $\$ 15$ million of this would come from the state as part of a 2% interest loan. The other $\$ 12$ million the city is responsible for was to be borrowed at a higher undisclosed interest rate.

2.4 Project Organization

The City of Worcester is the owner of the new North High School in Worcester. The construction is being managed by Gilbane Building Company. The contractual arrangement between the owner and the contractor is Construction Management (CM) at risk. CM at-Risk is a delivery method which entails a commitment by the construction manager to deliver the project within a Guaranteed Maximum Price (GMP). The architect on the job is Architectural Services, an entity of the city. The Maguire Group is a consultant to the city of Worcester for the design of the project. There are also many subcontractors associated with the project. An organization chart is shown in Figure 1.

Figure 1: Organizational Chart of the Worcester North High project

The agreement between Gilbane Building Company and the City of Worcester for the construction of the new North High is divided into two phases. The first phase includes site work, concrete, and steel amendments worth roughly $\$ 13$ million dollars using a GMP contract. Major site work was completed by Marion Brothers, Inc. from 2008 to March of 2009. The cast-in-place concrete was completed in early spring 2009 by Francis Harvey \& Sons, Inc., while the cast-in-place flat work was completed by October 2009 by JL Marshall and Sons. The structural steel was completed by United Steel, Inc., in November of 2009. The second phase will be a GMP contract negotiated between the two parties. At the time of the completion of this study a GMP had yet to be agreed upon between the two parties. The project is broken down into 2 phases because it is a fast track project, which means construction starts before the final design is complete. This allows the contractor, Gilbane to start construction on the early parts needed for the building, that is, site clearing and excavation, concrete, steel erection, rough-in plumbing and electrical.

The sub-contractors hired on this job are being selected through the filed sub-bid process. Massachusetts General Laws require what is known as the "filed sub-bid" system for selecting certain subcontractors on various public construction projects. The Law requires that contractors submit construction bids in two phases. First, subcontractors must submit their bids to the Awarding Authority, which will compile a list of all sub-bids received. The Awarding Authority will send the list to all interested general contractors. Interested contractors will then need to submit their bid including any filed sub-bidders that will be used on the work. It’s important to note that the general contractor is not obligated to use the lowest bidder. In the case of North High, Gilbane needs to get approval by the owner before contracting any sub-contractors.

2.4.1 Gilbane Building Company

Gilbane Building Company is a leading construction management firm, based in Providence RI, providing a full slate of facilities-related services for clients in the healthcare, education, government, convention/cultural, mission-critical, corporate, sports/recreation, life sciences, transportation, and criminal justice markets. Gilbane is a highly respected firm in the construction industry with annual revenues that top $\$ 3.5$ billion and is \# 18 on the top contractors in the US according to ENR (http://enr.construction.com/toplists/Contractors/001-100.asp). The main individuals working on this project from Gilbane include:

- Project Executive - William Kearney
- Project Manager - Tony Iaccarino
- Field Superintendent - Al Abdella
- Project Engineer - Don Venerus
- Project Engineer - Melissa Hinton

2.4.2 The Maguire Group

The Maguire Group is one of the nation’s leading Architectural, Engineering, Planning and Construction Management firms. They are assisting the owner in both the engineering and construction phases of the work. They mainly help the city of Worcester on major decisions when it comes to cost. Other projects they have worked on in the city of Worcester include WPI's new Gateway education facility and Union Station. Some of the main individuals working on this project from the Maguire group include:

- Vice President of Project Management - Tony DiLuzio
- Project Manager - Ted Fiffy

2.4.3 The City of Worcester-Architectural Services

The city of Worcester is the owner and architect for this project. It is unusual to come across a party assuming the responsibly of both the owner and the designer/architect, but the city of Worcester decided that this type situation would work best for this project. Architectural Services is a subdivision of the Department of Public Works or Worcester, meaning they are city employees. Architectural Services provides professional services for the design and construction of City of Worcester owned buildings. Since its creation in 1993, this group has completed over 150 assignments. Major individual associated with this project from the city of Worcester include:

- Designer/Architect - Eric Twickler
- Principal of Worcester North - Matthew Morse
- Assistant Commissioner of Public Works - Paul Moosey

2.5 Construction Manager at Risk

As described briefly above, CM at-Risk is a delivery method which entails a commitment by the construction manager to deliver the project within a Guaranteed Maximum Price. The construction manager acts as construction consultant to the owner in the development and design phases. In addition to acting in the owner's interest, the construction manager must manage and control construction costs to not exceed the GMP, which would be a financial hit to the CM Company. If the contractor completes the job under the GMP, the savings goes back to the owner, or in many cases, shared among the owner and the contractor. This would be determined at the beginning of the project and stated in the contract between the two parties.

This type of project delivery system allows the Owner, Construction Manager and Architect/Engineer to work as a unified team. It is advantageous to include the Construction

Manager at the start of the project to gain the full benefits of their construction knowledge for the team. It is also important that all team members understand their duties and responsibilities required for a successful project. Before design of a project is completed the CM is involved with estimating costs of constructing a project based on hearing from the designer and Owner on what is going to be built.

2.6 Project Objectives and Expectations

A major decision that parties involved with the project, especially the general contractor, is establishing a clear difference between the wants versus the needs. A meeting with Melissa Hinton, who is a project engineer for Gilbane, further discussed the importance of choosing between wants and needs. The types of decisions made in this area of the design process could be the difference between performing under budget or over budget (Hinton, 2009).

Major decisions that were discussed in the meeting were deciding on solar water heaters, smart boards, and a high powered air conditioning unit. The problem with choosing these commodities is that they are great to have in the near term but will not give a financial return until the long term. With a tight economy currently, there are hundreds of these decisions that the project team (contractor, architect, owner) have to make. All parties are involved because an architect will present an idea or concept, the contractor will review the financial impact it will have on the project and give input to the owner on what to do or present alternatives and then it is ultimately up to the owner to make the decision. (Hinton, 2009).

2.7 Prior Challenges

Problems are a common in the construction industry. Ranging from the effects of the national economy on the budget of projects to faulty designs of the structure, poor workmanship
by the subcontractor and flawed materials arriving on-site. Delays are a common occurrence during construction and project managers must be diligent to keep the project on schedule. Every construction project has to deal with dilemmas whether they are long term or day to day and this was also a common theme for the Worcester North High Project.

Chapter 3 - Project Scheduling and Safety

The activities that are necessary to build the project are interconnected in terms of their sequencing of execution so a schedule based on the order they can be completed in the most economically logical and physically logical procedure to achieve a fast completion time.

Schedules are developed to determine the time and order of execution of each of the activities.
Cash flow analysis is an extension of the use of the schedule in which the cost associated to each activity is projected over time.

The summary of the original North High School project schedule dated March 3, 2009, contained 15 main activities that last from the start date, March 2009, until the final estimated early completion date, May 11, 2011. The updated schedule as of September 18, 2009, had a changed estimated early completion date of September 8, 2011. This final date has since changed again to August 29, 2011. Changes to the schedule have been made again as of January 22, 2010. The chart below shows the 13 project milestones and their anticipated completion dates. Figure 2 is a chart displaying the information in Table 1.

Item	Proposed Completion as of 3/12/2009	As of 9/18/2009	As of 1/22/2010
Final GMP Submitted	$6 / 8 / 2009$	$11 / 18 / 2009$	$3 / 11 / 2010$
Final GMP Approved	$8 / 7 / 2009$	$1 / 18 / 2010$	$5 / 10 / 2010$
Interior Framing Complete	$3 / 22 / 2010$	$4 / 28 / 2010$	$5 / 14 / 2010$
MEP Rough-In Complete	$8 / 11 / 2010$	$6 / 24 / 2010$	$7 / 19 / 2010$
Exterior Skin Complete	$7 / 14 / 2010$	$10 / 27 / 2010$	$11 / 30 / 2010$
Elevators Complete	$7 / 19 / 2010$	$11 / 24 / 2010$	$12 / 6 / 2010$
Site-Work + Landscape Complete	$8 / 11 / 2010$	$11 / 24 / 2010$	$12 / 29 / 2010$
Roof Complete	$1 / 28 / 2010$	$11 / 24 / 2010$	$12 / 29 / 2010$
Finishes Complete	$11 / 22 / 2010$	$1 / 6 / 2011$	$1 / 14 / 2010$
General Punch List Complete	$3 / 16 / 2011$	$3 / 17 / 2011$	$3 / 25 / 2011$
Project Substantial Completion	$3 / 16 / 2011$	$3 / 17 / 2011$	$7 / 21 / 2011$
Certificate of Occupancy	$3 / 16 / 2011$	$3 / 17 / 2011$	$7 / 21 / 2011$
Project Final Completion	$5 / 11 / 2011$	$9 / 8 / 2011$	$9 / 16 / 2011$

Table 1: Comparison of Construction Schedules

Figure 2: Construction Schedule Change Comparison
The most up to date schedule as of January 22, 2010 now shows the final completion date to be September 16, 2011. Along with the final completion date of the project, other critical items have been delayed. A major reason for the delay of the project is the city architect, City of Worcester Architectural Services, who has been unable to answer request for information (RFI's) from subcontractors in a timely manner. In an attempt to pick up the pace of the project activities the Construction Manager Gilbane Building Company, accelerated the installation of gypsum board in building A and B instead of wrapping the building for the winter season. The reason wrapping the building, or closing the building in, is essential is because workers will not be able to work on interior installations during the cold New England winter months.

Figure 3: Floor Plan
The process used by Gilbane Building Company to deliver the North High School project was a fast track method. In the preconstruction phase of the North High School project, two main activities were performed. The architect/engineer designed North High School including Building A and B which is predominantly classrooms and Building C which includes an auditorium and gymnasium. The construction document phase began after development of the detailed design by the architect. Construction documents are extremely critical because these are needed in order to put out and receive bid from construction subcontractors. Since this project is based on the fast track method the procurement phase started upon completion of schematic designs. The construction phase of North High School contains 12 critical activities. Please refer to Appendix A for a schedule of the project. Site work included excavation and tree removal of the site to make room for the four-story high school, gymnasium and auditorium. The concrete foundations were poured and the structural steel was erected. Metal decking with cast in place concrete floors was used for the floors of the second, third and fourth floors. Following the
erection of the shell of the building, exterior studs were installed and the exterior skin and exterior roof followed. The summary of activities also included the installation of elevators, exterior metal panels and windows, interior framing, finishes and commissioning. The completion phase of the project is known as the close out phase. As you can see below this is the milestone summary as of March 2009.

Figure 4: March 2009 Milestone Schedule

3.1 Safety

Safety in the construction industry has changed drastically in the past 20 years. Very rarely do you see men climbing 15 stories above ground level on steel beams without harnesses or sites where construction workers aren't wearing hard hats. Regulations have been set at stricter standards and firms are taking it very seriously. To work for certain owners or even in certain industries, such as the petro-chemical industry, a superb safety record is a must to even be allowed to bid on projects. On a lot of sites, such as Gilbane’s North High, new workers must go through a site safety orientation that covers all general safety rules and any site specific rules that may exist. If you are a visitor on site you must be accompanied by someone who has been orientated and familiar with the site. The safety regulations have led to the upbringing of "tool box" meetings and "activity plans" where the foreman goes over with the crew in the morning that activities of the day and the hazards that are accompanied with the tasks. These types of meetings and plans are nearly required on most any large jobsite.

Gilbane Building Company also has an organized monthly man hour report that includes deliveries, visitors and man hours. In this report drug tests are tracked with positive and negative results, incidents and the percentage rate of occurrences are followed, lost time is counted and the project schedule value analysis is calculated. Four workers have tested positive for a banned substance out of 163 since Decemeber 2008. The data has tracked 50,421 man hours as of December 2009 and has recorded only 2 incidents, both in the previous 5 months. It's important to note howevere there have been no lost time incidents on the project. This information can be found in Appendix F.

Chapter 4 - Using BIM (Building Information Modeling)

Estimating the cost of construction projects is an extremely important aspect of project management. An estimate of a single job can directly affect the profits made by a construction firm. When a project is awarded the budget is developed from the estimate and the owner expects the contractor to meet their budget. At the same time, if the estimator doesn't accurately estimate a job, the firm may not win that many competitive bidding jobs. There are many different ways to estimate jobs when finding the material quantities, from doing it by hand on smaller jobs to using software to do the take-offs. One the defined quantities are calculated a unit price for each of these quantities is assigned and a total cost estimate is developed. The type of project makes the difference whether you can do the take off by hand or are able to use some software. On civil engineering projects, take-offs are usually done by hand because civil engineering projects encompasses so many different structures. In estimating commercial work, it's easier to do the material take-off with Building Information Models because commercial work is all very similar in that they contain columns, girders, foundations, etc. This software uses an object orientated-parametric 3D technology that makes it possible to extract the quantities directly from the BIM.

Figure 5: North High 3-D Revit Model
The software program that was used by our MQP team to develop the building model of North High School is called Revit Structures. Revit Structures was developed by Autodesk in 2008 that was meant to be used as a program to extract quantities of work for the model that in turn becomes part of the components of a cost estimate. The development of the Revit model came in stages from the grid lines and elevation settings to the final elements and final review. North High School was broken into three main sections; buildings A, B and C. The first buildings developed were buildings A and B of North High School, which are predominately classrooms, because of their structural similarity. Then following the completion of buildings A and B, building C was developed. Building C houses the auditorium, locker rooms, weight room and gymnasium. This model is based on 2D drawings provided to us by Gilbane generated by the architect.

Figure 6: Revit 3D Model Street View (North Elevation)

4.1 Getting Started

The first step in building the North High School model was to develop grid lines and establish elevation levels. The elevation levels were created in order to clarify a correlation between the architectural drawings developed by Architectural Services and our Revit model. The North High School Revit model has 12 elevation levels in all, ranging from the ground floor to the top of the auditorium parapet. After an element is added to a particular level it can be viewed from a 2D view options, the software is created to initially offer north, south, east and west views showing the vertical picture of the element.

Figure 7: Revit Model Elevation Levels (Cross section)
Other viewing options are the 3D views, different 3D views can be developed manually and the standard view is offered initially. The 3D views can be rotated at will using A navigation cube is located in the upper right hand portion of the screen; this cube can be used to change the 3D view to investigate and visualize different parts of the model.

4.2 Foundation

Following the implementation of grid lines and elevation levels the next step of the BIM development process was to insert column footings. This function was very simple and completed by following the specifications and making sure each individual footing property matched the specified size. With the footings in place, there weren't any foundation walls to be
inserted for buildings A and B. The foundation wall for building C was implemented later in the process because it had complex elevation changes.

Figure 8: 2D Ground Floor Plan

4.3 Steel

Once the foundation was completed, the steel columns were placed in REVIT in compliance with the specifications of the project. The columns in buildings A and B were predominately similar. Building C was more advanced in the difficulty of the design. Building C includes the auditorium and gymnasium. The auditorium included the stage, arena seating, and a parapet. Overall over 2500 steel beams were used in the construction of North High School.

4.4 Quantity Take-Off/Cost Estimate

The cost estimate for North High School was developed by using the architectural plans and specifications. The drawings that were used to complete the take-off are comprised of the four floor levels of buildings A and B, the three levels of the auditorium and the gymnasium. The
materials that were quantified included concrete and steel. The cost estimate for North High School was created by using pricing from the 2010 version of R.S. Mean's method of Building Construction Cost Data. The R.S. Mean's Construction Cost Data book contained the average prices for different types of material that are used in construction, the book also contains a location factor that adjusts costs to the specified area the project is in. The location factor for Worcester is 109.5.

4.5 Concrete and Steel Quantity Takeoff

The concrete and steel takeoff was performed by Revit Structures using the Schedule function. Revit counted each individual piece of steel or concrete element and created a list of information containing the type of element, the volume and the length. From this all that needed to be calculated was collecting each element into groups of the same element. After the steel elements were properly grouped the tonnage had to be calculated. The tonnage of steel was found by following a few steps. The total length was found by adding up the lengths of each piece of steel with the other pieces of steel in their respective group. Then pounds were found by multiplying the pounds per linear foot with the total length. After each group had a total amount of pounds they were all added together and multiplied by 1.1 to take in account for the connections, this gave the overall weight of the steel in pounds. Tonnage was then found by dividing the weight in pounds by 2000. North High School ended up containing 944.16 tons of structural steel according to the Revit model. Table 2 shows the steel quantity take-off.

Type	Total Length	Lbs/Ft	Lbs
HSS5X5X5/16	2705.777	19.08	51626.22516
W8X10	27.458	10	274.58
W8X18	54.229	18	976.122
W10X12	2878.51	12	34542.12
W10X15	1380.083	15	20701.245
W10X22	555.458	22	12220.076
W12X14	1691.635	14	23682.89
W12X16	42.2	16	675.2
W12X19	200.281	19	3805.339
W12x26	2363.198	26	61443.148
W12X30	74.667	30	2240.01
W12X35	37.333	35	1306.655
W12X40	168	40	6720
W14X22	4335.01	22	95370.22
W14X30	2506.688	30	75200.64
W16X26	15749.27	26	409481.02
W16X31	205.927	31	6383.737
W16X36	325.416	36	11714.976
W18X35	2596.5	35	90877.5
W18X40	368	40	14720
W18X50	218.667	50	10933.35
W18X60	140	60	8400
W18X76	18.25	76	1387
W18X97	69.167	97	6709.199
W21X44	165.167	44	7267.348
W21X48	246.573	48	11835.504
W24X55	2518.083	55	138494.565
W24X62	540.833	62	33531.646
W24X68	82.583	68	5615.644
W24X76	346.667	76	26346.692
W27X84	322	84	27048
W30X99	4749.667	99	470217.033
W30X116	105	116	12180
W33X118	277.333	118	32725.294
*Multiply by 1.1 for connections	Lbs	1716652.978	
		Lbs	1888318.276
		Tons	944.159

Table 2: Steel Takeoff

The concrete quantities were grouped into rectangular footings, wall foundations, and foundation slabs. The structural foundation schedule that was developed by Revit did not automatically group the concrete items into families, this was completed manually. Overall there was $113,385.03$ cubic feet in the Revit model, the total cubic feet converted to cubic yards is 4200 cubic yards. This was found by dividing the cubic feet by 27 .

Structural Foundation Schedule							
Family and Type	Quantity	Volume	Unit				
Rectangular Footing	128	742	CY				
Wall Foundation	9	28	CY				
Foundation Slab	7	3430	CY				
					Subtotal	4200	CY

Table 3: Concrete Takeoff

4.6 Steel Estimate

The estimate of the structural steel for North High School, budgeted for by Gilbane Building Company, was $\$ 2,890,000$. The actual award amount was $\$ 2,870,000$ to United Steel, Inc. As of 10/28/2009 change orders had raised the total cost of the structural steel to \$3,163,901. The quantity developed by the Revit model found to have 944.159 tons of steel and using RS Means Building Construction Cost Data 2010 the average price for steel by ton for a high school was \$3,216 for bare costs. For the Revit estimate the location factor of Worcester, Ma factored into the cost was 109.5. Using the price given by RS Means costs, the overall Revit model estimate for structural steel came to $\$ 3,324,875$. The Revit estimate ended up being 4.84%, or $\$ 160,974$, higher than the actual cost Gilbane Building Company was required to pay. These numbers are considering that North High School falls directly in the middle of minimum and maximum sized high schools.

Variable	Price	
Average \$ per Ton	$\$$	$3,216.00$
Steel Tonnage	$\$$	944.16
Location Factor		110%
Revit Estimate	$\$$	$3,324,875.00$
Gilbane Cost (10/28/09)	$\$$	$3,163,901.00$
Difference	$\$$	$160,974.00$

Table 4: Steel Estimate

4.7 Concrete Estimate

The concrete for North High School was grouped into three main families; rectangular footings, wall foundations, and foundation slabs. Using RS Means, prices were found for the cost per cubic yard of the specific concrete. The average price for 4000 PSI concrete with no additives was $\$ 113$ per cubic yard according to RS Means. Each of the three groups have different specifications in their mixes and require certain additives, this can be seen by the varying prices. The Revit model found that North High School had a volume of 4200 CY of concrete and breaking the total amount into three groups and assigning different prices to them the overall estimated cost was $\$ 814,740$. Table 5 displays the concrete estimate.

Structural Foundation Schedule										
Family and Type	Price Per CY		Volume	Unit	Cost					
Rectangular Footing	$\$$	277.70	742	CY	$\$ 206,053.40$					
Wall Foundation	$\$$	371.80	28	CY	$\$ 10,410.40$					
Foundation Slab	$\$$	152.83	3430	CY	$\$ 524,206.90$					
Location Factor							110%	$\$ 74,067.07$		
	4200								CY	$\$ 814,737.77$

Table 5: Concrete Estimate

Chapter 5 - Earned Value Analysis

This part of the report performs an earned value analysis that was not conducted on the new Worcester North High School construction project; however, it was performed on a steel tank bottom replacement job by Cianbro Corporation in South Portland, Maine. The main reason for this decision is based on the level of detail available to conduct the analysis. The North High School project is being managed by Gilbane Building Company who does not self-perform the construction work. Therefore, labor utilization reports are not detailed enough whereas in the case of the steel tank replacement project, Cianbro Corp. self-performs the work, and the detailed documentation needed for the analysis was readily available to one of the authors.

5.1 Earned Value Analysis

Earned Value Analysis (EVA) is a technique project manager's use on all types of construction projects. This analysis is used to determine more accurately if a given project is on schedule and within budget. (Professional Construction Management, Donald S. Barrie, Boyd C. Paulson) Earned Value analysis uses three fundamental factors:

- Planned Value: This consists of the planned work, along with the authorized budget, within the authorized time-frame, which in total forms the project baseline.
- Earned Value: This is the real work that has been completed in relation to the Planned Value. A budgeted amount is earned as a task is completed up to the total Planned Value.
- Actual Costs: These are the actual costs incurred in the project regardless of the Planned and Earned Value.

The analysis uses the concept of quantity to complete to perform the analysis and to tie all three values together. An estimate is completed at the beginning of the project which was discussed in a previous chapter. In the estimate quantities of work are put together and money is
allocated to the given quantity of work; such as cubic yards of concrete, square footage of brick, tons of steel etc. Throughout the project the management team has to update the quantity of work completed to determine the percent complete. The analysis is performed by looking at the time and money it took to complete the given quantity of work put in place (percent complete) and to forecast the time and money it will take to perform the "quantity to complete." It's important to use the correct units of measurement for work completed in each activity as this could lead to major errors in the budget forecast; for example if the budget is estimated in tons of steel; tons of steel needs to be entered in for the quantity completed, not pounds or kilograms.

From this analysis a project manager can tell if the job is over or under budget and behind or ahead of schedule on lump sum projects. Below is a simple example.

From The Budget:

Formwork estimated at 300 WH 's for 1200 SF (total quantity) or . $25 \mathrm{WH} / \mathrm{SF}$

At a given time " x " the Planned Work was the following:

120 WH to complete $\mathbf{4 8 0}$ SF. Quantity to complete would equal 720 SF.

The Actual Work at time " x ":

130 WH to complete 600 SF (quantity completed, 600 SF to complete; 50\% complete)
Earned WH = . 25 (from budget) X 600 (SF completed) or 150 WH's
Cost Variance: 150 WH (Earned) - 130WH (Actual) $=20$ WH Under Budget
Schedule Variance: 150 WH (Earned)-120 WH (Planned) = $\mathbf{3 0}$ WH Ahead of Schedule
This type of analysis is extremely useful for large general contracting firms who selfperform all or most of their work. This analysis is useful in developing project projections for the end of the job. This analysis can be used for every portion of the job, from pouring concrete to
the amount of consumables used to overhead on the job. Not only does this analysis help out the current project but can also help estimate future work that is similar.

For pure construction management firms who do not self-perform any work, the technique is used a bit differently; as they are not so much concerned about budgetary numbers from activity to activity, as they usually contract out packages of work on a lump sum basis, as much so as the schedule. From looking at what a sub-contractor has completed versus what work he has left, the project manager can determine what the production rate of a certain activity is and from that project how much longer it will take the contractor to complete the work. This gives the project manager a leg up on any negotiations with the sub-contractor to bring more people on site if they are falling behind on their work.

The project manager is also concerned about how much more or less he is paying the subcontractor to what it should be paying. At the beginning of the job, when a sub-contractor is brought in, they will usually give the CM what is called a schedule of values. This schedule of values allocates values for the various parts of the work. Mobilization, excavation, backfill and demobilization are typical activities you may find on an earthwork sub-contractors schedule of values. The sub-contractor will associate a cost to each of those different activities and use this as the basis for submitting and reviewing progress payments. It is up to the project management team to confirm the percent complete on the schedule of values by verifying in the field what has been done. This usually does not need to be an exact science but the project manager needs to make sure that the sub-contractor isn't asking for money for work that hasn't been completed at the time of payment.

5.2 Project Background

For the EVA analysis of this report, we looked at steel tank bottom replacement job being performed in South Portland, Maine. The project consisted of replacing the steel bottoms of two 150’ diameter oil tanks and installing a foundation and a leak detection system. For this to be performed the old floor (bottom?) had to be cut away from the tank shell and the entire shell had to be jacked up 3' in the air with the use of twenty-four 70 ton air bags. Pictures can be found in Appendix H. This allowed for the excavation to take place for the concrete ring-wall. Inside the tank shell a center sump and leak detection piping was installed to detect if any leaks occurred. On top of the old steel floor an 80mm liner was installed to act as a diaper if a leak were to occur. On top of the liner, rings of cathodic protection were laid to prevent rusting of the new floor. One foot of sand was then installed over the liner and cathodic protection which the new floor was to lay on. The General Contractor (GC) self performed the jacking of the tanks, with the consulting of a professional tank-jacking sub-contractor, the leak detection piping and the concrete work. The GC crews were also needed to assist the sub-contractors on-site. The earthwork, liner, cathodic protection and steel floor work has all been sub-contracted out to various contractors. A "picture slideshow" of the project can be found in the Appendix H.

5.3 Project Plan

Although a smaller project, this type of self-performed lump sum work creates a lot more overlooking with the actual work of the job then than a pure CM job. Not only does the project manager have to manage the self performed work but also the work of the sub-contractors. Responsibilities such as deciding how many workers the job needs from month to month, what sort of hours they are going to work, the buyout of materials and management of equipment onsite make the job more a little more involved. These items need to be combed over with a
magnifying-glass weekly because any sort of mistake comes directly out of the contractor's pocket. While overseeing the work, the project manager has to make tough decisions regarding budget and schedule. For example, if an activity is falling behind schedule, is it worth to work the overtime and pay the extra money to get back on schedule?, or does he believe they'll be able to make it up somewhere else on the schedule and continue to work 40 hour weeks? Items like this arise all the time and have to be managed correctly, while also managing sub-contractors onsite.

To getter a better understanding of both types of management we looked at activities that were self performed by the General Contractor which included all the concrete related work of the project. The concrete work included the buyout of all materials required on-site; the concrete itself (5000 psi and 2000 psi), the reinforcing steel and the formwork and all of its accessories. The estimate and schedule of these activities will be discussed in the analysis section.

For the GC's jobs, the project team develops a unit analysis report at the beginning of the job. This report includes what they call phases; these phases include work to be performed, OH costs, equipment costs, burdens, etc. In each phase they break the phase down into sub phases. These sub-phases include regular labor, overtime labor, materials, etc. In each phase there are a total number of units (yards of concrete, square footage of formwork, etc) and a budgeted amount for each sub phase they get from the estimate. Also in each phase are columns for costs to date and projected final costs. When entering the costs to date, the engineer/project manager also has to enter the quantity of work completed. Doing this the report will calculate the production rate and this will be used to determine the projected final costs based on the percentages. This will be elaborated on further on in this section. This report is extremely important to the management team as it tells them whether the job is over or under budget. The
project team however, has to do a good job of updating the quantities in each phase of the report because if not, this could yield falsie projections in the projected final column.

5.4 Means/Methods

The design of the ring-wall was a simple design, it contained a footing and the wall was to be 3' tall by 2' wide around the perimeter of the tank, approximately 472 feet. Where bedrock was encountered above the base of the footing elevation, the ring-wall or footing was to be constructed on the bedrock. The top of the wall contained a $3 / 4$ " chamfer that also contained a slope, special screeds had to be constructed to get this finish. The reinforcing steel in the foundation was relatively large rebar, \#6 and \# 9 bars. Number 6 bar weighs 1.5 lbs/ft while number 9 bar weighs $3.5 \mathrm{lbs} / \mathrm{ft}$. A drawing of the wall can be seen in Figure 7. Cianbro does a lot of concrete work but this was the first time doing one of these projects so there was an expected learning curve throughout the project. The good part of this job was that two tanks needed to be modified so whatever worked and didn't work on the first could be changed accordingly for the second tank.

Figure 9: Foundation Detail

Once the tank shell was jacked in the air and the excavation was complete, the Cianbro crews needed to pour the footing. Although the footing could have conformed to the excavated trench, it was decided that it would be more cost effective to have the crew spend a day forming up the footing then paying for much more concrete to fill the trench. The formwork was very rough and made out of plain pieces of plywood. Access around the tank was limited so the use of a pump truck was incorporated. The pour started at 7am, was finished by 10am and 86 yards of 2000psi concrete were used. The concrete crew consisted of a man on the end of the pump hose, 2 men on a vibrator and 2 men backfilling the form so they wouldn't blow out. A picture can be seen in Figure 8 below.

Figure 10: Concrete Pour

Figure 11: Concrete Footer Finish
Although the pour only lasted 3 hours, it was important for the management team to have planned other activities for the crews to do the rest of the day. If not, the crews would still get paid for 10 hours of work for that day in the pouring concrete phase which could really hurt the budget on a small project like this. In self-performed work, the planning of work from day to day is extremely crucial for a successful project.

Once the footing was cured, the formwork was removed and the formwork for the wall was put into place. To get the layout of the wall, a tape was pulled from the center of the tank to the inside of the wall every 18 feet. Once the marks were around the perimeter of the footing, a previously made cut-out of the radius was laid and the inside of the wall was marked out on the footing. The inside formwork was put up first and this took 2 days. The rebar was next to been installed and this took 3 days. The \#9 bars came in 30 ’ lengths and with a weight of $3.5 \mathrm{lb} / \mathrm{ft}$; these pieces were quite heavy and needed four guys to put up and tie. The installation of the rebar took 3 days. Once the rebar was complete the outer formwork was put up and the crews
were ready to pour. For the first tank, 2 concrete pumps and two finishing crews were used. After completing this with no problem it was decided to only use one pump truck and one finishing crew on the second tank, see Figure 11. The first tank took less time out of the day but the second tank was more cost efficient as we used less work hours than the first tank and the job only had to pay for the use of one pump truck instead of two. Photos of the concrete pour can be seen below and more can be found in the Appendix H.

Figure 12: Tank \#2 Concrete Pour

Figure 13: Concrete Hose

Figure 14: Concrete Finishing

5.5 Project EVA Analysis

Throughout the duration of the project each week the management team will updates its "unit analysis reports" better known as earned value reports. For each week the project manger or engineer will look at the number of hours used for a given activity and update the quantity completed for that week. Based on the quantity completed to that point and the WH's used it will determine a new unit/hour number and apply that to the quantity to complete to get the estimated number of work hours to complete the job. By doing this every week the project management team can make sounder decisions on the project.

For this study the team looked at the concrete portion of the job in South Portland.
Below is a breakdown of budgeted work hours for each tank and the total quantity of units for each activity. The duration of the concrete portion was estimated at 14 days; by the book this means we should have had 7 men on site to complete the work in that time period.

Activity	Budget WH's	Unit	Quantity
Formwork	612	SF	2850
Rebar	166	Tons	7
Placing	230	Yards	360
Total	1008		

Table 6: Budget Work Hours

For the first tank, everything went accordingly to plan with the actual WH's used nearly identical to the budgeted work hours This doesn't tell the whole story though, not only does the management team need to look at the number of hours used but the wages rates as well. At first glance it will look good if your budgeted hours are the same as your actually WH's but if your actual wage rate is $\$ 5.00$ more than your budgeted wage rate, your budget will be shot. To keep confidentiality a wage rate of $\$ 25.00$ was used for the budgeted actual wage rate and the actually wage rate was used at $\$ 26.25$ (Note: the actual wage rates were 1.05% higher than the budgeted wage rates for the actual job and this is how the $\$ 26.25$ was determined.) As described above in the means and methods section the concrete portion of the first tank took 10 days. A spreadsheet giving a good synopsis of the first tank completed can be seen below.

Table 7: Tank 24 Actual Cost/Budget Cost
Analyzing these data shows that the concrete activities were 4 days ahead of schedule, 6 hours over budget that equals out to $\$ 1,418$ over budget. On a project this size, 6 hours and
$\$ 1,418$ is not a bad loss; time is money and getting ahead of schedule by 4 days is economically more beneficial than $\$ 1,418$. A graph displaying these different items can be seen below.

Figure 15: Tank 24 WH Analysis

Figure 16: Tank 24 Cost Analysis

The second tank went a lot smoother than the first as there was a "learning curve" from the first tank; the craftspeople knew what to expect and what problems to look for on the second tank. Not only did the "learning curve" assist the craftspeople but also management team. The management team realized that the amount of work needed to be put in place didn't require as much labor as estimated so the crew was cut down by 3 workers. Getting ahead of schedule on the first tank also made it easier to make this decision as there was some "float" in the schedule. The second tank took longer than the first tank to complete but saved a lot of WH's and still finished on schedule. The spreadsheet can be seen below.

Day	Budgeted WH's	Actual WH's	Earned WH's	Actual Cost	Budgeted Cost		
$\mathbf{1}$	72	61	78	1531	1800		
$\mathbf{2}$	144	122	155	3050	3600		
$\mathbf{3}$	216	183	233	4575	5400		
$\mathbf{4}$	288	244	310	6100	7200		
$\mathbf{5}$	360	305	388	7625	9000		
$\mathbf{6}$	432	366	465	9150	10800		
$\mathbf{7}$	504	427	543	10675	12600		
$\mathbf{8}$	576	488	620	12200	14400		
$\mathbf{9}$	648	549	698	13725	16200		
$\mathbf{1 0}$	720	610	775	15250	18000		
$\mathbf{1 1}$	792	671	853	16775	19800		
$\mathbf{1 2}$	864	732	930	18300	21600		
$\mathbf{1 3}$	936	796	1008	19900	23400		
$\mathbf{1 4}$	1008						
	Delta	398		Delta	9950		

Table 8: Tank 23 Actual Cost/ Budget Cost

Breaking this spreadsheet down shows that the concrete work on the second tank was 1 day ahead of schedule and 398 work hours under budget; equivalent to $\$ 9,950$. This means the schedule was done in 93% of the time estimated and used only 79% of the budget.

Figure 17: Tank 23 WH Analysis

Figure 18: Tank 23 Cost Analysis

Looking over the entire concrete portion of the job combining both tanks the activity ended up being 392 WH's ahead of budget, equivalent to $\$ 8,532$ and 5 days ahead of schedule. Please note that there is more to the budget that includes cost of materials which also is included
in the budget that was not included in this analysis. This analysis just shows a snapshot of a piece of work on a project. This analysis applies to every aspect of the job. It's important to quantify everything that will be billed to the job and is quantifies with a correct unit of measurement; this goes for equipment, small tools, consumables, fuel, etc. These items are usually designated in the OH area and should be quantified in weeks of the job as these items are usually spread out evenly across the duration of the project.

To understand the "time is money" concept we looked at the OH savings associated with beating the schedule. Analyzing the budget it was found that the OH budget was $\$ 680,000$ spread out over 180 days. This equals to $\$ 3,778$ per day. (The OH phase includes OH labor, equipment, burdens, small tools, consumables etc.) With the schedule being 5 days ahead of schedule this equals out to a savings of $\$ 18,890$. The total savings of this activity is the direct savings and the OH savings combined together which equaled out to $\$ 27,422$.

Chapter 6 - Design and Constructability Analysis of New Retaining Wall

This chapter is dedicated to the analysis and design of an alternative retaining wall at the new Worcester North High School. During the design process, there were many different considerations on what type of retaining wall to use to stabilize the area around the 60 foot cliff that is located in around the back side of the construction site. Cullinan Engineering, an engineering firm located in Auburn, Massachusetts, designed the retaining wall that is currently in place at the construction site. The designers chose a semi-gravity retaining wall, which relies mostly on its' own weight to support compression forces, but has some steel reinforcement. The goal of this chapter is to determine the feasibility of choosing a cantilever retaining wall with counterforts instead of a semi-gravity wall and to compare the economic value of each type of retaining wall. The design process and equations were taken from Arthur Nilsen’s textbook Design of Concrete Structures.

6.1 Original Retaining Wall Design-Pre Construction Phase

The construction of the new high school was to be built alongside the old high school and a steep cliff shown in Figures 19 and 20. During the pre-construction phase of the design, the engineers at Architectural Services chose a design of riprap to protect the school and soil from the cliff, which at its highest point along the school is around 60 feet, shown in Figure 20. There is a need for some type of retaining wall against the cliff because there is a road that travels around the back of the school and along the cliff. To avoid the soil from sliding due to the live loads that travel along the road during construction and post-construction, retaining walls are placed for the safety of the site. Not knowing how close the road was to the cliff, the engineers suggested that major live loads were not to be included in the design and simple riprap would be a sufficient and cost effective solution to holding back the soil at the cliff.

Figure 19: Approximate Area of Construction

Figure 20: Approximate Area of Cliff

Riprap is a layer made of stones, as seen in the figure below, which is intended to protect the soil from erosion do to runoff from rain. Some limitations of riprap include that it is limited by steepness of slope that are greater than 2:1 because it has the potential of loss due to sliding. Riprap is extremely cost effective, with prices ranging anywhere from $35 \$$ to $60 \$$ per cubic yard. Again, the pre-construction thought of engineers was that the road behind the school was far enough away from the cliff to prohibit any more complicated designs than riprap.

Figure 21: Riprap

6.2 Retaining Wall Changes- During Construction

During the site work and excavation for the new Worcester North High School, it was clearly evident that the riprap first designed would not be able to hold the construction loads that would be applied to the area during construction. Figure 22 shows that the corner of the building is only 21 feet from the cliff and that riprap would no longer be a valid solution to the 60 foot
drop-off. This would have been extremely dangerous for construction vehicle traveling around
this corner.

Figure 22: Plan View of New Retaining Wall

Figure 23: New Semi-Gravity Retaining Wall

Since the new design for retention was to be more complicated than ordinary riprap, Cullinan Engineering was hired to design the new wall. There are many different options Cullinan could have chosen for the design of the wall. The three most common types used is a standard gravity retaining wall, and semi-gravity retaining wall, and a cantilever retaining wall. These options are displayed in Figure 24.Gravity walls are constructed with plain concrete or stone masonry and they depend on their own weight and soil resistance for stability. Typically this type of construction is not economically conducive to high wall design. In some cases, a small amount of steel is used for the construction of a gravity wall, thus making it a semi-gravity wall. Placing steel in the gravity wall will significantly reduce the size of the wall section because it strengthens the concrete in tension, thus saving money. A cantilever wall is made out of reinforced concrete that has a thing stem and base slab.

Figure 24: Cross Sections of Different Retaining Walls

Cullinan Engineering chose a semi-gravity wall for this design as seen in Figure 25. The wall is not the same height around the corner of the road, because the cliff is not the same height. The Cliff drops off drastically the further north it is. This means that the retaining wall does not have to be the same height, but in intervals of height instead. At its highest point, the wall is 14.5 feet and that is where the cliff is at its greatest length of around 60 to 65 feet. Moving northward along the road, the wall significantly drops to lengths of 10 feet and eventually 7 feet.

TYPICAL WALL SECTION

Figure 25: Cullinan's Retaining Wall Design

6.3 New Cantilever Retaining Wall Design with Counterforts

The proposed alternative solution for the retaining wall design is driven by several factors; ground water and soil conditions, cost and required wall height. The first step in designing the retaining was to obtain information on the earth's lateral pressure in the area. The basic soil parameters include:

- Soil unit weight
- Angle of internal friction (for sands)
- Cohesion and plasticity indices (for clays)
- The water table location.
- Ledge location

From here we were able to size the wall and check for stability; this will include checks for wall overturning, base sliding, and soil bearing capacity failures. After the wall is sized, each wall member was checked for adequate strength and steel reinforcing was determined.

A cantilever retaining wall with counterforts was the type of wall that was chosen for this design. A counterfort retaining wall is very similar to a cantilever wall, except that it has one additional feature. This wall has a triangular shaped cross section spaced at typically one foot which connects the top of the wall to the back of the footer. This added support wall is hidden within the earthen or gravel backfill of the wall. The footer, retaining wall and support wall must be tied to one another with reinforcing steel. The support walls add a great deal of strength to the retaining wall. The supports make it virtually impossible for the wall to become detached from the footer. Counterforts are usually used for high walls with heights greater than 24 to 26 feet. In
this case, the wall is only 10 feet high, but this type of design is also used for situations where high lateral pressures occur; where the backfill is heavily surcharged, in this case like North High where the area in close proximity to the wall will be used as a fire lane.

Figure 26: Typical Counterfort Wall

6.4 Preliminary Design

The first step in our design was to size the members, since we already had drawings of the current retaining wall it was relatively easy to realize what the height would need to be. We used the height of the current retaining wall to gather all of our dimensions, such as footing size, wall thickness and support sizes. These dimensions were based on a function of the retaining wall height from equations found in the foundation engineering handbook. Since the highest point of the current retaining wall at North High School is 14.5 feet, we estimated our height to
be a little lower than that at 10 feet. Once we had all of the dimensions of the wall we started the preliminary design on the wall.

Figure 27: Preliminary Design of Retaining Wall (Cross section, in inches)

6.4.1 General Pressures on the Wall

Implementing various equations found in The Design of Concrete Structures by Arthur Nilsen, we started the calculation process. The first step in calculating the general pressures on the retaining wall is determining the dead loads and live loads using the equations:

$$
\mathrm{U}=1.4 \mathrm{D}+1.7 \mathrm{~L}
$$

Typically the equation above uses factored numbers to increase the safety of the design. Since there are no dead loads acting on the top of the wall, we only used the live loads for calculating the surcharge acting on the wall. The road running along the wall is intended for a fire lane which typically carries live loads of 225 psf (pounds per square foot, found in The Design of

Concrete Structures) to 250 psf. Using the above equation, we found the total surcharge of 425 psf.

After calculating surcharge, the next step was to determine the equivalent height of the surcharge, h '. The equivalent height of the surcharge acts as an increased height in the soil pressure on the back of the wall as seen in figure 28. The following equation was used for calculating the equivalent surcharge height:
h’= Total Surcharge/ Unit Weight of Soil

The soil report indicated the underlying soil at the construction site as glacial till, we categorized the soil from soil reports as silty sand, sand and gravel with high clay content. Properties of this soil include 120 to 130 pounds per cubic foot for the unit weight, and 0.3 to 0.4 for the coefficient of friction. Inserting the appropriate values into the equation, we calculated a equivalent surcharge height of 3.27 feet for the new retaining wall.

Figure 28: Pressure on the Wall Due to the Surcharge

6.4.2 Further Investigation and Shear Calculations

Using the values calculated above, the earth pressure acting horizontally on the wall was then calculated using the following equation:

$$
\begin{gathered}
\mathrm{P}=.5^{*}\left(\mathrm{C}_{\mathrm{ah}} * \mathrm{w}^{*} \mathrm{~h}^{*}(\mathrm{~h}+2 \mathrm{~h}) \mathrm{C}\right. \\
\mathrm{C}_{\mathrm{ah}}=\text { soil coefficient } \\
\mathrm{w}=\text { unit weight of soil } \\
\mathrm{h}=\text { effective height } \\
\mathrm{h}=\text { effective surcharge height }
\end{gathered}
$$

From there, the moment arm and total moment was calculated and finally the thickness of the arm. We calculated the arm thickness dimensions and shear values for both a 10 foot and a 12 foot wall. For the 10 foot wall we calculated an arm thickness of 10 inches and a shear value away from the base of $4,310 \mathrm{lbs}$, which is much lower than the factored shear value of the wall at $12,902 \mathrm{lbs}$. The 12 foot wall was much of the same. We calculated that an arm thickness of 10 inches would also be acceptable and that the shear force from the soil was 5594 lbs which is also lower than the factored shear value. Comparing each option, it was found more economical to choose the 10 foot wall over the 12 foot wall at that certain point in the design. Once the preliminary design was completed, the stability and reinforcement steel was determined.

6.5 Stability Investigation

With the wall now having dimensions for the height and arm thickness, it was time to investigate the external stability of the structure. According to Nilsen, a wall may fail in two different ways: (1) its individual parts may not be strong enough to resist the acting forces on it, and (2) the wall as a whole may be bodily displaced by the earth pressure, without breaking up
internally. Using the weights of the soil and retaining, a component weight table was formed with not only the component weight but resulting moment from each part as well. We split up the retaining wall and soil into 6 different sub-weights as seen below and in figure form in Appendix
D.

	Weight (lbs)	Moment Arm (ft)	Moment (ft-lbs)
W1	1125	1.92	2160
W2	1175	3.92	4606
W3	104	1.92	199.68
W4	5940	5.083	30,193
W5	360	0.75	270
W6	3714	4.16	15,466
Totals	$\mathbf{1 2 , 4 1 7}$		$\mathbf{5 2 8 9 4 . 6 8}$

Table 9: Component Weights of Retaining Wall
Using the calculated values of this table, the factor of safety against overturning was determined with the weights, moments and the bearing pressures. We found that the factor of safety against overturning was 3.99 which is adequate according to the theories of Nilsen's book, a value of 3 is an appropriate value for this. Following this procedure, we determined the total resistance due to sliding to be 4809 lbs using values calculated from the friction at the toe, heel, key and passive earth pressure. Dividing 4809 lbs by the total soil pressure of 3305 lbs , we found that the Factor of Safety against overturning was 1.45 which is also adequate.

6.6 Steel Reinforcement

After completing the preliminary design and the stability checks throughout the retaining wall, the steel reinforcement could then be designed again using moments and equations from Nilsen. The bending moment in the arm decreases rapidly with increasing distance from the bottom. The first part of the retaining wall we design steel for was the arm and key. The moment at the bottom section of the arm was already determined in previous calculations and from there, we could use the following equation to receive a proportion of moment, height, and width:

$$
\mathrm{M}_{\mathrm{u}} / \Phi *{ }^{*} \mathrm{~b}^{*} \mathrm{~d}^{2}
$$

With this value, which was calculated to be 340.6, we turned to graph A.1b in Nilsen's book. Graph A. 1b in Nilsen's book shows the relationship with the ratio above and the required steel ratio, ρ, for any given strength of steel. The graphs and tables are shown in Appendix D. Lastly, the area of steel was calculated with the following equation:

$$
A_{s}=\rho^{*} b^{*} d
$$

Having the same approach with the toe and heel slabs, steel reinforcement was successfully designed for the retaining wall.

One problem that was encountered during the design of the heel slab was that the shear force from the soil on the heel was greater than the factored shear force of the heel by about 900 lbs. In order to raise the factored shear of the heel slab, we had to increase the overall thickness of the slab to 13 inches instead of the original 12 inches. Increasing the height increased the factored shear by around $1,300 \mathrm{lbs}$, which in turn made the heel slab adequate against shear forces. The table below shows the calculated values for the steel reinforcement.

Part of Retaining Wall	Vertical Bars	Horizontal Bars
Arm and Key	\#4 Bars @ 24" O.C. Outside Face	\#4 Bars @ 20" O.C. Outside Face
	\#7 Bars @ 24" O.C. Inside Face	$\begin{gathered} \text { \#4 Bars @ 16" O.C. Inside } \\ \text { Face } \\ \hline \end{gathered}$
	\#7 Bars @ 12" O.C. Starting 4.5' from top Inside Face	
Heel	\#6 Bars @ 9" O.C.	\#10 Bars @ 8" O.C.
Toe	\#6 Bars 12" O.C.	\#3 Bars @ 12" O.C

Table 10: Vertical and Horizontal Bars

6.7 Design of Counterforts

Counterforts are useful for cantilever retaining walls because they tie the slab and base together thus reducing shear moments and bending moments that are acting on the wall. Since the current retaining wall at the construction is around 84 feet long, we designed the cantilever wall with counterforts for only 42 feet which is half of the total length of the wall. We chose to design only half because the cliff height drops off from significantly from 60 to 65 feet to only around 30 feet towards the North. Since the cliff height is so low, a smaller wall could be designed to make the wall more economical. Figure 29 shows a plan view of our newly designed retaining wall with counterforts.

Figure 29: Plan View of Counterfort Wall
After determining the length of the wall and dimensions in between counterforts from previous projects and theories, which was 9.5 feet, we designed the horizontal and vertical reinforcement bars using the following equations:

$$
\begin{gathered}
\mathrm{M}_{\mathrm{u}}=\mathrm{P} * \mathrm{l}^{2} / 10 \\
\mathrm{~A}_{\mathrm{h}}=\mathrm{M}_{\mathrm{u}} / \Phi \mathrm{f}_{\mathrm{y}} *(\mathrm{jd}) \\
\mathrm{A}_{\mathrm{v}}=\mathrm{V}_{\mathrm{u}} / \Phi \mathrm{f}_{\mathrm{y}} \mathrm{~d}
\end{gathered}
$$

Inserting values into the equations above, it was found that the horizontal reinforcement bars would have to be much larger than the vertical reinforcement bars. The placement and types of bars are seen in the table below.

Horizontal Reinforcement
\#8 Bars @ 12" O.C. from 2' above top of heel to top wall
\#9 Bars @ 12" O.C. from 2' above top of heel to top of heel
Vertical Reinforcement
\#3 Bars @ 24" O.C. to 9' below top of wall
\#3 Bars @ 30" O.C. from 9' below top of wall to bottom of heel

Cross sections of the cantilever wall and counterforts are shown on pages 131 and 135 respectively in the appendices.

6.8 Analysis of Retaining Wall Cross Sections

Now that all of the dimensions of the retaining wall were designed, it was necessary to analyze and compare the cross sections of the retaining wall designed by Cullinan Engineering and the wall designed above. By dividing each wall into sections to calculate the area and then multiplying the area by total length to get volume, we could compare the total volume of each wall to analyze cost. The table below details the cross sectional areas and volumes of each wall.

	Cross Sectional Area	Total Length	Volume
Semi-Gravity Retaining Wall	$45.827 \mathrm{sq} . \mathrm{ft}$	42 ft	$\mathbf{7 1 . 3 0}$ cubic yds
Cantilever Retaining Wall	$16.560 \mathrm{sq} . \mathrm{ft}$	38.67 ft	640 cubic ft
Counterforts	$41.03 \mathrm{sq} . \mathrm{ft}$	3.34 ft	137 cubic ft
Cantilever Retaining Wall With Counterforts			$\mathbf{2 8 . 7 7}$ cubic yds

Table 12: Volume of Cross Sectional Area
Comparing the total volume of each 42 foot wall, we found that the total volumes of the semi-gravity wall designed by Cullinan Engineering was almost 3 times more than the 42 foot
cantilever wall with counterforts. Although cantilever walls use much more steel than semigravity walls, the cost of steel would not come close to the amount of money saved with the reduction of concrete. Using a price of roughly \$200 per cubic yard, the choice of a cantilever retaining wall with counterforts would save almost $\$ 10,000$ for a 42 foot wall. By completing this analysis, we realized that there are so many different options in design and whichever option is chosen can severely impact the economic value of the project. All calculations and diagrams can be found in Appendix D.

Chapter 7 - Results and Conclusions

7.1 North High Estimate

The North High School estimate developed by tracking quantities using BIM an accurate accumulation of information compared to the actual costs Gilbane Building Company was charged for. The Revit model, which was created by using the Architect's drawings that were obtained from Gilbane Building Company, calculated that 944.16 tons of steel were used in the structural framing of North High School. Using the information that was provided by R.S. Means Construction Cost Data on the current cost per ton of steel for a High School, an estimated cost for the steel was found to be $\$ 3,324,875$. As of October 28, 2009, Gilbane Building Company had already committed \$3,163,901 to United Steel Incorporated.

Variable	Price	
Average \$ per Ton	$\$$	$3,216.00$
Tonnage	$\$$	944.16
Location Factor		110%
Revit Estimate	$\$$	$3,324,875.00$
Gilbane Cost (10/28/09)	$\$$	$3,163,901.00$
Difference	$\$$	$160,974.00$

Table 13: Cost of Steel Difference
The concrete that was quantified by the Revit model came to be 4200 cubic yards that would be used in the foundation walls, rectangular footings and foundation slabs. Using R.S. Means Construction Cost Data, the price for the 4200 cubic yards of concrete came to be $\$ 814,738$. The cubic yards of concrete were broken into three groups when the estimated price was created. The groups footings, wall foundations, and slabs; each had varying prices.

Structural Foundation Schedule					
Family and Type	Price Per CY		Volume	Unit	Cost
Rectangular Footing	\$	277.70	742	CY	\$ 206,053.40
Wall Foundation	\$	371.80	28	CY	\$ 10,410.40
Foundation Slab	\$	152.83	3430	CY	\$ 524,206.90
	Location Factor			110\%	\$ 74,067.07
			4200	CY	\$ 814,737.77

Table 14: Concrete Estimate per CY

7.2 Earned Value Analysis

The example of the steel tank replacement job in South Portland, Maine shows how critical it is to track work on a construction project, especially general contracted work. With the use of earned value analysis the management team can make important decisions during the duration of the job that will hopefully positively impact the budget and schedule. The job we analyzed shows how making decisions based on how the job is progressing can save quite a bit of money for the company, in this case, $\$ 27,000$ on just the concrete portion of the job. It's important to note that without the use of the earned value analysis these decisions wouldn't be able to be made, or at least made correctly.

7.3 Retaining Wall

The capstone design project completed in this report investigated an alternative design of a retaining wall located near the corner of Building B and the auditorium of the new Worcester North High School. For the investigation, we discussed some of the advantages and disadvantages of each type of retaining wall considered, determined the soil properties and earth
pressures, performed a structural analysis of the wall, and addressed some economic aspects of each design.

The main reason for a retaining structure in this location is to protect the underlying houses from any sliding of soil due to live loads or precipitation. During the pre-construction design phase of the project, engineers did not know the proximity of the edge of the cliff to the corner of the building and the surrounding road. The engineers assumed the retaining structure would be far enough away from the road and the corner of the building that simple riprap would suffice the design. However, during construction it was seen that the road would be constructed only a few a feet from the retaining structure. Since riprap cannot hold the live loads traveling on the road, a sub-contractor was hired to redesign a retaining wall. As construction continued, it was of high priority of the engineers at Cullinan Engineering to design a retaining wall fast. The change order log that the new retaining wall would cost the project around $\$ 250,000$.

Having the economic aspect on high priority, we tried to not only design a retaining wall to withstand the appropriate loads, but to also try and decrease the overall cost of this part of the project. In order to try and save cost on concrete, we decided to design a cantilever wall with counterforts spaced 9.5 feet apart. The dimensions of our retaining wall include an arm that is 10 inches thick and 10 feet long, a toe that is 13 inches thick and 1.5 feet long, a key that is 10 inches thick and 10 inches long, and a heel that is 1.5 feet thick and 5.5 feet long. Also, we designed counterforts that would be 8 inches thick. Since cantilever walls require the use of steel reinforcement because of the wall's slenderness, we designed that aspect of the wall as well. The following tables include our design of steel reinforcement.

Part of Retaining Wall	Vertical Bars	Horizontal Bars
Arm and Key	\#4 Bars @ 24" O.C. Outside Face	\#4 Bars @ 20" O.C. Outside Face
	\#7 Bars @ 24" O.C. Inside Face	\#4 Bars @ 16" O.C. Inside Face
	\#7 Bars @ 12" O.C. Starting 4.5' from top Inside Face	
Heel	\#6 Bars @ 9" O.C.	\#10 Bars @ 8" O.C.
Toe	\#6 Bars 12" O.C.	\#3 Bars @ 12" O.C

Table 15: Steel Reinforcement

Horizontal Reinforcement
\#8 Bars @ 12" O.C. from 2' above top of heel to top wall
\#9 Bars @ 12" O.C. from 2' above top of heel to top of heel
Vertical Reinforcement
\#3 Bars @ 24" O.C. to 9' below top of wall
\#3 Bars @ 30" O.C. from 9' below top of wall to bottom of heel

Table 16: Counterfort Steel Reinforcement

Since the cliff at the new Worcester North High School is not the same height, we could have designed the wall with smaller heights as the steepness of the cliff lowered. However, this was not feasible. In order to compare our design to Cullinan's design, we used an over length of 42 feet for the wall, using our maximum height and their maximum height over that entire span. It was found that the cantilever wall would save 30 square feet in cross sectional area and a
volume of around 42 cubic yards for the 42 feet of length as compared to the semi-gravity wall.
Although the cantilever wall would have much more reinforcing steel than the semigravity wall, it would be insignificant compared to the cost saved due to the decrease in the amount of concrete.

7.4 Gilbane/Owner Architect Meetings

Throughout the 6 months working on this project, we also attended weekly meetings to gain a perspective on how the construction management process really works. The firms that attended this meeting were Gilbane, the construction manager at risk, The Maguire Group, the owner's consultant, and Worcester Architectural Services, the owner architect. The main focus of these meetings was not only about the design of the building, but scheduling, request for information, and change orders. After attending these meetings, we found that the construction management process of North High was filled with headaches and conflicts.

Often times during the meeting, it seemed like Worcester Architectural Services was always behind schedule compared to Gilbane and The Maguire Group. At one of the meetings, it was stated that Worcester Architectural Services had 42 outstanding RFI's that were to be answered, which is generally high compared to a normal project. Throughout the project, The Maguire Group was usually the mediator between Gilbane and Worcester Architectural Services.

One example of a conflict throughout the 5 months we attended meetings was with Guaranteed Maximum Price or GMP. Generally the GMP cannot be decided until most of the building is designed in order for the construction manager to receive a fair price. Since Worcester Architectural Services was behind schedule on the design, the GMP contract deadline date was pushed back from mid November 2009 to mid March 2010.

Also, throughout the project there were many issues between Gilbane and Worcester Architectural Services that had to do with the drawings and plans being issued. One major issue with the plans that happened was with the some of the toilet designs in buildings A and B.

Worcester Architectural Services had designed the piping of the toilets to come through the floor instead of the wall in the bathroom. After giving the incorrect plans to Gilbane, Gilbane awarded the job to a subcontractor, who then received the incorrect plans. These issues were two of many that we observed occurred throughout the project.

Works Cited

Coduto, Donald P. Foundation Design Principles and Practices. Prentice Hall Inc., 2001.
Eastman, Chuck. BIM Handbook: A Guide to BIM Modeling. John Wiley and Sons, 2008.
Hinton, Melissa. Personal interview. 7 September 2009.
Nilsen, Arthur H. Design of Reinforced Concrete Structure. McGraw Hill, 1991.
Oberlander, Garold D. Project Management for Engineering and Construction. McGraw Hill Company, 2000.

RS Means, (2010). Building Construction Cost Data. RS Means
Salmon, Charles G. Reinforced Concrete Design. John Wiley and Sons, 2007.
http://www.thefreelibrary.com/First+step + for + new + North + High\%3B + Long-stalled+\$72M+school+breaks+ground.-a0168421746
http://enr.construction.com/toplists/Contractors/001-100.asp
http://www.stormwaterauthority.org/assets/Riprap.pdf
http://www.bea.gov/

Appendix A: Project Schedule as of March, 2009

Appendix B: Schedule January 2010

Appendix C: Bid Package Cost vs. Budget Estimate

Appendix D: Retaining Wall Design

Genear! pressures on refining waits

Passive
pressure

(1) Determine BLand LL fore the wall

We need to design the wall for the drremegy that is intonated as a fiction e. Typianty for Fivetanes, $L L=250$ ps

$$
v=1.4 D+1.71
$$

There is no DL on the wall, 50

$$
U=1.7 L=1.7(250,5)=42505^{6}
$$

Design for $f_{l}^{\prime}=4000 \mathrm{ps}^{\prime} \quad f_{y}=60,000 \mathrm{p}^{\circ} \mathrm{i}^{\circ}$

Our wall

$$
\begin{aligned}
& \begin{array}{l}
\text { Heignt }=10^{\prime} \\
\text { Fobter }=4 \times 1^{\prime} \\
\text { Wall thionosl }=13^{11}
\end{array} \\
& \text { Counter Corts }=8^{-1} \text { thith every } 3 \text {) }
\end{aligned}
$$

our poblem
Designi a cantalievef wall to retain a bank of 65 whose horizontal sucface is subjecten to a livelrad surchage af zsopse the ssit is giaciat till very dense., fine sandig silt.

Find h^{1} due to the surcharge of the $L L$

$$
\begin{aligned}
& h^{\prime}=\frac{5}{w} \quad \text { assume } w=120 p \mathrm{ff} \\
& s=425 p s f \\
& h^{\prime}=\frac{425 p^{5 f}}{180 p<f}=3.27
\end{aligned}
$$

Assumed pressures

our estimated base thickness $=1,50$ if $h=10^{\prime}$ our free arm distance will be 9^{\prime}

$$
C_{n}=\frac{1-\sin \phi}{1+\sin \phi}=\frac{1-\sin 30^{\circ}}{1+\sin 30^{\circ}}=0.333
$$

Frame $b=30^{\circ}$

Pressure P

$$
\begin{aligned}
P & =\frac{1}{2} C_{a h} \operatorname{sh}\left(h+2 h^{\prime}\right) \\
& =\frac{1}{2}(0.333)(120)\left(9^{\prime}\right)\left(9^{\prime}+2(3.27)^{\prime}\right)
\end{aligned}
$$

Salol P from Surcharge $=2974.22 \approx 2797265$

$$
\begin{aligned}
& y=\frac{h^{2}+3 h h^{\prime}}{3\left(h+2 h^{\prime}\right)}=\frac{(9)^{2}+3(9)(3.27)}{3(15.54)} \frac{169.29}{96.62} \\
& y=3.63^{1} \\
& m_{0}=1.7(2794)\left(3.69^{\prime}\right)=17246 \mathrm{f+16s}
\end{aligned}
$$

Find the size of stet

$$
\begin{gathered}
P_{b}=\frac{0.85(4000)}{60.000}(0.85)\left(\frac{87.000}{87.000+60,000}\right)= \\
P_{b}=0.0284 \\
P_{a 11}=\left(\frac{P_{b}}{2}\right)(0.75) \\
P_{a 11}=0.03000^{2}=0.011
\end{gathered}
$$

Look in append t x for $\frac{\text { mu }}{\text { ba }^{2}}$ value

From the boink \rightarrow appendix A Graph A. lb

$$
\frac{m_{0}}{d 6 d^{2}}=590
$$

unit length th of wail $\left(b=-12^{i 1}\right)$ with $D=0.90$

$$
\begin{aligned}
& d=\sqrt{\frac{m_{0} \times 12}{0.90 \times 12 \times 590}}= \\
& d=\sqrt{\frac{17246 \times 12}{0.90 \times 12 \times 590}}=\sqrt{\frac{206952}{6372}}=\sqrt{32.42} \\
& d=5.69^{17} \approx 5.70^{11} \\
& \text { assume } \frac{1}{2} \text { "diameter of wow } \\
& \text { also, } 2^{\prime \prime} \text { Cover over steel } \\
& d=5.70^{\prime \prime}+2.0^{\prime \prime}+.5^{11}=8.2^{\prime \prime} \text { make } \\
& 10^{\prime \prime}=\lambda \text { at base of aim }
\end{aligned}
$$

check arm for shear at distance d above the base

$$
d=\frac{10^{\prime \prime}}{12^{\prime \prime}}=0.833^{\prime}=\begin{aligned}
& \operatorname{distance}-9^{\prime}-0.833^{\prime} \\
& 8.1667^{\prime}
\end{aligned}
$$

passeg shoer tost

Sail numbers remain the same - mit wt $=110-120$ p. f $f=0.6 /$ per vito from Collinan

$$
q=5 \tan / / v^{f t}=10,000 p_{5} t
$$

Find h^{\prime} due to the surcharge - will be the same

$$
\begin{aligned}
& h^{\prime}=\frac{s}{w} \text { assume } w=12 \mathrm{upc} f \\
& s=425 \mathrm{psf} \\
& h^{\prime}=3.27^{\prime}
\end{aligned}
$$

Can will be the same as well $=0.333$
Pressure $P=\frac{1}{2} \operatorname{Cah} \operatorname{Wh}\left(h+2 n^{\prime}\right)$
estimated footing thickness $=1.5^{\prime} /$ effechrecheight $=\left(0.5^{\prime}\right.$

$$
\begin{aligned}
p & =\frac{1}{2}(0.333)(120)(10.5)(10.5+2(3.27)) \\
& =\frac{3574.82265}{} \\
y & =\frac{h^{2}+3 h h^{\prime}}{3\left(h+2 h^{2}\right)}=\frac{10.5^{2}+3(10.5)(3.27)}{3(17.04)}=4.17
\end{aligned}
$$

$$
m_{0}=1.7(3574.82)(4.17)=25341.88 \mathrm{ft}+1 b_{5}
$$

Pall: the same as the previous wall

$$
P_{a 11}=0.011
$$

bodkin appendix fir $\frac{M_{J}}{b d^{2}}$ value

$$
\frac{M u_{0}}{b d^{2}}=590 \text { fum chart } \quad F_{g}=6 \partial_{p i} f_{c}^{\prime}=4000 p ;
$$

$$
d=\sqrt{\frac{m 0 \times 12}{0.90 \times 12 \times 590}}=\sqrt{\frac{25342 \times 12}{0.90(12)(590)}}=6.9^{\prime \prime}
$$

Assume $\frac{1}{2}$ "diameter for Rebar
also, $2^{\prime \prime}$ Cover for stael

$$
d=6.9^{\prime \prime}+2^{\prime \prime}+.5^{\prime \prime}=9.4^{\prime \prime} \approx 10^{\prime \prime}
$$

check arm for shear distance above base

$$
\begin{array}{r}
d=\frac{10^{\prime \prime}}{12^{\prime \prime}}=0.833^{\prime}=\frac{\operatorname{distan} a=10.3^{\prime}-.833^{\prime}=}{} \begin{array}{c}
9.647^{\prime}
\end{array}=
\end{array}
$$

$$
\begin{gathered}
\frac{\text { Clack shear away firm baie }}{p=\frac{1}{2} \times 0.333 \times 120 \times 9.667} \times 17.04= \\
3291.2 \mathrm{lbs} \\
1.7(3291.2)=5594.7 \mathrm{lbs} \\
d V_{c}=2 b \sqrt{f l c} b d=\underline{12902 \mathrm{lbs}} \\
{\left[\begin{array}{l}
5594.7 \mathrm{lbs}<12902 \mathrm{lbs} \\
\text { pases shaar }
\end{array}\right.}
\end{gathered}
$$

Total soil pirssore \quad p- $0.5\left(c_{a} h\right)(w)(h)$
$P=0.5(0.333)(120)\left(10^{\prime}\right)\left(10^{\circ}+6.54\right)$
$P=3305 \mathrm{lbs}$
$y=\frac{h^{2}+3 h h^{\prime}}{3\left(h+2 h^{2}\right)}$
$=\frac{(100)+3(10)(3.27)}{3(10+6.51)}=3.99 \approx 4.00^{1}$
$m_{0}=330516 \mathrm{~s} \times 4.00^{1}=13,220 \mathrm{ft} 26 \mathrm{~s}$
distance of resultant from reset dye

$$
a=\frac{52,875-13,220}{12417}=\frac{3.19}{31}
$$

resultant is inside minds $3^{\text {rt }}$ Using the formula $\xrightarrow[R_{v}]{\rightarrow}$ max bearing pressure :-

$$
q=(4 L-6 x) \frac{R v}{L^{2}}=
$$

$$
\begin{aligned}
& \frac{1}{8 z-(31+2 z+19+4)} \frac{\text { sureinarge }}{-6+36} \\
& w_{\text {rot }}=12,417+425 \text { pof } \times 5.5 \\
& =19839 \text { Sebs } \\
& m_{\sigma}=52875+425(5.37)(5.5) \\
& =\frac{65427.4 \text { l65.ft }}{65.427 .4-13720} \\
& \text { newa }=\frac{65.427 .4-13.220}{14754.5}=3.54^{\circ} \\
& \text { Inside middle } 3^{\text {rd }} \text { Surchareg to a } \\
& q_{1}=\frac{(31.32-21.24)}{61.36}(14754.5) \quad F .5=\frac{52875}{18.220}= \\
& q_{1}=2423.8 \mathrm{ps}^{f} \\
& 3.99 \\
& \text { Frichin Free }=0.5 \times 12417= \\
& 6208.5 \mathrm{eb5}
\end{aligned}
$$

Friction at the toe

$$
\begin{aligned}
& \frac{7.83}{5.5}=\frac{2423.8}{x} \\
& x=1702
\end{aligned}
$$

Fraction toe: $(2423.8+1702) \times .5 \times 1.5 \times 0.577$

$$
=1785.5265
$$

Friction heed ${ }^{2}$ y : $1702 \times .5 \times 1.333 \times 05$

$$
=2695265
$$

Passive Carmen Preside $=0.5 \times 120 \times 3.0 \times 1.833^{1}$

$$
=329 \mathrm{ebs}
$$

Total Resistance to sliding $=\frac{4809.5 \mathrm{ebs}}{P=3305 \mathrm{ebs}}=$

$$
F S_{5}=1.45=\text { adequate }
$$

external! slabitily is ascertained

Stree for the arm ant hey $10^{\prime \prime}$ arm $-2^{\prime \prime}$ cover

$$
m_{0}=177,216 \mathrm{fy} 1 \mathrm{l} \text { bs from before }
$$

$$
\frac{m_{0}}{0 b d^{2}}=\frac{17.246(12)}{0.9(12)(7.5)^{2}}=340.6
$$

$76 e 24$

$$
f_{y}=60,000 \quad f^{\prime}=4000
$$

stead ratio, from chert $=0.006$

$$
A_{5}=0.006 \times 12 \times 7.5=0.54 \mathrm{in}^{2} / \mathrm{ft}
$$

Use \#7bars e $122^{\prime \prime}$ on center ($\left.A_{5}=0.60 \mathrm{im}^{2} / \mathrm{ft}\right)$

Control dimpocalure ard cracking
Not Less than 0.0012 times the gross Concrete area mast he provided
Gross Area $=12^{4 \prime} \times 7.5^{14}=90 \mathrm{in}^{2}$

$$
(0.0812)\left(90 \mathrm{in}^{2}\right)=0.108
$$

Vertical Bars exposed Face

$$
\frac{1}{2}(0.108) \quad \text { Bars }>0.054 \mathrm{in}^{2} / \mathrm{ft}
$$

\#4 Bars@ 24^{14} OC ($\left.A_{s}=0.10 \mathrm{mi}^{2} \mathrm{ft}\right)$

Non exposed Fous
vese Bars @16in O.C

$$
\left(A_{S}=0.145 \mathrm{in}^{2} / f t\right)
$$

horizonkal stal
\# 4 Bus verthen

Design Steel for Toe Slab
pod. Fiche of 1.7
Find moment $=\lambda^{\text {topont } c}$

$$
M_{0}=1.7\left(\frac{2423.8}{2 .} \times 1.5^{2} \times \frac{2}{3}+\right.
$$

Find ω From a to $C \quad M_{0}=$ the some

$$
\begin{aligned}
& a=\frac{52,875-13220}{12417}=3.19^{\circ} \\
& \text { Bigger } 12417 \quad \text { inside middle } 3^{\text {d }} \\
& y q_{1}=(40-6 a) \frac{R_{v}}{L^{2}} \\
& q_{1}=\left(7.833(4)-6(3.19)\left(\frac{12417}{7.833^{2}}\right)\right. \\
& (31.32-19.14)(202.37)= \\
& q_{1}=2465 \mathrm{lbs} \\
& q_{2}=(6 a-2 l) \frac{p_{v}}{L^{2}} \\
& =(1994-15.66)(202-37) \\
& q_{2}=704.28 \mathrm{lbs}
\end{aligned}
$$

surcharge tob $-\frac{1761}{7.83}=-\frac{x}{633}$
Surcharyent $b=1423$

Toe slab
Find moiment

$$
\begin{aligned}
m_{u}= & 1.7\left(\frac{2423.8}{2} \times 15^{2} \times \frac{2}{3}+\frac{1423}{2} \times 1.5^{2} \times \frac{1}{3}\right) \\
& -0.9\left(150 \times 1.5^{2} \times \frac{1}{2}\right) \\
= & 1.7(1818+533.1)-0.9(168.75) \\
m_{u}= & 3996.87-151.875= \\
m_{u}= & 3845 \mathrm{f} 11165
\end{aligned}
$$

For concrick case expasect to Eurtin, protechive corer of 3 in is required baf $\phi=1^{\prime \prime}$ effective dupth $=12^{\prime \prime}-3.0^{\prime \prime}-0.5^{\prime \prime}=8.5^{\prime \prime}$

$$
\frac{m_{0}}{d b d^{2}}=\frac{3845 \times 12}{0.9 \times 12 \times 72.25}=59.13 \ll 6 m p h \operatorname{coss}
$$

Minimum required $\rho 6=\frac{200}{60,005}=0.0033<$ use

$$
A_{s}=0.0033 \times 12 \times 8.5=0.3366 \mathrm{in}^{2} / \mathrm{r}+
$$

\# fobars@ 12^{1} O.C ($\left.A_{5}=0.47 \mathrm{in}^{2} / \mathrm{ft}\right)$

Reflecting 12 in lateral spacing, the bars will be continued $21^{\prime \prime}$ past the face of the wall.
Check Shoer
Shat will be chacpench 167733 ($1^{\prime} 6^{\prime \prime}$)
from edge of the $=$ I' from edge of toe $^{\prime}$

$$
\begin{aligned}
\left.\frac{2710}{\frac{2218}{9.15}=\frac{x}{721}} \begin{array}{r}
2465
\end{array} \quad \begin{array}{rl}
V_{0}= & 1.7\left(2465 \times \frac{1}{2} \times 1+1536 \times \frac{1}{2} \times 1\right)- \\
& 0.9(150 \times 1) \\
= & 3400.85-135= \\
V_{0}= & 3266 \text { lbs }
\end{array}\right) .
\end{aligned}
$$

$\frac{1761}{7.83}=\frac{x}{6.89}$
Design shear strength $=$

$$
\begin{aligned}
& \phi V_{c}=2 \times 0.85 \sqrt{4000} \times 12 \times 8.5 \\
& \phi V_{c}=10966.7 \mathrm{lbs} \quad V_{\text {passes sher test }}
\end{aligned}
$$

$$
d V_{c}>V_{u}
$$

use \# 3 bars at $12^{\prime \prime}$ O. C ar o Cracking Control

Design for liter stab total long th $=5.5^{\prime}$
L. Surcharge $=250 \mathrm{psif}$

$$
\begin{aligned}
& M_{u}=1.7\left(250 \times 5.5^{2} \times \frac{1}{2}\right)+1.4\left(423+5.5^{2} \times \frac{1}{2}\right. \\
&\left.+150 \times 5.5^{2} \times \frac{1}{2}\right) \\
& m_{0}=6428.2+33308 \\
&=\frac{39736.5+5+2 b_{5}}{} \\
& \frac{m_{u}}{\phi b d^{2}}=\frac{39736.5 \times 12}{0.9 \times 12 \times 72.25}=611.1
\end{aligned}
$$

$P_{b}=0.0155$ From $y^{r a p h} A .1 b$

$$
A_{5}=0.0155 \times 12 \times 8.5=\underline{\underline{1.58} \mathrm{in}^{2} / \mathrm{Ft}}
$$

use $\# 9$ bars at $7^{\prime \prime} 0 . C \quad A_{s}=1.70 \mathrm{in}^{2} / \mathrm{ft}$

$$
\begin{array}{r}
\frac{1761}{7.83}=\frac{x}{5.5} \quad V_{0}=1.7(250 \times 5.5)+1.4(1236.9 \times 5.5) \\
\quad V_{u}=11861.5265>
\end{array}
$$

increase effechere sep th to $9, s^{\prime \prime}$
So hight of toe and slab will be 1^{11}
with height $=13^{\prime \prime}$ effective depth will be 9, 5'

$$
\begin{aligned}
d v_{c}= & 2 \times 0.85 \sqrt{4000} \times 12 \times 9.5= \\
& 12256.98 \mathrm{lbs} \\
d v_{c}> & V_{u}=11861.51 \mathrm{bs} \text { passes shear }
\end{aligned}
$$

increase bars to \#10 bars © 8"O.C

$$
A_{s}=1.80 \operatorname{in}^{2} / 8 t
$$

Use 杫6 bars@ $9^{\prime \prime} 0 . C$ for Crack Control
increase the same, 21^{11} past the siam

$$
\begin{aligned}
& \text { —arenternel stal dasign } \\
& m_{0}=\frac{p 1^{2}}{10} \quad p=\text { pressure } \text { wall botrom of } \\
& P=330 \text { Sebs from previzus } \\
& M_{0}=\frac{3305\left(9.5^{\prime} \times 12\right)^{2}}{10} \quad \text { Calculations }
\end{aligned}
$$

$$
\begin{aligned}
& A_{h}=\frac{M 0}{\phi f_{y}(j \lambda)}=\frac{4,299,178}{0.9(00,000)(0.875)(9.5)(12)} \\
& 0.9^{2} 0.975 \mathrm{~A}_{\mathrm{n}}=0.797 \mathrm{in}^{2} / \mathrm{\rho t}
\end{aligned}
$$

Use \#9 bars © 12 in OC

$$
\begin{aligned}
m_{u}=\frac{p^{2}}{12} p=3305 l 65 \quad m_{u} & =\frac{3305(9.512)^{2}}{12} \\
l=9.5(12) & m_{u}
\end{aligned}=3.579 .315 \mathrm{lb} \cdot \mathrm{in}^{2} .
$$

$$
\begin{aligned}
& A_{n}=\frac{M 0}{d g_{j} J^{2}} \\
& A_{n}=\frac{3,572,315}{0.9(65,400)(875)(95)(t 2)}=0.66 \sin ^{2} / f t
\end{aligned}
$$

use \# 8 bars $@ 12^{\prime O} 0 . \mathrm{C}$

$$
\begin{aligned}
& A_{V}=\frac{V y}{d f g} \\
& 0.85 \\
& \text { shear }
\end{aligned}
$$

$$
v_{1}=V+\frac{m}{d}(\tan \theta+\tan \phi)
$$

$$
V_{1}=
$$

Shrinkage stal $=$
零

$$
\begin{aligned}
& 0.06356 \mathrm{bd} \\
& v_{1}=118611 \mathrm{bs}+\frac{3.579 .315}{818}(0.577) \\
& A_{v}=\frac{11861}{\phi 6000(8)}=0.027 \mathrm{in}^{2} / \mathrm{ft}
\end{aligned}
$$

ute 挂 3 bars@ $21 \operatorname{in} 0 C$

$$
A_{3}=0.055
$$

Shrinkaye stel

$$
\begin{aligned}
& 0.0035 \mathrm{~b} \times \mathrm{d}= \\
& 0.0035 \times 1 \times 10^{1}=0.035 \mathrm{in}^{2} / \mathrm{ft}
\end{aligned}
$$

Use \#3 bars @ $30^{\circ \prime} O . C$
N. N. 5 V

Total Area of Section
(1) $1.667^{1} \times 14.5^{1}=24.17^{12}$
(2) $2.083^{1} \times 12.5^{\prime} \times \frac{1}{2}=13.02^{1}$
(3) $1^{\prime} \times 2^{\prime}=2^{1^{2}}$
(4) $2083^{2} \times 2^{1}=4.167^{2}$
(3) $1.25^{\prime} \times 2^{\prime}=2.5^{\prime}$

Total $=45857$ sq.ft for Cullian wall at highest point

Volume
Cullinan

$$
\begin{aligned}
& 421(45.857 \mathrm{sqft})=1925 \mathrm{ft}^{3} \\
& \frac{00 \mathrm{~s} 5}{38665\left(16.5654^{8 t}\right)}=690.3 \mathrm{rft}^{3}
\end{aligned}
$$

Durs with Countersits

$$
\begin{aligned}
& \therefore \mathrm{ft}^{3}+867^{1}(5)(41.03) \mathrm{ft}^{2} \\
& =640.3 \mathrm{ft}^{3}+136.8 \mathrm{ft}^{3} \\
& =777.1 \mathrm{ft}^{3}
\end{aligned}
$$

venter sils 87

GR.API A.IB
Mecent sapucity nf rectorgaly weilinns.

Table A． 2 sruss of groupe of stanclard bars．in ${ }^{2}$

Hisr No，	1	2	3	4	5	Kumbere of Lurx		8	リ	14	11	12
						6	7					
1	0．281	9.35	0.51	0.73	ก，58							
5	12.71	0.61	¢．91	1.28	\cdots	1.24	1.97 2.15	1.57 2.45	1.7%	1． 35	2.16	2.36
6	1．44	0.88	1.32	1.7	2.21	2．85	A．sis	2．4．5	3.76 3.98	$5.0{ }^{\circ}$	337	4，68
7	0．60	1．2．1	1.80	7.11	3．0］	2.61	4.27	3．n．？	3.58	$\therefore .42$	435	58
3	9．73	1.57	2.35	415	3．98	471	5.210	1.81 6.25	51d	\％．01	6.6.	$\because 8$
9	18.1	2.60	3.09	-00	2．10	h．tal	ร．f月	8.60	7.09 800	7.85 14.00	8.64	9.43
11.	1.27	2．5：	3.79	5.16	6．37	7．al	3.86	10.12	9.00 1139	111.60 12,66	21.09	12.15
11	1．8i\％	9.12		is． 75	2． sl^{1}	$9 . .97$	10.34	12.50	1139 14.05	12,66 -5.67	13512 12.19	15．19
17	2.25	1．50	6.75	1） 010	11．25	12.581	$15 . \%$	1800	20.05	22．90	17.19	12．75
15	4.31	8.00	13． 18	1 h .00 c	20.11%	21．0．1	35.00	32.00	3×1200	22，00	2\％．75	22．till

Talde a 3 Perimetery of gronpe of stamdard hars．in．

Mar			3	4	Number ar bars							
Nh．	1	3			5	6	7	8	9	10	II	13
4	1． 6	3.1	4.7	6.2	7.8	1.4	11.11					
\＃	2.0	3.5	31	7.5	9.8	11.0	11．11	13.5		15． 7	17.2	18.5
f	2.4	47	7．1	9.4	11.3	14.1	16.5	13．\％	17？	119.5	21．$\%$	23.5
；	2.8	49	$\leqslant .2$	11.0	15.7	10.5	19.3	13.8	212	2i．6	25.9	28.1
8	3.1	6.5	9.4	12.6	15.7	14.9	22.15	25.1	20．7	$2 \% .5$ 11	30.2	23.0
9	35	7.1	10.4	14.2	177	21.2	24.8	28.4	25,3 308	11 35.4	34.6	37.7
11	4.0	8.4	12.0	16.0	20.0	23.1	27.9	31.9	31． 3	32.4	49.4	42.5
11	4.4	84	13.2	17.7	22,3	26.6	31.0	25.1	309	47.7	13.9 18.7	+7.9 $<=, ~$
14	3.3	11.4	16.11	21.3	30,6	A1．${ }^{\text {a }}$	37.2	47.6	47.0	59.2	18． 56	¢38
18	71	14.2	2．．．3	28．\downarrow	2¢． 5	82.2	19.6	50.7	0s．8	30.4	78.8	85.1

Table A． 4 Areas of hars in slabs，in ${ }^{2} / 4$

Spachip in．	3	4	5	Teat Nots．		8	9	10	11
				6	7				
3	0.44	0.78	－ 23	1.77	2.411	3.16			
32	9．38	0.67	105	1．5：	$2 . \mathrm{ff}$	2.69	4,08 4×3	5．061 4.24	6.27 -374
4	¢．．．i＞	0.59	11.92	． 312	1.80	2.69 2.36	3.80	3．8．4	4．3n
$\therefore 1$	0.29	0.52	11，82	1.18	1． 6 ：	2.05	2.67	3.57	\％ 17
$\stackrel{1}{51}$	0.26	0.47	0.71	$1.10 k_{1}$	1.44	1.85	2.45	3.14	3．1\％
52	0.29	3.12	15．5？	0.80	L．．31	1．71	218	2．7\％	3.41
6	0.22	0.39	（1） 51	0.80	1．20	1.57	260	$2 . .8 .3$	3.12
${ }_{-}^{5}$	0.219	0.36	31,57	f． 8.8	1.11	i 15	1.85	2．74	2．89
F	0.11	0.34	1，53	去． F	1．C．A	1.35	1.71	2.17	2.64
8	0．18	0.11	1：3	0.77	6．9f1	1.26	1．03	2.15	2.311
8	0.17 0.12	0．29	1．4s	U．fits	0.901	1.18	150	1．S17	2.3
10	0.12	U． 25	（1，4\％	0． $5:$	0.30	i．05	1.33	1.6	2.08
．2	0.13 0.11	0.25	0．77\％	0.2 .5	0.72	15：	1．20）	1．52	1.87
เ2	0.11	0.20	1131	0.44	0.8 .3	1.73	¢ ． 311	1.27	1．56

Thule A． 5 Limding steel

fr	f_{c}	$f)$	m_{c}^{\prime}
412．000	：170	0.45	11.607
	$\triangle 00$	C．E5	（1．0．3）
	ticin	$0.8: 1$	1：085：
	$\mathrm{t} \times \mathrm{KO}$	0.78	\％，06s
	sxix	5.27	1） 0571
	㕸	$0 . \mathrm{s}$	1，C75；
311，000	20\％	0.85	12.027
	Sro	0.85	0，035
	31．［0］	0.30	110432
	$\dot{00 n}$	$\text { C. } 75$	$0,0,6$
	T0：3	9.30	$\text { A: } 1929$
	80 m	1． 65	0．6551
firmo		O85	10.0212
	400	0.85	6，02x！
	Sim	0．6：1	$11.0 \mathrm{cos}_{15}$
	soo	0．5s	ก．C3\％
	7112	9.71	$1: 0011$
	6000	0.85	0．Edis
\＄1，060	Kivy	0.85	11.0141
	± 100	0.45	0.0188
		6．81	11.0221
	$N 10$	$0 . \% 1$	$0,02 \times 0$
	H1\％	0.5	$1102 \% 1$
	5000	11.60	0．0，209

Appendix E: Cullinan's Retaining Wall Design

Appendix G: Capstone Design Proposal

11/21/2009
Scott MacDonald
Matt Moreau
Ryan Marques

North High Capstone Design

The original design for the banking on the southeast corner of the building was to cover the banking in rip-rap. As construction began, Gilbane wanted to keep the access road open. This original design of rip-rap could not allow this to happen; as there needed to be more room and Gilbane was concerned about the forces from the construction vehicles so close to the banking. The height of the banking is 62' with a steep drop off, this was an additional concern for the movement of

The solution was to build a cantilevered retaining wall around the banking to accommodate the space for the construction vehicles and the load associated with them. Pictures can be seen on the next page. The design portion of this project will be developing an alternate solution for this problem.

Our retaining wall design will be driven by several factors; ground water and soil conditions, cost and required wall height. The first step in designing the retaining wall will be to get information on the earth's lateral pressure in the area. The basic soil parameters include:

- Soil unit weight
- Angle of internal friction (for sands)
- Cohesion and plasticity indices (for clays)
- The water table location.
- Ledge location

This information should be relatively easy to get since the retaining wall is already constructed on-site.

From here we will be able to size the wall and check for stability; this will include checks for wall overturning, base sliding, and soil bearing capacity failures. After the wall is sized, each wall member will be checked for adequate strength and steel reinforcing can be determined. One area that also needs to be looked at is the necessity to drain the backfill of rainwater and/or groundwater.

Our Solution:

Our group decided to look at a counterfort retaining wall design. A counterfort retaining wall is very similar to a cantilever wall, except that it has one additional feature. This wall has a triangular shaped wall which connects the top of the wall to the back of the footer. This added support wall is hidden within the earthen or gravel backfill of the wall. The footer, retaining wall and support wall must be tied to one another with reinforcing steel. The support walls add a great deal of strength to the retaining wall. The supports make it virtually impossible for the wall to become detached from the footer. Counterforts are usually used for high walls with heights greater than 8 to 12 m . In this case, the wall is only 10 ' high but this type of design is also used for situations where high lateral pressures occur; where the backfill is heavily surcharged, in this case like North High where there will be a lot of heavy construction vehicles making their way through.

The first step in our design was to size the members, since we already had drawings of the current retaining wall it was relatively easy to realize what the height would need to be. We used the height of the current retaining wall to gather all of our dimensions, such as footing size, wall thickness and support sizes. These dimensions were based on a function of the retaining wall height from equations found in the foundation engineering handbook.

Dimensions of Retaining Wall

Height: 10’
Footer: 4’ x 1 '
Wall Thickness: 13"
Counterforts: 8" thick; spaced every 3'

Counterfort Retaining Wall

Design Analysis:

There are three pressures acting on a retaining wall:
Active earth pressure: The pressure exerted on the back of the wall
Bearing pressure: The vertical bearing pressure of the soil of rock supports the footing
Passive earth pressure: Lateral movement of the wall is resisted by passive earth pressure

Current Retaining Wall

Appendix H: Pictures - North High

Appendix I: Tank Replacement Project Pictures

Appendix J: Revit Takeoff Sheets

Structural Foundation Schedule

Family and Type
Footing-Rectangular: 5x5x2
Footing-Rectangular: 5x5x2
Footing-Rectangular: 5x5x2
Footing-Rectangular: 6x6x2
Footing-Rectangular: 6x6x2
Footing-Rectangular: $5 \times 5 \times 2$
Footing-Rectangular: 9x9x2
Footing-Rectangular: $4 \times 4 \times 2$
Footing-Rectangular: 5x5x2
Footing-Rectangular: 5x5x2
Footing-Rectangular: 5x5x2
Footing-Rectangular: 5x5x2
Footing-Rectangular: 5x5x2
Footing-Rectangular: $4 \times 4 \times 2$
Footing-Rectangular: $4 \times 4 \times 2$
Footing-Rectangular: $4 \times 4 \times 2$
Footing-Rectangular: 7x7x2
Footing-Rectangular: 7x7x2
Footing-Rectangular: 9x9x2
Footing-Rectangular: 9x9x2
Footing-Rectangular: 7x7x2
Footing-Rectangular: 8x8x2
Footing-Rectangular: 9x9x2
Footing-Rectangular: 9x9x2
Footing-Rectangular: $4 \times 4 \times 2$
Footing-Rectangular: 7x7x2
Footing-Rectangular: 7x7x2
Footing-Rectangular: 7x7x2
Footing-Rectangular: 7x7x2
Footing-Rectangular: 7x7x2

Volume	Unit	Width
46.88	CF	5'-0"
46.88	CF	5'-0"
43.75	CF	5'-0"
63.00	CF	6'-0"
63.00	CF	6' - 0"
43.75	CF	5'-0"
131.63	CF	9'-0"
30.00	CF	4'-0"
28.00	CF	4'-0"
26.00	CF	4'-0"
30.00	CF	4'-0"
28.00	CF	4'-0"
28.00	CF	4'-0"
30.00	CF	4'-0"
40.63	CF	5'-0'
43.75	CF	5'-0"
43.75	CF	5'-0'
43.75	CF	5'-0"
40.63	CF	5'-0"
28.33	CF	4'-0"
28.00	CF	4'-0"
28.00	CF	4'-0"
85.75	CF	7'-0'
85.75	CF	7'-0"
141.75	CF	9'-0"
141.75	CF	9'-0"
85.75	CF	7'-0"
112.00	CF	8'-0"
141.75	CF	9'-0"
141.75	CF	9'-0"
28.00	CF	4'-0"
85.75	CF	7'-0"
85.75	CF	7'0"

Footing-Rectangular: 9x9x2
Footing-Rectangular: 9x9x2
Footing-Rectangular: 10x10x3'11"
Footing-Rectangular: 10x10x3'11"
Footing-Rectangular: 10x10x3'11"
Footing-Rectangular: 10x10x3'11"
Footing-Rectangular: 10x10x3'11"
Footing-Rectangular: 10x10x3'11'
Footing-Rectangular: 10x10x3'11"
Footing-Rectangular: 10x10x3'11"
Footing-Rectangular: 10x10x3'11"
Footing-Rectangular: 9x9x3'11"
Footing-Rectangular: 10x10x3'11"
Footing-Rectangular: 9x9x3'11"
Footing-Rectangular: 10x10x3'11"
Footing-Rectangular: 10x10x3'11"
Footing-Rectangular: 10x10x3'11"
Footing-Rectangular: 10x10x3'11"
Footing-Rectangular: 9x9x2
Footing-Rectangular: 8x8x2.5
Footing-Rectangular: 8x8x2.5
Footing-Rectangular: 8x8x2.5
Footing-Rectangular: 8x8x2.5
Footing-Rectangular: $8 \times 8 \times 2.5$
Footing-Rectangular: 10x10x3'11"
Footing-Rectangular: 10x10x3'11"
Footing-Rectangular: 10x10x3'11"
Footing-Rectangular: 10x10x3'11"

141.75	CF	9'-0"
141.75	CF	9'-0"
341.67	CF	10'-0"
341.67	CF	10'-0'
341.67	CF	10' - 0'
341.67	CF	10'-0'
341.67	CF	10'-0'
341.67	CF	10' - 0'
341.67	CF	10'-0'
341.67	CF	10'-0'
341.67	CF	10'-0'
276.75	CF	9'-0"
341.67	CF	10'-0"
341.67	CF	10'-0'
341.67	CF	10'-0"
341.67	CF	10'-0'
341.67	CF	10' - 0'
341.67	CF	10'-0'
276.75	CF	9'-0"
341.67	CF	10'-0"
341.67	CF	10'-0'
341.67	CF	10'-0'
341.67	CF	10'-0'
121.50	CF	9'-0"
128.00	CF	8'-0"
341.67	CF	10'-0"
341.67	CF	10'-0'
341.67	CF	10'-0'
341.67	CF	10'-0"

Footing-Rectangular: 8x8x2.5	128.00	CF	8'-0'
Foundation Slab: 6" Foundation Slab	17497.11	CF	
Footing-Rectangular: 7x7x2	91.88	CF	7'-0"
Footing-Rectangular: 8x8x2.5	128.00	CF	8'-0"
Footing-Rectangular: $4 \times 4 \times 2$	28.00	CF	4'-0"
Footing-Rectangular: 7x7x2	85.75	CF	7'-0"
Footing-Rectangular: 7x7x2	85.75	CF	7'-0"
Footing-Rectangular: 9x9x2	141.75	CF	9'-0"
Footing-Rectangular: 9x9x2	141.75	CF	9'-0"
Footing-Rectangular: 5x5x2	46.88	CF	5'-0"
Footing-Rectangular: 10x10x3'11'	341.67	CF	10'-0'
Footing-Rectangular: 10x10x3'11'	341.67	CF	10'-0'
Footing-Rectangular: 10x10x3'11'	341.67	CF	10'-0'
Footing-Rectangular: 10x10x3'11"	341.67	CF	10'-0'
Footing-Rectangular: 6x6x2	63.00	CF	6' - 0'
Footing-Rectangular: 5x5x2	43.75	CF	5'-0"
Footing-Rectangular: 10x10x3'11'	341.67	CF	10'-0'
Footing-Rectangular: 10x10x3'11'	341.67	CF	10'-0'
Footing-Rectangular: 10x10x3'11'	341.67	CF	10'-0'
Footing-Rectangular: 10x10x3'11'	341.67	CF	10'-0'
Footing-Rectangular: 7x7x2	85.75	CF	7'-0'
Footing-Rectangular: 7x7x2	80.50	CF	7'-0"
Footing-Rectangular: 8x8x2	96.00	CF	8'-0"
Foundation Slab: 6" Foundation Slab	4711.00	CF	
Foundation Slab: 6" Foundation Slab	18208.19	CF	
Foundation Slab: 6" Foundation Slab	16694.44	CF	
Foundation Slab: 6" Foundation Slab	16694.44	CF	
Foundation Slab: 6" Foundation Slab	12872.40	CF	
Footing-Rectangular: 5x5x2	43.75	CF	5'-0"
Footing-Rectangular: 6x6x2	54.00	CF	6' - 0 "
Footing-Rectangular: 6x6x2	54.00	CF	6' - 0"
Footing-Rectangular: 6x6x2	54.00	CF	6' - 0'
Footing-Rectangular: 6x6x2	54.00	CF	6' - 0"
Footing-Rectangular: 6x6x2	54.00	CF	6'-0"
Footing-Rectangular: 6x6x2	54.00	CF	6' - 0'
Footing-Rectangular: 6x6x2	54.00	CF	6'-0"
Footing-Rectangular: 6x6x2	54.00	CF	6' - 0"
Footing-Rectangular: 6x6x2	54.00	CF	6' - 0"
Footing-Rectangular: 6x6x2	54.00	CF	6' - 0"
Footing-Rectangular: 5x5x2	37.50	CF	5'-0"

Footing-Rectangular: 5x5x2	43.75	CF	5'-0"
Footing-Rectangular: 6x6x2	54.00	CF	6' - 0'
Footing-Rectangular: 6x6x2	54.00	CF	6' - 0"
Footing-Rectangular: 6x6x2	54.00	CF	6' - 0'
Footing-Rectangular: 6x6x2	54.00	CF	6' - 0"
Footing-Rectangular: 6x6x2	54.00	CF	6' - 0'
Footing-Rectangular: 6x6x2	54.00	CF	6' - 0"
Footing-Rectangular: 6x6x2	54.00	CF	6' - 0'
Footing-Rectangular: 6x6x2	54.00	CF	6'-0"
Footing-Rectangular: 6x6x2	54.00	CF	6' - 0'
Footing-Rectangular: 5x5x2	37.50	CF	5'-0"
Footing-Rectangular: 7x7x2	73.50	CF	7'-0"
Footing-Rectangular: 7x7x2	73.50	CF	7'-0"
Footing-Rectangular: 7x7x2	73.50	CF	7'-0"
Footing-Rectangular: 7x7x2	73.50	CF	7'-0"
Footing-Rectangular: 7x7x2	73.50	CF	7'-0"
Footing-Rectangular: 9x9x3'11'	276.75	CF	9'-0"
Footing-Rectangular: 5x5x2	43.75	CF	5'-0"
Wall Foundation: Bearing Footing - 36" x 12"	55.06	CF	3'-0"
Wall Foundation: Bearing Footing - 36" x 12"	40.89	CF	3'-0"
Wall Foundation: Bearing Footing - 36" x 12"	83.64	CF	3'-0"
Wall Foundation: Bearing Footing - 36" x 12"	83.64	CF	3'-0'
Wall Foundation: Bearing Footing - 36" x 12"	46.32	CF	3'-0"
Wall Foundation: Bearing Footing - 36" x 12"	80.58	CF	3'-0"
Wall Foundation: Bearing Footing - 36" x 12"	170.25	CF	3'-0"
Wall Foundation: Bearing Footing - 36" x 12"	37.13	CF	3'-0"
Wall Foundation: Bearing Footing - 36" x 12"	144.62	CF	
Foundation Slab: 6" Foundation Slab	5931.37	CF	
Total	113385.03	CF	
Total	4200	CY	

Structural Framing Schedule

Family and Type

HSS-Hollow Structural Section: HSS5X5X5/16

Volume	Unit	Length
0.47	CF	13' - $81 / 8^{\prime \prime}$
0.53	CF	13 ' $81 / 8^{\prime \prime}$
0.53	CF	13 ' $81 / 8^{\prime \prime}$
0.51	CF	13'-81/8"
0.53	CF	13' - $81 / 8^{\prime \prime}$
0.51	CF	13' - $81 / 8^{\prime \prime}$
0.53	CF	$13^{\prime}-81 / 8^{\prime \prime}$
0.51	CF	13 ' $-81 / 8^{\prime \prime}$
0.53	CF	13' - $81 / 8{ }^{\prime \prime}$
0.51	CF	13' - $81 / 8{ }^{\prime \prime}$
0.48	CF	13' - $81 / 8^{\prime \prime}$
0.47	CF	13'-43/4"
0.48	CF	13' - $81 / 8^{\prime \prime}$
0.53	CF	13' $-81 / 8^{\prime \prime}$
0.53	CF	13' - $81 / 8^{\prime \prime}$
0.51	CF	13' - $81 / 8^{\prime \prime}$
0.53	CF	13 ' $81 / 8^{\prime \prime}$
0.51	CF	13'-81/8"
0.53	CF	13 ' $81 / 8^{\prime \prime}$
0.53	CF	13 ' 8 1/8"
0.51	CF	13' - $81 / 8^{\prime \prime}$
0.51	CF	13' - $81 / 8^{\prime \prime}$
0.48	CF	13' - $61 / 2^{\prime \prime}$
0.47	CF	13' - $61 / 2^{\prime \prime}$
0.48	CF	13' - $81 / 8^{\prime \prime}$
0.53	CF	13 ' 8 1/8"
0.53	CF	13' - $81 / 8{ }^{\prime \prime}$
0.51	CF	13 ' 8 1/8"
0.53	CF	13' - $81 / 8^{\prime \prime}$
0.51	CF	13' - $81 / 8^{\prime \prime}$
0.53	CF	13' - $81 / 8^{\prime \prime}$
0.51	CF	13' - $81 / 8^{\prime \prime}$
0.53	CF	13' - $81 / 8{ }^{\prime \prime}$
0.51	CF	13 ' 8 1/8"
0.48	CF	13'-6 1/2"
0.47	CF	13'-61/2"
0.48	CF	13' - $81 / 8^{\prime \prime}$
0.53	CF	13'-81/8"

HSS-Hollow Structural Section: HSS5X5X5/16	0.53	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.51	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.53	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.51	CF	$13 '-81 / 8 "$
HSS-Hollow Structural Section: HSS5X5X5/16	0.53	CF	$13^{\prime}-81 / 8^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.53	CF	13 - $81 / 8^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.51	CF	$13^{\prime}-81 / 8^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.51	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.48	CF	13'-6 1/2"
HSS-Hollow Structural Section: HSS5X5X5/16	0.47	CF	13'-6 1/2"
HSS-Hollow Structural Section: HSS5X5X5/16	0.48	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.53	CF	$13^{\prime}-81 / 8^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.53	CF	$13^{\prime}-81 / 8^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.51	CF	$13^{\prime}-81 / 8^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.53	CF	$13^{\prime}-81 / 8 "$
HSS-Hollow Structural Section: HSS5X5X5/16	0.51	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.53	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.51	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.53	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.51	CF	$13^{\prime}-81 / 8^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.48	CF	13'-6 1/2"
HSS-Hollow Structural Section: HSS5X5X5/16	0.47	CF	13'-6 1/2"
HSS-Hollow Structural Section: HSS5X5X5/16	0.49	CF	$13^{\prime}-81 / 8^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.47	CF	$13^{\prime}-81 / 8^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.49	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.47	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.49	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.47	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.49	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.47	CF	$13^{\prime}-81 / 8^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.49	CF	$13^{\prime}-81 / 8 "$
HSS-Hollow Structural Section: HSS5X5X5/16	0.46	CF	$13^{\prime}-81 / 8{ }^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.48	CF	13'-6 1/2"
HSS-Hollow Structural Section: HSS5X5X5/16	0.47	CF	13'-6 1/2"
HSS-Hollow Structural Section: HSS5X5X5/16	0.49	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.47	CF	$13 '-81 / 8 "$
HSS-Hollow Structural Section: HSS5X5X5/16	0.49	CF	$13^{\prime}-81 / 8^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.47	CF	$13^{\prime}-81 / 8^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.49	CF	$13^{\prime}-81 / 8{ }^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.47	CF	13 - $81 / 8{ }^{\prime \prime}$

HSS-Hollow Structural Section: HSS5X5X5/16	0.49	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.47	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.49	CF	13'-87/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.47	CF	13'-87/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.48	CF	13'-71/2"
HSS-Hollow Structural Section: HSS5X5X5/16	0.47	CF	13'-71/2"
HSS-Hollow Structural Section: HSS5X5X5/16	0.49	CF	13 - $81 / 8{ }^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.47	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.49	CF	13 - $81 / 8{ }^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.47	CF	13 - $81 / 8{ }^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.49	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.47	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.49	CF	13'-81/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.48	CF	13 - $81 / 8{ }^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.49	CF	13'-87/8'
HSS-Hollow Structural Section: HSS5X5X5/16	0.47	CF	13' - $87 / 8{ }^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.49	CF	13'-71/2"
HSS-Hollow Structural Section: HSS5X5X5/16	0.66	CF	13' - $71 / 2^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.68	CF	18' - 6"
HSS-Hollow Structural Section: HSS5X5X5/16	0.67	CF	18'-10"
HSS-Hollow Structural Section: HSS5X5X5/16	0.67	CF	18'-8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.67	CF	18'-8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.67	CF	18'-8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.67	CF	18'-73/4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.67	CF	18' -8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.67	CF	18' - 8'
HSS-Hollow Structural Section: HSS5X5X5/16	0.67	CF	18'-8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.67	CF	18'-8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.65	CF	18'-8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.67	CF	18' - ${ }^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.67	CF	18'-73/4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.67	CF	18' -8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.67	CF	18' - 8'
HSS-Hollow Structural Section: HSS5X5X5/16	0.68	CF	18'-8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.66	CF	18'-10"
HSS-Hollow Structural Section: HSS5X5X5/16	0.78	CF	18' - 6"
HSS-Hollow Structural Section: HSS5X5X5/16	0.78	CF	22'-2 5/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.8	CF	22'-2 5/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.8	CF	22'-61/2"
HSS-Hollow Structural Section: HSS5X5X5/16	0.78	CF	22'-61/2'

HSS-Hollow Structural Section: HSS5X5X5/16	0.81	CF	22'-10 3/4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.79	CF	22'-10 3/4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.81	CF	22'-113/4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.79	CF	22'-113/4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.81	CF	22'-113/4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.79	CF	22'-113/4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.81	CF	22'-113/4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.79	CF	22'-113/4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.81	CF	22'-113/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.67	CF	22'-113/8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.67	CF	18'-8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.67	CF	18' -8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.95	CF	18'-8"
HSS-Hollow Structural Section: HSS5X5X5/16	0.39	CF	26'-0'
HSS-Hollow Structural Section: HSS5X5X5/16	0.65	CF	11'-4'
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	18' - ${ }^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	17'-4'
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	17'-4'
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	17'-4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	17'-4'
HSS-Hollow Structural Section: HSS5X5X5/16	0.65	CF	17'-4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.39	CF	18' - ${ }^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	11'-4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	17'-4'
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	17'-4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	17'-4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	17'-4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.65	CF	17'-4'
HSS-Hollow Structural Section: HSS5X5X5/16	0.39	CF	18'-3"
HSS-Hollow Structural Section: HSS5X5X5/16	0.39	CF	11'-4'
HSS-Hollow Structural Section: HSS5X5X5/16	0.65	CF	11'-4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	18' - ${ }^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	17'-4'
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	17'-4'
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	17'-4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.65	CF	17'-4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.39	CF	18' - ${ }^{\prime \prime}$
HSS-Hollow Structural Section: HSS5X5X5/16	0.39	CF	11'-4'
HSS-Hollow Structural Section: HSS5X5X5/16	0.65	CF	11'-4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	18' - ${ }^{\prime \prime}$

HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	17' - 4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	17' - 4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	17' - 4'
HSS-Hollow Structural Section: HSS5X5X5/16	0.65	CF	17' - 4'
HSS-Hollow Structural Section: HSS5X5X5/16	0.39	CF	18' - 3"
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	11' - 4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.63	CF	17' - 4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.63	CF	17' - 4'
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	17'-4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	17' - 4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.63	CF	17' - 4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.63	CF	17' - 4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.62	CF	17'-4"
HSS-Hollow Structural Section: HSS5X5X5/16	0.02	CF	17' - 4'
W-Wide Flange: W8X10	0.17	CF	1' - 0'
W-Wide Flange: W8X10	0.22	CF	9'-11/2"
W-Wide Flange: W8X10	0.03	CF	11' - 4"
W-Wide Flange: W8X10	0.07	CF	2'-0"
W-Wide Flange: W8X10	0.23	CF	4' - 0"
W-Wide Flange: W8X18	0.23	CF	7'-4"
W-Wide Flange: W8X18	0.18	CF	7'-4"
W-Wide Flange: W8X18	0.18	CF	5'-93/8"
W-Wide Flange: W8X18	0.18	CF	5'-93/8"
W-Wide Flange: W8X18	0.18	CF	5'-93/8"
W-Wide Flange: W8X18	0.28	CF	5'-9 3/8"
W-Wide Flange: W8X18	0.28	CF	8'-25/8"
W-Wide Flange: W8X18	0.15	CF	8'-25/8"
W-Wide Flange: W10X12	0.15	CF	7'-0"
W-Wide Flange: W10X12	0.15	CF	7' - 0"
W-Wide Flange: W10X12	0.15	CF	7'-0"
W-Wide Flange: W10X12	0.15	CF	7'-0"
W-Wide Flange: W10X12	0.2	CF	7' - 0"
W-Wide Flange: W10X12	0.15	CF	9'-0"
W-Wide Flange: W10X12	0.2	CF	7'-0"
W-Wide Flange: W10X12	0.15	CF	9'-0"
W-Wide Flange: W10X12	0.2	CF	7'-0"
W-Wide Flange: W10X12	0.15	CF	9'-0"
W-Wide Flange: W10X12	0.2	CF	7'-0"
W-Wide Flange: W10X12	0.09	CF	9'-0"
W-Wide Flange: W10X12	0.14	CF	4' - 4"

W-Wide Flange: W10X12	0.07	CF	6' - 7"
W-Wide Flange: W10X12	0.1	CF	3'-8"
W-Wide Flange: W10X12	0.09	CF	4'-61/8"
W-Wide Flange: W10X12	0.09	CF	4' - 3 3/8"
W-Wide Flange: W10X12	0.09	CF	4' - 4'
W-Wide Flange: W10X12	0.09	CF	4' - 4'
W-Wide Flange: W10X12	0.1	CF	4'-4"
W-Wide Flange: W10X12	0.09	CF	4'-45/8"
W-Wide Flange: W10X12	0.09	CF	4' - 4'
W-Wide Flange: W10X12	0.09	CF	4'-4"
W-Wide Flange: W10X12	0.09	CF	4'-4"
W-Wide Flange: W10X12	0.09	CF	4'-4"
W-Wide Flange: W10X12	0.09	CF	4'-4"
W-Wide Flange: W10X12	0.09	CF	4'-4"
W-Wide Flange: W10X12	0.09	CF	4'-4"
W-Wide Flange: W10X12	0.09	CF	4' - 4'
W-Wide Flange: W10X12	0.09	CF	4'-4"
W-Wide Flange: W10X12	0.09	CF	4' - 4'
W-Wide Flange: W10X12	0.1	CF	4' - ${ }^{\prime \prime}$
W-Wide Flange: W10X12	2.66	CF	4'-61/2"
W-Wide Flange: W10X12	2.66	CF	111'-113/4"
W-Wide Flange: W10X12	0.22	CF	111'-113/4"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"

W-Wide Flange: W10X12	0.22	CF	10'-0"
W-Wide Flange: W10X12	0.22	CF	10' - 0'
W-Wide Flange: W10X12	0.22	CF	10' - 0'
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0'
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.23	CF	10'-0"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	2.66	CF	11'-0 3/8"
W-Wide Flange: W10X12	2.66	CF	111'-113/4"
W-Wide Flange: W10X12	0.22	CF	111'-113/4"
W-Wide Flange: W10X12	0.03	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.21	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10'-0"

W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0'
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0'
W-Wide Flange: W10X12	0.22	CF	10' - 0'
W-Wide Flange: W10X12	0.22	CF	10' - 0'
W-Wide Flange: W10X12	0.22	CF	10' - 0'
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0'
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.23	CF	10' - 0"
W-Wide Flange: W10X12	0.2	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.2	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"

W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	2.66	CF	11'-0 3/8"
W-Wide Flange: W10X12	2.66	CF	111'-113/4"
W-Wide Flange: W10X12	0.22	CF	111'-113/4"
W-Wide Flange: W10X12	0.03	CF	10' - 0'
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0'
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0'
W-Wide Flange: W10X12	0.21	CF	10' - 0'
W-Wide Flange: W10X12	0.22	CF	10' - 0'
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0'
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0'
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0'
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0'
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0'
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.23	CF	10' - 0"
W-Wide Flange: W10X12	0.2	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.2	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"

W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	2.66	CF	11'-0 3/8"
W-Wide Flange: W10X12	2.67	CF	111'-113/4"
W-Wide Flange: W10X12	0.22	CF	111' - 11 3/4"
W-Wide Flange: W10X12	0.03	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.2	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.23	CF	10' - 0"

W-Wide Flange: W10X12	0.2	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	2.66	CF	11'-0 3/8"
W-Wide Flange: W10X12	2.66	CF	111'-113/4"
W-Wide Flange: W10X12	0.22	CF	111'-11 3/4"
W-Wide Flange: W10X12	0.03	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.21	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.22	CF	10' - 0"

W-Wide Flange: W10X12	0.22	CF	10'-0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0"
W-Wide Flange: W10X12	0.22	CF	10' - 0 "
W-Wide Flange: W10X12	0.23	CF	10'-0"
W-Wide Flange: W10X12	0.2	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.2	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11' - 0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.23	CF	11'-0 3/8"
W-Wide Flange: W10X12	0.54	CF	11' - 0 3/8"
W-Wide Flange: W10X15	0.54	CF	18' - 6"
W-Wide Flange: W10X15	0.54	CF	18' - 6"
W-Wide Flange: W10X15	0.54	CF	18'-6"
W-Wide Flange: W10X15	0.54	CF	18'-6"
W-Wide Flange: W10X15	0.54	CF	18'-6"

W-Wide Flange: W10X15	0.54	CF	18'-6"
W-Wide Flange: W10X15	0.54	CF	18'-6"
W-Wide Flange: W10X15	0.54	CF	18' - 6"
W-Wide Flange: W10X15	0.54	CF	18' - 6"
W-Wide Flange: W10X15	0.54	CF	18'-6"
W-Wide Flange: W10X15	0.54	CF	18'-6"
W-Wide Flange: W10X15	0.54	CF	18' - 6"
W-Wide Flange: W10X15	0.54	CF	18' - 6"
W-Wide Flange: W10X15	0.54	CF	18'-6"
W-Wide Flange: W10X15	0.54	CF	18'-6"
W-Wide Flange: W10X15	0.54	CF	18' - 6"
W-Wide Flange: W10X15	0.54	CF	18'-6"
W-Wide Flange: W10X15	0.54	CF	18'-6"
W-Wide Flange: W10X15	0.54	CF	18'-73/4"
W-Wide Flange: W10X15	0.54	CF	18' - 8"
W-Wide Flange: W10X15	0.54	CF	18' - 8"
W-Wide Flange: W10X15	0.55	CF	18'-8"
W-Wide Flange: W10X15	0.54	CF	18'-10"
W-Wide Flange: W10X15	0.54	CF	18'-73/4"
W-Wide Flange: W10X15	0.54	CF	18' - 8'
W-Wide Flange: W10X15	0.54	CF	18'-8"
W-Wide Flange: W10X15	0.55	CF	18'-8"
W-Wide Flange: W10X15	0.54	CF	18'-10"
W-Wide Flange: W10X15	0.54	CF	18'-73/4"
W-Wide Flange: W10X15	0.54	CF	18' - 8"
W-Wide Flange: W10X15	0.54	CF	18'-8"
W-Wide Flange: W10X15	0.55	CF	18' - 8"
W-Wide Flange: W10X15	0.54	CF	18'-10"
W-Wide Flange: W10X15	0.54	CF	18'-73/4"
W-Wide Flange: W10X15	0.54	CF	18' - 8'
W-Wide Flange: W10X15	0.54	CF	18'-8"
W-Wide Flange: W10X15	0.55	CF	18' - 8"
W-Wide Flange: W10X15	0.54	CF	18'-10"
W-Wide Flange: W10X15	0.54	CF	18'-73/4"
W-Wide Flange: W10X15	0.54	CF	18'-8"
W-Wide Flange: W10X15	0.54	CF	18'-8"
W-Wide Flange: W10X15	0.55	CF	18'-8"
W-Wide Flange: W10X15	0.54	CF	18'-10"
W-Wide Flange: W10X15	0.54	CF	18'-73/4"
W-Wide Flange: W10X15	0.54	CF	18' - 8'

W-Wide Flange: W10X15	0.54	CF	18'-8"
W-Wide Flange: W10X15	0.55	CF	18' - 8'
W-Wide Flange: W10X15	0.54	CF	18' - 10"
W-Wide Flange: W10X15	0.54	CF	18'-73/4"
W-Wide Flange: W10X15	0.54	CF	18'-8"
W-Wide Flange: W10X15	0.54	CF	18'-8"
W-Wide Flange: W10X15	0.55	CF	18'-8"
W-Wide Flange: W10X15	0.54	CF	18'-10"
W-Wide Flange: W10X15	0.54	CF	18'-73/4"
W-Wide Flange: W10X15	0.54	CF	18' -8"
W-Wide Flange: W10X15	0.54	CF	18' - 8'
W-Wide Flange: W10X15	0.55	CF	18'-8"
W-Wide Flange: W10X15	0.54	CF	18' - 10"
W-Wide Flange: W10X15	0.54	CF	18'-73/4"
W-Wide Flange: W10X15	0.54	CF	18'-8"
W-Wide Flange: W10X15	0.54	CF	18'-73/4"
W-Wide Flange: W10X15	0.54	CF	18'-8"
W-Wide Flange: W10X15	0.54	CF	18'-73/4"
W-Wide Flange: W10X15	0.54	CF	18'-8"
W-Wide Flange: W10X15	0.54	CF	18'-73/4"
W-Wide Flange: W10X15	0.54	CF	18'-8"
W-Wide Flange: W10X15	0.54	CF	18'-8"
W-Wide Flange: W10X15	0.55	CF	18'-8"
W-Wide Flange: W10X15	0.54	CF	18'-10"
W-Wide Flange: W10X15	0.54	CF	18' -8"
W-Wide Flange: W10X15	0.55	CF	18'-8"
W-Wide Flange: W10X15	0.55	CF	18' - 10"
W-Wide Flange: W10X15	0.55	CF	18' - 10"
W-Wide Flange: W10X15	0.92	CF	18' - 10"
W-Wide Flange: W10X22	0.92	CF	21'-4"
W-Wide Flange: W10X22	0.35	CF	21'-4"
W-Wide Flange: W10X22	0.35	CF	8' - 7"
W-Wide Flange: W10X22	0.38	CF	8'-7"
W-Wide Flange: W10X22	0.64	CF	9'-11/2"
W-Wide Flange: W10X22	0.81	CF	15' - 0"
W-Wide Flange: W10X22	0.8	CF	18' - 10"
W-Wide Flange: W10X22	0.8	CF	18'-8"
W-Wide Flange: W10X22	0.8	CF	18'-8"
W-Wide Flange: W10X22	0.46	CF	18'-8"
W-Wide Flange: W10X22	0.46	CF	11'-4"

W-Wide Flange: W10X22	0.79	CF	11'-4"
W-Wide Flange: W10X22	0.78	CF	18'-10'
W-Wide Flange: W10X22	0.78	CF	18' - 8'
W-Wide Flange: W10X22	0.78	CF	18'-8"
W-Wide Flange: W10X22	0.78	CF	18' - 8'
W-Wide Flange: W10X22	0.78	CF	18' - 8"
W-Wide Flange: W10X22	0.78	CF	18' - 8'
W-Wide Flange: W10X22	0.79	CF	18' - 8"
W-Wide Flange: W10X22	0.8	CF	18'-10"
W-Wide Flange: W10X22	0.8	CF	18' - 8'
W-Wide Flange: W10X22	0.8	CF	18' - 8"
W-Wide Flange: W10X22	0.8	CF	18' - 8'
W-Wide Flange: W10X22	0.78	CF	18' - 8"
W-Wide Flange: W10X22	0.78	CF	18' - 8'
W-Wide Flange: W10X22	0.78	CF	18' - 8'
W-Wide Flange: W10X22	0.79	CF	18'-8"
W-Wide Flange: W10X22	0.78	CF	18'-10'
W-Wide Flange: W10X22	0.78	CF	18' - 8"
W-Wide Flange: W10X22	0.78	CF	18' - 8'
W-Wide Flange: W10X22	0.79	CF	18' - 8"
W-Wide Flange: W10X22	0.12	CF	18'-10"
W-Wide Flange: W12X14	0.12	CF	5'-0"
W-Wide Flange: W12X14	0.18	CF	5' - 0"
W-Wide Flange: W12X14	0.18	CF	7'-0'
W-Wide Flange: W12X14	0.12	CF	7'-0"
W-Wide Flange: W12X14	0.12	CF	5'-0"
W-Wide Flange: W12X14	0.13	CF	5' - 0'
W-Wide Flange: W12X14	0.13	CF	5' - 0'
W-Wide Flange: W12X14	0.18	CF	5'-0"
W-Wide Flange: W12X14	0.18	CF	7' - 0'
W-Wide Flange: W12X14	0.18	CF	7'-0"
W-Wide Flange: W12X14	0.17	CF	7' - 0 "
W-Wide Flange: W12X14	0.18	CF	6' - 8"
W-Wide Flange: W12X14	0.17	CF	7' - 0 "
W-Wide Flange: W12X14	0.18	CF	6'-8"
W-Wide Flange: W12X14	0.17	CF	7'-0"
W-Wide Flange: W12X14	0.18	CF	6' - 8'
W-Wide Flange: W12X14	0.17	CF	7' - 0'
W-Wide Flange: W12X14	0.19	CF	6'-8"
W-Wide Flange: W12X14	0.19	CF	7'-4"

W-Wide Flange: W12X14

0.51	CF	7'-4"
0.51	CF	18' -8"
0.51	CF	18' - 8"
0.51	CF	18' - 8"
0.51	CF	18'-8"
0.51	CF	18' - 8"
0.51	CF	18'-8"
0.51	CF	18' - 8"
0.51	CF	18' - 8"
0.51	CF	18' - 8"
0.51	CF	18' - 8"
0.51	CF	18'-8"
0.51	CF	18' - 8"
0.51	CF	18' - 8"
0.24	CF	18' - 8"
0.51	CF	9'-11/2"
0.51	CF	18' - 8"
0.51	CF	18' - 8"
0.52	CF	18' - 8"
0.51	CF	18' - 10"
0.51	CF	18' - 8"
0.51	CF	18' - 8"
0.51	CF	18' - 8"
0.52	CF	18' - 8"
0.51	CF	18' - 10"
0.51	CF	18' - 8"
0.52	CF	18' - 8"
0.19	CF	18'-10"
0.19	CF	7'-4'
0.19	CF	7'-4"
0.18	CF	7'-4'
0.5	CF	7'-4"
0.5	CF	18' - 8"
0.5	CF	18' - 8"
0.5	CF	18' - 8"
0.18	CF	18' - 8"

W-Wide Flange: W12X14	0.18	CF	7'-4"
W-Wide Flange: W12X14	0.19	CF	7'-4"
W-Wide Flange: W12X14	0.19	CF	7'-4"
W-Wide Flange: W12X14	0.19	CF	7'-4"
W-Wide Flange: W12X14	0.18	CF	7'-4"
W-Wide Flange: W12X14	0.18	CF	7'-4"
W-Wide Flange: W12X14	0.5	CF	7'-4"
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8"
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.51	CF	18'-8'
W-Wide Flange: W12X14	0.51	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.51	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.51	CF	18'-8"
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.51	CF	18'-8'
W-Wide Flange: W12X14	0.51	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.51	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8'

W-Wide Flange: W12X14	0.5	CF	18'-8'
W-Wide Flange: W12X14	0.5	CF	18'-8"
W-Wide Flange: W12X14	0.51	CF	18'-8"
W-Wide Flange: W12X14	0.5	CF	18'-8"
W-Wide Flange: W12X14	0.5	CF	18'-8"
W-Wide Flange: W12X14	0.5	CF	18'-8"
W-Wide Flange: W12X14	0.53	CF	18'-8"
W-Wide Flange: W12X14	0.62	CF	19'-81/2"
W-Wide Flange: W12X14	0.6	CF	22'-73/8"
W-Wide Flange: W12X14	0.57	CF	21-73/4"
W-Wide Flange: W12X14	0.51	CF	20'-81/4"
W-Wide Flange: W12X14	0.49	CF	18'-9"
W-Wide Flange: W12X14	0.46	CF	17'-9 3/8"
W-Wide Flange: W12X14	0.38	CF	16'-9 7/8"
W-Wide Flange: W12X16	0.38	CF	12'-53/8"
W-Wide Flange: W12X16	0.31	CF	12'-53/8"
W-Wide Flange: W12X16	0.22	CF	10' - 0 "
W-Wide Flange: W12X16	0.67	CF	7' - 3 3/4"
W-Wide Flange: W12X19	0.67	CF	18'-8"
W-Wide Flange: W12X19	0.67	CF	18'-8"
W-Wide Flange: W12X19	0.24	CF	18'-8"
W-Wide Flange: W12X19	0.39	CF	7'-4"
W-Wide Flange: W12X19	0.99	CF	11'-4"
W-Wide Flange: W12X19	0.87	CF	26'-8'
W-Wide Flange: W12X19	0.97	CF	23'-6 7/8"
W-Wide Flange: W12X19	0.94	CF	25'-10 3/4'
W-Wide Flange: W12X19	0.91	CF	25'-11/2"
W-Wide Flange: W12X19	1.06	CF	24'-41/4"
W-Wide Flange: W12X26	1.06	CF	21'-0"
W-Wide Flange: W12X26	1.03	CF	21'-0"
W-Wide Flange: W12X26	1.05	CF	20'-8"
W-Wide Flange: W12X26	1.03	CF	21'-0"
W-Wide Flange: W12X26	1.06	CF	20'-8'
W-Wide Flange: W12X26	1.06	CF	21'-0"
W-Wide Flange: W12X26	0.55	CF	21'-0"
W-Wide Flange: W12X26	0.55	CF	11'-0"
W-Wide Flange: W12X26	0.58	CF	11'-0"
W-Wide Flange: W12X26	0.58	CF	11'-0"
W-Wide Flange: W12X26	1.05	CF	11'-0"
W-Wide Flange: W12X26	1.05	CF	21'-0"

W-Wide Flange: W12X26	1.05	CF	21'-0"
W-Wide Flange: W12X26	1.05	CF	21'-0"
W-Wide Flange: W12X26	1.41	CF	21'-0"
W-Wide Flange: W12X26	0.69	CF	27'-6"
W-Wide Flange: W12X26	0.69	CF	14'-0"
W-Wide Flange: W12X26	0.69	CF	14' - ${ }^{\prime \prime}$
W-Wide Flange: W12X26	0.69	CF	14'-0"
W-Wide Flange: W12X26	0.91	CF	14' - ${ }^{\prime \prime}$
W-Wide Flange: W12X26	0.85	CF	18'-2'
W-Wide Flange: W12X26	0.85	CF	17'-4'
W-Wide Flange: W12X26	0.85	CF	17'-4'
W-Wide Flange: W12X26	0.85	CF	17'-4'
W-Wide Flange: W12X26	0.6	CF	17'-4'
W-Wide Flange: W12X26	0.31	CF	12'-0"
W-Wide Flange: W12X26	0.92	CF	6' - 0"
W-Wide Flange: W12X26	0.94	CF	18' - ${ }^{\prime \prime}$
W-Wide Flange: W12X26	0.94	CF	18'-8'
W-Wide Flange: W12X26	0.94	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18'-8"
W-Wide Flange: W12X26	0.9	CF	18'-8"
W-Wide Flange: W12X26	0.95	CF	18' - ${ }^{\prime \prime}$
W-Wide Flange: W12X26	0.95	CF	18'-8"
W-Wide Flange: W12X26	0.95	CF	18'-8"
W-Wide Flange: W12X26	0.95	CF	18'-8"
W-Wide Flange: W12X26	0.95	CF	18'-8'
W-Wide Flange: W12X26	0.93	CF	18'-8"
W-Wide Flange: W12X26	0.95	CF	18'-3'
W-Wide Flange: W12X26	0.93	CF	18'-8"
W-Wide Flange: W12X26	0.95	CF	18' - ${ }^{\prime \prime}$
W-Wide Flange: W12X26	0.93	CF	18'-8"
W-Wide Flange: W12X26	0.33	CF	18' - ${ }^{\prime \prime}$
W-Wide Flange: W12X26	0.92	CF	7' - 4"
W-Wide Flange: W12X26	0.92	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18'-8'
W-Wide Flange: W12X26	0.92	CF	18' - 6"
W-Wide Flange: W12X26	0.92	CF	18' - 10'
W-Wide Flange: W12X26	1.31	CF	18' - 8"
W-Wide Flange: W12X26	0.54	CF	26'-0'

W-Wide Flange: W12X26	0.9	CF	11'-4"
W-Wide Flange: W12X26	0.9	CF	18'-3"
W-Wide Flange: W12X26	0.91	CF	18' - 3'
W-Wide Flange: W12X26	0.92	CF	18'-6"
W-Wide Flange: W12X26	0.96	CF	18' - ${ }^{\prime \prime}$
W-Wide Flange: W12X26	0.96	CF	18'-8"
W-Wide Flange: W12X26	0.96	CF	18'-8"
W-Wide Flange: W12X26	0.95	CF	18'-8"
W-Wide Flange: W12X26	0.9	CF	18'-8"
W-Wide Flange: W12X26	0.91	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18'-6"
W-Wide Flange: W12X26	0.9	CF	18'-73/4"
W-Wide Flange: W12X26	0.92	CF	18' - ${ }^{\prime \prime}$
W-Wide Flange: W12X26	0.92	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18'-8"
W-Wide Flange: W12X26	0.46	CF	18'-73/4'
W-Wide Flange: W12X26	0.97	CF	18'-8"
W-Wide Flange: W12X26	0.96	CF	18'-8"
W-Wide Flange: W12X26	0.96	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18' - ${ }^{\prime \prime}$
W-Wide Flange: W12X26	0.96	CF	18'-3"
W-Wide Flange: W12X26	0.96	CF	18'-8"
W-Wide Flange: W12X26	0.97	CF	18'-8"
W-Wide Flange: W12X26	0.46	CF	18'-8"
W-Wide Flange: W12X26	0.46	CF	18' -8"
W-Wide Flange: W12X26	0.97	CF	18'-8"
W-Wide Flange: W12X26	0.96	CF	18'-8"
W-Wide Flange: W12X26	0.96	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18' - 3"
W-Wide Flange: W12X26	0.96	CF	18'-3"
W-Wide Flange: W12X26	0.96	CF	18' - 8'
W-Wide Flange: W12X26	0.96	CF	18'-8"
W-Wide Flange: W12X26	0.97	CF	18'-8"
W-Wide Flange: W12X26	0.46	CF	18'-8"
W-Wide Flange: W12X26	0.79	CF	18'-8"

W-Wide Flange: W12X26	0.92	CF	15'-10 3/8"
W-Wide Flange: W12X26	0.96	CF	18' - ${ }^{\prime \prime}$
W-Wide Flange: W12X26	0.96	CF	18'-8"
W-Wide Flange: W12X26	0.96	CF	18'-8"
W-Wide Flange: W12X26	0.97	CF	18'-8"
W-Wide Flange: W12X26	0.95	CF	18'-8"
W-Wide Flange: W12X26	0.9	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18' - ${ }^{\prime \prime}$
W-Wide Flange: W12X26	0.92	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18' -8"
W-Wide Flange: W12X26	0.95	CF	18'-8"
W-Wide Flange: W12X26	0.97	CF	18' - 8'
W-Wide Flange: W12X26	0.96	CF	18'-8"
W-Wide Flange: W12X26	0.96	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18' - ${ }^{\prime \prime}$
W-Wide Flange: W12X26	0.96	CF	18' - 3"
W-Wide Flange: W12X26	0.96	CF	18'-8"
W-Wide Flange: W12X26	0.97	CF	18'-8"
W-Wide Flange: W12X26	0.95	CF	18'-8"
W-Wide Flange: W12X26	0.95	CF	18'-8"
W-Wide Flange: W12X26	0.97	CF	18'-8"
W-Wide Flange: W12X26	0.96	CF	18'-8"
W-Wide Flange: W12X26	0.96	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18' - 3"
W-Wide Flange: W12X26	0.96	CF	18' - 3"
W-Wide Flange: W12X26	0.96	CF	18' - 8'
W-Wide Flange: W12X26	0.96	CF	18'-8"
W-Wide Flange: W12X26	0.97	CF	18'-8"
W-Wide Flange: W12X26	0.95	CF	18'-8"
W-Wide Flange: W12X26	0.92	CF	18'-8"
W-Wide Flange: W12X26	0.91	CF	18'-73/4"
W-Wide Flange: W12X26	0.92	CF	18' - 6"
W-Wide Flange: W12X26	0.91	CF	18'-73/4'
W-Wide Flange: W12X26	1.1	CF	18' - 6"
W-Wide Flange: W12X30	1.1	CF	18'-8"
W-Wide Flange: W12X30	1.1	CF	18'-8"

W-Wide Flange: W12X30	1.1	CF	18'-8"
W-Wide Flange: W12X30	1.3	CF	18'-8'
W-Wide Flange: W12X35	1.3	CF	18'-8'
W-Wide Flange: W12X35	1.05	CF	18'-8'
W-Wide Flange: W12X40	1.05	CF	14'-0'
W-Wide Flange: W12X40	1.05	CF	14'-0'
W-Wide Flange: W12X40	1.05	CF	14'-0'
W-Wide Flange: W12X40	1.05	CF	14'-0"
W-Wide Flange: W12X40	1.05	CF	14'-0'
W-Wide Flange: W12X40	1.05	CF	14'-0'
W-Wide Flange: W12X40	1.05	CF	14'-0'
W-Wide Flange: W12X40	1.05	CF	14' - 0 "
W-Wide Flange: W12X40	1.05	CF	14'-0'
W-Wide Flange: W12X40	1.05	CF	14' - 0 "
W-Wide Flange: W12X40	1.05	CF	14'-0'
W-Wide Flange: W12X40	0.58	CF	14'-0'
W-Wide Flange: W14X22	0.58	CF	13'-8"
W-Wide Flange: W14X22	0.58	CF	13'-8'
W-Wide Flange: W14X22	0.58	CF	13'-8'
W-Wide Flange: W14X22	0.6	CF	13'-8'
W-Wide Flange: W14X22	0.6	CF	13'-8'
W-Wide Flange: W14X22	0.9	CF	13'-8'
W-Wide Flange: W14X22	0.9	CF	21'-0'
W-Wide Flange: W14X22	0.88	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	20'-8'
W-Wide Flange: W14X22	0.87	CF	21'-0'
W-Wide Flange: W14X22	0.9	CF	20'-8'
W-Wide Flange: W14X22	0.9	CF	21'-0'
W-Wide Flange: W14X22	0.88	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	20'-8"
W-Wide Flange: W14X22	0.87	CF	21'-0'
W-Wide Flange: W14X22	0.9	CF	20'-8"
W-Wide Flange: W14X22	0.9	CF	21'-0'
W-Wide Flange: W14X22	0.88	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	20'-8"
W-Wide Flange: W14X22	0.87	CF	21'-0'
W-Wide Flange: W14X22	0.9	CF	20'-8"
W-Wide Flange: W14X22	0.9	CF	21'-0'
W-Wide Flange: W14X22	0.88	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	20'-8"

W-Wide Flange: W14X22	0.87	CF	21'-0"
W-Wide Flange: W14X22	0.87	CF	20'-8'
W-Wide Flange: W14X22	0.89	CF	20'-8"
W-Wide Flange: W14X22	0.87	CF	21'-0'
W-Wide Flange: W14X22	0.88	CF	20'-8"
W-Wide Flange: W14X22	0.89	CF	20'-8"
W-Wide Flange: W14X22	0.88	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	20'-8"
W-Wide Flange: W14X22	0.87	CF	21'-0'
W-Wide Flange: W14X22	0.87	CF	20'-8'
W-Wide Flange: W14X22	0.88	CF	20'-8'
W-Wide Flange: W14X22	0.89	CF	20'-8"
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.91	CF	21'-0'
W-Wide Flange: W14X22	0.91	CF	21'-4'
W-Wide Flange: W14X22	0.91	CF	21'-4"
W-Wide Flange: W14X22	0.91	CF	21'-4"
W-Wide Flange: W14X22	0.91	CF	21'-4'
W-Wide Flange: W14X22	0.89	CF	21'-4"
W-Wide Flange: W14X22	0.89	CF	21'-0"
W-Wide Flange: W14X22	0.89	CF	21'-0"
W-Wide Flange: W14X22	0.89	CF	21'-0"
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0"
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0"
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.91	CF	21'-0'
W-Wide Flange: W14X22	0.91	CF	21'-4'
W-Wide Flange: W14X22	0.91	CF	21'-4'
W-Wide Flange: W14X22	0.91	CF	21'-4"
W-Wide Flange: W14X22	0.91	CF	21'-4"
W-Wide Flange: W14X22	0.89	CF	21'-4"
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0"
W-Wide Flange: W14X22	0.89	CF	21'-0"
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0"

W-Wide Flange: W14X22	0.89	CF	21'-0"
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	1.18	CF	21'-0'
W-Wide Flange: W14X22	1.18	CF	27'-6"
W-Wide Flange: W14X22	1.18	CF	27'-6"
W-Wide Flange: W14X22	1.18	CF	27'-6"
W-Wide Flange: W14X22	0.89	CF	27'-6"
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.89	CF	21'-0'
W-Wide Flange: W14X22	0.76	CF	21'-0'

W-Wide Flange: W14X22	0.76	CF	18'-2"
W-Wide Flange: W14X22	0.76	CF	18'-2'
W-Wide Flange: W14X22	0.78	CF	18'-2'
W-Wide Flange: W14X22	0.77	CF	18'-2'
W-Wide Flange: W14X22	0.77	CF	18'-2'
W-Wide Flange: W14X22	0.73	CF	18'-2'
W-Wide Flange: W14X22	0.72	CF	17'-4'
W-Wide Flange: W14X22	0.72	CF	17'-4'
W-Wide Flange: W14X22	0.73	CF	17'-4'
W-Wide Flange: W14X22	0.73	CF	17'-4'
W-Wide Flange: W14X22	0.72	CF	17'-4'
W-Wide Flange: W14X22	0.72	CF	17'-4'
W-Wide Flange: W14X22	0.73	CF	17'-4'
W-Wide Flange: W14X22	0.72	CF	17'-4'
W-Wide Flange: W14X22	0.73	CF	17'-4'
W-Wide Flange: W14X22	0.73	CF	17'-4'
W-Wide Flange: W14X22	0.72	CF	17'-4'
W-Wide Flange: W14X22	0.73	CF	17'-4'
W-Wide Flange: W14X22	0.73	CF	17'-4'
W-Wide Flange: W14X22	0.73	CF	17'-4'
W-Wide Flange: W14X22	0.73	CF	17'-4'
W-Wide Flange: W14X22	0.72	CF	17'-4'
W-Wide Flange: W14X22	0.73	CF	17'-4'
W-Wide Flange: W14X22	0.73	CF	17'-4'
W-Wide Flange: W14X22	0.72	CF	17'-4'
W-Wide Flange: W14X22	0.77	CF	17'-4'
W-Wide Flange: W14X22	0.76	CF	18'-2'
W-Wide Flange: W14X22	0.76	CF	18'-2'
W-Wide Flange: W14X22	0.76	CF	18'-2'
W-Wide Flange: W14X22	0.77	CF	18'-2'
W-Wide Flange: W14X22	0.77	CF	18'-2'
W-Wide Flange: W14X22	0.77	CF	18'-2'
W-Wide Flange: W14X22	0.77	CF	18'-2'
W-Wide Flange: W14X22	0.77	CF	18'-2'
W-Wide Flange: W14X22	0.77	CF	18'-2'
W-Wide Flange: W14X22	0.72	CF	18'-2'
W-Wide Flange: W14X22	0.72	CF	17'-4'
W-Wide Flange: W14X22	0.73	CF	17'-4'
W-Wide Flange: W14X22	0.73	CF	17'-4'
W-Wide Flange: W14X22	0.73	CF	17'-4'

W-Wide Flange: W14X22	0.73	CF	17'-4'
W-Wide Flange: W14X22	0.73	CF	17'-4"
W-Wide Flange: W14X22	0.74	CF	17'-4"
W-Wide Flange: W14X22	0.73	CF	17'-4'
W-Wide Flange: W14X22	0.73	CF	17'-4"
W-Wide Flange: W14X22	0.74	CF	17'-4'
W-Wide Flange: W14X22	0.73	CF	17'-4"
W-Wide Flange: W14X22	0.73	CF	17'-4'
W-Wide Flange: W14X22	0.73	CF	17'-4'
W-Wide Flange: W14X22	0.74	CF	17'-4"
W-Wide Flange: W14X22	0.73	CF	17'-4"
W-Wide Flange: W14X22	0.73	CF	17'-4"
W-Wide Flange: W14X22	0.73	CF	17'-4'
W-Wide Flange: W14X22	0.74	CF	17'-4"
W-Wide Flange: W14X22	0.72	CF	17'-4'
W-Wide Flange: W14X22	0.72	CF	17'-4"
W-Wide Flange: W14X22	0.72	CF	17'-4"
W-Wide Flange: W14X22	0.72	CF	17'-4'
W-Wide Flange: W14X22	0.74	CF	17'-4"
W-Wide Flange: W14X22	0.75	CF	17'-71/4"
W-Wide Flange: W14X22	0.77	CF	17'-95/8"
W-Wide Flange: W14X22	0.77	CF	18' - 2 "
W-Wide Flange: W14X22	0.77	CF	18'-2"
W-Wide Flange: W14X22	0.73	CF	18'-2"
W-Wide Flange: W14X22	0.73	CF	17'-4"
W-Wide Flange: W14X22	0.73	CF	17'-4"
W-Wide Flange: W14X22	0.73	CF	17'-4'
W-Wide Flange: W14X22	0.73	CF	17'-4"
W-Wide Flange: W14X22	0.73	CF	17'-4'
W-Wide Flange: W14X22	0.7	CF	17'-4"
W-Wide Flange: W14X22	0.65	CF	16'-6 1/2"
W-Wide Flange: W14X22	0.77	CF	15'-41/4"
W-Wide Flange: W14X22	1.26	CF	18'-2"
W-Wide Flange: W14X22	0.74	CF	29'-3"
W-Wide Flange: W14X22	0.75	CF	17'-71/4"
W-Wide Flange: W14X22	0.74	CF	$17{ }^{\prime}-95 / 8 "$
W-Wide Flange: W14X22	1.25	CF	17'-81/2"
W-Wide Flange: W14X22	1.26	CF	29'-3"
W-Wide Flange: W14X22	1.26	CF	29'-3"
W-Wide Flange: W14X22	1.26	CF	29'-3"

W-Wide Flange: W14X22	1.23	CF	29'-3'
W-Wide Flange: W14X22	1.21	CF	28'-71/4"
W-Wide Flange: W14X22	1.18	CF	27'-11 1/2'
W-Wide Flange: W14X22	0.22	CF	27'-3 3 "
W-Wide Flange: W14X22	0.83	CF	4' - 6"
W-Wide Flange: W14X22	0.83	CF	19'-9 7/8"
W-Wide Flange: W14X22	0.83	CF	19'-9 7/8"
W-Wide Flange: W14X22	0.83	CF	19'-9 7/8"
W-Wide Flange: W14X22	0.83	CF	19'-9 7/8"
W-Wide Flange: W14X22	0.83	CF	19'-9 7/8"
W-Wide Flange: W14X22	0.83	CF	19'-9 7/8"
W-Wide Flange: W14X22	0.83	CF	19'-9 7/8"
W-Wide Flange: W14X22	0.83	CF	19'-9 7/8"
W-Wide Flange: W14X22	0.83	CF	19'-9 7/8"
W-Wide Flange: W14X22	0.83	CF	19'-9 7/8"
W-Wide Flange: W14X22	0.83	CF	19'-9 7/8"
W-Wide Flange: W14X22	0.83	CF	19'-9 7/8"
W-Wide Flange: W14X22	0.83	CF	19'-9 7/8"
W-Wide Flange: W14X22	0.83	CF	19'-9 7/8"
W-Wide Flange: W14X22	0.85	CF	19'-9 7/8"
W-Wide Flange: W14X22	0.85	CF	20'-41/2"
W-Wide Flange: W14X22	0.85	CF	20'-41/2"
W-Wide Flange: W14X22	0.83	CF	20'-41/2"
W-Wide Flange: W14X22	0.85	CF	20'-41/2"
W-Wide Flange: W14X22	0.85	CF	20'-41/2"
W-Wide Flange: W14X22	0.85	CF	20'-41/2"
W-Wide Flange: W14X22	0.83	CF	20'-41/2"
W-Wide Flange: W14X22	0.85	CF	20'-41/2"
W-Wide Flange: W14X22	0.85	CF	20'-41/2"
W-Wide Flange: W14X22	0.85	CF	20'-4 1/2"
W-Wide Flange: W14X22	0.83	CF	20'-41/2"
W-Wide Flange: W14X22	0.85	CF	20' - 4 1/2"
W-Wide Flange: W14X22	0.85	CF	20'-4 1/2"
W-Wide Flange: W14X22	0.85	CF	20'-4 1/2"
W-Wide Flange: W14X22	1.24	CF	20'-41/2"
W-Wide Flange: W14X30	1.22	CF	21'-4'
W-Wide Flange: W14X30	0.38	CF	21'-0"
W-Wide Flange: W14X30	1.24	CF	7'-0"
W-Wide Flange: W14X30	1.2	CF	21'-4'
W-Wide Flange: W14X30	1.22	CF	20'-8'

W-Wide Flange: W14X30	1.2	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	20'-8"
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	1.63	CF	21'-0'
W-Wide Flange: W14X30	1.24	CF	28'-0'
W-Wide Flange: W14X30	1.24	CF	21'-4"
W-Wide Flange: W14X30	2.05	CF	21'-4'
W-Wide Flange: W14X30	2.03	CF	35' - 0'
W-Wide Flange: W14X30	2.03	CF	34' - 8'
W-Wide Flange: W14X30	0.81	CF	34'-8"
W-Wide Flange: W14X30	0.71	CF	14' - 0 "
W-Wide Flange: W14X30	0.81	CF	12'-0'
W-Wide Flange: W14X30	0.71	CF	14' - 0 "
W-Wide Flange: W14X30	1.24	CF	12'-0'
W-Wide Flange: W14X30	1.22	CF	21'-4"
W-Wide Flange: W14X30	0.38	CF	21'-0'
W-Wide Flange: W14X30	1.24	CF	7'-0"
W-Wide Flange: W14X30	1.2	CF	21'-4'
W-Wide Flange: W14X30	1.22	CF	20'-8"
W-Wide Flange: W14X30	1.2	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	20' - 8'
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	2.03	CF	21'-0'
W-Wide Flange: W14X30	2.03	CF	34' - 8'
W-Wide Flange: W14X30	1.24	CF	34' - 8'
W-Wide Flange: W14X30	1.22	CF	21'-4'
W-Wide Flange: W14X30	0.38	CF	21'-0'
W-Wide Flange: W14X30	1.24	CF	7' - 0 "
W-Wide Flange: W14X30	1.2	CF	21'-4'
W-Wide Flange: W14X30	1.22	CF	20' - 8'
W-Wide Flange: W14X30	1.2	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	20'-8"
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	2.03	CF	21'-0'

W-Wide Flange: W14X30	2.03	CF	34'-8"
W-Wide Flange: W14X30	0.81	CF	34' - 8'
W-Wide Flange: W14X30	0.71	CF	14' - 0 "
W-Wide Flange: W14X30	0.81	CF	12'-0"
W-Wide Flange: W14X30	0.71	CF	14' - 0 "
W-Wide Flange: W14X30	1.24	CF	12'-0'
W-Wide Flange: W14X30	1.22	CF	21'-4'
W-Wide Flange: W14X30	0.38	CF	21'-0"
W-Wide Flange: W14X30	1.24	CF	7'-0"
W-Wide Flange: W14X30	1.2	CF	21'-4'
W-Wide Flange: W14X30	1.22	CF	20'-8'
W-Wide Flange: W14X30	1.2	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	20'-8"
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	2.03	CF	21'-0'
W-Wide Flange: W14X30	2.03	CF	34' - 8'
W-Wide Flange: W14X30	1.21	CF	34'-8"
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	0.38	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	7'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	0.8	CF	21'-0'
W-Wide Flange: W14X30	0.81	CF	14' - 0'
W-Wide Flange: W14X30	1.21	CF	14' - 0 "
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	21'-0'
W-Wide Flange: W14X30	0.38	CF	21'-0'
W-Wide Flange: W14X30	1.22	CF	7' - 0 "
W-Wide Flange: W14X30	1.22	CF	21'-0"

W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	0.8	CF	21'-0"
W-Wide Flange: W14X30	0.81	CF	14' - 0"
W-Wide Flange: W14X30	1.22	CF	14'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	0.38	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	7' - 0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	0.8	CF	21'-0"
W-Wide Flange: W14X30	0.81	CF	14'-0"
W-Wide Flange: W14X30	1.22	CF	14'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	0.38	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	7'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	1.22	CF	21'-0"
W-Wide Flange: W14X30	0.8	CF	21'-0"
W-Wide Flange: W14X30	0.81	CF	14' - 0"
W-Wide Flange: W14X30	1.04	CF	14'-0"
W-Wide Flange: W14X30	0.98	CF	18'-2"
W-Wide Flange: W14X30	1	CF	17'-4"
W-Wide Flange: W14X30	1	CF	17'-4"
W-Wide Flange: W14X30	1.01	CF	17'-4"
W-Wide Flange: W14X30	0.69	CF	17'-61/4"

W-Wide Flange: W16X26	0.32	CF	14'-0'
W-Wide Flange: W16X26	1.08	CF	7'-0"
W-Wide Flange: W16X26	1.06	CF	21'-4'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-4"
W-Wide Flange: W16X26	1.06	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	20'-8'
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	20'-8'
W-Wide Flange: W16X26	1.05	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	20'-8'
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-4'
W-Wide Flange: W16X26	1.03	CF	20'-8'
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'

W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-4'
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.09	CF	21'-4'
W-Wide Flange: W16X26	1.07	CF	21'-4'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.09	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-4"
W-Wide Flange: W16X26	1.07	CF	20'-8'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-4'
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-4"
W-Wide Flange: W16X26	1.07	CF	21'-0"
W-Wide Flange: W16X26	1.03	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'

W-Wide Flange: W16X26	1.03	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-4'
W-Wide Flange: W16X26	1.08	CF	21'-0"
W-Wide Flange: W16X26	1.06	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	20'-8'
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	0.69	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	14' - 0'
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-4'
W-Wide Flange: W16X26	1.06	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0"
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0"
W-Wide Flange: W16X26	1.08	CF	21'-0'

W-Wide Flange: W16X26	1.05	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-4"
W-Wide Flange: W16X26	1.03	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	20' - 8'
W-Wide Flange: W16X26	1.03	CF	21'-0"
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-4"
W-Wide Flange: W16X26	1.08	CF	21'-0"
W-Wide Flange: W16X26	1.09	CF	21'-4'
W-Wide Flange: W16X26	1.07	CF	21'-4'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.09	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-4"
W-Wide Flange: W16X26	1.07	CF	20'-8'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.07	CF	21'-0"
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-4'
W-Wide Flange: W16X26	1.08	CF	21'-0"
W-Wide Flange: W16X26	1.08	CF	21'-4"

W-Wide Flange: W16X26	1.05	CF	21'-4"
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-4'
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	0.69	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	14' - 0"
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-4"
W-Wide Flange: W16X26	1.06	CF	21'-4'
W-Wide Flange: W16X26	1.06	CF	21'-0"
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-4'
W-Wide Flange: W16X26	1.06	CF	21'-4"
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-0"
W-Wide Flange: W16X26	1.08	CF	21'-4"
W-Wide Flange: W16X26	1.06	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.03	CF	21'-0'

W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0"
W-Wide Flange: W16X26	1.03	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	20' - 8'
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	20' - 8'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.04	CF	21'-0"
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-4'
W-Wide Flange: W16X26	1.03	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	20'-8'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-4"
W-Wide Flange: W16X26	1.08	CF	21'-0'

W-Wide Flange: W16X26	1.09	CF	21'-4"
W-Wide Flange: W16X26	1.07	CF	21'-4'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.09	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-4'
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	20' - 8'
W-Wide Flange: W16X26	1.03	CF	21'-0"
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-4'
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-4'
W-Wide Flange: W16X26	1.07	CF	21'-0"
W-Wide Flange: W16X26	1.03	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	20'-8'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0"
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-4"
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.03	CF	21'-0'

W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	0.69	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	14'-0'
W-Wide Flange: W16X26	1.08	CF	21'-0"
W-Wide Flange: W16X26	1.07	CF	21'-4'
W-Wide Flange: W16X26	1.07	CF	21'-4"
W-Wide Flange: W16X26	1.07	CF	21'-4'
W-Wide Flange: W16X26	1.07	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-4'
W-Wide Flange: W16X26	1.06	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-0"
W-Wide Flange: W16X26	1.08	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0'

W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0"
W-Wide Flange: W16X26	1.04	CF	21'-0"
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-4"
W-Wide Flange: W16X26	1.03	CF	20'-8'
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0"
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-4"
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.09	CF	21'-4"
W-Wide Flange: W16X26	1.07	CF	21'-4'
W-Wide Flange: W16X26	1.07	CF	21'-0"
W-Wide Flange: W16X26	1.09	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-4"
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.07	CF	21'-0"
W-Wide Flange: W16X26	1.06	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.03	CF	21'-0"

W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-4"
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.08	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	21'-4"
W-Wide Flange: W16X26	1.07	CF	21'-0"
W-Wide Flange: W16X26	1.03	CF	21'-4'
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0"
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	1.05	CF	21'-4"
W-Wide Flange: W16X26	1.08	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	20'-8"
W-Wide Flange: W16X26	1.03	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	20'-8"
W-Wide Flange: W16X26	0.69	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	14'-0'
W-Wide Flange: W16X26	1.08	CF	21'-0"
W-Wide Flange: W16X26	1.06	CF	21'-4'
W-Wide Flange: W16X26	1.06	CF	21'-4"
W-Wide Flange: W16X26	1.06	CF	21'-0"
W-Wide Flange: W16X26	1.08	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-4"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0"

W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	0.87	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	17'-6"
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'

W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	0.39	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	7' - 0 "
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'

W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'

W-Wide Flange: W16X26	1.06	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'

W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0"
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'

W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'

W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0"
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0"
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.07	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'

W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.06	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.05	CF	21'-0'
W-Wide Flange: W16X26	1.06	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0'

W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.05	CF	21'-0"
W-Wide Flange: W16X26	1.06	CF	21'-0"
W-Wide Flange: W16X26	0.92	CF	21'-0"
W-Wide Flange: W16X26	0.94	CF	18' - ${ }^{\prime \prime}$
W-Wide Flange: W16X26	0.94	CF	18'-8"
W-Wide Flange: W16X26	0.94	CF	18'-8"
W-Wide Flange: W16X26	0.94	CF	18'-8"
W-Wide Flange: W16X26	1.49	CF	18'-8"
W-Wide Flange: W16X26	0.94	CF	29'-3"
W-Wide Flange: W16X26	0.9	CF	18'-8"
W-Wide Flange: W16X26	0.54	CF	18' - ${ }^{\prime \prime}$
W-Wide Flange: W16X26	0.75	CF	11'-4"
W-Wide Flange: W16X26	0.75	CF	15' - 3'
W-Wide Flange: W16X26	0.75	CF	15' - ${ }^{\prime \prime}$
W-Wide Flange: W16X26	0.75	CF	15' - ${ }^{\prime \prime}$
W-Wide Flange: W16X26	0.75	CF	15' - 3'
W-Wide Flange: W16X26	0.86	CF	15'-3"
W-Wide Flange: W16X26	0.86	CF	17'-4"
W-Wide Flange: W16X26	0.9	CF	17'-4"
W-Wide Flange: W16X26	0.88	CF	18' - 3'
W-Wide Flange: W16X26	0.85	CF	17'-61/4"
W-Wide Flange: W16X26	0.85	CF	17'-4"
W-Wide Flange: W16X26	1.25	CF	17'-4"
W-Wide Flange: W16X31	1.25	CF	21'-0"
W-Wide Flange: W16X31	1.25	CF	21'-0"
W-Wide Flange: W16X31	1.25	CF	21'-0"
W-Wide Flange: W16X31	1.25	CF	21'-0"

W-Wide Flange: W16X31	1.25	CF	21'-0'
W-Wide Flange: W16X31	1.25	CF	21'-0"
W-Wide Flange: W16X31	1.25	CF	21'-0"
W-Wide Flange: W16X31	1.19	CF	21'-0"
W-Wide Flange: W16X31	1.09	CF	19'-9 1/8'
W-Wide Flange: W16X31	2.08	CF	18'-2"
W-Wide Flange: W16X36	2.07	CF	29'-7"
W-Wide Flange: W16X36	2.08	CF	29'-7"
W-Wide Flange: W16X36	2.1	CF	29'-7"
W-Wide Flange: W16X36	2.1	CF	29'-7"
W-Wide Flange: W16X36	2.1	CF	29'-7"
W-Wide Flange: W16X36	2.1	CF	29'-7'
W-Wide Flange: W16X36	2.1	CF	29'-7"
W-Wide Flange: W16X36	2.1	CF	29'-7"
W-Wide Flange: W16X36	2.1	CF	29'-7"
W-Wide Flange: W16X36	2.1	CF	29'-7"
W-Wide Flange: W16X36	0.93	CF	29'-7"
W-Wide Flange: W18X35	0.93	CF	14'-0"
W-Wide Flange: W18X35	0.93	CF	14'-0"
W-Wide Flange: W18X35	0.93	CF	14'-0"
W-Wide Flange: W18X35	0.93	CF	14' - 0 "
W-Wide Flange: W18X35	0.91	CF	14'-0"
W-Wide Flange: W18X35	0.89	CF	14' - 0 "
W-Wide Flange: W18X35	0.91	CF	13'-8"
W-Wide Flange: W18X35	1.43	CF	14' - 0 "
W-Wide Flange: W18X35	1.43	CF	21'-0"
W-Wide Flange: W18X35	1.4	CF	21'-0"
W-Wide Flange: W18X35	1.43	CF	20'-8"
W-Wide Flange: W18X35	1.4	CF	21'-0"
W-Wide Flange: W18X35	1.42	CF	20' - 8"
W-Wide Flange: W18X35	1.42	CF	21'-0"
W-Wide Flange: W18X35	1.41	CF	21'-0"
W-Wide Flange: W18X35	1.42	CF	21'-0"
W-Wide Flange: W18X35	1.42	CF	21'-0"
W-Wide Flange: W18X35	1.41	CF	21'-0"
W-Wide Flange: W18X35	0.93	CF	21'-0"
W-Wide Flange: W18X35	0.93	CF	14'-0"
W-Wide Flange: W18X35	0.93	CF	14'-0"
W-Wide Flange: W18X35	0.93	CF	14'-0"
W-Wide Flange: W18X35	0.93	CF	14'-0"

W-Wide Flange: W18X35	0.91	CF	14'-0'
W-Wide Flange: W18X35	0.89	CF	14'-0"
W-Wide Flange: W18X35	0.91	CF	13'-8"
W-Wide Flange: W18X35	1.43	CF	14'-0'
W-Wide Flange: W18X35	1.43	CF	21'-0"
W-Wide Flange: W18X35	1.4	CF	21'-0"
W-Wide Flange: W18X35	1.43	CF	20'-8"
W-Wide Flange: W18X35	1.4	CF	21'-0'
W-Wide Flange: W18X35	0.93	CF	20'-8'
W-Wide Flange: W18X35	0.93	CF	14'-0'
W-Wide Flange: W18X35	0.93	CF	14'-0"
W-Wide Flange: W18X35	0.93	CF	14'-0"
W-Wide Flange: W18X35	0.93	CF	14'-0'
W-Wide Flange: W18X35	0.91	CF	14'-0"
W-Wide Flange: W18X35	0.89	CF	14'-0'
W-Wide Flange: W18X35	0.91	CF	13'-8"
W-Wide Flange: W18X35	1.43	CF	14'-0'
W-Wide Flange: W18X35	1.43	CF	21'-0"
W-Wide Flange: W18X35	1.4	CF	21'-0'
W-Wide Flange: W18X35	1.43	CF	20'-8'
W-Wide Flange: W18X35	1.43	CF	21'-0'
W-Wide Flange: W18X35	1.42	CF	20'-8'
W-Wide Flange: W18X35	1.42	CF	21'-0'
W-Wide Flange: W18X35	1.41	CF	21'-0"
W-Wide Flange: W18X35	1.42	CF	21'-0"
W-Wide Flange: W18X35	1.42	CF	21'-0'
W-Wide Flange: W18X35	1.41	CF	21'-0"
W-Wide Flange: W18X35	0.93	CF	21'-0"
W-Wide Flange: W18X35	0.93	CF	14'-0'
W-Wide Flange: W18X35	0.93	CF	14'-0"
W-Wide Flange: W18X35	0.93	CF	14'-0'
W-Wide Flange: W18X35	0.93	CF	14'-0'
W-Wide Flange: W18X35	0.91	CF	14'-0"
W-Wide Flange: W18X35	0.89	CF	14'-0"
W-Wide Flange: W18X35	0.91	CF	13'-8"
W-Wide Flange: W18X35	1.43	CF	14'-0'
W-Wide Flange: W18X35	1.43	CF	21'-0"
W-Wide Flange: W18X35	1.4	CF	21'-0"
W-Wide Flange: W18X35	1.43	CF	20'-8"
W-Wide Flange: W18X35	1.43	CF	21'-0"

W-Wide Flange: W18X35	0.91	CF	20'-8"
W-Wide Flange: W18X35	1.42	CF	14'-0'
W-Wide Flange: W18X35	1.43	CF	21'-0"
W-Wide Flange: W18X35	0.93	CF	21'-0'
W-Wide Flange: W18X35	0.93	CF	14'-0'
W-Wide Flange: W18X35	0.93	CF	14'-0'
W-Wide Flange: W18X35	0.93	CF	14'-0'
W-Wide Flange: W18X35	0.92	CF	14'-0"
W-Wide Flange: W18X35	0.89	CF	14'-0'
W-Wide Flange: W18X35	1.42	CF	13'-8'
W-Wide Flange: W18X35	1.42	CF	21'-0'
W-Wide Flange: W18X35	1.41	CF	21'-0'
W-Wide Flange: W18X35	1.43	CF	21'-0'
W-Wide Flange: W18X35	1.43	CF	21'-0'
W-Wide Flange: W18X35	1.43	CF	21'-0'
W-Wide Flange: W18X35	0.91	CF	21'-0'
W-Wide Flange: W18X35	1.42	CF	14'-0'
W-Wide Flange: W18X35	1.43	CF	21'-0'
W-Wide Flange: W18X35	0.93	CF	21'-0'
W-Wide Flange: W18X35	0.93	CF	14'-0'
W-Wide Flange: W18X35	0.93	CF	14'-0'
W-Wide Flange: W18X35	0.93	CF	14'-0'
W-Wide Flange: W18X35	0.92	CF	14'-0'
W-Wide Flange: W18X35	0.89	CF	14'-0'
W-Wide Flange: W18X35	1.42	CF	13'-8'
W-Wide Flange: W18X35	1.42	CF	21'-0'
W-Wide Flange: W18X35	1.41	CF	21'-0'
W-Wide Flange: W18X35	1.43	CF	21'-0'
W-Wide Flange: W18X35	1.43	CF	21'-0'
W-Wide Flange: W18X35	1.43	CF	21'-0'
W-Wide Flange: W18X35	0.95	CF	21'-0'
W-Wide Flange: W18X35	1.43	CF	14'-0'
W-Wide Flange: W18X35	1.43	CF	21'-0'
W-Wide Flange: W18X35	0.93	CF	21'-0'
W-Wide Flange: W18X35	0.93	CF	14' - 0 '
W-Wide Flange: W18X35	0.93	CF	14'-0'
W-Wide Flange: W18X35	0.93	CF	14' - 0 "
W-Wide Flange: W18X35	0.92	CF	14'-0"
W-Wide Flange: W18X35	0.9	CF	14' - 0 "
W-Wide Flange: W18X35	1.42	CF	13'-8'

W-Wide Flange: W18X35	1.42	CF	21'-0'
W-Wide Flange: W18X35	1.41	CF	21'-0'
W-Wide Flange: W18X35	1.43	CF	21'-0"
W-Wide Flange: W18X35	1.43	CF	21'-0"
W-Wide Flange: W18X35	1.43	CF	21'-0'
W-Wide Flange: W18X35	0.95	CF	21'-0"
W-Wide Flange: W18X35	1.43	CF	14'-0'
W-Wide Flange: W18X35	1.43	CF	21'-0"
W-Wide Flange: W18X35	0.93	CF	21'-0'
W-Wide Flange: W18X35	0.93	CF	14'-0'
W-Wide Flange: W18X35	0.93	CF	14'-0'
W-Wide Flange: W18X35	0.93	CF	14' - 0'
W-Wide Flange: W18X35	0.92	CF	14'-0'
W-Wide Flange: W18X35	0.9	CF	14' - 0'
W-Wide Flange: W18X35	1.42	CF	13'-8"
W-Wide Flange: W18X35	1.42	CF	21'-0'
W-Wide Flange: W18X35	1.41	CF	21'-0'
W-Wide Flange: W18X35	1.43	CF	21'-0'
W-Wide Flange: W18X35	1.43	CF	21'-0"
W-Wide Flange: W18X35	1.43	CF	21'-0"
W-Wide Flange: W18X35	0.72	CF	21'-0'
W-Wide Flange: W18X35	1.15	CF	11'-4"
W-Wide Flange: W18X35	1.24	CF	17'-4'
W-Wide Flange: W18X35	1.24	CF	18'-8'
W-Wide Flange: W18X35	1.22	CF	18'-8'
W-Wide Flange: W18X35	1.22	CF	18'-2"
W-Wide Flange: W18X35	1.22	CF	18'-2'
W-Wide Flange: W18X35	1.22	CF	18'-2"
W-Wide Flange: W18X35	1.22	CF	18'-2'
W-Wide Flange: W18X35	1.22	CF	18'-2"
W-Wide Flange: W18X35	1.22	CF	18'-2'
W-Wide Flange: W18X35	1.16	CF	18'-2'
W-Wide Flange: W18X35	1.17	CF	17'-4'
W-Wide Flange: W18X35	1.17	CF	17'-4'
W-Wide Flange: W18X35	1.16	CF	17'-4'
W-Wide Flange: W18X35	1.14	CF	17'-4'
W-Wide Flange: W18X35	1.15	CF	17'-4'
W-Wide Flange: W18X35	1.15	CF	17'-4'
W-Wide Flange: W18X35	1.15	CF	17'-4'
W-Wide Flange: W18X35	1.15	CF	17'-4'

W-Wide Flange: W18X35	1.15	CF	17'-4'
W-Wide Flange: W18X35	0.91	CF	17'-4'
W-Wide Flange: W18X35	0.91	CF	13'-0'
W-Wide Flange: W18X35	0.89	CF	13'-0'
W-Wide Flange: W18X35	0.89	CF	12'-8'
W-Wide Flange: W18X35	1.6	CF	12'-8"
W-Wide Flange: W18X40	1.62	CF	20'-8'
W-Wide Flange: W18X40	1.6	CF	21'-0'
W-Wide Flange: W18X40	1.62	CF	20'-8'
W-Wide Flange: W18X40	1.6	CF	21'-0'
W-Wide Flange: W18X40	1.62	CF	20'-8'
W-Wide Flange: W18X40	1.6	CF	21'-0'
W-Wide Flange: W18X40	1.62	CF	20'-8"
W-Wide Flange: W18X40	1.62	CF	21'-0'
W-Wide Flange: W18X40	1.61	CF	21'-0'
W-Wide Flange: W18X40	1.62	CF	20'-8'
W-Wide Flange: W18X40	1.61	CF	21'-0'
W-Wide Flange: W18X40	1.64	CF	20'-8'
W-Wide Flange: W18X40	1.61	CF	21'-0'
W-Wide Flange: W18X40	1.64	CF	20'-8"
W-Wide Flange: W18X40	1.61	CF	21'-0'
W-Wide Flange: W18X40	1.36	CF	20'-8"
W-Wide Flange: W18X40	1.36	CF	17'-4'
W-Wide Flange: W18X40	1.66	CF	17'-4'
W-Wide Flange: W18X50	1.66	CF	17'-4'
W-Wide Flange: W18X50	1.77	CF	17'-4'
W-Wide Flange: W18X50	1.77	CF	18'-8'
W-Wide Flange: W18X50	1.79	CF	18'-8'
W-Wide Flange: W18X50	1.81	CF	18'-8'
W-Wide Flange: W18X50	1.79	CF	18'-8'
W-Wide Flange: W18X50	1.81	CF	18'-8'
W-Wide Flange: W18X50	1.79	CF	18'-8'
W-Wide Flange: W18X50	1.81	CF	18'-8'
W-Wide Flange: W18X50	1.66	CF	18'-8'
W-Wide Flange: W18X50	1.66	CF	17'-4"
W-Wide Flange: W18X50	4.12	CF	17'-4'
W-Wide Flange: W18X60	4.12	CF	35'-0'
W-Wide Flange: W18X60	4.12	CF	35'-0'
W-Wide Flange: W18X60	4.12	CF	35' - 0'
W-Wide Flange: W18X60	2.66	CF	35'-0'

W-Wide Flange: W18X76	5.64	CF	18'-3"
W-Wide Flange: W18X97	5.64	CF	29'-7"
W-Wide Flange: W18X97	1.83	CF	29'-7"
W-Wide Flange: W21X44	1.79	CF	21'-4"
W-Wide Flange: W21X44	1.79	CF	21'-0"
W-Wide Flange: W21X44	1.83	CF	21'-0"
W-Wide Flange: W21X44	2.11	CF	21'-4'
W-Wide Flange: W21X44	1.18	CF	24'-6"
W-Wide Flange: W21X44	1.18	CF	14' - 0 "
W-Wide Flange: W21X44	1.18	CF	14' - 0 "
W-Wide Flange: W21X44	1.18	CF	14' - 0 "
W-Wide Flange: W21X44	1.96	CF	14'-0"
W-Wide Flange: W21X48	1.96	CF	21'-0"
W-Wide Flange: W21X48	1.92	CF	21'-0"
W-Wide Flange: W21X48	1.94	CF	20'-8"
W-Wide Flange: W21X48	1.91	CF	21'-0"
W-Wide Flange: W21X48	1.94	CF	20'-8"
W-Wide Flange: W21X48	1.94	CF	21'-0"
W-Wide Flange: W21X48	1.94	CF	21'-0"
W-Wide Flange: W21X48	1.95	CF	21'-0"
W-Wide Flange: W21X48	2.19	CF	21'-0"
W-Wide Flange: W21X48	1.63	CF	23'-67/8'
W-Wide Flange: W21X48	1.63	CF	17'-4'
W-Wide Flange: W21X48	2.99	CF	17'-4"
W-Wide Flange: W24X55	2.23	CF	28'-0"
W-Wide Flange: W24X55	2.18	CF	21'-0"
W-Wide Flange: W24X55	2.21	CF	20'-8"
W-Wide Flange: W24X55	2.18	CF	21'-0"
W-Wide Flange: W24X55	2.25	CF	20'-8"
W-Wide Flange: W24X55	2.23	CF	21'-4"
W-Wide Flange: W24X55	2.23	CF	21'-0"
W-Wide Flange: W24X55	2.18	CF	21'-0"
W-Wide Flange: W24X55	2.21	CF	20'-8"
W-Wide Flange: W24X55	2.18	CF	21'-0"
W-Wide Flange: W24X55	2.25	CF	20' - 8'
W-Wide Flange: W24X55	2.21	CF	21'-4"
W-Wide Flange: W24X55	2.23	CF	21'-0"
W-Wide Flange: W24X55	2.18	CF	21'-0"
W-Wide Flange: W24X55	2.21	CF	20'-8"
W-Wide Flange: W24X55	2.18	CF	21'-0"

W-Wide Flange: W24X55	2.25	CF	20'-8'
W-Wide Flange: W24X55	2.23	CF	21'-4'
W-Wide Flange: W24X55	2.23	CF	21'-0'
W-Wide Flange: W24X55	2.18	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	20'-8'
W-Wide Flange: W24X55	2.18	CF	21'-0'
W-Wide Flange: W24X55	2.25	CF	20'-8"
W-Wide Flange: W24X55	2.21	CF	21'-4'
W-Wide Flange: W24X55	2.27	CF	21'-0'
W-Wide Flange: W24X55	2.18	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	20'-8'
W-Wide Flange: W24X55	2.18	CF	21'-0'
W-Wide Flange: W24X55	2.25	CF	20'-8'
W-Wide Flange: W24X55	2.23	CF	21'-4"
W-Wide Flange: W24X55	2.23	CF	21'-0'
W-Wide Flange: W24X55	2.18	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	20'-8'
W-Wide Flange: W24X55	2.18	CF	21'-0'
W-Wide Flange: W24X55	2.25	CF	20'-8'
W-Wide Flange: W24X55	2.21	CF	21'-4'
W-Wide Flange: W24X55	3.77	CF	21'-0"
W-Wide Flange: W24X55	3.77	CF	35'-0'
W-Wide Flange: W24X55	2.27	CF	35'-0'
W-Wide Flange: W24X55	2.18	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	20'-8"
W-Wide Flange: W24X55	2.18	CF	21'-0'
W-Wide Flange: W24X55	2.25	CF	20'-8'
W-Wide Flange: W24X55	2.23	CF	21'-4"
W-Wide Flange: W24X55	2.23	CF	21'-0'
W-Wide Flange: W24X55	2.18	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	20'-8'
W-Wide Flange: W24X55	2.18	CF	21'-0'
W-Wide Flange: W24X55	2.25	CF	20'-8'
W-Wide Flange: W24X55	2.21	CF	21'-4"
W-Wide Flange: W24X55	2.6	CF	21'-0'
W-Wide Flange: W24X55	2.23	CF	24'-6"
W-Wide Flange: W24X55	2.23	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0'

W-Wide Flange: W24X55	2.23	CF	21'-0"
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.23	CF	21'-0'
W-Wide Flange: W24X55	2.25	CF	21'-0'
W-Wide Flange: W24X55	2.23	CF	21'-0'
W-Wide Flange: W24X55	2.23	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.23	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.23	CF	21'-0'
W-Wide Flange: W24X55	2.25	CF	21'-0'
W-Wide Flange: W24X55	2.23	CF	21'-0'
W-Wide Flange: W24X55	2.23	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.23	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0"
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.23	CF	21'-0'
W-Wide Flange: W24X55	2.25	CF	21'-0'
W-Wide Flange: W24X55	2.23	CF	21'-0'
W-Wide Flange: W24X55	2.23	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.23	CF	21'-0"
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.21	CF	21'-0'
W-Wide Flange: W24X55	2.23	CF	21'-0'
W-Wide Flange: W24X55	2.25	CF	21'-0'
W-Wide Flange: W24X55	1.91	CF	21'-0'

W-Wide Flange: W24X55	1.95	CF	18' - ${ }^{\prime \prime}$
W-Wide Flange: W24X55	1.95	CF	18'-8'
W-Wide Flange: W24X55	3.77	CF	18'-8'
W-Wide Flange: W24X55	3.77	CF	34' - 8'
W-Wide Flange: W24X55	3.75	CF	34'-8"
W-Wide Flange: W24X55	3.78	CF	34'-8'
W-Wide Flange: W24X55	3.78	CF	34'-8"
W-Wide Flange: W24X55	3.75	CF	34'-8'
W-Wide Flange: W24X55	3.75	CF	34'-8'
W-Wide Flange: W24X55	3.78	CF	34'-8'
W-Wide Flange: W24X55	3.78	CF	34'-8'
W-Wide Flange: W24X55	3.75	CF	34'-8"
W-Wide Flange: W24X55	1.95	CF	34'-8'
W-Wide Flange: W24X55	1.95	CF	18'-8'
W-Wide Flange: W24X55	2.86	CF	18'-8'
W-Wide Flange: W24X55	1.61	CF	26'-8"
W-Wide Flange: W24X62	1.61	CF	14'-0'
W-Wide Flange: W24X62	1.63	CF	14'-0'
W-Wide Flange: W24X62	1.61	CF	14'-0"
W-Wide Flange: W24X62	3.36	CF	14'-0'
W-Wide Flange: W24X62	1.61	CF	28'-0'
W-Wide Flange: W24X62	1.61	CF	14'-0'
W-Wide Flange: W24X62	1.63	CF	14'-0'
W-Wide Flange: W24X62	1.61	CF	14'-0'
W-Wide Flange: W24X62	1.61	CF	14'-0'
W-Wide Flange: W24X62	1.61	CF	14'-0'
W-Wide Flange: W24X62	1.63	CF	14'-0"
W-Wide Flange: W24X62	1.61	CF	14'-0'
W-Wide Flange: W24X62	1.61	CF	14' - 0 "
W-Wide Flange: W24X62	1.61	CF	14'-0'
W-Wide Flange: W24X62	1.63	CF	14' - 0 "
W-Wide Flange: W24X62	1.61	CF	14'-0'
W-Wide Flange: W24X62	1.61	CF	14'-0'
W-Wide Flange: W24X62	3.36	CF	14'-0"
W-Wide Flange: W24X62	1.61	CF	27'-6"
W-Wide Flange: W24X62	1.61	CF	14' - 0 "
W-Wide Flange: W24X62	1.61	CF	14'-0'
W-Wide Flange: W24X62	1.61	CF	14'-0'
W-Wide Flange: W24X62	1.61	CF	14'-0'
W-Wide Flange: W24X62	1.61	CF	14'-0"

W-Wide Flange: W24X62	1.61	CF	14' - 0 "
W-Wide Flange: W24X62	1.61	CF	14'-0"
W-Wide Flange: W24X62	1.61	CF	14'-0"
W-Wide Flange: W24X62	1.61	CF	14' - 0 "
W-Wide Flange: W24X62	1.61	CF	14'-0'
W-Wide Flange: W24X62	1.61	CF	14'-0'
W-Wide Flange: W24X62	1.61	CF	14'-0'
W-Wide Flange: W24X62	1.61	CF	14'-0'
W-Wide Flange: W24X62	1.61	CF	14'-0'
W-Wide Flange: W24X62	2.24	CF	14'-0'
W-Wide Flange: W24X62	2.24	CF	18'-8'
W-Wide Flange: W24X62	2.47	CF	18'-8'
W-Wide Flange: W24X68	4.67	CF	18'-8'
W-Wide Flange: W24X68	3.9	CF	34'-8"
W-Wide Flange: W24X68	5.16	CF	29'-3'
W-Wide Flange: W24X76	5.16	CF	34'-8"
W-Wide Flange: W24X76	5.16	CF	34'-8'
W-Wide Flange: W24X76	5.16	CF	34'-8'
W-Wide Flange: W24X76	5.24	CF	34'-8'
W-Wide Flange: W24X76	5.24	CF	34'-8'
W-Wide Flange: W24X76	5.24	CF	34'-8"
W-Wide Flange: W24X76	5.24	CF	34'-8'
W-Wide Flange: W24X76	5.22	CF	34'-8"
W-Wide Flange: W24X76	5.22	CF	34'-8'
W-Wide Flange: W24X76	6.99	CF	34'-8"
W-Wide Flange: W27X84	6.99	CF	42'-0'
W-Wide Flange: W27X84	5.77	CF	42'-0'
W-Wide Flange: W27X84	6.99	CF	35' - 0'
W-Wide Flange: W27X84	6.99	CF	42'-0'
W-Wide Flange: W27X84	6.99	CF	42' - 0 "
W-Wide Flange: W27X84	6.99	CF	42'-0'
W-Wide Flange: W27X84	5.77	CF	42'-0'
W-Wide Flange: W27X84	6.72	CF	35'-0'
W-Wide Flange: W30X99	6.72	CF	34'-8'
W-Wide Flange: W30X99	6.72	CF	34'-8'
W-Wide Flange: W30X99	6.72	CF	34'-8'
W-Wide Flange: W30X99	6.75	CF	34'-8'
W-Wide Flange: W30X99	6.75	CF	34'-8'
W-Wide Flange: W30X99	6.75	CF	34'-8'
W-Wide Flange: W30X99	6.75	CF	34'-8"

W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8'
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8'
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8'
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8'
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.79	CF	34'-8'
W-Wide Flange: W30X99	6.72	CF	35'-0'
W-Wide Flange: W30X99	6.72	CF	34'-8'
W-Wide Flange: W30X99	6.72	CF	34' - 8'
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8'
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8'
W-Wide Flange: W30X99	6.75	CF	34'-8'
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8'
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8'
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8'
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8'
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8'
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8'

W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8'
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8'
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8'
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8'
W-Wide Flange: W30X99	6.72	CF	34'-8'
W-Wide Flange: W30X99	6.72	CF	34'-8'
W-Wide Flange: W30X99	6.75	CF	34' - 8'
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34' - 8'
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8'
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8'
W-Wide Flange: W30X99	6.75	CF	34'-8'
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8'
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8'
W-Wide Flange: W30X99	6.72	CF	34'-8'
W-Wide Flange: W30X99	6.72	CF	34'-8'
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8'
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8'
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8'

W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34' - 8'
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34' - 8'
W-Wide Flange: W30X99	6.72	CF	34' - 8'
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34' - 8'
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34' - 8'
W-Wide Flange: W30X99	6.75	CF	34' - 8'
W-Wide Flange: W30X99	6.75	CF	34' - 8'
W-Wide Flange: W30X99	6.75	CF	34' - 8'
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34' - 8'
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34' - 8'
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34' - 8'
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34' - 8'
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34' - 8'
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34' - 8'
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34' - 8'
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34' - 8'
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.72	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34'-8"
W-Wide Flange: W30X99	6.75	CF	34' - 8'

W-Wide Flange: W30X99
W-Wide Flange: W30X116
W-Wide Flange: W30X116
W-Wide Flange: W30X116
W-Wide Flange: W33X118
W-Wide Flange: W33X118
W-Wide Flange: W33X118
W-Wide Flange: W33X118

Totals

6.75	CF	$3^{\prime}-4^{\prime \prime}$
6.75	CF	$34^{\prime}-8^{\prime \prime}$
6.72	CF	$34^{\prime}-8^{\prime \prime}$
7.97	CF	$34^{\prime}-8^{\prime \prime}$
7.97	CF	$35^{\prime}-0 \prime$
7.97	CF	$35^{\prime}-0 \prime$
16.31	CF	$35^{\prime}-0 \prime$
16.26	CF	$69^{\prime}-4^{\prime \prime}$
$\mathbf{3 3 5 8 . 5 2}$	CF	

Appendix K: Development of the WPI Recreational Center

Over the past couple years WPI has tried to modernize the buildings and facilities on campus, with the construction of the Bartlett Center, East hall and alumni field; this year the plan was to build a brand new athletic facility. Last spring, when our MQP was assembled, WPI was going through the process of a evaluating a conceptual design of the facility. Construction was slated to start in the summer of 2009 and was our initial project for completing our MQP, unfortunately, due the economy at the time, WPI decided to hold off on the project for at least another year; resulting in us needing to find another MQP.

To get a good understanding of how the different parties worked together we attended the design meetings and watched the interactions between the different groups. WPI is the owner and Gilbane Building Co was hired as the construction manager. Many different people within the WPI community attended these meetings, from the president down to the equipment manager. All parties worked together to develop a conceptual design that looked good and fit in with the surrounding the buildings and a facility that would fall within budget. The budget for the project was roughly 60 million and Gilbane's part of the project at that point was to help WPI decide what parts of the facility were wants vs. needs. We attended roughly 4 meetings and saw the conceptual design change quite a bit from the $1^{\text {st }}$ meeting to the last meeting. Overall, although the project didn't go through, it was a good experience to see how a CM can assist an owner in the early stages of a project. Through this experience, our group has learned the hard way on how quickly a project can change because of the economy.

