
Designing Network Security Tools for Home Users

by

John Faria, Yonghua Wang, and Michael Lai

A Major Qualifying Project (MQP)

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

in

Computer Science

by

December 2021

APPROVED:

Professor Lorenzo De Carli, MQP Advisor

Acknowledgements

This MQP research project is under supervision of professor Lorenzo De Carli.

We would especially thank him for bringing the research topic and advising the

proceeding of the project.

i

Table 1: Abbreviations

C2 Command-and-Control
CTI Cyber Threat Intelligence
DoS Denial of Service
FN False Negative
FP False Positive

GUI Graphical User Interface
IDS Intrusion Detection System
IoC Indicators of Compromise
IoT Internet of Things
IP Internet Protocol
ISP Internet Service Providers
LAN Local Area Network
ML Machine Learning

PCAP Packet Capture

ii

Contents

1 Introduction 2

1.1 Contributions . 3

2 Background 5

2.1 Home Network . 5

2.2 Products in the Market for Home Security 6

2.3 Security Concerns with IoT Devices 7

2.4 Understand Measure for Intrusion Detection 8

2.5 Interviews to Understand Normal Home Network User’s Concern

With Home Security . 10

3 Methodology 13

3.1 Simulating Traffic . 13

3.2 Gathering Additional Network Traffic from IoT Devices 16

3.3 Kitsune and Slips . 17

3.4 SNORT . 21

3.5 IDS Alert Generation With Fed Traffic 24

3.6 Configuration of Slips . 26

3.7 Reverse Engineering to Understand Slips Deeper 29

3.8 Understand Typical Process of Intrusion of Consequences 33

iii

3.9 Other Examples of Visualization Systems 36

3.10 Principles of Designing Security-Awareness System 38

3.11 Choice of Design Platform . 39

4 Results and Limitations 41

4.1 Interpreting Results . 41

4.2 Effectiveness of Warning and Awareness Enforcement 43

4.3 Visualization on Dashboard . 46

4.3.1 Landing Page . 48

4.3.2 Statistics Page . 49

4.3.3 Devices Page . 50

4.3.4 Tips Page . 51

4.4 Use of IDS and Dashboard . 52

4.5 Limitations . 53

5 Future Work 55

5.1 Home Network Threat Intelligence 55

5.2 Live Detections . 56

5.3 More Research For SLIPS and Similar AI Systems 56

5.4 Improvements to Signature Detections 57

5.5 Survey Non-Technical Users on Preferred Dashboard and Understand-

ing . 58

6 Conclusion 60

7 Appendix 63

iv

List of Figures

2.1 Workflow of a network-based IDS [6] 8

3.1 High level view of our approaches . 13

3.2 Diagram of virtualized network lab environment 14

3.3 Individual module’s functionality of Slips [33] 19

3.4 Letter assignment, behavioral models 20

3.5 Slips’ high-level work-flow . 21

3.6 An example of two snort rules, one that’s triggered by an outbound

tcp request to a certain IP and one that’s triggered by an inbound

request . 22

3.7 An example of Snort’s alert . 22

3.8 Live viewing of alert from Slips . 24

3.9 Kalispo, the GUI in Slips to visualize outputs 25

3.10 Example of the alerts from Slips . 25

3.11 Configuring Slips to training mode 27

3.12 Specifying samples’ labels as normal 27

3.13 Real-time output of Slips . 28

3.14 Human security cognition and augmentation workflow [37] 34

3.15 The landing page of the maritime intrusion monitoring system [38] . . 37

3.16 Incident UI widget . 37

v

4.1 An example of an alert of Slips . 42

4.2 An example of evidence of Slips . 42

4.3 Visualizing post-processed JSON in browser 42

4.4 Full E-AM model (HU stands for home users) 45

4.5 Landing page of the dashboard . 48

4.6 Instructions and interpretations after clicking on the button 49

4.7 Statistics page . 50

4.8 Devices page . 50

4.9 Tips page . 51

4.10 Stages of hacking . 52

7.1 Time window length available to adjust in Slips’ configuration file . . 65

7.2 Detecting direction . 65

7.3 Detection threshold . 65

7.4 Other adjustable threshold . 65

vi

List of Tables

1 Abbreviations . ii

3.2 A brief summary of datasets we found 17

3.3 Threat level and confidence associated with each type of detection . . 32

vii

Abstract

Cyberattacks are becoming more prevalent and threatening in our modern dig-

ital world but many home users, without large budgets for sophisticated security

tools or skilled networks analysts, are left defenseless. Home networks are relatively

small but still chaotic - with unrestricted use policies, various types of user end-

points (including vulnerable IoT devices), and new programs demanding more from

home networks every day. The goal of our project is to research common attacks

threatening home users and to prototype a system capable of helping users keep

their home networks secure.

The main threats focused on in our research were phishing webpages, endpoint

computers being compromised with malware, and IoT device take-over. Virtualized

lab environments were created using Docker for the purposes of generating “mali-

cious” network traffic in a controlled environment. The captured traffic included

various stages of connecting to phishing webpages as well as different communica-

tions and attacks carried out by a command-and-control (C2) server.

We designed and prototyped an intrusion detection system (IDS) to find threats

as they begin compromising a network and to efficiently communicate the detections

to a non-technical home user so that they can secure their network. The IDS makes

use of both malicious signature matching - using SNORT - as well as a machine

learning (ML) for detecting attacks. The various detections are processed and dis-

played on a user-friendly dashboard. The IDS was designed to be host-centric, so

the detections are related to potential compromise and mis-use of host devices. The

dashboard also includes explanations of technical concepts and suggested actions for

how users can secure their home network from detected threats.

1

Chapter 1

Introduction

Home users face cyber-attacks that range from phishing campaigns to IoT de-

vice compromise and even malware infections. Large organizations are also attacked

and employ teams of information security professionals to monitor network threats

and keep them safe - a solution that is not applicable to home users who are re-

sponsible for their own network security. Several home intrusion detection systems

(IDSs) have been designed to provide home users with a network layer of defense

[19, 20, 21]. However, these IDSs were adapted from those created for information

security professionals, and yet home networks are administered by inexperienced

users [22]. Home users who attempt to implement these IDSs into their network

defenses are often confused by the generated warnings, get overwhelmed with alert-

fatigue [23], or do not understand how the home IDS protects them [24, 27].

Currently, approaches have been proposed to bridge the gap between home net-

work stakeholders and solutions to potential security issues [44, 45]. Those tools

aimed to remove the burden from users to regulate home networks and take respon-

sibility for it. Although those achievements have surely enhanced home network

security from different aspects and through different ways, users are not always

2

consulted or considered during the decision making process, which leaves some lim-

itations and cannot solve the problem completely. An interface between those algo-

rithms and end users matters but lacks attention at this point. The first reason that

the interface matters is the high false positive rate of an IDS [25]. Without a high

enough true positive rate, leaving all decision making to the IDS would harm the

performance and usability of the home network. This situation also concerns alert

fatigue. Alert fatigue occurs when an individual is exposed to an excessive number

of alerts which finally leads to desensitization [1]. Several factors contribute to alert

fatigue, including a complex IT environment, lack of contextual information, and

redundancy. Alert fatigue can result in people underestimating the emergence and

significance of alerts or even totally ignore them. In the worst scenario, costs in-

crease greatly to maintain operation of security while integrity, confidentiality, and

availability is not guaranteed at all. Secondly, the automated process of intrusion

detect and prevention, the black box way of tackling the problem, does not truly

lower users’ concern but even aggravates anxiety when breaches and anomaly oc-

cur and no context information or remediation are provided. Finally, beyond the

previous two reasons, as stakeholders of the home network, users deserve the rights

to have accessibility to security protection behind the scene and react to anomalies

with their choice of consideration.

1.1 Contributions

Our project investigated technology which makes the output of a home IDS

more accessible and understandable to its users. We deployed both signature-based

IDS and anomaly detectors and produced outputs from existing IoT traffic for anal-

ysis. Based on contents included in output, we designed and implemented an al-

3

gorithm to reduce duplication of alert and aggregate evidence. We researched the

specific threats to home users as well as how details on the incident and recommen-

dations for remediation can be communicated to the user. We explored how the

user will be given non-technical details on the events and what the steps they can

take to resolve the incident. Finally, we engineered user-friendly dashboards that

can provide information on the overall health of their network or help users better

understand the threat-levels of specific alerts. The dashboards and presented alerts

are intended to explain to the user why the incident is dangerous and potential

consequences of it.

4

Chapter 2

Background

2.1 Home Network

A user’s home network originally served to connect a user’s computer to web-

sites that they are interested in or important digital communications such as email.

As technology has evolved and digital devices have become a more integral part of

modern society, the usage of and strain on home networks has increased. Modern

homes have several Internet-connected devices per user including smart phones, per-

sonal computers, and shared IoT devices. The users’ personal devices are constantly

connected to the Internet - getting updates about notifications or being used for var-

ious forms of web browsing. Devices are also commonly used for various forms of

remote-work, content streaming, and online gaming. New Internet of Things (IoT)

devices including Internet-connected cameras and smart home technologies are fully-

automated, usually insecure, computers that significantly adds to the complexity.

The Mirai Botnet, for example, is a malicious network of millions of compromised

computers (bots) many of which are vulnerable or misconfigured IoT devices [26].

To be more specific, Mirai scans for and gains access and control of IoT devices that

5

host a stripped version of Linux system and do not change default username and

password.

The drastically increased usage of home networks by so many new devices and

programs has increased the potential attack surface against home networks. Com-

plexities in web browsing, management of multiple different devices, and simply

users accessing technology more has increased their likelihood of falling victim and

increased the potential reward for attackers. Users who do not understand their

technology are more likely to not notice a potential indicator of compromise or to

not know how to secure their devices. It is important to empower home users so

that they can have the tools needed to manage and protect their home network.

2.2 Products in the Market for Home Security

There are few existing home network security products and many fail to effi-

ciently communicate with a user and protect the complexities of a home network.

Businesses have been dealing with multifaceted internal networks for decades and by

utilizing highly technical workers, information security procedures, and developed

security tools, businesses have made great improvements towards increased orga-

nizational cyber-security. Home networks can be significantly more chaotic than a

businesses’ network due to the lack of policies regarding what users can and should

run on the network. Attempting to apply a professional business intrusion detection

system (IDS) to a home network will result in many false positives due to benign

unrestricted network usage. The large amount of false positives only increase user

anxiety and waste time without adding to their home network’s security. Addition-

ally, home users are not as technical as a network security analyst and can neither

configure the detection tools to their network nor manage all of the false positives

6

they are alerted to.

2.3 Security Concerns with IoT Devices

Although there are diverse IoT products which vary from size, functionality,

and prices, there exist similarities at hardware and software level, which contribute

to security challenges faced by IoT devices [2]. Typical hardware components of an

IoT device include logic chips, memory, flash storage, network module, and serial

debug interface. As for software, an IoT device has a bootloader, which initializes

the hardware device and loads the firmware to the boot device, and firmware which

includes operating systems, filesystem, and service programs.

IoT devices not only suffer from traditional cybersecurity issues, but also bring

new attack surfaces due to their distinct structure. Vulnerabilities on the software

layer are multifaceted. First, operating systems are tailored to satisfy devices with

different capabilities and energy supply. Traditional buffer-overflow problems with

computers also happen to IoT devices. Second, lightweight local storage solutions

are always used for IoT devices, which lead to the consequence that many sensitive

information are stored as plain text. Third, because of the lack of standards in

the IoT industry, IoT manufacturer’s products contain customized codes that are

unprofessional and unsafe. There have been several cases of backdoors, hardcoded

passwords, and several other issues [3]. Fourth, for ease of regulation and use, IoT

devices are configured to have weak authentication. Some might even not require

a password to login to access the device. Such devices can be easily found by IoT

search engines such as Shodan [4]. Besides software, protocols used to communicate

for IoT devices also reveal a certain level of risk. For devices that use HTTP services,

they are potentially vulnerable to SQL injection, Cross-site Scripting (XSS), etc.

7

Furthermore, weak encryption algorithms are used to save energy [28] or there is

no encryption at all for some cheap IoT devices. At worst cases, the password is

transmitted in plain text, which can be easily intercepted and wiretapped.

2.4 Understand Measure for Intrusion Detection

An intrusion detection system (IDS) is a program that scans network traffic

for known dangers as well as suspicious or malicious activities [5]. When the IDS

identifies any security concerns or threats, records are documented and notifications

are pushed to IT and security professionals for post analysis.

Figure 2.1: Workflow of a network-based IDS [6]

Traditionally IDS works in this way: it searches for signatures of known attack

types or detects behavior that deviates from a set of rules. This type of IDS include

Snort, Bro, and Suricata, etc. They require a database of predefined rules to identify

potential malicious intrusions. This type of IDS works well if technical experts can

define the right amount of rules to identify known attacks but this becomes less

useful with zero-day attacks. In a word, signature-based IDS is good at identifying

8

existing and known attacks but underperforms at detecting attacks whose signature

the database never documents.

The other way is anomaly detection. This category of IDS always employs and

trains statistical models or neural networks to “understand” what an malicious

activity might look like. After appropriate feature extraction and feeding the model

with a large amount of traffic, the model is able to distinguish benign and malicious

ones. Though promising, such a method is not fully reliable due to false positive

rate and training cost [7]. As aforementioned heterogeneity of IoT devices, there

are always new ways of attack toward IoT devices which may contain new features

which are ignored by the model. Another concern is the training cost of the model.

The cost involves two aspects: 1. Data gathering, 2. Computational power for

training. The first has to do with privacy concerns. It is inevitable that normal

home network traffic can contain sensitive information such as browsing history

records. As a result, researchers might have to set up their own testing testbed

and simulate traffic themselves [7]. The second depends on the layer of the neural

network [8]. This is impossible if we try to deploy the model at a network gateway

or router which has a very limited amount of storage and data processing capability.

Intrusion detection systems will alert a network analyst to activity that is non-

standard and appears to be indicative of harm. Some potential detections could

include large amounts of data being sent to an unfamiliar server, an endpoint device

conducting internal network scans, or a user accessing an IP address which has been

known to host malicious content [41, 42]. All of these detections could be evidence

indicating malicious activity, or they could indicate benign network traffic indicative

of a user at home. For example, a new process sending data to an unfamiliar

server could indicate a malicious connection to a C2 server or a new benign service

being implemented by a home user. It takes someone who can understand the

9

alerts to determine if a detection is legitimate. IDS technologies are improving

to become more accurate - largely through combinations of signature detections

and machine learning - but network monitoring systems are not capable of reliably

differentiating between what is and what is not safe for a home network. It will

be important for a home user to understand the alerts communicated from their

security technology as much as possible and that technology itself should minimize

false positives while maximizing communications with the home user. Home users

need to be empowered with the knowledge of what has been detected and which

of their devices are involved. Details such as these can be the difference between a

user believing their data is being stolen and not knowing how to respond, versus a

user recognizing that the large amounts of data being sent to an unfamiliar server is

just from them playing a game online. Advice on how a user should respond should

also be provided - including how they can get more information on if a compromise

has occurred and what steps they can take to secure their network.

2.5 Interviews to Understand Normal Home Net-

work User’s Concern With Home Security

The goal of our project is to make network security accessible to home users.

Hence, it is essential to involve stakeholders during the design process in order to

thoroughly understand the crux of the problem, i.e., what contributes to obscurity

of home security issues and how to circumvent it. We conducted a semi-structured

interview to gather relevant viewpoints from three other WPI students toward IoT

network security and their expectations regarding the visualization dashboard. The

reason we took semi-structured interviews is that the interviewees would be more

familiar with the background and necessity of our project after answering our ques-

10

tions and could further provide suggestions from the angle of a normal home net-

work user. It is also worth mentioning that the three students are majoring in RBE

(robotics engineering), CS (computer science), and IMGD (interactive media and

game development), respectively. Though our interviewees all have some technical

background, none of them has significant knowledge regarding cyber security. The

following questions were asked first during the interview:

1. Do you have any IoT devices?

2. Do you consider convenience over security?

3. Do you know any potential security problems related to IoT?

Surprisingly, none of our interviewees responded that they owned any IoT de-

vices (excluding devices like Apple watches). With that, we could then expect that

neither of them perceives any security issues pertaining to IoT. What impressed us

is the turnaround of attitude for the trade-offs between convenience and security.

Originally, every interviewee inclined that convenience is more important because

one of the reasons that IoT is popular is that IoT makes life easier. After we intro-

duced some scenarios of breaches however, such as your smart curtain opening and

closing by itself and a smart bulb turning itself on and off suddenly, interviewees no

longer believed that convenience matters the most. We concluded that users would

pay much more attention to security issues if they perceived the consequences of an

attack.

Similar research has been done to bridge IoT consumers with IoT security and

privacy issues. The research team makes an effort improving standardized labels

on IoT products to inform consumers about privacy [9]. The issue is that current

labels focus mainly on privacy and do not take security into account enough. After

in-depth and semi-structured interviews, they discovered that:

11

1. Customers have incorrect knowledge about privacy and security.

2. Customers seldom considered security issues before purchasing.

The first negatively impacted customer’s ability to measure the risks of using IoT

devices and make the right judgment and decision. Pre-purchasing considerations

include curiosity, health/fitness, price/convenience, reliability, and privacy, ranking

from highest to lowest. Nevertheless, the second is no longer held after purchasing.

It has been found that customers have no idea where to get informed about privacy

and security knowledge. This coincided with our conclusion that it does matter to

provide sufficient and user-friendly security information.

12

Chapter 3

Methodology

In this chapter, we discuss our entire process to approach the explainability of

security tools step by step. In the end, the dashboard incorporated all the effort we

made and presented a way of visualizing the monitoring system and helping home

network users grasp their network situation.

Figure 3.1: High level view of our approaches

3.1 Simulating Traffic

In order to test the effectiveness of the intrusion detection system, the team

needed experimental “malicious” network traffic that was fully understood and could

be modified as necessary. The two forms of malicious traffic that was generated

are command-and-control (C2) communications as well as a phishing site. The

13

malicious test servers and the victim machine were all created in Docker [29] and a

packet capture was run on the local host system. Using the experimental C2 server

and phishing site, a series of tests were run to capture network traffic that would

be generated from such malicious communications. The packet captures were later

studied and used to create and test the intrusion detection system.

Figure 3.2: Diagram of virtualized network lab environment

The Caldera automated adversary emulation platform by MITRE [11] was used

to create a C2 server for testing purposes. Caldera is a well supported C2 framework

and the adversary actions that are automated by Caldera are already mapped to

the ATT&CK Matrix - a professional layout describing parts of a cyber attack [12].

The Caldera framework also includes a Python payload, named Ragdoll Agent,

which is written to communicate with the C2. Caldera automates the simulation

14

of various adversaries as they attack a network through a series of commands from

the C2 server. The attacks mimicked in the team’s experiments include the Ragdoll

payload being downloaded and installed, aggressive internal network scanning from

the infected computer, the Ragdoll Agent continuously querying the server for new

commands, and data being exfiltrated from the infected computer. All of these

malicious actions were run in the Docker test environment and individual packet

captures were generated for each stage.

To emulate the threat of a user visiting malicious webpages, a fake phishing

lab environment was set up to capture different parts of network traffic relating

to dangerous web browsing. A test phishing web server was created to mimic a

Facebook login page [43]. The web server was hosted on a local Docker container

running Apache. Artifacts on the web page included media outside of the original

webpage - which generated additional HTTP requests. The test computer’s local

DNS cache was also configured to include a record for fakebook.phish which resolved

to the local docker container. Finally, after uploading the credentials to the web

server via an HTTP Post request, there is a redirection to the real Facebook website.

To generate different aspects of web browsing traffic in packet captures, the website

was accessed via basic web clients like cURL, fully-functional web browsers, and

simple DNS lookups.

To avoid poisoning their results with the team’s own biases on malicious network

traffic, the team also gathered network traffic generated from communications with

real attacker infrastructure. One such network packet capture was from a real Face-

book phishing page which inspired fakebook.phish. Several other example packet

captures of command-and-control network traffic came from Brad Duncan and his

blog on analyzing C2 communications [13].

To help test and train the team’s IDS prototype, packet captures of benign net-

15

work traffic were also collected. By testing the prototype against the benign traffic,

the team could work towards minimizing false positive alerts on home networks.

Experimental benign network traffic was generated by running a packet capture on

a virtual machine as team members browsed the web, played computer games, and

transferred files.

3.2 Gathering Additional Network Traffic from

IoT Devices

As stated earlier, in addition to our simulated lab network captures, our team

also gathered additional network traffic from outside sources. Some of these were

sourced from similar lab environments, such as network traffic used in a research

paper regarding Kitsune (an IDS utilizing machine learning) [7]. For other sources

of network traffic, our team searched online and not only did we discover phishing

and C2 data from Malware-Traffic-Analysis, but we also found IoT network traf-

fic datasets such as IoT-23 [30] from Avast and the Bot-IoT dataset from UNSW

Canberra [31]. Both of these datasets primarily include network traffic relating to

botnet malware as well as some benign network traffic. These scenarios that the

datasets provide are from realistic, simulated environments, where the researchers

would build a network using real hardware and would attack that network with

malware. For example, the IoT-23 dataset uses an Amazon Echo and Philips smart

LED lamp for their devices. The scenarios provided from these captures helped to

increase the sample size of network traffic our team would work with, as well as

provide some real scenarios for our IDS to analyze.

16

Name Size Attack Vector Details (if any)

Aposemat IoT-23
21 GB (over 100
after uncom-
pressed)

20 malware cap-
tures executed in
IoT devices, and
3 captures for be-
nign IoT devices
traffic

A dataset con-
tains malicious
and benign IoT
network traffic
that has been
tagged.

Kitsune Surveil-
lance Network
Intrusion Datasets

Around 10 GB

ARP MitM, SSDP
Flood, OS Scan,
Active Wiretap,
SYN Flooding,
Fuzzing,Video
Injection, Renego-
tiation

BoT-IoT Dataset 69.3 GB

DDoS, DoS, OS
and Service Scan,
Keylogging and
Data exfiltration
attacks

Built in UNSW
Canberra’s Cyber
Range Lab by con-
structing a realis-
tic network envi-
ronment

Table 3.2: A brief summary of datasets we found

3.3 Kitsune and Slips

As the scope of our project does not include designing and building new tools

or algorithms to detect intrusion, we want to utilize existing tools to process traffic

in order to generate results for further analysis. In addition to using a traditional

signature-based IDS, we also want to include an AI-based IDS to have a comparison.

The first IDS we considered using is Kitsune [7]. This is an IDS that embraces

unsupervised learning and neural networks. What makes Kitsune different from

other machine-learning based IDS is that Kitsune tries to address the problem of

unsupervised learning and online processing. Typically, data used to train the model

must be stored locally for future usage. This is not feasible in home situations be-

cause of the increase in overhead and cost to store everyday traffic produced by

17

the home network. After that, the second problem pertains to data cleaning and

labeling. In an industry setting, this is achieved by IT specialists who know the

network well, but in a home setting, this proves to be more challenging as home

users would need to familiarize themselves with the technology and terminology.

Also, it is increasingly expensive to identify and label attacks in real life as types of

attack increase and evolve, becoming more sophisticated. The last problem is with

computation power required by ANN, which naturally contradicts the resources we

can expect at a gateway or home. To solve these problems, Kitsune gets rid of an

expert’s involvement to label traffic malicious or benign by leveraging unsupervised

learning techniques. It also has an ensemble of small neural networks which substi-

tute the complex ANN, making the IDS be able to process packets online and drop

the packet immediately after training or executing.

Kitsune is a powerful IDS, however, the output of Kitsune was not so useful

for our project. Given a packet, Kitsune will predict how similar this packet is to

what Kitsune has seen based on the concept learnt by the model after training. For

example, if the model is trained to understand the pattern of normal traffic, then

given a malicious packet its reconstruction RMSE (root mean square error) will be

relatively high compared to a normal packet. The crux then is that this RMSE

is not useful for explainability of intrusion, which gives no other useful context

information. Therefore, we finally decided not to use Kitsune for detection.

Slips is another IDS we found [32]. Slips is a behavior-based intrusion detec-

tion/prevention system that leverages both machine learning and signature to iden-

tify malicious behaviors in the network traffic. It can read live traffic live and also

network captures, such as pcap files, Suricata, Zeek/Bro, and Argus flows. After

running Slips against some sample pcap files, it outputs evidence and highlights

alerts to which analysts should pay more attention.

18

Slips has different modules which are respectively designed and programmed to

detect one type of malicious traffic. A brief summary of each module’s capability

can be found in the table below.

Figure 3.3: Individual module’s functionality of Slips [33]

The two modules that make Slips an anomaly detector are rnn-cc-detection and

flowmldetection, which can be found in the table above. The researchers who de-

veloped Slips have trained a recurrent neural network model with their own data

based on behavioral letters, in which the details of these letters are listed below.

This comes from the source code of Slips.

19

Figure 3.4: Letter assignment, behavioral models

We have looked at every detail of documentation available but there is no more

relevant information introducing the model such as exact datasets used to train

the model. The flowmldetection module uses by default the SGDClassifier with a

linear SVM (support vector machine), according to the official guide suggests [34].

The advantage of using a SVM is that the model can be trained synchronously and

extended with new data, which allows us to train Slips later to reduce false positives

from benign traffic.

Zeek [21], an open source network security monitoring tool, is placed inside Slips

to generate flow. Slips further classifies traffic by the packet’s IP address, and assigns

each IP address a unique profile ID. Traffic belonging to the same profile is further

grouped by time window size, i.e., the period during which traffic happened. After

processing, flows are fed into each module to find any suspicious activity. Detections

are done for each time interval. In other words, Slips focus on the general behavior

of the traffic rather than individual packets. If any potential malicious behavior

is found, contextual information about that activity, such as IP and start time, is

documented in JSON and log files in an output folder.

20

Figure 3.5: Slips’ high-level work-flow

For detailed commands to save outputs inside the container, they can be found

in the appendix.

3.4 SNORT

For our signature-based IDS, we chose Snort [19], a rule-based IDS/IPS which

allows us to use a set of defined rules and match them towards our malicious packets

to display the alerts we want. Snort can be used to check live traffic or analyze packet

captures.

Our setup of Snort 2.9 was run on the Windows operating system, with a mod-

ified config file in order to work on the operating system (while an executable file

was developed for Windows, Snort was developed mainly for Linux, and as such, the

config file assumed a Unix file system). In order to troubleshoot any potential issues

that would occur, an instance of Snort 3.0 on a Linux system was used. This was

primarily just in case the configuration for Windows didn’t work, in which we could

easily switch to the Linux version to figure out if it was an OS issue or a configu-

ration issue. The difference in version numbers was only due to the fact that Snort

21

3.0 wasn’t available on Windows. This difference didn’t have a significant change

on how Snort operated, but there were slight changes in the rule syntax. Due to

that, we had to create parallel rules depending on the version and make comments

in the rule files letting us know which rules to use.

After we completed the Snort setup, we were able to start writing custom rules

to generate alerts. These alerts would correspond to malicious packets found in our

lab captures. The first step was to manually look for these malicious packets and

figure out any identifiable attributes that could indicate malicious activity. This

could include the protocol type, IP address, port number, or the content of the

packet itself. Once we identified these attributes, we created rules that mapped

those attributes. This way, every time a rule would come across a packet that

matches those attributes, it would produce an alert with a message of our choice.

Figure 3.6: An example of two snort rules, one that’s triggered by an outbound tcp
request to a certain IP and one that’s triggered by an inbound request

Other than the message we can customize for when the alert is triggered, the

alert contains some additional information we can display to the user. This includes

the attributes used in the SNORT rule (the IP, port number, protocol type), as well

as the time and date the packet was sent.

Figure 3.7: An example of Snort’s alert

The custom message in the Snort alert contained three parts. The last two parts

details the type of attack that was detected, for example, one specific Snort rule

22

would have been designed to capture a phishing attack, based on the DNS response

for our fakebook.phish site. The first part is a score we assign to the severity of the

attack the packet is capturing. This score is from a scale of 0-100, where:

• (0-19): Probably nothing, best to check anyway

• (20-39): Possibly something, please check

• (40-59): Attack detected, nothing serious yet, determine action immediately

• (60-79): Attack in progress, pursue action now

• (80-100): Critical, pursue action now to mitigate or stop attack

The idea of the score was to closely match the threat level that Slips was out-

putting. Our team ranked the potential danger and relative certainty of each Snort

rule based on our background research on that specific attack vector.

In order to run Snort on a packet capture, we would run the Snort executable

in the command line with this command:

./snort -r <packet capture location> -c <snort config location> -k none

The first two parameters are self explanatory; ¡packet capture location¿ refers to

the packet capture location and ¡snort config location¿ is the Snort config file. This

config file had to be given in order to specify which rule files you wanted to use as

well as where we wanted Snort to place its output logs. -k none is an interesting

option, and we discovered the use of this option thanks to our own lab captures.

We discovered that some of our lab captures had bad checksum data, and while

we could verify the packet integrity through Wireshark, Snort couldn’t distinguish

this on its own, and refused to analyze the packet. In order to bypass this, the -k

option specifies the checksum mode, so none will cause Snort to turn off its checksum

verification system.

23

3.5 IDS Alert Generation With Fed Traffic

Slips depends on several dependencies and libraries to function properly, in-

cluding Python, Redis, NodeJS, and Zeek and each has its own version requirement.

Considering Slips’ error-prone and time consuming installation process, we decide

to run Slips inside a docker container. To download the image, we run the following

command:

Dockek pull stratosphereips/slips:latest

After installation, we executed the container with:

docker run -it --rm --net=host -v /dataset:/StratosphereLinuxIPS/dataset

stratosphereips/slips:latest

The –rm flag will make sure the container is deleted after exit or it could consume

lots of disk space. The -v flag instructs docker to combine the container with a

volume so that the container can read the datasets from the local file system.

To start inspecting traffic, run

./slips.py -c slips.conf -f dataset/<File to inspect>

First Slips will update a list of remote threat intelligence files. After this update,

evidence and alerts will be available to view immediately after they are generated.

Figure 3.8: Live viewing of alert from Slips

24

Then we can execute ./kalipso.sh, the GUI tool associated with Slips which

supports inspecting the output in real time. Profiles that have triggered alerts will

be highlighted as red.

Figure 3.9: Kalispo, the GUI in Slips to visualize outputs

Finally, all records and files will be saved to the output folder.

Figure 3.10: Example of the alerts from Slips

The results are promising and useful because we feed Slips with traffic generated

from the Caldera framework and we know the traffic is malicious itself. It turns out

Slips is able to recognize attacks with all built-in and programmed features before

diving into deeper analysis. However, the results are obviously not friendly to home

network users at all, even IT experts. Post data processing must be done to make

the logs more approachable.

25

3.6 Configuration of Slips

Before generating more traffic with datasets, it is important to understand how

Slips behaves with normal traffic. We want to compare the results of normal traffic

with that of malicious ones to see any issue of false positives or the results can be

misleading. To prevent leakage of private information and ensure the traffic is with-

out malicious ones, we decided to set up a virtual environment. The tools we used

include Virtual Box, a Windows 10 operating system (using an ISO), and Wire-

shark. From within the Windows virtual machine, we would use Wireshark to begin

recording network traffic and then try to mimic normal behavior a home network

user would produce. This involved opening the browser to visit popular websites

including Facebook, Youtube, Twitter, etc, without inputting any credentials. We

also downloaded small files and played some online games. This primarily involved

downloading randomly selecting zipped Github repositories and because of the lim-

itations of playing an online game in a VM, we opted to use a simple online browser

game, agar.io. Considering the time frame of network activity might make a differ-

ence to predictions of the machine learning model, i.e., network traffic happens at

late night when people sleep might be more suspicious than one that happens dur-

ing the day, we repeated the recording two more times, for a total of three. These

recordings occurred respectively at 4pm, 4:30am, and 10:30pm. Besides, we also

researched online to explore any normal IoT traffic available to use. Unfortunately,

there are far less publicly available normal capturess than malicious ones. Even files

of benign traffic from the IoT-23 [30], obtained by capturing the network traffic of

real IoT devices, are corrupted after we uncompressed them.

After obtaining the control group, which is the normal traffic that we recorded

in the isolated environment, we ran Slips against it. As per expectation, there is

26

much evidence that indicates potentially malicious activity. Those evidence are from

modules including: DNSWithoutConnection, PortScan, C&C channels detection,

flow detection, and ConnectionWithoutDNS. The last one is reasonable as the laptop

maintains its database which saves and maps domain names to IP addresses then

querying the DNS server is no longer needed. Evidence from the C&C channels

detection module is generated by the built in neural network model, which is not

controllable and retrainable for us, so there is not much we can do about it until

later to adjust the threat level associated with such evidence. Regarding alerts

from the machine learning model, we are able to retrain it by reconfiguring Slips to

make it more adaptable to our production environment. Generally speaking, it is

reasonable to see false positive results from IDS. Nevertheless, we must find a way

to lower their appearing frequency so that we are not telling home users there is

malicious activity while there is actually not. In the worst case, this could lead to

users distrust the tool and ignore any alert or instruction provided by the tool.

To train the machine learning model, we first edited the configuration file.

Figure 3.11: Configuring Slips to training mode

Also, we made sure the label is normal.

Figure 3.12: Specifying samples’ labels as normal

After adjusting configuration, we ran Slips as usual. We fed in the first two

27

files that contained the normal traffic and then reconfigured Slips to test mode. The

third file is used as a test to see how much the model is improved after training. Due

to the scope and time limitation of our project, we are not able to systematically and

quantitatively measure the improvements. However, we did see a reduction in the

number of evidence from the ML detection module after training although evidence

from other modules such as PortScan and Command and Control are still present,

which is expected to happen. The JSON file of those will be included as part of

submission and deliverables.

Figure 3.13: Real-time output of Slips

Further, we also found other features in the configuration file that are worth

exploration. The first one is time window width. We mentioned previously that

Slips assigns each IP address a profile ID and traffic that belongs to the same profile

which is further grouped by time window size. The default time window length is

an hour.

The second is should Slips inspect only traffic that goes out from home or those

that either go out or come in. For our project, we are interested in all traffic so we

configure the analysis direction to the all option.

The last ones are several thresholds we can adjust based on need which include

minimum confirmed attacks per minute needed to generate an alert, connection

duration to decide if a connection is long.

28

Above all, we realized that reverse engineering is required to understand how

Slips works exactly and how those thresholds are used. Only in this way, we are

able to better explain and convey home network security issues to home users in

plain language, with help of analogy and simile if necessary. This might pave the

way and inspire us for designing and implementing a visualization solution.

3.7 Reverse Engineering to Understand Slips Deeper

After inspecting the details of configuration files, we start from the program’s

entry point to understand Slips deeper. When Slips starts running, the parent pro-

cess spawns several child processes, each of which represent a module that performs

a type of scanning strategy.

Redis, an in-memory data structure store, is used to store all information per-

taining to the traffic. Redis supports multiple processes to access cached data at the

same time. The PUB/SUB messaging system allows those modules to collaborate

by enabling processes to post data to channels and subscribe to channels.

It is also worth mentioning the composition of a record before diving into details

of each module. There are two types of records, the first is evidence, and the second

is alerts. At the beginning, we misinterpreted the difference between the two as that

evidence is derived from anomaly-based modules which include module that detects

command and control channels using recurrent neural network and the stratosphere

behavioral letters, and flowmldetection, which detects malicious flows using ML pre-

trained models, and alert is from signature-based module, which is potentially more

accurate than the model’s predictions because the alert is triggered when certain

rules are violated. After inspecting details of the evidence process module, it turns

out that our assumption is incorrect. In fact, every module produces evidence. The

29

evidence process module will receive those evidence published by other modules

because of subscription. After receiving publication from channels, it parses the ev-

idence and saves it to the database. The evidence has several fields including type

(is evidence or alert), profile ID, twid (time window ID), time stamp, detection IP,

detection module (the module that produces the evidence), detection info (the two

IP addresses involved in communication), and description that summarizes every-

thing. After that, the program will decide if a certain condition has been met to

trigger an alert. It queries the database with both profile ID and time window as

a filter to find all evidence that falls under these two criteria. The threat level of a

evidence is calculated as the following:

threat level = threat level * confidence

Different detection methods have different confidence levels which scale between

0 and 1, and different types of attack have different threat levels, which range from

0 to 80. Recollect that in the configuration file we are able to assign the detection

threshold and time window length. This is used in the following formulae:

scaled threshold = detection threshold * time window size / 60

The reason it is divided by 60 is that the accumulation of threat is minute based

and the units of time window size is in seconds. Threat level of evidence with

the same time window and profile ID will be added together. If the accumulated

threat level is higher than the scaled threshold and the IP address is not included

in the white list, then an alert is triggered which contains the type, profile ID, time

window, and accumulated threat level. Understanding this is integral to our further

decisions making to interpret and visualize results.

Threat Level Module Confidence Detail

30

80 Threat Intelligence 1 Check if the srcIP or

dstIP are in a malicious

list of IPs

60 ARP Scan Detector 0.8 ip x sends arp requests

to 3 or more different ips

within 30 seconds

60 Flow Alert Port Scan 1

60 Flow Alert Data exfiltration 0.6 Systems that are trans-

ferring large amount of

data in 20 mins span

50 Threat Intelligence 0.8 If the domain is in the

blacklist

50 ARP Scan Detector 0.8 Sending ARP packet to

a destination address

outside of local network

30 Flow Alert (self signed certificates) 0.5

30 Flow Alert

(connection without dns resolution)

1 A connection without

DNS resolution

30 Flow Alert

(dns resolution without connection)

0.3 No connection es-

tablished after DNS

resolution

30 Machine Learning Model Detection 0.6 Prediction results as

malware

30 RNN C2 Detection 0.6

31

20 Flow Alert (Reconnection

Attempts)

0.5 Multiple reconnection

attempts to a destina-

tion IP

20 Flow Alert (Connection to multiple

ports)

0.5

20 Flow Alert (Port 0 scanning) 0.8

10 Flow Alert (Long connection) 0.5 Give a malicious label if

duration is larger than

threshold in configura-

tion file

10 Flow Alert (Unknown port) 1 Checks destination ports

that are not in our mod-

ules/timeline/services.csv

file (contains typical vis-

iting service)

0.01 Flow Alert (SSH successful) 0.5

Table 3.3: Threat level and confidence associated with

each type of detection

A detailed description of each detection method and its associated threat level

can be found in the above table. This greatly improves our understanding toward

the tool. We can even adjust the threshold depending on our needs, however, we

are not focusing on identifying the most accurate and appropriate threshold, so we

proceed with the existing ones.

32

3.8 Understand Typical Process of Intrusion of

Consequences

It is crucial to understand the process of attacks and associated consequences

to effectively persuade home users on why security matters [35]. Cyber situational

awareness (CSA) [36] is the understanding of the IT environment, the cybersecurity

threats and vulnerabilities confronting that environment, as well as the process of

anticipating the potential consequences. It is pivotal for an effective cyber security

analysis and incident response, which is what we want to enforce in home situations.

CSA is roughly classified into three major categories: Recognition (being aware of

situation), comprehension (applying appropriate knowledge to interpret data with

specific context), and projection (education and assessment to neutralize future

attacks and mitigate their threats). The diagram [37] below shows one way that

different stages of CSA evolve and interact.

33

Figure 3.14: Human security cognition and augmentation workflow [37]

The above figure depicts the process a home user would go through if it en-

counters an intrusion. The user should be able to recognize and comprehend the

situation first. Then, instructions should be available for home users to execute with

and respond to intrusion. Based on knowledge gained from the incident, the home

user is able to better handle similar situations in the future. This is what we want

to achieve via the design of our dashboard.

The amount of time required to reinforce CSA isn’t trivial. Some common

questions can be summarized to be answers for CSA:

• Is there an intrusion incident?

• How does the situation develop?

• What is the consequence of the attack?

34

• How to measure severity of attack?

• What does an intruder gain from attack?

• Knowledge gained after an attack?

We want to include answers to those questions in our dashboard to help home

users fully grasp the situation and even take efficacious actions to stop cyber crimes.

We also need to find a commonality between cyber attacks though there are

heterogeneous types of attacks emerging. This plays a role making cyber intrusion

accessible for home users who have no domain knowledge of computer networks.

Typically, a successful attack might consist of the following steps [35]:

1. Reconnaissance

2. Scanning

3. Gaining access

4. Maintaining access

5. Covering tracks

At the first stage, the attacker gathers the target’s information. This can be

achieved in many ways such as social engineering and physical reconnaissance. At

the next stage, the attacker will try scanning the target’s network to discover devices

connected to the local area network, which services are running, and any vulner-

ability that could be exploited. With the information in hand, the attacker tries

to penetrate the firewall, enter the network, and gain access by sending phishing

links and emails, spoofing packets, etc. Fourth, the attacker stays within the af-

fected network in order to acquire the information they seek or to leave behind

35

something (perhaps turning the device into part of a botnet). Finally, the attacker

erases enough traces they left behind in order to remain undetected. Those are to

be placed in the dashboard for home users’ reference because detection modules of

Slips can also affiliate with one of them. By doing so, the detection module and

intrusion steps mutually refer to each other and enhance intelligibility.

3.9 Other Examples of Visualization Systems

We are also interested in other existing visualization systems which might in-

spire us what contents and layouts can look like. One we found is a platform that

monitors operational maritime cyber security [38]. As more and more IoT devices

engage in the infrastructure of harbors and are used to automate optional equip-

ment, cyber intrusions also increase while awareness is low. Many devices’ systems

are outdated and many of them use default passwords. Intrusions can be left unde-

tected for a long time or even being detected, the process involving multi-parties to

resolve the intrusion is lengthy and verbose. As a result, it is pressing to have an

operational platform that backs up analyzing heterogeneous security incidents by

visualizing information exchange and sharing in real time.

36

Figure 3.15: The landing page of the maritime intrusion monitoring system [38]

Figure 3.16: Incident UI widget

In order to support multiple role collaboration, different user interfaces are de-

signed accordingly. In our case, the home user will take care of its own home network.

However, other aspects are worth learning from. First, the landing page informs the

regulator with an overview of the security situation by employing a bar chart and

curve. Colors are actively used to visualize and differentiate levels of severity and

types of attacks. Statistical data are summarized such as total number of incidents

from a type of attack. For individual alerts, its elements include title, date, cause

of alert, and threat level. Though this interface is primarily designed for industry

use, we actually discovered that many of the design philosophies can apply to home

37

situations as well.

3.10 Principles of Designing Security-Awareness

System

From the perspective of information retrieval and processing, humans should be

involved during decision making with computers to improve the throughput [10].

Computers excelled in handling large-scale computation tasks, but underperformed

at identifying patterns. Given information fragments, they face challenges piecing

them together and further making inference. On the contrary, humans can natu-

rally recognize regularity and pattern with intuition. Instead of requiring massive

amounts of data for training, we can easily recollect and reapply knowledge only af-

ter we see something a few times. Therefore, we can naturally draw the conclusion

that to maximize efficiency, the combination and collaboration of human cleverness

and machine’s power is necessary.

Visualization is the technique that visualizes abstract concepts by incorporating

shapes, colors, and any other elements to assist human’s perception and understand-

ing [14]. In cyber security, a visualization system can serve as an entry point for

humans to understand the status of a network, devices connected in the network,

ect [15]. However, [15] also mentions that there are incorrect ways of designing an

interface, such as a complex navigation system and dense information presentation,

which can lead to aversion to the interface. According to [16], typical challenges

include:

1. Volume, variety, and velocity of data

2. Multiple data source

38

3. Unlinked data source

4. Data quality

5. Pattern of network

6. Threat escalation progression

7. Balancing risk and reward.

Our project primarily focuses on problems of 1, 6, and 7. We have designed an

algorithm to aggregate outputs and IDS. An alert is only given if it exceeds a certain

threat level threshold. We also tried to give users instructions to recover from an

intrusion.

In [17], several principles and thumb-of-rules are summarized for display of in-

formation. The paramount goal is to engender efficient and effective perception,

comprehension and decision making. Perceptual principle stresses legibility. Multi-

ple factors and parameters should be taken into account to avoid absolute judgement

based on a single value. Deviations from expectations should be highlighted. Dif-

ferences ought to be accentuated. The mental model requires us to cater to the

user’s mental state. The attention model indicates that events or incidents from

the save cause or share the same level of severity should have similar visual looking.

Finally, the memory principle pertains to availability of information. Users should

be able to access and grasp information and knowledge easily. It is also helpful if

some predictive aiding is provided.

3.11 Choice of Design Platform

The decision which platform and language to implement a visualization system

is under thorough consideration. Several factors are scrutinized. The first is mobility

39

of the platform. In the open discussion with interviewees, all of them express an

inclination to receive alerts from mobile devices such as phones. Second, the ease

of implementation. The entire process of designing a user interface demands a long

period of effort. Stages include gathering background information to understand the

needs of stakeholders through interview, prototype and layout and color scheme, and

finally implementation with programming languages. We expect the final stage to

not consume a lot of time. Third, an ample number of UI toolkits and visualization

libraries available to use. All together leads to the choice of the nodeJS with express

framework, which is the server side, and JavaScript, CSS, and HTML for the front

end. The product of the interface will be shown in the result section.

40

Chapter 4

Results and Limitations

4.1 Interpreting Results

Many IDSs face the challenge of alert fatigue and non-trivial false-positive rate,

this happens to Slips as well. For instance, a pcap file with size around 120 MB,

which is the malware dataset from Kitsune project [7], can result in over 3000 records

generated by Slips. It is imperative to design and implement an algorithm to process

and summarize those records for better intelligibility. The reverse engineering of

Slips paves the way to do so. Aforementioned difference between alert and evidence

is the key to distinguishing trivial evidence and non-trivial ones. Recollect that

each evidence has a threat level associated with it. An alert is generated only if the

aggregate threat level of evidence from the same profile and time window exceeds a

certain threshold predefined by configuration files. Therefore, it is reasonable to first

filter out evidence that does not trigger any alert. After that, it is also important to

reformat the contents of an alert. An alert of Slips consists of five fields which are

type, profile ID, time window ID, and the accumulated threat level. The alert by

default is in this format. Although some of those are informative such as the threat

41

level which is the indicator of severity of alert, there is more useful information in

the evidence records, including time stamp of the network traffic, the detection IP,

the detection module, detection information, and description.

Figure 4.1: An example of an alert of Slips

Figure 4.2: An example of evidence of Slips

To tackle the issue of duplication of evidence that originated from the same

detection module, the algorithm pays attention to summation of the number of

evidence rather than individual one. And evidence related to an alert may come

from different modules. We believe this is also informative to backtrack the potential

cause of an attack. After post processing, the result looks like this:

Figure 4.3: Visualizing post-processed JSON in browser

Compared with thousands of records, this is more succinct. We also notice incon-

sistency of start time and end time, this could be attributed to parallel processing of

Slips. The original plan is to tell exactly when network activity associated with this

alert starts and ends. However, with the time window mechanism and correct start

42

time, we can safely ignore this inconsistency and continue working on visuazalition.

The ending time now is simply the start time plus the time window length. The

start time is the one that happened first between the two in the record.

Network traffic from a host can easily mimic part of an attack without actually

being malicious. For example, an endpoint conducting a basic internal network scan

could be indicative of an attacker conducting reconnaissance - or it could just be an

IoT device trying to connect. A home user should not be overly concerned with just

one detection because IDS detections can be triggered for both malicious and benign

traffic - of course given time and interest it is always beneficial to investigate such

detections however this is not required for most home network security. A single

detection is not necessarily a cause for concern, however when different detections

appear in the same several hours and are all coming from a single endpoint, then

that is much more indicative of a real attack. For example, the internal network

scanning discussed above is not necessarily a cause for concern, however when the

same endpoint begins periodic encrypted communications with a new endpoint, then

the likely false-positive now appears to be part of a botnet.

The algorithm used by the team for communicating threats to the user does

not treat all directions equally and attempts to only highlight endpoints that truly

appear to be under attack.

4.2 Effectiveness of Warning and Awareness En-

forcement

It is important for the dashboard to be approachable for non-technical users

and to empower them to secure their network. The log files from IDS tools SNORT

and Slips, which had been configured to detect threats in a home network, were

43

passed-into a program for the dashboard to be visualized.

The first challenge we face is the effectiveness of warning. Akhawe conducted

a large-scale field study of user decisions after seeing browser’s security warnings

[39]. They utilize the browser’s telemetry framework to collect pseudonymous data.

Through comparing click-through rate of phishing and SSL warning messages with

different designs and appearance, they concluded that user experience can affect

user’s behavior. In other words, properly and carefully implemented procedures

and interface can enhance effectiveness of warning. There are several lessons we

learn. First, subtle detail makes a difference. For example, the click through rate

of warning messages showing untrusted SSL certificates and that showing expired

SSL certificates is different. Second, clicking through is a single cognitive decision.

This reveals that extra steps to bypass the warning does not actually play the role

we expect them to. This is because viewers’ decisions to proceed is a binary choice.

If he/she wants to ignore the warning, the extra steps only delay but never suppress

the intention. Hence, it is critical to make the warning effective enough at the first

glimpse. Third, the effectiveness of warnings collapses if they appear too frequently.

This referred to alert fatigue which has been discussed before. Last, users typically

do not click on the button to learn more so succinct and informative warning should

be given at the first time. All of the above will be applied in dashboard design.

The second challenge is how to incorporate users into the decision making process

for their own home network security. Kritzinger proposed the Electronic Awareness

Model (E-AM) [40]. E-AM emphasizes that users should acquaint themselves with

risks associated with surfing the internet. E-AM addresses the issues that home

users find difficulty absorbing cyber security knowledge and understanding home

security situations by providing up-to-date information based on the user’s home

network environment. Information includes devices connected to the LAN, relevant

44

security issues, why those issues matter, and how to tackle them. We also should

keep in mind that our audiences are home users without any domain knowledge of

cyber security. Therefore, the information in the dashboard should satisfy those

requirements:

1. Accessible

2. Integrated

3. User-friendly

4. Comprehensive

5. Relevant

6. Up-to-date

Figure 4.4: Full E-AM model (HU stands for home users)

It can be told from the graph that the home user does not have access to the

internet if he/she does not go through the entire training process. This of course fully

45

prepares the home users to surf the internet more safely, similar to having a driving

license before driving on the road. However, this is not feasible considering social

and legal aspects. Hence, at the current stage, we should focus on making cyber

security knowledge accessible so that home users are willing to actively participate

in the movement to raise awareness of risks.

4.3 Visualization on Dashboard

To understand how normal home network users envision a GUI of a cyber-

security monitoring and alert system, we also have another semi-structured inter-

view with our previous interviewee. Questions asked can be found in the appendix.

Interviewees are three students majoring in RBE (robotics engineering), CS (com-

puter science), and IMGD (interactive media and game development), respectively.

Though our interviewees all have some technical background, none of them has do-

main knowledge of cyber security. There are several relevant findings. First, all

three participants replied they prefer to receive alert notifications from their phone

without hesitation. And after clicking on the notification UI widget, they want

to jump into the app to see more details of the alert. Second, for contents of an

alert notification, threat level of the intrusion, time of intrusion, and name of the

device that triggers the alert should be included. For customizable features, three

participants responded differently. First participant mentioned he wants to be able

to decide the sensitivity level of a device, which should be counted to calculate the

threat level. The second participant suggested that he wanted to be able to set the

notification frequency himself, and a default should not exceed per device per day.

The third person expressed that he should be empowered to have control over all his

devices, i.e., he can block traffic of any device simply by clicking a button. Besides,

46

we found that it is not that people do not pay attention to security but they do

not realize how significant the consequences could be if an intruder launches the

attack successfully. When we asked how to enforce awareness of security issues they

instead asked us what security issues exist. We concluded it is necessary to include

tips, stories, and news about IoT cyber-intrusion real cases within the dashboard

to enhance user’s awareness. Finally, there is one point worth mentioning at the

final open discussion section. One interviewee summarized that there are two types

of attack regarding privacy. The first is privacy-sensitive one. For instance, a cam-

era installed in a TV room is no doubt very sensitive. The users are very willing

to see alerts triggered by such devices and review warning messages. The other is

privacy insensitive such as a smart TV. This type of device might be turned into

part of a botnet but it does not intrude on privacy or affect normal use too much.

Hence, it comes to another conclusion that the dashboard should also teach users

why they should care about both types of alert and take responsibility for keeping

their devices from attack by adopting security measures.

Features of post processing log files from IDS Slips, which had been processed

by our algorithm to remove duplication and alert fatigue, were also considered for

the design process. After combining existing data to use and knowledge gained from

the interview, we are finally able to realize the GUI. The GUI has a navigation bar

at the top and it has four pages, which are general information, statistical data,

devices connected at LAN, and tips, respectively. Flexbox is used so that the size

of the dashboard can adapt to the size of mobile devices’ screen size.

47

4.3.1 Landing Page

Figure 4.5: Landing page of the dashboard

For the landing page, the design idea is to give the user a summary of detections

of his devices. The table will enumerate alerts pertaining to one particular device

and list statistical data of alerts. The threat levels are also visually emphasized by

the bar chart to help users quickly identify alerts with the highest severity. Colors

are also employed to distinguish the seriousness of an intrusion. We also expect

detections of other devices to be displayed like Camera as the picture shows.

After clicking on the button, we want the user to browse interpretations gen-

erated by algorithms and also the questions. As IDS cannot guarantee a network

activity is malicious itself so we do not want to warn the user directly. Instead,

a conversation-driven style is doable to involve both machine and user in decision

making. We kindly ask the home user to think about anomalies that happened

recently, given IDS generated an alert. Combining assistance from the IDS and

instruction, the home users can make the final decision based on its judgment.

48

Figure 4.6: Instructions and interpretations after clicking on the button

Additionally, the user can see the composition of an alert. This could provide

more background information about why the IDS believes the situation is worth

investigating.

4.3.2 Statistics Page

The second page is to help users grasp the security situation from a high level. The

users can see which type of attack appears the most by looking at modules that

trigger alerts the most. They can also understand which devices suffer from attack

the most by looking at the pie chart.

49

Figure 4.7: Statistics page

4.3.3 Devices Page

On the devices page, the user can see all devices connected to its homework. We

assume users should also be able to customize privacy sensitivity and security sensi-

tivity. Alert with the highest severity score that is associated with particular devices

is included to remind the user for later reference. By clicking on the checkbox, traf-

fic of that device should be dropped immediately. This is doable as suggested by

Grimm, Bordeleau, and Wirkala [18]. [18] discovered that most IoT devices can only

establish one TCP connection at a time. Therefore, there is no need to distinguish

connections but simply drop traffic associated with that device.

Figure 4.8: Devices page

50

4.3.4 Tips Page

Finally, the tips page is trying to provide more accessible background information

for users to be able to diagonalize their own network health given alerts reported by

IDS. The top left box walks the user through stages of hacking in plain language.

Figure 4.9: Tips page

51

Figure 4.10: Stages of hacking

After clicking on the arrow, the bullet point expands and displays detailed in-

formation. The top right one helps the user understand how IDS work. Knowledge

gained from reverse engineering plays a role here. The bottom left one applies the

awareness-enforcement model. It makes users realize the significance of protecting

their own network even not as network experts. In the end, as indicated by the

interview results, users do care about security if they have a clear sense of the con-

sequences of cyber-intrusion. Based on the assumption, we include this place to

spread news and stories of IoT abuse and intrusion.

4.4 Use of IDS and Dashboard

By providing a packet capture file (PCAP) to the created prototype, the user

can have a dashboard generated for them which shows detected threats and guides

52

the user through how to secure their network. The dashboard displays threats to

and from specific devices and the network as well as metadata information about

the threat such as time. Information is provided to the user giving them the option

to learn more about a specific detection and steps that they can take to secure the

device or verify that the detection is a false positive.

The dashboard also depicts the types of threats affecting the overall network and

which devices on the network are the greatest threat. Displays such as these help

a user understand which devices on their network they should pay attention to or

potentially understand what detections are common and can be safely ignored. If

ARP scanning is a common detection on the user’s network, then they can learn

that those detections are benign and have time to focus on more dangerous attacks.

4.5 Limitations

The prototyped IDS and dashboard do not yet allow for users to tweak the

setting for their network. For example, the user cannot set the display to ignore

ARP scans or increase the reported threat for particularly sensitive devices. The

prototype also does not process threats live as they occur. Instead, a network packet

capture needs to be run and then the generated PCAP file needs to be submitted.

The signature detections generated by Snort only serve to warn the user of known

pre-programmed threats. For example, the Snort rules used in the prototype can

only detect malware C2 communications from the Ragdoll Payload (malware used

in testing) and can only alert the user to known phishing sites. The inclusion of

Slips serves to supplement this weakness by detecting general network misbehavior

and learning a user’s network.

The primary concern of using Slips is performance. Though we are not running

53

benchmark tests professionally and specifically, Slips can run over hours to process

files whose size is over hundreds of MB. This is understandable because Slips com-

pare current detection against historical detection to identify suspicious activity.

However, this might not be scalable deploying at home for detections. Second, we

cannot verify the exact false positive rate of each individual alert. This is due to

many reasons such as we are not aware of details of how datasets we use are col-

lected and under what circumstances. Otherwise, we have not decided the update

frequency of the dashboard. Currently, we assume the dashboard should be updated

daily or the amount of alerts and information could be overwhelming. More field

work should be done to understand the amount of traffic a normal home user can

produce on average.

Last, usability testing is integral to refine and adjust the interface based on

stakeholders’ feedback. Though following the best practice and realizing the GUI

after incorporating stakeholders’ thought, current dashboard are not tested against

other home users who are not involved in the project. Therefore, it is imperative to

run usability studies to understand if the dashboard can achieve the goal that we

expect it to, such as awareness enforcement. The results are invaluable for making

the next generation of the dashboard.

54

Chapter 5

Future Work

5.1 Home Network Threat Intelligence

The conducted research was done based on the idea that threats to home users

are primarily phishing, Remote Access Trojans, and IoT device takeover. The de-

cision to focus on these threats came from research. Still, a more relevant home

IDS could be created with a better understanding of the adversary and increased

research on related CTI (Cyber Threat Intelligence). Perhaps personal user anti-

virus developers or home ISPs (Internet Service Providers) have conducted research

into the threats facing home networks and could provide relevant CTI.

With access to home network CTI, the prototyped IDS could be improved to

better target certain threats. For example if all phishing sites that target home users

do not implement HTTPS, then a content signature could be written in SNORT to

look for password fields over HTTP or other suspicious login features. Another

example is that lateral movement inside a compromised home network may not

be a common tactic used by adversaries - making detections for internal network

scanning rather pointless. Overall, in order to build solid defenses, one first needs

55

to understand in exact detail what the existing attacks are.

5.2 Live Detections

As it stands, the prototyped IDS can only process data after the network traffic

has been captured and uploaded in a PCAP file. It is of course unreasonable to

ask a non-technical home user to run a full packet capture then export the file to

some program in order to understand threats which may have been detected. A live

version of the IDS should be developed so home users can simply check the current

security of their network. Logging every single packet which crosses the network

would rapidly overflow the storage of any reasonable system. In order to manage

the data from a live IDS, captured packets should be stored temporarily in a large

temporary cache until the cache is full and new packets can take their place. It may

be possible for the IDS to still log summaries of captured packets before they are

removed from the cache for the purposes of detecting stealthy drawn-out attacks.

Such a method is still not perfect and a large flood of packets could be used in DoS

(Denial of Service) attack against the IDS. The flood of packets could potentially

fill the entire cache over-writing any other packets and allowing for a threat actor

to hide their true attack.

5.3 More Research For SLIPS and Similar AI Sys-

tems

The first question to be answered is the performance of IDS such as Slips.

Aforementioned time consumption record has proven that it takes a non-trivial

amount of time to fully process the pcap file. The situation could change if live

56

capturing and real-time processing is enabled. To make the entire system deployable

in real-life situations, more experiments are expected to understand the processing

speed of the IDS, which leads to another question of where to store or cache the

network traffic and how much storage is going to be used.

The second research interest is the exact FP (true positive) and FN (false neg-

ative) rate of the IDS. This might require the research team to simulate all traffic

so they understand every aspect and detail of the PCAP. Our project focused on

existing IoT traffic simulated by other institutes. The result could make a difference

with both post-processing algorithm and interface.

5.4 Improvements to Signature Detections

Threat intelligence companies are constantly researching current attacks and

infrastructure used by cybercriminals. The compiled research and attacker signa-

tures can be used to, among other things, create signatures for network defenses.

Domains, IP addresses, and file hashes are commonly referred to as IOCs (Indica-

tors of Compromise) in the threat intelligence community. There are many services

which offer network IOCs for the purposes of blocklists or detections, there are even

several free blocklists such as those provided by Abuse.CH or Honeypot.FYI. Many

of these domains and IP addresses could be easily added to the SNORT rules used by

the prototyped IDS for the purposes of alerting the user to a potential compromise.

There are other improvements to our SNORT rules that we originally envisioned

but did not have time to implement. While our rules did detect malicious lab

packets, these rules only focused on elements such as IP and port numbers. In the

C2 SNORT rules, these rules also included the ability to match specific potentially

malicious bytes in the content of the packet. While these rules are enough to generate

57

basic alerts, we would have liked to have done more research into the depth of these

alerts, looking into other functionalities SNORT rules are capable of in terms of

detecting malicious traffic. This would have also been in tandem with thorough

research in the structure of different types of malicious attacks on home networks,

specifically looking into how each attack works and based on that, determine what

types of SNORT rules would be best suited to detecting those attacks. This would

have culminated with our implementation of these SNORT rules into the dashboard,

using any information and methods from what would have been learned in order to

best communicate alerts to the user.

5.5 Survey Non-Technical Users on Preferred Dash-

board and Understanding

During our background research, one of our team members conducted a small

study looking into what non-technical users would like to see. This study primarily

involved them asking their roommates various questions, and details of the question

could be found in the appendix. While this study was useful for creating our proto-

type dashboard, due to the small sample size (3 people), it was not a comprehensive

representation of the general public of non-technical users. Relevant field work that

could be done is to create some sort of survey meant for a larger sample size, per-

haps around 100 people or greater. This method provides two advantages. We

would have been able to dedicate time into creating specific survey questions which

would have been based on our research. These questions would have been designed

in such a way so that the person taking the survey understands what the question

is asking and that they’ll provide a non-biased response. The other benefit would

be from the larger sample size, in which we would need to figure out who we want

58

to distribute the survey to and how we want to distribute the survey. With these

methods, we could create a successful survey regarding what non-technical users

think of the dashboard, however, these methods take extensive time, something we

didn’t have when we came closer to the end of our project.

59

Chapter 6

Conclusion

The current threat landscape involves home users being targeted by cybercriminals

attempting to exploit user weaknesses for monetary gain. Home networks are be-

coming increasingly complex with new IoT devices and home users relying on their

computers more for both entertainment and work. The home network complexity

adds to user technical confusion and increases the attack surface against home net-

works. Attackers are attempting to install malware on user personal computers,

take-over IoT devices for botnets, and scam users digitally - among other attacks.

Home networks do not have adequate defenses to stay secure in the current

threat landscape with such advanced network threats. Many home users are simply

confused about how to keep their network secure. Some attempt to protect them-

selves by running anti-virus software on their computer and some Internet Service

Providers attempt to block malicious Internet connections. Neither of these defenses

adequately protect home users from the varying threats of modern attacks. An In-

trusion Detection System, however, reverses an attacker’s advantage by catching

them as they attempt to carry out their malicious actions.

In conclusion, the team approached the problem of designing security tool for

60

home network by identifying appropriate and representative IDS, launching typical

attack to simulate intrusion scenario, gathering existing IoT devices’ network traffic

log files, designing algorithm based on outputs of particular IDS to remove dupli-

cate and summarise useful statistical data, and finally incorporating above effort to

realize a prototype, envisioning an extensible and reusable design of home network

monitoring system.

Though not covering all types of IDS or other defense strategies, our choice

of IDS includes two most widely adopted and deployed IDS, i.e., signature-based

and anomaly based tools. Therefore, our work outlines one of solutions to handle

challenges of interpreting output of those types of IDS. Our algorithm successfully

compresses thousands lines of evidence and alerts by IDS to only several informative

records. Lastly, our dashboard provides a way of visualizing processed data, dis-

playing relevant information that concerns home users. We recognized the need to

involve the users in the whole security related decision process and further empower

the users to do so by sharing accessible knowledge of cyber-security.

Although not all of our ideas for this project made it to the final deliverable,

there are some next steps we could recommend to future teams working on this

or similar projects. While our research into possible attack vectors on a home

network is useful for our project, it’s not guaranteed to be an accurate look into

the threats home users would face, in which we could have utilized relevant Cyber

Threat Intelligence (CTI). We also could have implemented a way for our prototype

to utilize live detections, so that a live system being compromised would be flagged

by our IDS, which in turn the alerts would be pushed to the dashboard. With our

IDS, we’ve noticed there are possible improvements to our implementations of Slips

and SNORT. Finally, our implementation of the dashboard and the language of our

alerts could benefit from a medium to large scale survey with non-technical users

61

on what they would find useful in our prototype.

62

Chapter 7

Appendix

In this section, we include questions we asked during the interview, screenshots

to foster understanding, and relevant commands to use Slips.

Questions to understand users’ thought on what a GUI of dashboard should look

like and what functionality it should have:

1. What platform do you expect the dashboard to base on? (desktop application,

mobile app, web pages).

2. In what ways do you want to receive alert messages? (messages, phone call,

email, app notification, etc)

3. What should a notification include?

4. Any features you want to be able to customize yourself?

5. What should the home pages highlight?

6. What is the most effective way to convince you that security matters?

7. How frequent do you expect to receive notifications of alerts without being

fatigued?

63

8. Any other questions?

Commands to enter the container from a new terminal: Open a new terminal,

run docker ps to find the id of the container and docker exec -it ¡container id¿

bash to enter the container.

Commands to copy results from container to local file system: Docker ps to lo-

cate ID of the container docker cp e48c5981c7ce:/StratosphereLinuxIPS/output

C:\MQP\StratosphereLinuxIPS\results\output calderaC2\ to copy files to

local file systems Display limited lines of files sed -n 1,10p <file name>

64

Figure 7.1: Time window length available to adjust in Slips’ configuration file

Figure 7.2: Detecting direction

Figure 7.3: Detection threshold

Figure 7.4: Other adjustable threshold

65

Bibliography

[1] Alert fatigue: Imperva. Alert Fatigue. (2020, December 9). Retrieved December

10, 2021, from https://www.imperva.com/learn/data-security/alert-fatigue/.

[2] Yu, Miao, et al. “A Survey of Security Vulnerability Analysis, Discovery, Detec-

tion, and Mitigation on IoT Devices.” Future Internet, vol. 12, no. 2, MDPI AG,

2020, p. 27–, https://doi.org/10.3390/fi12020027.

[3] Al-Alami, H.; Ali, H.; Hussein, A.B. Vulnerability scanning of IoT devices in

Jordan using Shodan. In Proceedings of the 2nd International Conference on

the Applications of Information Technology in Developing Renewable Energy

Processes & Systems (IT-DREPS), Amman, Jordan, 6–7 December 2017.

[4] Shodan. (2009). Retrieved 10 November 2021, from https://www.shodan.io/

[5] What is an Intrusion Detection System (IDS)? — Fortinet. Retrieved 10 Decem-

ber 2021, from https://www.fortinet.com/resources/cyberglossary/intrusion-

detection-system

[6] What is IDS and IPS? — Juniper Networks. Retrieved 3 November 2021, from

https://www.juniper.net/us/en/research-topics/what-is-ids-ips.html

66

[7] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. 2018. Kit-

sune: An Ensemble of Autoencoders for Online Network Intrusion Detection. In

NDSS. Internet Society.

[8] Rupesh K Srivastava, Klaus Greff, and Jurgen Schmidhuber. Training very

deep networks. In Advances in neural information processing systems, pages

2377–2385, 2015.

[9] Pardis Emami-Naeini, Henry Dixon, Yuvraj Agarwal, and Lorrie Faith Cranor.

2019. Exploring How Privacy and Security Factor into IoT Device Purchase

Behavior. Proceedings of the 2019 CHI Conference on Human Factors in Com-

puting Systems. Association for Computing Machinery, New York, NY, USA,

Paper 534, 1–12. DOI: https://doi.org/10.1145/3290605.3300764

[10] Nuamah, J., & Seong. Y. (2017). Human Machine Interface in the Internet of

Things (IoT). A paper presented at the 2017 IEEE System of Systems Engineer-

ing2017 Conference, Waikoloa, Hawaii, USA

[11] Hunt, David. “Caldera Readme.” GitHub, MITRE AT&CK, 28 Nov. 2021,

https://github.com/mitre/caldera/blob/master/README.md.

[12] Strom, Blake. “The Philosophy of AT&CK.”

The MITRE Corporation, AT&CK, 24 July 2018,

https://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-

blog/the-philosophy-of-attck.

[13] Duncan, Brad. “Traffic Analysis Exercises.” Malware-Traffic-Analysis.net, 4

Nov. 2021, https://www.malware-traffic-analysis.net/training-exercises.html.

67

[14] Robertson, G., Czerwinski, M., Fisher, D., & Lee, B. (2009). Selected human

factors issues in information visualization. . Reviews of human factors and er-

gonomics,5(1), 41-81

[15] Gutzwiller, R. S., Fugate, S., Sawyer, B. D., & Hancock, P. A. (2015, Septem-

ber). The Human factors of cyber network defense. In Proceedings of the Human

Factors and Ergonomics Society Annual Meeting (Vol. 59, No. 1, pp. 322-326).

SAGE Publications.

[16] Best, D. M., Endert, A., & Kidwell, D. (2014, November). 7 key challenges for

visualization in cyber network defense. In Proceedings of the Eleventh Worksho-

pon Visualization for Cyber Security (pp. 33-40). ACM

[17] Seong, Younho & Nuamah, Joseph & Yi, Sun. (2020). Guidelines for cyberse-

curity visualization design. 1-6. 10.1145/3410566.3410606.

[18] Grimm, J., Bordeleau, D., & Wirkala, R. (2019). Graceful Degradation in IoT

Security. : Worcester Polytechnic Institute.

[19] Snort - Network intrusion and prevention system. Retrieved 14 September 2021,

from https://www.snort.org/

[20] Home - Suricata. (2021). Retrieved 14 September 2021, from

https://suricata.io/

[21] The Zeek Network Security Monitor. (2021). Retrieved 14 October 2021, from

https://zeek.org/

[22] Lorenzo De Carli, Indrakshi Ray, and Erin T. Solovey. 2021. Vision: Stew-

ardship of Smart Devices Security for the Aging Population. In EuroUSEC ’21:

68

European Symposium on Usable Security, October 11–12, 2021, Online. ACM,

New York, NY, USA, 9 pages.

[23] Hassan, W.U., Guo, S., Li, D., Chen, Z., Jee, K., Li, Z., Bates, A.: NoDoze:

combatting threat alert fatigue with automated provenance triage. In: Network

and Distributed Systems Security (NDSS) Symposium 2019 (2019)

[24] XFi Advanced Security, what should I know?. (2020). Retrieved 14 August 2021,

from https://www.reddit.com/r/Comcast Xfinity/comments/jkls7z/xfi advanced security what should i know/

[25] Axelsson, S. (2000). The base-rate fallacy and the difficulty of intrusion detec-

tion. ACM Transactions On Information And System Security, 3(3), 186-205.

doi: 10.1145/357830.357849

[26] What is the Mirai Botnet?. Retrieved 18 September 2021, from

https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/

[27] xFi Advanced Security is blocking my company’s website. (2020). Retrieved 15

September 2021, from https://forums.xfinity.com/conversations/xfinity-app/xfi-

advanced-security-is-blocking-my-companys-website/602dae20c5375f08cddf28af

[28] McCann, D.; Eder, K.; Oswald, E. Characterising and comparing the energy

consumption of side channel attack countermeasures and lightweight cryptog-

raphy on embedded device. In Proceedings of the International Workshop on

Secure Internet of Things (SIoT), Vienna, Austria, 21–25 September 2015.

[29] Empowering App Development for Developers — Docker. (2021). Retrieved 23

September 2021, from https://www.docker.com/

69

[30] Sebastian Garcia, Agustin Parmisano, & Maria Jose Erquiaga. (2020). IoT-23:

A labeled dataset with malicious and benign IoT network traffic (Version 1.0.0)

[Data set]. Zenodo. http://doi.org/10.5281/zenodo.4743746

[31] Booij, Tim M., Irina Chiscop, Erik Meeuwissen, Nour Moustafa, and Frank TH

den Hartog. ”ToN IoT-The role of heterogeneity and the need for standardization

of features and attack types in IoT network intrusion datasets.” IEEE Internet

of Things Journal (2021).

[32] Stratosphere IPS for Linux — Stratosphere IPS. Retrieved 29 September 2021,

from https://www.stratosphereips.org/stratosphere-ips-for-linux

[33] GitHub - stratosphereips/StratosphereLinuxIPS: Slips. A machine

learning-based Intrusion Prevention System (IDS/IPS). Free Software.

Stratosphere Laboratory. (2021). Retrieved 27 September 2021, from

https://github.com/stratosphereips/StratosphereLinuxIPS/tree/master

[34] Training - Slips 0.8.2 documentation. (n.d.). Retrieved November 15, 2021, from

https://stratospherelinuxips.readthedocs.io/en/develop/training.html?highlight=vector+machine

[35] Ait Maalem Lahcen, Rachid, et al. “Cybersecurity: A Survey of Vulnerability

Analysis and Attack Graphs.” Mathematics and Computing, vol. 253, Springer

Singapore, 2018, pp. 97–111, https://doi.org/10.1007/978-981-13-2095-8 9.

[36] What is Cyber Situational Awareness? — reciprocity. What

Is Cyber Situational Awareness? (n.d.). Retrieved 2021, from

https://reciprocity.com/resources/what-is-cyber-situational-awareness/

[37] Pino, R.E.: Cybersecurity Systems for Human Cognition Augmentation.

Springer, New York (2014)

70

[38] Zhao, Hanning, and Bilhanan Silverajan. “A Dynamic Visualization Plat-

form for Operational Maritime Cybersecurity.” Cooperative Design, Visualiza-

tion, and Engineering, Springer International Publishing, 2020, pp. 202–08,

https://doi.org/10.1007/978-3-030-60816-3 23.

[39] Akhawe, D., & Felt, A. P. (2013, Augustus). Alice in Warning-

land: A Large-Scale Field Study of Browser Security Warning Effective-

ness. 22nd USENIX Security Symposium (USENIX Security 13), 257–272.

Opgehaal van https://www.usenix.org/conference/usenixsecurity13/technical-

sessions/presentation/akhawe

[40] Kritzinger, Elmarie & Solms, S.H.. (2010). Cyber security for home users: A

new way of protection through awareness enforcement. Computers & Security.

29. 840-847. 10.1016/j.cose.2010.08.001.

[41] Compromised Personal Network Indicators and Mitigations. (2020). National

Security Agency. https://media.defense.gov/2020/Sep/17/2002499615/-1/-

1/0/COMPROMISED PERSONAL NETWORK INDICATORS AND MITIGATIONS 20200914 FINAL.PDF.pdf

[42] A look into the most noteworthy home network security threats of

2017. (2018, February 27). Trend Micro; Trend Micro Incorporated.

https://www.trendmicro.com/vinfo/us/security/research-and-analysis/threat-

reports/roundup/a-look-into-the-most-noteworthy-home-network-security-

threats-of-2017

[43] Facebook—Log in or sign up. (n.d.). Facebook. Retrieved December 16, 2021,

from https://www.facebook.com/

71

[44] Home Network Security. (n.d.). Trend Micro; Trend Mi-

cro Incorporated. Retrieved December 16, 2021, from

https://www.trendmicro.com/en us/forHome/products/homenetworksecurity.html

[45] Rubenking, Neil J. (2020, May 27). Trend Micro Home Network Security Re-

view. PCMAG; Ziff Davis. https://www.pcmag.com/reviews/trend-micro-home-

network-security

72

