
Real-Time Solar Power Forecasting Using a Cloud
Motion Vector System

A Major Qualifying Project submitted to the faculty of Worcester Polytechnic Institute in
partial fulfilment of the requirements for the degree of Bachelor of Science in cooperation with

Eversource Energy.

Natale, Stephen
Sauter, Evan

Ferreira, Jonathan
Lewis, Timothy

Under the advisement of Professor Maqsood Ali Mughal

December 17, 2021

This report represents the work of one or more WPI undergraduate students submitted to
the faculty as evidence of completion of a degree requirement. WPI routinely publishes these

reports on the web without editorial or peer review.

Abstract

A cloud motion vector system that was designed previously by WPI students was analyzed
and improved. In the process, many expensive components were made obsolete, and
additional features were introduced. A custom PCB was designed to facilitate the use
of RJ45 connectors and ethernet cables to connect the sensors to the
microcontroller, resulting in a much easier setup, transportation, and storage of the
CMVS. Large steps were made towards the creation of a commercially-viable product,
but there is still much testing that needs to be done to ensure stable and accurate
operation.

Acknowledgements

Special thanks to Professor Maqsood Mughal for his thoughtful advisement and guidance,
and for his continued dedication to advancing renewable energy research. I would also
like to express deep and heartfelt gratitude to professor Isabella Stroe for her leadership
of the Renewable Energy Materials Scholars STEM program, which has provided me
with helpful resources and mentorship throughout my studies at WPI. Thanks also to
Eversource Energy for taking interest in and sponsoring this project, which has enabled a
great deal of additional opportunity and flexibility while conducting research, designing,
and improving the cloud motion vector system that is the heart of this project.

Contents

Table of Contents i
List of Figures . iii

Introduction 1

Background 1
Growth of Photovoltaics . 1
Photovoltaic Limitations . 2
Cloud Motion Vector System . 3
Original Design . 3
Physical System Design . 4

Methodology 6
Identifying Design Aspects in Need of Improvement 6
Planning Changes . 6
Accuracy Testing . 7

Results 8
Improvements in MATLAB Code . 8
Microcontroller and Firmware Improvements 9
PCB Design and Connectors . 10

Conclusion 14

Future Work 14

References 15

Appendix A: MATLAB Code Listings 16
calculate lux.m . 16
ensure valid sample.m . 16
figure setup.m . 17
get cmv direction.m . 18
get cmv speed.m . 19
get csd.m . 20
get matrix.m . 22

i

get norm.m . 22
get quadrant.m . 22
get resultant vec.m . 23
get sample range.m . 23
get vid.m . 23
main.m . 24
read cmv data.m . 30
Sensor.m . 31
text wrapper.m . 32
thing speak test.m . 32

Appendix B: Arduino Code Listings 35
cmvs sw wifi.ino . 36
constants.h . 37
secrets.h . 38
led codes.h . 39
led codes.cpp . 40
tsl softwire.h . 42
tsl softwire.cpp . 44
wifi setup.h . 49
wifi setup.cpp . 50

Appendix C: Datasheets 52
Arduino Nano 33 IoT . 53
TSL2591 Light-to-Digital Converter . 71
TCA9548A Low-Voltage 8-Channel I2C Switch with Reset 104

ii

List of Figures

1 States with the highest percent of net power generated from solar sources.
(Feldman, Wu, and Margolis 2021) . 2

2 PV system pricing by year of installation. (Feldman, Wu, and Margolis
2021) . 3

3 (Moreira et al. 2021) light sensor data in CSV form. 4
4 (Moreira et al. 2021) Method 1 – linear cloud edge. 4
5 (Moreira et al. 2021) Method 2 – image edge detection. 4
6 (Moreira et al. 2021) Old CMVS design set up for testing. 5
7 (Moreira et al. 2021) Method 1 – linear cloud edge. Shaded areas indicate

the direction of the cloud . 5
8 (Moreira et al. 2021) Old CMVS design as stored. Directly soldered con-

nections resulted in significant tangling. 5
9 (Moreira et al. 2021) Old CMVS design block diagram 5
10 In the new implementation of the firmware, data for all nine sensors is

uploaded as a string to a single ThingSpeak channel (see thing_speak_test.m

for an example of how this code is imported into MATLAB). One benefit of
using a string is that the data can be padded with spaces so that columns
are separated and can more easily be read. 8

11 Improved Histogram to show both methods at once and show projection
lines. As r-axis is intended to show probability it has been normalized to
one. Compare with Figure 4 and Figure 5 to see that the same data is
shown. 9

12 Block diagram of RJ45 connector implementation. Compare with Figure 9
to see the complete simplification of the system. 10

13 The old (a) and new(b) versions of the TSL2591 breakout boards made
by Adafruit . 11

14 PCB designs for new CMVS system . 12
15 Indoor and outdoor testing arrangements 13

iii

Introduction

Photovoltaic (PV) systems are continually
being built to replace traditional genera-
tors of power, and an increased reliance on
solar energy will come with new challenges
to ensure continuous service even in times
of low sunlight.

As the installation cost of PV com-
ponents continues to drop and the need
to adopt renewable energy becomes more
pressing, solar panels will become a crucial
part of power grid infrastructure. Large-
scale deployments of solar arrays will begin
to bear more of the load that is currently
generated from nonrenewable sources like
natural gas or coal, and entire cities and
towns will rely upon solar energy for their
power needs.

The adoption of new power-generating
infrastructure will come hand and hand
with the adoption of a new set of prob-
lems. PV systems require direct sunlight
to maximize their power output, and as
a result, the shadows cast by clouds can
result in sudden drops of output power.
These drops could result in interruptions
of service if they occur during times of high
or peak demand.

Generators that utilize traditional
sources of energy can be implemented to
cover the loss of output associated with
blocked sunlight, but these generators are

not able to start instantly – it is necessary
to begin the startup process a short period
of time prior to when the generator needs
to bear the load on the grid.

This research aims to continue the de-
velopment of an inexpensive and portable
cloud motion vector system (CMVS) that
can provide real-time information about lo-
cal cloud movements by utilizing a clus-
ter of light sensors and a microcontroller.
The CMVS is aimed to take the place
of pyranometer-based nowcasting systems,
which come at a greater expense and slower
update speeds.

Background

Growth of Photovoltaics

In the Fall 2021 Solar Industry Up-
date, Feldman, Wu, and Margolis
(2021) found that the median instal-
lation cost of utility-scale photovoltaic
(UPV) projects decreased by 74% between
2012 and 2020, dropping to a cost of
$1.42/WAC ($1.05/WDC) and continues to
trend downward (Fig. 2). Feldman, Wu,
and Margolis also found that five states
in the United States – California, Mas-
sachusetts, Hawaii, Nevada, and Vermont
– generated between 14.9% and 24.3% of
their total net generation of power from
solar sources, with a vast majority being
generated via photovoltaic (PV) technol-

1

ogy (Fig. 1.

Figure 1: States with the highest percent of net
power generated from solar sources. (Feldman,
Wu, and Margolis 2021)

Photovoltaic Limitations

As falling costs lead to increased integra-
tion of large-scale PV systems into the
power grid, reliance on solar power will in-
crease. While this is an encouraging trend
in terms of slowing climate change, the lim-
itations of PV generation will become a
much more significant issue as it continues
to replace non-renewable sources.

The biggest disadvantage PV systems
have over other methods of generation is
that their performance is dependent on
unobstructed access to sunlight. A cloud
passing over a PV array could cause a sig-
nificant drop in output, which would be es-
pecially problematic during times of peak
demand, as it might require grid operators
to shed some of the load if demand exceeds
supply.

Load shedding can take the form
of brownouts or rolling blackouts and
is done intentionally to prevent dam-
age to the grid. When considering
PV generation, a secondary and sunlight-
independent source of power is necessary
to ensure that drops of power from cloud
cover do not necessitate load shedding.
Two common alternative sources of power
are:

1. Grid storage batteries store ex-
cess power during times of low de-
mand and then output power dur-
ing times of high demand. Batter-
ies a quick source of dispatchable
power and do not need much time in
advance to cover excessive demand.
The downsides of battery storage are
high cost and limitations on capac-
ity.

2. Standby generators create power
using traditional nonrenewable
sources during times of high demand
and are in a mostly idle state other-
wise. Standby generators are based
on mature technology and are more
likely to already be in place. The
most pertinent downside to standby
generators is that they are relatively
slow to start, but they also suffer
from maintenance costs and pollute
the environment.

In the near-future it stands to reason
that standby generators will frequently be
chosen over battery banks, especially for

2

Figure 2: PV system pricing by year of installation. (Feldman, Wu, and Margolis 2021)

large-scale generation needs. As standby
generators take a short amount of time to
transition from idle to active, it is neces-
sary to anticipate and predict drops in PV
supply. If predictions are able to accu-
rately assess losses of power output, un-
necessary standby activations could also
potentially be prevented. Minimizing un-
needed activations would serve to reduce
wear and tear and by extension mainte-
nance costs.

Cloud Motion Vector
System

A cluster of ambient light sensors could
potentially serve as an inexpensive way
to monitor local irradiance conditions in
real-time. Strategically placed, this clus-
ter of sensors could be controlled by an
algorithm that utilizes the relative posi-
tion of the sensors to each other along
with their readings to calculate the direc-

tion and speed of a cloud passing overhead.
This information could then be uploaded
so that the information could be accessed
remotely.

This system of detection, referred to
hereafter as a cloud motion vector sys-
tem (CMVS), is a design that has been
worked on by previous teams of students at
Worcester Polytechnic Institute. The cur-
rent team set out to improve that design,
put it through on-site testing at an Ever-
source location, and investigate the com-
mercial viability of the CMVS design. As
of writing this report, the project is still in
progress.

Original Design

Firmware and Algorithm

Moreira et al. (2021) stated that two meth-
ods were utilized to predict cloud motion:
The linear cloud edge method (Bosch and

3

Kleissl 2013), and the image edge detection
(Gonzalez and Woods 2008).

That data that was input to the al-
gorithm was taken from the serial out-
put of the microcontroller and saved in
the form of a CSV file with the data
from each sensor being set into individual
columns.

Figure 3: (Moreira et al. 2021) light sensor data
in CSV form.

These methods produced the his-
tograms shown in Fig. 4 and Fig. 5 to show
probabilities of cloud motion. The shaded
areas of these figures are representative of
the clouds direction of movement.

Figure 4: (Moreira et al. 2021) Method 1 – linear
cloud edge.

Figure 5: (Moreira et al. 2021) Method 2 – image
edge detection.

Physical System Design

The physical design consisted of nine
TSL2591ambient light sensors (ALS) – one
centered, eight arranged in a circle with a
radius of ten feet, and each sensor placed
45◦apart (Fig. 6). Two TCA9548AI2C
multiplexers1 were used in conjunction
with an Arduino Uno Rev.3 to connect to

1Multiplexers were included due to the TSL2591ALS components all sharing a fixed I2C address

4

and get readings from the sensors.

Figure 6: (Moreira et al. 2021) Old CMVS design
set up for testing.

Connections were made by directly sol-
dering 18-AWG stranded wire to the leads
of the sensors and to other wires (Fig. 7).
This style of connection resulted in signif-
icant tangling when the array was in stor-
age, as can be seen in Fig. 8.

Figure 7: (Moreira et al. 2021) Method 1 – linear
cloud edge. Shaded areas indicate the direction of
the cloud

A BeagleBone Black was then connected to

the Arduino and to a computer via USB,
and also connected to the internet via an
ethernet cable. The BeagleBone Black was
used to monitor the serial stream of read-
ings from the Arduino and store the results
into a CSV file on the computer. The data
readings were also uploaded to ThingS-
peak – an IoT subscription service offered
by MathWorks. The block diagram for this
design can be seen in Fig. 9.

Figure 8: (Moreira et al. 2021) Old CMVS design
as stored. Directly soldered connections resulted
in significant tangling.

Figure 9: (Moreira et al. 2021) Old CMVS design
block diagram

5

Methodology

Identifying Design Aspects in
Need of Improvement

The old system was taken out and stud-
ied to find problems that might make it
more difficult to set up, test, maintain,
and by extension commercialize. The ar-
eas which needed improvement were noted
as follows:

1. MATLAB scripts

(a) Code mostly undocumented or
underdocumented.

(b) Variables and functions not de-
scriptively named.

(c) Two histogram algorithms pro-
ducing different results.

(d) Histograms are not labeled and
do not show numerical values
for speed and direction.

2. Physical System Design

(a) Soldering headers directly to

wires created a system that was
difficult to transport, put into
storage, or remove from storage
without it becoming severely
tangled.

(b) Only one TCA9548A multi-
plexer is needed to allow for 9
TSL2591 sensors to be used in
the system2.

(c) The BeagleBone Black ap-
peared to not really have a pur-
pose, as it was also connected
to a computer.

Other general inconsistencies were
noted in what was written by Moreira
et al. (2021) and the functionality of the
code. Noticing this, it was deemed to be
highly important to clarify the firmware
and the algorithm so that it could more
easily be examined to assure correct oper-
ation.

Planning Changes

A plan of action was made to create a
CMVS that could easily be transported
and maintained. The plan consisted of the
following steps.

2TCA9548A multiplexers were used because the TSL2591 have a fixed I2C address of 0x29, meaning
that only one sensor could be on the I2C bus at a time. The multiplexers themselves had a range of
addresses available – 0x70 - 0x77 – and support 8 I2C devices each. Therefore, the SDA and SCL bus
from the Arduino should be able to be connected to both a single TSL2591 and a TCA9548A, which
would be connected to the eight other sensors.

6

1. MATLAB scripts

(a) Create a GitHub repository of
the codebase so that all changes
can be tracked.

(b) Refactor and document code to
increase legibility and maintain-
ability.

(c) Restyle the histograms so that
they clearly convey information
about the movement of clouds.

2. Physical System Design

(a) Utilize connectors instead of di-
rectly soldering wires to head-
ers so that CMVS can be dis-
mantled for easier storage or
transport.

(b) Utilize cables or wire sleeves
to prevent connections to the
outer radius of sensors from
tangling.

(c) Adjust firmware and utilize
a WiFi-capable microcontroller
so that sensor data can be up-
loaded to ThingSpeak without
the need for the CMVS to be
connected to neither a Beagle-
Bone Black nor a computer. As
the BegaleBone Black is the
most expensive individual com-
ponent, this would make the
CMVS significantly cheaper.

(d) Attempt to implement I2C
protocols within the firmware
rather than using hardware
TCA9548A multiplexers, which
would further reduce the com-
plexity and cost of the system.

(e) Create a custom centralized
PCB so that the center is com-
pact and secure.

Accuracy Testing

Regardless of design, an important step on
the path to commercial viability would be
to test the system for accuracy. The old
design, while flawed, had a good frame-
work that could be built on top of rather
than scrapping completely. With a plan
to upgrade the design, the best course of
action was deemed to be to make small
changes whenever possible and then test
the system to see if it produces the same
or highly similar results to the old design.
Working in a step-by-step fashion would
ensure that redesigning the system would
not compound with the flaws that were al-
ready present.

7

Results

Improvements in MATLAB
Code

The MATLAB code was refactored to
have less repetitious code, more descriptive
variables and functions, and a more consis-
tent style (e.g. functions are written in
snake case, variables are written in camel
case)3. Additional features were added, in-
cluding a progress bar that displays during
lengthy processes and input/output selec-
tion prompts.

The histograms were significantly im-
proved in a number of ways:

1. The output image consists of three
tiles: A large one that contains both
methods for easy comparison be-

tween the two, and then two smaller
ones that show the methods individ-
ually so they can be viewed in isola-
tion.

2. The r-axis is now normalized to fall
between zero and one, as the bins of
the histogram are intended to repre-
sent the probability that the cloud is
moving in a certain direction.

3. The calculated speed and direction
of the cloud is now included as text
in the bottom right.

4. The output image is titled so that an
observer is more aware of what the

3Full listings of the MATLAB code can be seen in Appendix A.

1 0x56f1, 0x4014, 0x38df, 0x6181, 0x4ceb, 0x2c14, 0x4446, 0x3098, 0x3fb2
2 0x56fd, 0x4024, 0x38e6, 0x6194, 0x4b18, 0x2c15, 0x4453, 0x30a6, 0x3fb7
3 0x561c, 0x4033, 0x38fb, 0x61a7, 0x4cba, 0x2c1e, 0x4463, 0x309f, 0x3fb0
4 0x5702, 0x4012, 0x38ee, 0x61bd, 0x8d3, 0x2c1d, 0x4458, 0x30a4, 0x3fc3
5 0x5706, 0x4021, 0x38f5, 0x61a6, 0x4b2c, 0x2c1e, 0x445c, 0x30ab, 0x3fb1
6 0x570a, 0x4020, 0x38ee, 0x6187, 0x9f2, 0x2c1a, 0x4451, 0x30a6, 0x3fc4
7 0x571e, 0x4011, 0x38ec, 0x6198, 0x4b8a, 0x2c29, 0x445b, 0x30ae, 0x3fc8
8 0x5713, 0x4022, 0x3812, 0x61b1, 0x8e8, 0x2c27, 0x4462, 0x30b5, 0x3fca
9 0x5703, 0x4020, 0x39fc, 0x6194, 0x952, 0x2c1d, 0x445e, 0x30b5, 0x3fd8

10 0x571a, 0x4032, 0x384e, 0x619a, 0x815, 0x2c2f, 0x449f, 0x30af, 0x3fe5

Figure 10: In the new implementation of the firmware, data for all nine sensors is uploaded as a string
to a single ThingSpeak channel (see thing_speak_test.m for an example of how this code is imported into
MATLAB). One benefit of using a string is that the data can be padded with spaces so that columns
are separated and can more easily be read.

8

displayed data is intended to repre-
sent.

The function calculate_lux.m was writ-
ten to offload resource-heavy floating-point
arithmetic from the microcontroller, if so
desired. The CMVS needs to be set
to collect luminance data for this func-
tion to work (see the !mode! variable in
cmvs_sw_wifi.ino and the available modes in
constants.h).

Microcontroller and Firmware
Improvements

Connectivity

With the use of a WiFi-capable Arduino
Nano 33 IoT in place of the Arduino Uno
Rev3 in the original design, the system
was able to directly connect to the inter-
net and no longer needed to be connected
to a BeagleBone Black or a computer to
operate. Additionally, there is a ThingS-
peak Arduino library that allowed the up-
loads to be made directly from the Ar-
duino Nano 33 IoT. With this new code,
the Python and Bash scripts used in the
original design were also no longer neces-
sary. wifi_setup.cpp can be viewed to see how
the connectivity to WiFi and ThingSpeak
is implemented.

Figure 11: Improved Histogram to show both methods at once and show projection lines. As r-axis is
intended to show probability it has been normalized to one. Compare with Fig. 4 and Fig. 5 to see that
the same data is shown.

9

I2C Implementation

The firmware was also updated to use the
SoftWire Arduino library to communicate
with the TSL2591 sensors using a software
I2C implementation rather than a hard-
ware one.4 This change resulted in the ob-
solescence of the multiplexers in the design,
as the SDA and SCL pins could now be re-

assigned to any digital I/O pins on the Ar-
duino Nano 33 IoT. This implementation
can be viewed in tsl_softwire.cpp.

Observing the new block diagram of
Fig. 12, it can be seen that the removal
of several components has resulted in a
significant simplification of the new de-
sign.

Figure 12: Block diagram of RJ45 connector implementation. Compare with Fig. 9 to see the complete
simplification of the system.

PCB Design and
Connectors

A printed circuit board was designed to
use RJ45 connectors and ethernet cables
to interface the Arduino Nano 33 IoT with
the TSL2591 sensors. Ethernet cables are
a good choice for this application as they
are inexpensive, require no preparation or

assembly to use, and they provide shield-
ing from electrical interference if grounded.
This is something that may want to be
considered in the future if issues are seen
in making data reads from the sensors, as
the I2C protocol is not designed to be used
over long distances.

Fig. 14a and Fig. 14b show the first ver-
sion of the custom PCB. This board was

4Firmware code listings can be seen in Appendix B

10

(a) (b)

Figure 13: The old (a) and new(b) versions of the TSL2591 breakout boards made by Adafruit

designed and ordered to ensure correct op-
eration and find unforeseen issues before
the next version was designed. It should be
noted that the first version uses a mixture
of TSL2591 breakout boards, resulting in
differences in how the RJ45 connectors are
routed to the Arduino Nano 33 IoT. This
choice was made due to the limited avail-
ability of the newer breakout boards (see
Fig. 13).

The first version was tested and found
to be somewhat crowded in layout, as
it was difficult to connect the Arduino
Nano 33 IoT to a computer using the USB
port.The second version, which can be seen
in Fig. 14c and Fig. 14d, is designed to
only use the newer version of the break-

out board, is more spacious, and contains
additional options for power sources, ex-
ternal LED indicators, and an easily acces-
sible reset switch. Fig. 15a and Fig. 15b
show testing setups using version one of
the PCB. The indoor setup used short eth-
ernet cables to allow for one-person testing
of the algorithm, as it is easier to block
light from the sensors when they are closer
together.

The outdoor setup was used to test
how the system worked at the PV site lo-
cated at WPI. This testing is what pro-
duced the data shown in Fig. 10, and
the numerical annotations shown in brack-
ets correspond to the columns of the out-
put.

11

(a) RJ45 connector based PCB – version 1, top side. (b) RJ45 connector based PCB – version 1, bottom side.

(c) RJ45 connector based PCB – version 2, top side. (d) RJ45 connector based PCB – version 2, bottom side.

Figure 14: PCB designs for new CMVS system

12

(a) Quick testing setup – sensors place closely to-
gether for easier cloud simulation. Led indicator
can be seen shining through the board

(b) Field testing setup – sensors place in ten-foot radius, with concrete blocks being used to simulate
clouds.

Figure 15: Indoor and outdoor testing arrangements

13

Conclusion

The design of the array made by the re-
search group last year contained serious
flaws but provided a solid framework to
build upon. Through use of this frame-
work, a much improved design was im-
plemented without loss of functionality.
This newer design does not use a Beagle-
Bone Black, nor any multiplexers, making
the hardware layout cheaper and simpler.
The simplification of the hardware design
comes at a cost of increased complexity
of the firmware. This is due to the soft-
ware implementation of the I2C protocol.
However, the design could easily be imple-
mented to use only a single multiplexer
to keep the firmware simple. Retaining
a hardware implementation of I2C would
likely increase portability of the design so
that it can easily be used with non-arduino
microcontrollers.

Future Work

Issues are still present in the MATLAB al-
gorithms, as they were not adjusted. The
two methods frequently produce predic-
tions that are at odds with each other, so
an important next step to take would be to
perform further testing to find which algo-
rithm is producing more accurate results,
and if that algorithm reliably produces ac-
curate results. One possible idea to facil-
litate robust testing of the system would
be to design a piece of software that sim-
ulates changing light conditions. Taking
this action would ensure that the system
functions without error in most scenarios,
and it would help to identify bugs that only
occur in niche conditions.

14

References

[BK13] Juan Luis Bosch and Jan Kleissl. “Cloud motion vectors from a network of
ground sensors in a solar power plant”. In: Solar Energy 95 (2013), pp. 13–20.

[FWM21] David Feldman, Kevin Wu, and Robert Margolis. “H1 2021 Solar Industry
Update”. In: (July 2021). doi: 10.2172/1808491. url: https://www.osti.
gov/biblio/1808491.

[GW08] Rafael C. Gonzalez and Richard E. Woods. Digital image processing. Upper
Saddle River, N.J.: Prentice Hall, 2008, pp. 706–714. isbn: 9780131687288
013168728X 9780135052679 013505267X. url: http://www.amazon.com/
Digital-Image-Processing-3rd-Edition/dp/013168728X.

[Mor+21] Matthew C. Moreira et al. Cloud Motion Vector System to Monitor and
Predict Output Power of a Photovoltaic System in Real Time. Tech. rep.
100 Institute Road, Worcester MA 01609-2280 USA: Worcester Polytechnic
Institute, Mar. 2021.

15

https://doi.org/10.2172/1808491
https://www.osti.gov/biblio/1808491
https://www.osti.gov/biblio/1808491
http://www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/013168728X
http://www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/013168728X

Appendix A: MATLAB Code Listings

The code in this section represents a refactored and more robust version of the MATLAB
scripts implemented by Moreira et al. (2021). Additional work needs to be completed
to ensure the validity of the algorithms that are in use to calculate cloud speed and
cloud direction. Note that not all functions here are currently implemented in !main.m!,
as some are auxiliary functions meant for testing or obsolete functions that are being
included as a reference.

calculate lux.m

1 function [lux, luxIfBright, luxIfDim] = calculate_lux(Tsl, lum)
2 lumsize = size(lum);
3 lumel = numel(lum);
4 lum = uint32(lum(:))';
5 lum = struct(full=bitshift(lum, -16), ir=bitand(lum, 0x0000FFFF));
6
7 % Note: This algorithm is based on preliminary coefficients
8 % provided by AMS and may need to be updated in the future
9 countsPerLux = (Tsl.aTime * Tsl.aGain) / Tsl.DF;

10 luxIfBright = (Tsl.COEFA * cast(lum.ir, 'single') - Tsl.COEFB * cast(lum.full,
'single')) / countsPerLux;

11 luxIfDim = (Tsl.COEFC * cast(lum.ir, 'single') - Tsl.COEFD * cast(lum.full,
'single')) / countsPerLux;

12 lux = max([luxIfBright ; luxIfDim ; zeros(1, lumel)]);
13
14 % Report overflows as -1
15
16 lux(lum.ir == 0xFFFF) = -1;
17 if sum(lux(lux == -1) > 0)
18 warning("Overflow Detected");
19 end
20 lux = reshape(lux, lumsize);
21 end

ensure valid sample.m

1 function [DATA_WINDOW, FILTER_WINDOW, I_DATA_END, I_DATA_START] =
ensure_valid_sample(DATA_WINDOW, data, FILTER_WINDOW, I_DATA_END, I_DATA_START, I_DELTA)

2 if DATA_WINDOW > length(data)
3 DATA_WINDOW = length(data);
4 dataWindowWarn = sprintf("DATA_WINDOW exceeds length of data and has been trimmed");
5 else
6 dataWindowWarn = sprintf('');
7 end

16

8 if FILTER_WINDOW > length(data)
9 FILTER_WINDOW = length(data);

10 filterWindowWarn = sprintf("FILTER_WINDOW exceeds length of data and has been
trimmed");

11 else
12 filterWindowWarn = sprintf('');
13 end
14 if I_DATA_END > length(data)
15 I_DATA_END = length(data);
16 I_DATA_START = max(I_DATA_END - I_DELTA, 1);
17 dataEndWarn = sprintf("I_DATA_END exceeds length of data. Range parameters have been

changed");
18 else
19 dataEndWarn = sprintf('');
20 end
21 if ~ismissing([dataWindowWarn, filterWindowWarn, dataEndWarn])
22 warning('\n\t%s\n\t%s\n\t%s', dataWindowWarn, filterWindowWarn, dataEndWarn);
23 end
24 end

figure setup.m

1 function figure_setup()
2 SENSOR_STRINGS = ['NW';' N';'NE'
3 ' W';' O';' E'
4 'SW';' S';'SE'];
5 FIGURE_STRINGS = ["data"
6 "dataSample"
7 "smoothSample"
8 "smoothSampleNorm"];
9 SCALE = 150;

10 FMT = struct;
11 FMT.COLORORDER = colororder;
12 FMT.AX.FontSize = 15;
13 FMT.AX.FontWeight = 'bold';
14 FMT.AX.YLim = [0 inf];
15 FMT.POLAX.FontSize = 10;
16 FMT.POLAX.FontWeight = 'normal';
17 FMT.POLAX.ThetaTick = 0:15:360;
18 FMT.POLAX.TickLabelInterpreter = 'tex';
19 FMT.RTICKSET = @() set(gca, ...
20 RTickLabel=strcat("\fontsize{7}", string(gca().RTickLabel)));
21
22 BIN_EDGES = pi/8:pi/4:2*pi;
23 POLAR_ORDER = [9 6 4 5 8 2 1 3];
24
25 tickLabel = string(FMT.POLAX.ThetaTick);
26 tickInc = round((length(FMT.POLAX.ThetaTick) - 1) / length(BIN_EDGES));
27 idx = ~ismember(tickLabel(1:end-1), tickLabel(1:tickInc:end-1));
28 tickLabel(idx) = strcat("\color{gray}\fontsize{7}", tickLabel(idx));
29 % FMT.POLAX_DOTS = @(pax, rmax) polarplot(deg2rad(pax.BinEdges), ...
30 % repelem(rmax, length(pax.BinEdges)));
31 FMT.POLAX.ThetaTickLabel = tickLabel;
32 FMT.POLAX.TickLength = [0.2 0] ;

17

33 FMT.POLAX.ThetaMinorTick = 'on' ;
34 TILE.ROWS = 2;
35 TILE.COLS = 3;
36 TILE.LARGE_SPAN = [2 2];
37 TILE.POS(1) = 1;
38 TILE.POS(2) = 3;
39 TILE.POS(3) = 6;
40 FMT.TLO.Padding = 'compact';
41 FMT.TLO.TileSpacing = 'compact';
42
43 FMT.FIG.Units = 'Normalized';
44 FMT.FIG.Visible = false;
45 % FMT.FIG.OuterPosition = [0, 0.04, 0.25, 0.25];
46 save figure_setup;
47 end

get cmv direction.m

1 function cmvDirection = get_cmv_direction(angleRad, histPlot, algorithm)
2 %% This function gets the CMV direction using algorithm
3 % (1) without 2 * pi wraparound or
4 % (2) with 2 * pi wraparound
5 [max_row, ~] = size(angleRad);
6 [~, edge_idx] = max(histPlot.Values);
7 edgeVals = histPlot.BinEdges;
8 % [~, edge_idx] = max(histo.Values);
9 % edgeVals = histo.BinEdges;

10 lowerBound = edgeVals(edge_idx);
11 upperBound = edgeVals(edge_idx + 1);
12 directionTemp = zeros(1, 1);
13 cnt = 1;
14
15 switch algorithm
16 case 1
17 % Get final CMV direction if Algorithm 2.1
18 for id = 1:max_row
19 if angleRad(id) > lowerBound && angleRad(id) < upperBound
20 directionTemp(cnt) = angleRad(id);
21 cnt = cnt + 1;
22 end
23 end
24
25 case 2
26 % Get final CMV direction if Algorithm 2.2
27 for id = 1:max_row
28 if angleRad(id) < 0.3926991
29 angleRad(id) = angleRad(id) + 2 * pi;
30 end
31
32 if angleRad(id) > lowerBound && angleRad(id) < upperBound
33 directionTemp(cnt) = angleRad(id);
34 cnt = cnt + 1;
35 end
36 end

18

37 end
38
39 cmvDirection = rad2deg(mean(directionTemp));
40 if cmvDirection < 0
41 cmvDirection = cmvDirection + 360;
42 elseif cmvDirection > 360
43 cmvDirection = cmvDirection - 360;
44 end
45
46 end

get cmv speed.m

1 function cmvSpeed = get_cmv_speed(cmvDirection, dipLocArr)
2 % This function receives the CMV direction and calculates the cloud shadow
3 % speed from the local minima locations
4 theta = deg2rad(cmvDirection);
5
6 dipLocArr(dipLocArr == 0) = NaN;
7 v = zeros(3, 1);
8
9 % fullArr = repelem(nan, 9);

10 % fullArr(1:length(dipLocArr)) = dipLocArr;
11 fullArr = dipLocArr;
12 % Initialize variables
13 deltaT1 = 0;
14 deltaT2 = 0;
15 deltaT3 = 0;
16 deltaT4 = 0;
17 deltaT5 = 0;
18 %CMV_direction = ~45 degrees
19 if theta >= 0.3926991 && theta < 1.178097
20 deltaT1 = fullArr(02) - fullArr(04); %sqrt(2) m
21 deltaT2 = fullArr(03) - fullArr(07); %2m
22 deltaT3 = fullArr(06) - fullArr(08); %sqrt(2) m
23 deltaT4 = fullArr(03) - fullArr(05); %1m
24 deltaT5 = fullArr(05) - fullArr(07); %1m
25 %CMV_direction = ~90 degrees
26 elseif theta >= 1.178097 && theta < 1.9634954
27 deltaT1 = fullArr(01) - fullArr(07); %sqrt(2) m
28 deltaT2 = fullArr(02) - fullArr(08); %2m
29 deltaT3 = fullArr(03) - fullArr(09); %sqrt(2) m
30 %CMV_direction = ~135 degrees
31 elseif theta >= 1.9634954 && theta < 2.7488936
32 deltaT1 = fullArr(02) - fullArr(06); %sqrt(2) m
33 deltaT2 = fullArr(01) - fullArr(09); %2m
34 deltaT3 = fullArr(04) - fullArr(08); %sqrt(2) m
35 deltaT4 = fullArr(01) - fullArr(05); %1m
36 deltaT5 = fullArr(05) - fullArr(09); %1m
37 %CMV_direction = ~180 degrees
38 elseif theta >= 2.7488936 && theta < 3.5342917
39 deltaT1 = fullArr(01) - fullArr(03); %sqrt(2) m
40 deltaT2 = fullArr(04) - fullArr(06); %2m
41 deltaT3 = fullArr(07) - fullArr(09); %sqrt(2) m

19

42 %CMV_direction = ~225 degrees
43 elseif theta >= 3.5342917 && theta < 4.3196899
44 deltaT1 = fullArr(04) - fullArr(02); %sqrt(2) m
45 deltaT2 = fullArr(07) - fullArr(03); %2m
46 deltaT3 = fullArr(08) - fullArr(06); %sqrt(2) m
47 deltaT4 = fullArr(07) - fullArr(05); %1m
48 deltaT5 = fullArr(05) - fullArr(03); %1m
49 %CMV_direction = ~270 degrees
50 elseif theta >= 4.3196899 && theta < 5.1050881
51 deltaT1 = fullArr(07) - fullArr(01); %sqrt(2) m
52 deltaT2 = fullArr(08) - fullArr(02); %2m
53 deltaT3 = fullArr(09) - fullArr(03); %sqrt(2) m
54 %CMV_direction = ~315 degrees
55 elseif theta >= 5.1050881 && theta < 5.8904862
56 deltaT1 = fullArr(06) - fullArr(02); %sqrt(2) m
57 deltaT2 = fullArr(09) - fullArr(01); %2m
58 deltaT3 = fullArr(08) - fullArr(04); %sqrt(2) m
59 deltaT4 = fullArr(09) - fullArr(05); %1m
60 deltaT5 = fullArr(05) - fullArr(01); %1m
61 %CMV_direction = ~360 degrees
62 elseif theta >= 5.8904862 && theta < 6.6758844
63 deltaT1 = fullArr(03) - fullArr(01); %sqrt(2) m
64 deltaT2 = fullArr(06) - fullArr(04); %2m
65 deltaT3 = fullArr(09) - fullArr(07); %sqrt(2) m
66 end
67
68 v(1) = abs(sqrt(2) / deltaT1);
69 v(2) = abs(2 / deltaT2);
70 v(3) = abs(sqrt(2) / deltaT3);
71 v(4) = abs(1 / deltaT4);
72 v(5) = abs(1 / deltaT5);
73
74 for id = 1:5
75 if isinf(v(id))
76 v(id) = nan;
77 end
78 end
79
80 cmvSpeed = mean(v, 'omitnan') / 150 * 1000; %meters per second
81 end

get csd.m

1 function outputArray = get_csd(magnitude, theta, threshold)
2 %% This function gets the raw magnitude and theta converts to a corrected array
3 [nRows, nCols, nPages] = size(magnitude);
4
5 %% Find average angles
6 angleArray = zeros(nPages, 1); %initialize list of angles
7 for iPage = 1:nPages
8 thetaAvg = 0; %initialize variable
9 cnt = 0;

10 for iRow = 1:nRows
11 for iCol = 1:nCols

20

12 if magnitude(iRow, iCol, iPage) > threshold
13 thetaAvg = thetaAvg + deg2rad(theta(iRow, iCol, iPage)); %get

a running tally of angles
14 cnt = cnt + 1;
15 end
16 end
17 end
18
19 thetaAvg = thetaAvg / cnt; %get average

angle
20 angleArray(iPage, 1) = thetaAvg;
21 end
22
23 %% Find the first non - NaN element's sign
24 testArray = angleArray;
25 cnt = 0;
26 for idx = 1:numel(testArray)
27 if ~isnan(testArray(idx))
28 cnt = cnt + 1;
29 angleArray(cnt, 1) = testArray(idx);
30 end
31 end
32
33 %Find starting point
34 start = 1;
35 while start < numel(testArray) && isnan(testArray(start))
36 start = start + 1;
37 end
38
39 %% Check the quadrants of the first 1 / 4 of the elements
40 angleLabel = get_quadrant(testArray);
41
42 checkArray = cell(numel(angleLabel, 1));
43 checkArray(1, 1) = angleLabel(start);
44
45 [maxRow, ~] = size(angleArray);
46 maxCheck = start + ceil(maxRow / 8);
47
48 cnt = 1;
49 disp([start maxCheck]);
50 for idx = start:maxCheck
51 if ~isequal(angleLabel(idx), checkArray(cnt)) %check if qudrant is not the same
52 cnt = cnt + 1; %increment
53 checkArray(cnt, 1) = angleLabel(idx); %save new quadrant label to another cell
54 end
55 end
56
57 %% Correct angles (in radians) opposite that of reference quadrants
58 for idx = 1:numel(testArray)
59 notequal = 0;
60
61 for idx2 = 1:numel(checkArray)
62 if isequal(angleLabel{idx}, checkArray{idx2})
63 notequal = notequal + 1;
64 end
65 end
66

21

67 if ~notequal
68 testArray(idx) = testArray(idx) + pi;
69 angleLabel{idx} = get_quadrant(testArray(idx));
70 end
71 end
72
73 %% Return output
74 outputArray = testArray;
75 end

get matrix.m

1 function outputMatrix = get_matrix(orderedArray, dataWindow)
2 %% This function maps lux data into a matrix
3 orderedArrayMsum = movsum(orderedArray, dataWindow, 1, Endpoints='discard'); % TODO:

Figure out why a moving sum is being applied
4 matSize = sqrt(width(orderedArrayMsum)); %TODO: Replace with more general definition
5 outputMatrix = reshape(orderedArrayMsum', matSize, matSize, []);
6 outputMatrix = permute(outputMatrix, [2, 1, 3]);
7 outputMatrix = outputMatrix / dataWindow;
8 end

get norm.m

1 function dataSampleNorm = get_norm(dataSample)
2 %% This function normalizes data with respect to each column
3 [nRows, nCols] = size(dataSample);
4 dataNorm = zeros(nRows, nCols);
5 for iCol = 1:nCols
6 dataNorm(:, iCol) = dataSample(:, iCol) / max(abs(dataSample(:, iCol)));
7 end
8 dataSampleNorm = dataNorm;

get quadrant.m

1 function angleLabel = get_quadrant(array)
2 angleLabel = cell(1);
3 for idx = 1:numel(array)
4 if array(idx)>=0 && array(idx) < pi/2
5 angleLabel(idx, 1) = {'Quadrant1'};
6 elseif array(idx)>=pi/2 && array(idx) < pi
7 angleLabel(idx, 1) = {'Quadrant2'};
8 elseif array(idx)>=pi && array(idx) < 3*pi/2
9 angleLabel(idx, 1) = {'Quadrant3'};

10 elseif array(idx)>=3*pi/2 && array(idx) < 2*pi
11 angleLabel(idx, 1) = {'Quadrant4'};
12 else
13 angleLabel(idx, 1) = {NaN};
14 end

22

15 end
16 end

get resultant vec.m

1 function [M, phase] = get_resultant_vec(magnitude, theta)
2 % This function converts the magnitudes and angles into a phasor. The
3 % resultant vector's is then decomposed as magnitude, M, and angle, phase.
4
5 zTotal = 0;
6 threshold = 0.02;
7 [nRows, nCols, nPages] = size(magnitude);
8 M = zeros(nPages, 1);
9 phase = zeros(nPages, 1);

10
11 for iPage = 1:(nPages - 1)
12 for iRow = 1:nRows
13 for iCol = 1:nCols
14 R = magnitude(iRow, iCol, iPage);
15 rtheta = deg2rad(theta(iRow, iCol, iPage));
16
17 if R > threshold
18 z = R * (cos(rtheta) + j * sin(rtheta)); %convert

into complex form
19 zTotal = zTotal + z; %add complex

numbers
20 end
21 end
22 end
23
24 M(iPage) = abs(zTotal);
25 phase(iPage) = angle(zTotal);
26 end
27 end

get sample range.m

1 function dataSampleRange = get_sample_range(data, dataStart, dataEnd)
2 %% This function gets a specified frame from x_start to x_end of the dataset.
3 nSamples = dataEnd - dataStart + 1;
4 nSensors = width(data);
5 dataSampleRange = zeros(nSamples, nSensors);
6 for i = 1:nSensors
7 % actual_temp = data(x_start:x_end, i);
8 dataSampleRange(:, i) = data(dataStart:dataEnd, i);
9 end

10 % data_sample = reshape(data_sample, num_samples, num_sensors);

get vid.m

23

1 function get_vid(inputStruct, filename)
2 %% Turn images in struct into an avi file
3 v = VideoWriter(filename);
4 open(v);
5
6 for k = 1:length(inputStruct)
7 frame = inputStruct(:, k);
8 writeVideo(v, frame);
9 end

10
11 close(v);

main.m

1 clear frames paddedData;
2
3 DATA_FILE = '../Data/11-9-sensors-only.csv';
4 OUTPUT_DIR = '11-9-output';
5 % OUTPUT_DIR = 'output';
6 MATRIX_TYPE = 'normalized';
7 THRESHOLD = 0.03;
8 PEAK_DISTANCE = 50;
9 PEAK_PROMINENCE = 0.15;%0.016;

10 PEAK_WIDTH = 15;
11 SENSOR_ORDER = [5 4 6 8 7 9 2 1 3]; % Northwest to Southeast
12 DATA_ORDER = [9 4 8 3 5 1 7 2 6]; % Northwest to Southeast
13 FILL_ORDER = [4 1 8 9 6 2 5 3 7]; % N S W E NE SW NW SE O
14 CREATE_VIDEO = false;
15 CREATE_PLOTS = true;
16 % SENSOR_ORDER = FILL_ORDER;
17 if ispc % Check to see if operating system is Windows
18 DELIMITER = '\';
19 else % otherwise, use unix-style path delimiters.
20 DELIMITER = '/';
21 end
22 figure_setup;
23 load figure_setup SENSOR_STRINGS FIGURE_STRINGS FMT BIN_EDGES SCALE TILE;
24
25 if ~isfile(DATA_FILE)
26 [DATA_FILE, DATA_FILE_PATH] = uigetfile('*.csv;*.txt;*.dat',...
27 'Select Input CSV Data', 'data.csv');
28 DATA_FILE = [DATA_FILE_PATH, DATA_FILE];
29 end
30 if ~isfolder(OUTPUT_DIR)
31 OUTPUT_DIR = uigetdir('.', 'Select Output Directory');
32 end
33
34 % Read and transfer raw lux data to new array
35 data = readmatrix(DATA_FILE, OutputType='string');
36 if ~isempty(regexp(data, '[a-fx]', 'once')) % Check if data is hex
37 data = hex2dec(data); % If hex, convert to decimal
38 end
39 data = uint32(data);
40

24

41
42 %%%%%% THINGS PEAK
43 % i = 0;
44 % lastMat = 0;
45 % T = thingSpeakRead(1552033, ... % Get table from TSpeak
46 % Fields=1, ...
47 % NumPoints=1661, ...
48 % ReadKey='AD8ZB04MFD6HIYI8', ...
49 % OutputFormat='table');
50 % dataCol = T(:, {'cmvsData '}); % time & data cols -> data col
51 % dataCol = rowfun(@string, dataCol); % char table -> str table
52 % data = dataCol{:,:}; % str table -> str array
53 % data = arrayfun(@(x) uint32(str2num(x)), data, ...
54 % uniform=false); % str array -> uint32 cell array
55 % data = cell2mat(data); % uint32 cell array -> uint32 array
56 %%%%%%
57
58 nNotNan = sum(~isnan(data),2); % count number of valid values in each row
59 nSensors = round(mean(nNotNan)); % Use mean to get number of sensors
60 data = data(nNotNan == nSensors, :); % Get rows with a reading for each sensor
61 data = rmmissing(data, 2); % Exclude any remaining columns that contain a Nan
62
63 iLoop = 1;
64 % iDataStart = 660;
65 % iDataEnd = 770;
66 % iDataStart = 1;
67 % iDataEnd = 101;
68 iDataStart = 840; % 10 ft/ 30 s -- whole array
69 iDataEnd = 940;
70
71 % iDataStart = 1030 + 24; % 10 ft / 10 s -- whole array
72 % iDataEnd = 1130 - 24;
73 iDelta = iDataEnd - iDataStart;
74 dataWindow = 10; % specifies sliding window length for moving sum
75 filterWindow = 11; % specifies smoothing window length
76
77
78 %% Validate, Normalize, and Smooth Data
79 if dataWindow > length(data)
80 dataWindow = length(data);
81 dataWindowWarn = sprintf("dataWindow exceeds length of data and has been trimmed");
82 else
83 dataWindowWarn = sprintf('');
84 end
85 if filterWindow > length(data)
86 filterWindow = length(data);
87 filterWindowWarn = sprintf("filterWindow exceeds length of data and has been trimmed");
88 else
89 filterWindowWarn = sprintf('');
90 end
91 if iDataEnd > length(data)
92 iDataEnd = length(data);
93 iDataStart = max(iDataEnd - iDelta, 1);
94 dataEndWarn = sprintf("iDataEnd exceeds length of data. Range parameters have been

changed");
95 else
96 dataEndWarn = sprintf('');

25

97 end
98 if ~ismissing([dataWindowWarn, filterWindowWarn, dataEndWarn])
99 warning('\n\t%s\n\t%s\n\t%s', dataWindowWarn, filterWindowWarn, dataEndWarn);

100 end
101
102 if nSensors < 9
103 % paddedData = padarray(data', 9 - width(data), nan, 'post')';
104 paddedData = NaN(length(data), 9);
105 if mod(nSensors, 2)
106 fillOrder = [FILL_ORDER(1:nSensors) FILL_ORDER(end)];
107 else
108 fillOrder = FILL_ORDER;
109 end
110 for iSensor = 1:nSensors
111 paddedData(:, fillOrder(iSensor)) = data(:, iSensor);
112 end
113 % paddedData(:, floor(linspace(1,9,nSensors))) = data;
114 data = fillmissing(paddedData, 'movmean', max(9 - nSensors ,2), 2, ...
115 EndValues='nearest');
116 warning("%d sensors detected. Missing data is being interpolated, and may be

inaccurate.", ...
117 nSensors);
118 nSensors = 9;
119 end
120
121 % while iDataStart + iDelta < height(dataCol)
122 % Tsl = Sensor;
123 % data = calculate_lux(Tsl, data);
124
125 iDataEnd = iDataStart + iDelta;
126
127 dataSample = get_sample_range(data, iDataStart, iDataEnd);
128 dataSample = dataSample(:, DATA_ORDER);
129 dataSampleNorm = get_norm(dataSample);
130 smoothSample = smoothdata(dataSample, 'sgolay', filterWindow);
131 smoothSampleNorm = smoothdata(dataSampleNorm, 'sgolay', filterWindow);
132
133 %% Plot Sensor Data
134 plotSets = {
135 data
136 dataSample
137 smoothSample
138 smoothSampleNorm
139 };
140 if CREATE_PLOTS
141 figure(FMT.FIG);
142 dataPlotFmt.LineWidth = 2;
143 for iPlotSet = 1:length(plotSets)
144 dataPlot = plot(plotSets{iPlotSet});
145 for iSensor = 1:nSensors
146 dataPlotFmt.DisplayName = SENSOR_STRINGS(iSensor, :);
147 set(dataPlot(iSensor), dataPlotFmt);
148 end % iSensor = 1:nSensors
149 legend('show');
150 dataAx = gca;
151 xlabel('Time Elapsed (milliseconds)');
152 ylabel('Irradiance (W/m^2)');

26

153 dataAx.XTickLabel = arrayfun(@(x) sprintf('%d', SCALE * x), dataAx.XTick,...
154 'un', 0);
155 set(dataAx, FMT.AX);
156 saveas(gca, fullfile(OUTPUT_DIR, FIGURE_STRINGS(iPlotSet, :)), 'fig');
157 saveas(gca, fullfile(OUTPUT_DIR, FIGURE_STRINGS(iPlotSet, :)), 'png');
158 close
159 end % iPlotSet = 1:length(plotSets)
160 end % CREATE_PLOTS
161 %% Find peaks and dips
162 t = (iDataStart:iDataEnd); %/ Fs
163 peakArr = zeros(nSensors, 1);
164 peakLocArr = zeros(nSensors, 1);
165
166 dipArr = zeros(nSensors, 1);
167 dipLocArr = zeros(nSensors, 1);
168
169 % Peak and dip parameters
170 dipFmt.MinPeakDistance = PEAK_DISTANCE;
171 dipFmt.MinPeakProminence = PEAK_PROMINENCE;
172 dipFmt.NPeaks = PEAK_WIDTH;
173
174 % Plot local maxima and minima
175 if CREATE_PLOTS
176 sensorPlot = repelem(0, nSensors);
177 figure(FMT.FIG);
178
179 hold on
180 for iSensor = 1:nSensors
181 sensorInv = 1 ./ smoothSampleNorm(:, iSensor);
182 [dip, dipLoc] = findpeaks(sensorInv, dipFmt);
183
184 if isempty(dipLoc)
185 dipLocArr(iSensor) = 0;
186 else
187 dipLocArr(iSensor) = dipLoc(1);
188 end
189
190 sensorPlot(iSensor) = plot(t, smoothSampleNorm(:, iSensor), ...
191 DisplayName='Origin Sensor', LineWidth=2);
192 set(sensorPlot(iSensor), dataPlotFmt);
193 plot(t(dipLoc), 1 / dip, 'rs', 'MarkerSize', 10);
194 end
195 hold off
196 sensorAx = gca;
197 set(sensorAx, FMT.AX);
198 xlabel('Time Elapsed (milliseconds)');
199 ylabel('Normalized Irradiance');
200 sensorAx.XTickLabel = arrayfun(@(x) sprintf('%d', SCALE * x), sensorAx.XTick, 'un', 0);
201 saveas(gca, fullfile(OUTPUT_DIR, 'CMV_Sample_Norm'), 'fig');
202 saveas(gca, fullfile(OUTPUT_DIR, 'CMV_Sample_Norm'), 'png');
203 end % CREATE_PLOTS
204
205 if strcmp(MATRIX_TYPE, 'normalized')
206 smoothSampleNorm2 = get_norm(smoothSample); % FIXME: Why is the normalization of smooth

sample being defined differently here?
207 luxMatrix = get_matrix(smoothSampleNorm2(:, SENSOR_ORDER), dataWindow);
208 else

27

209 luxMatrix = get_matrix(smoothSample(:, SENSOR_ORDER), dataWindow);
210 end
211
212 pages = length(luxMatrix); %find maxnumber

of frames
213 imData = luxMatrix(:, :, 1:pages); %set

dataset to be analyzed
214 [imageRow, imageCol, ~] = size(imData);
215 theta = zeros(imageRow, imageCol, pages);
216 magnitude = zeros(imageRow, imageCol, pages);
217
218 %% Prepare Frames
219 clear XLim yLim
220 frames(pages) = struct('cdata',[],'colormap',[]);
221 figure(FMT.FIG);
222 % set(gcf, Visible = false);
223 progressBar = waitbar(0, '1', Name='Populating Frames');
224
225 qFigs = nan(1, pages);
226 for iFrame = 1:(pages)
227 waitbar(iFrame/pages, progressBar, sprintf("Frame %4d / %4d\n%3d%% complete", iFrame,

pages, ceil(iFrame/pages * 100)));
228 [gx, gy] = imgradientxy(imData(:, :, iFrame), 'sobel'); % Find cmv direction using

Gradient Matrix Method
229 [gmag, gdir] = imgradient(gx, gy);
230 theta(:, :, iFrame) = gdir;
231 magnitude(:, :, iFrame) = gmag;
232 if CREATE_VIDEO
233 figure(FMT.FIG);
234 q = quiver(gx, -gy); %invert to correct visual vector orientation
235 xAbsPos = [floor(q.XData + q.UData); ceil(q.XData + q.UData)];
236 [xLim(1), xLim(2)] = bounds(xAbsPos, 'all');
237 yAbsPos = [floor(q.YData - q.VData); ceil(q.YData - q.VData)];
238 [yLim(1), yLim(2)] = bounds(yAbsPos, 'all');
239 qFigs(iFrame) = gcf;
240 end % if CREATE_VIDEO
241 end
242 delete(progressBar);
243 %% Create Video
244 if CREATE_VIDEO
245 vidDir = 'Gradient Matrix Animations';
246 [~, ~] = mkdir([OUTPUT_DIR, DELIMITER, vidDir]);
247 videoFmt = 'MPEG-4';
248 videoTitle = string([OUTPUT_DIR, DELIMITER, vidDir, DELIMITER, '�Mat',

char(datetime('now', Format='yy-MM-dd_HH-mm-ss'))]);
249 v = VideoWriter(videoTitle, videoFmt);
250 v.FrameRate = 30;
251 open(v);
252 txt = sprintf('dataWindow = %d filterWindow = %d\n', dataWindow, filterWindow);
253 progressBar = waitbar(0, '1', Name='Creating Video');
254 for iFrame = 1:(pages)
255 waitbar(iFrame/pages, progressBar, sprintf("Frame %4d / %4d\n%3d%% complete", iFrame,

pages, ceil(iFrame/pages * 100)));
256 ax = gca(qFigs(iFrame));
257 % xlim(ax, [0, xLim(2)]);
258 xlim(ax, [0, 5]);
259 % ylim(ax, [0, yLim(2)]);

28

260 ylim(ax, [0, 5]);
261 textWrapper(txt, ax);
262 frames(cast(iFrame, 'uint16')) = getframe(qFigs(iFrame));
263 writeVideo(v, frames(iFrame));
264 end % iFrame = 1:(pages)
265 close(v);
266 delete(progressBar);
267 end % if CREATE_VIDEO
268 %% Create Polar Histograms
269 mtd1.shadow = struct;
270 mtd2.shadow = struct;
271 mtd1.shadow.ang = get_csd(magnitude, theta, THRESHOLD);

%correct raw angles
272 [mtd2.shadow.mag, mtd2.shadow.ang] = get_resultant_vec(magnitude, theta);
273
274 figure(99);
275 set(gcf, FMT.FIG);
276 tlo = tiledlayout(TILE.ROWS, TILE.COLS);
277 title(tlo, 'Shadow Direction Probability');
278 set(tlo,FMT.TLO);
279 nexttile(TILE.POS(1), TILE.LARGE_SPAN); % Large Left Tile BEGIN
280 mtd1.phistBig = polarhistogram(mtd1.shadow.ang, 10, Normalization="probability");
281 hold on;
282 mtd2.phistBig = polarhistogram(mtd2.shadow.ang, BIN_EDGES,

Normalization="probability");
283 legendLabels(1) = "Method One";
284 legendLabels(2) = "Method Two";
285
286 % Plot dotted projection lines
287 mtd1.phistBigProj = polarhistogram(mtd1.shadow.ang, 10, ...
288 Normalization="count", EdgeColor=FMT.COLORORDER(1, :), ...
289 FaceColor='none', LineStyle=':');
290 mtd2.phistBigProj = polarhistogram(mtd2.shadow.ang, BIN_EDGES, ...
291 Normalization="count", EdgeColor=FMT.COLORORDER(2, :), ...
292 FaceColor='none', LineStyle=':');
293 % Find bins w/ probability >= 5% and extend to edges
294 mtd1.phistBigProj.BinCounts(mtd1.phistBig.Values >= 0.05) = 1;
295 mtd2.phistBigProj.BinCounts(mtd2.phistBig.Values >= 0.05) = 1;
296 % Set bins w/ probablility < 5% to zero
297 mtd1.phistBigProj.BinCounts(mtd1.phistBig.Values < 0.05) = 0;
298 mtd2.phistBigProj.BinCounts(mtd2.phistBig.Values < 0.05) = 0;
299
300 bothMtds.polarAx = gca;
301 set(bothMtds.polarAx, FMT.POLAX);
302
303 FMT.RTICKSET();
304 the = 0:45:315;
305 rho = repmat(gca().RLim, 1, length(the));
306 the = repelem(deg2rad(the), 2);
307
308 for iTheta = 1:2:(length(the)-1)
309 polarplot(the(iTheta:iTheta+1), rho(iTheta:iTheta+1), ...
310 LineWidth=1, LineStyle='-', Color=[0 0 0 0.25]);
311 end
312 hold off;
313 legendLabels(3:length(gca().Children)) = repelem("", length(gca().Children) - 2);
314

29

315 legend(bothMtds.polarAx, legendLabels, ...
316 Location='northoutside', Orientation='horizontal');
317 set(gca, Children=flipud(gca().Children));
318 % Large Left Tile END
319 nexttile(TILE.POS(2)); % Upper Right Tile BEGIN
320 mtd1.phist = polarhistogram(mtd1.shadow.ang, 10, Normalization="probability");
321 mtd1.polarAx = gca;
322 mtd1.phist.FaceColor = FMT.COLORORDER(1,:);
323 set(mtd1.polarAx, FMT.POLAX);
324 FMT.RTICKSET();
325 % Upper Right Tile END
326 nexttile(TILE.POS(3)); % Lower Right Tile BEGIN
327 mtd2.phist = polarhistogram(mtd2.shadow.ang, BIN_EDGES, Normalization="probability");
328 mtd2.polarAx = gca;
329 mtd2.phist.FaceColor = FMT.COLORORDER(2,:);
330 set(mtd2.polarAx, FMT.POLAX);
331 FMT.RTICKSET();
332 % Upper Left Tile END
333
334 cmvDirection1 = get_cmv_direction(mtd1.shadow.ang, mtd1.phist, 1);
335 cmvDirection2 = get_cmv_direction(mtd2.shadow.ang, mtd2.phist, 2);
336 cmvSpeed1 = get_cmv_speed(cmvDirection1, dipLocArr);
337 cmvSpeed2 = get_cmv_speed(cmvDirection2, dipLocArr);
338 cmvSpeed1 = fillmissing(cmvSpeed1, "nearest", EndValues='nearest');
339 cmvSpeed2 = fillmissing(cmvSpeed2, "nearest", EndValues='nearest');
340 cmv = [cmvDirection1 cmvSpeed1 cmvDirection2 cmvSpeed2];
341
342 % tlo.OuterPosition = tlo.OuterPosition .* [1 1 1 1 + 0.125];
343 % tlo.InnerPosition = tlo.InnerPosition .* [1 1 1 1 + 0.125];
344 txt = sprintf('Dir(1)=% 6.5g Speed(1)=% 6.5g <> Dir(2)=% 6.5g Speed(2)=% 6.5g', cmv);
345 textWrapper(txt, gca, [1 -0.18]);
346 figure(gcf);
347 % saveas(gcf, fullfile(OUTPUT_DIR, 'cmv_histogram '), 'fig');

%save figure
348 saveas(gcf, fullfile(OUTPUT_DIR, 'cmv_histogram'), 'png'); %save

image
349 iLoop = iLoop + 1;
350 iDataStart = iDataEnd;
351 % end % while iDataStart + iLoop * iDelta < height(dataCol)
352 %% Find the optical flow
353 % OpF = get_optical_flow(imData);
354 % get_vid(OpF, strcat(OUTPUT_DIR, 'OpticalFlow ')); %save OpF

run as .AVI file
355
356 fileID = fopen(strcat(OUTPUT_DIR, 'cmv.txt'), 'w');
357 fprintf(fileID, '%6s %6s %6s %6s\n', 'CMV_Direction1', 'CMV_Direction2', 'CMV_Speed1',

'CMV_Speed2');
358 fprintf(fileID, '%0.2f %0.2f %0.2f %0.2f\n', cmv);
359 fclose(fileID);

read cmv data.m

1 function dataRaw = read_cmv_data(filepath)
2 %% This function grabs the filepath of the CMV sensor data and ouputs a table version of

30

the data
3 % data = output table version of original data
4 % filepath = directory of the input file
5
6 fd = fopen(filepath, 'rt');
7
8 % formatSpec = '%s % * f %f %f'; => doesn't work!!!
9 % So use the following code to create the same format

10 %formatSpec = '%s %d %d %d %d %d %d %d %d %d';
11 %formatSpec = '%s %f %f %f %f %f %f %f %f %f';
12 formatSpec = '%s % * f %f % * f %f % * f %f % * f %f % * f %f % * f %f % * f %f % * f %f

% * f %f';
13
14 % Transfer csv file data into dataRaw array
15 dataRaw = textscan(fd, formatSpec, 'Delimiter', {', ', '\n'}, 'CollectOutput', 1,

'EndOfLine', '\n');
16 fclose(fd); %close csv file
17
18 for i = 1:length(dataRaw{1})
19 dateTemp = dataRaw{1, 1}{i, 1};
20 dateTemp = dateTemp(1:end);
21 dateTemp = strrep(dateTemp, 'T', ' '); %remove T from timestamp
22 dataRaw{1, 1}{i, 1} = dateTemp;
23 end
24
25 %data = [dataRaw{:, 1} dataRaw{:, 2}];

Sensor.m

1 classdef Sensor
2 properties (Constant = false)
3 aTime = Sensor.INTTIME_100MS;
4 aGain = Sensor.GAIN_LOW;
5 end
6 properties (Constant = true)
7 INTTIME_100MS = 0x00 % 100 millis
8 INTTIME_200MS = 0x01 % 200 millis
9 INTTIME_300MS = 0x02 % 300 millis

10 INTTIME_400MS = 0x03 % 400 millis
11 INTTIME_500MS = 0x04 % 500 millis
12 INTTIME_600MS = 0x05 % 600 millis
13 GAIN_LOW = 0x00
14 GAIN_MED = 0x10
15 GAIN_HIGH = 0x20
16 GAIN_MAX = 0x30
17 GA = 1.0 % Glass Attenuation (equals 1 if uncovered)
18 % DF = 408.0 % Device Factor (specific to TSL2591)
19 % COEFA = 1.00 % IR channel (ch0) coefficients
20 % COEFB = 1.64 % IR channel (ch0) coefficients
21 % COEFC = 0.59 % FULL channel (ch1) coefficients
22 % COEFD = 0.86 % FULL channel (ch1) coefficients
23 DF = 60 % Device Factor (specific to TSL2591)
24 COEFA = 1.00 % IR channel (ch0) coefficients
25 COEFB = 1.87 % IR channel (ch0) coefficients

31

26 COEFC = 0.63 % FULL channel (ch1) coefficients
27 COEFD = 1.00 % FULL channel (ch1) coefficients
28 end
29 methods
30 function s = Sensor(setTime, setGain)
31 arguments
32 setTime = 0;
33 setGain = 0;
34 end
35 switch setTime % How long the sensor collects light
36 case s.INTTIME_100MS, s.aTime = 100.0;
37 case s.INTTIME_200MS, s.aTime = 200.0;
38 case s.INTTIME_300MS, s.aTime = 300.0;
39 case s.INTTIME_400MS, s.aTime = 400.0;
40 case s.INTTIME_500MS, s.aTime = 500.0;
41 case s.INTTIME_600MS, s.aTime = 600.0;
42 otherwise , s.aTime = 100.0; % Default
43 end
44 switch setGain
45 case s.GAIN_LOW , s.aGain = 1.0;
46 case s.GAIN_MED , s.aGain = 25.0;
47 case s.GAIN_HIGH, s.aGain = 428.0;
48 case s.GAIN_MAX , s.aGain = 9876.0;
49 otherwise , s.aGain = 1.0; % Default
50 end
51 end
52 end
53 end

text wrapper.m

1 function text_wrapper(txt, ax, pos)
2 arguments
3 txt
4 ax = gca;
5 pos = [0.95 -0.1];
6 end
7 text(ax, pos(1), pos(2), txt, HorizontalAlignment='right', Units='normalized',

FontName='FixedWidth', FontSize=10);
8 end

thing speak test.m

1 function [Mat, times] = thing_speak_test(nPoints, nLoops, forever)
2 arguments
3 nPoints=1;
4 nLoops = 5;
5 forever = false;
6 end
7
8 times = repelem(datetime,nLoops * nPoints, 9);
9 Mat = zeros(nLoops * nPoints, 9);

32

10
11 iLoop = 1;
12 lastTime = datetime;
13 tRead = tic;
14 if forever, loopCondition = @(iLoop) 1; else, loopCondition = @(iLoop) iLoop <= nLoops;

end
15 % loopCondition = @(iLoop) 1 if forever, else loopCondition = @(iLoop) iLoop <= nLoops,

end
16 % while iLoop <= nLoops
17 while loopCondition(iLoop)
18 Tab = thingSpeakRead(1552033, ...
19 Fields=1, ...
20 NumPoints=nPoints, ...
21 ReadKey='AD8ZB04MFD6HIYI8', ...
22 OutputFormat='timetable');
23
24 times = Tab.Timestamps;
25 % times(iLoop*nPoints:nPoints*(iLoop+1)-1, nPoints) = Tab.Timestamps;
26 % timeTab = rowfun(@datenum, timeTab);
27 if times(end) == lastTime
28 continue
29 end
30 toc(tRead);
31 tRead = tic;
32 fprintf("Loop %d: ", iLoop);
33
34 Tstr = string(Tab.cmvsData);
35 Tstr = replace(Tstr{:,:}, ' ', '');
36 % if Tstr(end) == ',', Tstr = Tstr(1:end-1); end
37 Tarr = str2double(split(Tstr,','));
38 % Cell = arrayfun(@(x) uint32(str2num(x)),Tarr,'uniform',0); %#ok<ST2NM>
39 Mat(iLoop, :) = Tarr;
40
41 disp(Mat(iLoop, :));
42 fprintf("\n");
43 try
44 plot(times, Mat);
45 catch
46 disp("breakpoint")
47 end
48 % plot(time,Mat);
49 % if ~isequal(Mat, lastMat)
50 % disp(Mat(end, :)), else, disp("same"), end
51 % if ~isequal(Mat, lastMat)
52 % disp(Mat(end, :));
53 % else
54 % disp("same");
55 % end
56 % [p.XData] = deal(time);
57 % for k_ = 1:nLoops
58 % end
59 lastTime = times(end);
60 iLoop = iLoop+1;
61 if forever && (iLoop > nLoops)
62 iLoop = 1;
63 end
64

33

65 end % while
66
67 end %function

34

Appendix B: Arduino Code Listings

The code in this section is written for use with an Arduino Nano 33 IoTand contains a
programmatic implementation of the I2C protocol, allowing the SDA and SCL pins to
be arbitrarily assigned to any digital input/output pin. As a result, a system using this
design does not need to be connected to a computer, BeagleBone Black, or any other
peripheral beyond the TSL2591sensors themselves.

35

cmvs sw wifi.ino

1 #include <Wire.h>
2 #include <avr/dtostrf.h>
3 #include <stdio.h>
4
5
6 #include "constants.h"
7 // #include "led_codes.h"
8 #include "tsl_softwire.h"
9 #include "wifi_setup.h"

10
11 #define SETTINGS TSL2591_INTEGRATIONTIME_100MS | TSL2591_GAIN_LOW
12 #define SERIAL_PRINT true
13
14 tsl2591_t tsl[N_SENSORS];
15
16
17 char data_str[N_SENSORS * RD_WIDTH] = "";
18 const uint8_t mode = LUM_MODE;
19
20 void setup(void) {
21 delay(1000);
22 Serial.begin(9600);
23 pinMode(LED_PIN, OUTPUT);
24 initializeArray(SETTINGS);
25 // WiFi & ThingSpeak setup
26 printArduinoMac();
27 wifiSetup();
28 }
29
30 void loop(void) {
31 // ledSignal(FAIL);
32 // ledSignal(ZERO);
33 // ledSignal(PASS);
34 // ledSignal(UPLOAD);
35 // ledSignal(STUCK);
36 // ledSignal(SEARCHING);
37 // ledSignal();
38 // digitalWrite(LED_PIN, HIGH);
39 // delay(500);
40 // digitalWrite(LED_PIN, LOW);
41 // delay(500);
42 refreshArray();
43 if(SERIAL_PRINT) printArrayData();
44 uploadData(formatDataStr());
45 }

36

constants.h

1 #ifndef CONSTANTS_H
2 #define CONSTANTS_H
3
4 #define RD_WIDTH 16
5 #define DLY 500
6 #define DATA_CH 1
7 #define STATUS_CH 2
8
9 #define N_SENSORS 9

10 #define BUFLEN 2
11 #define CMVS_INTEGRATION TSL2591_INTEGRATIONTIME_100MS
12 #define CMVS_GAIN TSL2591_GAIN_LOW
13 #define LUX_MODE 0b1000
14 #define LUM_MODE 0b0100
15 #define IR_MODE 0b0010
16 #define VIS_MODE 0b0001
17 #define FULL_MODE 0b0000
18
19 #define T_SCANNING_ON 50
20 #define T_SCANNING_OFF 100
21 #define T_STUCK_ON 4000
22 #define T_STUCK_OFF 4000
23 #define T_PROCESSING_ON 10
24 #define T_PROCESSING_OFF 1000
25 // #define LED_PIN 19
26 #define LED_PIN LED_BUILTIN
27
28 #define SDA1 17
29 #define SCL1 16
30
31 #define SDA2 14
32 #define SCL2 15
33
34 #define SDA3 12
35 #define SCL3 13
36
37 #define SDA4 11
38 #define SCL4 10
39
40 #define SDAX 8
41 #define SCLX 9
42
43 #define SDA5 7
44 #define SCL5 6
45
46 #define SDA6 4
47 #define SCL6 5
48
49 #define SDA7 2
50 #define SCL7 3
51
52 #define SDA8 21
53 #define SCL8 20
54 #endif // CONSTANTS_H

37

secrets.h

1 // Use this file to store all of the private credentials
2 // and connection details
3 #ifndef SECRETS_H
4 #define SECRETS_H
5 #define HOT_SSID "iPhone"
6 #define HOT_PASS "wet$paghetti1979"
7 #define SECRET_SSID ""
8 #define SECRET_PASS ""
9 #define WPI_SSID "WPI-Open"

10 #define WPI_PASS "\0"
11
12 #define SECRET_CH_ID 1552033
13 #define SECRET_WRITE_APIKEY "AD8ZB04MFD6HIYI8"
14
15 const char *ssid_list[] = {SECRET_SSID, WPI_SSID};
16 const char *pass_list[] = {SECRET_PASS, WPI_PASS};
17 #endif // SECRETS_H

38

led codes.h

1 #ifndef LED_CODES_H
2 #define LED_CODES_H
3
4 #include "constants.h"
5 #include <Arduino.h>
6 template <typename F>
7 void repeat(unsigned n, F f) {
8 while (n--) f();
9 }

10 void ledToggle(uint16_t t_on_ms, uint16_t t_off_ms);
11 void ledSignal(uint8_t status = 0xFF);
12 void ledOn(uint16_t delay_ms = 0);
13 void ledOff(uint16_t delay_ms = 0);
14
15 enum{FAIL , ZERO, PASS, SEARCHING, STUCK, UPLOAD};
16 #endif // LED_CODES_H

39

led codes.cpp

1 #include "led_codes.h"
2
3 uint8_t led_state = LOW;
4
5 void ledOn(uint16_t delay_ms) {
6 led_state = HIGH;
7 digitalWrite(LED_PIN, led_state);
8 delay(delay_ms);
9 }

10 void ledOff(uint16_t delay_ms) {
11 led_state = LOW;
12 digitalWrite(LED_PIN, led_state);
13 delay(delay_ms);
14 }
15
16 void ledToggle(uint16_t t_on_ms, uint16_t t_off_ms) {
17 if (!led_state)
18 ledOn(t_on_ms);
19 else
20 ledOff(t_off_ms);
21 }
22
23 void ledSignal(uint8_t status) {
24 static uint8_t i = 0;
25 static uint8_t j = 0;
26 static uint8_t prev_status = 0xFF;
27 if (status != prev_status) {
28 i = 0;
29 j = 0;
30 }
31 switch (status) {
32 case FAIL: {
33 // repeat(4, [] {ledToggle(100,100);});
34 repeat(4, [] {ledToggle(50,50);});
35 repeat(8, [] {ledToggle(25,25);});
36 repeat(16, [] {ledToggle(10,10);});
37 break;
38 }
39 case ZERO: {
40 repeat(10, [] { ledToggle(1, 24); });
41 break;
42 }
43 case PASS: {
44 repeat(4, [] { ledToggle(1, 9); });
45 break;
46 }
47 case UPLOAD: {
48 repeat(4, [] { ledToggle(5, 190); });
49 break;
50 }
51 case STUCK: {
52 ledToggle(400, 100);
53 ledToggle(400, 100);
54 break;

40

55 }
56 case SEARCHING: {
57 for(uint8_t i = 0; i < 20; ++i) {
58 ledToggle(i, 25-i);
59 }
60
61 break;
62 }
63 default:
64 ledToggle(1000, 1000);
65 ledToggle(1000, 1000);
66 }
67 prev_status = status;
68 // digitalWrite(LED_PIN, LOW);
69 }

41

tsl softwire.h

1 #ifndef TSL_SOFTWIRE
2 #define TSL_SOFTWIRE
3
4 #include "constants.h"
5 // #include "led_codes.h"
6 #include <Adafruit_Sensor.h>
7 #include <Adafruit_TSL2591.h>
8 #include <SoftWire.h>
9 #include "led_codes.h"

10
11 #define DEFAULT_SETTINGS TSL2591_INTEGRATIONTIME_100MS | TSL2591_GAIN_LOW
12 extern char tsl_data_str[N_SENSORS * RD_WIDTH];
13
14 typedef enum tsl_ch {
15 FULL = 1,
16 IR = 2,
17 BOTH = 3,
18 } tsl_ch_t;
19
20 typedef enum loc {
21 NORTHWEST,
22 NORTH,
23 NORTHEAST,
24 WEST,
25 ORIGIN,
26 EAST,
27 SOUTHWEST,
28 SOUTH,
29 SOUTHEAST,
30 } loc_t;
31
32 typedef struct tsl2591 {
33 uint8_t settings;
34 uint8_t sda;
35 uint8_t scl;
36 uint16_t ch0;
37 uint16_t ch1;
38 } tsl2591_t;
39
40 extern tsl2591_t tsl[N_SENSORS];
41
42 uint8_t read8(uint8_t reg);
43 void write8(uint8_t reg, uint8_t value);
44 void write8(uint8_t reg);
45 void enable(void);
46 void disable(void);
47 void setTslPins(uint8_t location);
48 void sensorWrite(uint8_t *buffer, size_t len, uint8_t stop = true);
49 void sensorRead(uint8_t *buffer, size_t len, uint8_t stop = true);
50 void initializeArray(uint8_t settings = DEFAULT_SETTINGS);
51 void configureSensor(uint8_t settings = DEFAULT_SETTINGS);
52 void configureArray(uint8_t settings = DEFAULT_SETTINGS);
53 void refreshTsl(uint8_t location);
54 void refreshArray(void);

42

55 void printArrayData(void);
56 void printSensorData(uint8_t location);
57 String formatDataStr(void);
58 void setSwPins(void);
59 void getTslData(uint8_t location);
60 float calculateLux(uint32_t lum);
61 #endif /*TSL_SOFTWIRE*/

43

tsl softwire.cpp

1 #include "tsl_softwire.h"
2
3 const uint8_t sda_pins[] = {SDA8, SDA1, SDA2, SDA7, SDAX,
4 SDA3, SDA6, SDA5, SDA4}; // 17 14 12 11 8 7 4 2 21
5 const uint8_t scl_pins[] = {SCL8, SCL1, SCL2, SCL7, SCLX,
6 SCL3, SCL6, SCL5, SCL4}; // 16 15 13 10 9 6 5 3 20
7 uint8_t sw_txbuff[BUFLEN];
8 uint8_t sw_rxbuff[BUFLEN];
9

10 SoftWire swire(sda_pins[0], scl_pins[0]);
11
12 void sensorWrite(uint8_t *buffer, size_t len, uint8_t stop) {
13 swire.beginTransmission(TSL2591_ADDR);
14 swire.write(buffer, len);
15 swire.endTransmission(stop);
16 }
17 //
18 void sensorRead(uint8_t *buffer, size_t len, uint8_t stop) {
19 for (uint8_t i = 0; i < len; i++) {
20 swire.requestFrom((uint8_t)TSL2591_ADDR, (uint8_t)len, (uint8_t)stop);
21 buffer[i] = swire.read();
22 }
23 }
24
25 uint8_t read8(uint8_t reg) {
26 uint8_t buffer[1];
27 buffer[0] = reg;
28 sensorWrite(buffer, 1, true);
29 sensorRead(buffer, 1);
30 return buffer[0];
31 }
32 void write8(uint8_t reg, uint8_t value) {
33 uint8_t buffer[2];
34 buffer[0] = reg;
35 buffer[1] = value;
36 sensorWrite(buffer, 2);
37 }
38
39 void write8(uint8_t reg) {
40 uint8_t buffer[1];
41 buffer[0] = reg;
42 sensorWrite(buffer, 1);
43 }
44
45 void enable(void) {
46 // Enable the device by setting the control bit to 0x01
47 write8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_ENABLE ,
48 TSL2591_ENABLE_POWERON | TSL2591_ENABLE_AEN | TSL2591_ENABLE_AIEN |
49 TSL2591_ENABLE_NPIEN);
50 }
51 void disable(void) {
52 // Disable the device by setting the control bit to 0x00
53 write8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_ENABLE ,
54 TSL2591_ENABLE_POWEROFF);

44

55 }
56
57 void configureSensor(uint8_t settings) {
58 // set timing and gain
59 enable();
60 write8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_CONTROL , settings);
61 write8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_CONTROL , settings);
62 disable();
63 }
64
65 void setTslPins(uint8_t location) {
66 swire.setSda(sda_pins[location]);
67 swire.setScl(scl_pins[location]);
68 swire.begin();
69 }
70
71 void initializeArray(uint8_t settings) {
72 swire.setTxBuffer(sw_txbuff, sizeof(sw_txbuff));
73 swire.setRxBuffer(sw_rxbuff, sizeof(sw_rxbuff));
74 swire.setTimeout_ms(10);
75 delay(500);
76 Serial.print("Initializing sensors...\n");
77 for (uint8_t loc = NORTHWEST; loc < N_SENSORS; ++loc) {
78 tsl2591_t *p_tsl = &tsl[loc];
79 // setTslPins(loc);
80 // p_tsl->sda = swire.getSda();
81 // p_tsl->scl = swire.getScl();
82 // configureSensor(settings);
83 // refreshTsl(loc);
84 printSensorData(loc);
85 Serial.println();
86 }
87 }
88
89 void refreshTsl(uint8_t location) {
90 tsl2591_t *p_tsl = &tsl[location];
91 enable();
92 delay(((p_tsl->settings & 0x0F) + 1) * 120); // Wait x ms for ADC to complete
93 p_tsl->ch0 = read8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_CHAN0_LOW) |
94 read8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_CHAN0_HIGH) << 8;
95 p_tsl->ch1 = read8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_CHAN1_LOW) |
96 read8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_CHAN1_HIGH) << 8;
97 disable();
98 }
99 void refreshArray(void) {

100 for (uint8_t loc = NORTHWEST; loc < N_SENSORS; ++loc) {
101 setTslPins(loc);
102 refreshTsl(loc);
103 }
104 }
105
106 void printSensorData(uint8_t location) {
107 char data_str[N_SENSORS * RD_WIDTH];
108 tsl2591_t *p_tsl = &tsl[location];
109 if ((p_tsl->ch0 & p_tsl->ch1) == 0xFFFF) {
110 sprintf(data_str, "%u:.._..ERR�....", location);
111 ledSignal(FAIL);

45

112 } else if (!(p_tsl->ch0 || p_tsl->ch1)) {
113 sprintf(data_str, "%u:.._..NIL�....", location);
114 ledSignal(ZERO);
115 } else {
116 sprintf(data_str, "%u:0x_%04x_%04�x", location, p_tsl->ch0, p_tsl->ch1);
117 ledSignal(PASS);
118 }
119 Serial.print(data_str);
120 }
121
122 void printArrayData(void) {
123 char data_str[N_SENSORS * RD_WIDTH] = "";
124 for (uint8_t loc = NORTHWEST; loc < N_SENSORS; ++loc) {
125 printSensorData(loc);
126 char delimiter = (loc < N_SENSORS - 1) ? ',' : '\0';
127 Serial.print(delimiter);
128 }
129 Serial.println();
130 }
131
132 // Formats the incoming data according to the mode.
133 String formatDataStr(void) {
134 char data_str[N_SENSORS * RD_WIDTH];
135 String out_Str = "";
136 for (uint8_t loc = NORTHWEST; loc < N_SENSORS; ++loc) {
137 tsl2591_t *p_tsl = &tsl[loc];
138 if ((p_tsl->ch0 & p_tsl->ch1) == 0xFFFF) {
139
140 } else if (!(p_tsl->ch0 || p_tsl->ch1)) {
141 }
142 if (loc < N_SENSORS - 1)
143 sprintf(data_str, "0x%04x%04x, ", (p_tsl->ch0), (p_tsl->ch1));
144 else
145 sprintf(data_str, "0x%04x%04x", (p_tsl->ch0), (p_tsl->ch1));
146 out_Str.concat(data_str);
147 }
148 return out_Str;
149 }
150
151 float calculateLux(uint32_t lum) {
152 float a_time, a_gain;
153 float cpl, lux1, lux2, lux;
154 // uint32_t sw_reading = ;
155 uint16_t ir = (lum & 0xFFFF);
156 uint16_t full = (lum >> 16);
157
158 // Check for overflow conditions first
159 if ((ir == 0xFFFF) | (full == 0xFFFF)) {
160 // Signal an overflow
161 return -1;
162 }
163
164 // Note: This algorithm is based on preliminary coefficients
165 // provided by AMS and may need to be updated in the future
166
167 switch (CMVS_INTEGRATION) {
168 case TSL2591_INTEGRATIONTIME_100MS:

46

169 a_time = 100.0F;
170 break;
171 case TSL2591_INTEGRATIONTIME_200MS:
172 a_time = 200.0F;
173 break;
174 case TSL2591_INTEGRATIONTIME_300MS:
175 a_time = 300.0F;
176 break;
177 case TSL2591_INTEGRATIONTIME_400MS:
178 a_time = 400.0F;
179 break;
180 case TSL2591_INTEGRATIONTIME_500MS:
181 a_time = 500.0F;
182 break;
183 case TSL2591_INTEGRATIONTIME_600MS:
184 a_time = 600.0F;
185 break;
186 default: // 100ms
187 a_time = 100.0F;
188 break;
189 }
190
191 switch (CMVS_GAIN) {
192 case TSL2591_GAIN_LOW:
193 a_gain = 1.0F;
194 break;
195 case TSL2591_GAIN_MED:
196 a_gain = 25.0F;
197 break;
198 case TSL2591_GAIN_HIGH:
199 a_gain = 428.0F;
200 break;
201 case TSL2591_GAIN_MAX:
202 a_gain = 9876.0F;
203 break;
204 default:
205 a_gain = 1.0F;
206 break;
207 }
208
209 // cpl = (ATIME * AGAIN) / DF
210 cpl = (a_time * a_gain) / TSL2591_LUX_DF;
211
212 // Original lux calculation (for reference sake)
213 lux1 = ((float)ir - (TSL2591_LUX_COEFB * (float)full)) / cpl;
214 lux2 = ((TSL2591_LUX_COEFC * (float)ir) - (TSL2591_LUX_COEFD * (float)full)) /
215 cpl;
216 lux = (0 > lux1) ? 0 : (lux1 > lux2) ? lux1 : lux2;
217
218 // Alternate lux calculation 1
219 // See: https://github.com/adafruit/Adafruit_TSL2591_Library/issues/14
220 // lux = (((float)ir - (float)full)) * (1.0F - ((float)full / (float)ir)) /
221 // cpl;
222
223 // Alternate lux calculation 2
224 // lux = ((float)ir - (1.7F * (float)full)) / cpl;
225

47

226 // Signal I2C had no errors
227 return lux;
228 }

48

wifi setup.h

1 #ifndef WIFI_SETUP
2 #define WIFI_SETUP
3 #include "ThingSpeak.h"
4
5 #define DISCONNECTED "Disconnected!"
6 #define CONNECTED "Connected."
7
8 #if __has_include("local_secrets.h")
9 #include "local_secrets.h"

10 #else
11 #include "secrets.h"
12 #endif
13
14 #include "led_codes.h"
15 #include <WiFiNINA.h>
16
17
18
19
20
21 uint8_t getNetworkIndex(void);
22 void wifiSetup(void);
23 String getConnectionStatus(void);
24 void printArduinoMac(void);
25 void uploadData(String fmt_Str);
26 #endif /*WIFI_SETUP*/

49

wifi setup.cpp

1 #include "wifi_setup.h"
2
3 unsigned long tspeak_id = SECRET_CH_ID;
4 const char *tspeak_key = SECRET_WRITE_APIKEY;
5 const char *ssid_list[] = {SECRET_SSID ,HOT_SSID, WPI_SSID};
6 const char *pass_list[] = {SECRET_PASS ,HOT_PASS, WPI_PASS};
7
8 WiFiClient client;
9

10
11 uint8_t getNetworkIndex(void) {
12 // scan for nearby networks:
13 Serial.print("Scanning Known Networks...");
14
15 int n_ssid = WiFi.scanNetworks();
16 if (n_ssid == -1) {
17 Serial.println("Couldn't get a WiFi connection");
18 while (true)
19 ledSignal(STUCK);
20 }
21 for (uint8_t this_net = 0; this_net < n_ssid; this_net++) {
22 Serial.println(WiFi.SSID(this_net));
23 for (const String &ssid : ssid_list) {
24 ledSignal(SEARCHING);
25 if ((String)WiFi.SSID(this_net) == ssid) {
26 Serial.print("found ");
27 Serial.println(ssid_list[this_net]);
28 return this_net;
29 }
30 }
31 }
32 return 0xFF;
33 }
34
35 void wifiSetup(void) {
36 if (WiFi.status() == WL_NO_MODULE) {
37 Serial.println("Communication with WiFi module failed!");
38 while (true)
39 ledSignal(STUCK);
40 }
41
42 uint8_t i_network = getNetworkIndex();
43 if (WiFi.status() != WL_CONNECTED) {
44 Serial.print("attempting to connect...");
45 Serial.println(ssid_list[i_network]);
46 while (WiFi.status() != WL_CONNECTED) {
47 ledSignal(SEARCHING);
48 WiFi.begin(ssid_list[i_network], pass_list[i_network]);
49 Serial.print("·");
50 }
51 }
52 Serial.println("success!");
53 ThingSpeak.begin(client); // Initialize ThingSpeak
54 }

50

55
56 String getConnectionStatus(void) {
57 String status = (WiFi.status() != WL_CONNECTED) ? DISCONNECTED : CONNECTED;
58 return status;
59 }
60
61 void uploadData(String fmt_Str) {
62 ThingSpeak.writeField(tspeak_id, DATA_CH, fmt_Str, tspeak_key);
63 ledSignal(UPLOAD);
64 }
65 void printArduinoMac(void) {
66 byte mac[6];
67 WiFi.macAddress(mac);
68 Serial.print("Arduino MAC: ");
69 Serial.print(mac[5],HEX);
70 Serial.print(":");
71 Serial.print(mac[4],HEX);
72 Serial.print(":");
73 Serial.print(mac[3],HEX);
74 Serial.print(":");
75 Serial.print(mac[2],HEX);
76 Serial.print(":");
77 Serial.print(mac[1],HEX);
78 Serial.print(":");
79 Serial.println(mac[0],HEX);
80 }

51

Appendix C: Datasheets

The following pages contain datasheets pertinent to the various components discussed
throughout the report.

52

Arduino® Nano 33 IoT

1 / 18 Arduino® Nano 33 IoT Modified: 15/12/2021

Product Reference Manual
SKU: ABX00027

Description

Nano 33 IoT is a miniature sized module containing a Cortex M0+ SAMD21 processor, a WiFi+BT module based on
ESP32, a crypto chip which can securely store certificates and pre-shared keys and a 6 axis IMU. The module can
either be mounted as a DIP component (when mounting pin headers), or as a SMT component, directly soldering it
via the castellated pads.

Target areas:

Maker, enhancements, basic IoT application scenarios

53

Arduino® Nano 33 IoT

2 / 18 Arduino® Nano 33 IoT Modified: 15/12/2021

Features

SAMD21G18A

Processor

256KB Flash
32KB Flash
Power On Reset (POR) and Brown Out Detection (BOD)

Peripherals

12 channel DMA
12 channel event system
5x 16 bit Timer/Counter
3x 24 bit timer/counter with extended functions
32 bit RTC
Watchdog Time
CRC-32 generator
Full speed Host/Device USB with 8 end points

6x SERCOM (USART, I2C, SPI, LIN)

Two channel I2S
12 bit 350ksps ADC (up to 16 bit with oversampling)
10 bit 350ksps DAC
External Interrupt Controller (up to 16 lines)

54

Arduino® Nano 33 IoT

3 / 18 Arduino® Nano 33 IoT Modified: 15/12/2021

Nina W102

Module

Dual Core Tensilica LX6 CPU at up to 240MHz
448 KB ROM, 520KB SRAM, 2MB Flash

WiFi

IEEE 802.11b up to 11Mbit
IEEE 802.11g up to 54MBit
IEEE 802.11n up to 72MBit
2.4 GHz, 13 channels
16dBm output power
19 dBm EIRP
-96 dBm sensitivity

Bluetooth BR/EDR

Max 7 peripherals
2.4 GHz, 79 channels
Up to 3 Mbit/s
8 dBm output power at 2/3 Mbit/s
11 dBm EIRP at 2/3 Mbit/s
-88 dBm sensitivity

Bluetooth Low Energy

Bluetooth 4.2 dual mode
2.4GHz 40 channels
6 dBm output power
9 dBm EIRP
-88 dBm sensitivity
Up to 1 Mbit/

MPM3610 (DC-DC)

Regulates input voltage from up to 21V with a minimum of 65% efficiency @minimum load
More than 85% efficiency @12V

ATECC608A (Crypto Chip)

Cryptographic co-processor with secure hardware based key storage
Protected storage for up to 16 keys, certificates or data
ECDH: FIPS SP800-56A Elliptic Curve Diffie-Hellman
NIST standard P256 elliptic curve support
SHA-256 & HMAC hash including off-chip context save/restore
AES-128 encrypt/decrypt, galois field multiply for GCM

55

Arduino® Nano 33 IoT

4 / 18 Arduino® Nano 33 IoT Modified: 15/12/2021

LSM6DSL (6 axis IMU)

Always-on 3D accelerometer and 3D gyroscope
Smart FIFO up to 4 KByte based
±2/±4/±8/±16 g full scale
±125/±250/±500/±1000/±2000 dps full scale

56

Arduino® Nano 33 IoT

5 / 18 Arduino® Nano 33 IoT Modified: 15/12/2021

6

6

6

6

6

7

7

8

8

9

9

9

10

10

10

10

10

10

11

11

12

12

13

13

13

14

15

15

15

16

16

17

17

18

Contents
1 The Board

1.1 Application Examples

2 Ratings

2.1 Recommended Operating Conditions

2.2 Power Consumption

3 Functional Overview

3.1 Board topology

3.2 Processor

3.3 WiFi/BT Communication Module

3.4 Crypto

3.5 IMU

3.6 Power Tree

4 Board Operation

4.1 Getting started - IDE

4.2 Getting started - Arduino Web Editor

4.3 Getting started - Arduino IoT Cloud

4.4 Sample Sketches

4.5 Online Resources

4.6 Board Recovery

5 Connector Pinouts

5.1 USB

5.2 Headers

5.3 Debug

6 Mechanical Information

6.1 Board Outline and Mounting Holes

6.2 Connector Positions

7 Certifications

7.1 Declaration of Conformity CE DoC (EU)

7.2 Declaration of Conformity to EU RoHS & REACH 211 01/19/2021

7.3 Conflict Minerals Declaration

8 FCC Caution

9 Company Information

10 Reference Documentation

11 Revision History

57

Arduino® Nano 33 IoT

6 / 18 Arduino® Nano 33 IoT Modified: 15/12/2021

1 The Board

As all Nano form factor boards, Nano 33 IoT does not have a battery charger but can be powered through USB or
headers.

NOTE: Arduino Nano 33 IoT only supports 3.3V I/Os and is NOT 5V tolerant so please make sure you are not
directly connecting 5V signals to this board or it will be damaged. Also, as opposed to Arduino Nano boards that
support 5V operation, the 5V pin does NOT supply voltage but is rather connected, through a jumper, to the USB
power input.

1.1 Application Examples

Weather station: Using the Arduino Nano 33 IoT together with a sensor and a OLED display, we can create a small
weather station communicating temperature, humidity etc. directly to your phone.

Air quality monitor: Bad air quality may have serious effects on your health. By assembling the Nano 33 IoT, with
a sensor and monitor you can make sure that the air quality is kept in indoor-environments. By connecting the
hardware assembly to an IoT application/API, you will receive real time values.

Air drum: A quick and fun project is to create a small air drum. Connect your Nano 33 IoT and upload your sketch
from the Create Web Editor and start creating beats with your audio workstation of your choice.

2 Ratings

2.1 Recommended Operating Conditions

Symbol Description Min Max
Conservative thermal limits for the whole board: -40 °C (40 °F) 85°C (185 °F)

2.2 Power Consumption

Symbol Description Min Typ Max Unit
VINMax Maximum input voltage from VIN pad -0.3 - 21 V

VUSBMax Maximum input voltage from USB connector -0.3 - 21 V

PMax Maximum Power Consumption - - TBC mW

58

Arduino® Nano 33 IoT

7 / 18 Arduino® Nano 33 IoT Modified: 15/12/2021

3 Functional Overview

3.1 Board topology

Board topology top

Ref. Description Ref. Description
U1 ATSAMD21G18A Controller U3 LSM6DSOXTR IMU Sensor

U2 NINA-W102-00B WiFi/BLE Module U4 ATECC608A-MAHDA-T Crypto Chip

J1 Micro USB Connector PB1 IT-1185-160G-GTR Push button

Board topology bottom

59

Arduino® Nano 33 IoT

8 / 18 Arduino® Nano 33 IoT Modified: 15/12/2021

Ref. Description Ref. DescriptionRef. Description Ref. Description

SJ1 Open solder bridge (VUSB) SJ4 Closed solder bridge (+3V3)

TP Test points xx Lorem Ipsum

3.2 Processor

The Main Processor is a Cortex M0+ running at up to 48MHz. Most of its pins are connected to the external
headers, however some are reserved for internal communication with the wireless module and the on-board

internal I2C peripherals (IMU and Crypto).

NOTE: As opposed to other Arduino Nano boards, pins A4 and A5 have an internal pull up and default to be used

as an I2C Bus so usage as analog inputs is not recommended.

Communication with NINA W102 happens through a serial port and a SPI bus through the following pins.

SAMD21 Pin SAMD21 Acronym NINA Pin NINA Acronym Description
13 PA08 19 RESET_N Reset

39 PA27 27 GPIO0 Attention Request

41 PA28 7 GPIO33 Acknowledge

23 PA14 28 GPIO5 SPI CS

21 GPIO19 UART RTS

24 PA15 29 GPIO18 SPI CLK

20 GPIO22 UART CTS

22 PA13 1 GPIO21 SPI MISO

21 PA12 36 GPIO12 SPI MOSI

31 PA22 23 GPIO3 Processor TX 🡺 Nina RX

32 PA23 22 GPIO1 Processor RX 🡸 Nina TX

3.3 WiFi/BT Communication Module

Nina W102 is based on ESP32 and is delivered with a pre-certified software stack from Arduino. Source code for the
firmware is available [9].

NOTE: Reprogramming the wireless module’s firmware with a custom one will invalidate compliance with radio
standards as certified by Arduino, hence this is not recommended unless the application is used in private
laboratories far from other electronic equipment and people. Usage of custom firmware on radio modules is the
sole responsibility of the user.

Some of the module’s pins are connected to the external headers and can be directly driven by ESP32 provided
SAMD21’s corresponding pins are aptly tri-stated. Below is a list of such signals:

SAMD21 Pin SAMD21 Acronym NINA Pin NINA Acronym Description
48 PB03 8 GPIO21 A7

14 PA09 5 GPIO32 A6

8 PB09 31 GPIO14 A5/SCL

7 PB08 35 GPIO13 A4/SDA

60

Arduino® Nano 33 IoT

9 / 18 Arduino® Nano 33 IoT Modified: 15/12/2021

3.4 Crypto

The crypto chip in Arduino IoT boards is what makes the difference with other less secure boards as it provides a
secure way to store secrets (such as certificates) and accelerates secure protocols while never exposing secrets in
plain text.

Source code for the Arduino Library that supports the Crypto is available [10]

3.5 IMU

Arduino Nano 33 IoT has an embedded 6 axis IMU which can be used to measure board orientation (by checking
the gravity acceleration vector orientation) or to measure shocks, vibration, acceleration and rotation speed.

Source code for the Arduino Library that supports the IMU is available [11]

3.6 Power Tree

61

Arduino® Nano 33 IoT

10 / 18 Arduino® Nano 33 IoT Modified: 15/12/2021

Power tree

4 Board Operation

4.1 Getting started - IDE

If you want to program your Arduino 33 IoT while offline you need to install the Arduino Desktop IDE [1] To connect
the Arduino 33 IoT to your computer, you’ll need a Micro-B USB cable. This also provides power to the board, as
indicated by the LED.

4.2 Getting started - Arduino Web Editor

All Arduino boards, including this one, work out-of-the-box on the Arduino Web Editor [2], by just installing a simple
plugin.

The Arduino Web Editor is hosted online, therefore it will always be up-to-date with the latest features and support
for all boards. Follow [3] to start coding on the browser and upload your sketches onto your board.

4.3 Getting started - Arduino IoT Cloud

All Arduino IoT enabled products are supported on Arduino IoT Cloud which allows you to Log, graph and analyze
sensor data, trigger events, and automate your home or business.

4.4 Sample Sketches

Sample sketches for the Arduino 33 IoT can be found either in the “Examples” menu in the Arduino IDE or in the
“Documentation” section of the Arduino Pro website [4]

4.5 Online Resources

Now that you have gone through the basics of what you can do with the board you can explore the endless
possibilities it provides by checking exciting projects on ProjectHub [5], the Arduino Library Reference [6] and the
online store [7] where you will be able to complement your board with sensors, actuators and more

62

Arduino® Nano 33 IoT

11 / 18 Arduino® Nano 33 IoT Modified: 15/12/2021

4.6 Board Recovery

All Arduino boards have a built-in bootloader which allows flashing the board via USB. In case a sketch locks up the
processor and the board is not reachable anymore via USB it is possible to enter bootloader mode by double-
tapping the reset button right after power up.

5 Connector Pinouts

Pinout

63

Arduino® Nano 33 IoT

12 / 18 Arduino® Nano 33 IoT Modified: 15/12/2021

5.1 USB

Pin Function Type Description

1 VUSB Power
Power Supply Input. If board is powered via VUSB from header this is an Output
(1)

2 D- Differential USB differential data -

3 D+ Differential USB differential data +

4 ID Analog Selects Host/Device functionality

5 GND Power Power Ground

1. The board can support USB host mode only if powered via the VUSB pin and if the jumper close to the VUSB

pin is shorted.

5.2 Headers

The board exposes two 15 pin connectors which can either be assembled with pin headers or soldered through
castellated vias.

Pin Function Type Description
1 D13 Digital GPIO

2 +3V3 Power Out Internally generated power output to external devices

3 AREF Analog Analog Reference; can be used as GPIO

4 A0/DAC0 Analog ADC in/DAC out; can be used as GPIO

5 A1 Analog ADC in; can be used as GPIO

6 A2 Analog ADC in; can be used as GPIO

7 A3 Analog ADC in; can be used as GPIO

8 A4/SDA Analog ADC in; I2C SDA; Can be used as GPIO (1)
9 A5/SCL Analog ADC in; I2C SCL; Can be used as GPIO (1)
10 A6 Analog ADC in; can be used as GPIO

11 A7 Analog ADC in; can be used as GPIO

12 VUSB
Power
In/Out

Normally NC; can be connected to VUSB pin of the USB connector by shorting a
jumper

13 RST Digital In Active low reset input (duplicate of pin 18)

14 GND Power Power Ground

15 VIN Power In Vin Power input

16 TX Digital USART TX; can be used as GPIO

17 RX Digital USART RX; can be used as GPIO

18 RST Digital Active low reset input (duplicate of pin 13)

19 GND Power Power Ground

20 D2 Digital GPIO

21 D3/PWM Digital GPIO; can be used as PWM

22 D4 Digital GPIO

23 D5/PWM Digital GPIO; can be used as PWM

24 D6/PWM Digital GPIO, can be used as PWM

25 D7 Digital GPIO

26 D8 Digital GPIO

64

Arduino® Nano 33 IoT

13 / 18 Arduino® Nano 33 IoT Modified: 15/12/2021

Pin Function Type Description

27 D9/PWM Digital GPIO; can be used as PWM

28 D10/PWM Digital GPIO; can be used as PWM

29 D11/MOSI Digital SPI MOSI; can be used as GPIO

30 D12/MISO Digital SPI MISO; can be used as GPIO

5.3 Debug

On the bottom side of the board, under the communication module, debug signals are arranged as 3x2 test pads
with 100 mil pitch. Pin 1 is depicted in Figure 3 – Connector Positions

Pin Function Type Description
1 +3V3 Power Out Internally generated power output to be used as voltage reference

2 SWD Digital SAMD11 Single Wire Debug Data

3 SWCLK Digital In SAMD11 Single Wire Debug Clock

4 UPDI Digital ATMega4809 update interface

5 GND Power Power Ground

6 RST Digital In Active low reset input

6 Mechanical Information

6.1 Board Outline and Mounting Holes

The board measures are mixed between metric and imperial. Imperial measures are used to maintain a 100 mil
pitch grid between pin rows to allow them to fit a breadboard whereas board length is Metric.

Layout

65

Arduino® Nano 33 IoT

14 / 18 Arduino® Nano 33 IoT Modified: 15/12/2021

6.2 Connector Positions

The view below is from top however it shows Debug connector pads which are on the bottom side. Highlighted
pins are pin 1 for each connector’

Top view:

Top side connectors

Bottom view:

Bottom side connectors

66

Arduino® Nano 33 IoT

15 / 18 Arduino® Nano 33 IoT Modified: 15/12/2021

7 Certifications

7.1 Declaration of Conformity CE DoC (EU)

We declare under our sole responsibility that the products above are in conformity with the essential requirements
of the following EU Directives and therefore qualify for free movement within markets comprising the European
Union (EU) and European Economic Area (EEA).

7.2 Declaration of Conformity to EU RoHS & REACH 211 01/19/2021

Arduino boards are in compliance with RoHS 2 Directive 2011/65/EU of the European Parliament and RoHS 3
Directive 2015/863/EU of the Council of 4 June 2015 on the restriction of the use of certain hazardous substances in
electrical and electronic equipment.

Substance Maximum limit (ppm)
Lead (Pb) 1000

Cadmium (Cd) 100

Mercury (Hg) 1000

Hexavalent Chromium (Cr6+) 1000

Poly Brominated Biphenyls (PBB) 1000

Poly Brominated Diphenyl ethers (PBDE) 1000

Bis(2-Ethylhexyl} phthalate (DEHP) 1000

Benzyl butyl phthalate (BBP) 1000

Dibutyl phthalate (DBP) 1000

Diisobutyl phthalate (DIBP) 1000

Exemptions : No exemptions are claimed.

Arduino Boards are fully compliant with the related requirements of European Union Regulation (EC) 1907 /2006
concerning the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH). We declare none of
the SVHCs (https://echa.europa.eu/web/guest/candidate-list-table), the Candidate List of Substances of Very High
Concern for authorization currently released by ECHA, is present in all products (and also package) in quantities
totaling in a concentration equal or above 0.1%. To the best of our knowledge, we also declare that our products
do not contain any of the substances listed on the "Authorization List" (Annex XIV of the REACH regulations) and
Substances of Very High Concern (SVHC) in any significant amounts as specified by the Annex XVII of Candidate list
published by ECHA (European Chemical Agency) 1907 /2006/EC.

67

Arduino® Nano 33 IoT

16 / 18 Arduino® Nano 33 IoT Modified: 15/12/2021

7.3 Conflict Minerals Declaration

As a global supplier of electronic and electrical components, Arduino is aware of our obligations with regards to
laws and regulations regarding Conflict Minerals, specifically the Dodd-Frank Wall Street Reform and Consumer
Protection Act, Section 1502. Arduino does not directly source or process conflict minerals such as Tin, Tantalum,
Tungsten, or Gold. Conflict minerals are contained in our products in the form of solder, or as a component in
metal alloys. As part of our reasonable due diligence Arduino has contacted component suppliers within our supply
chain to verify their continued compliance with the regulations. Based on the information received thus far we
declare that our products contain Conflict Minerals sourced from conflict-free areas.

8 FCC Caution

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user’s
authority to operate the equipment.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference

(2) this device must accept any interference received, including interference that may cause undesired operation.

FCC RF Radiation Exposure Statement:

1. This Transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

2. This equipment complies with RF radiation exposure limits set forth for an uncontrolled environment.

3. This equipment should be installed and operated with minimum distance 20cm between the radiator &
your body.

English: User manuals for license-exempt radio apparatus shall contain the following or equivalent notice in a
conspicuous location in the user manual or alternatively on the device or both. This device complies with Industry
Canada license-exempt RSS standard(s). Operation is subject to the following two conditions:

(1) this device may not cause interference

(2) this device must accept any interference, including interference that may cause undesired operation of the
device.

French: Le présent appareil est conforme aux CNR d’Industrie Canada applicables aux appareils radio exempts de
licence. L’exploitation est autorisée aux deux conditions suivantes :

(1) l’ appareil nedoit pas produire de brouillage

(2) l’utilisateur de l’appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible
d’en compromettre le fonctionnement.

IC SAR Waring:

English This equipment should be installed and operated with minimum distance 20 cm between the radiator and
your body.

French: Lors de l’ installation et de l’ exploitation de ce dispositif, la distance entre le radiateur et le corps est d ’au
moins 20 cm.

68

Arduino® Nano 33 IoT

17 / 18 Arduino® Nano 33 IoT Modified: 15/12/2021

Important: The operating temperature of the EUT can’t exceed 85℃ and shouldn’t be lower than -40℃.

Hereby, Arduino S.r.l. declares that this product is in compliance with essential requirements and other relevant
provisions of Directive 2014/53/EU. This product is allowed to be used in all EU member states.

Frequency bands Maximum output power (ERP)
863-870Mhz -3.22dBm

9 Company Information

Company name Arduino SA.
Company Address Via Ferruccio Pelli 14 6900 Lugano Switzerland

10 Reference Documentation

Reference Link
Arduino IDE
(Desktop)

https://www.arduino.cc/en/Main/Software

Arduino IDE (Cloud) https://create.arduino.cc/editor

Cloud IDE Getting
Started

https://create.arduino.cc/projecthub/Arduino_Genuino/getting-started-with-arduino-
web-editor-4b3e4a

Forum http://forum.arduino.cc/

SAMD21G18 http://ww1.microchip.com/downloads/en/devicedoc/40001884a.pdf

NINA W102
https://www.u-blox.com/sites/default/files/NINA-W10_DataSheet_%28UBX-
17065507%29.pdf

ECC608 http://ww1.microchip.com/downloads/en/DeviceDoc/40001977A.pdf

MPM3610 https://www.monolithicpower.com/pub/media/document/MPM3610_r1.01.pdf

NINA Firmware https://github.com/arduino/nina-fw

ECC608 Library https://github.com/arduino-libraries/ArduinoECCX08

LSM6DSL Library https://github.com/stm32duino/LSM6DSL

ProjectHub https://create.arduino.cc/projecthub?by=part&part_id=11332&sort=trending

Library Reference https://www.arduino.cc/reference/en/

Arduino Store https://store.arduino.cc/

69

Arduino® Nano 33 IoT

18 / 18 Arduino® Nano 33 IoT Modified: 15/12/2021

11 Revision History

Date Revision Changes
04/15/2021 1 General datasheet updates

70

ams Datasheet Page 1
[v2-04] 2018-Jun-05 Document Feedback

TSL2591
Light-to-Digital Converter

The TSL2591 is a very-high sensitivity light-to-digital converter
that transforms light intensity into a digital signal output
capable of direct I²C interface. The device combines one
broadband photodiode (visible plus infrared) and one
infrared-responding photodiode on a single CMOS integrated
circuit. Two integrating ADCs convert the photodiode currents
into a digital output that represents the irradiance measured
on each channel. This digital output can be input to a
microprocessor where illuminance (ambient light level) in lux
is derived using an empirical formula to approximate the
human eye response. The TSL2591 supports a traditional level
style interrupt that remains asserted until the firmware clears it.

Ordering Information and Content Guide appear at end of
datasheet.

Figure 1:
Added Value of Using TSL2591

Benefits Features

• Approximates Human Eye Response • Dual Diode

• Flexible Operation • Programmable Analog Gain and Integration Time

• Suited for Operation Behind Dark Glass • 600M:1 Dynamic Range

• Low Operating Overhead
• Two Internal Interrupt Sources
• Programmable Upper and Lower Thresholds
• One Interrupt Includes Programmable Persistence Filter

• Low Power 3.0 μA Sleep State • User Selectable Sleep Mode

• I²C Fast Mode Compatible Interface
• Data Rates up to 400 kbit/s
• Input Voltage Levels Compatible with 3.0V Bus

General Description

71

Page 2 ams Datasheet
Document Feedback [v2-04] 2018-Jun-05

TSL2591 − General Description

Block Diagram
The functional blocks of this device are shown below:

Figure 2:
Block Diagram

72

ams Datasheet Page 3
[v2-04] 2018-Jun-05 Document Feedback

TSL2591 − Detailed Description

The TSL2591 contains two integrating analog-to-digital
converters (ADC) that integrate currents from two photodiodes.
Integration of both channels occurs simultaneously. Upon
completion of the conversion cycle, the conversion result is
transferred to the Channel 0 and Channel 1 data registers,
respectively. The transfers are double-buffered to ensure that
the integrity of the data is maintained. After the transfer, the
device automatically begins the next integration cycle.

Communication with the device is accomplished through a
standard, two-wire I²C serial bus. Consequently, the TSL2591
can be easily connected to a microcontroller or embedded
controller. No external circuitry is required for signal
conditioning. Because the output of the device is digital, the
output is effectively immune to noise when compared to an
analog signal.

The TSL2591 also supports an interrupt feature that simplifies
and improves system efficiency by eliminating the need to poll
a sensor for a light intensity value. The primary purpose of the
interrupt function is to detect a meaningful change in light
intensity. The concept of a meaningful change can be defined
by the user both in terms of light intensity and time, or
persistence, of that change in intensity. The device has the
ability to define two sets of thresholds, both above and below
the current light level. An interrupt is generated when the value
of a conversion exceeds either of these limits. One set of
thresholds can be configured to trigger an interrupt only when
the ambient light exceeds them for a configurable amount of
time (persistence) while the other set can be configured to
trigger an immediate interrupt.

Detailed Description

73

Page 4 ams Datasheet
Document Feedback [v2-04] 2018-Jun-05

TSL2591 − Pin Assignment

The TSL2591 pin assignments are described below.

Figure 3:
Pin Diagram

Figure 4:
Pin Description

Package FN Dual Flat No-Lead (Top
View): Package drawing is not to scale.

Pin Number Pin Name Description

1 SCL I²C serial clock input terminal

2 INT Interrupt — open drain output (active low).

3 GND Power supply ground. All voltages are referenced to GND.

4 NC No connect — do not connect.

5 VDD Supply voltage

6 SDA I²C serial data I/O terminal

Pin Assignment

SCL 1

INT 2

GND 3

6 SDA

5 VDD

4 NC

74

ams Datasheet Page 5
[v2-04] 2018-Jun-05 Document Feedback

TSL2591 − Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. These are stress
ratings only. Functional operation of the device at these or any
other conditions beyond those indicated under Recommended
Operating Conditions is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.

Figure 5:
Absolute Maximum Ratings

Parameter Min Max Units Comments

Supply voltage, VDD 3.8 V All voltages are with respect to GND

Input terminal voltage -0.5 3.8 V

Output terminal voltage -0.5 3.8 V

Output terminal current -1 20 mA

Storage temperature range, Tstg -40 85 ºC

ESD tolerance, human body model ±2000 V JESD22-A114-B

ESD tolerance, charge device model
(CDM)

±500 V JESD22-C101

Absolute Maximum Ratings

75

Page 6 ams Datasheet
Document Feedback [v2-04] 2018-Jun-05

TSL2591 − Electrical Characteristics

All limits are guaranteed. The parameters with min and max
values are guaranteed with production tests or SQC (Statistical
Quality Control) methods. Device parameters are guaranteed
at TA = 25°C unless otherwise noted.

Figure 6:
Recommended Operating Conditions

Figure 7:
Operating Characteristics, VDD=3V, TA=25ºC (unless otherwise noted)

Symbol Parameter Min Typ Max Units

VDD Supply voltage 2.7 3 3.6 V

TA Operating free-air temperature -30 70 ºC

Symbol Parameter Conditions Min Typ Max Units

IDD Supply current
Active
Sleep state - no I²C activity

275
2.3

325
4

μA

VOL
INT, SDA output low
voltage

3mA sink current
6mA sink current

0
0

0.4
0.6

V

ILEAK
Leakage current, SDA,
SCL, INT pins

-5 5 μA

VIH
SCL, SDA input high
voltage

TSL25911 (Vbus = VDD) 0.7 VDD
V

TSL25913 (Vbus = 1.8) 1.26

VIL
SCL, SDA input low
voltage

TSL25911 (Vbus = VDD) 0.3 VDD
V

TSL25913 (Vbus = 1.8) 0.54

Electrical Characteristics

76

ams Datasheet Page 7
[v2-04] 2018-Jun-05 Document Feedback

TSL2591 − Electrical Characteristics

Figure 8:
ALS Characteristics, VDD=3V, TA=25ºC, AGAIN = High, AEN=1, (unless otherwise noted)(1) (2) (3)

Parameter Conditions Channel Min Typ Max Units

Dark ADC count
value

Ee = 0,
AGAIN = Max,
ATIME=000b (100ms)

CH0
CH1

0
0

20
20

counts

ADC integration
time step size

ATIME = 000b (100ms) 95 100 105 ms

ADC number of
integration steps (4) 1 6 steps

Max ADC count ATIME = 000b (100ms) 0 36863 counts

Max ADC count
ATIME = 001b (200ms), 010b
(300ms), 011b (400ms),
100b (500ms), 101b (600ms)

0 65535 counts

ADC count value

White light (2)

Ee = 4.98 μW/cm2
ATIME = 000b (100 ms)

CH0
CH1

1120 1315
174

1510
counts

λp = 850 nm (3)

 Ee = 5.62 μW/cm2,
ATIME = 000b (100 ms)

CH0
CH1

1230 1447
866

1665
counts

ADC count value
ratio: CH1/CH0

White light (2) 0.092 0.132 0.172

λp = 850 nm (3) 0.558 0.598 0.638

Re
Irradiance
responsivity

White light (2)

ATIME = 000b (100 ms)
CH0
CH1

264.1
34.9 counts/

(μW/cm2)λp = 850 nm (3)

ATIME = 000b (100 ms)
CH0
CH1

257.5
154.1

Noise (4)
White light (2)

Ee = 4.98 μW/cm2
ATIME = 000b (100 ms)

CH0 1 2
1 standard
deviation

77

Page 8 ams Datasheet
Document Feedback [v2-04] 2018-Jun-05

TSL2591 − Electrical Characteristics

Note(s):

1. Optical measurements are made using small-angle incident radiation from light-emitting diode optical sources. Visible white LEDs
and infrared 850 nm LEDs are used for final product testing for compatibility with high-volume production

2. The white LED irradiance is supplied by a white light-emitting diode with a nominal color temperature of 4000 K.

3. The 850 nm irradiance is supplied by a GaAs light-emitting diode with the following typical characteristics: peak wavelength λp =
850 nm and spectral halfwidth Δλ½ = 42 nm.

4. Parameter ensured by design and is not 100% tested.

Gain scaling, relative
to 1× gain setting
(AGAIN = Low)

AGAIN = Med
CH0
CH1

22
22

24.5
24.5

27
27

×AGAIN = High
CH0
CH1

360
360

400
400

440
440

AGAIN = Max
CH0
CH1

8500
9100

9200
9900

9900
10700

Parameter Conditions Channel Min Typ Max Units

78

ams Datasheet Page 9
[v2-04] 2018-Jun-05 Document Feedback

TSL2591 − Timing Characteristics

The timing characteristics of TSL2591 are given below.

Figure 9:
AC Electrical Characteristics, VDD = 3 V, TA = 25ºC (unless otherwise noted)

Note(s):

1. Specified by design and characterization; not production tested.

Parameter (1) Description Min Typ Max Units

f(SCL) Clock frequency (I²C only) 0 400 kHz

t(BUF)
Bus free time between start and stop
condition

1.3 μs

t(HDSTA)
Hold time after (repeated) start
condition. After this period, the first
clock is generated.

0.6 μs

t(SUSTA) Repeated start condition setup time 0.6 μs

t(SUSTO) Stop condition setup time 0.6 μs

t(HDDAT) Data hold time 0 μs

t(SUDAT) Data setup time 100 ns

t(LOW) SCL clock low period 1.3 μs

t(HIGH) SCL clock high period 0.6 μs

tF Clock/data fall time 300 ns

tR Clock/data rise time 300 ns

Ci Input pin capacitance 10 pF

Timing Characteristics

79

Page 10 ams Datasheet
Document Feedback [v2-04] 2018-Jun-05

TSL2591 − Timing Diagrams

Figure 10:
Parameter Measurement Information

Timing Diagrams

80

ams Datasheet Page 11
[v2-04] 2018-Jun-05 Document Feedback

TSL2591 − Typical Operating Characteristics

Figure 11:
Spectral Responsivity

Figure 12:
White Normalized Responsivity vs. Angular Displacement

Spectral Responsivity: Two channel
response allows for tunable illuminance
(lux) calculation regardless of
transmissivity of glass.

White LED Angular Response: Near
cosine angular response for broadband
white light sources.

Typical Operating
Characteristics

CH0

CH1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300 400 500 600 700 800 900 1000 1100
λ - Wavelength - nm

N
or

m
al

iz
ed

 R
es

po
ns

iv
it

y

CH0

CH1

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

Incedent Angle - º

Re
sp

on
se

 -
N

or
m

al
iz

ed
 to

 0
º

81

Page 12 ams Datasheet
Document Feedback [v2-04] 2018-Jun-05

TSL2591 − Typical Operating Characteristics

Figure 13:
Normalized IDD vs. VDD and Temperature

Figure 14:
Response to White LED vs. Temperature

IDD vs. VDD and Temp: Effect of supply
voltage and temperature on active
current.

White LED Response vs. Temp: Effect of
temperature on the device response for
a broadband white light source.

5°C

25°C

50°C

75°C

0.9

0.95

1

1.05

1.1

1.15

1.2

2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6

VDD - Source Voltage - V

ID
D

 -
A

ct
iv

e
Cu

rr
en

t N
or

m
al

iz
ed

 @
 3

V
, 2

5º
C

Ch 0

Ch 1

90%

95%

100%

105%

110%

0 10 20 30 40 50 60 70
Temperature - ºC

Re
sp

on
se

 -
N

or
m

al
iz

ed
 to

 2
5º

C

82

ams Datasheet Page 13
[v2-04] 2018-Jun-05 Document Feedback

TSL2591 − Register Description

The device is controlled and monitored by registers accessed
through the I²C serial interface. These registers provide for a
variety of control functions and can be read to determine results
of the ADC conversions. The register set is summarized in
Figure 15.

Figure 15:
Register Description

Note(s):

1. Devices with a primary I2C address of 0x29 also have a secondary I2C address of 0x28 that can be used for read only registers to

quickly read in a single block I2C transaction.

Address Register Name R/W Register Function Reset
Value

-- COMMAND W Specifies Register Address 0x00

0x00 ENABLE R/W Enables states and interrupts 0x00

0x01 CONFIG R/W ALS gain and integration time configuration 0x00

0x04 AILTL R/W ALS interrupt low threshold low byte 0x00

0x05 AILTH R/W ALS interrupt low threshold high byte 0x00

0x06 AIHTL R/W ALS interrupt high threshold low byte 0x00

0x07 AIHTH R/W ALS interrupt high threshold high byte 0x00

0x08 NPAILTL R/W No Persist ALS interrupt low threshold low byte 0x00

0x09 NPAILTH R/W No Persist ALS interrupt low threshold high byte 0x00

0x0A NPAIHTL R/W No Persist ALS interrupt high threshold low byte 0x00

0x0B NPAIHTH R/W
No Persist ALS interrupt high threshold high
byte

0x00

0x0C PERSIST R/W Interrupt persistence filter 0x00

0x11 PID R Package ID --

0x12 ID R Device ID ID

0x13 STATUS R Device status 0x00

0x14 C0DATAL R CH0 ADC low data byte 0x00

0x15 C0DATAH R CH0 ADC high data byte 0x00

0x16 C1DATAL R CH1 ADC low data byte 0x00

0x17 C1DATAH R CH1 ADC high data byte 0x00

Register Description

83

Page 14 ams Datasheet
Document Feedback [v2-04] 2018-Jun-05

TSL2591 − Register Description

The COMMAND register specifies the address of the target
register for future read and write operations, as well as issues
special function commands.

7 6 5 4 3 2 1 0

CMD TRANSACTION ADDR/SF

Fields Bits Description

CMD 7
Select Command Register. Must write as 1 when addressing
COMMAND register.

TRANSACTION 6:5

Select type of transaction to follow in subsequent data transfers

FIELD VALUE DESCRIPTION

00 Reserved - Do not use

01 Normal Operation

10 Reserved – Do not use

11 Special Function – See description below

ADDR/SF 4:0

Address field/special function field. Depending on the transaction
type, see above, this field either specifies a special function
command or selects the specific control-status-data register for
subsequent read and write transactions. The field values listed
below apply only to special function commands.

FIELD VALUE DESCRIPTION

00100 Interrupt set – forces an interrupt

00110 Clears ALS interrupt

00111 Clears ALS and no persist ALS interrupt

01010 Clears no persist ALS interrupt

other Reserved – Do not write

The interrupt set special function command sets the interrupt bits
in the status register (0x13). For the interrupt to be visible on the
INT pin, one of the interrupt enable bits in the enable register
(0x00) must be asserted.
The interrupt set special function must be cleared with an interrupt
clear special function. The ALS interrupt clear special functions
clear any pending interrupt(s) and are self-clearing.

Command Register

84

ams Datasheet Page 15
[v2-04] 2018-Jun-05 Document Feedback

TSL2591 − Register Description

The ENABLE register is used to power the device on/off, enable
functions and interrupts.

7 6 5 4 3 2 1 0

NPIEN SAI Reserved AIEN Reserved AEN PON

Fields Bits Description

NPIEN 7
No Persist Interrupt Enable. When asserted NP Threshold
conditions will generate an interrupt, bypassing the persist filter.

SAI 6
Sleep after interrupt. When asserted, the device will power down at
the end of an ALS cycle if an interrupt has been generated.

Reserved 5 Reserved. Write as 0.

AIEN 4
ALS Interrupt Enable. When asserted permits ALS interrupts to be
generated, subject to the persist filter.

Reserved 3:2 Reserved. Write as 0.

AEN 1
ALS Enable. This field activates ALS function. Writing a one
activates the ALS. Writing a zero disables the ALS.

PON 0
Power ON. This field activates the internal oscillator to permit the
timers and ADC channels to operate. Writing a one activates the
oscillator. Writing a zero disables the oscillator.

Enable Register (0x00)

85

Page 16 ams Datasheet
Document Feedback [v2-04] 2018-Jun-05

TSL2591 − Register Description

The CONTROL register is used to configure the ALS gain and
integration time. In addition, a system reset is provided. Upon
power up, the CONTROL register resets to 0x00.

7 6 5 4 3 2 1 0

SRESET Reserved AGAIN Reserved ATIME

Fields Bits Description

SRESET 7
System reset. When asserted, the device will reset equivalent to a
power-on reset. SRESET is self-clearing.

Reserved 6 Reserved. Write as 0.

AGAIN 5:4

ALS gain sets the gain of the internal integration amplifiers for both
photodiode channels.

FIELD VALUE DESCRIPTION

00 Low gain mode

01 Medium gain mode

10 High gain mode

11 Maximum gain mode

Reserved 3 Reserved. Write as 0.

ATIME 2:0

ALS time sets the internal ADC integration time for both
photodiode channels.

FIELD VALUE INTEGRATION TIME MAX COUNT

000 100 ms 36863

001 200 ms 65535

010 300 ms 65535

011 400 ms 65535

100 500 ms 65535

101 600 ms 65535

Control Register (0x01)

86

ams Datasheet Page 17
[v2-04] 2018-Jun-05 Document Feedback

TSL2591 − Register Description

The ALS interrupt threshold registers provide the values to be
used as the high and low trigger points for the comparison
function for interrupt generation. If C0DATA crosses below the
low threshold specified, or above the higher threshold, an
interrupt is asserted on the interrupt pin.

If the C0DATA exceeds the persist thresholds (registers: 0x04 –
0x07) for the number of persist cycles configured in the PERSIST
register an interrupt will be triggered. If the C0DATA exceeds
the no-persist thresholds (registers: 0x08 – 0x0B) an interrupt
will be triggered immediately following the end of the current
integration.

Note that while the interrupt is observable in the STATUS
register (0x13), it is visible only on the INT pin when AIEN or
NPIEN are enabled in the ENABLE register (0x00).

Upon power up, the interrupt threshold registers default to
0x00.

Register Address Bits Description

AILTL 0x04 7:0 ALS low threshold lower byte

AILTH 0x05 7:0 ALS low threshold upper byte

AIHTL 0x06 7:0 ALS high threshold lower byte

AIHTH 0x07 7:0 ALS high threshold upper byte

NPAILTL 0x08 7:0 No Persist ALS low threshold lower byte

NPAILTH 0x09 7:0 No Persist ALS low threshold upper byte

NPAIHTL 0x0A 7:0 No Persist ALS high threshold lower byte

NPAIHTH 0x0B 7:0 No Persist ALS high threshold upper byte

ALS Interrupt Threshold Register
(0x04 − 0x0B)

87

Page 18 ams Datasheet
Document Feedback [v2-04] 2018-Jun-05

TSL2591 − Register Description

The Interrupt persistence filter sets the number of consecutive
out-of-range ALS cycles necessary to generate an interrupt.
Out-of-range is determined by comparing C0DATA (0x14 and
0x15) to the interrupt threshold registers (0x04 - 0x07). Note
that the no-persist ALS interrupt is not affected by the interrupt
persistence filter. Upon power up, the interrupt persistence
filter register resets to 0x00.

7 6 5 4 3 2 1 0

Reserved APERS

Field Bits Description

Reserved 7:4 Reserved. Write as 0.

APERS 3:0

ALS interrupt persistence filter

FIELD VALUE PERSISTENCE

0000 Every ALS cycle generates an interrupt

0001 Any value outside of threshold range

0010 2 consecutive values out of range

0011 3 consecutive values out of range

0100 5 consecutive values out of range

0101 10 consecutive values out of range

0110 15 consecutive values out of range

0111 20 consecutive values out of range

1000 25 consecutive values out of range

1001 30 consecutive values out of range

1010 35 consecutive values out of range

1011 40 consecutive values out of range

1100 45 consecutive values out of range

1101 50 consecutive values out of range

1110 55 consecutive values out of range

1111 60 consecutive values out of range

PERSIST Register (0x0C)

88

ams Datasheet Page 19
[v2-04] 2018-Jun-05 Document Feedback

TSL2591 − Register Description

The PID register provides an identification of the devices
package. This register is a read-only register whose value never
changes.

The ID register provides the device identification. This register
is a read-only register whose value never changes.

7 6 5 4 3 2 1 0

Reserved PACKAGEID Reserved

Field Bits Description

Reserved 7:6 Reserved.

PID 5:4 Package Identification = 00

Reserved 3:0 Reserved.

7 6 5 4 3 2 1 0

ID

Field Bits Description

ID 7:0 Device Identification = 0x50

PID Register (0x11)

ID Register (0x12)

89

Page 20 ams Datasheet
Document Feedback [v2-04] 2018-Jun-05

TSL2591 − Register Description

The Status Register provides the internal status of the device.
This register is read only.

7 6 5 4 3 2 1 0

Reserved NPINTR AINT Reserved AVALID

Field Bits Description

Reserved 7:6 Reserved. Write at zero.

NPINTR 5
No-persist Interrupt. Indicates that the device has encountered a
no-persist interrupt condition.

AINT 4
ALS Interrupt. Indicates that the device is asserting an ALS
interrupt.

Reserved 3:1 Reserved.

AVALID 0
ALS Valid. Indicates that the ADC channels have completed an
integration cycle since the AEN bit was asserted.

Status Register (0x13)

90

ams Datasheet Page 21
[v2-04] 2018-Jun-05 Document Feedback

TSL2591 − Register Description

ALS data is stored as two 16-bit values; one for each channel.
When the lower byte of either channel is read, the upper byte
of the same channel is latched into a shadow register. The
shadow register ensures that both bytes are the result of the
same ALS integration cycle, even if additional integration cycles
occur between the lower byte and upper byte register readings.

Each channel independently operates the upper byte shadow
register. So to minimize the potential for skew between CH0
and CH1 data, it is recommended to read all four ADC bytes in
sequence.

Register Address Bits Description

C0DATAL 0x14 7:0 ALS CH0 data low byte

C0DATAH 0x15 7:0 ALS CH0 data high byte

C1DATAL 0x16 7:0 ALS CH1 data low byte

C1DATAH 0x17 7:0 ALS CH1 data high byte

ALS Data Register (0x14 - 0x17)

91

Page 22 ams Datasheet
Document Feedback [v2-04] 2018-Jun-05

TSL2591 − Application Information

Figure 16 shows a typical hardware application circuit. A 1-μF
low-ESR decoupling capacitor should be placed as close as
possible to the VDD pin. VBUS in this figure refers to the I²C bus
voltage, which is equal to VDD.

Figure 16:
Typical Application Hardware Circuit

The I²C signals and the Interrupt are open-drain outputs and
require pull-up resistors. The pull-up resistor (RP) value is a
function of the I²C bus speed, the I²C bus voltage, and the
capacitive load. The ams EVM running at 400 kbps, uses 1.5-kΩ
resistors. A 10-kΩ pull-up resistor (RPI) can be used for the
interrupt line.

Application Information

TSL2591

92

ams Datasheet Page 23
[v2-04] 2018-Jun-05 Document Feedback

TSL2591 − PCB Pad Layout

Suggested land pattern based on the IPC−7351B Generic
Requirements for Surface Mount Design and Land Pattern
Standard (2010) for the small outline no-lead (SON) package is
shown in Figure 17.

Figure 17:
Suggested FN Package PCB Layout (Top View)

Note(s):

1. All linear dimensions are in millimeters.

2. This drawing is subject to change without notice.

PCB Pad Layout

93

Page 24 ams Datasheet
Document Feedback [v2-04] 2018-Jun-05

TSL2591 − Package Drawings & Markings

Figure 18:
FN Package – Dual Flat No-Lead Packaging Configuration

Note(s):

1. All linear dimensions are in micrometers.

2. The die is centered within the package within a tolerence of ±75 μm.

3. Package top surface is molded with an electrically non-conductive clear plastic compound having an index of refraction of 1.55.

4. Contact finish is copper alloy A194 with pre-plated NiPdAu lead finish.

5. This package contains no lead (Pb).

6. This drawing is subject to change without notice.

Package Drawings & Markings

94

ams Datasheet Page 25
[v2-04] 2018-Jun-05 Document Feedback

TSL2591 − Mechanical Data

Figure 19:
FN Package Carrier Tape and Reel Information

Note(s):

1. All linear dimensions are in millimeters. Dimension tolerance is ± 0.10 mm unless otherwise noted.

2. The dimensions on this drawing are for illustrative purposes only. Dimensions of an actual carrier may vary slightly.

3. Symbols on drawing AO, BO and KO are defined in ANSI EIA Standard 481-B 2001.

4. Each reel is 178 millimeters in diameter and contains 3500 parts.

5. ams packaging tape and reel conform to the requirements of EIA Standard 481 - B.

6. In accordance with EIA Standard, device pin 1 is located next to the sprocket holes in the tape.

7. This drawing is subject to change without notice.

Mechanical Data

95

Page 26 ams Datasheet
Document Feedback [v2-04] 2018-Jun-05

TSL2591 − Soldering Information

The package has been tested and has demonstrated an ability
to be reflow soldered to a PCB substrate.

The solder reflow profile describes the expected maximum heat
exposure of components during the solder reflow process of
product on a PCB. Temperature is measured on top of
component. The components should be limited to a maximum
of three passes through this solder reflow profile.

Figure 20:
Solder Reflow Profile

Figure 21:
Solder Reflow Profile Graph

Parameter Reference Device

Average temperature gradient in preheating 2.5 ºC/s

Soak time tsoak 2 to 3 minutes

Time above 217 ºC (T1) t1 Max 60 s

Time above 230 ºC (T2) t2 Max 50 s

Time above Tpeak - 10 ºC (T3) t3 Max 10 s

Peak temperature in reflow Tpeak 260 ºC

Temperature gradient in cooling Max -5 ºC/s

Soldering Information

t3
t2
t1tsoak

T3

T2

T1

Tpeak
Not to scale — for reference only

Time (s)

Te
m

p
er

at
u

re
 (
�
C

)

96

ams Datasheet Page 27
[v2-04] 2018-Jun-05 Document Feedback

TSL2591 − Storage Information

Moisture Sensitivity
Optical characteristics of the device can be adversely affected
during the soldering process by the release and vaporization of
moisture that has been previously absorbed into the package.
To ensure the package contains the smallest amount of
absorbed moisture possible, each device is baked prior to being
dry packed for shipping.

Devices are dry packed in a sealed aluminized envelope called
a moisture-barrier bag with silica gel to protect them from
ambient moisture during shipping, handling, and storage
before use.

Shelf Life
The calculated shelf life of the device in an unopened moisture
barrier bag is 12 months from the date code on the bag when
stored under the following conditions:

• Shelf Life: 12 months

• Ambient Temperature: < 40°C

• Relative Humidity: < 90%

Rebaking of the devices will be required if the devices exceed
the 12 month shelf life or the Humidity Indicator Card shows
that the devices were exposed to conditions beyond the
allowable moisture region.

Floor Life
The FN package has been assigned a moisture sensitivity level
of MSL 3. As a result, the floor life of devices removed from the
moisture barrier bag is 168 hours from the time the bag was
opened, provided that the devices are stored under the
following conditions:

• Floor Life: 168 hours

• Ambient Temperature: < 30°C

• Relative Humidity: < 60%

If the floor life or the temperature/humidity conditions have
been exceeded, the devices must be rebaked prior to solder
reflow or dry packing.

Rebaking Instructions
When the shelf life or floor life limits have been exceeded,
rebake at 50°C for 12 hours.

Storage Information

97

Page 28 ams Datasheet
Document Feedback [v2-04] 2018-Jun-05

TSL2591 − Ordering & Contact Information

Figure 22:
Ordering Information

Buy our products or get free samples online at:
www.ams.com/Product

Technical Support is available at:
www.ams.com/Technical-Support

Provide feedback about this document at:
www.ams.com/Document-Feedback

For further information and requests, e-mail us at:
ams_sales@ams.com

For sales offices, distributors and representatives, please visit:
www.ams.com/Contact

Headquarters
ams AG
Tobelbader Strasse 30
8141 Premstaetten
Austria, Europe

Tel: +43 (0) 3136 500 0

Website: www.ams.com

Ordering Code Address Interface Delivery Form

TSL25911FN 0x29 I²C Vbus = VDD Interface ODFN-6

TSL25913FN 0x29 I²C Vbus = 1.8V ODFN-6

Ordering & Contact Information

98

ams Datasheet Page 29
[v2-04] 2018-Jun-05 Document Feedback

TSL2591 − RoHS Compliant & ams Green Statement

RoHS: The term RoHS compliant means that ams AG products
fully comply with current RoHS directives. Our semiconductor
products do not contain any chemicals for all 6 substance
categories, including the requirement that lead not exceed
0.1% by weight in homogeneous materials. Where designed to
be soldered at high temperatures, RoHS compliant products are
suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br): ams Green
defines that in addition to RoHS compliance, our products are
free of Bromine (Br) and Antimony (Sb) based flame retardants
(Br or Sb do not exceed 0.1% by weight in homogeneous
material).

Important Information: The information provided in this
statement represents ams AG knowledge and belief as of the
date that it is provided. ams AG bases its knowledge and belief
on information provided by third parties, and makes no
representation or warranty as to the accuracy of such
information. Efforts are underway to better integrate
information from third parties. ams AG has taken and continues
to take reasonable steps to provide representative and accurate
information but may not have conducted destructive testing or
chemical analysis on incoming materials and chemicals. ams AG
and ams AG suppliers consider certain information to be
proprietary, and thus CAS numbers and other limited
information may not be available for release.

RoHS Compliant & ams Green
Statement

99

Page 30 ams Datasheet
Document Feedback [v2-04] 2018-Jun-05

TSL2591 − Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten,
Austria-Europe. Trademarks Registered. All rights reserved. The
material herein may not be reproduced, adapted, merged,
translated, stored, or used without the prior written consent of
the copyright owner.

Devices sold by ams AG are covered by the warranty and patent
indemnification provisions appearing in its General Terms of
Trade. ams AG makes no warranty, express, statutory, implied,
or by description regarding the information set forth herein.
ams AG reserves the right to change specifications and prices
at any time and without notice. Therefore, prior to designing
this product into a system, it is necessary to check with ams AG
for current information. This product is intended for use in
commercial applications. Applications requiring extended
temperature range, unusual environmental requirements, or
high reliability applications, such as military, medical
life-support or life-sustaining equipment are specifically not
recommended without additional processing by ams AG for
each application. This product is provided by ams AG “AS IS”
and any express or implied warranties, including, but not
limited to the implied warranties of merchantability and fitness
for a particular purpose are disclaimed.

ams AG shall not be liable to recipient or any third party for any
damages, including but not limited to personal injury, property
damage, loss of profits, loss of use, interruption of business or
indirect, special, incidental or consequential damages, of any
kind, in connection with or arising out of the furnishing,
performance or use of the technical data herein. No obligation
or liability to recipient or any third party shall arise or flow out
of ams AG rendering of technical or other services.

Copyrights & Disclaimer

100

ams Datasheet Page 31
[v2-04] 2018-Jun-05 Document Feedback

TSL2591 − Document Status

Document Status Product Status Definition

Product Preview Pre-Development

Information in this datasheet is based on product ideas in
the planning phase of development. All specifications are
design goals without any warranty and are subject to
change without notice

Preliminary Datasheet Pre-Production

Information in this datasheet is based on products in the
design, validation or qualification phase of development.
The performance and parameters shown in this document
are preliminary without any warranty and are subject to
change without notice

Datasheet Production

Information in this datasheet is based on products in
ramp-up to full production or full production which
conform to specifications in accordance with the terms of
ams AG standard warranty as given in the General Terms of
Trade

Datasheet (discontinued) Discontinued

Information in this datasheet is based on products which
conform to specifications in accordance with the terms of
ams AG standard warranty as given in the General Terms of
Trade, but these products have been superseded and
should not be used for new designs

Document Status

101

Page 32 ams Datasheet
Document Feedback [v2-04] 2018-Jun-05

TSL2591 − Revision Information

Note(s):

1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.

2. Correction of typographical errors is not explicitly mentioned.

Changes from 2-03 (2018-Apr-30) to current revision 2-04 (2018-Jun-05) Page

Updated Figure 5 5

Updated text under Electrical Characteristics 6

Revision Information

102

ams Datasheet Page 33
[v2-04] 2018-Jun-05 Document Feedback

TSL2591 − Content Guide

1 General Description
2 Block Diagram

3 Detailed Description
4 Pin Assignment
5 Absolute Maximum Ratings
6 Electrical Characteristics
9 Timing Characteristics
10 Timing Diagrams
11 Typical Operating Characteristics

13 Register Description
14 Command Register
15 Enable Register (0x00)
16 Control Register (0x01)
17 ALS Interrupt Threshold Register (0x04 − 0x0B)
18 PERSIST Register (0x0C)
19 PID Register (0x11)
19 ID Register (0x12)
20 Status Register (0x13)
21 ALS Data Register (0x14 - 0x17)

22 Application Information
23 PCB Pad Layout
24 Package Drawings & Markings
25 Mechanical Data
26 Soldering Information

27 Storage Information
27 Moisture Sensitivity
27 Shelf Life
27 Floor Life
27 Rebaking Instructions

28 Ordering & Contact Information
29 RoHS Compliant & ams Green Statement
30 Copyrights & Disclaimer
31 Document Status
32 Revision Information

Content Guide

103

TCA9548A

Slaves A0, A1...AN

Slaves B0, B1...BN

Slaves H0, H1...HN

I2C or SMBus

Master

(processor)

SDA
SCL

SD0
SC0

Channel 0

Channel 1

Channel 7

RESET
SD1
SC1

SD7
SC7

VCC

A1

A2

GND

A0

Slaves C0, C1...CN

Channel 2
SD2
SC2

Product

Folder

Order

Now

Technical

Documents

Tools &

Software

Support &
Community

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.

TCA9548A
SCPS207G –MAY 2012–REVISED NOVEMBER 2019

TCA9548A Low-Voltage 8-Channel I2C Switch with Reset

1

1 Features
1• 1-to-8 Bidirectional translating switches
• I2C Bus and SMBus compatible
• Active-low reset input
• Three address pins, allowing up to eight

TCA9548A devices on the I2C bus
• Channel selection through an I2C Bus, in any

combination
• Power up with all switch channels deselected
• Low RON switches
• Allows voltage-level translation between 1.8-V,

2.5-V, 3.3-V, and 5-V buses
• No glitch on power up
• Supports hot insertion
• Low standby current
• Operating power-supply voltage range of

1.65 V to 5.5 V
• 5-V Tolerant inputs
• 0- to 400-kHz Clock frequency
• Latch-up performance exceeds 100 mA Per JESD

78, class II
• ESD Protection exceeds JESD 22

– ±2000-V Human-body model (A114-A)
– 200-V Machine model (A115-A)
– ±1000-V Charged-device model (C101)

2 Applications
• Servers
• Routers (telecom switching equipment)
• Factory Automation
• Products with I2C slave address conflicts (such as

multiple, identical temperature sensors)

3 Description
The TCA9548A device has eight bidirectional
translating switches that can be controlled through
the I2C bus. The SCL/SDA upstream pair fans out to
eight downstream pairs, or channels. Any individual
SCn/SDn channel or combination of channels can be
selected, determined by the contents of the
programmable control register. These downstream
channels can be used to resolve I2C slave address
conflicts. For example, if eight identical digital
temperature sensors are needed in the application,
one sensor can be connected at each channel: 0-7.

The system master can reset the TCA9548A in the
event of a time-out or other improper operation by
asserting a low in the RESET input. Similarly, the
power-on reset deselects all channels and initializes
the I2C/SMBus state machine. Asserting RESET
causes the same reset and initialization to occur
without powering down the part. This allows recovery
should one of the downstream I2C buses get stuck in
a low state.

The pass gates of the switches are constructed so
that the VCC pin can be used to limit the maximum
high voltage, which is passed by the TCA9548A.
Limiting the maximum high voltage allows the use of
different bus voltages on each pair, so that 1.8-V, 2.5-
V or 3.3-V parts can communicate with 5-V parts,
without any additional protection. External pullup
resistors pull the bus up to the desired voltage level
for each channel. All I/O pins are 5-V tolerant.

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)

TCA9548A
TSSOP (24) 7.80 mm × 4.40 mm
VQFN (24) 4.00 mm × 4.00 mm

(1) For all available packages, see the orderable addendum at
the end of the data sheet.

Simplified Application Diagram

104

2

TCA9548A
SCPS207G –MAY 2012–REVISED NOVEMBER 2019 www.ti.com

Product Folder Links: TCA9548A

Submit Documentation Feedback Copyright © 2012–2019, Texas Instruments Incorporated

Table of Contents
1 Features .. 1
2 Applications ... 1
3 Description ... 1
4 Revision History... 2
5 Pin Configuration and Functions 4
6 Specifications... 5

6.1 Absolute Maximum Ratings 5
6.2 ESD Ratings .. 5
6.3 Recommended Operating Conditions....................... 5
6.4 Thermal Information .. 5
6.5 Electrical Characteristics... 6
6.6 I2C Interface Timing Requirements........................... 7
6.7 Reset Timing Requirements 8
6.8 Switching Characteristics .. 8
6.9 Typical Characteristics .. 9

7 Parameter Measurement Information 10
8 Detailed Description .. 12

8.1 Overview ... 12
8.2 Functional Block Diagram 13

8.3 Feature Description... 14
8.4 Device Functional Modes.. 14
8.5 Programming... 14

9 Application and Implementation 20
9.1 Application Information.. 20
9.2 Typical Application .. 20

10 Power Supply Recommendations 24
10.1 Power-On Reset Requirements 24

11 Layout... 26
11.1 Layout Guidelines ... 26
11.2 Layout Example .. 26

12 Device and Documentation Support 27
12.1 Documentation Support .. 27
12.2 Receiving Notification of Documentation Updates 27
12.3 Support Resources ... 27
12.4 Trademarks ... 27
12.5 Electrostatic Discharge Caution............................ 27
12.6 Glossary .. 27

13 Mechanical, Packaging, and Orderable
Information ... 27

4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision F (November 2016) to Revision G Page

• Changed the appearance of the PW package and the RGE package images ... 4
• Changed TJ from 90 C to 130 C in lower voltage VCC conditions ... 5
• Changed TA from 85 C to 125C for lower voltage VCC conditions ... 5
• Changed From: VCC = 2.3 V to 3.6 V To: VCC = 1.65 V to 5.5 V in the Electrical Characteristics conditions 6
• Changed VO min from 0.9V to 0.6 V... 6
• Added standby mode specifications for > 85 C TA ... 6
• Changed RL = 1 kW To: RL = 1 KΩ in Figure 6 ... 11

Changes from Revision E (October 2015) to Revision F Page

• Updated the Description section... 1
• Added new orderable part number, TCA9548AMRGER.. 1

Changes from Revision D (January 2015) to Revision E Page

• Updated Pin Functions table. .. 4
• Added new I2C Sections and read/write description ... 16

Changes from Revision C (November 2013) to Revision D Page

• Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional
Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device
and Documentation Support section, and Mechanical, Packaging, and Orderable Information section 1

• Updated Typical Application schematic. .. 21

105

3

TCA9548A
www.ti.com SCPS207G –MAY 2012–REVISED NOVEMBER 2019

Product Folder Links: TCA9548A

Submit Documentation FeedbackCopyright © 2012–2019, Texas Instruments Incorporated

Changes from Revision B (November 2013) to Revision C Page

• Updated VPOR and ICC standby specification. ... 6

Changes from Revision A (July 2012) to Revision B Page

• Updated document formatting. ... 1
• Removed ordering information. .. 1

106

1A0 24 VCC

2A1 23 SDA

3RESET 22 SCL

4SD0 21 A2

5SC0 20 SC7

6SD1 19 SD7

7SC1 18 SC6

8SD2 17 SD6

9SC2 16 SC5

10SD3 15 SD5

11SC3 14 SC4

12GND 13 SD4

Not to scale

2
4

R
E

S
E

T
7

S
D

3

1SD0 18 A2

2
3

A
1

8
S

C
3

2SC0 17 SC7

2
2

A
0

9
G

N
D

3SD1 16 SD7

2
1

V
C

C
1

0
S

D
4

4SC1 15 SC6

2
0

S
D

A
1

1
S

C
4

5SD2 14 SD6

1
9

S
C

L
1

2
S

D
5

6SC2 13 SC5

Not to scale

Thermal

Pad

4

TCA9548A
SCPS207G –MAY 2012–REVISED NOVEMBER 2019 www.ti.com

Product Folder Links: TCA9548A

Submit Documentation Feedback Copyright © 2012–2019, Texas Instruments Incorporated

5 Pin Configuration and Functions

PW Package
24-Pin TSSOP

Top View
RGE Package
24-Pin VQFN

Top View

(1) VDPUX is the pull-up reference voltage for the associated data line. VDPUM is the master I2C reference voltage and VDPU0-VDPU7 are the
slave channel reference voltages.

Pin Functions
PIN

TYPE DESCRIPTION
NAME TSSOP

(PW)
QFN

(RGE)

A0 1 22 I Address input 0. Connect directly to VCC or ground

A1 2 23 I Address input 1. Connect directly to VCC or ground

A2 21 18 I Address input 2. Connect directly to VCC or ground

GND 12 9 — Ground

RESET 3 24 I Active-low reset input. Connect to VCC or VDPUM
(1) through a pull-up resistor, if not used

SD0 4 1 I/O Serial data 0. Connect to VDPU0
(1) through a pull-up resistor

SC0 5 2 I/O Serial clock 0. Connect to VDPU0
(1) through a pull-up resistor

SD1 6 3 I/O Serial data 1. Connect to VDPU1
(1) through a pull-up resistor

SC1 7 4 I/O Serial clock 1. Connect to VDPU1
(1) through a pull-up resistor

SD2 8 5 I/O Serial data 2. Connect to VDPU2
(1) through a pull-up resistor

SC2 9 6 I/O Serial clock 2. Connect to VDPU2
(1) through a pull-up resistor

SD3 10 7 I/O Serial data 3. Connect to VDPU3
(1) through a pull-up resistor

SC3 11 8 I/O Serial clock 3. Connect to VDPU3
(1) through a pull-up resistor

SD4 13 10 I/O Serial data 4. Connect to VDPU4
(1) through a pull-up resistor

SC4 14 11 I/O Serial clock 4. Connect to VDPU4
(1) through a pull-up resistor

SD5 15 12 I/O Serial data 5. Connect to VDPU5
(1) through a pull-up resistor

SC5 16 13 I/O Serial clock 5. Connect to VDPU5
(1) through a pull-up resistor

SD6 17 14 I/O Serial data 6. Connect to VDPU6
(1) through a pull-up resistor

SC6 18 15 I/O Serial clock 6. Connect to VDPU6
(1) through a pull-up resistor

SD7 19 16 I/O Serial data 7. Connect to VDPU7
(1) through a pull-up resistor

SC7 20 17 I/O Serial clock 7. Connect to VDPU7
(1) through a pull-up resistor

SCL 22 19 I/O Serial clock bus. Connect to VDPUM
(1) through a pull-up resistor

SDA 23 20 I/O Serial data bus. Connect to VDPUM
(1) through a pull-up resistor

VCC 24 21 Power Supply voltage

107

5

TCA9548A
www.ti.com SCPS207G –MAY 2012–REVISED NOVEMBER 2019

Product Folder Links: TCA9548A

Submit Documentation FeedbackCopyright © 2012–2019, Texas Instruments Incorporated

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

6 Specifications

6.1 Absolute Maximum Ratings (1)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT

VCC Supply voltage –0.5 7 V
VI Input voltage (2) –0.5 7 V
II Input current –20 20 mA
IO Output current –25 mA
ICC Supply current –100 100 mA
Tstg Storage temperature –65 150 °C

TJ Max Junction Temperature
VCC ≤ 3.6 V 130

℃
VCC ≤ 5.5 V 90

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.2 ESD Ratings
VALUE UNIT

V(ESD) Electrostatic discharge
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±2000

V
Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±1000

6.3 Recommended Operating Conditions
MIN MAX UNIT

VCC Supply voltage
-40 ℃ ≤ TA ≤ 85 ℃ 1.65 5.5

V
85 ℃ < TA ≤ 125 ℃ 1.65 3.6

VIH High-level input voltage
SCL, SDA 0.7 × VCC 6

V
A2–A0, RESET 0.7 × VCC VCC + 0.5

VIL Low-level input voltage
SCL, SDA –0.5 0.3 × VCC V
A2–A0, RESET –0.5 0.3 × VCC

TA Operating free-air temperature
3.6 V < VCC ≤ 5.5 V –40 85

°C
1.65 V ≤ VCC ≤ 3.6 V –40 125

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.

6.4 Thermal Information

THERMAL METRIC (1)
TCA9548A

UNITPW (TSSOP) RGE (VQFN)
24 PINS 24 PINS

RθJA Junction-to-ambient thermal resistance 108.8 57.2 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 54.1 62.5 °C/W
RθJB Junction-to-board thermal resistance 62.7 34.4 °C/W
ψJT Junction-to-top characterization parameter 10.9 3.8 °C/W
ψJB Junction-to-board characterization parameter 62.3 34.4 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A 15.5 °C/W

108

6

TCA9548A
SCPS207G –MAY 2012–REVISED NOVEMBER 2019 www.ti.com

Product Folder Links: TCA9548A

Submit Documentation Feedback Copyright © 2012–2019, Texas Instruments Incorporated

(1) For operation between specified voltage ranges, refer to the worst-case parameter in both applicable ranges.
(2) All typical values are at nominal supply voltage (1.8-, 2.5-, 3.3-, or 5-V VCC), TA = 25°C.
(3) RESET = VCC (held high) when all other input voltages, VI = GND.
(4) The power-on reset circuit resets the I2C bus logic with VCC < VPORF.

6.5 Electrical Characteristics (1)

VCC = 1.65 V to 5.5 V, over recommended operating free-air temperature ranges supported by Recommended Operating
Conditions (unless otherwise noted)

PARAMETER TEST CONDITIONS VCC MIN TYP (2) MAX UNIT
VPORR Power-on reset voltage, VCC rising No load, VI = VCC or GND (3) 1.2 1.5 V

VPORF
Power-on reset voltage, VCC
falling (4) No load, VI = VCC or GND (3) 0.8 1 V

Vo(sw) Switch output voltage Vi(sw) = VCC, ISWout = –100 μA

5 V 3.6

V

4.5 V to 5.5 V 2.6 4.5
3.3 V 1.9

3 V to 3.6 V 1.6 2.8
2.5 V 1.5

2.3 V to 2.7 V 1.1 2
1.8 V 1.1

1.65 V to 1.95 V 0.6 1.25

IOL SDA
VOL = 0.4 V

1.65 V to 5.5 V
3 6

mA
VOL = 0.6 V 6 9

II

SCL, SDA

VI = VCC or GND (3) 1.65 V to 5.5 V

–1 1

μA
SC7–SC0, SD7–SD0 –1 1
A2–A0 –1 1
RESET –1 1

ICC

Operating mode

fSCL = 400 kHz VI = VCC or GND (3), IO = 0

5.5 V 50 80

μA

3.6 V 20 35
2.7 V 11 20
1.65 V 6 10

fSCL = 100 kHz VI = VCC or GND (3), IO = 0

5.5 V 9 30
3.6 V 6 15
2.7 V 4 8
1.65 V 2 4

Standby mode

Low inputs VI = GND (3), IO = 0, -40 ℃ ≤ TA ≤
85 ℃

5.5 V 0.2 2
3.6 V 0.1 2
2.7 V 0.1 1
1.65 V 0.1 1

High inputs VI = VCC, IO = 0, -40 ℃ ≤ TA ≤
85 ℃

5.5 V 0.2 2
3.6 V 0.1 2
2.7 V 0.1 1
1.65 V 0.1 1

Low and High
Inputs

VI = VCC or GND, IO = 0, 85 ℃ <
TA ≤ 125 ℃

3.6 V 1 2
2.7 V 0.7 1.5
1.65 V 0.4 1

ΔICC
Supply-current
change SCL, SDA

SCL or SDA input at 0.6 V,
Other inputs at VCC or GND (3)

1.65 V to 5.5 V
3 20

μA
SCL or SDA input at VCC – 0.6 V,
Other inputs at VCC or GND (3) 3 20

Ci

A2–A0
VI = VCC or GND (3)

1.65 V to 5.5 V
4 5

pFRESET 4 5
SCL VI = VCC or GND (3), Switch OFF 20 28

109

7

TCA9548A
www.ti.com SCPS207G –MAY 2012–REVISED NOVEMBER 2019

Product Folder Links: TCA9548A

Submit Documentation FeedbackCopyright © 2012–2019, Texas Instruments Incorporated

Electrical Characteristics(1) (continued)
VCC = 1.65 V to 5.5 V, over recommended operating free-air temperature ranges supported by Recommended Operating
Conditions (unless otherwise noted)

PARAMETER TEST CONDITIONS VCC MIN TYP (2) MAX UNIT

(5) Cio(ON) depends on internal capacitance and external capacitance added to the SCn lines when channels(s) are ON.

Cio(off)
(5) SDA

VI = VCC or GND (3), Switch OFF 1.65 V to 5.5 V
20 28

pF
SC7–SC0, SD7–SD0 5.5 7.5

RON Switch-on resistance
VO = 0.4 V, IO = 15 mA

4.5 V to 5.5 V 4 10 20

Ω
3 V to 3.6 V 5 12 30

VO = 0.4 V, IO = 10 mA
2.3 V to 2.7 V 7 15 45

1.65 V to 1.95 V 10 25 70

(1) A device internally must provide a hold time of at least 300 ns for the SDA signal (referred to the VIH min of the SCL signal), to bridge
the undefined region of the falling edge of SCL.

(2) Data taken using a 1-kΩ pull-up resistor and 50-pF load (see Figure 6)
(3) Cb = total bus capacitance of one bus line in pF

6.6 I2C Interface Timing Requirements
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 5)

MIN MAX UNIT
STANDARD MODE
fscl I2C clock frequency 0 100 kHz
tsch I2C clock high time 4 μs
tscl I2C clock low time 4.7 μs
tsp I2C spike time 50 ns
tsds I2C serial-data setup time 250 ns
tsdh I2C serial-data hold time 0 (1) μs
ticr I2C input rise time 1000 ns
ticf I2C input fall time 300 ns
tocf I2C output (SDn) fall time (10-pF to 400-pF bus) 300 ns
tbuf I2C bus free time between stop and start 4.7 μs
tsts I2C start or repeated start condition setup 4.7 μs
tsth I2C start or repeated start condition hold 4 μs
tsps I2C stop condition setup 4 μs
tvdL(Data) Valid-data time (high to low) (2) SCL low to SDA output low valid 1 μs
tvdH(Data) Valid-data time (low to high) (2) SCL low to SDA output high valid 0.6 μs

tvd(ack) Valid-data time of ACK condition ACK signal from SCL low
to SDA output low 1 μs

Cb I2C bus capacitive load 400 pF
FAST MODE
fscl I2C clock frequency 0 400 kHz
tsch I2C clock high time 0.6 μs
tscl I2C clock low time 1.3 μs
tsp I2C spike time 50 ns
tsds I2C serial-data setup time 100 ns
tsdh I2C serial-data hold time 0 (1) μs

ticr I2C input rise time 20 + 0.1Cb
(3) 300 ns

ticf I2C input fall time 20 + 0.1Cb
(3) 300 ns

tocf I2C output (SDn) fall time (10-pF to 400-pF bus) 20 + 0.1Cb
(3) 300 ns

110

8

TCA9548A
SCPS207G –MAY 2012–REVISED NOVEMBER 2019 www.ti.com

Product Folder Links: TCA9548A

Submit Documentation Feedback Copyright © 2012–2019, Texas Instruments Incorporated

I2C Interface Timing Requirements (continued)
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 5)

MIN MAX UNIT
tbuf I2C bus free time between stop and start 1.3 μs
tsts I2C start or repeated start condition setup 0.6 μs
tsth I2C start or repeated start condition hold 0.6 μs
tsps I2C stop condition setup 0.6 μs
tvdL(Data) Valid-data time (high to low) (2) SCL low to SDA output low valid 1 μs
tvdH(Data) Valid-data time (low to high) (2) SCL low to SDA output high valid 0.6 μs

tvd(ack) Valid-data time of ACK condition ACK signal from SCL low
to SDA output low 1 μs

Cb I2C bus capacitive load 400 pF

6.7 Reset Timing Requirements
over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER MIN MAX UNIT
tW(L) Pulse duration, RESET low 6 ns
tREC(STA) Recovery time from RESET to start 0 ns

(1) The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load
capacitance, when driven by an ideal voltage source (zero output impedance).

(2) trst is the propagation delay measured from the time the RESET pin is first asserted low to the time the SDA pin is asserted high,
signaling a stop condition. It must be a minimum of tWL.

6.8 Switching Characteristics
over recommended operating free-air temperature range, CL ≤ 100 pF (unless otherwise noted) (see Figure 5)

PARAMETER FROM
(INPUT)

TO
(OUTPUT) MIN MAX UNIT

tpd
(1) Propagation delay time

RON = 20 Ω, CL = 15 pF
SDA or SCL SDn or SCn

0.3
ns

RON = 20 Ω, CL = 50 pF 1
trst

(2) RESET time (SDA clear) RESET SDA 500 ns

111

VCC (V)

C
IO

(O
F

F
) (

p
F

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

D006

25ºC (Room Temperature)
85ºC
-40º

VCC (V)

R
O

N
(

)
Ω

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

5

10

15

20

25

30

D001

25ºC (Room Temperature)
85ºC
-40ºC

IOL (mA)

V
O

L
 (

m
V

)

0 2 4 6 8 10 12
0

100

200

300

400

500

600

700

800

D003

VCC = 5.5V
VCC = 3.3V
VCC = 1.65V

VCC (V)

I C
C
,
S

ta
n

d
b
y

M
o
d
e
 (

µ
A

)

1.5 2 2.5 3 3.5 4 4.5 5 5.5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D004

25ºC (Room Temperature)
85ºC
-40ºC

9

TCA9548A
www.ti.com SCPS207G –MAY 2012–REVISED NOVEMBER 2019

Product Folder Links: TCA9548A

Submit Documentation FeedbackCopyright © 2012–2019, Texas Instruments Incorporated

6.9 Typical Characteristics

Figure 1. SDA Output Low Voltage (VOL) vs Load Current
(IOL) at Three VCC Levels

Figure 2. Standby Current (ICC) vs Supply Voltage (VCC) at
Three Temperature Points

Figure 3. Slave Channel (SCn/SDn) Capacitance (Cio(OFF)) vs
Supply Voltage (VCC) at Three Temperature Points

Figure 4. On-Resistance (RON) vs Supply Voltage (VCC) at
Three Temperatures

\

112

SCL

SDA

SDA LOAD CONFIGURATION

1

2, 3

VCC

R = 1 kL W

C = 50 pF

(see Note A)
L

DUT
SDA

Three Bytes for Complete
Device Programming

Stop
Condition

(P)

Start
Condition

(S)

Address
Bit 7

(MSB)

Address
Bit 6

Address
Bit 1

R/
Bit 0
(LSB)

W
ACK
(A)

Data
Bit 7

(MSB)

Data
Bit 0
(LSB)

Stop
Condition

(P)

0.7 V´ CC

0.3 V´ CC

VOLTAGE WAVEFORMS

Start or
Repeat Start
Condition

Repeat Start
Condition Stop

Condition

BYTE DESCRIPTION

I C address
2

P-port data

0.7 V´ CC

0.3 V´ CC

tscl tsch

tbuf

ticf

ticf

ticr

tsth

ticr

tsds

tsp

tsdh

tvd(ack)

tvdH(Data)

tsts

tsps

tvdL(Data)

10

TCA9548A
SCPS207G –MAY 2012–REVISED NOVEMBER 2019 www.ti.com

Product Folder Links: TCA9548A

Submit Documentation Feedback Copyright © 2012–2019, Texas Instruments Incorporated

7 Parameter Measurement Information

A. CL includes probe and jig capacitance.
B. All inputs are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr/tf ≤ 30 ns.
C. Not all parameters and waveforms are applicable to all devices.

Figure 5. I2C Load Circuit and Voltage Waveforms

113

SDA

SCL

Start

ACK or Read Cycle

tw

tREC

RESET

0.3 VCC

0.3 VCC

tRESET

SDn, SCn

RL = 1 kW

VCC

CL = 50 pF

(see Note A)

SDA LOAD CONFIGURATION

DUT
SDA

VCC/2

tRESET

11

TCA9548A
www.ti.com SCPS207G –MAY 2012–REVISED NOVEMBER 2019

Product Folder Links: TCA9548A

Submit Documentation FeedbackCopyright © 2012–2019, Texas Instruments Incorporated

Parameter Measurement Information (continued)

A. CL includes probe and jig capacitance.
B. All inputs are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr/tf ≤ 30 ns.
C. I/Os are configured as inputs.
D. Not all parameters and waveforms are applicable to all devices.

Figure 6. Reset Load Circuit and Voltage Waveforms

114

12

TCA9548A
SCPS207G –MAY 2012–REVISED NOVEMBER 2019 www.ti.com

Product Folder Links: TCA9548A

Submit Documentation Feedback Copyright © 2012–2019, Texas Instruments Incorporated

8 Detailed Description

8.1 Overview
The TCA9548A is an 8-channel, bidirectional translating I2C switch. The master SCL/SDA signal pair is directed
to eight channels of slave devices, SC0/SD0-SC7/SD7. Any individual downstream channel can be selected as
well as any combination of the eight channels.

The device offers an active-low RESET input which resets the state machine and allows the TCA9548A to
recover must one of the downstream I2C buses get stuck in a low state. The state machine of the device can
also be reset by cycling the power supply, VCC, also known as a power-on reset (POR). Both the RESET function
and a POR cause all channels to be deselected.

The connections of the I2C data path are controlled by the same I2C master device that is switched to
communicate with multiple I2C slaves. After the successful acknowledgment of the slave address (hardware
selectable by A0, A1, and A2 pins), a single 8-bit control register is written to or read from to determine the
selected channels.

The TCA9548A may also be used for voltage translation, allowing the use of different bus voltages on each
SCn/SDn pair such that 1.8-V, 2.5-V, or 3.3-V parts can communicate with 5-V parts. This is achieved by using
external pull-up resistors to pull the bus up to the desired voltage for the master and each slave channel.

115

SC0

SC1

SC2

SC3

SC4

SC5

SC6

SC7

SD0

SD1

SD2

SD3

SD4

SD5

SD6

SD7

GND

VCC

RESET

SCL

SDA

Switch Control Logic

Reset Circuit

Input Filter
I C Bus Control
2

A0

A1

A2

TCA9548A

1

2

21

5

7

9

11

14

16

18

20

4

6

8

10

13

15

17

19

12

24

3

22

23

13

TCA9548A
www.ti.com SCPS207G –MAY 2012–REVISED NOVEMBER 2019

Product Folder Links: TCA9548A

Submit Documentation FeedbackCopyright © 2012–2019, Texas Instruments Incorporated

8.2 Functional Block Diagram

116

14

TCA9548A
SCPS207G –MAY 2012–REVISED NOVEMBER 2019 www.ti.com

Product Folder Links: TCA9548A

Submit Documentation Feedback Copyright © 2012–2019, Texas Instruments Incorporated

8.3 Feature Description
The TCA9548A is an 8-channel, bidirectional translating switch for I2C buses that supports Standard-Mode (100
kHz) and Fast-Mode (400 kHz) operation. The TCA9548A features I2C control using a single 8-bit control register
in which each bit controls the enabling and disabling of one of the corresponding 8 switch channels for I2C data
flow. Depending on the application, voltage translation of the I2C bus can also be achieved using the TCA9548A
to allow 1.8-V, 2.5-V, or 3.3-V parts to communicate with 5-V parts. Additionally, in the event that communication
on the I2C bus enters a fault state, the TCA9548A can be reset to resume normal operation using the RESET pin
feature or by a power-on reset which results from cycling power to the device.

8.4 Device Functional Modes

8.4.1 RESET Input
The RESET input is an active-low signal that may be used to recover from a bus-fault condition. When this signal
is asserted low for a minimum of tWL, the TCA9548A resets its registers and I2C state machine and deselects all
channels. The RESET input must be connected to VCC through a pull-up resistor.

8.4.2 Power-On Reset
When power is applied to the VCC pin, an internal power-on reset holds the TCA9548A in a reset condition until
VCC has reached VPORR. At this point, the reset condition is released, and the TCA9548A registers and I2C state
machine are initialized to their default states, all zeroes, causing all the channels to be deselected. Thereafter,
VCC must be lowered below VPORF to reset the device.

8.5 Programming

8.5.1 I2C Interface
The TCA9548A has a standard bidirectional I2C interface that is controlled by a master device in order to be
configured or read the status of this device. Each slave on the I2C bus has a specific device address to
differentiate between other slave devices that are on the same I2C bus. Many slave devices require configuration
upon startup to set the behavior of the device. This is typically done when the master accesses internal register
maps of the slave, which have unique register addresses. A device can have one or multiple registers where
data is stored, written, or read.

The physical I2C interface consists of the serial clock (SCL) and serial data (SDA) lines. Both SDA and SCL lines
must be connected to VCC through a pull-up resistor. The size of the pull-up resistor is determined by the amount
of capacitance on the I2C lines. (For further details, see the I2C Pull-up Resistor Calculation application report.
Data transfer may be initiated only when the bus is idle. A bus is considered idle if both SDA and SCL lines are
high after a STOP condition (See Figure 7 and Figure 8).

The following is the general procedure for a master to access a slave device:
1. If a master wants to send data to a slave:

– Master-transmitter sends a START condition and addresses the slave-receiver.
– Master-transmitter sends data to slave-receiver.
– Master-transmitter terminates the transfer with a STOP condition.

2. If a master wants to receive or read data from a slave:
– Master-receiver sends a START condition and addresses the slave-transmitter.
– Master-receiver sends the requested register to read to slave-transmitter.
– Master-receiver receives data from the slave-transmitter.

117

1 1 1 0 A1A2 A0

Slave Address

R/W

Fixed Hardware

Selectable

SCL

SDA

MSB Bit Bit Bit Bit Bit Bit LSB

Byte: 1010 1010 (0xAAh)

1 0 1 0 1 0 1 0

SDA line stable while SCL line is high

ACK

ACK

SCL

SDA

START

Condition

STOP

Condition

Data Transfer

15

TCA9548A
www.ti.com SCPS207G –MAY 2012–REVISED NOVEMBER 2019

Product Folder Links: TCA9548A

Submit Documentation FeedbackCopyright © 2012–2019, Texas Instruments Incorporated

Programming (continued)
– Master-receiver terminates the transfer with a STOP condition.

Figure 7. Definition of Start and Stop Conditions

Figure 8. Bit Transfer

8.5.2 Device Address
Figure 9 shows the address byte of the TCA9548A.

Figure 9. TCA9548A Address

118

16

TCA9548A
SCPS207G –MAY 2012–REVISED NOVEMBER 2019 www.ti.com

Product Folder Links: TCA9548A

Submit Documentation Feedback Copyright © 2012–2019, Texas Instruments Incorporated

Programming (continued)
The last bit of the slave address defines the operation (read or write) to be performed. When it is high (1), a read
is selected, while a low (0) selects a write operation.

Table 1 shows the TCA9548A address reference.

Table 1. Address Reference
INPUTS

I2C BUS SLAVE ADDRESS
A2 A1 A0
L L L 112 (decimal), 70 (hexadecimal)
L L H 113 (decimal), 71 (hexadecimal)
L H L 114 (decimal), 72 (hexadecimal)
L H H 115 (decimal), 73 (hexadecimal)
H L L 116 (decimal), 74 (hexadecimal)
H L H 117 (decimal), 75 (hexadecimal)
H H L 118 (decimal), 76 (hexadecimal)
H H H 119 (decimal), 77 (hexadecimal)

8.5.3 Bus Transactions
Data must be sent to and received from the slave devices, and this is accomplished by reading from or writing to
registers in the slave device.

Registers are locations in the memory of the slave which contain information, whether it be the configuration
information or some sampled data to send back to the master. The master must write information to these
registers in order to instruct the slave device to perform a task.

While it is common to have registers in I2C slaves, note that not all slave devices have registers. Some devices
are simple and contain only 1 register, which may be written to directly by sending the register data immediately
after the slave address, instead of addressing a register. The TCA9548A is example of a single-register device,
which is controlled via I2C commands. Since it has 1 bit to enable or disable a channel, there is only 1 register
needed, and the master merely writes the register data after the slave address, skipping the register number.

8.5.3.1 Writes
To write on the I2C bus, the master sends a START condition on the bus with the address of the slave, as well
as the last bit (the R/W bit) set to 0, which signifies a write. The slave acknowledges, letting the master know it is
ready. After this, the master starts sending the control register data to the slave until the master has sent all the
data necessary (which is sometimes only a single byte), and the master terminates the transmission with a STOP
condition.

There is no limit to the number of bytes sent, but the last byte sent is what is in the register.

Figure 10 shows an example of writing a single byte to a slave register.

119

S 1 1 1 0 A2 A1 A0 1

Device (Slave) Address (7 bits)

B7 B6 B5 B4 B3 B2 B1 B0 NA

Control Register (8 bits)

A P

START R/W=1 ACK NACK STOP

Master controls SDA line

Slave controls SDA line

S 1 1 1 0 A2 A1 A0 0

Device (Slave) Address (7 bits)

B7 B6 B5 B4 B3 B2 B1 B0 A

Control Register (8 bits)

A P

START R/W=0 ACK ACK STOP

Write to one register in a device

Master controls SDA line

Slave controls SDA line

17

TCA9548A
www.ti.com SCPS207G –MAY 2012–REVISED NOVEMBER 2019

Product Folder Links: TCA9548A

Submit Documentation FeedbackCopyright © 2012–2019, Texas Instruments Incorporated

Figure 10. Write to Register

8.5.3.2 Reads
Reading from a slave is very similar to writing, but the master sends a START condition, followed by the slave
address with the R/W bit set to 1 (signifying a read). The slave acknowledges the read request, and the master
releases the SDA bus but continues supplying the clock to the slave. During this part of the transaction, the
master becomes the master-receiver, and the slave becomes the slave-transmitter.

The master continues to send out the clock pulses, but releases the SDA line so that the slave can transmit data.
At the end of every byte of data, the master sends an ACK to the slave, letting the slave know that it is ready for
more data. Once the master has received the number of bytes it is expecting, it sends a NACK, signaling to the
slave to halt communications and release the bus. The master follows this up with a STOP condition.

Figure 11 shows an example of reading a single byte from a slave register.

Figure 11. Read from Control Register

120

Channel Selection Bits (Read/Write)

Channel 1

Channel 0

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

B7 B6 B5 B4 B3 B2 B1 B0

18

TCA9548A
SCPS207G –MAY 2012–REVISED NOVEMBER 2019 www.ti.com

Product Folder Links: TCA9548A

Submit Documentation Feedback Copyright © 2012–2019, Texas Instruments Incorporated

8.5.4 Control Register
Following the successful acknowledgment of the address byte, the bus master sends a command byte that is
stored in the control register in the TCA9548A (see Figure 12). This register can be written and read via the I2C
bus. Each bit in the command byte corresponds to a SCn/SDn channel and a high (or 1) selects this channel.
Multiple SCn/SDn channels may be selected at the same time. When a channel is selected, the channel
becomes active after a stop condition has been placed on the I2C bus. This ensures that all SCn/SDn lines are in
a high state when the channel is made active, so that no false conditions are generated at the time of
connection. A stop condition always must occur immediately after the acknowledge cycle. If multiple bytes are
received by the TCA9548A, it saves the last byte received.

Figure 12. Control Register

Table 2 shows the TCA9548A Command Byte Definition.

Table 2. Command Byte Definition
CONTROL REGISTER BITS

COMMAND
B7 B6 B5 B4 B3 B2 B1 B0

X X X X X X X
0 Channel 0 disabled
1 Channel 0 enabled

X X X X X X
0

X
Channel 1 disabled

1 Channel 1 enabled

X X X X X
0

X X
Channel 2 disabled

1 Channel 2 enabled

X X X X
0

X X X
Channel 3 disabled

1 Channel 3 enabled

X X X
0

X X X X
Channel 4 disabled

1 Channel 4 enabled

X X
0

X X X X X
Channel 5 disabled

1 Channel 5 enabled

X
0

X X X X X X
Channel 6 disabled

1 Channel 6 enabled
0

X X X X X X X
Channel 7 disabled

1 Channel 7 enabled

0 0 0 0 0 0 0 0 No channel selected, power-up/reset
default state

121

19

TCA9548A
www.ti.com SCPS207G –MAY 2012–REVISED NOVEMBER 2019

Product Folder Links: TCA9548A

Submit Documentation FeedbackCopyright © 2012–2019, Texas Instruments Incorporated

8.5.5 RESET Input
The RESET input is an active-low signal that may be used to recover from a bus-fault condition. When this signal
is asserted low for a minimum of tWL, the TCA9548A resets its registers and I2C state machine and deselects all
channels. The RESET input must be connected to VCC through a pull-up resistor.

8.5.6 Power-On Reset
When power (from 0 V) is applied to VCC, an internal power-on reset holds the TCA9548A in a reset condition
until VCC has reached VPOR. At that point, the reset condition is released and the TCA9548A registers and I2C
state machine initialize to their default states. After that, VCC must be lowered to below VPOR and then back up to
the operating voltage for a power-reset cycle.

122

20

TCA9548A
SCPS207G –MAY 2012–REVISED NOVEMBER 2019 www.ti.com

Product Folder Links: TCA9548A

Submit Documentation Feedback Copyright © 2012–2019, Texas Instruments Incorporated

9 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.

9.1 Application Information
Applications of the TCA9548A contain an I2C (or SMBus) master device and up to eight I2C slave devices. The
downstream channels are ideally used to resolve I2C slave address conflicts. For example, if eight identical
digital temperature sensors are needed in the application, one sensor can be connected at each channel: 0-7.
When the temperature at a specific location needs to be read, the appropriate channel can be enabled and all
other channels switched off, the data can be retrieved, and the I2C master can move on and read the next
channel.

In an application where the I2C bus contains many additional slave devices that do not result in I2C slave address
conflicts, these slave devices can be connected to any desired channel to distribute the total bus capacitance
across multiple channels. If multiple switches are enabled simultaneously, additional design requirements must
be considered (see the Design Requirements section and Detailed Design Procedure section).

9.2 Typical Application
Figure 13 shows an application in which the TCA9548A can be used.

123

TCA9548A

SD1

SDA
Channel 0

Channel 1

Channel 2

Channel 3

I2C/SMBus

Master
SCL

RESET

SC1

SD2

SC2

SD3

SC3

SD0

SC0

VDPUM = 1.65 V to 5.5 V

VCC

VDPU0 = V to 5.5 V1.65

VDPU1 = V to 5.5 V1.65

VDPU2 = V to 5.5 V1.65

VDPU3 = V to 5.5 V1.65

SDA

SCL

A2

A1

A0

GND

23

22

3

12

1

2

21

11

10

9

8

7

6

5

4

SD5

Channel 4

Channel 5

Channel 6

Channel 7

SC5

SD6

SC6

SD7

SC7

SD4

SC4

VDPU4 = V to 5.5 V1.65

VDPU5 = V to 5.5 V1.65

VDPU6 = V to 5.5 V1.65

VDPU7 = V to 5.5 V1.65

20

19

18

17

16

15

14

13

RESET

VCC

24

21

TCA9548A
www.ti.com SCPS207G –MAY 2012–REVISED NOVEMBER 2019

Product Folder Links: TCA9548A

Submit Documentation FeedbackCopyright © 2012–2019, Texas Instruments Incorporated

Typical Application (continued)

Pin numbers shown are for the PW package.

Figure 13. Typical Application Schematic

124

r
p(max)

b

t
R

0.8473 C

u

DPUX OL(max)
p(min)

OL

V V
R

I

�

22

TCA9548A
SCPS207G –MAY 2012–REVISED NOVEMBER 2019 www.ti.com

Product Folder Links: TCA9548A

Submit Documentation Feedback Copyright © 2012–2019, Texas Instruments Incorporated

Typical Application (continued)
9.2.1 Design Requirements
A typical application of the TCA9548A contains one or more data pull-up voltages, VDPUX, one for the master
device (VDPUM) and one for each of the selectable slave channels (VDPU0 – VDPU7). In the event where the master
device and all slave devices operate at the same voltage, then VDPUM = VDPUX = VCC. In an application where
voltage translation is necessary, additional design requirements must be considered to determine an appropriate
VCC voltage.

The A0, A1, and A2 pins are hardware selectable to control the slave address of the TCA9548A. These pins may
be tied directly to GND or VCC in the application.

If multiple slave channels are activated simultaneously in the application, then the total IOL from SCL/SDA to
GND on the master side is the sum of the currents through all pull-up resistors, Rp.

The pass-gate transistors of the TCA9548A are constructed such that the VCC voltage can be used to limit the
maximum voltage that is passed from one I2C bus to another.

Figure 14 shows the voltage characteristics of the pass-gate transistors (note that the graph was generated using
data specified in the Electrical Characteristics table). In order for the TCA9548A to act as a voltage translator, the
Vpass voltage must be equal to or lower than the lowest bus voltage. For example, if the main bus is running at 5
V and the downstream buses are 3.3 V and 2.7 V, Vpass must be equal to or below 2.7 V to effectively clamp the
downstream bus voltages. As shown in Figure 14, Vpass(max) is 2.7 V when the TCA9548A supply voltage is 4 V
or lower, so the TCA9548A supply voltage could be set to 3.3 V. Pull-up resistors then can be used to bring the
bus voltages to their appropriate levels (see Figure 13).

9.2.2 Detailed Design Procedure
Once all the slaves are assigned to the appropriate slave channels and bus voltages are identified, the pull-up
resistors, Rp, for each of the buses need to be selected appropriately. The minimum pull-up resistance is a
function of VDPUX, VOL,(max), and IOL as shown in Equation 1:

(1)

The maximum pull-up resistance is a function of the maximum rise time, tr (300 ns for fast-mode operation, fSCL =
400 kHz) and bus capacitance, Cb as shown in Equation 2:

(2)

The maximum bus capacitance for an I2C bus must not exceed 400 pF for fast-mode operation. The bus
capacitance can be approximated by adding the capacitance of the TCA9548A, Cio(OFF), the capacitance of wires,
connections and traces, and the capacitance of each individual slave on a given channel. If multiple channels are
activated simultaneously, each of the slaves on all channels contribute to total bus capacitance.

125

VDPUX (V)

R
p

(m
in

)
(k

O
h

m
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D009

VDPUX > 2V
VDPUX <= 2

VCC (V)

V
p
a
ss

 (
V

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

1

2

3

4

5

D007

25ºC (Room Temperature)
85ºC
-40ºC

Cb (pF)

R
p

(m
a

x)
 (

kO
h

m
)

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

D008

Standard-mode
Fast-mode

23

TCA9548A
www.ti.com SCPS207G –MAY 2012–REVISED NOVEMBER 2019

Product Folder Links: TCA9548A

Submit Documentation FeedbackCopyright © 2012–2019, Texas Instruments Incorporated

Typical Application (continued)
9.2.3 Application Curves

Standard-mode
(fSCL kHz, tr

SPACE
(fSCL kHz, tr)

Figure 14. Pass-Gate Voltage (Vpass) vs Supply Voltage
(VCC) at Three Temperature Points

Standard-mode
(fSCL = 100 kHz, tr = 1 µs)

Fast-mode
(fSCL = 400 kHz, tr = 300 ns)

Figure 15. Maximum Pull-Up Resistance (Rp(max)) vs Bus
Capacitance (Cb)

VOL = 0.2*VDPUX, IOL = 2 mA when VDPUX ≤ 2 V
VOL = 0.4 V, IOL = 3 mA when VDPUX > 2 V

Figure 16. Minimum Pullup Resistance (Rp(min)) vs Pullup Reference Voltage (VDPUX)

126

VCC

Time

VCC_GH

VCC_GW

VCC

Ramp-Up

Time to Re-Ramp

Time

Ramp-Down

VCC drops below V 50 mVPORF –

VCC_RTVCC_FT

VCC_TRR

24

TCA9548A
SCPS207G –MAY 2012–REVISED NOVEMBER 2019 www.ti.com

Product Folder Links: TCA9548A

Submit Documentation Feedback Copyright © 2012–2019, Texas Instruments Incorporated

(1) All supply sequencing and ramp rate values are measured at TA = 25°C

10 Power Supply Recommendations
The operating power-supply voltage range of the TCA9548A is 1.65 V to 5.5 V applied at the VCC pin. When the
TCA9548A is powered on for the first time or anytime the device must be reset by cycling the power supply, the
power-on reset requirements must be followed to ensure the I2C bus logic is initialized properly.

10.1 Power-On Reset Requirements
In the event of a glitch or data corruption, TCA9548A can be reset to its default conditions by using the power-on
reset feature. Power-on reset requires that the device go through a power cycle to be completely reset. This
reset also happens when the device is powered on for the first time in an application.

A power-on reset is shown in Figure 17.

VCC is Lowered Below the POR Threshold, Then Ramped Back Up to VCC

Figure 17. Power-On Reset Waveform

Table 3 specifies the performance of the power-on reset feature for TCA9548A for both types of power-on reset.

Table 3. Recommended Supply Sequencing and Ramp Rates (1)

PARAMETER MIN MAX UNIT
VCC_FT Fall time See Figure 17 1 100 ms
VCC_RT Rise time See Figure 17 0.1 100 ms

VCC_TRR
Time to re-ramp (when VCC drops below VPORF(min) – 50 mV or
when VCC drops to GND) See Figure 17 40 μs

VCC_GH
Level that VCC can glitch down to, but not cause a functional
disruption when VCC_GW = 1 μs See Figure 18 1.2 V

VCC_GW
Glitch width that does not cause a functional disruption when
VCC_GH = 0.5 × VCC

See Figure 18 10 μs

Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width
(VCC_GW) and height (VCC_GH) are dependent on each other. The bypass capacitance, source impedance, and
device impedance are factors that affect power-on reset performance. Figure 18 and Table 3 provide more
information on how to measure these specifications.

Figure 18. Glitch Width and Glitch Height

127

V
CC

V
PORR

V
PORF

Time

POR

Time

25

TCA9548A
www.ti.com SCPS207G –MAY 2012–REVISED NOVEMBER 2019

Product Folder Links: TCA9548A

Submit Documentation FeedbackCopyright © 2012–2019, Texas Instruments Incorporated

VPOR is critical to the power-on reset. VPOR is the voltage level at which the reset condition is released and all the
registers and the I2C/SMBus state machine are initialized to their default states. The value of VPOR differs based
on the VCC being lowered to or from 0. Figure 19 and Table 3 provide more details on this specification.

Figure 19. VPOR

128

SD7

SC7

SD6

SC6

SC4

SD4

SD0

A0

A1

RESET

SC0

SD1

SC1

GND

VCC

SDA

SCL

A2

SD3

SC3

SD2

SC2

VDPU0

Via to Power Plane

Partial Power Plane

VDPUM

Via to GND Plane

Copper Pour

VCC

GND

By-pass/de-coupling

capacitors

T
C

A
9
5
4
8
A

GND

To I
2
C Master

T
o

S
la

v
e

C
h

a
n

n
e

l
0

LEGEND

SC5

SD5

(inner layer)

(outer layer)

VDPU2

T
o

S
la

v
e

C
h
a

n
n

e
l
2

VDPU1

T
o

S
la

v
e

C
h
a

n
n

e
l
1

VDPU6

T
o

S
la

v
e

C
h

a
n

n
e

l
6

VDPU5

T
o

S
la

v
e

C
h

a
n

n
e

l
5

VDPU3

T
o

S
la

v
e

C
h

a
n

n
e

l
3

VDPU4

T
o

S
la

v
e

C
h

a
n

n
e

l
4

VDPU7

T
o

S
la

v
e

C
h

a
n

n
e

l
7

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16

17

18

19

20

21

22

23

24PW package

26

TCA9548A
SCPS207G –MAY 2012–REVISED NOVEMBER 2019 www.ti.com

Product Folder Links: TCA9548A

Submit Documentation Feedback Copyright © 2012–2019, Texas Instruments Incorporated

11 Layout

11.1 Layout Guidelines
For PCB layout of the TCA9548A, common PCB layout practices must be followed but additional concerns
related to high-speed data transfer such as matched impedances and differential pairs are not a concern for I2C
signal speeds. It is common to have a dedicated ground plane on an inner layer of the board and pins that are
connected to ground must have a low-impedance path to the ground plane in the form of wide polygon pours and
multiple vias. By-pass and de-coupling capacitors are commonly used to control the voltage on the VCC pin,
using a larger capacitor to provide additional power in the event of a short power supply glitch and a smaller
capacitor to filter out high-frequency ripple.

In an application where voltage translation is not required, all VDPUX voltages and VCC could be at the same
potential and a single copper plane could connect all of pull-up resistors to the appropriate reference voltage. In
an application where voltage translation is required, VDPUM and VDPU0 – VDPU7, may all be on the same layer of
the board with split planes to isolate different voltage potentials.

To reduce the total I2C bus capacitance added by PCB parasitics, data lines (SCn and SDn) must be a short as
possible and the widths of the traces must also be minimized (for example, 5-10 mils depending on copper
weight).

11.2 Layout Example

Figure 20. Layout Schematic

129

27

TCA9548A
www.ti.com SCPS207G –MAY 2012–REVISED NOVEMBER 2019

Product Folder Links: TCA9548A

Submit Documentation FeedbackCopyright © 2012–2019, Texas Instruments Incorporated

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation
For related documentation see the following:
• I2C Bus Pull-Up Resistor Calculation
• Maximum Clock Frequency of I2C Bus Using Repeaters
• Introduction to Logic
• Understanding the I2C Bus
• Choosing the Correct I2C Device for New Designs
• TCA9548AEVM User's Guide

12.2 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper
right corner, click on Alert me to register and receive a weekly digest of any product information that has
changed. For change details, review the revision history included in any revised document.

12.3 Support Resources
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do
not necessarily reflect TI's views; see TI's Terms of Use.

12.4 Trademarks
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary
SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

130

PACKAGE OPTION ADDENDUM

www.ti.com 10-Dec-2020

Addendum-Page 1

PACKAGING INFORMATION

Orderable Device Status
(1)

Package Type Package
Drawing

Pins Package
Qty

Eco Plan
(2)

Lead finish/
Ball material

(6)

MSL Peak Temp
(3)

Op Temp (°C) Device Marking
(4/5)

Samples

TCA9548AMRGER ACTIVE VQFN RGE 24 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 PW548A

TCA9548APWR ACTIVE TSSOP PW 24 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 PW548A

TCA9548ARGER ACTIVE VQFN RGE 24 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 PW548A

(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two
lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

131

PACKAGE OPTION ADDENDUM

www.ti.com 10-Dec-2020

Addendum-Page 2

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

 OTHER QUALIFIED VERSIONS OF TCA9548A :

• Automotive: TCA9548A-Q1

 NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

132

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device Package
Type

Package
Drawing

Pins SPQ Reel
Diameter

(mm)

Reel
Width

W1 (mm)

A0
(mm)

B0
(mm)

K0
(mm)

P1
(mm)

W
(mm)

Pin1
Quadrant

TCA9548AMRGER VQFN RGE 24 3000 330.0 12.4 4.25 4.25 1.15 8.0 12.0 Q1

TCA9548APWR TSSOP PW 24 2000 330.0 16.4 6.95 8.3 1.6 8.0 16.0 Q1

TCA9548ARGER VQFN RGE 24 3000 330.0 12.4 4.25 4.25 1.15 8.0 12.0 Q2

PACKAGE MATERIALS INFORMATION

www.ti.com 30-Dec-2020

Pack Materials-Page 1
133

*All dimensions are nominal

Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)

TCA9548AMRGER VQFN RGE 24 3000 853.0 449.0 35.0

TCA9548APWR TSSOP PW 24 2000 853.0 449.0 35.0

TCA9548ARGER VQFN RGE 24 3000 853.0 449.0 35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 30-Dec-2020

Pack Materials-Page 2
134

GENERIC PACKAGE VIEW

Images above are just a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.

RGE 24 VQFN - 1 mm max height
PLASTIC QUAD FLATPACK - NO LEAD

4204104/H

135

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.

2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PACKAGE OUTLINE

www.ti.com

4224376 / C 07/2021

VQFN - 1 mm max height
PLASTIC QUAD FLATPACK- NO LEAD

RGE0024C

A

0.08 C

0.1 C A B
0.05 C

B

SYMM

SYMM

4.1
3.9

4.1
3.9PIN 1 INDEX AREA

1 MAX

0.05
0.00

SEATING PLANE

C

2X 2.5

 2.1±0.1

2X
2.5

20X 0.5

1

6

7 12

13

18

1924
24X 0.30

0.18

24X 0.50
0.30

(0.2) TYP

PIN 1 ID
(OPTIONAL)

25

136

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments
literature number SLUA271 (www.ti.com/lit/slua271).

5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE BOARD LAYOUT

4224376 / C 06/2021

www.ti.com

VQFN - 1 mm max heightRGE0024C
PLASTIC QUAD FLATPACK- NO LEAD

SYMM

SYMM

LAND PATTERN EXAMPLE
SCALE: 20X

2X
(0.8)

2X(0.8)

(3.8)

(2.1)

1

6

7 12

13

18

1924

25

24X (0.6)

24X (0.24)

20X (0.5)

(R0.05)

SOLDER MASK DETAILS

NON SOLDER MASK
DEFINED

(PREFERRED)
SOLDER MASK

DEFINED

0.07 MAX
ALL AROUND

0.07 MIN
ALL AROUNDMETAL

SOLDER MASK
OPENING

SOLDER MASK
OPENING

METAL UNDER
SOLDER MASK

(Ø0.2) VIA
TYP

(3.8)

137

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations..

EXAMPLE STENCIL DESIGN

4224376 / C 06/2021

www.ti.com

VQFN - 1 mm max heightRGE0024C
PLASTIC QUAD FLATPACK- NO LEAD

SYMM

SYMM

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL

EXPOSED PAD
80% PRINTED COVERAGE BY AREA

SCALE: 20X

(3.8)

(0.57)
TYP

(0.57)
TYP

4X (0.94)

1

6

7 12

13

18

1924

24X (0.24)
24X (0.6)

20X (0.5)

(R0.05) TYP

METAL
TYP

25

(3.8)

138

www.ti.com

PACKAGE OUTLINE

C

22X 0.65

2X
7.15

24X 0.30
0.19

 TYP6.6
6.2

1.2 MAX

0.15
0.05

0.25
GAGE PLANE

-80

B
NOTE 4

4.5
4.3

A

NOTE 3

7.9
7.7

0.75
0.50

(0.15) TYP

TSSOP - 1.2 mm max heightPW0024A
SMALL OUTLINE PACKAGE

4220208/A 02/2017

1

12
13

24

0.1 C A B

PIN 1 INDEX AREA

SEE DETAIL A

0.1 C

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
 per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
 exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.

SEATING
PLANE

A 20DETAIL A
TYPICAL

SCALE 2.000

139

www.ti.com

EXAMPLE BOARD LAYOUT

0.05 MAX
ALL AROUND

0.05 MIN
ALL AROUND

24X (1.5)

24X (0.45)

22X (0.65)

(5.8)

(R0.05) TYP

TSSOP - 1.2 mm max heightPW0024A
SMALL OUTLINE PACKAGE

4220208/A 02/2017

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN

SCALE: 10X

SYMM

SYMM

1

12 13

24

15.000

METALSOLDER MASK
OPENING

METAL UNDER
SOLDER MASK

SOLDER MASK
OPENING

EXPOSED METALEXPOSED METAL

SOLDER MASK DETAILS

NON-SOLDER MASK
DEFINED

(PREFERRED)

SOLDER MASK
DEFINED

140

www.ti.com

EXAMPLE STENCIL DESIGN

24X (1.5)

24X (0.45)

22X (0.65)

(5.8)

(R0.05) TYP

TSSOP - 1.2 mm max heightPW0024A
SMALL OUTLINE PACKAGE

4220208/A 02/2017

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
 design recommendations.
9. Board assembly site may have different recommendations for stencil design.

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL

SCALE: 10X

SYMM

SYMM

1

12 13

24

141

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,
costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated

142

	Table of Contents
	List of Figures

	Introduction
	Background
	Growth of Photovoltaics
	Photovoltaic Limitations
	Cloud Motion Vector System
	Original Design
	Physical System Design

	Methodology
	Identifying Design Aspects in Need of Improvement
	Planning Changes
	Accuracy Testing

	Results
	Improvements in MATLAB Code
	Microcontroller and Firmware Improvements
	PCB Design and Connectors

	Conclusion
	Future Work
	References
	Appendix A: MATLAB Code Listings
	calculate lux.m
	ensure valid sample.m
	figure setup.m
	get cmv direction.m
	get cmv speed.m
	get csd.m
	get matrix.m
	get norm.m
	get quadrant.m
	get resultant vec.m
	get sample range.m
	get vid.m
	main.m
	read cmv data.m
	Sensor.m
	text wrapper.m
	thing speak test.m

	Appendix B: Arduino Code Listings
	cmvs sw wifi.ino
	constants.h
	secrets.h
	led codes.h
	led codes.cpp
	tsl softwire.h
	tsl softwire.cpp
	wifi setup.h
	wifi setup.cpp

	Appendix C: Datasheets
	Arduino Nano 33 IoT
	TSL2591 Light-to-Digital Converter
	TCA9548A Low-Voltage 8-Channel I2C Switch with Reset

