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Abstract 
 

Mobile devices such as cell phones, personal digital assistants (PDAs), and laptops 

continue to increase in memory and processor speed at a rapid pace.  In recent years it has 

become common for users to check their email, browse the internet, or play music and movies 

while traveling.  The performance gains are also making mobile graphics renderers more viable 

applications.  However, the underlying battery technology that powers mobile devices has only 

tripled in capacity in the past 15 years whereas processor speeds have seen a 100-fold increase in 

the same period.   

Photon mapping, an extension of ray-tracing, is a robust global illumination algorithm 

used to produce photorealistic images. Photon mapping, like ray-tracing, can render high-quality 

specular highlights, transparent and reflective materials, and soft shadows.  Complex effects such 

as caustics, participating media, and subsurface scattering can be rendered more efficiently using 

photon mapping.   

This work profiles the energy use of a photon-mapping based renderer to first establish 

what aspects require the most energy.  Second, the effect several photon mapping settings have 

on image quality is measured.  Reasonable tradeoffs between energy savings and moderately 

diminished image quality can then be recommended, making photon mapping more viable on 

mobile devices. 

Our results show that image quality is affected the least as settings corresponding to final 

gather computations are adjusted.  This implies that a user can trade a modest decrease in image 

quality for significant gains in energy efficiency.   Suggestions are made for using energy more 

efficiently when rendering caustics.  Results also show that, although overall energy use is higher 

with larger image resolutions, per-pixel energy costs are cheaper. 
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1 Introduction 

Mobile devices have become increasingly powerful over the years allowing users access 

to common desktop applications such as email clients, web browsers, and media players in any 

environment.  Laptops are powerful enough to replace desktop computers for those users who 

prefer convenience and portability.  Personal digital assistants (PDAs) are indispensable for 

business professionals with busy schedules.  Cell phone usage cuts across all demographics and 

is becoming ubiquitous.    

These trends are fueled by the continuing improvement of processor speed, memory size, 

and storage devices.  Figure 1 shows laptop technology trends between 1990 and 2000.  Since 

1990, hard disk capacity has increased 1,000 fold.  Just as impressive, processor speed has 

increased 400 fold and available memory has increased 100 times.  However, even with this 

rapid advancement, battery capacity has only increased roughly 3 times since 1990. 

 

 

Figure 1: Improvement of computer components during the 1990s [1].  
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This illustrates how precious the energy stored in a battery is as applications on mobile 

devices become more demanding.  Software developed for mobile devices needs to consider how 

efficiently the application uses energy in mobile applications.  Work has been done by several 

researchers to help improve energy efficiency [2,3,5].  Graphics algorithms are typically 

evaluated on how long it takes to render a high quality image.  Chang and Lohrmann contrasted 

the energy efficiency of several data structures used in ray tracing on a Central Processing Unit 

(CPU) and a Graphics Processing Unit (GPU) [9,10].  Their work focused on selecting the most 

efficient acceleration structure based on scene complexity, screen resolution, and processor unit 

type.  Their final images rendered in all cases were of the same quality.  Additional energy 

savings could be achieved if the user is willing to sacrifice image quality slightly.    

1.1 Goal of the Thesis 

This thesis was motivated by interest in investigating whether there may be reasonable 

tradeoffs between image quality and energy savings.  Photon mapping was chosen as the 

rendering method of choice.  Not only does photon mapping generate photorealistic images, it 

can efficiently render advanced effects like caustics, subsurface scattering and participating 

media.  Some examples of these advanced effects are shown in Figures 2 and 3.  Photon mapping 

has a variety of settings that can be analyzed in terms of their impact on execution time and 

energy efficiency.  The photon mapping algorithm was implemented in ENCORE, a global 

illumination renderer used for the tests.  

 

Figure 2: An example of a caustic  

rendered by photon mapping [4]. 

 

Figure 3: An example of a participating media  

(smoke) rendered by photon mapping [4]. 
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The first step was to identify the main settings that most adversely affect energy 

consumption.  The second step was to compare how changing these settings impacted image 

quality.   Finally a comparison is made between settings to determine what has the most 

favorable tradeoff between image quality and energy savings.  Armed with this information, 

developers writing a renderer using photon mapping for a laptop (and other energy-limited 

mobile devices) will be able to select a satisfactory image quality while conserving energy.  

1.2 Organization of the Thesis 

 An understanding of the fundamental concepts of global illumination is necessary for the 

reader to interpret the results and conclusions of this thesis.  Chapter 2 outlines these core 

principles and discusses the advantages and disadvantages of several global illumination 

techniques.  Chapter 2 also outlines why photon mapping is a good choice given the alternatives.  

Photon mapping is described in Chapter 3, along with an overview of the classic ray-tracing 

rendering algorithm it extends.  

The metrics used in evaluating the time and energy efficiency are presented in Chapter 4.  

This chapter also describes the scenes used in the tests.  Experimental results are shown in 

Chapter 5 along with a detailed analysis.  The general conclusions that are supported by the 

results are described in Chapter 6.  Finally, recommendations for future work are found in 

Chapter 7. 
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2 Related Work 

 Energy consumption research has focused either on general-purpose mobile applications 

or hardware.  Farkas et al. profiled the energy consumption of a Java Virtual machine on a 

mobile device called the Itsy [5].  Two software profilers have been designed for measuring the 

energy consumption of applications.  PowerScope monitors energy use at the application and 

process level [2].  It uses a modified version of the Linux kernel and an external multimeter to 

capture energy measurements.  PowerSpy is a software-only profiling tool that measured energy 

use at the thread level [3].  The energy consumption of network cards has also been studied [6,7].  

Tscheblockov measured the energy consumption of desktop graphics cards from different 

manufacturers using pass-through shunts and a multimieter [8].   

Only recently has graphics research focused on optimizing rendering algorithms for 

energy consumption.  Lorhmann explored the energy consumption of several acceleration 

structures on both the GPU and the CPU for static scenes [9].  Chang looked at how suitable 

these same acceleration structures were for dynamic scenes [10]. 
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3 Global Illumination Rendering 

Global illumination is a lighting concept where light traveling to a point directly from a 

light source is combined with light reflected from one or more other points to estimate the total 

light reaching that point.  The most realistic images a computer simulation can generate must 

implement some global illumination technique.  Namely, the simulation must accurately model 

the physical process of light scattering throughout a scene.  Considering that an image is a two-

dimensional grid of pixels, each representing the color of light reaching that point on the image 

plane, lighting is arguably the most important aspect of image rendering.   

3.1 Representing Light 

Light travels in a particle form called a photon.  These photons originate from light 

sources that emit them into the scene.  A light bulb, a television, and the Sun are common 

examples of light sources.    

A point light is a simple model of a light source that is represented as a point in space.  

This type of light has no analog in reality but is frequently used in graphics as a simplistic 

abstraction.  An area light is a planar surface where every point on the surface emits light.  It is 

comparable to a fluorescent ceiling light with a translucent glass covering.   

In its most basic form, a photon in a simulation is represented by a point in Cartesian 

space (X, Y, and Z components) and a triplet of color values (R, G, and B components) 

representing the power the photon’s light.  Further details on representing light within the photon 

mapping algorithm can be found in Chapter 4. 

3.2 Surface Properties 

When a photon hits a surface some amount of the photon’s power is absorbed by the 

surface.  The photon then splinters into several new photons, each of which hold some fraction of 

the remaining, unabsorbed power.  These new photons are then reflected to different regions of 

the scene. The travel vectors and the proportion of light reflected with the new photons are 

dependent on the type of surface.   
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Figure 4:  A visual example of light reflecting according to a BRDF and a BSSRDF [11]. 

 

Photon-surface interactions can be much more complex.  Some object surfaces allow 

photons to enter and scatter within before finally exiting the object as newly reflected photons. 

This phenomenon is called subsurface scattering.  [12,13] are two papers that discuss this 

concept.  Human skin, a surface that otherwise looks like dull flesh-colored plastic, can be 

modeled realistically with subsurface scattering.  Subsurface scattering is a complex technique 

that could not be investigated adequately within the bounds of this thesis. 

The entire process of photon-surface interaction can be described by a Bidirectional 

Scattering Surface Reflectance Distribution Function (BSSRDF) [14].  A Bidirectional 

Reflectance Distribution Function (BRDF) is a more specific BSSRDF where it is assumed that 

light does not enter the surface and is scattered at the point of the original interaction [14].  

Figure 4 is a diagram how a photon interacts with a surface when using a BRDF or a BSSRDF. 

There are two different kinds of reflection: diffuse reflection and specular reflection.  

Most surfaces in the world reflect light both diffusely and specularly, although to varying 

degrees.  Diffuse and specular surfaces are described in sections 3.2.1 and 3.2.2 respectively.  

Some surfaces allow photons to enter and pass through without being reflected within the object.  

Such a surface is transparent and its properties are discussed in section 3.2.3.   
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3.2.1 Diffuse Surfaces 

 Incoming light is reflected by a diffuse surface in all directions, regardless of the incident 

vector (the direction prior to the surface interaction).  A Lambertian surface is one that scatters 

light equally in all directions.  Figure 5 shows two Lambertian spheres.  Notice the smooth 

shading across the sphere—this is the result of reflecting light evenly.   

 

Figure 5:  A scene with two spheres, each with a Lambertian surface. 

3.2.2 Specular Surfaces 

Specular surfaces reflect incoming light at an angle equal to the incident angle.   A mirror 

is a perfectly specular object in that it reflects all light in this manner.  Many specular surfaces 

have imperfections so the angle of reflection tends to vary slightly.  These variations show up on 

specular surfaces as a small circular highlight, such as the two spheres in Figure 6.  

 

Figure 6:  A scene with two specular spheres. 



 8 

 

3.2.3 Transparent Surfaces 

Transparent materials allow light to pass through and depending on the degree of 

transparency can distort the direction of the light. This distortion is called refraction.  

 

Figure 7:  The right sphere has a transparent material. 

 

In Figure 7 there is a glass sphere that has bent light passing through it in a way that the blue 

wall on its right is actually visible on the left side of the sphere.  The degree that light is refracted 

is determined by Snell’s Law, shown in Equation 1.  

 
1

1

2

2

C

)sin(

C

)sin( θθ
=  

Equation 1: Snell's Law 

 

Snell’s Law states that if the angle of incidence is θ1, then the angle of refraction will be θ2, 

given C1 and C2 which are the speeds of light through the first medium and the second medium, 

respectively [15].  Figure 8 depicts Snell’s Law as a light ray is refracted by entering a medium 

where the speed of light is slower. 

 

Figure 8: Light refracted as it leaves medium #1 and enters medium #2 [15]. 
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3.3 Approximating Global Illumination 

In reality, far too many photons are emitted from any single source that makes it 

impractical to simulate every photon.  Thus global illumination algorithms approximate reality to 

generate an image.  The success of a global illumination technique is determined in part by how 

accurately it approximates reality.  A common way to begin approximating the illumination in a 

scene is to separate the calculation into two parts: direct illumination and indirect illumination. 

3.3.1 Direct Illumination 

 A point on a surface is considered directly illuminated by a light source if that point has 

unobstructed line-of-sight to a point on the light source.  If the line-of-sight is obstructed, then 

the surface point is shadowed.  The degree that a surface point is shadowed is dependent on the 

type and number of light sources in the scene.   

For instance, if the line-of-sight from a surface point to a point light source is obstructed, 

that light source contributes no direct light to the surface point.  On the other hand, if some (but 

not all) points on an area light have an unobstructed path to the surface point then that surface 

point is partially shadowed.  Figure 9 demonstrates a scene lit by direct lighting where the light 

source is outside a window. 

 

Figure 9:  An image rendered with only direct lighting using photon mapping [16]. 

 

Soft shadows are rendered during the direct illumination stage of rendering.  Soft 

shadows are partially lit regions on a surface that go from stark-black shadow to a region that is 



 10 

 

completely lit by an area light.  The soft shadows in Figure 9 are on the floor and the red wall on 

the left. 

3.3.2 Indirect Illumination 

 The majority of light that enters our eyes is from indirect illumination, sometimes called 

ambient light.  Indirect illumination is the result of photons scattered by surfaces many times 

after being emitted from a source.  Global illumination techniques are largely separated by the 

method used to calculate indirect lighting.   

 

Figure 10:  An image rendered with direct and indirect lighting using photon mapping [16]. 

 

 Figure 10 demonstrates indirect lighting brightening the scene.  Note that the majority of 

the scene is lit indirectly.  Also notice the red and green color “bleeding” onto the gray wall.  

Proper indirect illumination generates this desirable effect. 

3.4 Global Illumination Techniques 

Several global illumination techniques have been developed over the years to handle 

different reflection models (BRDFs) or improve rendering efficiency.  This section briefly 

describes the most common approaches and the main limitations they have. 
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3.4.1 Monte-Carlo Ray Tracing 

 Monte-Carlo methods are sampling techniques used to estimate a solution to complex 

mathematical problems, such as an integral.  A Monte-Carlo technique relies on the fact that a 

solution can be found with enough samples.  Ray tracing can be extended to use Monte-Carlo 

sampling to estimate the amount of indirect light arriving at a point in space. Furthermore, a 

Monte-Carlo ray tracer can simulate an arbitrary BRDF and can render diffuse and specular 

reflections for any type of geometry [17]. 

Since Monte-Carlo ray tracing is a stochastic algorithm, images can have considerable 

variance from pixel to pixel.  This noise can be reduced by increasing the sample size; however 

this also increases the runtime of the algorithm. 

3.4.2 Radiosity 

Modern radiosity methods are efficient at generating high quality images with a few 

limitations.  When radiosity was originally developed it could only handle scenes with diffuse 

surfaces [18,19].  Since then radiosity has been extended to support different reflection models 

[20].  The general idea behind radiosity is to subdivide all surfaces in a scene into small patches 

and then solve a set of equations that represent the transfer of light between these patches.   

One major hindrance to radiosity is that its performance is coupled to the complexity of 

the geometry in the scene.  Subdividing complex models that may have tens of thousands of 

polygons (or more) is computationally expensive.  Complex models approximate real geometry.  

Curved surfaces can be tessellated into triangle-strip representations. Care must be taken with the 

tessellation because lighting artifacts (visual incongruities) can occur around shadow boundaries 

[17].  Additionally, radiosity does not render specular reflections on curved surfaces well [17].  

There have been several hybrid approaches that address this limitation by combing radiosity for 

indirect lighting with Monte-Carlo ray tracing [21].  However, these techniques are still limited 

by the tight coupling between radiosity and geometry.   
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4 Photon Mapping Overview 

Photon mapping can be used in conjunction with Monte Carlo ray tracing to increase a 

renderer’s efficiency while maintaining high image quality.  Photon mapping models the 

emission and scattering of photons throughout a scene in a preprocessing step.  These photons 

are stored in a data structure called the photon map.  Rendering is done using a Monte Carlo ray 

tracer that uses the photon map to determine the illumination in regions of a scene.  

The photon map is a special data structure that is decoupled from the geometry in the 

scene.  This means that, unlike radiosity, photon mapping can be used with geometry of any 

complexity.  Photon mapping techniques can also be used to implement effects like subsurface 

scattering [22] and participating media [23].  Shadows computed by direct lighting can also be 

made more efficient by applying photon mapping [24].   

Photon mapping is a stochastic process in that each photon represents a single simulated 

light particle.  Therefore as the number of photons stored in the photon map increase, the better 

the approximation of light distribution becomes.  This also means that more memory and time is 

needed.  However, photon mapping still significantly outperforms pure Monte-Carlo ray tracing.  

The most common use for a photon map is to estimate the illumination due to indirect 

lighting in some region of space.  The process to create a photon map is described in section 4.1.  

Specialized photon maps can reduce the cost of rendering expensive effects like caustics or soft 

shadows. Section 4.2 lists the most common types of photon maps.  The following section 

describes an operation called the photon gather.  A photon gather is the primary operation that 

uses the photon map.  Finally, section 4.4 describes the basics of ray tracing and how a photon 

map can be elegantly combined with a Monte-Carlo ray tracer.   

4.1 Photon Map Creation 

Creation of the photon map is best explained in stages.  The first stage is when every 

photon in the scene has been emitted, scattered and then stored in a list.  In the next stage this list 

of photons is organized in a spatial data structure called a K-D tree.   
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4.1.1 Photon Scattering 

Photon scattering simulates the transport of light throughout the scene.  As mentioned 

previously in 3.1, the most basic photon representation is a point in space (X, Y, and Z 

coordinates) and a triplet of color values (R, G, and B components).  Additionally, the photon 

may also store the normal of the surface that absorbs the photon, and its travel direction prior to 

hitting the absorbing surface.  This information can be used in several parts of the renderer to 

further enhance an image. 

All photons scattered in a scene originate at a light source.  Photon emission is the 

process of choosing an initial direction and an initial position of the photon.  Both the direction 

and position are determined by the type of light source.  The position of a point light source is 

used as the initial position of all photons emitted from the source.  A point light source also emits 

light equally in all directions.  Hence, choosing an initial direction from this source is simply 

done by choosing a random direction.   

The choice of a random direction is sufficient since many thousands, and possibly 

millions, of photons are emitted into a scene.  Consider each photon as a sample of one way a 

light particle is scattered.  As the number of samples increases the better the photon map 

represents the illumination in a scene.  

 Light sources other than a point source can be simulated by photon mapping.  Figure 11 

shows several light sources and the initial directions of emitted photons.  Emitting a photon from 

a spherical light is done by first choosing a random point on the sphere’s surface as the initial 

position.  The initial direction is parallel to the path from the center of the sphere to the initial 

position. A square light, a type of area light, emits a photon from a random point on the surface 

and then a random direction within 90 degrees of the light’s normal.   

 

Figure 11: Several light sources and the directions they emit photons [16]. 
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The amount of light a single photon transports is assumed to be the same regardless of 

which light source emits it.  This simplification makes it much easier to estimate illumination 

later.  However, this abstraction impacts the number of photons each light emits.  In a scene with 

more than one light source, the number of photons emitted by a specific source must be 

proportional to the light’s power relative to the other sources in the scene.   For instance, if the 

brightness of each light source is the same, then each light source should emit about the same 

number of photons.  If one light is brighter than the others by some percentage, then that light 

should emit more photons equal to that percentage.   

Once an initial position and initial direction have been chosen for the photon, the 

simulation finds the first surface that the photon’s path intersects.  A technique called Russian 

Roulette is then applied at this surface interaction [17]. 

In reality when a photon interacts with a surface, the original photon is transformed in 

several ways at once.  Some portion of the photon’s power may be transformed into many other 

photons that are reflected in different directions.  Another part of the photon may be transmitted 

through the object it hits if its surface is transparent.  Modeling this behavior exactly would make 

this algorithm exponential in time complexity.  Furthermore, every surface interaction would 

result in the creation of photons with reduced power.  This would violate the assumption that 

every photon is of equal power.  Russian Roulette allows us to do both: model a single photon 

path and maintain a constant photon power. 

The standard Russian Roulette algorithm used by ENCORE is outlined in Figure 12.  The 

main idea is to probabilistically determine whether a photon is reflected diffusely, specularly, 

transmitted through the object, or absorbed at the surface.  The probability that any of these 

events happens is based on the surface’s properties which determine a weight assigned to each 

event.  A random number E is generated between 0 and the sum of those weights.  Figure 12 

demonstrates how E is compared to a range of those weights.  For instance, if E is less than the 

specular weight, the photon is specularly reflected.  If E is less than the sum of the diffuse and 

specular weight, yet larger than the specular weight it is diffusely reflected.   
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Figure 12: The Russian Roulette algorithm [17] as implemented in ENCORE. 

 

After the reflection is determined a path is generated based on the reflection.  Once the 

path is calculated the next surface interaction is found by finding the first intersection along the 

path.  This continues until either the photon scattering is absorbed or an upper bound on the 

number of surface interactions is reached.  In Figure 12 the upper bound is called maxBounces.   

When a photon is absorbed by a surface it is stored in the photon map.  One can also 

choose to store a photon in the photon map at each diffuse surface interaction as this will speed 

up photon scattering.  It is important to note that photons can only be absorbed by surfaces with a 

diffuse component.  If a photon’s path ends at a surface that is purely specular then the photon is 

discarded instead of being stored in the photon map. 

 while( bounces < maxBounces ) 

 { 

    HitInfo surfaceHit =  FindFirstIntersection(photonRay); 

 

    if( photon hit a surface ) 

    { 

      float pS = surfaceHit->GetSpecularWeight(); 

 float pD = mat->GetDiffuseWeight(); 

 float pT = mat->GetTransmittanceWeight(); 

 float pTotal = pS + pD + pT; 

. 

 float E = randNumber(0, pTotal); 

 

if(E < pS) 

    photonRay = ReflectPhotonSpecularly(...); 

 

 else if(E < (pS + pD)) 

    photonRay = ReflectPhotonDiffusely(...); 

  

 else if( E < pTotal) 

    photonRay = TransmitPhoton(...); 

   

      else 

    // terminating loop 

     

         // Note: photon will be absorbed if recent surface   

         // is diffuse 

    break; 

    } 

 



 16 

 

4.1.2 Photon Map Construction 

 Once all of the photons are emitted and stored in the photon map, the photon map must 

be constructed.  Prior to construction, the photons are stored in an unsorted list.  Since photons 

are searched for in the photon map based on their position in 3-dimensional space, a one 

dimensional list will be very slow.  Instead, a data structure called a balanced K-D tree is used to 

increase the speed of searching the photon map [17].   

 A balanced K-D tree is a spatial data structure meaning that it organizes data based on a 

position in space.  The photon map uses a form of the K-D tree that splits the data at a median 

point along one of the three Cartesian axes (X, Y, or Z).  

Some implementations scale the power of all photons by a constant amount based on the 

total number of photons stored before constructing the photon map.  This can be useful in 

maintaining a consistent level of stored illumination between photon maps that have stored a 

different number of photons [17].  

4.2 Types of Photon Maps 

Several different photon maps can be used to enhance different parts of the rendering 

step.  The difference between these photon maps is the path the photons took before being stored.  

The basic photon mapping algorithm uses a single photon map called either the global photon 

map or the indirect photon map.  The photons stored in the global photon map, sometimes 

referred to as global photons, have been absorbed by surfaces with a diffuse component. 

The caustics photon map stores photons that have been reflected from a specular surface 

onto a diffuse surface.  Any number of surface reflections can occur prior to the specular-to-

diffuse series.  The caustics photon map is used when rendering caustics. 

A shadow photon map stores photons that represent regions of shadow.  These ‘shadow’ 

photons are created any time a global photon hits a surface.  Shadow photons are stored at the 

location the original photon would hit had it not been for its first intersection.  The shadow 

photon map is used to speed up direct illumination. 

A direct photon map stores photons at the first surface interaction after being emitted 

from a light source.  Photons with two or more surface interactions are not stored in this photon 

map.  The direct photon map can be used in conjunction with the global photon map when 

computing indirect illumination using final gathering.  
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4.3 Using the Photon Map 

The primary operation on a photon map is called a photon gather.  A photon gather 

estimates the irradiance (incoming light) at a point in space.  Consider a point x in space where 

one wishes to estimate the irradiance as shown in Figure 13. A photon gather finds a set of 

photons within some maximum distance (called the gather distance) from x.   

 

Figure 13:  A typical photon gather.  The blue hemisphere represents  

the volume of space that contains the photons that may be used [17]. 

 

Once the photons are collected, the power of the photons is summed.  This sum is then 

multiplied by a value estimating the density of the photons within the volume defined by x and 

the gather distance.  The product of the power sum and the density estimate is the value that 

represents the irradiance at x.  Figure 14 is an example of the photon gather algorithm.  

Precomputed irradiance is an optimization used to increase the speed of photon gathers 

during rendering [25].  When hundreds of thousands of photon gathers are performed and a 

photon map only has 100,000 photons, many photon gathers will be redundant calculations.   

Precomputed irradiance works by choosing the position of every n
th

 photon as the 

location to perform a photon gather.  The resulting estimate is stored as the power of a single 

photon which is then stored in a new photon map.  After the new photon map is constructed, only 

the single closest photon is gathered.  This photon’s power is then used as the irradiance 

estimate. 
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Figure 14: Pseudocode of a photon gather operation based on the implementation in ENCORE.. 

     

4.4 Rendering 

Rendering follows immediately after the photon map has been created.  The color of each 

pixel is calculated by using a ray that samples the scene to be rendered.  This process is called 

ray tracing and is explained in 4.4.1.  The direct and indirect lighting calculations are discussed 

in 4.4.2 and 4.4.3, respectively.  Section 4.4.4 briefly looks at how caustics are generated.   

4.4.1 Basic Ray Tracing 

 Ray tracing is a point sampling technique where the color of each pixel is determined by 

a tree of rays that are used to sample a scene.  A primary ray is the first ray in the tree.  Each 

primary ray represents the reverse path light travels from a scene through a pixel on the image 

plane.  The earliest form of ray tracing, known as ray casting, only traced rays from the eye into 

  List< Photons > photonList =  
    GetNearestNPhotons(gatherCount, gatherDistance, surfaceHit, surfaceNormal); 

 

 if( photon list is empty ) 

 { 

    // no photons nearby, surfaceHit is not illuminated! 

    return Color(0, 0, 0); // black 

 } 

 

 // get the radius to the furthest photon 

 farDistance = GetFarthestPhoton( photonList, surfaceHit ); 

 

 R = 0, G = 0, B = 0; 

 for( each photon p in photonList ) 

 { 

    Color power = p->Power(); 

 

    R += power.R(); 

    G += power.G(); 

    B += power.B(); 

 } 

 

 float densityEstimate =  (1/PI) / (farDistance  * farDistance); 

 

 R *= densityEstimate; 

 G *= densityEstimate; 

 B *= densityEstimate; 

 
 return Color(R,G,B); 
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the scene.  Subsequent improvements, starting with Whitted ray tracing, spawned reflection, 

refraction, shadow and other kinds of rays at the intersection of the primary ray and scene 

geometry [26]. 

 

Figure 15: A diagram of the basic ray tracing algorithm [9].  

 

Figure 15 is a diagram of ray tracing computing direct lighting.  The red ray P is a 

primary ray.  The origin of all primary rays is a point in space acting as the location of the image 

viewer’s eye.  The black grid in Figure 15 represents the image and each cell is an individual 

pixel. The primary ray is used to sample the first intersection point the ray has with scene 

geometry (represented by the black line at the end of ray P).   

The rays that are spawned at the intersection with the primary ray are called secondary 

rays. These are used to further sample the scene in different ways.  Shadow rays determine 

whether a light source directly illuminates that point.  These lines are represented by dotted lines 

to the two light sources that look like yellow suns.    

The green rays represent reflection rays.  If a surface is reflective, a ray that follows the 

reverse path of light arriving at this surface is generated.  R1 in Figure 15 is one such reflection 
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ray.  R1 happens to intersect another surface in the scene. The light calculations at this 

intersection are identical to the ones that are performed for the intersection of the primary ray.  

The light calculated by tracing a reflection ray is then summed with the light calculations at the 

point in the scene that P intersects.  Reflection rays are recursively traced to some user-

configurable maximum depth.  This helps avoid situations where many surfaces may be 

reflective and the recursion could continue indefinitely. 

The blue rays represent transmitted rays.  These rays are traced through surfaces if the 

surface is transparent and allows light to pass through.  Usually these rays are refracted because 

of the difference in the speed of light through the surface’s material as opposed to air or a 

vacuum.  These rays terminate at the first intersection after exiting the material it is transmitted 

through.  At this intersection point, the light is calculated in the same way as primary and 

reflection rays. 

 

Figure 16: Pseudocode of the ray tracing algorithm as implemented by ENCORE. 

 

Figure 16 shows the pseudocode for generating primary rays and sampling the scene.  

Multiple primary rays can be spawned per pixel to improve image quality.  This is known as 

 for( each row of pixels ) 

 { 

    for( each column of pixels ) 

    { 

       Color pixelColor; // Note: pixelColor is initially black 

       // get sample rays 

       List< Rays > sampleEyeRays = GetEyeRaySamples( samplesPerPixel, jitter ) 

 

       for( each sample ) 

       { 

          HitInfo hit = FindFirstIntersection( aSample) 

    

          if( sample ray hit a surface ) 

          { 

             pixelColor += CalculateRadiance( hitSurface ); 

          } 

       } 

 

      // average the pixel color of each sample 

      pixelColor /= samplesPerPixel; 

 

      // store pixel for image display later 

      SavePixel( pixelColor, row, column ) 

      } 

    } 

 } 
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super-sampling.  Each color sampled by a primary ray is averaged together to yield the final 

pixel color.  So that each primary ray doesn’t sample the same point in the scene, a small amount 

of noise, or jitter is added to this primary ray’s direction.   

The interested reader can find more details on ray tracing in [27] and [28]. 

4.4.2 Direct Lighting 

 The discussion of ray tracing above provides a high-level view of the direct lighting 

calculation.  Direct lighting is explained in depth in this section for completeness.  

The contribution to a pixel from direct lighting is equal to the sum of five different 

components.  The diffuse component is the amount of light reflected diffusely by a surface.  

Similarly, the specular component is the amount of light reflected specularly by a surface.  Both 

of these can be calculated at the same time.   

 

Figure 17:  Pseudocode for diffuse and specular calculations for direct lighting. 

 

Figure 17 is the pseudocode for these components.  Note that this is where the shadow 

photon map is used to help optimize the calculation of soft shadows.  Also note in Figure 17 that 

multiple sample points are used for each light source.  This is necessary if the light source is not 

 

 // shadow photon optimization 

 bool completelyShadowed = QueryShadowPhotonMap();  

 

 if( completelyShadowed == false ) 

 { 

    for( each light in the scene ) 

    { 

      samplePoints = light->GetSamplePoints(); 

 

      for( each sample point ) 

      { 

         if(IsInShadow() == false) 

         { 

            diffuseColor  += CalculatePhongDiffuse(...); 

            specularColor += CalculatePhongSpecular(...); 

         } 

      } 

 

      // average the samples together 

      diffuseColor  /=  samplePoints.size(); 

      specularColor /=  samplePoints.size(); 

    } 

 } 
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a point light source where only a single sample point is needed.  The Phong lighting model is 

used to calculate diffuse and specular surfaces in this thesis [29].   

 Two other direct lighting components are reflection and refraction.  These components 

were adequately described for the purposes of this thesis in 3.3.1.  Hill provides more specifics 

[15]. 

 The final component captures a property of surfaces called emissiveness.  Some 

properties add color to a scene without being a light source explicitly.  The emissive color of a 

surface is simply added to the sum of the direct lighting components.  This feature is 

implemented in the photon mapping renderer used by this thesis; however the scenes used for the 

tests do not contain any emissive surfaces. 

4.4.3 Indirect Lighting 

All indirect lighting using photon mapping involves the photon map.  Indirect lighting 

using the photon map can be done in two different ways: direct visualization and final gathering.  

In direct visualization, a photon gather is performed local to the point where one wants to 

calculate the indirect lighting.  This is fast as only a single photon gather is used and no 

additional rays are necessary.  The tradeoff is that variance is high between different photon map 

settings.  Normally direct visualization requires a high number of photons stored in the map.  The 

exact number is dependent on the scene, however 500,000 photons or more is not uncommon.  If 

the photon map has too few photons the illumination across a flat surface may vary from too 

dark to too bright when there should be a smooth gradient.   

 

Figure 18: Direct Visualization using 50k photons 
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Figure 19: Direct visualization using 250k photons 

 

  Figure 18 and Figure 19 show the same scene rendered with a different number of 

photons stored in the global photon maps.  There is a high amount of noise in Figure 18 when 

only 50,000 photons are used.  Figure 19 increases the total number photons used by a factor of 

5.  The gradient of color across the walls in Figure 19 is still not very smooth but it is improved 

compared to Figure 18.  The noise seen in Figure 18 can be reduced by increasing the gather 

distance or adjusting the gather count.  However, this is still not going to yield images as good as 

those with higher photon counts.  

 Final gathering is the second method and generally yields the best results.  It is a 

technique borrowed from Monte Carlo ray tracing.  The main idea builds on the fact that the 

indirect illumination at a point x on a surface is the result of light bouncing off many surfaces.  

Instead of performing a photon gather local to x, photon gathers are performed at points above x. 

These points are found by sampling a hemisphere above x using rays.  These rays are called final 

gather rays.  Figure 20 shows from two angles a visualization of final gather rays.  The point for 

which indirect illumination is being calculated is blue. 
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Figure 20: A visualization of final gather rays.  Left image is a top view.  The right image is a side view. 

 

Many final gather rays need to be used for a satisfactory estimation of indirect lighting.  

Jensen explains that anywhere from 200 to 5000 final gather rays are needed [17].  Since a final 

gather needs to be computed at least once for every pixel, final gathering is very expensive.  This 

cost can be reduced by using an optimization called irradiance caching that was developed for 

ray tracing [30]. The irradiance cache speeds up final gathering so significantly, it is usually 

required if one wishes to compute an image efficiently. 

 Irradiance caching exploits the fact that across a surface, the illumination usually 

changes gradually.  The irradiance cache stores previously computed final gather values.  Since 

illumination changes gradually across the surface, these cached values can be used to interpolate 

the illumination.  Whether the values can be used depends on the value’s associated weight.  The 

weight is calculated based on, among other things, surface normals and the distance to the point 

where illumination is being calculated.  This weight is compared to a user-configurable variable 

(named tolerance in this thesis) that corresponds to the amount of error one allows into the 

image.  If the tolerance is high, more values can be reused and rendering speed increases.  

However, this performance gain comes at the cost of reduced image quality.  

Irradiance gradients is another optimization technique used to improve image quality 

[31].  It is used in conjunction with irradiance caching.  This feature is not currently implemented 

in the ENCORE renderer and therefore will not be tested. 
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4.4.4 Caustics 

Caustics are effects generated by the focusing of light through one means or another.  

Typically objects that refract light create caustics.  Light on a table after being refracted through 

a glass is a common caustic.  Another common caustic is the light on the bottom of a pool after 

being refracted through the pool’s water.  Figure 21 shows a caustic generated by light refracted 

through a glass sphere.  Caustics are rendered by directly visualizing a caustics photon map. 

 

Figure 21:  An image generated by ENCORE with a caustic present beneath the transparent sphere. 
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5 Experimental Setup 

 The goal of this thesis is to establish and rank tradeoffs between the energy consumed 

and image quality for renderers that use photon mapping.  These tradeoffs can be used to 

increase the energy efficiency of similar photon mapping-based renderers (photon mappers) on 

mobile devices.  The measurements used to establish these tradeoffs are discussed in section 5.1.  

 Five scenes were used to examine the impact surface types, total polygon count, and 

polygon distribution had on aspects of the photon mapping renderer.  These scenes are presented 

in section 5.2. 

 The concluding section will provide a summary of the computer hardware used to run all 

of the tests.  Knowing these details will not only increase confidence in the final results, but will 

provide a basis for comparison with future hardware. 

5.1 Measurements 

This thesis explores the possible tradeoffs by first measuring the time and energy 

consumed as photon count, irradiance cache tolerance, and other settings are varied.  The highest 

quality image the renderer can calculate is used as a reference for comparing test images.  The 

objective difference between the reference image and a given test image is found using ltdiff, an 

implementation of an image comparison metric developed by Lindstrom [32].  This difference is 

used to evaluate the degradation of image quality as renderer settings are changed.  A 

relationship between image quality and energy use can then be established.  This section explains 

the way time, energy, and image quality are measured and the role each has in analysis. 

5.1.2 Energy 

Energy consumption is measured using the Advanced Configuration and Power Interface 

(ACPI), a standard for querying battery information.  ACPI is available to application developers 

on the Windows XP operating system.  Windows updates power information stored by the 

operating system every couple of seconds.  This information can be queried using the system 

procedure callNtPowerInformation [33].  It provides a data structure that contains the 

discharge rate since the last update.   
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Joules (J) is the unit of measurement for energy.  The rate at which energy is used is 

measured by Joules per second, or more commonly Watts (W).  We find the energy used by 

multiplying the average discharge rate over a period of time multiplied by the length of that 

period in seconds. ACPI reports a discharge rate in milliwatts (mW) so when the average 

discharge rate is multiplied by seconds the energy is in millijoules (mJ).  This value is converted 

to Joules by dividing it by 1000 mJ (since 1000 mJ are in a single J). 

An average discharge rate can be calculated by sampling the instantaneous discharge rate 

every second the photon mapper runs.  The total energy for a given test is calculated by 

multiplying the average discharge rate by the total time elapsed.  Confidence in the consistency 

of the average discharge rate was increased by performing several preliminary tests. 

Each preliminary test was run on the test laptop (specified in 5.3) to check the variance of 

the discharge rate as reported by ACPI.  The operating system on the laptop provided several 

energy-saving features.  Some examples included dimming the display or turning off the hard 

disks when the system was idle. Since these features would alter the environment during a test, 

they were disabled.   
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Figure 22: The discharge rate during image rendering. 

Figure 22 is a graph of the discharge rate when an image was rendered using direct 

visualization of the photon map.  The maximum reported discharge rate was 38.295 W and the 

minimum was 16.028 W.   The standard deviation was 2.420 W with an average discharge rate 
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of 16.834 W.  The first two samples reported a very high discharge rate and were the only 

statistical outliers.  These high discharge rates may be caused by costs associated with the 

creation of a new process by the operating system as this behavior was noticed in all of the 

performed tests.   

Excluding those two samples, the next maximum was 18.426 W at 2 seconds into the 

simulation.  Every other sample was within one standard deviation of the average.  All of the 

preliminary tests have demonstrated approximately the same consistency.   

Windows updates its power data every 3 to 5 seconds.  Given this resolution, one might 

wonder whether there are significant changes between each sample.  This concern is reduced 

when one considers the total runtime of the typical test is anywhere from 3 minutes to 30 

minutes in length.  Over this lengthy period of time, any substantial variance in discharge rate 

would be averaged out. 

5.1.1 Time 

Execution time is a common metric used to evaluate the performance of applications.   

The execution time to generate an image is calculated by subtracting an end time from a start 

time.  The start time is recorded before the first photon is emitted.  The end time is recorded the 

moment all pixels have been assigned a color value.  Time is recorded within ENCORE using 

the Windows system routine GetTickCount which returns the number milliseconds that have 

elapsed since the system booted. 

Table 1 describes what aspects of the renderer are profiled.  Direct lighting, indirect 

lighting, and caustics are different because they are calculated per pixel.  In other words, the 

elapsed time can only be calculated for a specific pixel.   The total time for these different 

aspects can easily be found by summing the elapsed time for every pixel. 

What is measured? Description 

Image Time  The time to create the photon map plus the time to render a complete image. 

Photon Map Creation  The time to emit and scatter photons, plus the time to construct the photon map.  If 

precomputed irradiance is performed it is also added. 

Precomputed 

Irradiance 

The time to precompute irradiance 

Direct Lighting The time to calculate direct lighting for all pixels. 

Indirect Lighting The time to calculate indirect lighting for all pixels. 

Caustics The time to calculate caustics. 

 
Table 1: Image creation stages profiled by time. 
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The execution time of a specific calculation used is very useful in conjunction with the 

energy measurements.  Only the total energy consumed per generated image can be measured.   

total

total

DL
DL E

T

T
E ×=

 

Equation 2: The calculation to find the energy used by direct lighting. 

 

However, the ratio of the time a specific calculation took versus the total time to generate the 

image to estimate how much energy that calculation consumed.   For example, Equation 2  

shows how the energy used by direct lighting can be calculated.  Ttotal is the time to render the 

image and TDL is the time used by direct lighting. Etotal is the total energy used to render the 

image and EDL is the energy used by direct lighting. 

5.1.3 Image Difference 

The quality of images is very subjective when judged by the human eye.  For this reason 

an objective measure was sought.  One common calculation to judge relative difference between 

images is the Root Mean Square (RMS) metric.  This has been used mostly because it is intuitive 

and easy to compute.  Unfortunately, RMS has trouble detecting some forms of distortion that 

the human eye can easily see [34]. 

A superior metric was implemented as a program called ltdiff.  It was developed by Peter 

Lindstrom as a part of his PhD dissertation.  Other researchers have found it quite useful with 

work on level of detail [35].  Ltdiff is based in part on human perception and psychology.  It 

reports a unit-less value as a measure of the difference between two images.  It also produces a 

delta image (see Figure 24) that helps a human viewer understand what regions ltdiff selected as 

different.  The black regions in the delta image are regions identified as the same in input 

images.  The white regions identify discrepancies between the input images.  The brightest 

regions identify the location of the largest difference.   
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Figure 23: Two final gathered images rendered with ENCORE.   

The reference image is on the left.  The test image is on the right. 

 
 

Figure 24: The delta image from ltdiff after comparing the images in Figure 23. 

 

All images are compared to a reference image assumed to be the highest quality the 

renderer can generate.  Differences measured by ltdiff are assumed to be of lesser quality.  Any 

difference value reported by ltdiff could be considered a measure of the degradation in image 

quality.  However, image quality has a subjective connotation so it may be more precise to refer 

to the measurement as just the image difference.   Image difference will be the term used in the 

results section.   

 A maximum value of 100 was chosen as the limit for an acceptable difference between 

two images.  Having an acceptable maximum provides a better context for discussing image 

quality.  The specific value of 100 was chosen based on experience with numerous image 
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comparisons using ltdiff.  The rightmost image in Figure 23 is an example of an image close to 

this maximum; ltdiff reported a difference of 90.86.  

5.2 Scenes 

 All test scenes used a modified version of the Cornell Box.  The Cornell Box is a scene 

with a long history in computer graphics and is commonly used to demonstrate global 

illumination.  It is a square box with missing wall closest to the camera.  The rear wall, ceiling 

and floor typically have the same color, with different colors for the left and right walls.  

Incarnations of the Cornell box vary by wall color, the models inside, or both.  For the test 

scenes, the surface color of the walls remained the same; only the models within the box were 

changed. 

 

Figure 25:  The Cornell Box with two diffuse boxes rendered by ENCORE. 

 

Figure 25 and Figure 26 show the first two scenes.  These two scenes account for every 

surface type (diffuse, specular, reflecting, or refracting) supported by ENCORE. The diffuse box 

scene, shown in Figure 25, contains two yellow diffuse boxes where one is taller than the other.  

All of the surfaces in this scene are diffuse and no surfaces are transparent or reflective.  Direct 

illumination is stressed more here than other scenes because the boxes cast large shadows 

throughout the lower half of the image. 
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Figure 26: The Cornell box with two specular spheres rendered by ENCORE. 

 

Figure 26 shows the specular sphere scene.  It replaces the boxes with two specular 

spheres.  One sphere reflects light perfectly, similar to a mirror.  The second sphere represents a 

glass ball that refracts rays and photons.  The glass sphere will also generate a caustic if that 

effect is turned on. 

 

Figure 27:  Two scenes with bunny models of different polygon counts.  Images rendered by ENCORE. 

 

Examples of the remaining scenes are shown as Figure 27 and Figure 28.  The Stanford 

Bunny was used in all of these scenes as it comes in four levels of detail.  The change in detail is 

useful for targeting rendering performance as a result of increased polygon counts.  The low-

detail bunny has fewer than 1,000 polygons.  The high-detail bunny has over 60,000 polygons.    

Figure 27 compares two scenes where the polygon counts differ.  Notice the lower detail in the 

bunny in the left scene.  Figure 28 shows the three small, medium and large bunny scene 
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variations.  These scenes were used to examine the impact different spatial distribution of 

polygons has on rendering performance.  

 

Figure 28:  Three scenes where the same bunny model at different scales.  Images rendered by ENCORE. 

  

5.3 Hardware 

All tests were run on a Hewlett-Packard nc6230 consumer-grade laptop.  Although more 

sophisticated laptops are available to consumers, this laptop was adequate for running the tests.  

The battery was listed on Hewlett-Packard’s website as a 6-cell lithium ion battery with a 

capacity of 48 watt-hours [36].  The processor is an Intel Pentium M with a clock speed of 2.0 

gigahertz with 1 gigabyte of system memory available. The operating system was Microsoft 

Windows XP with Service Pack 2 installed.  No software was installed prior to or during the 

testing phase to ensure that the renderer was the primary application running on the laptop.  

During each test the wireless internet card was deactivated, the speakers were muted, and the 

display’s brightness was reduced.  No additional efforts were made to reduce energy 

consumption.   

Standard system processes, such as Windows’ services.exe and anti-virus software, were 

not disabled during the tests.  These processes will consume energy but disabling them is not 

likely to save any noticeable amount. They largely run in the background with the idle process 

consuming over 99% of the CPU’s time.   
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6 Results 

The testing phase of the thesis was segmented into five batches of tests.  Each batch 

contains a set of tests designed to examine the effects varying a rendering setting has on time, 

energy, and image difference.  Both elapsed time and energy consumed were measured during 

each test as described earlier in section 4.  The results presented in this section, however, are in 

terms of energy alone. This simplification is based on a correlation between rendering time and 

energy.  Figure 29 demonstrates this correlation.  It is a plot comparing time and energy for 

many of the tests presented in this section.  The settings that were varied included the global 

photon count, the gather distance, the gather count, the irradiance cache tolerance, and the 

sample ray count for final gathering.  A linear trend line was plotted to better identify the 

distribution of points.  The fact that each data point is on or touching the trend line suggests a 

strong correlation between energy and time.   Presenting both time and energy results would be 

redundant.  Furthermore, this thesis presents solutions for reducing energy consumption on 

mobile devices.  Thus, energy is the most appropriate metric.   
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Figure 29: A scatter plot of time versus energy for many varied rendering configurations. 

 

Two of the five batches examined indirect lighting calculations using direct visualization 

and final gathering.  The majority of tests conducted were in these two batches.  The 
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considerable focus on indirect lighting is due to the large percentage of the overall time and 

energy used by indirect lighting relative to other rendering calculations.  Figure 30 shows the 

energy results of five different configurations.  The results are separated by how much direct 

lighting, indirect lighting (using direct visualization), and photon map creation consume energy.  

Each configuration changes only by the number of photons stored in the global photon map.  

Notice how quickly the rate of energy consumption increases for indirect lighting as the number 

of global photons stored increases. Photon map creation and direct lighting consume far less 

energy.   
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Figure 30: A comparison of energy use by direct lighting, indirect lighting using direct  

visualization, and photon map creation.  Each test varies the number of stored global photons. 

 

 This trend is exaggerated when final gathering is used instead of direct visualization. 

Figure 31 shows data from four tests where indirect lighting was calculated using final gathering.  

Each test used 100,000 global photons and varied only in the number of sample rays used in each 

final gather calculation.  It is hard to identify the amount of energy consumed by photon map 

creation in Figure 31 because in each case direct and indirect lighting combined to account for 

over 98% of the total energy used.  
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Figure 31:  A comparison of energy used by direct lighting, indirect lighting using final  

gathering, and photon map creation.   Each test varies the number of final gather sample rays. 

  

The remaining test batches were small but no less thorough in evaluating other aspects of 

global illumination rendering.  The third batch focused on caustics rendering.  The change in 

energy consumption as the polygon count increases in a scene is evaluated in the fourth batch.  

The fourth batch also includes tests that considered the distribution of polygons within a scene.  

Rendering images of different resolution was investigated in the final batch.  This is particularly 

relevant for rendering on mobile devices as screen resolution varies widely across different form-

factors.   

 The results from evaluating indirect lighting and caustics (the first three batches) are 

discussed based on the stages of the photon mapping algorithm.  This provides a more 

comprehensive view into the performance of the renderer than a disjointed discussion based on 

the data collection methods.  Results from the high-polygon scene batch are presented where 

appropriate.  The batch of tests investigating image resolution is discussed in section 6.4.  All 

tests rendered an image with a resolution of 256x256 unless otherwise noted.  This resolution 
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was chosen so tests finish in a reasonable time.  It will be shown that the resolution will not 

affect the general trends. 

6.1 Photon Map Creation 

 Photon map creation is a short stage that occurs before image rendering.  Figure 30 and 

Figure 31 show that the energy consumed by this stage is small relative to direct and indirect 

lighting stages. 

Figure 32 is a graph of the energy consumed during the photon map creation stage for 

two scenes across 5 configurations.  Tests corresponding to the diffuse box scene are represented 

by blue data points.  Tests corresponding to the specular sphere scene are shown in pink. Each of 

these scenes was previously described in section 4.2.  The five configurations differ only in the 

number of global photons stored, ranging from 50,000 to 500,000.  Each configuration used 

direct visualization for rendering indirect lighting.  Note that the results would be the same had 

final gathering been selected for indirect lighting as photon map creation is an independent step.   
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Figure 32: Energy consumed by five different rendering configurations.  

Each configuration was used to render two different scenes. 
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Figure 32 demonstrates that as the photon count increases, so does the energy consumed.  

This is very intuitive as the total amount of processing and data required increases per added 

photon.  Additionally, one can tell that both the diffuse box scene and the sphere scene have the 

exact same energy requirement given the same number of photons.  This is not too surprising as 

global photons are only stored when they hit diffuse surfaces and the total area of diffuse 

surfaces in both scenes are relatively high.   

A scene with a higher total area of pure specular surfaces than diffuse surfaces would 

likely have a higher energy consumption rate for a given photon count.  This is evident if one 

considers that reducing the possible area of photon storage lowers the likelihood a photon will hit 

a diffuse surface after being reflected thus increasing the time before it is stored.  On the other 

hand, this is not a particularly compelling test as the fact that it takes longer to scatter photons is 

just the nature of the scene being rendered.   

While the energy characteristics of scattering global photons do not elicit any surprises, 

caustic photon scattering is a more interesting case.  Figure 33 shows the energy consumed 

during the photon map creation stage when both global and caustic photons are scattered. The 

dark blue, pink, and yellow data points correspond to configurations where 30,000, 20,000, and 

10,000 caustic photons were stored, respectively.  The teal data points represent tests that no 

caustic photons were emitted or stored.  The number of photons stored in the global photon map 

is identified on the x-axis.   

Note that as the number of caustic photons stored increases, so does the energy 

consumed.  This is as obvious as it was in the case of global photons discussed earlier.  Looking 

deeper, Figure 33 demonstrates that creating a caustics photon map requires significantly more 

energy than creating a global photon map.  A test using 50k global photons and 0 caustic photons 

(the left-most blue data point) used approximately 25 Joules.  Another test that used the same 

configuration except with 10k caustic photons (the left-most yellow data point) used more than 

double the amount of energy.   The high cost is related to the probability a caustic photon is 

created and stored.   
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Figure 33: The total energy used by the renderer to store a different number of global  

and caustic photons.  The specular sphere scene was used in all of the tests. 

   

A caustic photon is stored when a photon is reflected by a specular surface onto a diffuse 

surface.  In a scene with few specular surfaces, this specular-to-diffuse event is not as likely to 

happen as a diffuse-to-diffuse event.  This fact could be attributed to the nature of the scene, 

similar to the nature of scenes with many specular surfaces and how they affect global photon 

scattering. However, since most scenes where caustics are present normally only have a few 

objects that generate caustics, the sparseness of specular-to-diffuse events is typically low.   

Jensen suggests that the scene could contain information for the renderer that indicates the 

location of caustic-generating objects [17].   

 The most interesting information gleaned from Figure 33 is that the energy cost of 

emitting 10,000 caustic photons can be absorbed by emitting an increased number of global 

photons.  The test configured to emit 200,000 global photons only took relatively the same 

amount of energy as the test that emitted 200,000 global photons in addition to 10,000 caustic 

photons.  This is because in the course of emitting the 200,000 photons, the proper number of 

specular-to-diffuse photon interactions happened so that 10,000 caustic photons were stored. 

This makes a strong case that if one wishes to store more caustic photons one might as well 

increase the global photon count for more efficient use of time and energy. 
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Tests were run to evaluate the impact polygon count and polygon distribution has on 

energy use of the photon-mapper.  Figure 34 shows the data from those tests corresponding to 

photon map creation.  Polygon count is mapped to the x-axis and ranges from 1,000 polygons to 

70,000 polygons.  The distribution of the polygons is determined by the size of the bunny.  The 

small bunny scene isolates polygons in the center of the scene.  The large bunny has a much 

broader distribution although there is an empty volume of space within the bunny not occupied 

by polygons.  Section 5.2 has examples of these scenes. 
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Figure 34: A graph showing the results of tests where the polygon count and distribution were varied. 

 

  An intuitive result easily seen in Figure 34 is that energy consumption increases as the 

polygon count increase.  A more interesting feature of the data is that the medium bunny scene 

shows a significant increase in energy consumption compared to the small and large bunny 

scenes.  The primary calculation during photon map creation is the intersection test between a 

photon’s path and scene geometry.  The medium bunny apparently distributes polygons in such a 

way that more intersection tests are performed than with the large and small bunnies.   

6.2 Direct Lighting 

 Calculating direct lighting is the first step of three in the rendering phase.  Specific tests 

were not conducted to investigate different configurations of direct lighting.  In fact, settings that 

change the quality of direct lighting were kept constant in all tests. Those settings and their 

values are shown in Table 2.  
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Direct Lighting Settings Value 

Direct Photons Stored 10,000 

Shadow Rays 144 

Table 2:  Direct lighting settings 

 

 Even though tests did not specifically investigate direct lighting, it serves to discuss this 

step briefly to understand how it impacts overall energy consumption of the renderer.  Figure 35 

shows the energy consumption reported in ten different tests (5 different configurations used to 

render two different scenes).  The data used for Figure 35 comes from the same tests as those 

used for Figure 32.  The most important thing to note is that the energy used for the diffuse box 

scene is constant, whereas the energy used to render the specular sphere scene is increasing as 

the global photon count increases.  This can be attributed to the transparent sphere and the 

reflective sphere in the specular sphere scene.   

Direct Visualization Tests

Direct Lighting Energy

0

50

100

150

200

250

300

350

50k 100k 175k 250k 500k

Photons Stored

E
n

e
rg

y
 (

J
) Diffuse Box

Scene

Specular
Spheres Scene

 

Figure 35:  The energy consumption of multiple configurations where the number of global photons varies. 

  

Recall that when a primary ray hits a reflective surface, reflection rays are generated. 

Likewise, when a primary ray hits a transparent surface, rays may be transmitted through the 

surface.  These secondary rays are used to calculate the total light at the first surface they 

intersect.  The total light calculation includes direct lighting, indirect lighting, and caustics (if 
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they are being rendered).  The increase in energy use indicated by the pink line in Figure 35 is 

due to the increased cost of indirect illumination calculations because more global photons are 

stored.  It makes sense to consider the cost of calculating the indirect illumination as a part of the 

cost of calculating the direct lighting because the results directly contribute to the color of the 

direct lighting. 

 Note that total energy used for direct lighting calculations for the specular sphere scene is 

lower than the diffuse box scene when 50,000 photons are stored in the global map.  Excluding 

all indirect lighting calculations, it would be more expensive to calculate direct lighting for the 

diffuse box scene than for the specular sphere scene.  This is because the diffuse scene has more 

regions of shadow in the scene and thus has more regions where shadow rays are used.  Recall 

that this renderer implements soft shadows, which use shadow rays around the edges of the 

shadow regions to create a smooth transition from lit areas to dark areas.   

 The same tests described in reference to Figure 34 are used here for Figure 36.  In this 

case, the data corresponds to the energy use of direct lighting.  The results in Figure 36 are very 

similar in shape to those in Figure 34.   
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Figure 36: A graph showing the results of tests where the polygon  

count and polygon distribution was changed between scenes. 

 

 As one would expect the energy consumed increases as the polygon count increases.  

Also similar to Figure 34 is that the scene with the medium-sized bunny exhibited higher energy 
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consumption than the scene with the large bunny.  This may be attributed to an increased number 

of triangle-ray intersection tests with the medium bunny scene.  The main difference between 

Figure 34 and Figure 36 is the y-axis scale.  Since both photon map creation and direct lighting 

performance is linked with the number of triangle-ray intersections, the difference in scales is 

due to the larger total calculation time for direct lighting.  

 Finally, unlike indirect lighting, rendering caustics have no significant impact on the 

energy used by direct lighting.  The energy expended for direct lighting from tests in the caustics 

batch is graphed in Figure 37.  The specular sphere scene was rendered for all of the tests.  Note 

the tight grouping of the lines linking the data points.  This suggests that while the total number 

of caustics photons used changes, the trend in energy use does not vary.  This result is 

understandable because caustics tend to be isolated into a particular region of the scene.  Photon 

gathers using the caustics photon map are very fast, frequently returning zero photons, because 

photons are concentrated in space.  The concentration of photons makes sense as the definition of 

a caustic is light that has been focused into a region as a result of a reflecting surface. 
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Figure 37:  Energy consumption of direct lighting when caustics are rendered for the specular sphere scene. 

 

6.3 Indirect Lighting 

 The main focus of this thesis has been on indirect lighting since it is the most costly 

calculation when rendering an image. Like the previous results sections, graphs showing the 
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change in energy consumption across different configurations are presented.  Additionally, 

image comparisons using ltdiff will be used to relate how these different configurations affect the 

final rendered image.   

6.3.1 Direct Visualization 

 The first batch of tests examined the sensitivity of the renderer to changing 

configurations when direct visualization is used to estimate indirect illumination.  The settings 

changed in each configuration were the global photon count, gather distance, and the gather 

count. Figure 38 gives a high-level view of the effect varying these three settings has on energy 

consumption and image difference.  
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Figure 38: A comprehensive graph of all the tests run to evaluate direct visualization. 

  

The two scenes used in these tests were the diffuse box scene and the specular sphere 

scene.  Notice that dark blue and the pink lines correspond to the specular sphere scene and the 

diffuse box scene respectively.  They both represent results from different configurations where 

only the total photon count was varied.  The similar trend among these two lines illustrates that 

changing the photon count has the same impact on image quality and energy consumption in 

different scenes.  Changing the gather count and gather distance have a different impact than the 

photon count. However, changes in each setting have the same effect across the two scenes.  
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 The most striking feature of the data in Figure 38 is the image difference for most of the 

tests.  The configuration for the reference image (the data point in Figure 38 that has an image 

difference of 0) and a handful of global photon count tests are the only tests that yielded 

differences of less than 200. Recall from 5.1.3 that image difference values of 100 or lower are 

considered acceptable.  Almost all data points plotted in Figure 38 differ from the reference 

image by 300 or more units.  This suggests that almost all changes to a configuration when using 

direct visualization will likely result in a strong deviation from the reference image.  Put another 

way, it is not likely that a useful tradeoff exists between image difference and energy 

consumption when using direct visualization.  At best, one can tweak the renderer’s 

configuration to approach the best image possible.   

The remaining discussion on direct visualization is concerned with the way settings 

should be adjusted and the effect those adjustments have on energy consumption and image 

difference.  All of the results presented during this discussion will use results that were shown in 

Figure 38.  
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Figure 39: Change in energy use as global photons stored increases. 

 

Figure 39 shows the increase in energy consumption of direct visualization as the number 

of global photons stored in the photon map increases.  Figure 40 shows the image difference as 

reported by ltdiff of these same tests.  The image references used for each scene were configured 
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to use 250,000 global photons.  On the graph they are the rightmost data points.  Figure 39 shows 

a smooth increase in energy consumption from 50,000 photons to 250,000 photons.  Reading 

Figure 40 from the rightmost data point to the leftmost, the change in image difference is non-

linear.  There are over 1000 units in difference between the 50,000 photon image and the 

100,000 photon image.  Prior to this, the change in image difference is modest (between 0 and 

100).  This suggests that there is a minimum number of photons that can be emitted into the 

scene before one can approach a satisfactory estimate of indirect lighting. 
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Figure 40:  Change in image difference as global photons stored increases. 

 

The modest change in image quality coupled with the noticeable decrease in energy 

consumption suggests that reducing the photon count from 250,000 to 175,000 would yield an 

acceptable image.  This would save roughly 200 Joules during indirect lighting.  If one were 

generating many images, one might accumulate a tidy sum of energy savings.  On the other 

hand, since the savings are small one might choose to simply generate the best possible image. 

 The second variable tested for its impact on direct visualization was gather distance.  

Gather distance is the maximum distance photons can be stored from a point where the indirect 

lighting calculation is being performed.  Any photon further from the gather distance is not 

considered a candidate for the lighting estimate.  All of the tests here used photon maps with 

250,000 stored photons and a gather count of 100 photons. 
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 Figure 41 shows how increasing the gather distance increases the amount of energy 

consumed.  This is intuitive as one is increasing the pool of photons considered for the lighting 

estimate.  Figure 42 shows the change in image difference as gather distance increases.  The 

reference image used a gather distance of 2 units, which is easily identified since it has a 

difference of 0.  The image difference spikes both as one increases or decreases the gather 

distance.  Notice in Figure 42 that as the gather distance increases, the image difference beings to 

plateau.  This is because the maximum number of photons that can be collected (as determined 

by the gather count) is always reached.  Continuing to increase the gather distance would only 

increase the energy costs without increasing image quality.   
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Figure 41:  Change in energy use as gather distance increases. 

 

Practical experience has shown that changing the gather distance does not yield better 

images as much as increasing the photon count or adjusting how lighting is estimated from the 

gathered photons.  In other words, once a gather distance is chosen it should be kept constant.  

However, the lower the gather distance relative to the size of the world, the more energy one will 

save since it will eliminate photons from consideration much faster.   

 The final variable tested for direct visualization was the gather count.  The gather count 

determines how many photons are collected from the photon map for use in an indirect lighting 

estimate.   
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Indirect Lighting using Direct Visualization 
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Figure 42:  Change in image difference as gather distance increases. 

 

Indirect Lighting using Direct Visualization 
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Figure 43: Change in energy use as gather count increases. 

  

The gather count was varied from 50 to 200 by intervals of 50 photons.  Figure 43 shows 

the results of four configurations across two different scenes.  Unlike photon count and gather 
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distance, the energy savings by increasing the gather count is extremely small.  The difference 

between 50 photons and 200 photons is less than 70 Joules.  

 Figure 44 shows how the images differ across the different configurations.  The reference 

images used a gather count of 100.  Much like how there is a minimum number of photons that 

should be stored, Figure 44 demonstrates that there is also a minimum gather count.  There is a 

sizable difference between a gather count of 50 and 100.  However, increasing the gather count 

did not change the image difference by more than 5 units. 
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Figure 44:  Change in image difference as gather count increases. 

 

Since increasing the gather count reduced energy consumption with a low image 

difference, one might be lead to think increasing the gather count is a useful option.  The subtle 

truth is that there is typically an ideal gather count that should be kept consistent.  Notice that the 

difference between a gather count of 150 and 250 photons in Figure 44 are equal.  The reason the 

difference is constant above 150 photons is that all of the photons within the spherical volume of 

space defined by the point of the indirect lighting estimate and the gather distance have been 

collected.  If the gather count was unbounded, in every estimate 150 photons or fewer will be 

gathered.  In simple terms, given a value for both the total number of photons and a gather 

distance, there is some maximum number of photons that can be collected and it makes no sense 
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to set a gather count higher than this maximum.  One should choose a gather count not on how 

much energy one wishes to save, but based on what the gather distance and number of photons 

stored.  

 Finally, it is worth noting that increasing the polygon count of models in a scene has little 

impact on the energy used for indirect lighting. Notice in Figure 45 that for all sizes of the bunny 

model the energy consumed remains constant.  This is because the photon map is a data structure 

decoupled from scene geometry. 
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Figure 45: Impact on high polygon scenes have on indirect lighting with direct visualization. 

 

 One might find it surprising that increasing indirect lighting is cheaper in terms of energy 

when a high-polygon model is present than when it is not.  Energy is also reduced for larger 

forms of the bunny.  This is because when a final gather is calculated, photons are not only 

rejected by their distance from the estimate point, but by the surface normal of the absorbing 

surface.  When a surface normal deviates 30 degrees or more from the photon’s normal it is 

culled just like when it is farther than the gather distance.  Since the high-polygon bunny model 

has many surfaces with many different normals, many photons are eliminated early.  This strict 

culling will decrease the contribution of indirect lighting on high polygon models.  A renderer 

can be configured so that it is less strict thereby increasing the amount of indirect light a model 
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receives.  The resulting energy consumption is likely to be comparable to the energy 

characteristics of the scene without the bunny. 

6.3.2 Final Gathering 

 Final gathering is the most computationally expensive calculation that is implemented in 

the renderer.  The settings changed across the final gathering tests were the number of final 

gather rays, the irradiance cache tolerance, the number of photons used, and the photon spacing 

for precomputed irradiance.   
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Figure 46: A comprehensive graph of tests run using final gathering for indirect lighting. 

 

Figure 46 is a comprehensive graph of how photon mapping settings impact energy 

consumption versus image difference.  It uses a logarithmic scale on the y-axis so that the single 

outlier (the left-most final gather ray test) does not obscure the overall picture. 

Comparing this plot to Figure 38, its direct visualization counterpart, one will notice how 

much less the image difference varies as photon mapping settings are adjusted.  Furthermore, 

many of the tests generated images with differences below 100 suggesting that several tradeoffs 

can be made. 

Using the vertical gridline where energy equals 15,000 J as an intercept, each setting can 

be ranked in terms of what provides the best tradeoff between image quality and energy.  The 
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best tradeoff can be made by adjusting the value of the irradiance cache tolerance as its slope is 

the closest to zero.    This provides significant energy savings per unit image difference.  The 

next best based on Figure 46 is precomputed irradiance.  The third best tradeoff in a distant third 

can be achieved by modifying the number of final gather rays used.  The worst performing 

potential tradeoff is the total global photon count.   

The remaining discussion looks at how precomputed irradiance, image tolerance, and 

final gather rays can be configured to reduce energy use while maintaining a satisfactory image.  

Varying the number of photons stored in the global photon map is not considered here as it has 

the least favorable trend of energy savings per unit image difference.  All the final gathering 

tests, unless otherwise noted, used the specular sphere scene. 
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Figure 47: Energy use as the photon spacing increases for precomputed irradiance. 

 

Figure 47 shows the energy trends of using precomputed irradiance with final gathering.  

Two sets of tests were run that changed the number of photons stored in the global photon map.  

The change in photon spacing is mapped onto the x-axis.  The left-most data points (“None”) do 

not use precomputed irradiance.  The right-most data points precomputed irradiance at every 8
th

 

photon.  There is approximately a 3,000 Joule decrease in energy use from no precomputed 

irradiance to precomputed irradiance at every 8
th

 photon when 250,000 photons are stored.  
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Similarly, there is a 1,500 Joule decrease from no precomputed irradiance to every 8
th

 when 

100,000 photons are stored.   

Energy use is considerably higher when irradiance is precomputed at every photon.  Only 

the single closest photon needs to be found when a photon gather operation is performed when 

irradiance has been precomputed.  Unlike the tests where it’s computed every 4
th

 and every 8
th 

photon, precomputing at every single photon does not reduce the size of the photon map. Figure 

47 shows that searching for a single photon out of 100,000 (or 250,000 as is the case in one of 

the test sets) is more expensive than collecting 100 photons as is done during a normal photon 

gather. 

The energy results for these precomputed irradiance tests may be scene dependent.  Since 

the volume of space within the specular sphere scene is a mostly empty, the distribution of 

photons is uniform.  This means that the density of photons in an area of the scene is consistent 

with any other area in the scene of the same size.  Scenes with more complex geometry or a light 

source obscured by a surface will distribute photons in a non-uniform manner.  In other words, 

the density of photons across a surface will change significantly.  Calculations in regions of 

higher density will consume more energy than those with a lower density.  The extent varied 

densities has on the energy saved using precomputed irradiance was not evaluated. 
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Figure 48: Image difference as the photon spacing increases for precomputed irradiance. 
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The reference image used in these tests was configured to have 250,000 photons in the 

global photon map and did not use precomputed irradiance.  The results of the image 

comparisons are shown in Figure 48.  All images generated where 250,000 photons were stored 

were very close to the reference image, differing by less than 5 units.  The images that stored 

100,000 photons in the global photon map differed from the reference by a constant amount of 

40 units.  The images using a lower number of photons showed more noise across surfaces which 

accounts for the constant difference.  
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Figure 49: A plot of the change in energy consumption as the irradiance cache tolerance increases. 

 

The irradiance cache tolerance is a parameter used to determine whether or not a 

previously computed lighting estimate stored in the cache can be used to interpolate a new 

lighting value.  The higher the tolerance, the more the cached values can be used for 

interpolation reducing the number of expensive final gather calculations.   Figure 49 shows how 

energy use decreases as the tolerance increases.  There is a steep decline between 0.02 and 0.1. 

The trend approaches a horizontal asymptote after the tolerance reaches 0.15. Figure 50 shows 

the gradual increase in image difference as the cache tolerance increases.  The reference image 

had a tolerance equal to 0.02.   These results show that there is a highly favorable tradeoff 
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between image difference and energy savings.  Changing the cache tolerance to 0.1 from 0.02 

saves about 15,000 Joules and the image changes only by 30 units.   
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Figure 50: A plot of the change in image difference as the irradiance cache tolerance increases. 

  

The last setting reviewed that affects final gathering is the number of final gather rays 

used to sample the scene.  The ray count was varied from 16 rays to 256 rays.  The reference 

image used 256 rays.  Figure 51 shows that energy use increases smoothly as the number of 

sample rays are increased.  The energy used by the configuration with 256 rays was four times as 

expensive as a similar configuration with 16 rays.  
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Figure 51:  Energy use as the number of final gather sample rays increase. 
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Figure 52:  Image difference as the number of sample rays increase. 

 

 Image difference does not show as gradual a change as energy use.  Figure 52 shows that 

when the number of sample rays drops below 64, the image difference spikes.  There is a bare 

minimum of sample rays that should be used.  The results in Figure 52 suggest that this 

minimum is between 16 and 64 final gather rays.  The image difference for 64 rays was 80 units.  

If the maximum acceptable image difference is 100, then the number of rays used cannot be 

reduced too much beyond 64 rays. 
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Still, these results show that a promising tradeoff can be made.  Over 6,000 J of energy is 

saved by reducing the number of final gather rays from 256 to 144.  The resulting image is only 

20 units different from the reference image. 

The analysis of the impact high-polygon models have on energy consumption using 

direct visualization is the same for this final gathering method.  Figure 53 demonstrates that a 

change in polygon count has no impact on energy consumption.  The impact of polygon 

distribution on energy use is insignificant.  However, it is hard to tell how insignificant as the 

total energy consumed by final gathering is so high.   
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Figure 53:  Impact high poly models have on indirect lighting using final gathering. 

6.4 Image Resolution 

Exploring how photon mapping settings change the energy characteristics seems logical.  

It is also useful to determine how well the tradeoffs discussed earlier will scale.  Image 

resolution varies widely across the many mobile devices used by consumers.  Some screens, like 

those for cell phones, are as small as 128x160 pixels.  The PlayStation Portable game device has 

a larger resolution of 480x272 pixels.  Laptop screens can have a resolution that rivals some 

desktop displays at 1440x900 pixels and larger. For these tests, three resolutions (128x128, 

256x256, and 512x512) were chosen.  Resolutions larger than 512x512 were not used as some 

configurations would likely run the battery down before completing the image. 
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Figure 54: The total energy cost of four different configurations at three different resolutions. 

 

The total energy used by four different configurations of the renderer at three different 

resolutions is shown in Figure 54.  As one would expect, more energy is required to render 

images at higher resolutions.  It is also expected that configurations with a lower tolerance 

consume more energy than those with a larger tolerance.  Beyond those points, looking at the 

total energy used and the image difference alone does not yield any new information.  Instead, 

comparisons made using energy consumption per-pixel and image difference per-pixel were 

found to be more informative. Energy use per-pixel is calculated by dividing the total energy 

used to render the image by the number of pixels in the image.  Similarly, the image difference 

per-pixel is calculated by dividing the image difference from ltdiff and dividing it by the number 

of pixels in the image.  

 The first set of tests within the resolution batch used four different configurations of the 

direct visualization method. Figure 55 shows the energy used per-pixel from these tests.  As one 

would suspect, increasing the number of photons stored increases the energy use.  The more 

interesting point featured in Figure 55 is that while the energy cost per pixel at each resolution is 

the same, the lower resolutions have a higher cost per pixel.  This is a result of the overhead of 

creating the photon map.  Photon map creation takes a constant amount of time regardless of the 
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resolution of the image.  Figure 56 shows that the difference per-pixel across different 

resolutions is not significant.  This means that as resolutions change, the image difference scales 

as well.   
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Figure 55: Energy used per-pixel for four different direct visualization configurations and three different resolutions. 
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Figure 56:  Image difference per-pixel for four different  

direct visualization configurations and three different resolutions. 

 

It should be noted that before dividing the image difference values by the pixel count, the 

image difference values for images at 512x512 were several orders of magnitude higher than 
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128x128.  For instance, the original image difference of the tests at 128x128 ranged between 20 

and 350 units.  The image difference for the tests at 512x512 ranged between 400 and 6500.  The 

results presented in the previous section were all rendered using a 256x256 resolution.  For those 

tests, an image difference below 100 was acceptable.  Since image difference scales based on 

resolution, configurations yielding an acceptable image difference at a low resolution could 

render an unacceptable image at a higher resolution if the maximum image difference allowed 

was 100.  A possible solution to this issue is to scale the acceptable image difference with the 

resolution, rather than use a constant. On the other hand, one might prefer to change the 

configuration to produce a higher quality image since artifacts are more noticeable at higher 

resolutions.   

 Several tests were also run using final gathering at different resolutions.  The results from 

these tests are shown in Figure 57 and Figure 58.  The conclusions drawn from the direct 

visualization tests remain the same for the final gather tests.  The only minor difference is that 

the energy per-pixel deviates more across resolutions than in direct visualization.   
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Figure 57: Energy used per-pixel for four different final gathering configurations across three different resolutions. 
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Figure 58:  Image difference per-pixel for four different  

final gathering configurations and three different resolutions. 
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6.5 Results Summary 

 The results presented earlier in this section are condensed in Table 3 and Table 4.  Both 

tables rate each setting by the impact they have on energy use and image quality.  A low rating 

for energy impact implies that if the setting is varied significantly, the impact on energy use is 

minor.  A high rating is the opposite where a small change in the setting has a great impact on 

energy use.  A medium rating suggests that the effect on energy use is proportional to the degree 

the setting is changed.   

 

Setting Energy Impact Image Sensitivity 

Photon Count Medium Medium 

Gather Count Low High 

Gather Distance High High 

Table 3: A quick summary of the energy impact and sensitivity of settings for direct visualization. 

 
Setting Energy Impact Image Sensitivity 

Precomputed Irradiance High Low 

Irradiance Cache Tolerance High Low 

Sample Rays per Final Gather Medium Medium 

Photon Count Low Medium 

Table 4: A quick summary of the energy impact and sensitivity of settings for final gathering. 

 

 Image sensitivity, also rated low to high, is based on the extent changing a setting had on 

the final image’s deviation from a reference image as measured by ltdiff.  Low sensitivity means 

that significant changes to a setting had little impact on image quality.  For instance, changing 

the irradiance cache tolerance had a low sensitivity because images where tolerance was varied 

consistently differed less than 100 units from the reference image.  A high sensitivity means that 

minor variations of a setting impacted the final image greatly.  The gather count has a high 

sensitivity because tests where it was changed slightly reported over 300 units difference.  

Settings with a high energy impact and low image sensitivity are ideal for reducing energy 

consumption while maintaining an acceptable image quality.  Note that photon count is rated 

differently in Table 4 than it is in Table 3 because photon count has a larger impact on total 

energy used for direct visualization than for final gathering. 
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Table 3 shows that an ideal tradeoff does not exist when using direct visualization for 

indirect lighting.  Photon count is close with a medium energy impact and medium image 

sensitivity.  However, as it is explained in 6.3.1, users should focus on generating the best 

possible image when using direct visualization. 

Table 4 shows that precomputed irradiance and the irradiance cache tolerance were two 

settings that significantly reduced energy use without adversely diminishing image quality.  The 

number of sample rays for a final gather was a more sensitive setting but it still offers a 

reasonable tradeoff. 
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7 Conclusions 

The goal of this thesis was to establish reasonable tradeoffs between image quality and 

energy consumption for a photon-mapping based renderer.  Most profiled aspects of the renderer 

did not yield such a tradeoff for two reasons: they were sensitive to changes in the configuration 

or accounted for such a small percentage of total energy use that modifications would have no 

impact.  Those aspects that did yield a tradeoff were significant since they were the computations 

that required the most energy. 

The most effective gains in energy reduction can be made when final gathering is used to 

render indirect illumination.  Increasing the irradiance cache tolerance improves energy 

efficiency much faster while maintaining a higher degree of image quality than any other setting.   

Reducing the number of sample rays per final gather calculation also showed significantly 

reduced energy consumption while maintaining a high image quality. 

Results have also shown that indirect lighting using direct visualization is very sensitive 

to deviations from the ideal configuration.  Slightly reducing the total photon count in the global 

photon map will generate an image of a lesser quality faster than it would had final gathering 

been used.  It is recommended that when using direct visualization the gather count and gather 

distance remain constant.  Once a configuration yielding a high quality image is determined, the 

user can reduce the total number of photons slightly to save some energy.    

It was noted that higher resolutions made artifacts between images easier to detect as 

evidenced by larger differences between high resolution images than low resolution images.  

However, increasing image resolution was shown to have little to no impact on per-pixel energy 

consumption and per-pixel image difference. This effect may be offset if the rendering 

configuration is set to produce higher quality images than lower resolution counterparts.  It is 

safe to assume that mobile devices with higher resolution displays will also have more 

processing power available and can therefore generate higher quality images.  

There are several optimizations that could be included in the renderer tested that would 

further increase energy efficiency without necessarily degrading image quality.  Some of these 

include incorporating irradiance gradients, importance sampling, and user-specified hints for the 

renderer describing the location of caustic-generating objects in a scene.  A comprehensive 

energy- efficient photon mapping renderer would be required to implement these features. 
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8 Future Work 

Additional tradeoffs are likely to be found in more advanced areas of photon-mapping based 

rendering.  Quasi-Monte Carlo sampling may help reduce the variance between images for direct 

visualization.  Effects such as subsurface scattering and participating media have not been 

evaluated in terms of their energy efficiency.   

Attention should be paid to direct lighting in an effort to discover other tradeoffs.  One area 

of investigation would be how shadow rays and shadow photons can be better combined to 

improve energy efficiency.    

Finally, research could be done on how well combining several tradeoffs impacts image 

quality.  The results of such a study would summarize the proper way to minimize image 

degradation while maximizing energy efficiency.  
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