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Abstract

In this dissertation, we study the well-posedness of a variational formulation for
modeling quasi-static evolution of cracks in elastic materials under boundary loads.
Quasi-static evolution of fracture for displacement loads, i.e., Dirichlet boundary con-
ditions, has been studied extensively in the past couple of decades, using models based
on global and local minimization. However, boundary loads, i.e., Neumann boundary
conditions, had been seen as problematic with the usual variational formulation, due
to a straightforward non-existence argument.

Recently, a variational formulation, namely dual minimization, was proposed as
a method for finding solutions for fracture problem with boundary loads. Adopting
this method, we study existence of quasi-static fracture evolutions under time-varying
boundary loads.

Global minimizers of the quasi-static Dirichlet problem have always balanced
the sum of stored elastic plus crack dissipated surface energies. Nonetheless, even
though our formulation for the quasi-static Neumann problem is based on global
minimization, we show that evolutions here do not necessarily satisfy this energy
balance, and describe how there can be decreases in the energy. Note that decrease in
the sum of stored and dissipated energies in time might be expected since the effect of
kinetic energy caused by the jumps in the evolution of cracks is not considered in the
quasi-static energy equation. We also give estimates on how big energy drops can be.

Also, in a separate problem, we prove that a regularized Ambrosio-Tortorelli
type energy functional that models fracture in layered structures with interfaces
Γ−converges to a sharp interface energy, where the surface energy of a crack at
the interface is proportional to an effective toughness, that in a sense averages the
toughness of the interface and the bulk materials, whereas away from the interface, it
is proportional to the toughness of the bulk.
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Chapter 1

Introduction

This dissertation is focused on a variational model of fracture evolution in materials,
in the presence of boundary loads. The past twenty five years have seen an extensive
development of variational models and analysis of fracture, see [9] for a recent overview.
Rigorous analysis of these models has introduced new mathematical challenges and led
to better understanding of fracture phenomena in materials. Variational models have
been pretty successful in predicting paths of fracture in materials and have had an
impact on the study of mechanics of fracture in the engineering community – primarily
through their connection to phase-field models. In the current study, we propose a
variational formulation to find evolution of cracks in materials under boundary loads
which had been seen as inconsistent with variational models in the literature. This is
the first analysis of quasi-static fracture with boundary loads.

In this chapter, we will set the stage for the results presented in this dissertation.
First, in section 1.1, we will provide some background on variational models of fracture
and that gives us an opportunity to introduce some of the notation. We will also
survey some of the useful references to review some of the developments and challenges
in the field. Then in section 1.2, we will give a brief description of the main results
and outline the structure of the material presented in the ensuing chapters.

A portion of the background material below is adapted from Casey Richardson’s
Ph.D. dissertation [17].

1.1 Background

In the context of modeling fracture, the primary goal is to formulate a well-posed model
that can predict crack evolution, which includes determining both when pre-existing
cracks will run and the paths that such cracks take through the material. Although
models with such predictive capability are quite recent, the central idea in the theory
of brittle fracture was proposed by Griffith in 1920 [12]. He formulated the following
criterion for two dimensional crack propagation: a pre-existing crack can run only
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CHAPTER 1. INTRODUCTION 2

when the elastic energy that is released by cracking, per unit length of crack, exceeds
the toughness of the material. Precisely, he defined the energy release rate (in two
dimensions) as:

G :=
dW
dl

where W is the bulk elastic energy stored in the material and l is the length of the
crack. Then, the Griffith criterion states that the crack will not run if G is less than
the toughness of the material, and can run if G equals the toughness. Implicit in
this criterion is a view of fracture as a balance between the energy that is required to
create new crack - which Griffith implied is proportional to the length of the crack -
and the elastic energy that is released when the material cracks. However, notice that
the Griffith criterion only provides a rule for determining when cracks grow; the path
of the crack must be known a priori.

This assumption and the restriction to two dimensions were eliminated using
methods in the Calculus of Variations. This progress happened in the time of
development of Free Discontinuity Problems and the theory of Special Functions
of Bounded Variation (SBV ), see section 1.1.1 for definitions. Using u to map Ω to
its deformed configuration, with the discontinuity set of u identifying the crack set,
Ambrosio and Braides [1] proposed to model static fracture by minimizing

u 7→ W(u) +HN−1(Su) (1.1)

over u ∈ SBV (Ω), u = g (given) on ∂Ω; here HN−1 denote the (N − 1)−dimensional
Hausdorff measure, Su denotes the (approximate) discontinuity set of u, and

W(u) =

ˆ
Ω

W (∇u) dx,

where W is the elastic energy density and ∇u is the deformation gradient. Notice
that the term HN−1(Su) models the surface energy of the crack. For an admissible
function, one can generally create a competitor with lower elastic energy by using more
discontinuities, but at the cost of the surface energy of the additional discontinuity
set. Thus (1.1) captures the competition between crack “length” and elastic energy
release that is the core feature of the Griffith criterion, and the location of the crack
is determined by this energy minimization. The existence of a minimizer for (1.1),
given typical assumptions on W , follows from the compactness of the space SBV , see
Remark 1.1.2 below.

For crack evolution, in the realm of quasi-statics – that is assuming that the
rate of change in the problem parameters (Dirichlet boundary conditions, boundary
loads, body forces) is small compared to the time it takes the body to reach elastic
equilibrium – Francfort and Marigo [11] proposed the following model: first discretize
time, at each time-step solve an appropriate static problem (where, since cracks
cannot heal, (1.1) is slightly modified to penalize only new discontinuities), and then
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find the time-continuous evolution by taking the limit as the size of the time-steps
goes to zero. The main issue is to show that this limit satisfies the properties of a
quasi-static evolution: loosely stated, at each time the crack set and deformation
satisfy a minimality property and that the crack evolution satisfies an energy balance,
which relates the stored elastic energy plus the dissipated energy to the work done
by loading. These properties were proven for the time-continuous limit, first in two
dimensions with certain geometric constraints on the crack sets by Dal Maso and
Toader [7], and then in the general SBV setting by Francfort and Larsen [10] and
for quasi-convex W with a standard p−growth condition by Dal Maso, Francfort
and Toader [4]. This result was extended to the case of hyperelastic materials in the
finite elasticity framework with the non-interpenetration condition by Dal Maso and
Lazzaroni [6].

The general postulate for the evolution of crack in the above quasi-static models
is global minimization, that is at each time, the material wants to minimize the
sum of its bulk and surface energies among all competitors. Therefore, for a pair of
displacement-crack (u,Γ), an irreversible quasi-static evolution of minimum energy
configurations is a function t 7→ (u(t),Γ(t)) which satisfies the following conditions:

(a) irreversibility: for all s > t, Γ(s) ⊃ Γ(t);

(b) global stability: for all t the pair (u(t),Γ(t)) is a minimum energy configuration
at time t, i.e.,

W(u(t)) +HN−1(Γ(t)) ≤ W(v) +HN−1(Γ′)

for all admissible pairs (v,Γ′), where Γ′ ⊃ Γ(t), v = g(t) on ∂Ω, and g is the
prescribed boundary condition;

(c) energy balance: the increment in stored energy plus the energy spent in crack
increase equals the work of external forces, that is for all t1, t2 with t1 < t2,

W(u(t2))+HN−1(Γ(t2)) = W(u(t1))+HN−1(Γ(t1))+

ˆ t2

t1

ˆ
∂Ω

ġ(s)∂νu(s) dHN−1ds.

However, there are some inconsistencies within this formulation and the main
culprit is the jumps in time in the cracks. First off, the jumps in the cracks make
the quasi-static assumption dubious since it is no longer valid to assume that the
material’s response time to reach equilibrium is short. Moreover, the energy balance
(c) does not account for the effect of kinetic energy caused by these jumps in t 7→ Γ(t)
and subsequently in t 7→ u(t).

Therefore, to mitigate the effect of possibly unnecessary jumps in the evolution
of cracks, models based on local minimization were studied. Inspired by De Giorgi’s
minimizing movements approach mentioned in [1], Dal Maso and Toader in [8] adopted
a local minimization method (with certain geometric constraints on the cracks) to
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construct discrete-time evolutions. The continuous-time limit achieved from these
approximations satisfies some minimality different from that of evolutions found by
global minimization. Moreover, the associated energy is of bounded variation, does
not increase, and can have negative jumps in time. Hence, this model is more realistic
in that if the cracks have jumps in time, then energy decreases (as a compensation for
not including the kinetic energy in the equation).

Later in 2009, Larsen in [14] (see also [15]) proposed a new definition of stability
for the evolutions, namely ε− stability, that is somewhere in between local and global
minimization and admits evolutions that are stable in approximation, under this new
definition, and in fact implies local minimality. Here too, the energy does not increase
in time and may present negative jumps, unless t 7→ Γ(t) is continuous.

To summarize, the more realistic models inspired by local minimization techniques
propose that we substitute the statements (b) and (c) above with the following:

(b′) local stability: for all t the pair (u(t),Γ(t)) is a minimum energy configuration
at time t among competitors “close enough” to (u(t),Γ(t)), that is

W(u(t)) +HN−1(Γ(t)) ≤ W(v) +HN−1(Γ′)

for pairs (v,Γ′) “close enough” to (u(t),Γ(t)), with Γ′ ⊃ Γ(t), v = g(t) on ∂Ω;

(c′) energy does not increase: the increment in stored energy plus the energy spent
in crack increase is less than or equal to the work of external forces, that is for
all t1, t2 with t1 < t2,

W(u(t2))+HN−1(Γ(t2)) ≤ W(u(t1))+HN−1(Γ(t1))+

ˆ t2

t1

ˆ
∂Ω

ġ(s)∂νu(s) dHN−1ds.

Remark 1.1.1. As we elaborate in section 3.3, even though our quasi-static variational
formulation for the boundary load problem is based on global minimization, we will
show that there are evolutions that can decrease the energy.

1.1.1 Mathematical Preliminaries

Central to our formulation and all of the introduction above is the space of Special
Functions of Bounded Variation, SBV for short. Briefly stated, SBV (Ω) is the space
of functions u ∈ BV (Ω) such that the singular part of their distributional derivative,
Du, is concentrated on the set where u is (approximately) discontinuous, a countably
(N − 1)−rectifiable subset of RN . So, u ∈ SBV (Ω) if and only if u ∈ BV (Ω) and the
distributional derivative of u has the following decomposition

Du = ∇u dLN + [u] ν HN−1⌊Su,
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where ∇u ∈ L1(Ω) is the density of the absolutely continuous part, [u] stands for the
jump of u along Su and ν denotes the approximate unit normal to Su.

Allowing cracks along the boundary of Ω generally involves some notational issues.
First introduced in [16], one simple way of incorporating the idea of growth of crack
on the boundary of a bounded regular domain Ω with the usual SBV is by defining
the space

SBV (Ω) := {u : Ω → R : u|Ω ∈ SBV (Ω), and u|∂Ω ∈ L1(∂Ω;HN−1⌊∂Ω)},

with the approximate discontinuity set defined by

Su := Su|Ω ∪ {x ∈ ∂Ω : T (u|Ω)(x) ̸= u(x)},

where T denotes the usual trace operator. This simply means that if the trace of a
function in SBV (Ω) restricted to Ω does not match its specified boundary value at
a point on the boundary, then we have a discontinuity (crack) at that point. Note
that the pointwise values above are considered in the sense of precise representatives.
Moreover, following the same idea we define a subspace

SBV2(Ω) := {u ∈ SBV (Ω) : ∇u|Ω ∈ L2(Ω)}.

Next, we define a notion of convergence in the space SBV (Ω) that we will be using
throughout the sequel:

Definition 1.1.1 (SBV−convergence). We say that a sequence of functions un ∈
SBV (Ω) converges in the sense of SBV to u ∈ SBV (Ω), denoted by un

SBV
⇀ u, if

∇un ⇀ ∇u in L1(Ω)

[un]νnHN−1⌊Sun
∗
⇀ [u]νHN−1⌊Su as measures,

un → u in L1(Ω),

un
∗
⇀ u in L∞(Ω).

The following compactness result is due to Ambrosio, which we state it in a way
that is easier to apply with our formulation. For the proof of the following and more
detail on the SBV theory see [2].

Remark 1.1.2 (SBV−compactness). If for a sequence of functions un ∈ SBV (Ω), the
sequences

{∥∇un∥L2(Ω)}, {HN−1(Sun)}, {∥un∥L∞(Ω)}
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are bounded, then there exists a function u ∈ SBV (Ω) such that, up to passing to a
subsequence, un

SBV
⇀ u.

1.2 Overview of Dissertation

The main result of this dissertation is the study of well-posedness a variational model
of fracture for quasi-static evolution of cracks in materials under boundary loads,
which is the subject of Chapter 3. As a prelude to this chapter, we introduce our main
tool in the study of existence of solution to a fracture problem with boundary loads in
Chapter 2.

In Chapter 2, we first explain why the most natural variational approach to seek
existence of solutions to fracture with boundary loads fails. Then, in the next section,
we introduce a new variational formulation, alternate minimization, devised in [16],
that proposes a way of finding solutions to the fracture with boundary loads problem.
We define a notion of failure for the material under load and show that if the material
does not fail, there exist solutions. We also discuss limitations and small extensions of
this method.

In Chapter 3, we first devote a small section on explaining what we mean by quasi-
static evolutions and a bit discuss the advantages and limitations of this assumption.
Then, we move on to seek existence of quasi-static evolutions of cracks with time-
varying boundary loads. Employing the alternate minimization approach, we first
construct discrete-time solutions. Next, we pass to the limit as the size of the time-
step converges zero and finally, extend the limit to the whole time interval to get
a continuous-time evolution. In Theorem 3.2.1, we state our main result that the
acquired continuous-time evolution satisfies the desired minimality properties of a
solution. Finally, we discuss balance of energy for the quasi-static evolution. We show
that the associated energy does not increase in time and discuss how there can be
decreases in the energy. Moreover, we give estimates on how big energy drops can be.

Finally, in Chapter 4, for a separate problem, we prove a Γ−convergence result
for a phase-field model of fracture for layered structures with interfaces. We show
that whenever the fracture toughness of the interface material is less than or equal
to the fracture toughness of the bulk material, the surface energy of a crack at the
interface is proportional to an effective toughness that in a sense averages the two
toughnesses; whereas away from the interface it is proportional to the toughness of
the bulk material. In our proof, we make the assumption that the interface is made
up of a finite union of closed C1 curves.



Chapter 2

Variational Fracture with Boundary Loads: Alternate

Minimization

In this chapter, we introduce a method of finding solutions to a variational model
of fracture with boundary loads, namely the alternate minimization method. This
chapter mainly reproduces the material of [16].

2.1 Introduction

Variational fracture had been seen as incompatible with boundary and body loads due
to a straightforward non-existence argument, see [9]. There is an inherent difference
in the variational formulation, based on global minimization, when there is a specified
displacement, i.e., Dirichlet boundary conditions, and when there is a boundary load,
i.e., Neumann boundary conditions, or a body load for that matter. For a linear
elastic solid, the variational formulation of equilibrium Griffith fracture (based on
global minimization) for a given Dirichlet data g and a pre-existing crack set K is to
minimize

ED[K](w) :=
1

2

ˆ
Ω

|∇w|2 +HN−1(Sw\K) (2.1)

over w ∈ SBV2(Ω) with w = g on ∂Ω. We use a subscript D for the energy ED
to emphasize that only Dirichlet boundary values will be imposed when minimizing
this functional. A minimizer w of (2.1), weakly solves the following boundary value

7
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problem 
∆w = 0 in Ω\(K ∪ Sw),

w = g on ∂Ω,

∂νw = 0 on K ∪ Sw,

(2.2)

and satisfies the Griffith stability criterion, that is for any w̃ ∈ SBV2(Ω) with w̃ = g
on ∂Ω we have that

1

2

ˆ
Ω

|∇w|2 − 1

2

ˆ
Ω

|∇w̃|2 ≤ HN−1
(
Sw̃\(K ∪ Sw)

)
. (2.3)

Now, we decompose the boundary of the domain, ∂Ω, into the disjoint union of
measurable subsets ∂DΩ and ∂NΩ, where on ∂DΩ we specify a Dirichlet data g and on
∂NΩ we specify a Neumann data (boundary load) f . We seek a variational formulation
for Griffith fracture with the given boundary data, again based on global minimization.
A straightforward answer readily found in the literature, see for example [4], is to
minimize the total energy functional

w 7→ 1

2

ˆ
Ω

|∇w|2 −
ˆ
∂NΩ

fw +HN−1(Sw\K) (2.4)

over w ∈ SBV2(Ω) with w = g on ∂DΩ. Note that a minimizer of the above (if it
exists) weakly satisfies the following boundary value problem



∆w = 0 in Ω\(K ∪ Sw),

w = g on ∂DΩ,

∂νw = f on ∂NΩ,

∂νw = 0 on K ∪ Sw,

(2.5)

together with the global stability criterion that for any w̃ ∈ SBV2(Ω) with w̃ = g on
∂DΩ we have that

(
1

2

ˆ
Ω

|∇w|2 −
ˆ
∂NΩ

fw

)
−
(
1

2

ˆ
Ω

|∇w̃|2 −
ˆ
∂NΩ

fw̃

)
≤ HN−1

(
Sw̃\(K ∪Sw)

)
. (2.6)
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The problem is that (2.4) cannot be minimized over SBV2(Ω) since for instance, for
f ≡ 1, we can easily come up with a sequence of functions wn ∈ SBV2(Ω) such that
HN−1(Swn ∩ ∂NΩ) > δ > 0 for some δ > 0, and ∥wn∥L∞(∂NΩ)) ↗ +∞, and therefore,
the infimum of the functional (2.4) is −∞ over SBV2(Ω). In other words, the crack
set will always disconnect a piece of ∂NΩ from the body and send it to infinity thus
making the energy arbitrarily low.

Remark 2.1.1. Note that removing the jump set of w from ∂NΩ and substituting´
∂NΩ\Sw

fw for
´
∂NΩ

fw in (2.4) will not solve the problem although it rules out the
example we gave above. Because the jump set Sw of an admissible function w can
branch near ∂NΩ and disconnect a piece of the domain enclosed by Sw and ∂NΩ
from the domain and send it to infinity while HN−1(Sw ∩ ∂NΩ) = 0 and Sw has no
contribution in the integral

´
∂NΩ\Sw

fw.

Looking back at what we are after, we want a variational formulation of Griffith
fracture that allows for mixed boundary conditions. So, if we have a function w such
that it minimizes ED subject to w = g on ∂DΩ and w = h on ∂NΩ, for some function
h, and happens to satisfy ∂νw = f on ∂NΩ, then w satisfies the mixed boundary
conditions and the crack K ∪ Sw satisfies the Griffith stability criterion of (2.6) for all
w̃ ∈ SBV2(Ω) with w̃ = g on ∂DΩ and w̃ = h on ∂NΩ.

In the next section, we introduce a method of finding solutions like the above,
namely, the alternate minimization method, whereby we solve two variational problems
simultaneously. The idea is to keep the Neumann boundary term

´
∂NΩ

fw and the
variation of crack set Sw apart so that they cannot collaborate to make the energy
arbitrarily low, as in (2.4). This will lead to a notion of failure (defined below) which
can potentially predict when a crack can break off a piece of the boundary under
loading from the body.

2.2 Alternate Minimization

In this section, we introduce the alternate minimization method. In this method, we
consider two variational problems in one of which we solve the Neumann problem
and in the other we solve the Dirichlet problem for Griffith fracture. When solving
the Neumann problem we fix the discontinuity set, and when solving the Dirichlet
problem we fix the boundary values, so that we prevent the collaboration of Neumann
boundary term and variation in the crack set causing the infimum to be minus infinity.
So, we introduce a variational formulation and discuss existence of solutions.

To make the exposition easier, we will consider the case that the Dirichlet boundary
condition g is identically zero.

To begin the existence argument, with a given (possibly empty) pre-existing crack
set K0, we first choose a minimizer w1 of

EN(w) :=
1

2

ˆ
Ω

|∇w|2 −
ˆ
∂NΩ

fw
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over w ∈ SBV2(Ω) with w = 0 on ∂DΩ and Sw ⊂ K0. This will be used to supply
Dirichlet data on ∂NΩ when solving the Dirichlet problem. Note that we use a
subscript N for the energy EN to emphasize that only Neumann problem is solved
without allowing variations of discontinuity set. Next, choose a minimizer v1 of

ED[K0](w) =
1

2

ˆ
Ω

|∇w|2 +HN−1(Sw\K0)

over w ∈ SBV2(Ω) with w = 0 on ∂DΩ and w = w1 on ∂NΩ.
We repeat this process recursively to find sequences {wj}, {vj} and {Kj} such

that for j ≥ 1,
Kj := Kj−1 ∪ Svj ,

wj minimizes

EN(w) =
1

2

ˆ
Ω

|∇w|2 −
ˆ
∂NΩ

fw

over w ∈ SBV2(Ω) with w = 0 on ∂DΩ and Sw ⊂ Kj−1, and vj minimizes

ED[Kj−1](w) =
1

2

ˆ
Ω

|∇w|2 +HN−1(Sw\Kj−1)

over w ∈ SBV2(Ω) with w = 0 on ∂DΩ and w = wj on ∂NΩ. Note that for all j ∈ N,

Kj ⊃ Kj−1.

We also let
K∞ := ∪j∈NKj. (2.7)

The hope is that the sequence {wj} weakly converges to a w∞ that minimizes both
EN and ED[K∞] over the appropriate classes of competitors and satisfies the desired
boundary conditions. In the following remark, we discuss what could go wrong in the
above minimization process.

Remark 2.2.1. Note that there is a potential issue in minimizing the Neumann energy
EN above, since it can happen that at some stage j, the crack Kj−1 disconnects a
piece of ∂NΩ from the domain and similar to the non-existence argument earlier the
infimum of EN is −∞, and there is no minimizer. Moreover, this failure can occur in
the limiting case, as j tends to infinity. If the sequence {∥wj∥L∞(∂NΩ)} is not bounded,
then as j → ∞, the displacement wj|∂NΩ becomes arbitrarily large. A similar failure
can happen if K∞ (the limiting crack set - defined in (2.7)) breaks off a piece of ∂NΩ.

In fact, this lack of solution is due to the Neumann problem and not caused by
the variational formulation. There is necessarily a possibility of material failure when
there are loads and fracture. Therefore, we must allow for the possibility that the
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material fails under the boundary load. This is all encapsulated in the definition
below.
Remark 2.2.2. At this point, a natural question or even objection may be, how is
this variational formulation different from minimizing (2.4) that we discussed in the
previous section in terms of existence of solutions? The key difference is that in
the latter, non-existence is guaranteed due to the interaction between the Neumann
boundary term and variation of crack set. Here, lack of solution is only a possibility
and a result of material failure under the loading. So, this approach can potentially
predict whether a body Ω with an initial crack K0 under a boundary load f breaks,
or not.

Definition 2.2.1 (Non-failure). We say the material does not fail under the boundary
load f if the following hold:

(i) Each wj exists, and supj∈N ∥wj∥∞ < +∞,

(ii) Cap(K∞ ∩Nε(∂NΩ)) → 0 as ε→ 0,

where ∥wj∥∞ := max{∥wj∥L∞(Ω), ∥wj∥L∞(∂Ω)}, and Nε(∂NΩ) := {x ∈ Ω : dist(x, ∂NΩ) <
ε} is the ε−neighborhood of the Neumann part of the boundary.

Remark 2.2.3. Note that condition (ii) of the above definition allows for some inter-
action between the crack set K∞ and ∂NΩ. For example, in the two dimensional
setting, K∞ is allowed to intersect with ∂NΩ normally at finitely many points (without
branching, of course).

Now, we are in a position to state our static existence result in view of Definition
2.2.1:

Theorem 2.2.1. If the material does not fail under the boundary load f ∈ L∞(∂NΩ),
then HN−1(K∞) < +∞, and there exists w∞ ∈ SBV2(Ω) such that, up to a subse-
quence,

wj ⇀ w∞ in SBV (Ω)

as j → ∞, w∞ minimizes ED[K∞] over {w ∈ SBV2(Ω) : w = w∞ on ∂Ω}, and it
minimizes EN over {w ∈ SBV2(Ω) : Sw ⊂ K∞, w = 0 on ∂DΩ}. Moreover,

Twj → Tw∞ in L2(∂NΩ), (2.8)

and
1

2

ˆ
Ω

|∇wj|2 ↗
1

2

ˆ
Ω

|∇w∞|2 (2.9)

as j → ∞.

The proof will be done in multiple lemmas as follows. In the first lemma, we
present two useful properties of the sequences {wj} and {Kj}, in the second lemma
we show existence of w∞ and it minimizing ED[K∞], and finally in the third lemma,
we prove its minimality for EN , convergence of traces and Dirichlet energies.

From here on, we will assume that Definition 2.2.1 holds.
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Lemma 2.2.1. For all j ≥ 2,

1.

1

2

ˆ
Ω

|∇wj|2 −
ˆ
∂NΩ

fwj +HN−1(Kj−1\Kj−2) ≤
1

2

ˆ
Ω

|∇wj−1|2 −
ˆ
∂NΩ

fwj−1,

(2.10)

2. monotonicity of the Dirichlet energy of the sequence of minimizers {wj}:

1

2

ˆ
Ω

|∇wj−1|2 ≤
1

2

ˆ
Ω

|∇wj|2. (2.11)

Proof. Fix j ≥ 2. Note that since Svj−1
⊂ Kj−1 and vj−1 = 0 on ∂DΩ, from minimality

of wj we have that

1

2

ˆ
Ω

|∇wj|2 −
ˆ
∂NΩ

fwj ≤
1

2

ˆ
Ω

|∇vj−1|2 −
ˆ
∂NΩ

fvj−1. (2.12)

Moreover, from minimality of vj−1, since wj−1 = vj−1 on ∂NΩ, we get that

1

2

ˆ
Ω

|∇vj−1|2 +HN−1(Kj−1\Kj−2) ≤
1

2

ˆ
Ω

|∇wj−1|2, (2.13)

or equivalently

1

2

ˆ
Ω

|∇vj−1|2−
ˆ
∂NΩ

fvj−1+HN−1(Kj−1\Kj−2) ≤
1

2

ˆ
Ω

|∇wj−1|2−
ˆ
∂NΩ

fwj−1. (2.14)

So, putting (2.12) and (2.14) together, we get (2.10).
Next, notice that wj is an admissible variation for its minimality for EN , and thus

we have that ˆ
Ω

∇wj · ∇wj =
ˆ
∂NΩ

fwj. (2.15)

Therefore, (2.10) in view of the above yields

1

2

ˆ
Ω

|∇wj−1|2 +HN−1(Kj−1\Kj−2) ≤
1

2

ˆ
Ω

|∇wj|2,

which implies (2.11) since HN−1(Kj−1\Kj−2) ≥ 0.
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Lemma 2.2.2. HN−1(K∞) < +∞, and there exists w∞ ∈ SBV2(Ω) such that, up to
a subsequence,

wj ⇀ w∞ in SBV (Ω)

as j → ∞, and w∞ minimizes ED[K∞] over {w ∈ SBV2(Ω) : w = w∞ on ∂Ω}.

Proof. Note that from the condition (i) of Definition 2.2.1, {∥wj∥L∞(∂NΩ)} is bounded,
and hence, (2.15) implies that the sequence of Dirichlet energies {1

2
∥∇wj∥L2(Ω)} is

bounded. Moreover, by (2.11) it is monotonic, so it converges and let CL be its limit.
Consequently, the sequence of Neumann energies converges:

EN(wj) =
1

2

ˆ
Ω

|∇wj|2 −
ˆ
∂NΩ

fwj = −1

2

ˆ
Ω

|∇wj|2 → −CL,

as j → ∞.
Next, we look at HN−1(Kj). Rewriting (2.10), we have that

HN−1(Kj−1\Kj−2) + EN(wj) ≤ EN(wj−1).

Summing up the above over j = 2, 3, . . . , i gives

HN−1(Ki−1\K0) + EN(wi) ≤ EN(w1).

Note that {EN (wi)} is bounded, and therefore, in view of the above so is {HN−1(Ki)}.
Then, letting i → ∞, since {Kj} is an increasing sequence, HN−1(Ki−1\K0) →
HN−1(K∞\K0), and the above becomes

HN−1(K∞\K0)− CL ≤ EN(w1),

so that HN−1(K∞) < +∞.
Now, since the sequences {∥wj∥∞}, {∥∇wj∥L2(Ω)} and {HN−1(Kj)} are bounded,

by SBV compactness (see Remark 1.1.2), there exists a w∞ ∈ SBV2(Ω) such that
{wj}, up to passing to a subsequence, SBV−converges to it, where

w∞|∂DΩ := 0 and w∞|∂NΩ := Tw∞.

Moreover, Sw∞ ⊂ K∞, where the proof is similar to that of (3.23) in [10].
Next, we establish that the energies of vj ’s also converge. Note that HN−1(Kj−1\Kj−2) →

0 as j → ∞, so (2.13) implies that

lim sup
j→∞

1

2

ˆ
Ω

|∇vj|2 ≤ CL.
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On the other hand, since wj−1 = vj−1 on ∂NΩ, (2.12) implies that

lim inf
j→∞

1

2

ˆ
Ω

|∇vj|2 ≥ CL,

and therefore, in view of above we get that 1
2

´
Ω
|∇vj|2 → CL.

Now we proceed to prove minimality of w∞ for ED[K∞]. Suppose there exists
ϕ ∈ SBV2(Ω) with ϕ = 0 on ∂DΩ such that the variation w∞ + ϕ has less energy, i.e.

1

2

ˆ
Ω

|∇(w∞ + ϕ)|2 +HN−1(Sϕ\K∞) <
1

2

ˆ
Ω

|∇w∞|2.

This is equivalent to the energy difference being negative:

ˆ
Ω

∇w∞ · ∇ϕ+
1

2

ˆ
Ω

|∇ϕ|2 +HN−1(Sϕ\K∞) =: η < 0.

But, since ∇wj ⇀ ∇w∞ in L2(Ω) and HN−1(K∞\Kj) → 0, the left hand side of the
above is equal to the limit of

ˆ
Ω

∇wj · ∇ϕ+
1

2

ˆ
Ω

|∇ϕ|2 +HN−1(Sϕ\Kj).

Hence, since 1
2

´
Ω
|∇wj|2 − 1

2

´
Ω
|∇vj|2 → 0, for large enough j we have that

1

2

ˆ
Ω

|∇(wj + ϕ)|2 +HN−1(Sϕ\Kj) <
1

2

ˆ
Ω

|∇wj|2 +
η

2
<

1

2

ˆ
Ω

|∇vj|2,

or equivalently

1

2

ˆ
Ω

|∇(wj + ϕ)|2 +HN−1(Sϕ\Kj−1) <
1

2

ˆ
Ω

|∇vj|2 +HN−1(Svj\Kj−1),

which contradicts the minimality of vj for ED[Kj−1] and concludes the proof.

Lemma 2.2.3. w∞ minimizes EN over {w ∈ SBV2(Ω) : Sw ⊂ K∞, w = 0 on ∂DΩ}.
Moreover,

Twj → Tw∞ in L2(∂NΩ), (2.16)

and
1

2

ˆ
Ω

|∇wj|2 ↗
1

2

ˆ
Ω

|∇w∞|2 (2.17)



CHAPTER 2. VARIATIONAL FRACTURE WITH BOUNDARY LOADS 15

as j → ∞.

Proof. To see why w∞ minimizes EN let ψ ∈ SBV2(Ω) ∩ L∞(Ω) with ψ = 0 on ∂DΩ
and Sψ ⊂ K∞. In view of condition (ii) of Definition (2.2.1), we can choose a family
of functions ϕε ∈ C1(RN) such that ϕε = 0 on a neighborhood of K∞ ∩ Nε(∂NΩ),
1 − ϕε ∈ C1

c (RN), 0 ≤ ϕε ≤ 1, and ∇ϕε → 0 in L2(RN) as ε → 0. Notice that this
implies ϕε → 1 in L2(Ω) as well as HN−1−a.e. on ∂NΩ, since subsets of ∂NΩ with
positive HN−1−measure have positive capacity.

Then ϕεψ ∈ SBV2(Ω) with Sϕεψ ⊂ K∞. Note also that ϕεψ ∈ H1(Nε(∂NΩ)
◦),

where the superscript (.)◦ denotes the interior. So we can choose ψε ∈ H1(Ω) such
that ψε = ϕεψ on ∂Ω.

Next, from the minimality of wj for EN , the fact that ψε is an admissible variation
of wj for EN , and the convergence of wj to w∞, we have

ˆ
∂NΩ

fψε = lim
j→∞

ˆ
Ω

∇wj · ∇ψε =
ˆ
Ω

∇w∞ · ∇ψε.

But, since ψε− ϕεψ ∈ SBV2(Ω) with ψε− ϕεψ = 0 on ∂Ω and Sψε−ϕεψ ⊂ K∞, it is an
admissible variation for minimality of w∞ for ED, so,

ˆ
Ω

∇w∞ · ∇(ψε − ϕεψ) = 0,

which in view of the above and the definition of ψε gives

ˆ
Ω

∇w∞ · ∇(ϕεψ) =

ˆ
Ω

∇w∞ · ∇ψε =
ˆ
∂NΩ

fψε =

ˆ
∂NΩ

fϕεψ.

Taking the limit as ε → 0 in the above, since ∇(ϕεψ) = ψ∇ϕε + ϕε∇ψ ⇀ ∇ψ in
L2(Ω), and ϕεψ → ψ in L1(∂NΩ) (since ϕε converges to 1 HN−1−a.e. on ∂NΩ and
applying the dominated convergence theorem), proves minimality of w∞ for EN with
the assumption that ψ ∈ L∞(Ω). The general result follows by approximating in L∞.

To show the convergence of traces, we note that for all ε > 0,

ϕεwj → ϕεw∞ in L2(Ω), and ∇(ϕεwj)⇀ ∇(ϕεw∞) in L2(Ω), (2.18)

as j → ∞, where the first convergence follows from 0 ≤ ϕε ≤ 1 and wj → w∞ in L2(Ω),
and the second convergence follows from 0 ≤ ϕε ≤ 1, ∇wj ⇀ ∇w∞ in L2(Ω), together
with ∇ϕε ∈ L2(Ω) and wj

∗
⇀ w∞ in L∞(Ω), which all come from the definition of ϕε

and SBV−convergence of wj to w∞. Then, since Swj
⊂ Kj ⊂ K∞, ϕεwj belong to

H1(Nε(∂NΩ)
◦), and by (2.18) so does ϕεw∞, hence, (2.18) in view of Remark 2.2.4
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below implies that
T (ϕεwj) → T (ϕεw∞) in L2(∂NΩ) (2.19)

as j → ∞, for all ε > 0. Next, since T (ϕεwj) = ϕεT (wj) and T (ϕεw∞) = ϕεT (w∞)
(because ϕε ∈ C1(RN)), ϕε → 1 HN−1−a.e. on ∂NΩ and Twj, Tw∞ ∈ L∞(∂NΩ), by
the bounded convergence theorem we get that T (ϕεwj) → Twj and T (ϕεw∞) → Tw∞
in L2(∂NΩ), as ε→ 0. In fact, note that since {∥wj∥L∞(∂NΩ)} is bounded, the limit

ˆ
∂NΩ

|T (ϕεwj)−Twj|2 =
ˆ
∂NΩ

|ϕεTwj−Twj|2 ≤ sup
j∈N

∥wj∥2L∞(∂NΩ)

ˆ
∂NΩ

|ϕε−1|2 → 0 as ε→ 0,

is uniform in j. Therefore, given η > 0, we can choose ε > 0 small enough so that

∥T (ϕεw∞)− Tw∞∥L2(∂NΩ) < η and ∥T (ϕεwj)− Twj∥L2(∂NΩ) < η ∀j ∈ N.

Hence, by the triangle inequality and the above

∥Twj − Tw∞∥L2(∂NΩ) ≤ 2η + ∥T (ϕεwj)− T (ϕεw∞)∥L2(∂NΩ),

which upon letting j → ∞ and η → 0, in view of (2.19), gives that

Twj → Tw∞ in L2(∂NΩ), as j → ∞. (2.20)

Finally, invoking the facts that wj’s and w∞ minimize EN , together with (2.20),
yield ˆ

Ω

|∇wj|2 =
ˆ
∂NΩ

fwj →
ˆ
∂NΩ

fw∞ =

ˆ
Ω

|∇w∞|2.

In the following remark, we show convergence of traces of H1−functions under
weak H1−convergence:

Remark 2.2.4. For un, u ∈ H1(Ω) with Ω a bounded Lipschitz domain, if un → u in
L2(Ω) and ∇un ⇀ ∇u in L2(Ω), then

Tun → Tu in L2(∂Ω).

This is a consequence of the following estimate from Theorem 1.5.1.10 in [13], that for
Ω as above, there exists a constant C depending only on Ω such that for all u ∈ H1(Ω)
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and all ϵ ∈ (0, 1),

ˆ
∂Ω

|Tu|2 ≤ C

(√
ϵ

ˆ
Ω

|∇u|2 + 1√
ϵ

ˆ
Ω

|u|2
)
.

Notice that by the weak convergence of gradients, {∥∇un∥L2(Ω)} is bounded, say
by C1, and by the lower semicontinuity of the weak limit so is ∥∇u∥L2(Ω), and also´
Ω
|un − u|2 → 0, hence,

lim sup
n→∞

ˆ
∂Ω

|T (un − u)|2 ≤ 4CC2
1

√
ϵ,

which gives the result by letting ϵ→ 0.

We conclude this section and chapter with a few remarks.

Remark 2.2.5. A natural question, since we show existence only when there is not
failure, is whether failure is common, or even certain. We note that, as we mentioned
in the introduction, every solution w to a pure Dirichlet problem is also a solution to a
mixed problem, as we can designate part of the boundary that is away from the crack
as ∂NΩ, and set f := ∂νw. Then, w is a solution to variational fracture with boundary
load f on ∂NΩ. This shows that the formulation here is not vacuous. Furthermore,
studying conditions on Ω and f guaranteeing existence (or non failure) seems to be
an interesting direction to explore.

Remark 2.2.6. Note that since Sw∞ ⊂ K∞, if we replace K∞ with Sw∞ in the previous
lemmas, there is no effect on the energy of w∞, but there is an increase in the
energy of competitors, or there is a reduction in the class of competitors, so then w∞
minimizes ED[Sw∞ ] over {w ∈ SBV2(Ω) : w = w∞ on ∂Ω}, and it minimizes EN
over {w ∈ SBV2(Ω) : Sw ⊂ Sw∞ , w = 0 on ∂DΩ}.
Remark 2.2.7. We can now claim that w∞ actually does minimize the total energy
functional

w 7→ 1

2

ˆ
Ω

|∇w|2 −
ˆ
∂NΩ

fw +HN−1(Sw\K∞),

if the class of competitors is restricted to

{w ∈ SBV2(Ω) : w = w∞ on ∂Ω} ∪ {w ∈ SBV2(Ω) : Sw ⊂ K∞, w = 0 on ∂DΩ}.

That is, competitors are not allowed to simultaneously vary both their boundary
data on ∂NΩ and the crack set. But this is consistent with Griffith’s idea that cracks
compete with elastic energy, not boundary loads.
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Remark 2.2.8. Another natural variational approach seems to be minimizing

1

2

ˆ
Ω

|∇w|2 +HN−1(Sw)

over the class

{w : w minimizes EN(v) over v ∈ SBV2(Ω), v = 0 on ∂DΩ, Sv ⊂ Sw},

since the jump set is fixed when minimizing the Neumann energy. This would be
incorrect, however, since as Sw grows, the class of minimizers for EN grows, so EN
decreases, which means the elastic energy increases, since EN(v) = −1

2

´
Ω
|∇v|2. The

solution to this minimization problem will therefore necessarily be Sw = ∅.
Remark 2.2.9. Note that a variational formulation similar to the above will not work
in the case of a body load F as well. Minimizing 1

2

´
Ω
|∇w|2+HN−1(Sw) over the class

{w : −∆w = F in Ω\Sw, w = 0 on ∂Ω},

or in its weak variational form{
w : w minimizes v 7→ 1

2

ˆ
Ω

|∇v|2 −
ˆ
Ω

Fv over v ∈ SBV2(Ω), v = 0 on ∂Ω, Sv ⊂ Sw

}
,

will result in Sw = ∅, with the same exact reasoning as in the previous remark.



Chapter 3

Quasi-Static Fracture Evolution with Boundary Loads

In this chapter, we apply the alternate minimization method introduced in the previous
chapter to seek existence of solutions to a quasi-static fracture evolution problem with
time-varying boundary loads.

We first briefly explain what we mean by a quasi-static evolution. Next, we show
the construction of discrete-time evolutions. Then, we get a continuous-time evolution
by first passing to the limit of the discrete-time evolutions as the size of time-step
approaches zero, and then by extending the result to the whole time interval. We
show that this continuous-time limit has the desired minimality properties. Finally,
we discuss balance of energy for evolutions and show that there exist evolutions that
can decrease the total energy in time and not satisfy the classical quasi-static energy
balance known to hold in the case of Dirichlet boundary conditions.

3.1 Quasi-Static Evolution

Quasi-static models are based on the assumption that whatever is driving the motion,
e.g., loading, varies slowly in time compared to the elastic wave speed of the material.
In other words, the rate of change in the problem parameters (Dirichlet boundary
conditions, boundary loads, body forces) is small compared to the time it takes the
body to reach elastic equilibrium [5, 17].

More precisely, for a given varying load f(t) (which in our case is a boundary
load) on a time interval [0, T ], one can consider the rescaled problem corresponding
to fε(t) := f(εt) on the dilated time interval [0, T/ε]. If the corresponding physical
solution (presumably to the dynamic problem) is uε(t), one needs to rescale again in
order to take the limit as ε↘ 0, since the limit of fε(t) is constant in time. Therefore,
it is natural to define uε(t) := uε(t/ε) for t ∈ [0, T ]. Setting u(t) to be the limit as
ε↘ 0, it is reasonable to suppose (assuming some damping in the dynamics and that
t 7→ f(t) is not wild) that u(t) is in elastic equilibrium at every t, corresponding to
the load f(t) [5].

19
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The first quasi-static variational model of fracture based on minimization of the
sum of elastic and surface energies was first introduced in 1998 [11]. The idea explained
above underlies all quasi-static models of fracture developed ever since, with the only
debate being over whether the overall state, made up of both the displacement and
crack set, should be a global minimizer of the total energy, a local minimizer, or
something in between [14].

The main problem with the quasi-static fracture models concerns jumps in time
of the crack set, for which the quasi-static assumption—that while the crack grows
the material is always in elastic equilibrium—is dubious. The point is that if in the
ε↘ 0 limit the crack jumps, there is no reason to think that uε(t) varies slowly, even
though fε(t) does. This issue also gives rise to a modeling challenge for quasi-static
models, that of energy balance. We will expand on this topic more in section 3.3 of this
chapter, but all proposed quasi-static models of fracture based on global minimization
with non-zero Dirichlet boundary conditions balance the sum of elastic and surface
energies with the external work done on the body oblivious to the effect of kinetic
energy caused by the jumps in cracks. This energy balance was questioned in models
inspired by local minimization techniques, see section 1.1 for more detail.

Even though quasi-static models are the first natural step towards modeling
evolution of cracks, due to their simplicity and evasion from having to deal with the
wave equation, it is generally agreed that dynamic models need to be considered, and
then quasi-static limits can be analyzed. This would help clarify whether cracks jump
as soon as the material is not a global minimizer, as proposed in [11], or if jumps
only occur to ensure the material is a local minimizer, or if jumps occur based on a
condition somewhere in between global and local minimality, as in [14].

3.2 Existence

In this section, we first construct discrete-time evolutions. Then, take the limit as the
size of time-step goes to zero and extend the solution to the whole time interval. Our
main result is stated in Theorem 3.2.1.

3.2.1 Constructing Discrete-Time Evolutions

For simplicity, we work with the normalized time interval [0, 1]. Let I∞ be a countable
dense subset of [0, 1], and for each n ∈ N, let

In := {0 = tn0 < tn1 < · · · < tnn = 1} ⊂ I∞

be such that {In} forms an increasing sequence of nested sets whose union is I∞, i.e.,

∀n ∈ N In ⊂ In+1, I∞ = ∪n∈NIn.
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We set Dn := supk∈{1,...,n}(t
n
k − tnk−1), and note that Dn ↘ 0 as n→ ∞.

Remark 3.2.1. Note that throughout the dissertation, we will not specify the depen-
dence of functions on the spatial variable. For example,

f(t) := f(t, .).

For each n ∈ N and t ∈ [0, 1] we define

fn(t) := fnk := f(tnk) for t ∈ [tnk , t
n
k+1).

We assume that the boundary load f ∈ W 1,1
(
[0, 1];L∞(∂NΩ)

)
, so for each t ∈ I∞,

f(t) = limn→∞ fn(t), strongly in L∞(∂NΩ), and in fact, since {In} is an increasing
nested sequence, f(t) = fn(t), for large enough n.

Now, for every time step of every partition of the time interval, we perform the
alternate minimization described in the previous chapter. So, for fixed n ∈ N and
fixed k ∈ {0, 1, . . . , n}, at time tnk , we get that there exist sequences {wj}, {vj} and
{Kj} with K0 = Γnk−1, such that wj’s minimize

EN [f
n
k ](w) =

1

2

ˆ
Ω

|∇w|2 −
ˆ
∂NΩ

fnkw

over {w ∈ SBV2(Ω) : Sw ⊂ Kj−1, w = 0 on ∂DΩ} and vj’s minimize

ED[Kj−1](v) =
1

2

ˆ
Ω

|∇v|2 +HN−1(Sv\Kj−1)

over {v ∈ SBV2(Ω) : v = wj on ∂Ω} with Kj = Kj−1 ∪ Svj . Notice that for the
initial time k = 0, K0 = Γn−1 = Γ0, where Γ0 is a possibly empty pre-existing crack set.

Then, by Theorem 2.2.1 in section 2.2, if the material does not fail under the load
fnk , up to passing to a subsequence if necessary, we let

unk := SBV − lim
j→∞

wj, Γnk :=
∞⋃
j=0

Kj, (3.1)

and it follows again from Theorem 2.2.1 that unk is a minimizer of EN [fnk ] over
{v ∈ SBV2(Ω) : Sv ⊂ Γnk , v = 0 on ∂DΩ}, and a minimizer of ED[Γnk ] over
{v ∈ SBV2(Ω) : v = unk on ∂Ω}. Also, following the same exact approach in proving
convergence of traces in (2.20), in view of (3.1) we have that

wj → unk in L2(∂NΩ). (3.2)
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Moreover, since unk minimizes EN [fnk ], it follows that

ˆ
Ω

∇unk · ∇ξ =
ˆ
∂NΩ

fnk ξ ∀ξ ∈ SBV2(Ω) with Sξ ⊂ Γnk , and ξ = 0 on ∂DΩ.

(3.3)
Also, (2.10) and (2.17), respectively, imply that

1

2

ˆ
Ω

|∇wj|2 −
ˆ
∂NΩ

fnkwj +HN−1(Kj−1\Kj−2) ≤
1

2

ˆ
Ω

|∇wj−1|2 −
ˆ
∂NΩ

fnkwj−1, (3.4)

and

1

2

ˆ
Ω

|∇wj|2 ↗
1

2

ˆ
Ω

|∇unk |2. (3.5)

We then define for t ∈ [tnk , t
n
k+1) and k = 0, 1, . . . , n,

un(t) := unk and Γn(t) := Γnk . (3.6)

Notice that with this notation, for every t ∈ In (in fact, for every t ∈ I∞), un(t)
minimizes

EN [fn](v) =
1

2

ˆ
Ω

|∇v|2 −
ˆ
∂NΩ

fn(t)v (3.7)

over {v ∈ SBV2(Ω) : Sv ⊂ Γn(t), v = 0 on ∂DΩ} and minimizes

ED[Γn](v) =
1

2

ˆ
Ω

|∇v|2 +HN−1(Sv\Γn(t)) (3.8)

over {v ∈ SBV2(Ω) : v = un(t) on ∂Ω}. Moreover,

HN−1
( ⋃
τ∈In
τ≤t

Sun(τ)\Γn(t)
)
= 0. (3.9)

In fact, with the above definition for un and Γn, In in (3.9) can be replaced by I∞.
Also, (3.3) becomes

ˆ
Ω

∇un(t)·∇ξ =
ˆ
∂NΩ

fn(t)ξ ∀ξ ∈ SBV2(Ω) with Sξ ⊂ Γn(t), and ξ = 0 on ∂DΩ.

(3.10)
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Remark 3.2.2. From now on, we use phrases EN−minimality and ED−minimality of
a pair (un,Γn) to refer to the facts that it minimizes (3.7) and (3.8), respectively.

In the next section, we study the limiting case as n → ∞ for the sequence of
discrete-time evolutions {(un,Γn)}.

3.2.2 Solution on I∞

In this section, we define a notion of failure, inspired by Definition 2.2.1 in Chapter
2, for the quasi-static problem. This together with the minimality properties of the
discrete-time evolutions give us certain bounds and subsequently we can find a limit as
n→ ∞ (which is equivalent to letting the time-step go to zero) and get an evolution
defined on I∞ that satisfy the desired minimality properties, as follows:

Proposition 3.2.1. If the material does not fail (defined below) under the boundary
load f ∈ W 1,1

(
[0, 1];L∞(∂NΩ)

)
, then there exists a pair of displacement-crack (u∞,Γ∞)

that satisfies:

• For all t ∈ I∞, HN−1(Γ∞(t)) < +∞, and for all t1, t2 ∈ I∞ with t1 < t2,
Γ∞(t1) ⊂ Γ∞(t2);

• for all t ∈ I∞, u∞(t) minimizes

EN [f ](v) =
1

2

ˆ
Ω

|∇v|2 −
ˆ
∂NΩ

f(t)v

over {v ∈ SBV2(Ω) : Sv ⊂ Γ∞(t), v = 0 on ∂DΩ} and minimizes

ED[Γ∞](v) =
1

2

ˆ
Ω

|∇v|2 +HN−1(Sv\Γ∞(t)),

over {v ∈ SBV2(Ω) : v = u∞(t) on ∂Ω}.

The proof of the above follows from the properties of the limits that we find below
and Lemma 3.2.1.

Notice that the same failure as explained in the static case (see Remark 2.2.1)
can happen for the sequence of discrete-time evolutions {(un,Γn)}. Specifically, {un}
might blow up on ∂NΩ as n → ∞, that is as we refine the time-step. Similarly,
the interaction of Γn and ∂NΩ could worsen as n → ∞. This would mean that the
approximation is deteriorating as we refine the time partitioning and can be interpreted
as material failure under the quasi-static load f . So, the following definition updates
the non-failure definition for the quasi-static evolution:

Definition 3.2.1 (Quasi-static Non-failure). We say the material under the boundary
load f does not fail if the following hold:
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(i) supn∈N supt∈I∞ ∥un(t)∥∞ < +∞,

(ii) Cap(Γn(1) ∩Nε(∂NΩ)) → 0 as ε→ 0, uniformly in n.

As a result, if the material does not fail, we get the following uniform bounds:

sup
n∈N

sup
t∈I∞

∥∇un(t)∥L2(Ω) < +∞, (3.11)

sup
n∈N

sup
t∈I∞

HN−1(Γn(t)) < +∞. (3.12)

Let us briefly explain why. Note that (3.10) with ξ = un(t) implies that for every
t ∈ I∞, ˆ

Ω

|∇un(t)|2 =
ˆ
∂NΩ

fn(t)un(t), (3.13)

which together with the bound from Definition 3.2.1-(i) and regularity of f gives
(3.11). For the bound (3.12), sum the inequality (3.36) (which is derived using only
minimality of un) over k = 1, . . . , p:

1

2

ˆ
Ω

|∇unp |2−
ˆ
∂NΩ

fnp u
n
p+HN−1(Γnp\Γn0 ) ≤

1

2

ˆ
Ω

|∇un0 |2−
ˆ
∂NΩ

fn0 u
n
0−

p∑
k=1

ˆ
∂NΩ

(fnk−fnk−1)u
n
k−1.

Now, for any n ∈ N and any t ∈ I∞, there exists p ∈ N (depending on n) such that
t ∈ [tnp , t

n
p+1). Using the definitions (3.6) and that f ∈ W 1,1

(
[0, 1];L∞(∂NΩ)

)
in the

above, gives

1

2

ˆ
Ω

|∇un(t)|2 −
ˆ
∂NΩ

fn(t)un(t) +HN−1(Γn(t)\Γn(0))

≤ 1

2

ˆ
Ω

|∇un(0)|2 −
ˆ
∂NΩ

fn(0)un(0)−
ˆ t

0

ˆ
∂NΩ

ḟ(s)un(s) dHN−1ds,

or equivalently in view of (3.13) and monotonicity of t 7→ Γn(t),

HN−1(Γn(t)) ≤
1

2

ˆ
Ω

|∇un(t)|2−
1

2

ˆ
Ω

|∇un(0)|2+HN−1(Γn(0))−
ˆ t

0

ˆ
∂NΩ

ḟ(s)un(s) dHN−1ds.

The first two terms we know are bounded by (3.11) and the third term is independent
of n, since fn(0) ≡ f(0) for all n ∈ N, and so is bounded by HN−1(Γ0) +HN−1(Su1(0)).
The last term is bounded by regularity of f and condition (i) of Definition 3.2.1, and
so we have (3.12).

Now, from (3.11), (3.12) in view of (3.9), and condition (i), we are in a position to
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apply the SBV− compactness theorem (see section 1.1.1) along with a diagonalization
process to the class {un(t)|Ω : n ∈ N, t ∈ I∞} to obtain a subsequence (not relabeled)
and {u∞(t) ∈ SBV2(Ω) : t ∈ I∞} such that, for all t ∈ I∞,

∇un(t) ⇀ ∇u∞(t) in L2(Ω) (3.14)

[un(t)]νn(t)HN−1⌊Sun(t)|Ω
∗
⇀ [u∞(t)]ν∞(t)HN−1⌊Su∞(t) as measures, (3.15)

un(t) → u∞(t) in L2(Ω), (3.16)

un(t)
∗
⇀ u∞(t) in L∞(Ω), (3.17)

as n → ∞, where [.] and ν respectively denote the jump along the jump set and
the approximate normal to the jump set of the function in SBV . For this type of
convergence we use the terminology SBV−convergence throughout the sequel. Note
that as a result of the above convergence,

sup
t∈I∞

∥∇u∞(t)∥L2(Ω) < +∞, (3.18)

sup
t∈I∞

HN−1
( ⋃
τ∈I∞
τ≤t

Su∞(τ)

)
< +∞, (3.19)

sup
t∈I∞

∥u∞(t)∥L∞(Ω) < +∞. (3.20)

The bounds (3.18) and (3.20) are direct consequences of lower semicontinuity from weak
and weak* convergences (3.14) and (3.17), in view of the bound (3.11) and condition
(i), respectively. The bound (3.19) is also a consequence of lower semicontinuity
together with Lemma 3.1 in [10] and the bound (3.12) in view of (3.9). Next, for
t ∈ I∞, we extend u∞(t) to Ω by:

u∞(t)|∂DΩ := 0, and u∞(t)|∂NΩ := T (u∞(t)).

Moreover, notice that if for t ∈ I∞ we define

Γ∞(t) :=
⋃
τ∈I∞
τ≤t

Su∞(τ), (3.21)

and in view of the bound (3.19), we have that for all t ∈ I∞,

HN−1(Γ∞(t)) < +∞. (3.22)



CHAPTER 3. QUASI-STATIC FRACTURE WITH BOUNDARY LOADS 26

Also, condition (ii) of Definition 2 implies,

Cap(Γ∞(1) ∩Nε(∂NΩ)) → 0 as ε→ 0. (3.23)

To see why, note that according to condition (ii) of Definition 3.2.1 above we can
choose a family of functions ϕε ∈ C1(RN) such that ϕε = 0 on a neighborhood of
∪n∈NΓn(1) ∩ Nε(∂NΩ), 1 − ϕε ∈ C1

c (RN), 0 ≤ ϕε ≤ 1, and ∇ϕε → 0 in L2(RN) as
ε→ 0. Notice that this implies ϕε → 1 in L2(Ω) as well as HN−1−a.e. on ∂NΩ, since
subsets of ∂NΩ with positive HN−1−measure have positive capacity.

Since 0 ≤ ϕε ≤ 1, ∇ϕε ∈ L2(Ω), and for all t ∈ I∞, un(t) SBV−converges to u∞(t),
we get that for all ε > 0,

ϕεun(t) → ϕεu∞(t) in L2(Ω), and ∇(ϕεun(t))⇀ ∇(ϕεu∞(t)) in L2(Ω),

as n → ∞, which together with the fact that ϕεun(t) ∈ H1(Nε(∂NΩ)
◦) imply

that ϕεu∞(t) ∈ H1(Nε(∂NΩ)
◦). Hence, for all t ∈ I∞, Cap(Su∞(t)\ supp(1 − ϕε) ∩

Nε(∂NΩ)) = 0, or equivalently,

Cap(Γ∞(1)\ supp(1− ϕε) ∩Nε(∂NΩ)) = 0.

Then, (3.23) follows provided that Cap(Γ∞(1)∩supp(1−ϕε)∩Nε(∂NΩ)) → 0 as ε→ 0.
Note that otherwise, in view of condition (ii) of Definition 2, Cap(Γ∞(1)\Γn(1) ∩
supp(1− ϕε) ∩Nε(∂NΩ)) ↛ 0, which would imply ∇ϕε ↛ 0 in L2(RN ), contradicting
the definition of ϕε.

Furthermore, following the same exact approach as in the proof of (2.20) with {ϕε}
chosen as in the above, we get that for all t ∈ I∞,

un(t) → u∞(t) in L2(∂NΩ). (3.24)

We now proceed by investigating the minimality properties of u∞, which are
essentially consequences of minimality of un’s, convergences (3.14-3.17), and the
method of Jump Transfer devised in [10].

Lemma 3.2.1. For t ∈ I∞, u∞(t) minimizes

EN [f ](v) =
1

2

ˆ
Ω

|∇v|2 −
ˆ
∂NΩ

f(t)v (3.25)



CHAPTER 3. QUASI-STATIC FRACTURE WITH BOUNDARY LOADS 27

over {v ∈ SBV2(Ω) : Sv ⊂ Γ∞(t), v = 0 on ∂DΩ} and minimizes

ED[Γ∞](v) =
1

2

ˆ
Ω

|∇v|2 +HN−1(Sv\Γ∞(t)), (3.26)

over {v ∈ SBV2(Ω) : v = u∞(t) on ∂Ω}. Further, ∇un(t) → ∇u∞(t) strongly in
L2(Ω) as n→ ∞.

Proof. We start first by proving the ED−minimality. By definition of Γ∞(t) in (3.21),
for any η > 0, there exist 0 ≤ t1 < · · · < tp < tp+1 = t in I∞, such that

HN−1
( p+1⋃
k=1

Su∞(tk)

)
≥ HN−1

( ⋃
τ∈I∞
τ≤t

Su∞(τ)

)
− η. (3.27)

Moreover, note that from (3.14) and (3.16) we have that for each k = 1, . . . , p,

∇un(tk)⇀ ∇u∞(tk) in L2(Ω), (3.28)

un(tk) → u∞(tk) in L2(Ω), (3.29)

as n→ ∞.

Next, take φ to be an arbitrary element in {v ∈ SBV2(Ω) : v = 0 on ∂Ω} with
HN−1(Sφ) < +∞. Thanks to Theorem 2.8 in [10], based on (3.28) and (3.29), there
exists a sequence {φn} ⊂ SBV2(Ω) with φn = 0 on ∂Ω such that

∇φn → ∇φ in L2(Ω), (3.30)

lim sup
n→∞

HN−1
(
Sφn\

p⋃
k=1

Sun(tk)

)
≤ HN−1

(
Sφ\

p⋃
k=1

Su∞(tk)

)
. (3.31)

Now, from the minimization in (3.8), in view of (3.9), we get

1

2

ˆ
Ω

|∇un(t)|2 ≤
1

2

ˆ
Ω

|∇(un(t) + φn)|2 +HN−1
(
Sun(t)+φn\Γn(t)

)
≤ 1

2

ˆ
Ω

|∇(un(t) + φn)|2 +HN−1
(
Sun(t)+φn\

p+1⋃
k=1

Sun(tk)

)
=

1

2

ˆ
Ω

|∇un(t)|2 +
ˆ
Ω

∇un(t) · ∇φn +
1

2

ˆ
Ω

|∇φn|2 +HN−1
(
Sun(t)+φn\

p+1⋃
k=1

Sun(tk)

)
,
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or equivalently

0 ≤
ˆ
Ω

∇un(t) · ∇φn +
1

2

ˆ
Ω

|∇φn|2 +HN−1
(
Sφn\

p⋃
k=1

Sun(tk)

)
.

However, in view of (3.14), (3.30), and (3.31), we may take the limsup as n→ ∞ of
the right hand side of the above and, upon adding 1

2
∥∇u∞(t)∥2L2(Ω), obtain

1

2

ˆ
Ω

|∇u∞(t)|2 ≤ 1

2

ˆ
Ω

|∇(u∞(t) + φ)|2 +HN−1
(
Su∞(t)+φ\

p+1⋃
k=1

Su∞(tk)

)
,

which concludes the proof of minimality of u∞(t) for ED[Γ∞] in view of (3.27), taking
into account that η > 0 was arbitrary and HN−1(Sφ) < +∞.

To prove the EN−minimality, let ψ ∈ SBV2(Ω) ∩ L∞(Ω), Sψ ⊂ Γ∞(t), ψ = 0 on
∂DΩ be given. In view of (3.23), we can choose ϕε ∈ C1(RN) such that ϕε = 0 on a
neighborhood of Γ∞(1) ∩ Nε(∂NΩ), 1 − ϕε ∈ C1

c (RN), 0 ≤ ϕε ≤ 1, and ∇ϕε → 0 in
L2(RN) as ε→ 0. Notice that this implies ϕε → 1 in L2(Ω) as well as HN−1−a.e. on
∂NΩ, since subsets of ∂NΩ with positive HN−1−measure have positive capacity.

Note that ϕεψ ∈ SBV2(Ω) with Sϕεψ ⊂ Γ∞(t), so ϕεψ ∈ H1(Nε(∂NΩ)
◦) and we can

choose ψε ∈ H1(Ω) such that ψε = ϕεψ on ∂Ω.

Next, from the EN−minimality of un(t) for EN , the fact that ψε is an admissible
variation of un(t) for EN , and the convergence of un(t) to u∞(t) and fn(t) to f(t), we
have

ˆ
∂NΩ

f(t)ψε = lim
n→∞

ˆ
∂NΩ

fn(t)ψε = lim
n→∞

ˆ
Ω

∇un(t) · ∇ψε =
ˆ
Ω

∇u∞(t) · ∇ψε.

But, since ψε − ϕεψ ∈ SBV2(Ω) with ψε − ϕεψ = 0 on ∂Ω and Sψε−ϕεψ ⊂ Γ∞(t), it is
an admissible variation for the ED−minimality of u∞(t), so,

ˆ
Ω

∇u∞(t) · ∇(ψε − ϕεψ) = 0,

which in view of the above and the definition of ψε gives

ˆ
Ω

∇u∞(t) · ∇(ϕεψ) =

ˆ
Ω

∇u∞(t) · ∇ψε =
ˆ
∂NΩ

fψε =

ˆ
∂NΩ

fϕεψ.
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Taking the limit as ε → 0 in the above, since ∇(ϕεψ) = ψ∇ϕε + ϕε∇ψ ⇀ ∇ψ in
L2(Ω), and ϕεψ → ψ in L1(∂NΩ) (since ϕε converges to 1 HN−1−a.e. on ∂NΩ and
applying the dominated convergence theorem), proves the EN−minimality of u∞(t)
with the assumption that ψ ∈ L∞(Ω). The general result follows by approximating in
L∞.

Finally, from (3.13), strong convergence of fn(t) to f(t), convergence (3.24) and
EN−minimality of u∞ we get that

lim
n→∞

ˆ
Ω

|∇un(t)|2 = lim
n→∞

ˆ
∂NΩ

fn(t)un(t) =

ˆ
∂NΩ

f(t)u∞(t) =

ˆ
Ω

|∇u∞(t)|2.

Therefore, appealing to the weak convergence in (3.14), we get the strong convergence
∇un(t) → ∇u∞(t) in L2(Ω).

Next, we see how, as a result of the EN and ED minimality of discrete time
solutions, the energy does not increase. If we define the total energy functional by

En(t) := E [un,Γn, fn](t) :=
1

2

ˆ
Ω

|∇un(t)|2 −
ˆ
∂NΩ

fn(t)un(t) +HN−1(Γn(t)), (3.32)

we have

Lemma 3.2.2. Given n ∈ N, for tk−1, tk in In,

En(tk) ≤ En(tk−1)−
ˆ
∂NΩ

(
fn(tk)− fn(tk−1)

)
un(tk−1). (3.33)

Proof. The starting point for proving (3.33) is going back to the definition of un(tk) and
Γn(tk) given at the beginning of this section. So, as in (3.1), let {wj} be a minimizer
of EN [fnk ] over {w ∈ SBV2(Ω) : Sw ⊂ Kj−1, w = 0 on ∂DΩ} where Kj = Kj−1 ∪ Svj
and vj is a minimizer of ED[Kj−1] over {v ∈ SBV2(Ω) : v = wj on ∂Ω}. Notice that
summing (3.4) over 2 ≤ j ≤ i yields

1

2

ˆ
Ω

|∇wi|2 −
ˆ
∂NΩ

fnkwi +HN−1(Ki−1\K0) ≤
1

2

ˆ
Ω

|∇w1|2 −
ˆ
∂NΩ

fnkw1. (3.34)

On the other hand, since Sunk−1
⊂ Γnk−1 = K0, testing the EN−minimality of w1 with

unk−1 gives

1

2

ˆ
Ω

|∇w1|2 −
ˆ
∂NΩ

fnkw1 ≤
1

2

ˆ
Ω

|∇unk−1|2 −
ˆ
∂NΩ

fnk u
n
k−1. (3.35)
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Note that if we let i→ ∞, in view of monotonicity in (3.5), L2(∂NΩ)−convergence of
wi to unk in (3.2), and monotonicity of Ki, we get

1

2

ˆ
Ω

|∇wi|2 ↗
1

2

ˆ
Ω

|∇unk |2,ˆ
∂NΩ

fnkwi →
ˆ
∂NΩ

fnk u
n
k ,

HN−1(Ki−1\K0) ↗ HN−1(Γnk\Γnk−1).

Therefore, (3.34) in view of the above and (3.35) yields

1

2

ˆ
Ω

|∇unk |2 −
ˆ
∂NΩ

fnk u
n
k +HN−1(Γnk\Γnk−1) ≤

1

2

ˆ
Ω

|∇unk−1|2 −
ˆ
∂NΩ

fnk u
n
k−1, (3.36)

which upon adding and subtracting
´
∂NΩ

fnk−1u
n
k−1 to its right hand side and appealing

to definition (3.32) gives (3.33).

Notice that the reverse direction of the inequality above in Lemma 3.2.2 does
not necessarily hold as we explain below in section 3.3. However, as we state in the
following proposition, adding a certain amount to the total energy at the later time
produces the opposite inequality in Lemma 3.2.2 and gives an upper bound on the
amount of drop in energy between two consecutive time steps.

Proposition 3.2.2. Given n ∈ N, for tk−1, tk in In,

En(tk) + ∆n
k ≥ En(tk−1)−

ˆ
∂NΩ

(
fn(tk)− fn(tk−1)

)
un(tk−1), (3.37)

where

∆n
k := HN−1(Γn(tk)\Γn(tk−1)) +

ˆ
∂NΩ

fn(tk)
(
un(tk)− un(tk−1)

)
−
ˆ
∂NΩ

(
fn(tk)− fn(tk−1)

)
un(tk−1) ≥ 0. (3.38)

Proof. Let us first show that ∆n
k ≥ 0. We start as in the proof of Lemma 3.2.2. Let

{wj} and {Kj} be such that (3.1) holds. Notice that it follows from the EN−minimality
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of wj that
´
Ω
|∇wj|2 =

´
∂NΩ

fnkwj, and therefore, (3.4) implies

2HN−1(Kj−1\Kj−2) ≤
ˆ
∂NΩ

fnkwj −
ˆ
∂NΩ

fnkwj−1,

which after summing over 2 ≤ j ≤ i and letting i→ ∞ gives,

2HN−1(Γnk\Γnk−1) ≤
ˆ
∂NΩ

fnk u
n
k −
ˆ
∂NΩ

fnkw1. (3.39)

Moreover, testing unk−1 against EN−minimality of w1 yields

1

2

ˆ
Ω

|∇w1|2 −
ˆ
∂NΩ

fnkw1 ≤
1

2

ˆ
Ω

|∇unk−1|2 −
ˆ
∂NΩ

fnk u
n
k−1,

which in view of the facts that
´
Ω
|∇w1|2 =

´
∂NΩ

fnkw1 and
´
Ω
|∇unk−1|2 =

´
∂NΩ

fnk−1u
n
k−1

becomes
−
ˆ
∂NΩ

fnkw1 ≤
ˆ
∂NΩ

fnk−1u
n
k−1 − 2

ˆ
∂NΩ

fnk u
n
k−1.

Hence, (3.39) in view of the above becomes

2HN−1(Γnk\Γnk−1) +

ˆ
∂NΩ

(fnk − fnk−1)u
n
k−1 ≤

ˆ
∂NΩ

fnk (u
n
k − unk−1). (3.40)

Therefore, using the definition of ∆n
k in (3.38) together with the above, we get

∆n
k ≥ 3HN−1(Γnk\Γnk−1) ≥ 0.

Now, let

ζ := argmin

{ˆ
Ω

|∇v|2 : v ∈ SBV2(Ω), v = unk−1 on ∂Ω, Sv ⊂ Γnk

}
.

Note that since unk−1 − ζ = 0 on ∂Ω, the above implies

ˆ
Ω

∇ζ · ∇(unk−1 − ζ) = 0,
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or equivalently ˆ
Ω

∇ζ · ∇unk−1 =

ˆ
Ω

|∇ζ|2.

Also, from the ED−minimality of unk−1 we get

1

2

ˆ
Ω

|∇unk−1|2 ≤
1

2

ˆ
Ω

|∇ζ|2 +HN−1(Γnk\Γnk−1).

Hence, in view of the two expressions above we have,

ˆ
Ω

|∇unk−1 −∇ζ|2 =
ˆ
Ω

|∇unk−1|2 − 2

ˆ
Ω

∇unk−1 · ∇ζ +
ˆ
Ω

|∇ζ|2

=

ˆ
Ω

|∇unk−1|2 −
ˆ
Ω

|∇ζ|2 ≤ 2HN−1(Γnk\Γnk−1). (3.41)

Furthermore, since

ˆ
Ω

|∇unk −∇ζ|2 =
ˆ
Ω

|∇unk |2 − 2

ˆ
Ω

∇unk · ∇ζ +
ˆ
Ω

|∇ζ|2,

the facts that
´
Ω
∇unk · ∇ζ =

´
∂NΩ

fnk ζ =
´
∂NΩ

fnk u
n
k−1, and

´
Ω
|∇ζ|2 ≤

´
Ω
|∇unk−1|2

(which follows from the definition of ζ), imply

ˆ
Ω

|∇unk −∇ζ|2 ≤
ˆ
Ω

|∇unk |2 − 2

ˆ
∂NΩ

fnk u
n
k−1 +

ˆ
Ω

|∇unk−1|2.

Also,
´
Ω
|∇unk |2 =

´
∂NΩ

fnk u
n
k and

´
Ω
|∇unk−1|2 =

´
∂NΩ

fnk−1u
n
k−1, therefore,

ˆ
Ω

|∇unk −∇ζ|2 ≤
ˆ
∂NΩ

fnk (u
n
k − unk−1)−

ˆ
∂NΩ

(fnk − fnk−1)u
n
k−1. (3.42)

Thus, Cauchy’s inequality, (3.41) and (3.42) imply

1

2

ˆ
Ω

|∇unk −∇unk−1|2 ≤
ˆ
Ω

|∇unk−1 −∇ζ|2 +
ˆ
Ω

|∇unk −∇ζ|2

≤ 2HN−1(Γnk\Γnk−1) +

ˆ
∂NΩ

fnk (u
n
k − unk−1)−

ˆ
∂NΩ

(fnk − fnk−1)u
n
k−1.

Finally, by adding and subtracting ∇unk in the Dirichlet integral of unk−1 below, using
the above, and that

´
Ω
∇unk · (∇unk −∇unk−1) =

´
∂NΩ

fnk (u
n
k − unk−1) we get
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1

2

ˆ
Ω

|∇unk−1|2−
ˆ
∂NΩ

fnk−1u
n
k−1 =

1

2

ˆ
Ω

|∇unk−1 −∇unk +∇unk |2 −
ˆ
∂NΩ

fnk−1u
n
k−1

=
1

2

ˆ
Ω

|∇unk |2 −
ˆ
Ω

∇unk · (∇unk −∇unk−1) +
1

2

ˆ
Ω

|∇unk −∇unk−1|2

−
ˆ
∂NΩ

fnk−1u
n
k−1

≤ 1

2

ˆ
Ω

|∇unk |2 −
ˆ
∂NΩ

fnk (u
n
k − unk−1) + 2HN−1(Γnk\Γnk−1)

+

ˆ
∂NΩ

fnk (u
n
k − unk−1)−

ˆ
∂NΩ

(fnk − fnk−1)u
n
k−1 −

ˆ
∂NΩ

fnk−1u
n
k−1

=
1

2

ˆ
Ω

|∇unk |2 −
ˆ
∂NΩ

fnk u
n
k + 2HN−1(Γnk\Γnk−1) +

ˆ
∂NΩ

fnk (u
n
k − unk−1),

(3.43)

which upon appealing to the definitions in (3.32) and (3.38) concludes the proof.

3.2.3 Extension to [0, 1]

We now extend the solution that we found in the previous section to the whole interval
[0, 1]. For each t ∈ [0, 1]\I∞, let tp ∈ I∞ be an increasing sequence such that tp ↗ t as
p→ ∞. Note that the bounds in (3.18-3.20) give us an SBV−convergent subsequence
(not relabeled) of {u∞(tp) : p ∈ N}, whose limit is denoted by u∞(t) and is extended
to Ω by:

u∞(t)|∂DΩ := 0, and u∞(t)|∂NΩ := T (u∞(t)).

Moreover, for t ∈ [0, 1]\I∞, we define

Γ∞(t) :=
⋃
τ∈I∞
τ<t

Su∞(τ).

Notice that, alternatively, for t ∈ [0, 1]\I∞, we could use the uniform bounds (3.11)
and (3.12) to extract a potentially t−dependent subsequence of {un(t) : n ∈ N},
denoted by unt(t), which SBV−converges to some û(t) extended to Ω by:

û(t)|∂DΩ := 0, and û(t)|∂NΩ := T (û(t)).
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As we will see below, the choice of a t−dependent subsequence of {un(t) : n ∈ N}
does not matter, and in fact ∇u∞(t) = ∇û(t) for a.e. t.

Moreover, notice that as a result of lower semicontinuity following from the
SBV−convergence above and the subsequent convergence of traces we get that

u∞|Ω ∈ L∞([0, 1];L∞(Ω)
)
, u∞|∂Ω ∈ L∞([0, 1];L∞(∂Ω)

)
, ∇u∞ ∈ L∞([0, 1];L2(Ω)

)
.

Now, we are in a position to state our main result. The proof will come in two
steps: Lemma 3.2.3 and Lemma 3.3.1.

Theorem 3.2.1. If the material does not fail under the boundary load f ∈ W 1,1
(
[0, 1];L∞(∂NΩ)

)
,

then there exists a pair of displacement-crack (u∞,Γ∞) that satisfies:

• For all t ∈ [0, 1], HN−1(Γ∞(t)) < +∞, and for all t1, t2 ∈ [0, 1] with t1 < t2,
Γ∞(t1) ⊂ Γ∞(t2);

• for all t ∈ [0, 1], u∞(t) minimizes

EN [f ](v) =
1

2

ˆ
Ω

|∇v|2 −
ˆ
∂NΩ

f(t)v

over {v ∈ SBV2(Ω) : Sv ⊂ Γ∞(t), v = 0 on ∂DΩ} and minimizes

ED[Γ∞](v) =
1

2

ˆ
Ω

|∇v|2 +HN−1(Sv\Γ∞(t)),

over {v ∈ SBV2(Ω) : v = u∞(t) on ∂Ω}.

• for all t ∈ [0, 1],

E(t) ≤ E(0)−
ˆ t

0

ˆ
∂NΩ

ḟ(s)u∞(s) dHN−1ds,

where E(t) := E [u∞,Γ∞, f ](t), in view of the definition in (3.32).

Lemma 3.2.3. For all t ∈ [0, 1], HN−1(Γ∞(t)) < +∞, and u∞(t) minimizes

EN [f ](v) =
1

2

ˆ
Ω

|∇v|2 −
ˆ
∂NΩ

f(t)v (3.44)
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over {v ∈ SBV2(Ω) : Sv ⊂ Γ∞(t), v = 0 on ∂DΩ} and minimizes

ED[Γ∞](v) =
1

2

ˆ
Ω

|∇v|2 +HN−1(Sv\Γ∞(t)), (3.45)

over {v ∈ SBV2(Ω) : v = u∞(t) on ∂Ω}. Furthermore,

HN−1
(
Su∞(t)\Γ∞(t)

)
= 0,

and for a.e. t ∈ [0, 1], ∇u∞(t) ≡ ∇û(t), un(t) SBV−converges to u∞(t), and
∇un(t) → ∇u∞(t) strongly in L2(Ω) as n→ ∞.

Proof. Notice that for each t ∈ [0, 1]\I∞, in view of (3.21) and (3.22) we have
HN−1(Γ∞(t)) ≤ HN−1(Γ∞(1)) < +∞.

Next, the fact that u∞(t) minimizes (3.44) and (3.45) follows from the stability of
minimizers under SBV−convergence that we proved in Lemma 3.2.1. Also, proof
of the fact that HN−1

(
Su∞(t)\Γ∞(t)

)
= 0 can be found in Lemma 3.8 in [10] and

therefore we will not repeat it here.

Lastly, to prove our final claim we first need to notice that the stability of minimizers
under SBV− convergence yields that û(t) minimizes EN [f ] over {v ∈ SBV2(Ω) :
v = û(t) on ∂Ω}. Now, our goal is to prove ∇u∞(t) ≡ ∇û(t). The key idea is to use
minimality of unt along with the monotonicity of the map t 7→ Γnt(t). For n ∈ N and
t ∈ [0, 1] let

ln(t) := HN−1(Γn(t)), (3.46)

and note that as a result of the bound (3.12), {ln(t)} is a sequence of uniformly bounded
monotone increasing functions on [0, 1], by virtue of Helly’s theorem we may extract a
subsequence (not relabeled) such that pointwise converges to a monotone increasing
function on [0,1], denoted by λ(t). Also note that we can take the (potentially)
t−dependent sequence {nt} above from this subsequence. Denote by H the (at most
countable) set of discontinuity points of λ(t). Then, for t /∈ H, consider tp ∈ I∞ ↗ t.
Next, summing (3.43) up over all tk ∈ Int with tp ≤ tk ≤ t gives

1

2

ˆ
Ω

|∇unt(tp)|2 ≤
1

2

ˆ
Ω

|∇unt(t)|2 + 2HN−1(Γnt(t))− 2HN−1(Γnt(tp))

−
∑
tk∈Int
tp≤tk≤t

ˆ
∂NΩ

(
fnt(tk)− fnt(tk−1)

)
unt(tk−1).

where we have used the fact that Γnt(tp+1) ⊃ Γnt(tp) for every p ∈ N. Given that
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f ∈ W 1,1
(
[0, 1];L∞(∂NΩ)

)
, we have that

fnt(tk)− fnt(tk−1) =

ˆ tk

tk−1

ḟ(s) ds,

and hence, in view of the condition (i) of non-failure in Definition 3.2.1,

−
∑
tk∈I∞
tp≤tk<t

ˆ
∂NΩ

(
fnt(tk)− fnt(tk−1)

)
unt(tk−1) ≤M

ˆ t

tp

∥ḟ(s)∥L∞(∂NΩ) ds,

where
M := HN−1(∂NΩ)

(
sup
nt∈N

sup
t∈I∞

∥unt(t)∥L∞(∂NΩ)

)
.

Now, passing to the limit as nt → ∞ and using the facts that ∇unt(tp) → ∇u∞(tp)
and ∇unt(t) → ∇û(t) strongly in L2(Ω) (the former was proven in Lemma 3.2.1 and
the latter can be proven with the same exact reasoning as the former) gives

1

2

ˆ
Ω

|∇u∞(tp)|2 ≤
1

2

ˆ
Ω

|∇û(t)|2 + 2λ(t)− 2λ(tp) +M

ˆ t

tp

∥ḟ(s)∥L∞(∂NΩ) ds,

where we used the definition of λ above. So, letting p→ ∞, the last term on the right
hand side vanishes and using the definition of u∞(t) as well as the continuity of λ at t,
we get ˆ

Ω

|∇u∞(t)|2 ≤
ˆ
Ω

|∇û(t)|2.

However, testing u∞(t) against ED−minimality of û(t) gives the reverse direction of
the above inequality, which because of strict convexity of the Dirichlet integral implies
that ∇u∞(t) ≡ ∇û(t) for t ∈ [0, 1]\H. Therefore, the limit û(t) does not depend upon
the choice of a specific t−dependent subsequence and the whole (sub)sequence of {un}
determined by the convergence of the un(t) for t ∈ I∞ (and by that of ln to λ) is such
that, for all t ∈ [0, 1]\H, un(t) SBV− converges to u∞(t), while, as in Lemma 3.2.1,
∇un(t) → ∇u∞(t) strongly in L2(Ω) as n→ ∞. Nonetheless, H is at most countable,
which concludes the proof.
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3.3 Energy Balance

In this section, we first show that the total energy associated to a quasi-static evolution
does not increase in time, section 3.3.1. Notice that this is merely a consequence of
the fact that the evolutions minimize energy at each time and the growth of cracks is
irreversible. In other words, since whatever each evolution was doing earlier it could
do now (it could not change the energy state), earlier states of energy are legitimate
competitors at each time. This fact holds true among the global and local minimizers
for the Dirichlet boundary conditions that we cited earlier in the background material,
see section 1.1.

However, whether the later states of energy in the evolution can be compared
to the earlier states is a question whose answer has not been so straightforward. In
models based on global minimization for the case of Dirichlet boundary conditions,
the answer is yes, since all the states of energy are accessible at all times, and any
increment in the crack set can be offset with a decrease in the elastic energy so that
the total energy remains balanced. Nevertheless, this is not true for local minimizers
since things can happen at a later time that are not necessarily accessible at earlier
times and thus there can be decreases in energy – particularly caused by jumps in
time in the cracks whenever local energy wells disappear.

The interesting result of our variational formulation for boundary loads is that
even though it is based on global minimization, there can be cases where the energy
of an evolution decreases in time, as we discuss in section 3.3.2. Similar to the local
minimization models, the accessibility of later states of energy is not guaranteed.
Nevertheless, using the minimality properties of the evolutions, we give an estimate
on the amount of drop in energy at any time, see proposition 3.3.1.

Let us emphasize that for quasi-static models, evolution of cracks in time may
involve jumps and therefore it is in fact more realistic if there are drops in energy
since the kinetic energy is not accounted for in the usual quasi-static energy equation.
As a final note, at this time, it is not clear to us if assuming continuity for t 7→ Γ∞(t)
is enough to conclude that the energy of an evolution under boundary load stays
balanced.

3.3.1 Energy Does Not Increase

Now that we have extended the solution to the whole time interval, we can express the
result of Lemma 3.2.2 for all t ∈ [0, 1] as follows. Note that following the definition in
(3.32), the corresponding energy to u∞ is defined by

E(t) := E [u∞,Γ∞, f ](t). (3.47)
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Lemma 3.3.1. For all t ∈ [0, 1],

E(t) ≤ E(0)−
ˆ t

0

ˆ
∂NΩ

ḟ(s)u∞(s) dHN−1ds. (3.48)

Proof. Let us assume first that t ∈ I∞, and note that there exists n0 ∈ N such that
t ∈ In for all n ≥ n0. Therefore, for any n ≥ n0, summing (3.33) for all tk ∈ In with
0 < tk ≤ t gives

En(t) ≤ En(0)−
∑
tk∈In
0<tk≤t

ˆ
∂NΩ

(
fn(tk)− fn(tk−1)

)
un(tk−1) dHN−1

= En(0)−
∑
tk∈In
0<tk≤t

ˆ tk

tk−1

ˆ
∂NΩ

ḟ(s)un(s) dHN−1ds = En(0)−
ˆ t

0

ˆ
∂NΩ

ḟ(s)un(s) dHN−1ds,

where we used the facts that f ∈ W 1,1
(
[0, 1];L∞(∂NΩ)

)
, which gives fn(tk)−fn(tk−1) =´ tk

tk−1
ḟ(s) ds, and that by definition, un(s) = un(tk−1) for all s ∈ [tk−1, tk). Notice that

by Lemma 3.2.1 and from (3.24), for t ∈ I∞ we have that

∥∇u∞(t)∥L2(Ω) = lim
n→∞

∥∇un(t)∥L2(Ω),

ˆ
∂NΩ

f(t)u∞(t) = lim
n→∞

ˆ
∂NΩ

fn(t)un(t).

Moreover, since un SBV−converges to u∞ as n → ∞, from Lemma 3.1 in [10] we
conclude that,

HN−1(Γ∞(t)) ≤ lim inf
n→∞

HN−1(Γn(t)). (3.49)

Hence, it follows from the definitions of E(t) and En(t) and above that,

E(t) ≤ lim inf
n→∞

En(t). (3.50)

Moreover, it follows from Lemma 3.2.3 that for a.e. s ∈ [0, 1], un(s) → u∞(s) in
L2(∂NΩ), and therefore,

ˆ
∂NΩ

ḟ(s)u∞(s) dHN−1 = lim
n→∞

ˆ
∂NΩ

ḟ(s)un(s) dHN−1.

Also, the sequence of maps s 7→
´
∂NΩ

ḟ(s)un(s) dHN−1 is bounded on [0, t], and hence,
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by the bounded convergence theorem

ˆ t

0

( ˆ
∂NΩ

ḟ(s)u∞(s) dHN−1
)
ds = lim

n→∞

ˆ t

0

(ˆ
∂NΩ

ḟ(s)un(s) dHN−1
)
ds.

Therefore, the above, (3.50) and the fact that En(0) = E(0) for all n ∈ N (since
fn(0) ≡ f(0)) prove the lemma for the case t ∈ I∞. Nevertheless, if t ∈ [0, 1]\I∞,
we can take increasing sequences tp ∈ I∞ such that tp ↗ t. Notice that since u∞(tp)
SBV−converges to u∞(t), the traces converge strongly L2(∂NΩ) (similar to (3.24))
and since they are minimizers, the gradients converge strongly in L2(Ω). Moreover,
by monotonicity of t 7→ Γ∞(t), the HN−1−measures converge and therefore,

E(t) = lim
p→∞

E(tp), (3.51)

which together with the continuity of the map

t 7→
ˆ t

0

ˆ
∂NΩ

ḟ(s)u∞(s) dHN−1ds,

finishes the proof.

Proposition 3.3.1. For all t ∈ [0, 1], there exists ∆(t) ≥ 3HN−1(Γ∞(t)\Γ∞(0)),
defined below, such that

E(t) + ∆(t) ≥ E(0)− lim sup
M→∞

∑
tk∈IM
0<tk≤t

ˆ
∂NΩ

(
f(tk)− f(tk−1)

)
u∞(tk−1) dHN−1. (3.52)

Proof. Similar to before let us first assume that t ∈ I∞, which means that there exists
M0 ∈ N such that t ∈ IM for all M ≥ M0. Notice that we can repeat the same
minimization procedure as in the proof of (3.37) for u∞ and get that for any ti, tj ∈ I∞
with ti ≤ tj

E(tj) + ∆i,j ≥ E(ti)−
ˆ
∂NΩ

(
f(tj)− f(ti)

)
u∞(ti),

where

∆i,j := HN−1(Γ∞(tj)\Γ∞(ti))+

ˆ
∂NΩ

f(tj)
(
u∞(tj)−u∞(ti)

)
−
ˆ
∂NΩ

(
f(tj)−f(ti)

)
u∞(ti).

Now, for a fixed M ≥ M0, if we sum the above inequality for ti = tk−1 and tj = tk
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over all tk ∈ IM with 0 < tk ≤ t we get that

E(t) + ∆M(t) ≥ E(0)−
∑
tk∈IM
0<tk≤t

ˆ
∂NΩ

(
f(tk)− f(tk−1)

)
u∞(tk−1) dHN−1, (3.53)

where

∆M(t) := HN−1(Γ∞(t)\Γ∞(0)) +
∑
tk∈IM
0<tk≤t

ˆ
∂NΩ

f(tk)
(
u∞(tk)− u∞(tk−1)

)
dHN−1

−
∑
tk∈IM
0<tk≤t

ˆ
∂NΩ

(
f(tk)− f(tk−1)

)
u∞(tk−1) dHN−1.

Next, we show that ∆M(t) ≥ 3HN−1(Γ∞(t)\Γ∞(0)). Summing up (3.40) over all
tk ∈ IM with 0 < tk ≤ t we get that

2HN−1(Γn(t)\Γn(0)) ≤
∑
tk∈IM
0<tk≤t

ˆ
∂NΩ

fn(tk)
(
un(tk)− un(tk−1)

)
dHN−1

−
∑
tk∈IM
0<tk≤t

ˆ
∂NΩ

(
fn(tk)− fn(tk−1)

)
un(tk−1) dHN−1.

On the other hand, in view of (3.49) and strong convergence of fn to f and un to u∞,
the above yields

2HN−1(Γ∞(t)\Γ∞(0)) ≤
∑
tk∈IM
0<tk≤t

ˆ
∂NΩ

f(tk)
(
u∞(tk)− u∞(tk−1)

)
dHN−1

−
∑
tk∈IM
0<tk≤t

ˆ
∂NΩ

(
f(tk)− f(tk−1)

)
u∞(tk−1) dHN−1.

Appealing to the definition of ∆M (t) above, we conclude from the above that ∆M (t) ≥
3HN−1(Γ∞(t)\Γ∞(0)). Then, we let

∆(t) := lim inf
M→∞

∆M(t) ≥ 3HN−1(Γ∞(t)\Γ∞(0)),

which upon passing to the lim inf as M → ∞ in (3.53) proves the proposition for the
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case where t ∈ I∞. Finally, if t belongs to [0, 1]\I∞, similar to the previous lemma, we
can take an increasing sequence in I∞ that converges to t, and use continuity of each
of the terms in (3.52) at t. For the energy terms, look at (3.51), and for the terms
involving summations note that since f ∈ W 1,1

(
[0, 1];L∞(∂NΩ)

)
and u∞ is bounded,

the summations can be made arbitrarily small if we get close enough to t.

3.3.2 Counter-example to Energy Balance

In this section, we give an example of a crack evolution under a boundary load where
the energy balance is violated. Consider the domain Ω = (−1, 1)× (0, 1) ⊂ R2 made
up of a material with unit stiffness and fracture toughness, except near the lateral
boundary:

Gε(x1, x2) = Gε(x2) =


1 ε ≤ x2 ≤ 1− ε

+∞ otherwise
.

Suppose we apply the following boundary conditions

∂x1u = ∂x2u = 0 on x2 = 0, 1, ∂x3u = fe3 on x1 = 1, and u = 0 on x1 = −1,

where the load f is given by f(x, t) ≡ t. Now, consider the 1-D problem along
horizontal slices parallel to x1−axis with u(−1) = 0 and u′(1) = f = t. For t ≤ 1
there exists a solution, and for t > 1 there does not, since minimizing the Dirichlet
energy gives ∇u ≡ 0, H0(Su) = 1, and hence inf EN(u) = −∞.

Returning to the 2-D problem, a slicing argument shows that for t < 1, there exists
a unique solution, whose slices are solutions to the 1-D problem. Now consider t > 1,
with solution uε(t). Then the Neumann energy of uε(t), in view of EN−minimality of
uε(t), is

EN(uε(t)) = −1

2

ˆ
Ω

|∇uε(t)|2 = −1

2

ˆ
∂NΩ

tuε(t) = −1

2
t∥uε(t)∥L1(∂NΩ) → −∞

as ε→ 0. This limit follows since if the energy stays bounded, we can take the limit
of uε(t) as ε → 0, and get a solution of a Neumann problem which does not have a
solution for ε = 0, with a reasoning similar to the 1-D case.

Next, note that τ 7→ ∥uε(τ)∥L1(∂NΩ) is increasing, since τ 7→ f(τ) and τ 7→ Γε(τ) are
increasing.
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Now for t− < 1, suppose

E [uε,Γε](t) = E [uε](t−)−
ˆ t

t−

ˆ
∂NΩ

uε(τ) dHN−1dτ.

Note that the last term, in absolute value, is less than or equal to (t−t−)∥uε(t)∥L1(∂NΩ),
and E [uε](t−) stays bounded as ε→ 0. Finally, recall E [uε,Γε](t) = −1

2
t∥uε(t)∥L1(∂NΩ)+

H1(Γε(t)) → −∞ as ε→ 0. This gives a contradiction for ε and t > 1 small enough.



Chapter 4

Γ−convergence for Interface Cracks

In this chapter, we show Γ−convergence of a regularized model for fracture in layered
structures with interfaces to a sharp interface model. In layered structures, the
mechanical properties of the material bonding the layers together is different from
that of the material that the layers are comprised of. The interesting result of our
analysis is that when a crack starts growing along the interface it faces an effective
fracture toughness that is equal to an (in a sense) average of the fracture toughnesses
of the bulk and interface materials.

4.1 Introduction

Let Ω ⊂ R2 and I ⊂ Ω be a material interface that we assume is a finite union
of (topologically) closed C1 curves (with finite length). The fracture toughness
of the bulk, Ω\I, is equal to gb and the interface, I, is equal to gi. We define
Eε : H

1(Ω)×H1(Ω) → [0,+∞] by

Eε(u, d) :=

ˆ
Ω

(1− d)2|∇u|2 dx+
ˆ
Ω

gε

(
ε|∇d|2 + 1

4ε
d2
)
dx (4.1)

where

gε(x) :=


gi if dist(x, I) ≤ mε

gb otherwise,

(4.2)

and m, gi, gb > 0.
We consider the class C of closed sets K ⊂ Ω with H1(K) < +∞ such that K ∩ I

is a finite union of closed uniformly C1 curves (with finite length), together with a
finite collection of points.

43
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The set of admissible displacements A[K] is {u ∈ H1(Ω \K) : K ∈ C}. We make
the additional assumption that these u are discontinuous across their corresponding
K, except possibly at the endpoints of the C1 curves making up K ∩ I.

For K ∈ C and u ∈ A[K], we define

E(u,K) :=

ˆ
Ω

|∇u|2dx+ geffH1(K ∩ I) + gbH1(K\I).

The effective toughness, geff, is defined by

geff := inf
d∈V

ˆ ∞

−∞
ḡ
(
(d′)2 +

1

4
d2
)
dt, (4.3)

where V := {d ∈ H1(R) : max d = 1}, and,

ḡ(t) :=


gi if |t| ≤ m

gb otherwise.

The main result of this chapter is that

Theorem 4.1.1. Eε Γ−converges to E. That is, for every εn → 0,

un, dn ∈ H1(Ω), K ∈ C, u ∈ A[K], un → u in L2(Ω) =⇒ lim inf Eεn(un, dn) ≥ E(u,K)
(4.4)

and

∀K ∈ C, ∀u ∈ A[K], ∃un, dn ∈ H1(Ω) such that

un → u in L2(Ω) and lim supEεn(un, dn) ≤ E(u,K). (4.5)

The proof of the above comes in the ensuing sections, statement (4.4) will be
proved in section 4.2 and statement (4.5) will be proved in section 4.3.

Remark 4.1.1. Note that in the definition of gε, if we consider positive powers of ε, for
the scaling of the diffused interface toughness, then

ḡε(t) :=


gi if |t| ≤ m(ε)ε

gb otherwise.
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where m(ε) := mεα and α > −1. So, with the change of variable t 7→ t/ε we have

ḡε(t) := ḡε(t/ε) =


gi if |t| ≤ m(ε)

gb otherwise.

Since as ε → 0, for −1 < α < 0, m(ε) → ∞, for α = 0, m(ε) = m, and for α > 0,
m(ε) → 0, we have that


ḡε → gi if − 1 < α < 0,

ḡε = ḡ if α = 0,

ḡε → gb if α > 0.

Therefore, for the cases −1 < α < 0 and α > 0, geff defined in (4.3) will be replaced
by gi and gb, respectively, in the Γ−limit.
Remark 4.1.2. Notice that

inf
d∈V

ˆ ∞

−∞
ḡ
(
(d′)2 +

1

4
d2
)
dt = inf

d∈V

ˆ ∞

−∞
ḡε

(
ε(d′)2 +

1

4ε
d2
)
dt,

where

ḡε(t) :=


gi if |t| ≤ mε

gb otherwise.

This follows from the fact that given d ∈ V, we can define dε ∈ V by dε(t) := d(t/ε),
and if we consider the energy on the left for d, we get the same value as the energy on
the right for dε (and similarly in the other direction). So, the infima are the same, and
d̄ minimizes the energy on the left if and only if d̄ε minimizes the energy on the right.
Remark 4.1.3. If gi ≤ gb, the infimum defined in (4.3) is achieved and if gi < gb, the
minimizer d̄ ∈ V is unique, and satisfies d̄(0) = 1. If gi > gb, there does not exist a
minimizer, but the infimum is the same as the infimum in (4.3) with ḡ replaced by
gb. Indeed, if {dn} is a minimizing sequence and xn is the point at which dn equals 1,
then |xn| → ∞ (and so gi becomes irrelevant).

To see this, we consider the one dimensional energy considered above,

Es(d) :=

ˆ ∞

−∞
ḡ
(
(d′)2 +

1

4
d2
)
dt,
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now minimized over d ∈ Vx, the space V with the additional constraint that d(x) = 1,
at a point x ∈ R. We label the unique minimizer d̄x. From the Euler-Lagrange
equations, a straightforward calculation gives, for 0 < x < m,

d

dx
Es(d̄x) =

gi(gb − gi)(gb + gi) sinh(x)
(
(g2b + g2i ) sinh(m) + 2gbgi cosh(m)

)(
(g2b + g2i ) cosh(m)− (g2b − g2i ) cosh(x) + 2gbgi sinh(m)

)2 ,

and for x > m,

d

dx
Es(d̄x) =

gb(gb − gi)(gb + gi) sinh(m)
(
(g2b + g2i ) sinh(m) + 2gbgi cosh(m)

)
L

,

where

L :=
[
(gb − gi)

(
gb sinh

(3m− x

2

)
+ gi cosh

(3m− x

2

))
+ (gb + gi)

(
gb sinh

(m+ x

2

)
+ gi cosh

(m+ x

2

))]2
.

Due to symmetry, we need only consider the case x ∈ [0,∞). Since all of the terms
except (gb − gi) are positive, if gi < gb, x 7→ Es(d̄x) is strictly increasing, and the
energy is minimum at x = 0. However, if gi > gb, the function x 7→ Es(d̄x) is strictly
decreasing, and a minimizer does not exist.

Remark 4.1.4. Note that approximation of free discontinuity functionals with elliptic
functionals was first done by Ambrisio and Tortorelli in [3]. Although they proved
the Γ−convergence result below for a more general class of approximating functionals,
with minor changes in their proof, we have that Fε : H1(Ω) × H1(Ω) → [0,+∞]
defined by

Fε(u, z) :=

ˆ
Ω

z2|∇u|2 dx+
ˆ
Ω

(
ε|∇z|2 + α2

4ε
(z − 1)2

)
dx

Γ−converges to F : SBV (Ω) → [0,+∞] defined by

F (u) :=

ˆ
Ω

|∇u|2 dx+ αHN−1(Su).
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4.2 The Lower Bound Inequality

We now prove the first inequality in Theorem 4.1.1, (4.4). We suppose un, dn ∈
H1(Ω), K ∈ C, u ∈ A[K], un → u in L2(Ω), and seek to show that lim inf Eεn(un, dn) ≥
E(u,K).

We first choose rectangles that almost cover K. We label the components of K ∩ I
by Ci, i = 1, . . . , N , and their endpoints by X i

1, X
i
2. We begin by choosing r, h > 0

and a C1 function γX1
1
: [0, r] → R such that with appropriate choice of coordinate

axes we have, up to a translation,

(K ∩ I) ∩R(X1
1 , r, h) = Graph(γX1

1
),

where R(x, r, h) := {y ∈ R2 : x1 ≤ y1 ≤ x1 + r, |y2 − x2| ≤ h} is a rectangle with side
lengths r and 2h, oriented so that the normal to C1 at X1

1 is e2 and γ′
X1

1
(0) = 0. By

continuity of γ′
X1

1
, for given η > 0 we can choose r > 0 such that

|γ′X1
1
(t)| < η,

for all t ∈ [0, r]. Note that by the uniform continuity of K ∩ I, It follows that for these
t,

|γX1
1
(t1)− γX1

1
(t2)| < η|t1 − t2| < ηr.

Moreover,

H1(K ∩R(X1
1 , r, h)) =

ˆ r

0

√
1 + |γ′

X1
1
(t)|2 dt < (1 + η)r. (4.6)

where H1 denotes the one-dimensional Hausdorff measure, which for a C1 curve equals
its length. Note further that if h > ηr, then we are guaranteed that the graph of γX1

1

does not intersect the top or bottom of the rectangle R(X1
1 , r, h).

Since K ∩ I is a finite union of uniformly C1 curves, the r chosen above can in fact
be chosen uniformly. We can then consider a next rectangle of the same dimensions,
chosen to begin at a point x2 ∈ C1, such that R(x2, r, h) does not intersect R(X1

1 , r, h),
and the length of C1 between these rectangles is less than ηrh. Note that if this second
rectangle contains the other endpoint X1

2 of C1 in its interior, then we can reduce the
dimensions of the second rectangle until X1

2 lies on a side of the rectangle.
We now show that within each rectangle R,

lim inf
n→∞

Eεn(un, dn, R) ≥ geff r, (4.7)
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where

Eεn(un, dn, R) :=

ˆ
R

(1− dn)
2|∇un|2 dx+

ˆ
R

gεn

(
εn|∇dn|2 +

1

4εn
d2n

)
dx.

Set (ξ, ζ) to be a local coordinate system for R, so that R = {(ξ, ζ) : 0 ≤ ξ ≤ r,
−h ≤ ζ ≤ h}. By the convergence of un to u, we have that, at least for a subsequence,
for a.e. ξ ∈ [0, r], we have un → u in L2(lξ), where lξ is the line segment lξ := {(ξ, ζ) ∈
R2 : −h ≤ ζ ≤ h}.

Now, since u has a discontinuity on every lξ, ∂ζun must be unbounded in L2(lξ)
for a.e. ξ. So, in order for the first term in Eεn(un, dn, R) to be bounded, for a.e. ξ,
max dn|lξ → 1. Denoting (dn|lξ)′ by d′n, using Fubini’s theorem, Fatou’s lemma and
passing to a subsequence such that the lim inf is achieved, we get

lim inf
n→∞

ˆ
R

gεn

(
εn|∇dn|2 +

1

4εn
d2n

)
dx ≥ lim inf

n→∞

ˆ r

0

[ ˆ
lξ

gεn

(
εn(d

′
n)

2 +
1

4εn
d2n

)
dζ
]
dξ

≥
ˆ r

0

[
lim inf
n→∞

ˆ
lξ

gεn

(
εn(d

′
n)

2 +
1

4εn
d2n

)
dζ
]
dξ

≥
ˆ r

0

[
lim
n→∞

ˆ h

−h
gεn

(
εn(d

′
n)

2 +
1

4εn
d2n

)
dζ
]
dξ.

For Eεn(un, dn, R) to stay bounded, we must have
´ h
−h d

2
ndζ → 0, which up to a

subsequence gives dn → 0 a.e. on (−h, h). Thus, we may choose points h1 ∈ (−h,−ηr)
and h2 ∈ (ηr, h) such that dn(h1) → 0 and dn(h2) → 0. Furthermore, we can extract a
subsequence such that |dn(h1)| < εn and |dn(h2)| < εn. Next, for every n ∈ N, define
Dn : R → R by

Dn(t) :=



dn(t) h1 < t < h2,

dn(h1)

εn
(t− h1 + εn) h1 − εn ≤ t ≤ h1,

dn(h2)

εn
(−t+ h2 + εn) h2 ≤ t ≤ h2 + εn,

0 t < h1 − εn, t > h2 + εn.
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Notice that Dn ∈ H1(R), maxDn → 1 and moreover,

ˆ ∞

−∞
gεn

(
εn(D

′
n)

2 +
1

4εn
D2
n

)
dζ =

ˆ h1

h1−εn
gεn

[
εn

(dn(h1)
εn

)2
+

1

4εn

(dn(h1)
εn

(t− h1 + εn)
)2]

dζ

+

ˆ h2

h1

gεn

(
εn(d

′
n)

2 +
1

4εn
d2n

)
dζ

+

ˆ h2+εn

h2

gεn

[
εn

(dn(h2)
εn

)2
+

1

4εn

(dn(h2)
εn

(−t+ h2 + εn)
)2]

dζ

≤
ˆ h2

h1

gεn

(
εn(d

′
n)

2 +
1

4εn
d2n

)
dζ + 2∥g∥L∞

(
1 +

1

12

)
ε2n

≤
ˆ h

−h
gεn

(
εn(d

′
n)

2 +
1

4εn
d2n

)
dζ + Cε2n,

where C is a constant. Hence,

lim inf
n→∞

ˆ
R

gεn

(
εn|∇dn|2 +

1

4εn
d2n

)
dx ≥

ˆ r

0

{
lim
n→∞

[ ˆ ∞

−∞
gεn

(
εn(D

′
n)

2 +
1

4εn
D2
n

)
dζ − Cε2n

]}
dξ

≥
ˆ r

0

[
lim
n→∞

ˆ ∞

−∞
ḡ
(
(D′

n)
2 +

1

4
D2
n

)
dζ
]
dξ

≥ rgeff,

(4.8)

where the last inequality follows from the fact that the uniform bound in H1(R) of the
sequence {Dn} gives us a weak in H1(R) and strong in L2(R) convergent subsequence
to d ∈ H1(R); the lower semi-continuity of the weak limit and the a.e. convergence of
a subsequence of {Dn} to d which implies max d = 1, together with (4.3), conclude
(4.8), which gives (4.7).

Now, note that the Γ-convergence of Eε to E on Ω \ I follows from Ambrosio-
Tortorelli (see Remark 4.1.4). This, together with the arbitrariness of η > 0 gives
(4.4).

4.3 The Upper Bound Inequality

We now show that there exist {un} ⊂ H1(Ω) and {dn} ⊂ H1(Ω) such that un → u in
L2(Ω) and the upper bound inequality (4.5) for {Eεn} and E holds.
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We define ηn := ε2n and Nn to be

Nn := {x ∈ Ω : dist(x,K ∩ I) < ηn}.

Again, from Ambrosio-Tortorelli (see Remark 4.1.4), we have that there exist unm, dnm
defined on Ω \Nn with the desired convergence, as m→ ∞, and (4.5) holds on Ω \Nn.
For each n ∈ N, choose m(n) such that

∥unm(n) − u∥L2(Ω\Nn) <
1

n

and the inequality in (4.5) holds on Ω \ Nn to within 1
n
. We set un := unm(n) and

extend arbitrarily to H1(Ω) subject to ∥un∥L2(Nn) → 0. Below, we will define dn to be
1 on Nn, so this extension of un will play no role in the energy Eεn .

We now show how to define dn ∈ H1(Ω). First, we assume that gi < gb and let
d̄ ∈ V be the minimizer in (4.3). For 0 < β < 1, choose Tβ > 0 such that d̄(t) < β for
all |t| > Tβ; and thus define,

d̄β :=
1

1− β

(
d̄χ[−Tβ ,Tβ ] − β

)
. (4.9)

For ε > 0, define dε : (−h, h) → R by

dε(ζ) :=


1 |ζ| ≤ ηε

d̄β

( |ζ| − ηε
ε

)
ηε < |ζ| < ηε + εTβ

0 |ζ| ≥ ηε + εTβ.

As we did in proving (4.4), we choose rectangles Ri beginning with R(X1
1 , η, 2h).

The difference is that in choosing subsequent rectangles, we allow overlap. In particular,
we ensure that all line segments normal to K ∩ I extending a distance h on each side
of K ∩ I are included in at least one rectangle, while the length of K ∩ I in the overlap
of any two rectangles is no more than ηrh.

For the first rectangle R = R1, set (ξ, ζ) to be the local coordinate system as
before, with R given by 0 ≤ ξ ≤ r, −2h ≤ ζ ≤ 2h. Here, r > 0 is chosen for ηn = ε2n.
Define functions dRn : R → R by

dRn |lξ(ζ) := dεn(ζ), ∀ζ ∈ lξ, ∀lξ ⊂ R,
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where lξ’s are one-dimensional slices of R defined previously. We repeat this for each
rectangle Ri.

For the end points of the curves, again we call a generic point x∗, define a semi-
circular region with center at x∗ and radius h, and set a local polar coordinate system,
(r, θ) at x∗. For every θ ∈ [0, π] define

dRn (r, θ) := dεn(r), ∀r ∈ [0, h].

We then define R′ to be the extension of R by ηε + εTβ at each end that contains an
endpoint of a component of K ∩ I, so the region in which dRn ̸= 0 is contained in some
R′
i. Finally, extend dRn by zero to the whole domain and define dn : Ω → R by

dn := max{max
Ri

dRi
n , d

n
m(n)}. (4.10)

Notice that by construction, dn ∈ H1(Ω; [0, 1]), for every n ∈ N.
Now, we plug the constructed sequences {un} and {dn} into the functionals {Eεn},

introduced in (4.1), and proceed with the calculations as follows. Notice that inside of
the ηεn−strips in the rectangles and the end points triangular regions, dn ≡ 1, and
outside of the mentioned region, ∇un = ∇unm(n) and (1− dn)

2 ≤ 1; thus, for the first
integral term of the functionals we have,

lim sup
n→∞

ˆ
Ω

(1− dn)
2|∇un|2dx ≤ lim sup

n→∞

ˆ
Ω\Nn

(1− dnm(n))
2|∇unm(n)|2dx ≤

ˆ
Ω

|∇u|2dx.

(4.11)
Letting S :=

⋃
R∈Rηεn

R, by construction of the sequence {dn} we know that on the set
Ω\S, dn ≡ 0; and so it is enough to work with S instead of Ω. Further, we decompose
the set S into two disjoint subsets G and B, where G :=

⋃K
k=1R

′
k is composed of

rectangles R′
k that are achieved by removing the overlaps from the original rectangles,

R; and B := S\G which includes the overlapping regions. Hence,

ˆ
{dn ̸=dnm(n)

}
gεn

(
εn|∇dn|2 +

1

4εn
d2n

)
dx ≤

N∑
i=1

ˆ
R′

i

gεn

(
εn|∇dRi

n |2 + 1

4εn
(dRi
n )2

)
dx

≤
N∑
i=1

ˆ ri

0

ˆ h

−h
gεn

(
εn(d

′
n)

2 +
1

4εn
d2n

)
dζdξ +Nηrh

≤

(
N∑
i=1

ri

)ˆ Tβ

−Tβ
ḡ
(
(d̄′β)

2 +
1

4
d̄2β
)
dζ +Nηrh,

(4.12)

where the second equality follows from the fact that the derivative of dn’s in ξ−direction
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vanishes. Since Nr is controlled by H1(K ∩ I), Nηrh can be chosen to be arbitrarily
small. Similarly,

(∑N
i=1 ri

)
can be made arbitrarily close to H1(K ∩ I), by choosing

η small. Finally, by choosing β small,
´ Tβ
−Tβ

ḡ
(
(d̄′β)

2 + 1
4
d̄2β
)
dζ can be made arbitrarily

close to geff. Therefore,

lim sup
n→∞

ˆ
{dn ̸=dnm(n)

}
gεn

(
εn|∇dn|2 +

1

4εn
d2n

)
dx ≤ geffH

1(K ∩ I).

On the other hand, it is immediate from the Ambrosio-Tortorelli Γ-convergence
(see Remark 4.1.4) that

lim sup
n→∞

ˆ
{dn=dnm(n)

}
gεn

(
εn|∇dn|2 +

1

4εn
d2n

)
dx ≤ gbH1(K \ I).

Combining these with (4.11) gives (4.5).



List of Notations

Notation Description

dist(x,A) distance function, the inf of |x− y| over y ∈ A

Cap(A) 2−capacity of A, the inf of
´
|∇ϕ|2 over ϕ ∈ C1(RN) with ϕ ≥ 1 on A

Nε(A) ε−neighborhood of A, {x ∈ Ω : dist(x,A) < ε}

∂DΩ and ∂NΩ Dirichlet and Neumann parts of the boundary

∂νu normal derivative of u at the boundary

f Neumann data

u, v, w displacement functions

K,Γ crack sets

W (W ) stored elastic energy (density)

ED[Γ] Dirichlet energy, 1
2

´
Ω
|∇u|2 +HN−1(Su\Γ)

EN [f ] Neumann energy, 1
2

´
Ω
|∇u|2 −

´
Ω
fu

HN−1 (N − 1)−dimensional Hausdorff measure

LN N−dimensional Lebesgue measure

SBV (Ω) Special Functions of Bounded Variation on Ω

SBV (Ω) u|Ω ∈ SBV (Ω) and u|∂Ω ∈ L1(∂Ω;HN−1⌊∂Ω)

SBV2(Ω) u ∈ SBV (Ω) and ∇u|Ω ∈ L2(Ω)

Su set of approximate discontinuities of u ∈ SBV (Ω)

[u](x) jump of u at x

ν approximate unit normal to Su

Tu boundary trace of u

un
SBV
⇀ u {un} SBV−converges to u

∥u∥∞ max{∥u∥L∞(Ω), ∥u∥L∞(∂Ω)}
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