
COUPLED SENSOR CONFIGURATION AND PATH-PLANNING IN UNCERTAIN
ENVIRONMENTS USING MULTIMODAL SENSORS

by
Chase St. Laurent

A dissertation submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN MECHANICAL ENGINEERING.

April 20, 2022

APPROVED:

Dr. Raghvendra V. Cowlagi, Advisor
Associate Professor, Aerospace Engineering Department.

Dr. Yihao Zheng, Graduate Committee Representative
Assistant Professor, Mechanical Engineering Department, WPI.

Dr. Zhi Li, Committee Member
Assistant Professor, Robotics Engineering Department, WPI.

Dr. Andrew Clark, Committee Member
Associate Professor, Electrical and Computer Engineering Department, WPI.

Dr. Dmitry Korkin, Committee Member
Professor, Computer Science Department, WPI.

2

Acknowledgements

To the reader who has decided to begin reading this dissertation, thank you for your interest

and I hope you learn something new and valuable. To the reader who claims to make it to the very

end, thank you, but flipping from the cover page to the last page doesn’t count! To my dissertation

committee who does in fact review this dissertation, I sincerely thank you for your time as well as

the advice you have given me at various stages during my PhD.

As this dissertation will describe, sensor configuration and path-planning tasks are performed

better when coupled. Throughout this PhD I came to realize this was very true about my rela-

tionship with my PhD advisor Raghvendra Cowlagi. While I may have been the sensor network,

collecting data and formulating the methods, the mission could not have been a success without

the careful planning and guidance I received from Raghu.

Speaking of the method in this dissertation, I cannot go without recognizing my peers Ben

Cooper and Jie Fang who did extensive related work in the interactive planning and sensing field.

Without their dedication and innovation, this work may not have been made possible. A special

mention to Andrea Gjokollari for helping with the most tedious of tasks during experimentation.

I am grateful for the financial support of the Mechanical Engineering Department and for the

valuable lessons my Teaching Assistant position gave me. I especially enjoyed the office hours I

had with the many undergraduate students which I had the pleasure of helping. This research was

made possible by the support of the United States Air Force grant (AFOSR #FA9550-17-1-0028)

and later on in my research by the National Science Foundation grant (NSF #1646367).

To my coworkers who saw me through the final stretch of my studies - I thank Alex Black for

acting as my therapist on many occasions whenever I became overwhelmed and needed a distrac-

tion to hear about the newest computer equipment he ordered. Luc Robitaille always expressed a

curiosity in my research which I very much appreciated. I give a special thanks to Alexi Moutafis

for being many things to me: a coach, a mentor, and a great friend through professional, personal,

and academic challenges alike. To the entirety of TMC-AMETEK, colleagues past and present,

i

thank you for your patience, support, and cooperation with me while I pursued higher education.

To the friends I made during my time at WPI, I thank you for making even the longest and

most tedious days enjoyable. Brendan Sullivan taught me about what it truly takes to be dedicated

about something you are passionate about through the dedication he often displayed in finishing

entire bags of chocolate without hesitation or complaint. To the FBC, thank you for your patience

while I finished this body of work. Now, it is time to ready up!

Much of the work for this dissertation took place remotely during the COVID-19 pandemic.

I thank my in-laws Francisco and Gabriela Marin for the immense support and generosity of the

room-and-board during this period of time, as well as everything they have done and continue to do

for me. I thank Fran for being an amazing role model and hope I can one day live up to the example

he has set. I was lucky to know one of the sweetest pups, Miss Holly Marin, who always managed

to convince me to give her half of my lunch meat. We miss her dearly, and I know her presence and

support during long weekends and nights of work helped make this dissertation possible. I thank

Gus for introducing me to Rubens and for being a great entrepreneurial role model.

To my parents, Doreen and Leo, I want to thank you for your unrelenting support growing

up and for always helping enable me with whatever I was passionate about. The experiences you

helped provide for me growing up shaped me into who I have become today and I recognize how

fortunate I was to have two parents who care so much. I also thank my furry companion, Miss

Ruby, for her camaraderie through late night slumber parties while I finished this dissertation.

Last, but not least, I thank my wife Natalie for her patience and support through the trials and

tribulations that came with my pursuit of a PhD. If it was not for her I am not sure I would have

made it through this experience. I truly could not ask for a better partner in life. I believe she has

earned an honorary degree just for all of the time and things she has had to sacrifice in order for

me to accomplish this goal.

ii

Abstract

This dissertation develops a method for coupling sensor configuration and path-planning, two

tasks often decoupled, as a means to reduce an agent’s exposure to unknown but observable threats.

This method exploits task-driven sensor configuration for gathering information with statistical

relevance to the path-plan, the region of interest. The method addresses a sensor’s field of view

and the effect of overlapping field of views. Additionally, the sensor configuration optimizes the

trade-off between sensor quality and quantity of information. We show that by coupling sensor

configuration with path-planning in this manner, a near-optimal path-plan for the agent can be

discovered with fewer observations than information-greedy approaches.

Several scenario-specific variations are devised, such as greedy batch and exploration efficient

modifications which handle cases where the path-plan optimality requirement is strict and when

there are many sensors available, respectively. Extensions to multi-agent multi-goal scenarios are

provided. We address computational performance through qualitative sensor configuration, which

is achieved with cluster analysis, yielding suboptimal fast-approximations to sensor configuration

for path-planning. These topics are decorated with numerical studies and examples displaying their

benefits and performance guarantees.

Building upon the prior topics, a self-adaptive surrogate optimization function was devised

which enables sequential sensor configuration with near-optimality guarantees. The adaptive com-

ponent balances the exploration-exploitation trade-off in discovering the optimal path-plan. We

utilize the sequential sensor configuration for scenarios such as heterogeneous sensor configura-

tion whereby the threat environment is multimodal. We consider scenarios in which there may be

a penalty for waiting for an optimal-path plan and develop an active sensor configuration strategy

which can be applied to dynamic and evolving spatiotemporal threat environments.

iii

Contents

1 Introduction . 1

1.1 Motivation and Problem Statement . 1

1.2 Background and Literature Review . 3

1.2.1 Model Estimation, Inference, and Forecasting 6

1.2.2 Path-Planning and Motion-Planning under Uncertainty 9

1.2.3 Optimal and Near-Optimal Sensor Placement 11

1.2.4 Multimodal Sensing and Data Fusion . 13

1.2.5 Interactive Planning and Sensing in Time-Varying Environments 15

1.3 Dissertation Overview and Statement of Contributions 16

1.3.1 Dissertation Overview . 17

1.3.2 Statement of Contributions . 17

2 Coupled Sensor Configuration and Path-Planning . 21

2.1 Problem Overview . 21

2.2 Coupled Sensor Configuration and Path-Planning 24

2.2.1 Algorithm Initialization . 25

2.2.2 Sensor Network Configuration . 25

2.2.3 GPR-based Field Estimation . 27

2.2.4 Termination Criteria . 28

2.2.5 Algorithm Properties and Convergence . 28

2.2.6 Results and Discussion . 29

2.3 Disaster Scenario in St. Lucia . 34

3 Greedy Batched CSCP for Safety Critical Scenarios . 39

3.1 Greedy Batched CSCP . 39

3.1.1 Greedy Region of Interest Pruning . 39

3.1.2 Batched Sensor Configuration . 40

3.1.3 Algorithm Properties . 41

iv

3.2 Results and Discussion . 41

3.3 Demonstrative Example . 43

4 Exploration Efficient CSCP with High Sensor Counts 49

4.1 Exploration Efficient CSCP . 49

4.1.1 Generating Statistically Feasible Path-Plans 49

4.1.2 Region of Interest Weighting . 50

4.2 Performance Comparison . 52

5 Qualitative Sensor Configuration for CSCP . 56

5.1 Adaptive Cluster Analysis for CSCP . 56

5.1.1 CLAN Algorithm . 58

5.1.2 Exploratory Clustering . 58

5.1.3 Exploitative Clustering . 59

5.1.4 Cluster Check and Polishing . 60

5.2 Performance Comparison . 61

5.3 Applied Comparison . 62

6 Self-Adaptive Mutual Information for CSCP . 67

6.1 Problem Motivation . 67

6.2 Surrogate Optimization Function . 68

6.3 Sequential Optimization Optimality Guarantees . 70

6.4 Performance Comparison . 74

6.4.1 TDIG vs. SAMI Performance . 74

6.4.2 Joint vs. Sequential Sensor Configuration Optimization 76

6.4.3 Effects of the Adaptation Parameter . 77

6.5 Demonstrative Example . 79

7 CSCP in Multimodal Threat Environments . 83

7.1 Problem Motivation . 83

7.2 Multimodal Threat Environment . 84

7.3 Heterogeneous Sensor Payloads . 85

7.4 Multimodal Field Estimation . 86

v

7.5 Sensor Configuration for Heterogeneous Sensor Networks 88

7.5.1 Fully Observable Sensor Payloads . 90

7.5.2 Partially Observable Sensor Payloads . 90

7.5.3 Uniquely Observable Sensor Payloads . 91

7.6 Results and Discussion . 91

7.7 Demonstrative Example . 93

8 Active Coupled Sensor Configuration and Path-Planning 99

8.1 Problem Motivation . 99

8.2 Active CSCP . 99

8.2.1 Actor Horizon and Planning . 100

8.2.2 Environment Estimation and Sensor Configuration 101

8.2.3 The Active SAMI Surrogate Function . 102

8.2.4 Algorithm Termination . 104

8.3 Results and Discussion . 104

8.4 SAMI vs Active SAMI Demonstrative Example . 106

9 Conclusions and Future Works . 109

9.1 Future Work Considerations . 111

9.1.1 Sensor Field of View Constraints and Parameters 111

9.1.2 Sensor Network Costs . 111

9.1.3 Selective Sensing . 112

9.1.4 Human-in-the-loop Considerations . 112

9.1.5 Efficient Real-Time Sensor Configuration for Tracking 113

Appendix A CSCP for Multi-Agent Multi-Goal Scenarios 116

Appendix B CSCP in Spatiotemporally Evolving Threat Fields 117

B.1 TV-CSCP . 117

B.1.1 Problem Overview . 117

B.1.2 Time-Dependent Threat Estimation . 118

B.1.3 Sensor Configuration and Algorithm Termination 119

vi

Appendix C Sparsity Techniques for CSCP . 120

C.1 Sparse Environment Modeling . 120

C.1.1 Recursive Updates . 120

C.1.2 Sparse GP . 121

C.1.3 Online GP . 121

C.2 Observation Sparsity . 122

C.2.1 Pooling to Workspace Vertices . 122

C.2.2 Novelty Criteria and Surprise . 122

C.3 Sparse SAMI Reward Function . 123

Appendix D Supplementary Chapter 2 Results . 125

vii

List of Figures

2.1 (a) Example threat field with a sensor observing it within a particualr FoV. (b)

A direct realization of the the workspace and optimal path plan. The translucent

circle directly corresponds to the sensor FoV from (a). 22

2.2 Illustration of sensor configuration for 4 sensors. 23

2.3 Pseudocode for the CSCP algorithm to solve Problem 1. 25

2.4 Average percent error (a) and iteration (b) reduction by using CSCP in place of

Info-Max for various observation densities. 31

2.5 Average percent error (a) and iteration (b) reduction by using CSCP in place of

Info-Max for various numbers of threat parameters. 32

2.6 Average percent error (a) and iteration (b) reduction by using CSCP in place of

Info-Max for various numbers of available sensors. 33

2.7 Average percent error (a) and iteration (b) reduction by using CSCP in place of

Info-Max for various grid resolutions. 34

2.8 Example workspace and true optimal path the marker indicator to the goal location

denoted by the flag in the St. Lucia disaster relief scenario. 35

2.9 St. Lucia workspace (black dots), threat field, and true (white) and estimated

(green) optimal path-plans at the initial iteration ` = 0. 35

2.10 The first estimated path-plan, estimated threat field, and variance of each vertex

with associated sensor coverage (translucent circles). 36

2.11 The second estimated path-plan, estimated threat field, and variance of each vertex

with associated sensor coverage. 36

2.12 The seventh estimated path-plan, estimated threat field, and variance of each vertex

with associated sensor coverage. 37

2.13 The final estimated path-plan, estimated threat field, and variance of each vertex

with associated sensor coverage at ` = L. 37

viii

2.14 Path cost and variance values at each iteration for the St. Lucia scenario. 38

3.1 Pseudocode for the Greedy Batched CSCP algorithm to solve Problem 1. 40

3.2 Iteration performance for environment information maximization, CSCP, and the

Greedy Batched CSCP method for various numbers of available sensors, with an

environment area of 1 square kilometer. 44

3.3 Iteration performance for environment information maximization, CSCP, and the

Greedy Batched CSCP method for various numbers of available sensors, with an

environment area of 9 square kilometers. 44

3.4 Iteration performance for environment information maximization, CSCP, and the

Greedy Batched CSCP method for various numbers of available sensors, with an

environment area of 25 square kilometers. 45

3.5 Runtime in seconds for CSCP, and the Greedy Batched CSCP method for various

numbers of available sensors, with an environment area of 1 square kilometer. . . . 45

3.6 Runtime in seconds for CSCP, and the Greedy Batched CSCP method for various

numbers of available sensors, with an environment area of 9 square kilometers. . . 46

3.7 Runtime in seconds for CSCP, and the Greedy Batched CSCP method for various

numbers of available sensors, with an environment area of 25 square kilometers. . 46

3.8 Initial GB-CSCP sensor configurations, estimated field, identified vertices, and

new estimated optimal path-plan. 47

3.9 GB-CSCP sensor configurations, estimated field, identified vertices, and new esti-

mated optimal path-plan at ` = 3. 47

3.10 GB-CSCP sensor configurations, estimated field, identified vertices, and new esti-

mated optimal path-plan at ` = 7. 48

3.11 GB-CSCP sensor configurations, estimated field, identified vertices, and new esti-

mated optimal path-plan at ` = 12, the penultimate iteration. 48

3.12 GB-CSCP sensor configurations, estimated field, identified vertices, and final es-

timated optimal path-plan at ` = 13, the final iteration. 48

4.1 Pseudocode for the Exploration Efficient CSCP algorithm to solve Problem 1. . . . 50

ix

4.2 Alternate paths drawn from field estimate with the entropic exploration weighting

applied. 52

4.3 Iteration performance comparison of EE-CSCP and other methods with |E| = 9

and Ng = 225. 54

4.4 Iteration performance comparison of EE-CSCP and other methods with |E| = 9

and Ng = 400. 54

4.5 Iteration performance comparison of EE-CSCP and other methods with |E| = 25

and Ng = 225. 55

4.6 Iteration performance comparison of EE-CSCP and other methods with |E| = 25

and Ng = 400. 55

5.1 Pseudocode for sensor configuration with adaptive cluster analysis. 57

5.2 Comparison of iterations required for CSCP, EE-CSCP, and Info-MAX with CLAN

and polished CLAN with various sensor counts. 63

5.3 Comparison of average runtime for CSCP, EE-CSCP, and Info-MAX with CLAN

and polished CLAN with various sensor counts. 63

5.4 Path variance for each candidate approach at each iteration up to ` = 25 64

5.5 Example field estimate and estimated path-plan (white) and true path-plan (green)

for the initial CSCP (a), initial CLAN (b), initial CLAN-P (c), 10th CSCP iteration

(d), 10th CLAN iteration (e), and 10th CLAN-P iteration (f). 65

5.6 Example field estimate and estimated path-plan (white) and true path-plan (green)

for the initial EE-CSCP (a), initial EE-CLAN (b), initial EE-CLAN-P (c), 10th EE-

CSCP iteration (d), 10th EE-CLAN iteration (e), and 10th EE-CLAN-P iteration

(f). 65

5.7 Example field estimate and estimated path-plan (white) and true path-plan (green)

for the initial Info-Max (a), initial IM-CLAN (b), initial IM-CLAN-P, 10th Info-

Max iteration (d), 10th IM-CLAN iteration (e), and 10th IM-CLAN-P iteration

(f). 66

x

6.1 Comparison of SAMI vs. TDIG maximization for CSCP convergence utilizing

just the current estimated optimal path plan. Assessed against the ratio between

maximum observable sensor area and the area of the environment. 75

6.2 Comparison of SAMI vs. TDIG maximization for CSCP convergence utilizing

statistically sampled path-plans. Assessed against the ratio between maximum

observable sensor area and the area of the environment. 75

6.3 Comparison of runtime for both SAMI and TDIG maximization for both the cur-

rent estimated optimal path-plan and sampled path-plans. Assessed against the

ratio between maximum observable sensor area and the area of the environment. . 76

6.4 Comparison of convergence for Joint vs. Sequential SAMI maximization utilizing

just the current estimated optimal path plan. Assessed against the ratio between

maximum observable sensor area and the area of the environment. 77

6.5 Comparison of convergence for Joint vs. Sequential SAMI maximization utilizing

statistically sampled path-plans. Assessed against the ratio between maximum

observable sensor area and the area of the environment. 78

6.6 Comparison of runtime for Joint vs. Sequential SAMI maximization for both the

current estimated optimal path-plan and sampled path-plans. Assessed against the

ratio between maximum observable sensor area and the area of the environment. . 78

6.7 Average iterations to converge for various fixed α values and the self-adaptive α

with sequential SAMI optimization. 79

6.8 Threat field for the SAMI example along with the optimal path-plan (yellow). . . . 80

6.9 Sensor configuration FoVs (circles) overlaying the 2D SAMI reward values (a),

the estimated threat field and estimated optimal path-plan (green) and true optimal

path-plan (yellow) (b), and the threat error vertex variance values (c) at iteration

` = 1. 81

6.10 Sensor configuration FoVs (circles) overlaying the 2D SAMI reward values (a),

the estimated threat field and estimated optimal path-plan (green) and true optimal

path-plan (yellow) (b), and the threat error vertex variance values (c) at iteration

` = 5. 81

xi

6.11 Sensor configuration FoVs (circles) overlaying the 2D SAMI reward values (a),

the estimated threat field and estimated optimal path-plan (green) and true optimal

path-plan (yellow) (b), and the threat error vertex variance values (c) at iteration

` = 10. 81

6.12 Adaptation coefficient α values (a), average mutual info for R and Rc (c), path

cost (b), and path cost variance (d) for the demonstrative example over 10 iterations. 82

7.1 Pictorial Representation of Multimodal Threat Field Fusion 85

7.2 Ground truth threat field modalities and the fused threat field (right) along with

the optimal path-plan. 93

7.3 Initial iteration sensor network configurations overlaying the multimodal SAMI

reward values for each threat mode. 94

7.4 Initial multimodal threat field estimates and fused threat field estimate (right)

along with the estimated optimal path-plan (green) and the true optimal path-plan

(yellow). 94

7.5 Initial multimodal threat field error covariance vertex values and fused vertex co-

variance values. 95

7.6 Sensor network configurations overlaying the multimodal SAMI reward values for

each threat mode at ` = 3. 95

7.7 Multimodal threat field estimates and fused threat field estimate (right) along with

the estimated optimal path-plan (green) and the true optimal path-plan (yellow) at

iteration ` = 3. 95

7.8 Multimodal threat field error covariance vertex values and fused vertex covariance

values at iteration ` = 3. 95

7.9 Sensor network configurations overlaying the multimodal SAMI reward values for

each threat mode at ` = 7. 96

7.10 Multimodal threat field estimates and fused threat field estimate (right) along with

the estimated optimal path-plan (green) and the true optimal path-plan (yellow) at

iteration ` = 7. 96

xii

7.11 Multimodal threat field error covariance vertex values and fused vertex covariance

values at iteration ` = 7. 96

7.12 Sensor network configurations overlaying the multimodal SAMI reward values for

each threat mode at ` = 13. 96

7.13 Multimodal threat field estimates and fused threat field estimate (right) along with

the estimated optimal path-plan (green) and the true optimal path-plan (yellow) at

iteration ` = 13. 97

7.14 Multimodal threat field error covariance vertex values and fused vertex covariance

values at iteration ` = 13. 97

7.15 Sensor network configurations overlaying the multimodal SAMI reward values for

each threat mode at ` = 22, the final iteration. 97

7.16 Multimodal threat field estimates and fused threat field estimate (right) along with

the estimated optimal path-plan (green) and the true optimal path-plan (yellow) at

iteration ` = 22, the final iteration. 97

7.17 Multimodal threat field error covariance vertex values and fused vertex covariance

values at iteration ` = 22. 98

8.1 Pseudocode for the Active CSCP algorithm. 100

8.2 Timing diagram for the sensor configuration elements. 101

8.3 Timing diagram for elements of the ACT-CSCP algorithm. 101

8.4 Numerical results for the ACT-CSCP study. (a) Average iterations for each sce-

nario. (b) Average percent suboptimality for each scenario. Studies performed for

∆v = {1, 3, 5}. 105

8.5 (a) Sensor Configuration with SAMI, (b) SAMI Path-Plan Update, (c) Sensor Con-

figuration with Active SAMI, (d) Active SAMI Path-Plan Update at ` = 0. 107

8.6 (a) Sensor Configuration with SAMI, (b) SAMI Path-Plan Update, (c) Sensor Con-

figuration with Active SAMI, (d) Active SAMI Path-Plan Update at ` = 1. 107

8.7 (a) Sensor Configuration with SAMI, (b) SAMI Path-Plan Update, (c) Sensor Con-

figuration with Active SAMI, (d) Active SAMI Path-Plan Update at ` = 2. 107

xiii

8.8 (a) Sensor Configuration with SAMI, (b) SAMI Path-Plan Update, (c) Sensor Con-

figuration with Active SAMI, (d) Active SAMI Path-Plan Update at ` = 3. 107

8.9 (a) Sensor Configuration with SAMI, (b) SAMI Path-Plan Update, (c) Sensor Con-

figuration with Active SAMI, (d) Active SAMI Path-Plan Update at ` = 4. 108

8.10 (a) Sensor Configuration with SAMI, (b) SAMI Path-Plan Update, (c) Sensor Con-

figuration with Active SAMI, (d) Active SAMI Path-Plan Update at ` = 5. 108

8.11 (a) Sensor Configuration with SAMI, (b) SAMI Path-Plan Update, (c) Sensor Con-

figuration with Active SAMI, (d) Active SAMI Path-Plan Update at ` = 6. 108

8.12 (a) Sensor Configuration with SAMI, (b) SAMI Path-Plan Update, (c) Sensor Con-

figuration with Active SAMI, (d) Active SAMI Path-Plan Update at terminal iter-

ations (7 and 9, respectively). 108

9.1 Multimodal Coupled Sensor Configuration and Tracking Loop 113

9.2 Various sensors and their applicability mapping to the vehicle tracking problem . . 114

9.3 Feature-level fusion (a), decision-level fusion (b), and mission-level fusion (c) for

the tracking problem. 115

C.1 Example of observation combinations. (a) Combining with K-Nearest Neighbors

with k = 3. (b) Combining with cell region pooling. In these figures are the sensor

Fov (dotted circle), workspace grid points (black dots), observations (blue dots). . 123

D.1 Average percent error (a) and iterations (b) reduction by using CSCP instead of

Info-Max for various parameters and ε = 1. 125

D.2 Average percent error (a) and iterations (b) reduction by using CSCP instead of

Info-Max for various parameters and ε = 0.1. 125

D.3 Average percent error (a) and iterations (b) reduction by using CSCP instead of

Info-Max for various parameters and ε = 0.01. 126

D.4 Average percent error (a) and iterations (b) for Info-Max for various parameters

and ε = 1. 126

D.5 Average percent error (a) and iterations (b) for Info-Max for various parameters

and ε = 0.1. 127

xiv

D.6 Average percent error (a) and iterations (b) for Info-Max for various parameters

and ε = 0.01. 127

D.7 Average percent error (a) and iterations (b) for CSCP for various parameters and

ε = 1. 127

D.8 Average percent error (a) and iterations (b) for CSCP for various parameters and

ε = 0.1. 128

D.9 Average percent error (a) and iterations (b) for CSCP for various parameters and

ε = 0.01. 128

D.10 Heatmap of average iterations required for CSCP convergence over Info-Max for

various Ns, resolution
√
Ng, threat parameters Np, and measurement density Mk

for a termination threshold ε = 1. 129

D.11 Heatmap of average iterations required for CSCP convergence over Info-Max for

various Ns, resolution
√
Ng, threat parameters Np, and measurement density Mk

for a termination threshold ε = 0.1. 130

D.12 Heatmap of average iterations required for CSCP convergence over Info-Max for

various Ns, resolution
√
Ng, threat parameters Np, and measurement density Mk

for a termination threshold ε = 0.01. 131

D.13 Heatmap of average error incurred for CSCP over Info-Max for various Ns, reso-

lution
√
Ng, threat parameters Np, and measurement density Mk for a termination

threshold ε = 1. 132

D.14 Heatmap of average error incurred for CSCP over Info-Max for various Ns, reso-

lution
√
Ng, threat parameters Np, and measurement density Mk for a termination

threshold ε = 0.1. 133

D.15 Heatmap of average error incurred for CSCP over Info-Max for various Ns, reso-

lution
√
Ng, threat parameters Np, and measurement density Mk for a termination

threshold ε = 0.01. 134

xv

List of Tables

2.1 Set of parameters used in CSCP vs. Info-Max numerical performance analysis. . . . 30

3.1 Set of parameters used in numerical performance analysis. 42

3.2 Average Results of the GB-CSCP Numerical Study 42

7.1 Average results of the comparative study for various sensor payload configurations . 92

xvi

Chapter 1

Introduction

1.1 Motivation and Problem Statement

Parallel advances in computer hardware and autonomy have continuously pushed the ceiling of

what is possible in society. Cars can now drive themselves on highways, robotic vacuum cleaners

can now clean floors on their own, and our phones are intelligent enough to give us alerts and news

we care about without our asking. Autonomy reduces the burden of human effort for tasks that

are considered to be dirty, dangerous, or demanding. In this dissertation, autonomy is attained in

three ways: (1) autonomy of a primary acting agent, (2) autonomy of a network of sensors, and (3)

autonomy of data fusion and comprehension.

Path-planning and motion-planning are significant benefactors of autonomy. Path-planning is

the field of study for finding a set of waypoints for an agent, such as a mobile robot, to follow.

Motion planning is a field of study for finding a trajectory based on the kinematic and dynamic

characteristics of the autonomous agent (turning radius, ability to accelerate or decelerate, etc.).

Both path and motion planning problems often consider finding paths or trajectories to minimize

exposure to a threat, time to complete tasks, and obstacle avoidance within an environment. The

metric for determining the optimality of such a path is known as “path cost”, which is a particular

metric that a path planning or motion planning algorithm attempts to minimize.

The internet of things, or IoT for short, has enhanced the scope of intercommunication amongst

devices. Networks of devices can connect locally and across the Internet to form a web of con-

nections for data transmission and cohesion. Smart homes are a great example of such a network,

where we now have sensors and actuators around our homes that can control local interior cli-

mates, secure our homes, and alert our phones when undesirable events occur. Surveillance ac-

tivity performed by unmanned aerial vehicles (UAVs) typically involves setting target locations

1

1.1. MOTIVATION AND PROBLEM STATEMENT

for the UAVs to collect data. This is known as sensor placement, and it typically involves using

metrics from past observations and the environment to help inform the best sensor placement for

data collection. Using this concept of IoT, a network of sensors may be distributed amongst UAVs,

and after determining the optimal sensor placements, they may be deployed to those positions. The

utilization of a sensor network can significantly reduce data collection times since a single sensor

unit would not need to reconfigure itself to each optimal position for data collection, and the tasks

may be delegated across the network. The goal of this dissertation is to investigate how to best

place sensors within an unknown environment to best assist in collecting data pertinent to the path

planning efforts for the acting agent.

Data returned from sensors are not always homogeneous, and often a task at hand may require

a heterogeneous mixture of sensors to adequately observe the environment, also known as multi-

modal sensing. For example, UAVs may be equipped with various sensor types: electro-optical,

infrared, lidar, etc. The data obtained from these sensors are not the same, as electro-optical may

return a 2D collection of pixels with RGB values, infrared can return a 2D collection of pixels

with thermal intensity, and lidar is often a 3D point cloud representing relative distance. The act

of combining and unifying the multimodal data is called sensor fusion. However, determining the

significance of data typically requires human input and monitoring. Many methods for combining

multimodal data require human intervention to provide the context-based correlations and statis-

tical significance of the data that is received and may be received in the future. Multimodal data

fusion typically has the requirement of at least one human expert and often lacks any streamlined

automatic approach for self-determination of contextual significance of the data by a machine.

By developing a method that can separate, or at least minimize, the need for human input to the

context-based significance of sensor data, its statistical significance, and the unknown correlations

between modalities, we may achieve autonomy of the data fusion process of multimodal data.

The synthesis of the planning, sensing and data fusion problem yields an integrated sensing

and planning scheme. By coupling the sensor configuration and planning problem, the sensor

configuration can be geared towards optimally measuring the region of interest of our planning

objective. Rather than having to sense an entire environment, by utilizing uncertainty metrics

pertaining to the planning objective we may focus sensing efforts in a task-driven manner. The

2

1.2. BACKGROUND AND LITERATURE REVIEW

novelty of this work is that the sensor reconfiguration and multimodal data fusion is performed

in context to a planning problem, thereby minimizing the iterations required to solve the planning

problem and at the same time minimizing the need for human input and interaction.

1.2 Background and Literature Review

Research on sensor placement is mainly independent from path-planning and motion-planning

research, and as a result the methods produced are fairly disjointed. Sensor node positioning prob-

lems are typically classified into static or dynamic positioning. Static approaches are aimed at

achieving optimal situational coverage without future repositioning. Dynamic sensor node posi-

tioning involves updating the positions to improve coverage metrics as environments or situational

changes dictate (Younis and Akkaya, 2008). Coverage techniques are typically separated into three

main types: topology-based coverage, ratio-based coverage, and object-based coverage. Some spe-

cific methods involve grid-based deployment, Delayuny Triangulator, and Voroni-Diagrams (Farsi

et al., 2019). Coverage models include disk-based models, probabilistic coverage models, infor-

mation coverage models, and confident information coverage models. These models are used in

combination with various techniques to optimize deployment costs, network lifetime maximiza-

tion, and coverage hole detection and healing. In heterogeneous sensor networks, data fusion ef-

forts focus on various coverage optimization techniques that utilize probabilistic methods for sen-

sor density optimization, heterogeneous information coverage and sensor scheduling (Deng et al.,

2018). Lastly, various advances in machine learning have impacted the sensor network field, such

as improving coverage, data aggregation, and anomaly detection tasks. Reinforcement learning has

enabled a two-staged sleep scheduler that maximizes network lifetime while maintaining proper

sensor coverage. Multi-sensor heterogeneous data fusion has improved accuracy when utilizing a

distributed Bayesian framework across the network. Anomaly detection and removal in sensor net-

works has been improved through the combination of SVM and DBSCAN techniques. Adversarial

attacks can be protected against through the use of a decision tree based scheme (Praveen Kumar

et al., 2019).

Both path and motion planning are rigorously studied and typically involve finding obstacle

3

1.2. BACKGROUND AND LITERATURE REVIEW

devoid, cost minimizing, or utility maximizing paths. Control architectures in path and motion

planning operate under a think, then act scheme (Anavatti et al., 2015). Path planning techniques

are typically divided into classical and heuristic based approaches. Popular classical approaches

are cell decomposition based on 2d wavelet transforms, roadmap approaches such as Voronoi di-

agrams and Rapidly Exploring Random Trees, and artificial potential fields. Heuristic approaches

involve wavelet decomposition, A* and its variants, artificial neural networks, fuzzy logic, and

genetic algorithms (Cowlagi, 2014; Injarapu and Gawre, 2017; LaValle, 2011; Mac et al., 2016;

Patle et al., 2019). Common challenges in path planning involve minimizing path length, determin-

ing optimality conditions, completeness, cost-efficiency, time-efficiency, robustness, and collision

avoidance (Aggarwal and Kumar, 2020).

Ontology-based Knowledge Representation techniques can combine domain and context-relevant

knowledge such as temporal, spatial, and semantic knowledge. This enables high level planning

using symbolic classical planning, constraint-based time-flexible planning, and domain-specific

representations (R. and Uma, 2018).

Some path planning methods explicitly are built to solve path planning in time sensitive sit-

uations. Time Enhanced A* (TEA*) is an incremental algorithm that accounts for other robotic

agents in an effort to avoid collisions and deadlock situations by utilizing time dependent state

checks. Time Windows method checks a set of candidate paths for feasibility and also checks

for conflict through overlapping windows. It enables dynamic routing and can be used in appli-

cations such as pickup and delivery, logistics routing, and multi-AGV dynamic routing problems

(Costa and Silva, 2019). Velocity estimation can aid in predicting motion of dynamic objects, and

hidden Markov stochastic models, Kalman filtering, and scene-flow estimations can provide such

estimations (Anavatti et al., 2015).

Sampling-based motion-planning methods have allowed real-time kinodynamic, real-time,

and optimal planning. Sampling algorithms include RRT and Probabilistic Road maps. In the

sampling operation, various sampling strategies and metrics are used to extend, guide sampling

exploration, and prevent collisions. These techniques can solve high dimensional problems in

short amounts of time. Optimal sampling methods such as RRT* extend performance to satisfy

optimality guarantees (Elbanhawi and Simic, 2014).

4

1.2. BACKGROUND AND LITERATURE REVIEW

Various path planning methods have been inspired by naturally occurring biological phenom-

ena. Swarm intelligence methods include particle swarm optimization and ant colony optimization.

There are also evolutionary algorithms such as genetic algorithms and differential evolution. Neu-

rodynamic models such as artificial neural networks and variants such as the Hopfield network

have also been developed for path planning (Li et al., 2019).

Autonomous vehicles, in general, operate under a decision-making hierarchy that involves

route planning, behavioral decision making, motion planning and vehicle control. Specifically, mo-

tion planning is dependent on the behavioral decision making within the current situational context.

The motion planning effort is then required to determine a trajectory that is dynamically possible

by the vehicle model. The behavioral decision making is dependent on the route planning, or path

planning output. Thus, we see that the relationship between path planning and motion planning is a

dependent and often sequential process. Motion planning is largely a context-based problem where

the planning operation may need to consider both static and dynamic obstacles and even utilities

of performing certain motions. Path planning is a necessary precursor as it determines a feasible

and sometimes optimal generalized path. Trajectory planning suits dynamic environment planning

where kinematic constraints are taken into account. Variational methods, such as psuedospectral

approximation schemes like Pontryagin’s minimum principle, are often used to address nonlinear

continuous optimization trajectory planning problems. Continuous geometric techniques involve

using Bezier curves, Spline curves, Polynomial spirals, arcs, and clothoids. Model predictive con-

trol solves trajectory planning as a nonlinear optimization problem and provides a sequence of

control input that is both predictive and constraint-aware. Autonomous vehicle motion planning

problems also consider graph based abstractions of motion planning problems. These include lane

graphs, geometric methods such as Voronoi diagrams, sampling-based methods such as proba-

bilistic roadmaps, and graph search strategies. Incremental optimal motion planning attempts to

incrementally plan based on dynamic motion reachability (Paden et al., 2016; Sharma et al., 2019).

In the context of optimal motion planning, various constraints and decision variable represen-

tations are taken into account. Objective function formulations typically look to find minimum

length and improve path smoothness, and decision variables can be anything from joint positions

to state cells and trajectory segments. Constraints come in the form of collision avoidance, pose

5

1.2. BACKGROUND AND LITERATURE REVIEW

constraints, and dynamic constraints such as non-holonomic constraints (Yang et al., 2019).

Path-planning and motion-planning in 3D spaces, typically for UAVs, involves many of the

same path planning techniques in 2D spaces, but with some caveats and extra considerations.

UAV path planning, for example, often takes into account stealth, physical feasibility, mission

performance and real-time implementation details (Zhao et al., 2018). Modifications to heuristic

algorithms sometimes involve dimension reduction techniques such as the creation of virtual ter-

rains prior to performing A*. Artificial potential fields are sometimes modified by adding guiding

poles to avoid local minima, and sometimes virtual environments are created. Path smoothing is

occasionally applied post path plan so as to create more fluid trajectories for UAV dynamics (Quan

et al., 2020; Song et al., 2019). Typical UAV applications are scene reconstruction, environment

exploration with obstacle avoidance, and even aerial cinematography (Zhou et al., 2020).

In the following sections, more specific topics are reviewed as they relate directly to the pro-

posed work. First, field regression techniques are evaluated for generating representations of the

environment to be modeled. Then, specific path planning and motion planning algorithms address-

ing planning under uncertainty are detailed. Optimal and near-optimal sensor placements will then

be discussed to provide an outline of existing techniques for placing sensors to model environment

dynamics. This leads to an evaluation of multimodal sensing methods, and how we may fuse the

data aggregated from sensor data. These topics are all then combined into a discussion of current

research in interactive planning and sensing methods in time-varying environments.

1.2.1 Model Estimation, Inference, and Forecasting

Estimating an environmental model requires obtaining data that can be utilized by a regression

technique for fitting that data, or rather conditioning on the input. Not all regression methods are

created equal, and various approaches have model and context dependent situations in which they

perform their best. Numerical studies on various regression models within regression families has

been conducted to study these trade-offs. Regression families such as Bayesian models, Gaussian

Processes, Neural Networks, and Support Vector Regression, to name a few, were numerically

evaluated and ranked in different situations using Root Mean Squared Error (RMSE) and Mean

6

1.2. BACKGROUND AND LITERATURE REVIEW

Absolute Error (MAE) metrics (Fernández-Delgado et al., 2019). Most regression models, how-

ever, all fall under one unified representation known as a mixture of linear models. Linear models

such as weighted linear least squares and weighted sum of basis function models such as radial ba-

sis function networks, all can be thought of a specialized approaches to mixtures of linear models.

The main differences, whether they are based on weighted sum of basis functions or not, is in the

number, position, and size of the basis functions, and their respective hyperparameters (Stulp and

Sigaud, 2015).

Some regression techniques utilize Bayesian methods, which allow for uncertainty, the vari-

ance and confidence interval, to be computed alongside the estimate. Bayesian inference is a

classical method in statistics for updating the hypothesis (prior) as more information or data is pre-

sented. Bayesian regression is a parametric approach that utilizes an informative prior combined

with the likelihood to determine the posterior mean and uncertainty distributions. Such approaches

can be performed on typical ridge regression, logistic regression, and linear regression formula-

tions (Andrew et al., 2014). Another such model is Gaussian Mixture Regression, which represents

the output as a set of Gaussians and is fit using expectation maximization (Calinon et al., 2007).

The technique known as Gaussian Process Regression (GPR) is a nonparametric (infinitely para-

metric) method for estimating the mean and uncertainty of a model. In this method, a covariance

function is represented by a kernel and is typically assumed to have a mean centered about 0. The

GPR method is a special case of Radial Basis Function Networks with each data point being the

center of a basis function and each basis function has a width determined by the kernel, also known

as the Gram matrix (Rasmussen and Williams, 2006).

Due to the nonparametric nature of GPR and its ability to additionally output uncertainty since

it is a Bayesian approach, makes it very desirable for many applications such as the one that will

be described later on. Some potentially limiting factors of the GPR method is that it requires the

selection of an appropriate kernel (for the covariance function) as well as the determination of

hyperparameters for these kernels. In addition, it has a time complexity of O(n3), which can be

difficult to handle unless using high end computers when dealing with large data sets. Methods for

dealing with this include Reduced-rank approximations of the gram matrix, the Nystrom Method,

Bayesian Committee Machines, and the Informative Vector Machine method (Fine; Herbrich et al.,

7

1.2. BACKGROUND AND LITERATURE REVIEW

2003; Tresp, 2000; Williams and Seeger, 2001).

The determination of the composition of the kernel is an important requirement for proper

structural modeling. One approach, the compositional kernel search method, scores individual

families of kernels, and then inspects the products of other various kernels along with additions of

other kernels recursively. Thus, it attempts to discover the best structure by first finding the best

kernel family and then combining with more fine tuned kernels (Duvenaud et al.). The Approxi-

mate Bayesian Computation and Sequential Monte Carlo method provides a Bayesian approach to

finding optimal kernels, mean functions, and their hyperparameters while additionally providing

confidence intervals for the kernel selections (Abdessalem et al., 2017). Methods focusing on de-

termining the optimal hyperparameters alone are studied using Rprop, which is a gradient-based

optimization technique that uses adaptive update steps (Blum and Riedmiller, 2013). Through the

use of Bayesian Regularization in the model selection phase, the effect of over fitting is reduced

by removing additional regularization parameters analytically with the reference prior. It has been

shown to outperform the expectation-propogation based Gaussian Process in various cases (Caw-

ley and Talbot).

Gaussian processes typically assume i.i.d. noise at every sample, but there are some methods

that can account for non perfect distributions. For data with a skew normal distribution, the Gaus-

sian Process Regression with Skewed Errors (GPRSE) method is a proven technique to handle

such a distribution (Alodat and Shakhatreh, 2020). Alternatively, an intermediate combined sup-

port vector regression (SVR) and extreme learning machine (ELM) method can be used to infer the

noise variance prior to using weighted GPR to infer the model estimates (Li et al., 2020). Besides

odd noise distributions, methods for handling missing data have also been studied. The Expected

Gaussian Kernel assumes the distances of missing data are Gamma distributed and it attempts to

determine the expected value of the kernel function between two pairs of argument vectors with

potentially missing data (Mesquita et al., 2019).

Deep Gaussian Processes are deep belief networks that combine the benefits of deep network

architectures with the benefits of Gaussian Processes, namely the ability to characterize uncertainty

in estimates. They also have the ability to determine better estimates of uncertainty and better

fits overall. Using the approximate variational marginalization method DGPs can have automatic

8

1.2. BACKGROUND AND LITERATURE REVIEW

structure design since it marginalizes away the latent space (Damianou and Lawrence, 2013). An-

other way to do this is through a moment-based approximation that utilizes a GP to approximate

(Lu and Shafto, 2020). Scalable deep kernels have been explored using a base spectral mixture

kernel combined with a deep architecture for automatic deep kernel learning (Wilson et al., 2015).

Forecasting subsequent state estimates in discrete or continuous time-varying situations re-

quires further consideration of how state estimates and their uncertainties are propagated through

time and how they can be used to inform future estimates. Gaussian processes alone can be used

to model mean and uncertainty estimates, where the uncertainty drops whenever an observation

is made, and grows as time passes (Roberts et al., 2013). A Stochastic Recursive Gradient Prop-

agation approach to training sparse GPs, which utilizes inducing point approximation for compu-

tational efficiency combined with Bayesian recursive estimation, enables an update feature com-

parable to a Kalman filter for online learning and sequential hyperparameter estimation (Schürch

et al., 2020). Combinations between GPs and Kalman Filters have been studied to fuse the bene-

fits of both for applications requiring spatial-temporal field estimators (Reece and Roberts, 2010).

GPs have also been combined with Unscented Kalman Filters for nonparametric state estimates

using stochastic approximation, also known as the unscented transform (Ko et al., 2007). A variant

of the Recurrent Neural Network structure, the Long Short-Term Memory (LSTM) cell, has been

utilized for forecasting multimodal and can be supplemented with physical state evolution models

(Chung et al., 2019; Greff et al., 2017). Combinations of LSTM cells with GP inputs have been

developed so that uncertainty estimates can influence LSTM model predictions appropriately and

provide the uncertainty at the posterior of the LSTM cell (Lam et al., 2019). Ensemble learning

using Random Forests, GPRs, and LSTM outputs have shown success in better predictive ability,

especially if forecasting is required in multimodal scenarios (Wang et al., 2020).

1.2.2 Path-Planning and Motion-Planning under Uncertainty

Path planning and motion planning were previously briefly discussed in the previous section,

however, we focus herein on distinctive methods when there is uncertainty in the planning task.

Uncertainty in path and motion planning can arise from dynamic environments, modeling errors,

and measurement noise. Robot motion planning in dynamic environments is a significant research

9

1.2. BACKGROUND AND LITERATURE REVIEW

area that addresses uncertainty that arises from the environment specifically (Mohanan and Sal-

goankar, 2018). Motion planning techniques are vast, and a notable method is the concept of

configuration spaces where the objective is to find a continuous sequence of free spaces. Velocity

based methods include partial motion planning, which determines the best partial motion given

time constraints and uses a tree created with probabilistic techniques, and predictive temporal mo-

tion planning (Thorn).

Dynamic environments with high levels of uncertainty typically need to utilize probability

based motion planning techniques to adequately model the uncertainty. These are typically solved

utilizing dynamic programming techniques (Mohajerin Esfahani et al., 2016), or even using the un-

scented transformation for probabilistic spread (Sun et al., 2014). Rapidly exploring Random Trees

(RRTs) are often used to generate optimal and valid paths. This has been combined with sampling

based methods and the linear quadratic regulator for path stability in uncertain environments (Li

et al., 2017). They have also been used in conjunction with growth stagnation and re-grow tech-

niques for the RRTs to solve planning problems with many blind regions (Gu et al., 2013). The

Convergent RRT, Convergent Multiple-Restart RRT, and Convergent Stable Sparse RRT methods

are asymptotically near-optimal solutions for kinodynamic planning with uncertain initial states

(Liu et al., 2019).

Both Markov Decision Processes (MDP) and Partially Observable Markov Decision Processes

(POMDP) are stochastic motion planning techniques that are used to solve uncertainty in the action

and state of motion planning problems. They can be combined with high level linear temporal logic

task formulas to find optimal policies for system trajectory (Guo and Zavlanos, 2018). An online

POMDP has been developed to handle dynamic uncertain environments by combining POMDP

framework with point-based planning to find the approximate value function for the online plan-

ning components (Ji and Li, 2015). Guided Cluster Sampling (GCS) is a point-based POMDP

planner that handles continuous states and actions. It is proven to converge to the optimal policy

in sufficient time (Kurniawati et al.).

Simultaneous Localization and Mapping (SLAM) algorithms attempt to reduce localization

and environment uncertainty in parallel, and they can also incorporate some planning element

(SPLAM) (Chakravorty and Saha, 2008; Toriz Palacios and Sánchez López, 2017). SLAM has

10

1.2. BACKGROUND AND LITERATURE REVIEW

been combined with both Extended Kalman Filters and Unscented Kalman Filters to improve agent

state estimates and estimates of obstacles and other threats in an environment (Gharib and Esmaili,

2019; Tao et al., 2007). Rapidly exploring Randomized Trees have been combined with SLAM to

perform motion planning with localization, sensing, and mapping uncertainty by adding an extra

dimension of uncertainty to the C-space (Huang and Gupta, 2008). SLAM methods primarily op-

erate with interoceptive sensors (i.e. sensors local to an agent or agents), during active localization

and mapping of an uncertain environment. The work presented in this dissertation differs in that

we consider exteroceptive (i.e. decoupled from the agent(s) themselves) which obtain information

for the agent. Critically, the procedures in this body of work act as a high-level mission planner

for the agent whereas in SLAM approaches the agent is the information gatherer and self-planner.

Reinforcement learning has also been used to handle uncertainty in motion planning problems.

It has been used for calibrating objective function weight parameters with a probabilistic policy and

Boltzmann distribution for likely actions (Igarashi, 2001). Applications of reinforcement learning

in motion planning are shown to solve battery optimization, under-actuated motion planning and

control of underwater vehicles using reinforcement learning based on Markov Decision Processes,

and has been used as global path planners for obstacle avoidance (Kawano, 2005; Sichkar, 2019;

Soni et al., 2019). Furthermore, research into deep reinforcement learning, in an actor-critic ar-

chitecture, for path planning in unknown environments with continuous action spaces allows for

motion control parameter discovery (Yan et al., 2018). Within the machine learning domain, the

Runtime Stochastic Ensemble Simulation technique enables online planning and utilizes Monte

Carlo simulations for collision likelihood, and combines with RRTs to generate best paths (Chiang

et al., 2016).

1.2.3 Optimal and Near-Optimal Sensor Placement

Expanding upon the sensor placement strategies previously discussed, the task of sensor place-

ment as it relates to spatiotemporal environments and their uncertainties in an optimal or near-

optimal manner is non-trivial. Such optimal sensor placement has been studied for estimation of

threats such as the dispersal of gases, specifically for volcanic ash, and has been accomplished us-

ing distributed network techniques (Demetriou and Uciński, 2011; Madankan et al., 2014; Uciński,

11

1.2. BACKGROUND AND LITERATURE REVIEW

2012). Metrics of performance to characterize sensor placement optimality are entropy minimiza-

tion, Kullback-Lieber divergence, Hellinger distance, mutual information, and maximization of

various properties of the Fischer Information Matrix (Cochran and Hero, 2013).

The objective of the sensor placement varies based on the context-relevant nature of the prob-

lem at hand. Placement can be based on uncertainty minimization, spatial coverage, sensor net-

work lifetime, and even placement for optimal communication between the sensors themselves

(Ramsden). An additional consideration is locational error of the sensor placements. An adap-

tive placement technique that accommodates uncertainty in sensor location that utilizes a Gaussian

Process framework for environmental modeling has been developed as one potential way to rem-

edy this issue (Nguyen et al., 2017). Optimal sensor placement for spatial phenomena modeled

by Gaussian Processes has gained attention. Methods for finding sensor observation paths, and in-

dividual placements for Gaussian Process based estimation such as the PSPIEL algorithm, which

is both robust against the environment and can be solved in polynomial time (Krause et al., 2010;

Van Nguyen et al., 2013). Extension placement methods in Gaussian Process derived environment

models for heterogeneous sensor types has been explored, such as greedy algorithms for fully

equipped sensor payloads, or sensor modality deficient payloads (Sun et al., 2018).

Decentralized methods for optimal sensor placement for target tracking have seen success uti-

lizing the determinant Fischer Information Matrix alongside an extended Kalman Filter for track-

ing (Martı́nez and Bullo, 2006). The Rapid Random exploring tree with Linear Reduction method

enables sensor placement with the goal of minimizing the required number of placements without

information loss in graph based models (Chen et al., 2018). Optimal sensor placement in spatially

networked processes with contact dynamics has been studied using a combination of sensor influ-

ence waves, probabilistic target models, spatial weight maps, and a genetic algorithm for iterative

optimization (Krishnamurthy and Khorrami, 2018).

Active perception with multi-robot systems has been studied in literature, namely for target

detection and tracking applications. Problems in this domain are classified as target detection when

no target has been identified, where perception is either performed with static surveillance or mo-

bile search which can be performed with capture, probabilistic search, or hunting methodologies.

Target tracking is distinguished as a target localization problem when multiple viewpoints can

12

1.2. BACKGROUND AND LITERATURE REVIEW

be considered or a monitoring problem when a single viewpoint is provided (Robin and Lacroix,

2016). The four major control techniques for moving target tracking are cooperative tracking, co-

operative multi-robot observation of multiple moving targets, cooperative search, acquisition, and

track, and multi-robot pursuit evasion (Khan et al., 2016). Fair multi-target tracking is presented

in (Banfi et al., 2015), which attempts to provide unbiased cooperative monitoring of targets. Dis-

tributed action and target assignment for multi-robot multi-target tracking is presented in (Sung

et al., 2018), which maintains communication constraints and accounts for limited sensor field of

view all while providing tracking performance guarantees. In (Verma and Ranga, 2020), the au-

thors describe methods for multi-robot coordination when each robot is confined to disjoint regions

of space. In this dissertation, we utilize a sensor network which can be a multi-robot system that

identifies information theoretical coverage and multi-robot exploration for an agent’s path-plan

rather than continuous tracking.

The sensor network we consider can be realized as a camera network using exteroceptive

electro-optical imaging sensors. Modeling coverage in camera networks literature addresses cov-

erage criteria (field of view, resolution, and focus) as well as common problems such as static and

dynamic occlusion (Mavrinac and Chen, 2013). In contrast to fixed macroscopic camera imag-

ing for industrial control applications, which have incomplete visibility, the authors (Kamezaki

et al., 2016) detail an adaptive imaging system which performs target following, camera posture

control, and adaptive zoom control for a human-in-loop visibility for precise operations. Utilizing

fixed cameras, they selectively assign roles and coordinate their field of views to best assist an

operator. The work we present focuses on not only field of view coverage, but also information

quality. We aim to configure sensors to locations which provide maximal information coverage to

path-planning tasks.

1.2.4 Multimodal Sensing and Data Fusion

The previously mentioned sensor placement techniques mainly operated on an assumption of

unimodal/homogeneous sensors. Multimodal sensing and data fusion deals with heterogeneous

data and context-relevant basis in which they can be fused. Information fusion has 7 distinct

levels: 1) Level 0 - Sub-Object Data Assessment, 2) Level 1 - Object Assessment, 3) Level 2 -

13

1.2. BACKGROUND AND LITERATURE REVIEW

Situation Assessment, 4) Level 3 - Impact Assessment, 5) Level 4 - Process Refinement, 6) Level

5 - User Refinement, and 7) Level 6 - Mission Management (Blasch et al., 2019; Llinas et al.,

2016; Snidaro et al., 2016). Levels 3 and 4 are the two levels that most directly apply to optimal

sensor placement and the resulting path planning efforts as a result of the fusion efforts. High-level

information fusion system design is explored, with topics including situational awareness, context-

based adversaries, and context-based network modeling (Blasch et al., 2012, 2013). Similarly,

low-level information fusion has been investigated, namely in target tracking and identification,

using a feature fusion model for object identification across modalities and also through use of

stochastic integration filters (Dunik et al., 2015; Kahler and Blasch, 2010).

Knowledge of the domain is critical, and context-based relevance of data is critical to prop-

erly fusing correlated and uncorrelated data. There are many assumptions that may be made in

regards to context-based threat assessment systems. These might include: context-based data can

be acquired to fill knowledge gaps, data collection is unbiased, target signatures remain constant,

data quality is measurable, the data itself has the ability to be fused, the fusion strategy itself is

fixed, and errors are quantifiable to name a few. Successful threat assessment systems which re-

quire some level of information fusion depend on the ability to validate context-based assumptions

(Israel and Blasch, 2016).

Deep learning techniques for multimodal representation have three main frameworks: joint

representation, coordinated representation, and encoder-decoder. Deep learning models for mul-

timodal representation include probabilistic graphical models, multimodal autoencoders, genera-

tive adversarial networks, and deep canonical correlation analysis (Guo et al., 2019). Bimodal

deep autoencoders and sparse restricted Boltzmann machines have been used in practice for cross

modality learning in audio and video applications (Ngiam et al.). The measure of effectiveness

of deep learning methods on such tasks is based primarily on the quality, robustness and overall

information gain from utilizing a particular model (Blasch et al., 2018).

Some specific methods for optimal sensor placement, path planning, and field construction

with relevance to multimodal sensory data have been previously mentioned in earlier sections.

An upstream fusion technique that synthesises deep learning, topological analysis over probability

measure, and hierarchical Bayesian non-parametric recognition models is capable of automati-

14

1.2. BACKGROUND AND LITERATURE REVIEW

cally finding inter-modality dependencies, hierarchical representation discovery, and the removal

for the necessity to specify or encode features a priori (Garagić et al., 2018). This is powerful

because one of the largest challenges in multimodal fusion is the context-based relevance and

identification of feature significance and correlations. The use of joint manifold learning fusion

for heterogeneous upstream data fusion enables discovery of embedded low dimension represen-

tations for target tracking (Shen et al., 2018). Non-linear data fusion methods such as the particle

filter, sum-of-gaussians, and likelihood estimation methods have been shown to more aptly solve

multimodal data fusion tasks in comparison to techniques such as the extended Kalman Filter

(Durrant-Whyte and Henderson, 2016). Gaussian process based methods have also seen much

success in the way of multimodal data fusion, and have been applied to target tracking applications

and have been shown to outperform extended and unscented Kalman Filter methods (Xie et al.,

2018). Heteroscedastic GP, multi-output and multi-dependent GP models have shown success in

fusing multimodal sensory data (Vasudevan, 2012). A heteroscedastic and non-stationary GP has

been used for multimodal sensor fusion for applications such as vehicle single track models for

lane change maneuvers (Rhode, 2020).

1.2.5 Interactive Planning and Sensing in Time-Varying Environments

The motion planning and sensing tasks previously described are traditionally disjoint prob-

lems solved independently of one another. However, research into methods leveraging a combined

interactive planning and sensing have been recently gaining interest. Initial research interests in-

cluded gimbaled electro-optical and infrared sensors on a UAV platform utilizing an information-

driven metric for sensor placement with limited field of view within the environment to generate

a concurrent path plan (Skoglar et al., 2006). A Parallel Hierarchical Replanner scheme was de-

vised to develop dynamic, reactive path plans given multi-agent data fusion of the environment,

which lends itself to a parallel sense and plan scheme (Allen et al., 2009). Lastly, Markov Deci-

sion Processes have been used to generate path plans by harnessing uncertainty in time-varying

environmental parameters in an effort to minimize planning uncertainty and exploit environmental

benefits, similar to the effort of utilizing observational data of the environment and the statistical

properties to jointly plan the optimal path (Al-Sabban et al., 2013).

15

1.3. DISSERTATION OVERVIEW AND STATEMENT OF CONTRIBUTIONS

The idea of an Interactive Planning and Sensing (IPAS) framework was theoretically formal-

ized using a task-driven sensor placement scheme. Task-driven is in contrast to typical information-

driven metrics which attempt minimize entropy in an entire environment, since task-driven focuses

on a subset of the environment of direct relevance to the planning task (Thrun, 2002). Using a set

of parameters with support over a compact workspace, sensor placements were selected that best

minimized the uncertainty along and within a region near the current optimal path. The method

is proven to be near-optimal with a high probability and is guaranteed to converge. In addition, it

also attempts to minimize the number of iterations to converge and has been shown to converge

faster than methods such as frame potential (Cooper and Cowlagi, 2019c). An incremental 3D path

repair method was combined with the IPAS scheme for a UAV in partially known environments

that allows for 3D shortcut detection and a policy for a sensor’s Field of View to best serve the

IPAS framework (Du and Cowlagi, 2017).

The IPAS methodology has been similarly applied to spatiotemporally evolving environments

where sensor scheduling to observe task-driven information is performed over a finite time horizon,

and theoretical conditions in which it converges have been devised (Cooper and Cowlagi, 2019b).

In that study, the process was broken up into measurement collection, planning, and sensor re-

configuration time steps that require future research study for convergence analysis. While this

method and the previous IPAS method were centralized models, two decentralized counterparts

were developed that enable distributed estimation, both using a distributed information-consensus

filter to update local estimates and covariance. The two methods featured a ”Deployable-recon”

which allows sets of sensors to be disjoint in terms of communication links, and a second was

”Actor-connected” meaning that all sensors had to be within range of communication with one

another as well as the primary actor (Cooper and Cowlagi, 2019a).

1.3 Dissertation Overview and Statement of Contributions

The primary goal of this dissertation is to provide a framework for sensor configuration that

provides maximal information gain to the path-planning task in minimal iterations while minimiz-

ing an actor’s threat exposure.

16

1.3. DISSERTATION OVERVIEW AND STATEMENT OF CONTRIBUTIONS

1.3.1 Dissertation Overview

After thorough literature review, an apparent technological gap is noticeable between algo-

rithms which attempt to optimize sensor placement and algorithms that are concerned with path-

planning. These tasks are often decoupled, with few exceptions. While information-greedy sensor

placement algorithms may exist, they do not necessarily exist in a way that is optimal for the path-

planning decision making effort. In this dissertation, we aim to create a robust framework that

directly couples sensor configuration and path-planning.

One of the primary items of direct concern is understanding the trade-off of sensor quality

versus quantity when performing sensor configuration. This dissertation directly addresses sensor

field of view and the effect of correlated and overlapping sensor measurement regions as it pertains

to the path-planning effort. Additionally, we explore various application specific sensor configura-

tion algorithmic variations to best serve specific use cases for path planning such as safety critical

scenarios and situations when a large quantity of sensor are configurable.

Additionally, this dissertation addresses techniques which exploit the proposed framework

with fast approximation sensor configuration techniques and surrogate optimization functions for

enabling sequential sensor configuration optimization.

In a macro perspective, we aim to develop a sensor configuration framework which enables

heterogeneous sensor configuration in an information theoretical framework with respect to the

path-planning. Of importance in this framework is the ability to operate in active planning sce-

narios and dynamic environments. We address the computational complexities of the methods

developed and discuss the trade-offs when applying sensor configuration approaches.

1.3.2 Statement of Contributions

The following are a select list of summaries of the contributions made by this dissertation

toward a coupled sensor configuration and path-planning framework that is capable of managing

heterogeneous sensor networks for one or many agents and in static or dynamic environments.

17

1.3. DISSERTATION OVERVIEW AND STATEMENT OF CONTRIBUTIONS

Coupled Sensor Configuration and Path-Planning Minimizes Sensor Observations with re-

spect to Information Greedy Approaches and Requires Fewer Sensors We develop an algo-

rithm which couples sensor configuration to regions of interest with direct consequence to path-

planning. The direct implementation utilizes a task-driven information gain metric that aims to

quantify the information gained from observing path-plan relevant regions. We numerically show

that the task-driven sensor configuration can complete the path-planning optimization with far

fewer observations and sensors than information greedy approaches.

Coupled Sensor Configuration and Path-Planning Optimizes Path-Planning in Unknown

Threat Environments We demonstrate that the coupled sensor configuration and path-planning

algorithm converges to an optimality criteria that represents our confidence in path-plan optimality.

By provably converging below this criteria, we show that the resulting path-plan is optimal within

a statistical optimality guarantee.

Optimal Path-Planning for Multi-Agent Scenarios in Unknown Threat Environments We

demonstrate the ability for the coupled sensor configuration and path-planning algorithm to scale

to find many near optimal path-plans for multiple independent agents.

Batched Sensor Configuration for Safety Critical Applications In scenarios in which an ex-

tremely strict optimality guarantee is required for convergence, it may require multiple duplicated

samples of the near optimal path-plan estimate to obtain this guarantee. To accommodate a strict

termination threshold, we developed a greedy batched coupled sensor configuration and path-

planning variation which enables multiple configurations by the sensors each iteration. We show

that this lowers the required iterations to convergence in such applications.

Observation Efficient Sensor Configuration for Large Sensor Counts The coupled sensor

configuration and path-planning algorithm can achieve near optimal path-plan estimates in fewer

iterations than information greedy approaches. However, as the number of available sensors in-

creases, the performance gap between the approaches shrinks. To counter this, we developed a

variation of the coupled sensor configuration and path-planning algorithm that configures sensors

18

1.3. DISSERTATION OVERVIEW AND STATEMENT OF CONTRIBUTIONS

over many statistically feasible near optimal path-plans. We numerically show this approach out-

performs information-greedy approaches even when a large number of sensors are available.

Qualitative Cluster Analysis Driven Sensor Configuration for lowering Time Complexity In

static, yet time critical, threat environments it is imperative that the computations for sensor con-

figuration are performed quickly, even if suboptimal with respect to the task-driven information

gain. We utilize cluster analysis methods along with the task-driven information gain to find fast-

approximation sensor configurations. We demonstrate the time-savings and closeness in perfor-

mance of the method against direct optimization of the task-driven information gain metric.

Surrogate Sensor Configuration Function for Enabling Sequential Sensor Optimization We

present a surrogate sensor configuration method which has provable near optimal guarantees when

optimizing optimizing sensor configurations sequentially. This reduces the high-dimensional opti-

mization problem significantly. Secondly, we utilize a self-adaptive technique within the surrogate

method that balances exploration and exploitation of the path-planning efforts. We show that this

method outperforms directly optimizing the task-driven information gain metric and information-

greedy approaches. Additionally, we show that the adaptive coefficient outperforms any fixed value

for said coefficient.

Coupled Sensor Configuration and Path-Planning with Multimodal Sensors Practical appli-

cations may require a sensor network comprised of heterogeneous sensor payloads. We developed

a coupled sensor configuration and path-planning algorithm which generalizes to heterogeneous

sensor types and multimodal threat environments. We show that the sequential optimization en-

ables selective sensing when the sensor network has various combinations of sensor payloads.

Active Coupled Sensor Configuration and Path-Planning in No-Wait Scenarios We demon-

strate the ability to discover path-plans in situations where the acting agent is actively updating

it’s position and planning. The method focuses sensor configuration on finding the route, but also

avoiding spatially proximal threats. We consider the agent’s ability to wait and numerically show

that the active strategy we develop minimizes path-plan suboptimality.

19

1.3. DISSERTATION OVERVIEW AND STATEMENT OF CONTRIBUTIONS

Coupled Sensor Configuration and Path-Planning for Time-Varying Threat Environments

There exist many scenarios in which the threat environment has a dynamic profile as time passes

such as spreading forest fires. We detail necessary updates to extend the framework for the cou-

pled sensor configuration and path-planning methodology to handle time dependent environment

modeling and sensor configuration.

20

Chapter 2

Coupled Sensor Configuration and Path-Planning

Path-planning for an autonomous agent is typically performed subsequent to the observation

and modeling of it’s surrounding environment. When the agent is “blind” to it’s surroundings, it

relies on extroceptive sensors to map and realize the environment. The separation between the

path-planning and sensor configuration efforts leads to unnecessary and excess exploration of the

environment prior to deciding upon a best path. The goal of this work is to couple the sensor con-

figuration and path-planning objectives to minimize unnecessary exploration of the environment.

We devise a centralized framework which deploys extroceptive mobile sensors to observe regions

of direct relevance to the agent’s path-planning efforts. In what follows, we attempt to answer the

question: how do we optimally configure a mobile sensor network to find a near-optimal path-plan

in a minimal number of iterations?

2.1 Problem Overview

Throughout this dissertation we utilize the following notations. We denote by R and N the

sets of real and natural numbers, respectively, and by {N} the set {1, 2, . . . , N} for any N ∈ N.

For any a ∈ RN , a[i] is the ith element of a and diag(a) denotes the N ×N diagonal matrix with

the elements of a on the principal diagonal. For any matrix A ∈ RM×N , A[i, j] is the element in

the ith row and jth column. I(N) denotes the identity matrix of size N.

The agent operates within a compact square planar region called the workspace W ⊂ R2.

Consider a uniformly-spaced square grid of points i = 1, 2, . . . , Ng and a graph G = (V,E) whose

vertices V = {Ng} are uniquely associated with these grid points. The set of edges E of this

graph consist of pairs of geometrically adjacent grid points. In a minor abuse of notation, we label

the vertices the same as grid points. We denote by pi = (pix, piy) the coordinates of the ith grid

21

2.1. PROBLEM OVERVIEW

(a) (b)

Figure 2.1: (a) Example threat field with a sensor observing it within a particualr FoV. (b) A direct realiza-
tion of the the workspace and optimal path plan. The translucent circle directly corresponds to the sensor
FoV from (a).

point and by ∆p the distance between adjacent grid points. Without loss of generality we consider

“4-way” adjacency of points (i.e., adjacent points are top, down, left, and right). The proposed

methods and analyses remain unchanged if “8-way” adjacency (i.e., including points top-left, top-

right, etc.) were considered.

We define a threat field c : W → R>0 as a strictly positive temporally static scalar field.

We are interested in a path-planning problem of minimizing the agent’s threat exposure. A path

π = (π[0],π[1], . . . ,π[λ]) between prespecified initial and goal vertices v0, vL ∈ V is a finite

sequence, without repetition, of successively adjacent vertices such that π[0] = v0 and π[λ] = vL

for some λ ∈ N. In a minor abuse of notation and when the meaning is clear from the context, we

will denote by π the (unordered) set of vertices in a path. A path incidence vector vπ ∈ {0, 1}Ng

has vπ[i] = 1 if i = π[j] for j ∈ {λ}\0 and vπ[i] = 0 otherwise. The cost of a path π is the total

threat exposure calculated as J (π) := ∆p
∑λ

j=1c(pπj
). The main problem of interest is to find a

path π∗ of minimum cost.

We cannot solve this problem as stated because the threat field is unknown. The threat field

can be observed by a network S = {S1,S2, . . . ,SNs} of Ns ∈ N sensors. Each of these sensors

measures the threat in a circular FoV as shown in Figure 2.2. The center and radius of this circular

FoV Fk ⊂ R2, denoted sk ∈ W and %k ∈ R>0 for the kth sensor, are parameters that we may

22

2.1. PROBLEM OVERVIEW

Figure 2.2: Illustration of sensor configuration for 4 sensors.

choose for each k ∈ {Ns}. Maximum and minimum FoV radius constraints are specified as %max

and %min, respectively. The set of all sensor parameters is called a configuration, which we denote

by C = {s1, %1, s2, . . . , %Ns}.

Consider the set Fk ⊂ V of vertices with grid points within the FoVs of the kth sensor. A

sensor cover incidence vector νk is defined such that νk[i] = 1 if i ∈ Fk and νk[i] = 0 otherwise.

The cover incidence of all sensors in the network is ν := (ν1 ∨ ν2 ∨ ... ∨ νNs). The kth sensor

takes Mk ∈ N pointwise and noisy measurements within its FoV Fk. Each of these measurements

is modeled as zkm = c(xkm) + ηkm, where k ∈ {Ns} and m ∈ {Mk}. Assumption 1 details the

monotonicity assumption of the sensor noise.

Assumption 1. The measurement error ηkm is independent and identically distributed (i.i.d) with

ηkm ∼ N (0, σ2
k), where σ2

k is a monotonically increasing function of each sensor’s FoV radius %k.

We denote by z = [z11 . . . z1M1 . . . zNsMNs
]ᵀ the measurements made by the collection of all

sensors. We may use these measurements to construct a stochastic estimate of the threat field, and

in turn, to find an optimal path that minimizes the expected cost.

Furthermore, we would like the uncertainty in the estimated path cost to be low, e.g., we

may require that the variance of the path cost be less than a certain prespecified threshold. To do

so, we must collect a sufficient number of measurements, which may be achieved by repeatedly

23

2.2. COUPLED SENSOR CONFIGURATION AND PATH-PLANNING

changing the sensor configuration over multiple iterations. Conceptually, at each iteration ` =

0, 1, . . . , L, the sensor configuration C∗` is chosen, the threat field estimate is updated using the

new measurements, and an optimal path may be computed. The main problem of interest is now

reformulated as follows.

Problem 1. Over a finite number of iterations ` = 0, 1, . . . , L, find sensor configurations C` and a

path π∗ of minimum expected cost J ∗ := E[J (π∗)] that satisfies E[(J (π∗)− J ∗)2] 6 ε.

2.2 Coupled Sensor Configuration and Path-Planning

The proposed method, Coupled Sensor Configuration and Path-Planning (CSCP), is an iter-

ative algorithm which directly couples optimization of the sensing and path-planning tasks. The

pseudocode for CSCP is outlined in Figure 2.3. It involves three main components each iteration:

(1) sensor configuration and data collection, (2) generation of a statistical threat field estimate from

the data obtained from sensor configuration, and (3) determining the estimated optimal path-plan

given the result of the field estimation. These stages iterate until the estimated path cost variance

falls below a user specified path optimality threshold. We calculate the estimated path cost in

Equation 2.1 as the vector product between the path incidence vector vπ and an estimated threat

field vector f , which we describe in Section 2.2.3, scaled by the path transition cost ∆p.

J `(π) = E[J (π)] = ∆p vᵀπf ` (2.1)

Similarly, we define the estimated path cost variance in Equation 2.2, where P ` is the current

iteration estimated threat error covariance matrix.

Var`(π) := E[(J (π)− J `(π))2] = (∆p)2vᵀπP `vπ (2.2)

The algorithm proceeds to iterate over the the aforementioned stages until the estimated path cost

variance converges below a termination threshold. Herein, we provide the details of each stage of

the CSCP algorithm.

24

2.2. COUPLED SENSOR CONFIGURATION AND PATH-PLANNING

Coupled Sensor Configuration and Path-Planning

1: Let ` := 0, f 0 := 0,P 0 := χI
2: Solve for π∗0 := arg minJ 0(π)
3: while Var`(π

∗
`) > ε do

4: Optimize Sensor Configuration C∗`
5: Record new measurements z
6: Increment iteration counter ` := `+ 1
7: Find GPR-based threat field estimate f ` and error covariance P `

8: Find π∗` := arg minJ `(π)

Figure 2.3: Pseudocode for the CSCP algorithm to solve Problem 1.

2.2.1 Algorithm Initialization

The algorithm initializes “optimistically” by setting f 0 = 0. The initial uncertainty in the

threat estimate is quantified by initializing the estimation error covariance matrix with uniformly

large values, e.g., P = χI(Ng), where χ� 1 is an arbitrary large number. Due to this “optimistic”

initialization, the initial optimal path π∗0 is of minimum length as π∗0 := arg minJ 0(π), optimized

using Dijkstra’s algorithm. Upon initializing the initial threat estimate vector and threat error

covariance matrix, we proceed to the iterative phase of the algorithm. Line 3 initializes the iterative

phase whenever the estimated path cost variance is greater than a prespecified termination threshold

ε. We begin each iteration by optimizing the set of sensor configuration parameters C` which

describe their field of view as detailed in the next section.

2.2.2 Sensor Network Configuration

Each iteration, after determining the path plan region of interest, we perform sensor configura-

tion. This stage is responsible for configuring sensor locations and FoVs which best observe a set

region of interestR` ⊂ V at any iteration `. The region of interest setR can be defined by a region

of interest vector r ∈ {0, 1}Ng . We can set the region of interest equal to the path incidence vector

r = vπ each iteration, but in later chapters we will explore situations in which we set r differently.

To quantify the sensor FoV coverage with respect to r, we utilize a task-driven information gain

25

2.2. COUPLED SENSOR CONFIGURATION AND PATH-PLANNING

(TDIG) metric which represents the information gain via variance reduction of r:

τ(C`, r) := rᵀ(P ` − P `+1)r (2.3)

The sensor configuration problem is of finding a configuration C∗` that maximizes the TDIG subject

to the constraints sk ∈ W , %min 6 %k 6 %max, for each k ∈ {Ns}. The formulation of the TDIG

metric in Equation 2.3 cannot be directly solved as written due to the unavailability of P `+1. As

such, an approximate posterior threat error covariance matrix P̂ `+1 must be formulated. Next, we

present two alternatives for this approximation.

Fixed Correlations Approximation

The first approach to computing the approximate posterior threat covariance matrix P̂ `+1 is to

fix the correlations between vertices. We begin by computingQ = diag(q), where q is a reduction

factor vector for each point in the workspace and is computed with Equation 2.4.

q−1 := diag(P `)
−1 +

Ns∑
k=1

νk/σ
2
k (2.4)

In Equation 2.4, diag(P `) represents the diagonal elements of the threat error covariance ma-

trix for the current iteration. The reduction factor vector q is representative of the weighted combi-

nation of sensor noise and vertex uncertainty. After obtainingQ, we can estimate the approximate

posterior threat error covariance matrix by Equation 2.5.

P̂ `+1 := QΩ`Q (2.5)

The variable Ω` represents the current iteration threat error correlation matrix, which is directly

obtainable from the current iteration threat error covariance matrixP `. This approximation method

preserves the latent correlations between workspace vertices, but when optimizing the TDIG with

this approximation, it is prone to overestimate the TDIG metric due to the positive correlations

between vertices which may not be preserved when new data is collected.

26

2.2. COUPLED SENSOR CONFIGURATION AND PATH-PLANNING

Independent Vertices Approximation

Alternatively, we may ignore the correlation and assume independence of the workspace ver-

tices. In contrast, this is an admissible approach as we do not overestimate the posterior threat error

covariance matrix. We can therefore take P̂ `+1 = Q and find a sensor network configuration C∗`
that maximizes the TDIG along r, subject to sensor constraints, that does not overestimate sensor

cover performance between spatially distant workspace vertices.

2.2.3 GPR-based Field Estimation

Upon optimizing for sensor configuration C∗` as previously described and obtaining measure-

ments z within each sensor’s FoV, we can utilize this data for estimating the threat field. To perform

the threat field estimation, we utilize Gaussian Process Regression (GPR). GPR is a nonparametric

supervised learning method which is a stochastic process of random variables. Gaussian Processes

make use of a kernel which defines the relationship between training data points. For a set of train-

ing points X = {x11, . . . ,xkm, . . . ,xNsMNs
}, we can define a matrix kernel K ∈ RM×M using

anisotropic radial basis functions (RBF-ARD) as:

K [i, j] = κ(X,X) := exp(−1
2
(xi − xj)TΘ−2r (xi − xj)) (2.6)

Likewise, Θr is a matrix of input dimension length scales. Along the diagonal are the dimension

specific length scales and the off-diagonal are the length scale correlations between dimensions.

One important property of this kernel is it has a covariance matrix structure equivalent to it’s

correlation matrix. We will denote the RBF-ARD kernel as KR. It is often common to add a

scaling kernel KS := θcK where θc is a scaling parameter to be chosen. In this work we use a

kernel formulated asK = KSKR.

For a set of training points X = {x1, . . . ,xkm, . . . ,xNsMNs
} and a set of test points X∗, we

can define kernels K∗ = κ(X,X∗) and K∗∗ = κ(X∗,X∗) in a similar manner. The choice

of kernel of RBF-ARD is a good generic kernel choice, but it can be replaced with alternative

kernels depending on the application and function that is being modeled. In later chapters, we

27

2.2. COUPLED SENSOR CONFIGURATION AND PATH-PLANNING

make modifications to the GPR formulation to accommodate special scenarios.

The hyperparameters θ = (θc,Θr) are found by minimizing the negative marginal log-

likelihood:

log p(z|X,θ) = −1

2

(
zᵀK−1z z + log |Kz|+Nmeas log 2π

)
(2.7)

We define the kernel with additional heteroscedastic noise as Kz := K + diag(σ), where σ :=[
σ2
1 . . . σ2

km . . . σ2
NsMNs

]ᵀ
for m ∈ Mk and k ∈ Ns. The joint distribution of observations z

and the mean threat f is given by:z
f

 ∼ N
0,

Kz K∗

Kᵀ
∗ K∗∗

 (2.8)

From the joint distribution, we can obtain the current iteration threat field estimate and threat error

covariance matrix as:

f ` = Kᵀ
∗K

−1
z z (2.9)

P ` = K∗∗ −Kᵀ
∗K

−1
z K∗ (2.10)

2.2.4 Termination Criteria

After successively finding the optimal sensor configuration, collecting sensor measurements,

and computing a new statistical threat field estimate, we are able to evaluate for a new estimated

optimal path-plan π∗` := arg minJ `(π). As for the initial path-plan estimate, we may use Dijk-

stra’s algorithm to find the optimal sequence of vertices. The algorithm breaks from it’s loop if the

new path-plan π∗` is such that Var`(π
∗
`) 6 ε. We note that the smaller the value of ε, the higher the

desired confidence in our path-plan and vice versa.

2.2.5 Algorithm Properties and Convergence

Proposition 1. The CSCP algorithm terminates in a finite number of iterations L ∈ N for Ns > 0.

Proof. At any iteration ` ∈ N, by Line 4 of Algorithm 2.3, each sensor is configured such that

28

2.2. COUPLED SENSOR CONFIGURATION AND PATH-PLANNING

its FoV intersects with the current iteration ROI R`. By any definition of the ROI, π∗` ⊂ R and

therefore, at least one measurement is taken on at least one vertex of path π∗` whenever Ns > 0.

The path cost variance monotonically decreases at each iteration as Var`+1(π
∗
`) < Var`(π

∗
`),.

Because the path cost variance is also bounded below by zero, inf`{Var`(π
∗
`)} = 0, it follows that

there exists a finite L ∈ N such that VarL(π∗L) < ε, which is when the algorithm terminates.

Proposition 2. The CSCP algorithm solves Problem 1.

Proof. We note that the path π∗L satisfies the conditions stated in Problem 1, namely, that is has

minimum expected cost J ∗ = J L(π∗L) and E[(JL − J
∗
)2] = VarL(π∗L) < ε per the termination

criterion enforced by Line 3 in Algorithm 2.3.

Corollary 1. The path π∗L is near-optimal in the following sense:

P
[
|J ∗ − JL| 6 3

√
ε
]
> 0.9973.

Proof. Due to the GPR-based field estimation and the linearity of J (π), the path cost is normally

distributed, and the result follows immediately from the standard normal table.

Corollary 2. The path π∗L is near-optimal in the following sense. Let J ∗ denote the cost of the

true optimal path. Then:

P
[
|JL − J ∗| 6 3

√
ε
]
> 0.9973.

Proof. Due to the GPR-based field estimation and the linearity of J (π), the path cost is normally

distributed, and the result follows immediately from the standard normal table.

2.2.6 Results and Discussion

In this section, we provide sample results of numerical simulations of the CSCP algorithm

and a comparison with traditional information-maximizing (Info-Max) approaches. The Info-Max

approach finds sensor configurations to maximize the reduction of tr(P `−1). Compared to the

proposed sensor placement based on the TDIG, the Info-Max approach is entirely decoupled from

29

2.2. COUPLED SENSOR CONFIGURATION AND PATH-PLANNING

the path-planning problem and attempts to estimate the field with uniformly low error in all spatial

regions. We note that such an approach is the current state of the art if one were to attempt a sensor

cover and placement problem as we have defined. While many methods exist for pointwise sensor

placement and area coverage, there does not exist a method for the combination of the two as we

have defined for task-driven information gain.

We conducted a study with randomly generated threat fields c(x) =
∑Np

n=1 θnφn(x), where

θn are randomly chosen coefficients, and φn are radial basis functions that cover E . The number

of bases Np is indicative of the “richness” in spatial variations in the threat field: fields with small

Np have a few peaks and several flat regions whereas fields with very large Np have closely spaced

peaks, which may cause several flat regions.

Parameter Set of simulated values

basis functions Np {8, 16, 32, 64, 128, 256, 512, 1024}
sensors Ns {1, 2, 4, 9, 16}
grid points Ng {112, 212, 312, 412, 512}
points in sensor FoV Mk {4, 9, 16, 25}, for each k ∈ [Ns]
Termination threshold ε {0.01, 0.1, 1.0}

Table 2.1: Set of parameters used in CSCP vs. Info-Max numerical performance analysis.

100 random trials were conducted for each combination of the parameters listed in Table 2.1,

for a total of 240,000 simulations. In what follows, we describe the impact of each of these pa-

rameters on the average path cost suboptimality and on the number of iterations required for con-

vergence. We compare the performance of the CSCP algorithm in these simulations to Info-Max

sensor placement, which attempts to reduce the uncertainty of the entire workspace. Additional

plots for all of averaged experiment parameters for CSCP and Info-Max are made available in the

Appendix D, however we summarize their findings herein. Note that negative numbers indicate

improvement by using CSCP.

Observation Density

We begin by assessing the suboptimality of the paths and the average iterations required for

convergence for each option of observation density. We directly take the difference between CSCP

and Info-Max to obtain the reduction in percent error and iterations. Figure 2.4 depicts both plots

30

2.2. COUPLED SENSOR CONFIGURATION AND PATH-PLANNING

showing respective reduction by using CSCP in place of Info-Max. We note that the CSCP method

not only has lower path optimality error but also increasingly fewer required iterations as the obser-

vations taken by each sensor becomes sparser. Such a trend is significant and embodies the notion

that CSCP can find near-optimal path-plans with far fewer observations than Info-Max strategies.

(a) (b)

Figure 2.4: Average percent error (a) and iteration (b) reduction by using CSCP in place of Info-Max for
various observation densities.

Environment Complexity

Next, we assess the performance in terms of complexity, or richness, of the threat environment.

Richness is in contrast to low threat parameter counts which are sparse (many valleys) or high threat

parameter counts which saturate the threat environment (many plateaus). We see by assessing

Figure 2.5 (a) that the error reduction by using CSCP in place of Info-Max is maximum at the

‘richest’ number of parameters. Figure 2.5 (b) shows that the CSCP algorithm has near constant

performance improvements regardless of threat value which is not too sparse. Yet, even sparse

threat environments yield iteration reduction by using CSCP.

Number of Available Sensors

The number of sensors available for configuration yielded more positive results for CSCP

in place of Info-Max. Figure 2.6 (a) shows that the CSCP method achieves increasingly better

31

2.2. COUPLED SENSOR CONFIGURATION AND PATH-PLANNING

(a) (b)

Figure 2.5: Average percent error (a) and iteration (b) reduction by using CSCP in place of Info-Max for
various numbers of threat parameters.

performance as the number of sensors decreases. While Figure 2.6 is a nonlinear relationship,

the general trend follows that the iteration reduction increases in performance as fewer sensors

are available. This leads to the conclusion that CSCP can find near-optimal path-plans in fewer

iterations with low sensor counts.

Workspace Resolution

The workspace resolution was another parameter used for comparison between CSCP and

Info-Max. As shown in Figure 2.7, the CSCP algorithm was more proficient in terms of iterations

than Info-Max with increasing resolution. It did not seem to play a significant part in the error

reduction. The takeaway is that the CSCP algorithm can make better use of information stored at

finer grid resolutions, accelerating convergence.

Termination Threshold

Lastly, we varied the termination threshold with values ε ∈ {1, 0.1, 0.01} which are in order

of increasing path-optimality requirements. We note that the results yielded that the CSCP algo-

rithm kept average suboptimality below 1.0% for any value of Np with ε = 1 and below 0.5% with

32

2.2. COUPLED SENSOR CONFIGURATION AND PATH-PLANNING

(a) (b)

Figure 2.6: Average percent error (a) and iteration (b) reduction by using CSCP in place of Info-Max for
various numbers of available sensors.

ε = 0.01. Across all experiments, as well as those in Appendix D, we show that the CSCP algo-

rithm performance increasingly outperforms the Info-Max approach as the termination threshold

becomes more strict. We attribute this to the exploitative nature of sensor configuration to vertices

within the region of interest which drive down path uncertainty faster than vertices outside the

region of interest.

Results Summary

We found the average path-plan suboptimality to be 0.436%, which supports the claim that

CSCP provides near-optimal paths. The average number of iterations L over all simulations for

the algorithm to terminate is 6.88, which supports the claim that the CSCP algorithm is computa-

tionally efficient. Expanded heatmaps of the performance of CSCP in place of Info-Max for the

parameters are shown in Figures D.1, D.2, and D.3. The average total number of iterations, over

all simulations, required by the proposed algorithm is 38.36% less than that required by the Info-

Max approach. In summary, the CSCP algorithm finds near-optimal paths with significantly fewer

measurements. Note that the total number of sensor measurements is L
∑Ns

k=1Mk; i.e., the total

number of measurements is proportional to the number of iterations. In certain cases, the number

of measurements required is reduced by an order of magnitude.

33

2.3. DISASTER SCENARIO IN ST. LUCIA

(a) (b)

Figure 2.7: Average percent error (a) and iteration (b) reduction by using CSCP in place of Info-Max for
various grid resolutions.

2.3 Disaster Scenario in St. Lucia

To help better visualize the operation of this algorithm, consider a fictional disaster scenario

on the island of St. Lucia in Figure 2.8. In this hypothetical scenario, major roadways are flooded

or otherwise incapacitated preventing normal travel over the island. Survivors, which are located at

the Fox Grove Inn (bottom right marker), need to be routed to the Hewannora International Airport

(top left marker) for extraction. The challenge however, is that unknown threats (flooded regions,

downed power lines, etc.) exist and need to be avoided.

Consider that a network of mobile aerial vehicles, Ns = 3, equipped with exteroceptive visual

surveying equipment are available to observe the extent of hazardous elements on the island. Using

this data, a transport path for the survivors can be provided. In this scenario, the amount of time

spent collecting data must be kept to a minimum. We now show how the CSCP algorithm may be

applied to solve such a scenario. The problem is performed with a workspace resolution Ng = 412

(approximately 0.4 km spacing) with a termination threshold of of ε = 1.

The algorithm begins by finding the shortest path with Dijkstra’s algorithm from the start to

goal vertex. Figure 2.9 shows the true optimal path (white) and the estimated optimal path (green),

which is this shortest distance path. The equally spaced dots represent the collection of grid space

34

2.3. DISASTER SCENARIO IN ST. LUCIA

Figure 2.8: Example workspace and true optimal path the marker indicator to the goal location denoted by
the flag in the St. Lucia disaster relief scenario.

vertices in which the agent (the St. Lucia survivors) can traverse over. Note that the initial path-

plan estimate is taken as the shortest path due to the optimistic field estimate assumption f 0 = 0

and the pessimistic threat error covariance P 0 = χI , which enforce maximum uncertainty over

the workspace.

Figure 2.9: St. Lucia workspace (black dots), threat field, and true (white) and estimated (green) optimal
path-plans at the initial iteration ` = 0.

After determining the initial estimated path-plan π∗0 we proceed to configure sensors with

direct relevance to the path-plan. In Figure 2.10, the translucent circles depict the sensor cover

35

2.3. DISASTER SCENARIO IN ST. LUCIA

which are determined by optimizing the TDIG metric given the prior estimated path-plan. Upon

receiving the data collected from the sensors, we proceed to fit the GP model to produce the

estimated threat field. Figure 2.10 shows that the new estimated path-plan skirts the outer boundary

as a result of the estimated field being optimistic away from the training data. The path cost

variance is computed at the end of the iteration and assessed to see if it satisfies our criteria for

path optimality. Clearly, this path-plan passes through high uncertainty workspace vertices and

as such does not pass our termination threshold criteria of ε = 1. We continuously perform these

sequence of events until this criteria is satisfied. In what follows, we show the second, seventh, and

fourteenth and final iteration of the St. Lucia problem in Figures 2.11, 2.12, and 2.13, respectively.

Figure 2.10: The first estimated path-plan, estimated threat field, and variance of each vertex with associated
sensor coverage (translucent circles).

Figure 2.11: The second estimated path-plan, estimated threat field, and variance of each vertex with asso-
ciated sensor coverage.

The final path-plan determined by CSCP in figure 2.13 is spatially close to the true optimal

path-plan with only few deviations. Of note is the final threat field estimate granularity at various

36

2.3. DISASTER SCENARIO IN ST. LUCIA

Figure 2.12: The seventh estimated path-plan, estimated threat field, and variance of each vertex with
associated sensor coverage.

(a) (b) (c)

Figure 2.13: The final estimated path-plan, estimated threat field, and variance of each vertex with associ-
ated sensor coverage at ` = L.

locations. Notice that the estimation error variance is high and the field does not capture threat

variations in regions far away from the true path-plan. This is a characteristic of the TDIG metric,

which enforces exploitation with sensor coverage of vertices with direct relevance to the planning

efforts. While observations are made here due to the optimistic nature of the algorithm, further

exploration is not performed as it is deemed an infeasible path-plan solution. In contrast, the areas

in which more sensors are configured more accurately represents the true field.

The path cost begins with a suboptimality of 578% given our initial path plan and upon con-

vergence achieves only 1.68% suboptimality for the St. Lucia example. Figure 2.14 shows the path

cost and variance at each iteration until convergence at iteration L = 14. We note that the ‘bump’

in the path cost and variance indicates the exploratory nature of the algorithm due to the optimistic

37

2.3. DISASTER SCENARIO IN ST. LUCIA

nature of the estimated field spatially distant from existing training data. In summary, the CSCP

algorithm finds a near-optimal path-plan for the survivors to follow that is within the optimality

criteria for safe transport to the airport.

Figure 2.14: Path cost and variance values at each iteration for the St. Lucia scenario.

38

Chapter 3

Greedy Batched CSCP for Safety Critical Scenarios

3.1 Greedy Batched CSCP

The proposed algorithm provides an alternative methodology to the basic CSCP algorithm

introduced in Chapter 2, which provided a solution that finds the optimal sensor configuration

along the entire path each iteration. In situations where safety is of the upmost importance, the

termination threshold ε may be set to an extremely small value. When the termination threshold ε

is extremely strict, the CSCP algorithm can spend many iterations sampling the same area until the

confidence in the path-plan converges below ε. This causes unnecessary computational expenditure

to refit the statistical field estimate and determine a new estimated path-plan each iteration.

To remedy this issue for such safety critical scenarios, we present a Greedy Batched CSCP

algorithm (GB-CSCP) which focuses on quickly arriving to a strict path optimality condition.

Specifically, it differs from the algorithm of Chapter 2 by using a two stage approach: (1) Explo-

ration, which focuses sensor FoV along unidentified vertices, and (2) Exploitation, which assumes

that a fully identified path is the true optimal path. As such, it allows for batches of sensor config-

urations within a single iteration to drive the estimated path cost variance below a user specified

termination threshold.

3.1.1 Greedy Region of Interest Pruning

The GB-CSCP algorithm operates by keeping track of a set of identified vertices I ∈ V

which is initialized as I := ∅. We classify a vertex identified whenever it is covered by a sensor

FoV. As such, each iteration we update this set as I := I ∪ {∪Ns
k=1Fk}. Likewise, an identified

incidence vector, Iπ, is defined as Iπ ∈ RNg such that Iπ[i] = 1 if i ∈ Iπ[j] for j ∈ [λ]\0 and

39

3.1. GREEDY BATCHED CSCP

Greedy Batched Coupled Sensor Configuration and Path-Planning

1: Let ` := 0, f 0 := 0,P 0 := χI, I := ∅
2: Solve for π∗0 := arg minJ 0(π)
3: while Var`(π

∗
`) > ε do

4: if |π\I| > Ns then
5: Set r := vπ − Iπ
6: Optimize Sensor Configuration
7: else
8: Let L̂ := `, r := vπ
9: while VarL̂(π∗`) > ε do

10: Increment batch counter L̂ := L̂+ 1
11: Optimize Sensor Configuration with Ns := Ns(L̂− `)
12: Find VarL̂(π∗`) with P̂ L̂

13: Record new measurements z
14: Increment iteration counter ` := `+ 1.
15: Find GPR-based threat field estimate f ` and error covariance P `

16: Find π∗` := arg minJ `(π)

Figure 3.1: Pseudocode for the Greedy Batched CSCP algorithm to solve Problem 1.

Iπ[i] = 0 otherwise. The set of identified vertices is used for determining the algorithm’s sensor

configuration optimization state (exploration versus exploitation).

The exploration stage occurs whenever there are more unidentified path vertices than there

are sensors available, |π\I| > Ns. We perform optimize the sensor configuration with the TDIG

metric τ with the setting of r := vπ − Iπ to find an optimal sensor configuration C`.

The exploitation stage occurs whenever π∗` has strictly less identified vertices than there are

available sensors. During this stage, we exploit the ability to have batches of the number of avail-

able sensors take additional observations within a single iteration. We describe the batch process

in the next section.

3.1.2 Batched Sensor Configuration

As mentioned, when we are in the exploitative state, we provide the ability to batch Ns. The

motivation is to drive the estimated path cost variance below the termination threshold in a single

iteration. To do so, we set an estimated terminal iteration variable to the current iteration L̂ := `

40

3.2. RESULTS AND DISCUSSION

and set r := vπ. Next, we recursively increment the estimated terminal iteration, optimize the

sensor configuration with Ns := Ns(L̂ − `), and compute the estimated path cost variance at the

estimated terminal iteration. This recursion occurs until the estimated path cost variance is below

the termination threshold ε. The desired effect is reducing the need to perform sensor observations,

update the field estimate and error covariance and obtain a new estimated optimal path for the L̂−`

batched sensor configurations. Depending on a sensor’s signal-to-noise ratio and the specification

of ε, a batched sensor configuration method could greatly reduce the number of iterations of the

outer CSCP algorithm loop by exploiting multiple samples of the region of interest.

3.1.3 Algorithm Properties

In addition to the algorithm properties demonstrated in Chapter 2, we state the following

additional items specific to the Greedy Batched CSCP algorithm.

Proposition 3. The Exploitative loop of Line 9 of Algorithm 3.1 procedure is guaranteed to con-

verge in a finite number of iterations with Ns > 0.

Proof. We note that with Ns > 0 at least one sensor covers a path vertex such that ν has at least

one nonzero entry. Additionally, each iteration that does not satisfy ε, we add another batch of Ns

sensors. We note that the path cost variance is monotonically decreasing in this case and is bounded

by 0 and the prior path cost variance Var`(π
∗
`), thus we can say by monotone convergence theorem

we converge to inf{VarL̂(π∗`)} = 0 < ε.

3.2 Results and Discussion

To quantitatively assess the performance of the GB-CSCP algorithm, we performed a numer-

ical study with randomly generated threat fields in the series form c(x) =
∑Np

n=1 θnφn(x), where

φn are radial basis functions that cover E . Threat intensity θn values were set to 100 for all basis

functions Np. The number of bases Np is indicative of the “richness” in spatial variations in the

threat field: fields with small Np have a few peaks and several flat regions whereas fields with very

largeNp have closely spaced peaks, which may cause several flat regions. We setNg = 212 for this

41

3.2. RESULTS AND DISCUSSION

experimentation. The results from Chapter 2 showed that the performance scales proportionally

to the termination threshold, so for these experiments we consider a fixed termination threshold

ε = 0.05. To simulate the minimum and maximum heights for UAVs, we constrained the sensor

FoV to %min = 0.01 km and %max = 1 km. The parameters used in this experiment are shown in

Table 3.1 and the results are shown in Table 3.2. The key results of GB-CSCP are as follows.

Parameter Set of simulated values

basis functions Np {25, 50, 75, 100}
sensors Ns {1, 3, 5, 7, 9}
Environment Area |E| {1km2, 4km2, 9km2, 16km2, 25km2}

Table 3.1: Set of parameters used in numerical performance analysis.

Iterations Observations Est. Error % Incurred Error % Field ID % Runtime [sec]

CSCP 10.58± 6.28 52.90± 31.40 0.31± 0.91 0.06± 0.25 76.24± 12.67 671.15± 774.23
GB-CSCP 10.17± 5.21 49.24± 32.24 0.33± 0.99 0.06± 0.26 76.27± 12.66 446.27± 506.17
Info-Max 49.16± 46.71 245.80± 28.71 0.58± 5.23 2.03± 41.33 96.73± 6.44 647.80± 669.26

Table 3.2: Average Results of the GB-CSCP Numerical Study

CSCP requires less environment knowledge than Info-Max for convergence

As the set of identified workspace vertices I were tracked at each iteration we took an average

of the identified percentage of the environment for CSCP, GB-CSCP, and Info-Max. The field

identification percentage, as shown in Table 3.2, show that the CSCP and GB-CSCP approximately

identify the same percentage of the environment, but both nearly 20% less than Info-Max. This

result emphasizes the coupled sensor configuration approach and embodies the notion that CSCP

requires less knowledge about the environment to determine a near-optimal path-plan.

Greedy exploration and batching reduces iterations with strict termination criteria

The results we obtained, namely the average iterations from Table 3.2 show that the the GB-

CSCP algorithm performs slightly fewer iterations on average than CSCP. We note that we reduce

the number of observations by 3.66 on average. Notably however, is that as the termination criteria

becomes increasingly strict, the gap in performance between the GB-CSCP algorithm and CSCP

grows in terms of iterations.

42

3.3. DEMONSTRATIVE EXAMPLE

GB-CSCP is superior when observability is low

We define observability of an environment as the ratio between the maximal sensor coverage

given the max sensor radius %max to the area of the environment. As visualized in Figures 3.2,

3.3, and 3.4, for low sensor counts the iterations required with increasing environment area is

increasingly outperforming CSCP. This result is mainly attributed to the batching procedure near

termination of the algorithm. In ‘standard’ CSCP with a low sensor count, it would take many

iterations to polish the final solution with few sensors. However, batching with GB-CSCP enables a

pseudo high sensor count solution in a single iteration, effectively reducing the number of required

iterations to achieve convergence.

Batching reduces overall runtime

The runtime analysis in Table 3.2 shows that the GB-CSCP algorithm is capable of finding

a solution in significantly less time than the CSCP approach. Figures 3.5, 3.6, and 3.7 show that

with increasing sensor counts the GB-CSCP approach converges with increasingly less time. This

speed advantage is attributed to the greedy pruning of the identified vertices. Additionally, while

the batched optimization may be computationally more expensive in a single iteration, it typically

converges much faster as previously stated than CSCP which reduces the entire duration runtime.

3.3 Demonstrative Example

To demonstrate the operation of GB-CSCP and depict it’s benefits, consider the example field

shown to the left in Figure 3.8 with a true optimal path-plan (white). Initially, the GB-CSCP

algorithm behaves just like CSCP and it places the Ns = 3 available sensors within along the

shortest path-plan region. The resulting estimated path-plan is shown by the green trace. The key

difference is that the identified workspace vertices (green dots) are accounted for and displayed

over the estimated threat field.

During the next several iterations, as shown in Figures 3.9 and 3.10, the algorithm performs

sensor configuration over just the unidentified vertices. This enforces an exploration element which

43

3.3. DEMONSTRATIVE EXAMPLE

Figure 3.2: Iteration performance for environment information maximization, CSCP, and the Greedy
Batched CSCP method for various numbers of available sensors, with an environment area of 1 square
kilometer.

Figure 3.3: Iteration performance for environment information maximization, CSCP, and the Greedy
Batched CSCP method for various numbers of available sensors, with an environment area of 9 square
kilometers.

44

3.3. DEMONSTRATIVE EXAMPLE

Figure 3.4: Iteration performance for environment information maximization, CSCP, and the Greedy
Batched CSCP method for various numbers of available sensors, with an environment area of 25 square
kilometers.

Figure 3.5: Runtime in seconds for CSCP, and the Greedy Batched CSCP method for various numbers of
available sensors, with an environment area of 1 square kilometer.

45

3.3. DEMONSTRATIVE EXAMPLE

Figure 3.6: Runtime in seconds for CSCP, and the Greedy Batched CSCP method for various numbers of
available sensors, with an environment area of 9 square kilometers.

Figure 3.7: Runtime in seconds for CSCP, and the Greedy Batched CSCP method for various numbers of
available sensors, with an environment area of 25 square kilometers.

46

3.3. DEMONSTRATIVE EXAMPLE

Figure 3.8: Initial GB-CSCP sensor configurations, estimated field, identified vertices, and new estimated
optimal path-plan.

Figure 3.9: GB-CSCP sensor configurations, estimated field, identified vertices, and new estimated optimal
path-plan at ` = 3.

causes the sensor configuration to make a sweeping pattern across the environment.

Iteration ` = 12 is the penultimate iteration as shown in Figure 3.11. We note that at this

iteration, the algorithm has discovered the true optimal path-plan, but critically has not satisfied the

confidence termination threshold and will not terminate. The CSCP algorithm, took four additional

iterations to converge, ending with ` = 16 iterations. However, the GB-CSCP algorithm converges

below ε at ` = 13 due to the batching property as previously described. Figure 3.12 shows the

entire batched sensor configuration in the final iteration. In summary, we have shown how the

GB-CSCP algorithm quickly explores the environment and then exploits the estimated path-plan

for faster convergence in both iterations and computation time.

47

3.3. DEMONSTRATIVE EXAMPLE

Figure 3.10: GB-CSCP sensor configurations, estimated field, identified vertices, and new estimated optimal
path-plan at ` = 7.

Figure 3.11: GB-CSCP sensor configurations, estimated field, identified vertices, and new estimated optimal
path-plan at ` = 12, the penultimate iteration.

Figure 3.12: GB-CSCP sensor configurations, estimated field, identified vertices, and final estimated opti-
mal path-plan at ` = 13, the final iteration.

48

Chapter 4

Exploration Efficient CSCP with High Sensor Counts

4.1 Exploration Efficient CSCP

In situations requiring or possessing a high number of available sensors Ns, the gap in per-

formance between the CSCP algorithm presented in Chapter 2 and information greedy approaches

shrinks significantly. The nature of the CSCP algorithm is to place sensors directly along a current

estimated optimal path plan. However, placing all of the available sensors along a single estimated

optimal path may waste task-driven exploration opportunities whenNs is large. To make the CSCP

methodology competitive with information greedy approaches for large Ns, we adopt an Explo-

ration Efficient CSCP algorithm as detailed in Algorithm 4.1. The key differentiating factors are

the ability to generate statistically feasible alternate path-plans from our statistical environment

model. Secondly, we apply special weighting schemes to the region of interest vector r using

these path-plans to perform task-driven exploration in addition to exploiting the current estimated

optimal path-plan.

4.1.1 Generating Statistically Feasible Path-Plans

First, we are tasked with generating Na statistically feasible alternate path-plans. The statisti-

cal model generated by the Gaussian Process regression provides an estimate of the threat field f

and threat error covariance matrix P . This output follows that of a multivariate normal distribu-

tion. As such, we may draw samples that we can find estimated optimal path-plans over. We may

generate each ith sample as:

f
(i)
` = f ` +Agi (4.1)

49

4.1. EXPLORATION EFFICIENT CSCP

Exploration Efficient Coupled Sensor Configuration and Path-Planning

1: Let ` := 0, f 0 := 0,P 0 := χI
2: Solve for π∗0 := arg minJ 0(π)
3: while Var`(π

∗
`) > ε do

4: Draw Na field estimates f (i)
`

5: Solve for aπ and ai ∀ i ∈ Na

6: Compute wπ as per Eqn. 4.3 or Eqn. 4.4
7: Set r := wπ
8: Optimize Sensor Configuration C`
9: Record new measurements z

10: Increment iteration counter ` := `+ 1
11: Find GPR-based threat field estimate f ` and error covariance P `

12: Find π∗` := arg minJ `(π)

Figure 4.1: Pseudocode for the Exploration Efficient CSCP algorithm to solve Problem 1.

The matrix A can be computed from the threat covariance matrix using cholesky decomposition

as AAᵀ = P `. The vector gi is therefore the ith sample vector’s independent normal variates.

By introducing generated threat field estimates using the statistical model, we may find Na alter-

nate potential path-plans by recomputing Dijkstra’s algorithm. We may combine these alternate

paths with the candidate optimal path and compute r as the region of interest incidence vector as

described in the next section.

4.1.2 Region of Interest Weighting

Upon determining each ith sampled threat field vector f (i), we solve forπ(i)
a := arg minJ `(π) =

∆p vᵀπ f
(i)
` , where π(i)

a is the ith set of alternate estimated optimal path-plan vertices. We define

by ai the ith alternate path incidence vector, where ai[j] = 1 if j = π
(i)
a [k] for k ∈ [λ]\0 and

ai[j] = 0 otherwise. Similarly, we define the holistic set of alternate path plans and the current

estimated optimal path plan as πa (no superscript), which is determined by πa := π∗`∪{∪
Na
i=1π

(i)
a }.

Likewise, we define it’s incidence vector as aπ, where aπ[i] = 1 if j = πa[j] for j ∈ [λ]\0 and

aπ[i] = 0 otherwise. Next, we describe two region of interest weighting methods which utilize

this information for enabling efficient task-driven exploration when Ns is large.

50

4.1. EXPLORATION EFFICIENT CSCP

Breadth-First Exploration

The first weighted region of interest method we present exhibits sensor configuration exhibit-

ing breadth-first search characteristics. To exhibit this behavior, we formulate a weighted vector as

show in Equation 4.3.

ω :=
1

Na + 1

(
vπ +

Na∑
i=1

ai

)
(4.2)

wπ := 2aπ − ω (4.3)

Equation 4.2 determines the frequency in which a vertex is part of an estimated optimal path plan.

In Equation 4.3, we take the difference between twice the sampled path incidence vector and this

frequency vector, resulting in a unit weight for vertices which are always a part of an optimal

path-plan and extra weighting on vertices which are least frequent. The weighted region of interest

vector can then be set to the region of interest vector r = wπ and used during sensor configuration

optimization. As a result, we enforce task-driven exploration at the ‘fringe’ of statistically feasible

path-plans. The effect is the dispersal of many sensors to spatially different regions to narrow down

feasible path-plan routes.

Entropic Exploration

The goal of the breadth-first weighted region of interest in Equation 4.3 was to effectively

disperse large numbers of sensors to the ‘inflection’ points of possible path-plans. After narrowing

down the statistically feasible path-plans the large numbers of sensors would operate similarly to

the base algorithm presented in Chapter 2. However, while this weighted region of interest vector

in Equation 4.3 helps the dispersal, a breadth-first search of statistically feasible path-plan regions

may not be most beneficial in all applications. As such, we present an alternative which makes use

of the vertex entropy given their frequency as embodied in the frequency vector ω.

Using the frequency vector ω we can compute an entropic region of interest vector eπ as

follows.

eπ := −ω log2(ω)− (1− ω) log2(1− ω) + εω (4.4)

This formulation calculated the entropy of each vertex by assuming each vertex was independent

51

4.2. PERFORMANCE COMPARISON

Figure 4.2: Alternate paths drawn from field estimate with the entropic exploration weighting applied.

and was modelled as a Bernoulli process representing it’s membership of being in the optimal path-

plan or not. Effectively, vertices which are not a part of the alternate plans or current estimated

optimal path-plan, as well as vertices which are a part of every single path-plan, are given negligible

weight characterized by a small scalar constant ε which prevents ω = 0. We can optimize the

sensor configuration with the entropic region of interest vector by setting r := eπ.

Figure 4.2 visualizes the entropic exploration weighting method on a workspace between the

start and goal vertex using several sampled paths. Less frequent vertices are given a low infor-

mation entropy weight whereas frequencies equal to approximately 50% achieve maximal entropy

weighting which occurs near the start and goal. The mid-region has high frequency such that the

frequencies are > 50% which causes the weighting to lessen.

4.2 Performance Comparison

The performance of the EE-CSCP method was compared against GB-CSCP, CSCP, and Info-

Max on the same randomly generated environments. 100 randomly generated threat fields for each

52

4.2. PERFORMANCE COMPARISON

experiment were created of the form c(x) =
∑Np

n=1 θnφn(x). The value Np represents the number

of radial basis functions φn that cover E . The threat intensity θn is a coefficient that embodies the

magnitude of each threat parameter. The number of threat parameters were fixed asNp = 50 with a

threat intensity of θn = 10. We considered sensor network sizes of eitherNs=3, 5, or 9 UAV’s with

minimum and maximum field of view radius constraints %min = 0.01km and %max = 0.5km. The

sensor noise is modeled as σ2
k = 1

2
log(1+expπ%

2
k)−0.1505, which is monotonically increasing for

%k > 0. The workspace resolution was varied between eitherNg =225 or 400 and the environment

axis size to be either 3km or 5km for a total area of |E| = 9km2 or |E| = 25km2, respectively. The

number alternate paths for EE-CSCP were varied between options of Na=25, 50 or 100. These

we abbreviate as EE-25, EE-50, and EE-100 in the result plots, respectively. Finally, we set our

termination threshold ε = 0.01.

The iterations required for convergence were the direct focus of this study as the EE-CSCP

is concerned primarily with increasing the performance gap between the CSCP methodology and

Info-Max. Recall that the standard CSCP taken along the estimated path-plan and GB-CSCP trend

toward a shrinking performance in terms of iterations when the observability of the sensor network

converges to the area of the environment. The following discussion provides commentary on the

trends observed from the numerical results which are depicted in Figures 4.3, 4.4, 4.5, and 4.6.

EE-CSCP outperforms when the observability is high

Recall that we define the notion of ‘observability’ as the ratio between the area coverage

of maximal sensor network field of view and the area of the entire workspace. Higher sensor

counts therefore have higher observability than lower sensor counts, and when the workspace area

increases while the sensor count remains the same, observability decreases and vice versa.

The drawback with both CSCP along the path-plan estimate and GB-CSCP are that the advan-

tage in terms of iterations until convergence over Info-Max is lessened as observability becomes

increasingly high. Observing the provided results, EE-CSCP outperforms the other CSCP even

when the observability is increased, but the other CSCP methods do not perform nearly as well.

As a result we can conclude that the EE-CSCP works as intended. It performs exploration over

feasible path-plans and acts as a blend between the direct path-plan region of interest optimization

53

4.2. PERFORMANCE COMPARISON

Figure 4.3: Iteration performance comparison of EE-CSCP and other methods with |E| = 9 and Ng = 225.

Figure 4.4: Iteration performance comparison of EE-CSCP and other methods with |E| = 9 and Ng = 400.

and pure environment information maximization.

High alternate path counts Na do not drive performance

Of important note is the effect of various alternate path counts on the iteration count perfor-

mance. From the results it becomes evident that computing high numbers of alternate path-plans

does not impact performance in any meaningful way. This is important because it ensures good

iteration count performance without the need to spend computational resources generating many

alternate path-plans for region of interest weighting.

54

4.2. PERFORMANCE COMPARISON

Figure 4.5: Iteration performance comparison of EE-CSCP and other methods with |E| = 25 andNg = 225.

Figure 4.6: Iteration performance comparison of EE-CSCP and other methods with |E| = 25 andNg = 400.

55

Chapter 5

Qualitative Sensor Configuration for CSCP

5.1 Adaptive Cluster Analysis for CSCP

The methods described in Chapters 2, 3, and 4 all performed sensor configuration by directly

optimizing the TDIG of Equation 2.3 using an approximation P̂ `+1 with various settings for the

region of interest incidence vector r. The joint optimization of Ns sensors which each have a po-

sition sk and radial Fov parameter %k, which can lead to a high dimensional optimization problem

rapidly as the number of dimensions Nd is defined as Nd := 3Ns when considering just these sen-

sor configuration parameters. If configuration options were to include arguments such as FoV yaw

or pitch or similar, the dimensionality could rapidly grow. The overlapping element of sensor FoV

leads to a non-convex optimization problem with many local optima requiring global optimization

methods such as Bayesian Optimization or Differential Evolution. All of this is to say that the op-

timization of the sensor configuration in the CSCP algorithm can be computationally burdensome

and the globally optimal solution C∗` hard to find.

In scenarios in which a quick sensor configuration solution is required, but the resulting sensor

configuration can be somewhat suboptimal, we present a method for qualitative sensor configura-

tion which is capable of producing adaptive fast-approximations to the optimal sensor configura-

tion. The fast-approximation is carried out either via a partition-based or density-based cluster

analysis technique. The algorithm adaptively switches between these two modes, driven by the re-

lationship between the region of interest uncertainty and the uncertainty of the entire environment.

Cluster analysis is an unsupervised learning procedure which is used in many disciplines for

data grouping and class discovery without the need for data labels. A comprehensive overview of

clustering algorithms and some applications are provided in (Xu and Wunsch, 2005). Clustering

algorithms have been used to find sensor configurations, namely (Li et al., 2016) uses K-Means for

56

5.1. ADAPTIVE CLUSTER ANALYSIS FOR CSCP

Adaptive Cluster Analysis for Sensor Configuration

1: if P̄ `[r, r] > P̄ `[i, i] then
2: ObtainR∗ from W-KMeans(pR,P `[r, r])
3: Find sk and %k per Eqn. 5.1 and 5.2
4: else
5: Calculate ω = (P `[r, r])

− 1
2

6: Find the transformed distance matrix T = ωωᵀ �D
7: Obtain ζ,φ∗,R∗ from HDBSCAN(T)
8: Nc = min{Ns, |ζ|}
9: Select clustersR1, ...,RNc from sort(ζ)

10: Find sk and %k as per Eqn. 5.3 and 5.2
11: for k ∈ Nc do
12: Constrain radius as %k = max{%min,min{%max, %k}}
13: if max ||sk − pRk[i]

||2 < %k ∀ i ∈ |Rk| then
14: Translate sk := pRk[i]

for the ith closest point inRk

Figure 5.1: Pseudocode for sensor configuration with adaptive cluster analysis.

detecting degrees of freedom in frequency response functions for catching placement redundancies

and in (Yoganathan et al., 2018) density-based clustering was used for optimal placement in office

spaces. Evidential c-means clustering is utilized to find the minimum number of sensors for water

leak monitoring (Sarrate et al., 2014).

We utilize clustering to provide multiple groupings of workspace vertices that the sensor net-

work can be assigned to observe. This cluster analysis for sensor configuration (CLAN) strategy

is outlined in Algorithm 5.1. CLAN utilizes an adaptive switching between partition-based and

density-based clustering, which qualitatively correspond to exploratory and exploitative sensor

configuration strategies, respectively. We show that the density-based clustering enables us to per-

form sensor configuration each iteration with a subset of available sensors, leading to savings in

terms of the number of measurements required. In what follows, we describe the CLAN algorithm

and show that the fast-approximation does not come at the expense of the overall CSCP algorithm

performance.

57

5.1. ADAPTIVE CLUSTER ANALYSIS FOR CSCP

5.1.1 CLAN Algorithm

The CLAN algorithm is a direct replacement for Line 4 of Algorithm 2.3, which calls for

sensor configuration within the inner loop of the CSCP algorithm. CLAN makes use of the mean

variance of the current iteration region of interest, denoted as P̄ `[r, r] where ‘r’ are the indices

along the diagonal corresponding to the set R, and that of the entire environment, denoted as

P̄ `[i, i]. The algorithm adapts to either perform exploratory or exploitative clustering given the

relationship between P̄ `[r, r] and P̄ `[i, i]. When the relationship exhibits P̄ `[r, r] > P̄ `[i, i] we

perform exploratory clustering, else exploitative. When the vertices along the path are not as

variable as the environment, the inequality condition indicates we are near an optimal solution and

therefore should observe only high variance groupings and reject the low variance vertices. In what

follows, we describe the exploratory and exploitative clustering portions of the CLAN algorithm.

5.1.2 Exploratory Clustering

Qualitatively, exploratory clustering is concerned with spatial coverage rather than grouping

spatially dense high variance regions. Such clustering can be accomplished using partition-based

algorithms such as K-Means (Wang and Su, 2011). In this work, we utilize weighted K-Means++,

which uses the variances of each vertex as weights and an initialization strategy as described in

(Arthur and Vassilvitskii, 2007). Other partition-based methods such as K-Medoids (Kaufman and

Rousseeuw, 1990) may be used, which is a robust clustering algorithm which is less sensitive to

outliers. The data points are defined as the coordinates in our region of interest set pR and for the

weighted data points used during clustering, we utilize P `[r, r]. In K-Means we need to determine

the number of clustersNc to partition the data into. For our application, the typical cross-validation

steps are not required. We simply need to set the number of clustersNc = Ns, effectively enforcing

that each sensor belongs to a resulting cluster.

The weighted K-Means algorithm returns Nc partitioned sets of the region of interest set as

R∗ := {R1,R2, . . . ,RNc}. Using these partitioned data sets, we can compute the average coordi-

nate and radius value. As we have Ns = Nc we can say that each ith cluster corresponds to directly

58

5.1. ADAPTIVE CLUSTER ANALYSIS FOR CSCP

solving for each kth sensor. For each ith set, we determine the sensor position sk of the setRi as:

sk =
1

|Ri|

|Ri|∑
j=0

pRi[j]
(5.1)

The radius value of the ith region of interest partition %k is then formulated as:

%k := max ||sk − pRi[j]
||2, ∀ j ∈ |Ri| (5.2)

5.1.3 Exploitative Clustering

When the average vertex variance along path vertices is less than the average vertex variance

of the entire environment, we perform exploitative clustering. Exploitative clustering finds clusters

of high density, or tight groupings of high variance vertices. We utilize Hierarchical Density-Based

Spatial Clustering of Applications with Noise (HDBSCAN) (Campello et al., 2013), which finds

dense groupings and rejects outliers. HDBSCAN determines the relative density of data points

using a notion of core density. However, we override this by computing a transformed distance

matrix T := ωωᵀ �D, where we compute the element-wise product of ω := P `[r, r]
− 1

2 and a

region of interest distance matrix D. The operator � is the element-wise product. The distance

matrixD is defined as the pairwise distance between pointsD[i, j] := ||pRi
−pRj

||2 ∀ i, j ∈ |R|.

Analyzing this construction, notice that large values of P `[r, r] correspond to small values of ω

and vice versa. The effect, which is desired, is that high variance vertices have a spatially attractive

force and low variance vertices have a spatially repellent force.

We then perform HDBSCAN with a minimum cluster size of 2, meaning we can have a cluster

with minimally only two vertices, and extract clusters pertaining to leafs on the condensed cluster

tree. HDBSCAN returns a vector of the stability of each cluster ζ along with a set of class proba-

bility vectors for each vertex φ in each cluster set denoted as φ∗ = {φ1,φ2, . . . ,φNc
}, in addition

to the partition of the region of interest R∗ := {R1,R2, . . . ,RNc}. We define the resulting num-

ber of clusters Nc differently for HDBSCAN. To determine the number of clusters, we take the

minimum between the number of available sensors and the length of the cluster stability vector

Nc = min{Ns, |ζ|}. Once the number of clusters is determined we set the number of configurable

59

5.1. ADAPTIVE CLUSTER ANALYSIS FOR CSCP

sensors to be the number of clusters. Of importance here is that this allows us to configure less sen-

sors than are physically available. In order to determine which clusters from the partitioned region

of interest to select, we sort the cluster stability vector and choose the top Nc clusters associated

with their index. We also note that in the event HDBSCAN classifies all elements in R as a noise

cluster, we treat this as a valid single cluster.

After obtaining the clusters by exploitative clustering, we can find the sensor position as the

weighted average of points in each cluster. For k ∈ Nc we find sk as:

sk :=

 |φk|∑
i=0

φk[i]

−1 |φk|∑
i=0

φk[i]pRk[i]

 (5.3)

We note that we may find the kth sensor radius %k using Equation 5.2.

5.1.4 Cluster Check and Polishing

For both exploratory and exploitative clustering, we need to account for constraints on the

sensor radius. This is accomplished by taking the max-min of the constraints with the output of

Equation 5.2 as %k = max{%min,min{%max, %k}}. Due to this update, we need to perform a cluster

check to ensure that the sensor FoV covers vertices in its region of interest partition. We need to

perform a correction if the following condition holds true:

max ||sk − pRk[i]
||2 < %k ∀ i ∈ |Rk| (5.4)

If Equation 5.4 holds true, we perform a correction by shifting the kth sensor position sk to the

closest data point, sk := pRk[i]
for the ith closest point inRk to the pre-correction sk.

An additional benefit of clustering is the ability to use it as a dimensionality reduction tech-

nique for the direct optimization of the TDIG metric. By fixing the cluster location parameters,

we may optionally polish, the solution by optimizing the low-dimensional optimization problem

which only considers the radius parameter for each sensor.

60

5.2. PERFORMANCE COMPARISON

5.2 Performance Comparison

The CSCP, CLAN, EE-CSCP, Info-Max, and Info-Max with the CLAN methodology were

studied numerically. Additionally, polishing as previously described was applied to each method

and for simplicity methods where this is applied have additional notation ‘-P’. 100 random trials on

environment areas of 9km2, 25km2, 49km2 with workspace resolutions Ng of size 112, 212, 312,

412, 512 and sensor counts of 1, 3, 5, 7 or 9. Maximum and minimum sensor radius constraints were

0.1km and 1km, respectively. The sensor noise is modeled as σ2
k = 1

2
log(1 + expπ%

2
k) − 0.1505,

which is monotonically increasing for %k > 0. Each trial was performed with randomly generated

threat fields c(x) =
∑Np

n=1 θnφn(x), where θn are randomly chosen coefficients, and φn are radial

basis functions that cover E . The number of bases Np was fixed at Np = 50. Figures 5.2 and 5.3

show the average iterations required to converge and overall runtime for each method for various

sensor counts. We make the following comments about the obtained results.

CLAN significantly reduces runtime with slight performance reduction over direct optimiza-

tion of the TDIG metric

The main motivation for the CLAN method for sensor configuration optimization was to pro-

vide fast-approximations for the sensor location and radius values. The results yielded a 71%

runtime reduction over CSCP at the expense of an average increase of 2.81 iterations for all stud-

ied Ns > 1. We exclude Ns = 1 in these results as it is an outlier of poor performance most likely

derived from the fact that exploratory clustering for Ns = 1 is the entire region of interest. We

note that CLAN does not scale well in terms of average iteration performance when exploration is

introduced with EE-CSCP or the Info-Max approaches.

Exploitative Clustering reduces required observations

A less obvious feature of the exploitative clustering stage is the ability to place Ns = Nc sen-

sors which may be less than the total number of available sensors. Again, excluding Ns = 1 cases,

the CLAN algorithm averages 1.182 fewer sensor FoV configurations per iteration. Likewise, the

61

5.3. APPLIED COMPARISON

polished CLAN algorithm achieves 1.65 fewer sensor FoV configurations per iteration on average.

Thus, the CLAN strategy not only increases the speed for sensor configuration optimization, but

also reduces the number of configured sensors and as a result the number of required observations

for convergence.

Polishing CLAN improves performance while maintaining partial runtime reduction

We presented the idea of fixing the sensor configuration locations found by exploratory or

exploitative clustering, but further optimizing on just the sensor radius parameters. The dimen-

sionality reduction technique maintained an average runtime reduction of approximately 20% at

the expense of an extra 3.4 iterations on average. We note that the large disparity is biased at low

sensor counts. Removing the condition where Ns = 1, the CLAN strategy with polishing only

takes and extra 0.6 iterations on average and increased runtime reduction of 31%.

CLAN and Polished CLAN do not scale well to EE-CSCP or Info-Max

The limitation with the CLAN approach with or without polishing is a poor performance when

the scope of the region of interest includes more than the current estimated optimal path. Both

EE-CSCP and Info-Max, when CLAN is applied, nearly double in average iterations to converge

despite their runtime improvements. However, there is little to no advantage of using CLAN when

information-greedy approaches such as Info-Max are applied.

5.3 Applied Comparison

Each of the methods studied in the numerical results and discussion were assessed over 25

iterations on an example threat field. The path variance was recorder at each iteration for each

method usingNs = 3 on a 9km2 workspace withNg = 21. No termination threshold was enforced

in order to assess the progression over the finite 25 iterations. The path variance for each approach

is shown in Figure 5.4.

The key results were that while the CSCP algorithm took 181 seconds to finish 25 iterations,

62

5.3. APPLIED COMPARISON

Figure 5.2: Comparison of iterations required for CSCP, EE-CSCP, and Info-MAX with CLAN and polished
CLAN with various sensor counts.

Figure 5.3: Comparison of average runtime for CSCP, EE-CSCP, and Info-MAX with CLAN and polished
CLAN with various sensor counts.

63

5.3. APPLIED COMPARISON

Figure 5.4: Path variance for each candidate approach at each iteration up to ` = 25

the CLAN method only took 67 seconds. Polishing the CLAN results took 121 seconds to complete

25 iterations in this example. Note that in Figure 5.4, the CSCP methods also converge much faster

to stricter path variance values than Info-Max (Explore). We also note that in this figure the EE-

CSCP is the first to drop below 0.1 with only 10 iterations. Of significance is that the CLAN

approaches keep pace with the direct sensor configuration optimization approaches. Additionally,

the CLAN method is shown perform poorly when applied to an Info-Max strategy.

Figures 5.5, 5.6, and 5.7 depict the initial and 10th iteration threat field estimates and esti-

mated optimal path-plans for the various methods from the experiment. Qualitatively, the CLAN

approaches applied to CSCP and EE-CSCP map more of the environment due to exploration dur-

ing clustering. The polished variation is more conservative and more closely matches CSCP. When

CLAN is applied to Info-Max the quality of the field estimate is reduced and the estimated path-

plans are poor, reinforcing the poor performance of CLAN for Info-Max in the numerical study.

64

5.3. APPLIED COMPARISON

(a) (b) (c)

(d) (e) (f)

Figure 5.5: Example field estimate and estimated path-plan (white) and true path-plan (green) for the initial
CSCP (a), initial CLAN (b), initial CLAN-P (c), 10th CSCP iteration (d), 10th CLAN iteration (e), and 10th

CLAN-P iteration (f).

(a) (b) (c)

(d) (e) (f)

Figure 5.6: Example field estimate and estimated path-plan (white) and true path-plan (green) for the initial
EE-CSCP (a), initial EE-CLAN (b), initial EE-CLAN-P (c), 10th EE-CSCP iteration (d), 10th EE-CLAN
iteration (e), and 10th EE-CLAN-P iteration (f).

65

5.3. APPLIED COMPARISON

(a) (b) (c)

(d) (e) (f)

Figure 5.7: Example field estimate and estimated path-plan (white) and true path-plan (green) for the initial
Info-Max (a), initial IM-CLAN (b), initial IM-CLAN-P, 10th Info-Max iteration (d), 10th IM-CLAN iteration
(e), and 10th IM-CLAN-P iteration (f).

66

Chapter 6

Self-Adaptive Mutual Information for CSCP

6.1 Problem Motivation

In the previous chapters, we detailed the use of the task-driven information gain (TDIG) met-

ric for quantitatively assessing the performance of sensor configuration. In Chapter 2 we described

that the sensor configuration with TDIG required an approximation to the posterior threat error

covariance matrix, either requiring potentially overestimating performance when fixing correla-

tions or potentially underestimating performance when assuming independence amongst vertices.

While the TDIG provides a useful metric post sensor configuration and model fitting, it makes for

a hard optimization problem. Additionally, the formulation is non-convex nor submodular, making

the search for a near global optimal solution require joint optimization with a black box global

optimizer. Given the problem domain has increasingly high dimensionality with the addition of

each sensor, the joint optimization does not scale favorably. In Chapter 5 we showed a way to

reduce the joint optimization computational burden with a qualitative clustering approach, yet this

came with the trade-off of some performance inefficiencies.

The second critique of sensor configuration optimization with the TDIG metric is it has no

means to account for situations in which we should explore non-task-driven regions of interest

and when to exploit these regions of interest. In Chapter 3 we did exploration, but it was still

confined to our notion of the region of interest. Similarly, in Chapter 4 we demonstrated the ability

to perform exploration along statistically feasible regions of interest, but still neglected the domain

outside of this region.

In what follows, we present a surrogate optimization function for TDIG which enables sequen-

tial optimization and has a self-adaptive property which allows for a balance between exploring

the environment and exploiting our definition of a region of interest.

67

6.2. SURROGATE OPTIMIZATION FUNCTION

6.2 Surrogate Optimization Function

In previous chapters, we solved line 4 of Algorithm 2.3, sensor configuration, by optimizing

the TDIG metric along a variety of notions for the task-driven region of interest. The optimiza-

tion of this metric involved approximating the metric by either fixing the correlations between

workspace vertices or assuming independence. To counter the drawbacks of optimizing TDIG

directly, we present a surrogate optimization function, which we call self-adaptive mutual infor-

mation (SAMI). SAMI is calculated at each iteration ` ∈ N. For notation simplicity we denote

P `[R,R] := P [i, j] ∀ i, j ∈ R and by P [R, j] := P [i, j] ∀ i ∈ R and for any j ∈ V . Like-

wise, we say the region of interest set excluding a point i ∈ V is written as R\i. We break up the

presentation of SAMI into two parts, the reward term and the penalty term.

Each iteration ` = 0, 1, . . . , Lwe perform Gaussian Process Regression and perform inference

for threat field estimate f ` and threat error covariance matrix P ` which follows that of a multi-

variate normal distribution. From the threat error covariance matrix we are able to calculate the

entropy of a vertex i ∈ V as:

h(i) :=
1

2
ln(2πeP `[i, i]) (6.1)

We rely on the conditional entropy of some point i given the setRwhich involves matrix inversion.

To ease the computational burden, we note that the computation of conditional entropy h(i|R\i)

can partially be computed as a one-time batch operation and partially computed in parallel for

efficiency. First, for any i /∈ R, we may perform the following vectorized conditional entropy

h(·|R\i) calculation which is a one-time batch operation:

h(·|R\i) =
1

2
ln((2πe)diag(P ` − P `[·,R]P `[R,R]−1P `[R, ·])) (6.2)

For the case where i ∈ R, we can compute the following conditional entropy equation for any

i ∈ V in parallel batches:

h(i|R\i) =
1

2
ln((2πe)(P `[i, i]− P `[R\i, i]ᵀP `[R\i,R\i]−1P `[R\i, i])) (6.3)

68

6.2. SURROGATE OPTIMIZATION FUNCTION

The mutual information I between theR and i ∈ V is then calculated as:

I(R\i; i) := h(i)− h(i|R\i) (6.4)

We can then define the reward function of observing any point i ∈ V as a mixture of mutual

information gain between the region of interest and region of interest complement Rc := V \R.

Note that we may compute the necessary region of interest complement conditional entropy as per

Equations 8.1 and 8.2. The reward function for any point i ∈ V is defined as:

γ(i) := (1− α)I(R\i; i) + αI(Rc
\i; i) (6.5)

The variable α is an adaptation parameter which balances exploration and exploitation through

proportional weighting of the mutual information gain and is bounded 0 6 α 6 1 where α ∈ R.

The adaptation parameter is formulated as the relationship between the average mutual information

between the workspace vertices and the ROI Ī(R\i; i) and the average mutual information between

the workspace vertices and the ROI complement Ī(Rc
\i; i):

α := Ī(R\i; i)/
(
Ī(R\i; i) + Ī(Rc

\i; i)
)

(6.6)

Informally, α compares the estimation error within the current ROI compared to the overall esti-

mation error. A small α indicates that the iterative solution is nearing convergence and sensor con-

figuration should exploit the current ROI. Conversely, a large α indicates that the threat estimate

with the current ROI is highly uncertain and the sensor configuration should provide exploration

of the environment. When α = 0.5 the SAMI reward function is the same as mutual information

gain of the point i. We can optionally obtain the mutual information reward vector by calculating

the reward on the set of vertices V as γ :=
[
γ(1) γ(2) . . . γ(Ng)

]ᵀ
. We then formalize the

information gain as a function of the sensor configuration as Γ(C`) = νᵀγ.

Next, we define a SAMI penalty function, which acts as FoV regularization, as the entropy of

69

6.3. SEQUENTIAL OPTIMIZATION OPTIMALITY GUARANTEES

the measurement noise for a sensor configuration:

Υ(C`) := −1

2

∑
i∈F

(
1

2
ln(2πe)− ln

∑
k∈Ns

(νk/σ
2
k)[F]

)
(6.7)

In Equation 6.7, we index the summation by F to ensure nonzero elements are removed prior

to computing the elementwise entropy. Finally, the SAMI surrogate function is written as the

difference between the reward and penalty terms:

S(C`) = Γ(C`) + Υ(C`). (6.8)

6.3 Sequential Optimization Optimality Guarantees

To find an optimal sensor configuration we maximize the SAMI surrogate objective function

subject to spatial constraints, e.g., workspace limits on sensor placement and FoV radius bounds.

Recall that the decision variables for optimization are {s1, %1, s2, . . . , %Ns}, i.e., a total of 3Ns

scalar variables in a 2D workspace. If the number of sensors Ns is moderate or high, this optimiza-

tion problem is high-dimensional.

In previous chapters we have discussed different heuristic methods to mitigate the high di-

mensionality of the problem. In order to find the optimal sensor configuration C∗` we first applied

global optimization algorithms, such as evolutionary strategies and Bayesian optimization, for

TDIG maximization. While these methods provided strong preliminary results in numerical stud-

ies performed, there was no guarantee of finding an optimal or near-optimal solution because the

TDIG function does not have any convenient structural properties. These methods pursue joint

optimization, i.e., finding all sensor configurations simultaneously.

Another method to mitigate the high dimensionality is sequential optimization, i.e., finding

the optimal configuration for one sensor at a time. The main result of this chapter is that the pro-

posed SAMI surrogate function is submodular (see Prop. 4). Therefore, the sequential optimization

method is guaranteed to provide a near-optimal solution. Furthermore, we show that this method

outperforms all the aforesaid TDIG maximization methods in terms of computational time and the

70

6.3. SEQUENTIAL OPTIMIZATION OPTIMALITY GUARANTEES

self-adaptive property enables convergence in fewer iterations.

The TDIG metric is not submodular nor convex. However, we can say the following about the

SAMI surrogate objective function.

Proposition 4. The SAMI objective function S is a submodular function.

Proof. The SAMI gain function Γ is a weighted coverage function of the union of vertices F :=

∪k∈{Ns}Fk as each optimization of a kth sensor either covers non-covered vertices or overlaps exist-

ing vertices at no additional reward. To help illustrate this, we decompose the sensor configuration

C into the individual sensor FoVs F for the following discussion. Consider two sensors i, j ∈ Ns.

For the case of disjoint field of views Fi ∩ Fj = ∅ we obtain:

Γ(Fi) + Γ(Fj) > Γ(Fi ∪ Fj) + Γ(Fi ∩ Fj)

Γ(Fi) + Γ(Fj) = Γ(Fi) + Γ(Fj) + ∅

For the case where the sensor field of views are intersecting such that Fi ∩ Fj 6= ∅, let ∀F ⊂

V, ∀m,n ∈ V \F where Γ({m}) > Γ({n}) we can say:

Γ(F ∪ {m})− Γ(F) > Γ(F ∪ {m,n})− Γ(F ∪ {m})

Γ(F) + Γ({m})− Γ(F) > Γ(F) + Γ({m}) + Γ({n})− Γ(F)− Γ({m})

Γ({m}) > Γ({n})

The equivalent definition of submodularity reduces to the initial inequality for any vertex not in

the existing sensor FoV. The optimal sensor FoV found during sensor configuration will add {m}

to the existing set F. As a result of the disjoint and intersecting sensor FoV cases, we may say the

gain function of SAMI is submodular.

In assessing the penalty term, we first note diminishing returns associated with expanding FoV

to cover more vertices. There first case that arises is that of disjoint sensor FoVs. In this case we

71

6.3. SEQUENTIAL OPTIMIZATION OPTIMALITY GUARANTEES

say it satisfies sumbodularity as any i, j ∈ Ns exhibits:

Υ(Fi) + Υ(Fj) = Υ(Fi ∪ Fj)

The alternative case is when any sensor FoVs i, j ∈ Ns are intersecting. We first acknowledge that:

Υ(Fi) + Υ(Fj) = Υ({Fi ∪ Fj}\{Fi ∩ Fj}) + 2Υ(Fi ∩ Fj)

Let Υ(Fm) 6 Υ(Fi∩Fj) be the reduced cost function due to the weighted update from intersecting

sensor covers in Equation 6.7. Due to the weighted sensor noise update for intersecting vertices,

we can say that:

Υ(Fi ∪ Fj) + Υ(Fi ∩ Fj) = Υ({Fi ∪ Fj}\{Fi ∩ Fj}) + Υ(Fi ∩ Fj) + Υ(Fm)

Given the previous statements, we can say that the SAMI penalty function exhibits the following

condition for submodularity:

Υ(Fi) + Υ(Fj) > Υ(Fi ∪ Fj) + Υ(Fi ∩ Fj)

Finally, we show that the addition of these two submodular functions results in a submodular

function as well:

(Γ + Υ)(Fi ∪ Fj) + (Γ + Υ)(Fi ∩ Fj)

=(Γ(Fi ∪ Fj) + Γ(Fi ∩ Fj)) + (Υ(Fi ∪ Fj) + Υ(Fi ∩ Fj))

6(Γ(Fi) + Γ(Fj)) + (Υ(Fi) + Υ(Fj))

=(Γ + Υ)(Fi) + (Γ + Υ)(Fj)

Since S is an additive function of both the reward and penalty terms and each are submodular, we

can say that S is submodular.

72

6.3. SEQUENTIAL OPTIMIZATION OPTIMALITY GUARANTEES

Joint Optimization

Jointly optimizing all sensors and their parameters with the TDIG metric has a time complexity

ofO(N2
g) during each step in the sensor configuration optimization process. The SAMI metric has

a time complexity of O(Ng) for both the information gain and penalty functions for each step in

the optimization process. While the SAMI objective function requires taking the inverse both with

O(max{R,Rc}3), this can be made a one time operation with batching for any vertex i /∈ R (or

Rc) as in 8.1, or optimized in parallel otherwise with Equation 8.2. We note that during the sensor

configuration optimization, the reward vector γ is only computed once prior to optimization rather

than each step during the optimization. Optimizing the TDIG metric when the number of steps to

achieve convergence is high can take more time than jointly optimizing the SAMI metric due to

the reduced computational complexity of the iterative portion of optimization.

Of importance is the dimensionality of the joint optimization. The TDIG requires joint op-

timization of NdNs parameters, where Nd is the dimensionality of each sensor. This can make

achieving even a near globally optimal solution hard to achieve when the dimensionality is high.

To counter these computational bottlenecks, we show next how the SAMI metric can be optimized

sequentially with near-optimal guarantees.

Sequential Optimization

Corollary 3. Sequential optimization of S is guaranteed to be at least (1−1/e) the optimal value.

The proof of Corollary 3 as a result of Proposition 4 is demonstrated in (Krause et al., 2008).

Given Corollary 3 we are able to say that sequentially optimizing the sensor configuration

gives us a (1 − 1/e) near-optimal solution. Sequential optimization reduces the dimensionality

of the optimization process to Nd. Specifically, we reduce the high dimensional search space to a

single sensor’s configuration hyperparameters (position and FoV radius).

73

6.4. PERFORMANCE COMPARISON

6.4 Performance Comparison

In this section, we provide computation results of implementing the CSCP iterative solution

with both the TDIG metric as well as joint and sequential SAMI surrogate optimization. We

numerically show the benefit of SAMI as a surrogate function for TDIG and that the sequential

optimization of SAMI enables fast near-optimal sensor configuration with high performance.

In what follows, we performed a series of numerical experiments of 100 trials each with

grid resolutions Ng ∈ {112, 212, 312, 412, 512} and Ns ∈ {1, 3, 5, 7, 9} sensors. The area of the

environment was set to either 9, 25, or 49 square kilometers and the termination criteria was set

to ε = 0.1. For experiments involving sampling path-plans, we took Na = 10. The sensors were

constrained to %min = 0.05 km and %max = 0.5 km.

6.4.1 TDIG vs. SAMI Performance

We begin by comparing the performance of the TDIG metric and sequential optimization

of the SAMI surrogate function. Namely, we assess the iterations required for either method to

achieve convergence below ε. We display the ratio of maximial sensor FoV area and environment

area versus iterations to converge. We also track the average runtime for each method per iteration

as a function of Ns.

In Figure 6.1, we compare the convergence of the TDIG and SAMI methods when we utilize

just the current estimated optimal path-plan as our region of interest. The key takeaway is that the

SAMI method has better performance for the majority of scenarios, especially when the maximum

observability of the environment is low.

Next, we assessed the convergence of the TDIG and SAMI metrics with sampled path-plans.

Figure 6.2 shows that SAMI method separates itself further in terms of increased performance,

especially at low environment observability values.

Finally, Figure 6.3 shows the average runtime for both SAMI and TDIG sensor configuration

maximization for path-plan and sampled path-plan regions of interest. This plot tells a couple

stories. First, an obvious consequence of the sampled alternate path-plans is a nearly constant

74

6.4. PERFORMANCE COMPARISON

Figure 6.1: Comparison of SAMI vs. TDIG maximization for CSCP convergence utilizing just the current
estimated optimal path plan. Assessed against the ratio between maximum observable sensor area and the
area of the environment.

Figure 6.2: Comparison of SAMI vs. TDIG maximization for CSCP convergence utilizing statistically sam-
pled path-plans. Assessed against the ratio between maximum observable sensor area and the area of the
environment.

75

6.4. PERFORMANCE COMPARISON

Figure 6.3: Comparison of runtime for both SAMI and TDIG maximization for both the current estimated
optimal path-plan and sampled path-plans. Assessed against the ratio between maximum observable sensor
area and the area of the environment.

offset in terms of increased computation time for both TDIG and SAMI. Second, the main result

of this study is that the sequential optimization of the SAMI surrogate yields sensor configuration

in orders of magnitude less time than TDIG, which is exemplified by this timing study. Using

Ns = 9, SAMI sensor configuration iterations take nearly 1.5 orders of magnitude less time than

the TDIG counterpart.

6.4.2 Joint vs. Sequential Sensor Configuration Optimization

Next, we compared sensor configuration optimization with both the joint and sequential SAMI

strategies. Figure 6.4 depicts the iterations performance with a region of interest defined by the

estimated optimal path-plan whereas Figure 6.5 shows the iteration performance when the region

of interest is comprised of sampled path-plans. The main takeaway from both of these plots is that

the joint optimization, while it should find a more optimal sensor configuration than sequential op-

timization, struggles to find the global optimal sensor configuration due to the high dimensionality

of the problem. As a practical result, the sequential optimization of SAMI actually performs better

and is more reliable at finding a near-optimal sensor configuration each iteration.

76

6.4. PERFORMANCE COMPARISON

Figure 6.4: Comparison of convergence for Joint vs. Sequential SAMI maximization utilizing just the current
estimated optimal path plan. Assessed against the ratio between maximum observable sensor area and the
area of the environment.

We additionally assessed the runtime performance of the joint and sequential SAMI optimiza-

tion as shown in Figure 6.6. To no surprise, the sequential SAMI optimization for both path-plan

and sample path-plan region of interest cases vastly outperforms the joint optimization approach.

In summary, practical real-world applications would benefit significantly by using the sequential

SAMI sensor configuraiton otpimization given its iteration performance, it’s reliability to find a

near-optimal configuration, and it’s fast runtime performance.

6.4.3 Effects of the Adaptation Parameter

Finally, we assessed the adaptation parameter α, which adjusts the balance of exploration and

exploitation in the SAMI surrogate function. In our study, we compared the adaptive α to situations

in which the adaptation parameter was fixed and unchanging. We used α ∈ {1, 0.75, 0.5, 0.25, 0}

as the fixed parameter values. Notably, setting α = 1 makes the algorithm value exploration

explicitly outside the region of interest. Likewise, setting α = 0.5 reduces the SAMI objective to

maximizing information of the entire environment. Setting α = 0 reduces the SAMI objective to

a greedy strategy of sensor configuration which only cares about exploiting the region of interest.

77

6.4. PERFORMANCE COMPARISON

Figure 6.5: Comparison of convergence for Joint vs. Sequential SAMI maximization utilizing statistically
sampled path-plans. Assessed against the ratio between maximum observable sensor area and the area of
the environment.

Figure 6.6: Comparison of runtime for Joint vs. Sequential SAMI maximization for both the current esti-
mated optimal path-plan and sampled path-plans. Assessed against the ratio between maximum observable
sensor area and the area of the environment.

78

6.5. DEMONSTRATIVE EXAMPLE

Figure 6.7: Average iterations to converge for various fixed α values and the self-adaptive α with sequential
SAMI optimization.

The question we wish to answer from this study is: is there a benefit to adapting α, or is a fixed

policy, exploitative or exploratory or somewhere in between, more beneficial to performance?

The answer to this question is easily gathered from the numerical results visualized in Figure

6.7. The beauty of this picture is the quite linear progression of improvement from pure exploration

α = 1 to pure exploitation α = 0. In previous chapters, we showed that a task-driven approach

(equivalent to α = 0) outperformed greedy exploration of the environment α = 0.5. These results

reinforce this fact and further show that ignoring the region of interest is especially inferior (case

of α = 1). However, the most impressive result is that the adaptive α is able to outperform the

entire range of fixed α parameters, demonstrating the self-adaptive component of SAMI, which

balances exploration and exploitation given the current environment state, is pivotal to achieving

ideal performance.

6.5 Demonstrative Example

To demonstrate the SAMI surrogate function for CSCP consider the example threat field and

the optimal path-plan in Figure 6.8. For this example, the number of available sensors are Ns =

5 with maximum and minimum FoVs of %min = 0.05 and %max = 0.5. The problem domain

79

6.5. DEMONSTRATIVE EXAMPLE

Figure 6.8: Threat field for the SAMI example along with the optimal path-plan (yellow).

workspace is Ng = 212 over the environment area of 25km2. In what follows, we illustrate the

SAMI surrogate function applied to CSCP.

Figure 6.12 (a) depicts the fluxuation of the adaptation parameter over 10 iterations of CSCP

with SAMI. Likewise, Figure 6.12 (c) shows the related average mutual information with respect

to the environment and region of interest with each iteration. The adaptation parameter α decays

and is proportional to the ratio of average mutual information with respect to the ROI and that of

the environment. Figures 6.9, 6.10, 6.11 (a) depict the 2D representation of the SAMI reward term

values for each vertex γ at iterations ` = 1, 5, 10. It is visually apparent that as the adaptation

parameter shrinks, the rewards converge to a tight area around the estimated path-plan. We note

that in the 10th iteration, the sensor FoVs become much tighter as the path-plan nears convergence

due to the lower reward values and the regularization property of the SAMI cost term Υ.

Observing the estimated path-plan fit in Figures 6.9, 6.10, 6.11 (b), the CSCP method with

SAMI is able to quickly find a near-optimal path-plan. This is further justified by inspecting

Figure 6.12 (c) and (d) which show the current iteration path-plan path cost and variance. By the

7th iteration the path-plan variance falls below ε = 1. Qualitatively, this example demonstrates the

self-adaptive ability of SAMI to adapt from exploration-based sensor configuration to exploitation-

based sensor configuration and while being able to optimize sensors configurations sequentially.

80

6.5. DEMONSTRATIVE EXAMPLE

(a) (b) (c)

Figure 6.9: Sensor configuration FoVs (circles) overlaying the 2D SAMI reward values (a), the estimated
threat field and estimated optimal path-plan (green) and true optimal path-plan (yellow) (b), and the threat
error vertex variance values (c) at iteration ` = 1.

(a) (b) (c)

Figure 6.10: Sensor configuration FoVs (circles) overlaying the 2D SAMI reward values (a), the estimated
threat field and estimated optimal path-plan (green) and true optimal path-plan (yellow) (b), and the threat
error vertex variance values (c) at iteration ` = 5.

(a) (b) (c)

Figure 6.11: Sensor configuration FoVs (circles) overlaying the 2D SAMI reward values (a), the estimated
threat field and estimated optimal path-plan (green) and true optimal path-plan (yellow) (b), and the threat
error vertex variance values (c) at iteration ` = 10.

81

6.5. DEMONSTRATIVE EXAMPLE

(a)

(b)

(c)

(d)

Figure 6.12: Adaptation coefficient α values (a), average mutual info for R and Rc (c), path cost (b), and
path cost variance (d) for the demonstrative example over 10 iterations.

82

Chapter 7

CSCP in Multimodal Threat Environments

7.1 Problem Motivation

In many real world applications, the data that is collected from sensors are heterogeneous. In

the previous chapters, we assumed that our sensor network of extroceptive sensors were homoge-

neous, meaning that the modality of the underlying threat environment was unimodal. In practice,

heterogeneous sensor types can be utilized to capture various modalities of an environment which

are only observable or partially observable by a particular sensor type. By utilizing heterogeneous

sensor networks, we are able to characterize multimodal threat environments.

In previous chapters, we made an implicit assumption that each sensing agent had a pay-

load with a single unimodal homogeneous sensor. However, there are many situations in which a

sensing agent could have a payload with multiple heterogeneous sensor types, allowing for simul-

taneous sensing of variably correlated threat modalities in an environment. In what follows, we

address situations in which a sensor network can be comprised of heterogeneous sensing agents

with the following scenarios: (1) every sensing agent payload is equipped with every heteroge-

neous sensor, (2) the sensing agent payloads are deficient in at least one sensor type, and (3) the

sensing agent payloads each contain a unique sensor type.

In this chapter, we address the heterogeneous sensor networks with these various sensing agent

payload configuration scenarios. Furthermore, we build upon the sequential optimization results

in Chapter 6 by developing an appropriate sequential sensor configuration strategy for dealing

with heterogeneous payloads. Similarly, we update our statistical environment modeling method

to accommodate the multimodal threat environment, enabling the cross-correlations of the threat

modes to be determined.

83

7.2. MULTIMODAL THREAT ENVIRONMENT

7.2 Multimodal Threat Environment

In this section, we characterize the multimodal threat environment and it’s difference from

the unimodal threat environment detailed in previous chapters. First, we discuss the field of sensor

fusion as it relates to the multimodal threat field. To help describe this topic, consider the following

sensor types are available in our sensor network: (1) electro-optical (EO) imaging, (2) Infrared (IR)

imaging, and (3) a Lidar (LI) point cloud. Fusion of these sensors could occur at the sensor level as

raw data passes through circuitry, at the data level as the analog data acquisition becomes digitized,

at the feature level where the data is combined through a latent embedded space, at the decision

level which fuses independent output decisions from each sensor type, or at the mission level which

fuses data with respect to spatial or task relevant correlations. In this work, we attempt to emulate

mission level fusion via our statistical field estimation formulation. In terms of the aforementioned

sensors, this would mean fusion occurs after the EO, IR, and LI sensors have been digitized, output

a context-based decision about the data, and has been spatially modeled.

The context of the multimodal data fusion is of significant importance to how fusion is per-

formed. We define each ith threat field modality as c(i) : W → R>0 as a strictly positive tempo-

rally static scalar field. We then define a fused threat field as č := m[1]c(1) + m[2]c(2) + · · · +

m[Nm]c(Nm), where m is a user specified weighted fusion vector. The values prescribed to m

define the context in which the fusion occurs. To be explicit, each ith threat field modality c(i)

represents the threat value associated with data obtainable from a particular sensor (i.e. thermal

imaging or lidar) and the fused threat field represents the latent combined representation of the ob-

servable threats represented by each threat field mode c(i). A vector m is assigned by an expert in

the field to assign relative importance of threat readings for a particular modality. In some cases, we

may not have a linear combination of č, but some nonlinear mapping, which may be represented by

a multimodal autoencoder which has a matrix of weights rather than the vector representation pre-

viously mentioned. For demonstration purposes for what follows, we will utilize the additive linear

combination of threat modalities. The path cost is then calculated as J (π) := ∆p
∑λ

j=1č(pπj
).

Lastly, in what follows we make use of a multimodal vertex set Ṽ := {NgNm} to represent the

vertex indices scaled to Nm modalities.

84

7.3. HETEROGENEOUS SENSOR PAYLOADS

Figure 7.1: Pictorial Representation of Multimodal Threat Field Fusion

7.3 Heterogeneous Sensor Payloads

We begin this section by formalizing the nuances of heterogeneous sensor payloads within a

sensor network. We denote the number of observable threat modalities by the sensor network as

Nm ∈ N. Next, we make the following assumption about each kth sensing agent’s field of view

with respect to the Nm observable threat modalities.

Assumption 2. We assume that the sensor network has a sensor payload with a field of view

property that a multimodal field of view F̃k ⊂ Ṽ has equivalent unimodal field of views such that

F (1) = F (2) = · · · = F (Nm) for any k ∈ Ns.

We introduce an observability incidence vector for each kth sensor where ok ∈ {0, 1}Nm ,

which characterizes if the kth sensor can view a threat modality and is specified by the user given

each sensing agent’s payload. We create an observed cover incidence matrix for each kth sensor

as ν̃k := vec(νkok) ∈ RNgNm×1, where we define vec(·) := RNg×Nm → RNgNm×1. Finally, the

combined observed covered incidence vector becomes ν̃ := (ν̃1 ∨ ν̃2 ∨ ... ∨ ν̃Ns).

85

7.4. MULTIMODAL FIELD ESTIMATION

We update the sensor observations notation as follows. The collection of sensor data locations

for a particular ith sensor type is denoted as X(i) = {x(i)
11 , . . . ,x

(i)
km, . . . ,x

(i)
NsMNs

} ∀ i ∈ Nm.

We denote by, X = {X(1),X(2), . . . ,X(Nm)}, the set of sensor data locations for each sensing

modality which is aggregated or updated with each iteration `. The training matrix of the training

set augmented by the corresponding modality index is formulated as follows:

X̃ :=

X(1) X(2) . . . X(Nm)

0 1 . . . Nm

ᵀ

(7.1)

Similarly, we define the collection of vectorized noisy threat field observations and observation

noise as z̃ =
[
zᵀ1 zᵀ2 . . . zᵀNm

]ᵀ
and σ̃ =

[
σ1

ᵀ σ2
ᵀ . . . σNm

ᵀ
]ᵀ

, respectively. We say

that each of the observations for each ith modality is modeled as z(i)km = c(i)(xkm) + η
(i)
km and the

measurement error η still follows Assumption 1 from Chapter 2, but for each ith sensor modality.

7.4 Multimodal Field Estimation

The field estimation originally presented in Section 2.2.3 was for unimodal threat environ-

ments. We present modifications which enable multimodal field estimation, noting the continued

use of Gaussian Process Regression. The joint distribution of Equation 2.8 is updated to account

for the multimodal vectorized output and multimodal threat field estimates:z̃
f̃

 ∼ N
0,

K z̃ K∗

Kᵀ
∗ K∗∗

 (7.2)

We also update the kernel structure to enable learning of the cross-correlation between modali-

ties. Recall the RBF-ARD kernel of Equation 2.6 is denoted asKR. To encode the auto-covariance

and cross-covariance between the modalities, we utilize the intrinsic model of coregionalization

(ICM) kernelKX defined as:

KX = (ΘwΘᵀ
w + diag(θv)) (7.3)

The ICM kernel is a matrix of size Nm × Nm and has learnable parameters Θw and θv. The

86

7.4. MULTIMODAL FIELD ESTIMATION

matrix of parameters is of size Nm × r, where r ∈ N is a small value to emulate low-rank positive

definite correlation between modalities. The parameter vector θv is of size Nm× 1 and models the

independent scaling factor of each modality. For performing statistical threat field modeling in this

work, we utilize the kernelKij = KR
ij ·KX [i, j] ∀ i, j ∈ Nm. The resulting kernel has the form:

K := K(X̃, X̃) =


K11 K12 · · · K1Nm

K21
.

...
...

...

KNm1 · · · · · · KNmNm


The collection of hyperparameters to optimize are θ = (Θr,Θw,θv) which can be optimized

using Equation 2.7 and cross-validation. The multimodal input kernel with heteroscedastic noise

vector is formulated as K z̃ := K + diag(σ̃). The diagonal elements of K represent the auto-

covariance of points within a modality, whereas the off-diagonal elements represent the cross-

covariance which models the latent relationship between modalities.

From the joint distribution, we can obtain the current iteration multimodal threat field estimate

and multimodal threat error covariance matrix as:

f̃ ` = Kᵀ
∗K

−1
z̃ z̃ (7.4)

P̃ ` = K∗∗ −Kᵀ
∗K

−1
z̃ K∗ (7.5)

We note that the multimodal threat field estimate and multimodal threat field error covariance

matrix are constructed as:

f̃ ` =
[
f

(1)ᵀ
` f

(2)ᵀ
` . . . f

(Nm)ᵀ
`

]ᵀ

P̃ ` =


P

(11)
` P

(12)
` · · · P

(Nm)
`

P
(21)
`

.
...

...
...

P
(Nm1)
` · · · · · · P (NmNm)

`


Given the predefined context of our fusion of threat modalities, we utilize the weighted fusion

87

7.5. SENSOR CONFIGURATION FOR HETEROGENEOUS SENSOR NETWORKS

vector m ∈ RNm and fuse the multimodal predictions. The fused threat field estimate and fused

threat field error covariance matrix can then be computed as:

f̌ ` =
Nm∑
i=1

m[i]f̃
(i)

` (7.6)

P̌ ` =
Nm∑
i=1

m2[i]P̃
(ii)

` + 2
Nm∑
j=2

j−1∑
k=1

m[j]m[k]P̃
(jk)

` (7.7)

We may then use the fused threat field and fused threat error covariance matrix to find the estimated

optimal path-plan and the estimated path-plan variance.

7.5 Sensor Configuration for Heterogeneous Sensor Networks

The introduction of heterogeneous sensors presents some hidden nuances in addition to the

aforementioned modifications to the CSCP algorithm. Namely, the sensor network is capable of

handling heterogeneous payloads on each sensing agent. This presents three unique situations in

which the sensor configuration problem can be formalized. In what follows, we describe situations

in which every sensing agent is equipped with every sensor type, a mixture of sensor types, or only

a single sensor type. We show how to apply the SAMI-based surrogate optimization function from

Chapter 6 to enable near-optimal sequential optimization for each case.

We note a few notation updates. First, we say that a multimodal region of interest is defined as

the collection of region of interest vertices with index values biased by the appropriate mode index

as R̃ := {∪Nm−1
i=0 R + iNg}. The multimodal region of interest is solely used for indexing in the

SAMI formulation. We can find the entropy of any vertex i ∈ Ṽ as:

h(i) :=
1

2
ln(2πeP̃ `[i, i]) (7.8)

Recall from Chapter 6 that in certain cases the conditional entropy computations can be

batched and computed in parallel. For any i /∈ R, the batched conditional entropy vector h(·|R̃\i)

88

7.5. SENSOR CONFIGURATION FOR HETEROGENEOUS SENSOR NETWORKS

is computed as:

h(·|R̃\i) =
1

2
ln((2πe)diag(P̃ ` − P̃ `[·, R̃]P̃ `[R̃, R̃]−1P̃ `[R̃, ·])) (7.9)

We note that the matrix inverse only needs to be computed once. However, for any i ∈ R, the

conditional entropy of any vertex i ∈ {NgNm} given R̃\i can be computed in parallel as:

h(i|R̃\i) =
1

2
ln((2πe)(P̃ `[i, i]− P̃ `[R̃\i, i]ᵀP̃ `[R̃\i, R̃\i]−1P̃ `[R̃\i, i])) (7.10)

Given these equations, we can calculate the mutual information I between the multimodal

region of interest and any vertex for a particular mode i ∈ Ṽ as:

I(R̃\i; i) := h(i)− h(i|R̃\i). (7.11)

The reward term for multimodal threat fields is then adapted to be:

R(i) := (1− α)I(R̃\i; i) + αI(R̃c
\i; i) (7.12)

In Equation 7.12, the ROI complement is taken as R̃c := Ṽ \R̃ and i ∈ Ṽ . We also update the

mutual information reward vector to be γ :=
[
γ(1) γ(2) . . . γ(Ng) . . . γ(NgNm)

]ᵀ
. The

reward function given the sensor configuration is Γ(C`) = ν̃ᵀγ.

The SAMI penalty function is calculated as:

Υ(C`) := −1

2

∑
i∈F

(
1

2
ln(2πe)− ln

∑
k∈Ns

(νk � σ−2k)[F̃]

)
(7.13)

In Equation 7.13, the � operator is the Hadamard product, which is used to perform element-

wise multiplication between the cover incidence vector and the inverse noise vector σk−2 which is

defined as σk−2[i] = 0 if o[i] = 0 and σk−2[i] ∝ %k otherwise, for i ∈ Nm. The entries are indexed

by [F̃] to ensure only covered vertices are accounted for prior to taking the natural logarithm of

each element. Finally, the SAMI surrogate optimization function is the same as Equation 6.8 and by

consequence the sequential optimization properties. Next, we describe the nuances of optimizing

89

7.5. SENSOR CONFIGURATION FOR HETEROGENEOUS SENSOR NETWORKS

the SAMI objective function for the various sensor payload configuration cases.

7.5.1 Fully Observable Sensor Payloads

The first case we address is when all sensing agents within the sensor network are equipped

with all sensor types of interest to observe the threat field, i.e. ok = 1 ∀ k ∈ Ns. Due to Assump-

tion 2, this problem reduces to maximizing the SAMI surrogate objective function directly over

multimodal SAMI surrogate values. As such the optimization problem can sequentially optimize

sensor configuration for each set of kth sensor parameters {sk, %k} to find C∗` := arg maxS(C`).

7.5.2 Partially Observable Sensor Payloads

The next possible sensor configuration scenario is where the sensor network has agents with

mixed observability of the multimodal threat field. As such, the observability vector for the sensors

is such that 1 6
∑

i∈Nm
ok 6 Nm for all k ∈ Ns. As a result of this mixed partially observable sen-

sor payload scenario, a question naturally arises: how do we ensure that the sensor configuration

remains submodular?

To verbosely illustrate the reason why this question is important consider our sensor’s from

earlier in the chapter. Consider that we have available three sensing agent’s S = {S1,S2,S3} with

the following payloads: S1 = {EO, IR}, S2 = {EO, LI}, and S3 = {IR, LI}. To determine the

sequence in which a sensing agent in the sensor network is optimized to adhere to the submodular-

ity property, we need to calculate the total reward for each modality as γ̄i =
∑

j∈Ng
(1 − ν̃(i))γ(i)

prior to each sequential sensor configuration optimization. We denote the ν̃(i) as the partition of

the multimodal sensor cover incidence for the ith modality. Similarly, the ith modality partition of

the SAMI reward vector is denoted γ(i). The total rewards is then γ̄ =
[
γ̄1 γ̄2 . . . γ̄Nm

]ᵀ
. We

may then calculate the total potential reward for each kth sensor as γ̄(k) = okγ̄. Therefore, each

iteration of sequential sensor configuration, we choose Sk = arg max γ̄(k), optimize it with the

SAMI objective function, and remove it from the set S (just for that round of optimization). In our

example, if R̄(2) was the maximum value, we would perform sensor configuration optimization

with S2 and remove it from the set of optimizable sensing agents, leaving only S1 and S3 to be

90

7.6. RESULTS AND DISCUSSION

optimized. We proceed to score the sensing agents again until they have all been optimized.

7.5.3 Uniquely Observable Sensor Payloads

Finally, we consider the situation in which each sensing agent in the sensor network S has only

one modality of observability, i.e.
∑

i∈Nm
ok = 1 for all k ∈ Nm. This is a special observability

case which has unique sensor configuration optimization implications. In this scenario, consider

each sensing agent within the sensor network can only observe one modality. We no longer require

ranking the sensor modalities as they are entirely separable and additive. Due to this, the sen-

sor configuration for uniquely observable sensor payloads allows for parallelization of sequential

sensor configuration for each modality. In fact, each mode reduces to solving independent sensor

configuration optimization Nm times in parallel, allowing for computational savings.

7.6 Results and Discussion

Many unmanned aerial vehicles, commercial and industrial, have various sensor payload con-

figuration options. ‘Fancy’ UAVs can come equipped with multiple sensor peripherals at a pre-

mium price. To handle multiple sensors the UAV needs to be engineered to handle the additional

weight and be structurally capable of hosting them. In contrast, there are many specialized UAVs

which come equipped with single sensor peripherals such as EO imaging, infrared, or similar.

In what follows, we attempt to address the justification of expensive UAV payloads which carry

multiple sensor payloads rather than multiple unimodal UAVs as it relates to path-planning.

We conducted a study with four various sensor networks in an environment of area 9km2,

workspace resolution of 212, and a desired termination threshold ε = 1. We considered a mul-

timodal threat field with Nm = 3 correlated threat modalities. All mobile sensing agents were

constrained to %min = 0.05 and %max = 0.5. The region of interest for the experiments was found

with Na = 3 alternate path-plans.

We considered four various sensor network scenarios for the experiments. The first sensor

network SA was comprised of 3 fully observable sensors. SB had three sensors with pairs of

91

7.6. RESULTS AND DISCUSSION

observability such that each modality was observable by at least 2. It also included a single fully

observable sensor totaling Ns = 4. Sensor network SC had the same pairs of observability as SB,

but instead of the single fully observable sensing agent, it had three unimodal sensors (one for

each modality) totaling Ns = 6. Finally, we considered a sensor network SD which was comprised

of Ns = 9 unimodal sensors such that each modality equally had 3 sensors which could make

observations. These networks were chosen to study the effect of modifying the degrees of freedom

of the sensor network on convergence and sensor configuration optimization search time. The

average iterations for convergence and the average sensor configuration optimization time for each

sensor network are recorded in Table 7.1. We make the following observations from the collected

results. In summary, the parallel optimization of sensor networks with unique observability, by

way of the separable nature of the multimodal formulation of the SAMI surrogate function, are

able to quickly find sensor configurations whilst providing good convergence performance.

Sensor Network Iterations Configuration Time

Network SA 16.331± 4.163 2.313± 0.683
Network SB 16.033± 3.436 3.068± 0.995
Network SC 15.667± 4.619 4.900± 1.472
Network SD 14.330± 4.041 2.878± 1.004

Table 7.1: Average results of the comparative study for various sensor payload configurations

Increasing sensor network observability flexibility improves convergence performance

The observation flexibility refers to the constraint of having identical FoVs to optimize on a

single sensor payload. The observation flexibility’s for the experiment sensor networks are in in-

creasing order SA < SB < SC < SD. The results show that adding the increased flexibility by not

confining multiple multimodal sensor payloads to a single sensing agent proportionally decreases

the average iterations for path-plan convergence. This answers our initial quandry between buying

an expensive UAV equipped with many heterogeneous sensors versus buying multiple inexpensive

UAVs. For coupled sensing and path-planning problems the additional flexibility by distributing

the sensors across sensing agents within the network is more valuable.

92

7.7. DEMONSTRATIVE EXAMPLE

Figure 7.2: Ground truth threat field modalities and the fused threat field (right) along with the optimal
path-plan.

Parallel optimization of unimodal sensor payloads yields low configuration times

Somewhat unsurprisingly, the parallel sequential optimization of sensor network SD which

had sensing agents with unimodal observability, was able to be optimized faster than sensor net-

works SB and SC . We note that the reason it still takes longer to configure these sensors over

sensor network SA is that there are more potential configurations and globally optimizing is made

more difficult. However, we note how close the runtime performance is for sensor configuration

between SA and SD and note that the time difference is negligible in comparison to the average

iterations until convergence performance gain.

7.7 Demonstrative Example

In what follows, we demonstrate the MM-CSCP algorithm on an example randomly generated

multimodal threat field with Nm = 3. The problem definition remains the same as the numerical

experiments from the previous section, but we increase the environment area to 25km2. The in-

dividual threat field modalities and the fused threat field along with the optimal path-plan are

shown in Figure 7.2. We considered a sensor network with 3 sensing agents with unique pairings

of observability and 2 sensing agents with unimodal observability for the first two threat modes.

Therefore, the first two threat modes have up to three FoV covers per iteration while the third only

has two. The initial sensor network configuration is depicted overlaying the SAMI reward function

for each vertex in Figure 7.3.

The data collected from the first iteration sensor configuration is then utilized to determine

93

7.7. DEMONSTRATIVE EXAMPLE

Figure 7.3: Initial iteration sensor network configurations overlaying the multimodal SAMI reward values
for each threat mode.

Figure 7.4: Initial multimodal threat field estimates and fused threat field estimate (right) along with the
estimated optimal path-plan (green) and the true optimal path-plan (yellow).

the multimodal threat field estimate and subsequently the fused threat field estimate as shown in

Figure 7.4. The resultant estimated path-plan is shown in this figure, and Figure 7.5 shows the

corresponding multimodal threat error covariance values for each vertex and the fused covariance

values. The algorithm proceeds until convergence at iteration ` = 22. Figures 7.6 through 7.17

show the SAMI reward functions and sensor configurations, the multimodal and fused threat field

estimates with the estimated path-plan, and the multimodal and fused threat variances at select

iterations.

The SAMI reward examples show that in some cases sensing agents with paired observability

are configured such that the reward of one modality is considered in conjunction with a potentially

low reward modality. We also note that the multimodal threat field estimation and fusion visually

does a good job at learning the environment. We also observe from the final fused threat error

variance in Figure 7.17 that the MM-CSCP still emphasizes learning task-driven regions of inter-

est, rather than the entire environment, in order to make the path-plan decision. Ultimately, the

estimated path-plan finds a near-optimal path-plan within a multimodal threat environment.

94

7.7. DEMONSTRATIVE EXAMPLE

Figure 7.5: Initial multimodal threat field error covariance vertex values and fused vertex covariance values.

Figure 7.6: Sensor network configurations overlaying the multimodal SAMI reward values for each threat
mode at ` = 3.

Figure 7.7: Multimodal threat field estimates and fused threat field estimate (right) along with the estimated
optimal path-plan (green) and the true optimal path-plan (yellow) at iteration ` = 3.

Figure 7.8: Multimodal threat field error covariance vertex values and fused vertex covariance values at
iteration ` = 3.

95

7.7. DEMONSTRATIVE EXAMPLE

Figure 7.9: Sensor network configurations overlaying the multimodal SAMI reward values for each threat
mode at ` = 7.

Figure 7.10: Multimodal threat field estimates and fused threat field estimate (right) along with the estimated
optimal path-plan (green) and the true optimal path-plan (yellow) at iteration ` = 7.

Figure 7.11: Multimodal threat field error covariance vertex values and fused vertex covariance values at
iteration ` = 7.

Figure 7.12: Sensor network configurations overlaying the multimodal SAMI reward values for each threat
mode at ` = 13.

96

7.7. DEMONSTRATIVE EXAMPLE

Figure 7.13: Multimodal threat field estimates and fused threat field estimate (right) along with the estimated
optimal path-plan (green) and the true optimal path-plan (yellow) at iteration ` = 13.

Figure 7.14: Multimodal threat field error covariance vertex values and fused vertex covariance values at
iteration ` = 13.

Figure 7.15: Sensor network configurations overlaying the multimodal SAMI reward values for each threat
mode at ` = 22, the final iteration.

Figure 7.16: Multimodal threat field estimates and fused threat field estimate (right) along with the estimated
optimal path-plan (green) and the true optimal path-plan (yellow) at iteration ` = 22, the final iteration.

97

7.7. DEMONSTRATIVE EXAMPLE

Figure 7.17: Multimodal threat field error covariance vertex values and fused vertex covariance values at
iteration ` = 22.

98

Chapter 8

Active Coupled Sensor Configuration and Path-Planning

8.1 Problem Motivation

In previous chapters, we demonstrated the coupled sensor configuration and path-planning

method which finds a path-plan that satisfies prespecified optimality guarantees in minimal itera-

tions and sensor observations. We showed the ability for the algorithm to find a path that converges

to a path cost variance optimality threshold in environments which were static and where the acting

agent was able to wait for the CSCP algorithm to conclude it’s search. This passive waiting by the

agent works well when waiting does not incur a cost over time. However, in many applications

such as radiation exposure, waiting until the algorithm reaches convergence can be costly. Thus,

there exists a need for an agent to traverse an environment during the CSCP algorithm operation.

In what follows, we detail active CSCP for situations in which the acting agent cannot passively

wait for the algorithm to converge, but still operates over a static threat environment.

8.2 Active CSCP

We present a realization of the CSCP algorithm for scenarios in which the acting agent cannot

passively wait for path-plan optimality convergence due to threat exposure over time. This active

CSCP (ACT-CSCP) operates over a static threat environment as in previous chapters, but with

the added complexity of a dynamic agent. Herein, the notion of actor horizon and updates to the

planning stage are explained. Then, we present a modification to the SAMI surrogate optimization

function and numerically show the benefits of this modification for the ACT-CSCP algorithm. We

also show a comparison of waiting within a safe space in the actor’s horizon versus going along

the current estimated optimal path-plan. We illustrate the changes required to make the CSCP

99

8.2. ACTIVE CSCP

Active Coupled Sensor Configuration and Path-Planning

1: Let ` := 0, f 0 := 0,P 0 := χI, v` := v0
2: Solve for π∗0 := arg minJ 0(π), from v` to vL
3: while Var`(π

∗
`) > ε or v` 6= vL do

4: Optimize Sensor Configuration C∗`
5: Record new measurements z
6: v` = π∗` [∆v] when ` 6= 0
7: Increment iteration counter ` := `+ 1
8: Find GPR-based threat field estimate f ` and error covariance P `

9: Find π∗` := arg minJ `(π), from v` to vL

Figure 8.1: Pseudocode for the Active CSCP algorithm.

algorithm ‘active’ in Algorithm 8.1.

8.2.1 Actor Horizon and Planning

In this section, we detail the notion of the actor horizon and the changes required for ACT-

CSCP in regards to the path-planning efforts. We denote by ∆v ∈ N the number of traversable

steps that an agent performs each iteration. The agent’s horizon is taken as the set of vertices

H ⊂ V such that any element in H is maximum ∆v edges E from the current actor location

v`. The value of ∆v is proportional to the cycle time of the CSCP algorithm. This cycle time is

the agent travel time per iteration ∆ta ∈ N, which is equal to the cumulative time steps required

for sensor configuration, field estimation, and planning ∆ta = ∆tsc + ∆test + ∆tpp. We assume

that ∆tsc = nsc∆t,∆test = nest∆t and ∆tpp = npp∆t where nsc, nest, npp ∈ N are problem

specific constants and ∆t is the discrete minimum time step. In Figure 8.2, we show the stages for

sensor configuration, where the the grey boxes 1, 2, . . . , N represent the sequential optimization

for N = Ns sensors and the diagonal boxes represent physical sensor configuration time. Figure

8.3 shows the overall timing diagram. In the diagram example, we say that the agent is capable of

making three movements within the discrete cycle time.

To begin the algorithm, we set the agent’s current iteration positional vertex as v` := v0.

After initialization, we proceed to find the estimated optimal path-plan as the sequence of 4-way

connected vertices which minimize π∗0 := arg minJ 0(π) from the current agent vertex v` to the

100

8.2. ACTIVE CSCP

Figure 8.2: Timing diagram for the sensor configuration elements.

Figure 8.3: Timing diagram for elements of the ACT-CSCP algorithm.

terminal state vertex vL. In what follows, we note that the translation cost is set such that ∆t = ∆p

and the cost function is updated to reflect this as J (π) := ∆t
∑λ

j=1c(pπj
).

At each iteration ` = 0, 1, . . . , L, the path-plan for the agent is recomputed. We note that the

path-plan differs from previous chapters as it is always taken as the path sequence from v` to vL

rather than v0 to vL. We also update the current agent vertex to be v` = π∗` [∆v], meaning that after

the sensor configuration stage, sensor observation, and field estimation, the agent is presumed to

have achieved the ∆v vertex given the prior estimated optimal path-plan.

8.2.2 Environment Estimation and Sensor Configuration

We note in this section that due to the static threat environment assumption, there is no depen-

dency on modeling the effects of time in our statistical field estimate. As such, we may utilize the

same Gaussian Process method in Section 2.2.3 for unimodal situations or the Gaussian Process

101

8.2. ACTIVE CSCP

method in Section 7.4 for multimodal environments. Likewise, we note that the sensor configura-

tion procedure follows that of previous chapters for their respective scenarios, but we note that we

present a modification to the SAMI surrogate function as detailed in the next section. Additionally,

the sensor configuration step utilizes both the region of interestR and the actor’s horizonH.

8.2.3 The Active SAMI Surrogate Function

In Chapter 6 we presented the self-adaptive mutual information surrogate function as written

in Equation 6.8 as an efficient replacement for optimizing the TDIG metric directly. It utilized a

self-adaptive parameter αwhich balanced the exploration-exploitation trade-off for sensor configu-

ration using relative entropy as written in Equation 8.6. In Chapter 6 we numerically demonstrated

that the adaptive coefficient, which establishes the reward for exploring or exploiting the region

of interest, is superior to any fixed coefficient. In what follows, we describe a modification which

balances not only exploration or exploitation of the environment, but also the agent’s horizon H

to assist during active traversal until the ACT-CSCP algorithm converges to an estimated optimal

path-plan or has reached the goal vertex.

Recall in Chapter 6 we defined the reward function for any point i ∈ V as a mixture of

mutual information gain between the region of interest R and region of interest complement Rc.

We amend this definition to include an appropriate weighting for the actor’s horizon H, which

corresponds to the set of vertices that are ∆v vertices from the actor’s current vertex v`. We

update the region of interest R such that R := R`\H and the remaining environment as Rc :=

V \{R ∪ H}. We note that the entropy and and mutual information of each of these regions for

some point i ∈ V can be obtained with the equations in Chapter 6 with little modification, but we

detail in order to be explicit.

The computation of conditional entropy h(i|H\i) can partially be computed as a one-time

batch operation and partially computed in parallel for efficiency. For any i /∈ H the vectorized

conditional entropy h(·|H\i) is computed as a one-time batch operation:

h(·|H\i) =
1

2
ln((2πe)diag(P ` − P `[·,H]P `[H,H]−1P `[H, ·])) (8.1)

102

8.2. ACTIVE CSCP

For the case where i ∈ H, we can compute the following conditional entropy equation for any

i ∈ V in parallel batches as:

h(i|H\i) =
1

2
ln((2πe)(P `[i, i]− P `[H\i, i]ᵀP `[H\i,H\i]−1P `[H\i, i])) (8.2)

The mutual information I between theH and i ∈ V is then calculated as:

I(H\i; i) := h(i)− h(i|H\i) (8.3)

We may then update the SAMI reward function to include the actor horizon set in addition to

the region of interest and the complement as follows:

γ(i) := (1− α)I(R\i; i) + (1− β)I(H\i; i) + (α + β)I(Rc
\i; i) (8.4)

Notably, we split the adaptation into two parameters, α and β. Effectively, the parameter α defines

the relative mutual information weighting for non-critical region of interest vertices. When α is

small more reward is emphasized for path-plan discovery. The parameter β defines the relative

mutual information weighting for critical region of interest vertices and vertices that are within the

horizon of the current actor state v`. We define each as:

α := Ī(R\i; i)/
(
Ī(R\i; i) + Ī(H\i; i) + Ī(Rc

\i; i)
)

(8.5)

β := Ī(H\i; i)/
(
Ī(R\i; i) + Ī(H\i; i) + Ī(Rc

\i; i)
)

(8.6)

Both parameters are bounded 0 6 α, β 6 1 with α, β ∈ R. We can then obtain γ and subsequently

Γ and S as in Chapter 6. We note that this does not affect the SAMI cost function Υ. We study the

benefits of this new realization of SAMI with dual adaptation parameters in the results section.

S(C`) = Γ(C`) + Υ(C`). (8.7)

103

8.3. RESULTS AND DISCUSSION

We can also say the following about the Active SAMI objective function.

Proposition 5. The Active SAMI objective function S in Section 8.2.3 is a submodular function.

Proof. We note that the form of S does not change and that the gain term Γ exhibits the same

submodularity as in Proposition 4 regardless of the mixture of mutual information comprising the

reward vector, γ, and as such the proof follows that of Proposition 4, indicating that the Active

SAMI function is submodular.

8.2.4 Algorithm Termination

The algorithm terminates if either of two conditions are satisfied. As in previous chapters, we

terminate the ACT-CSCP if we converge below the termination threshold ε such that the estimated

path cost variance, as formulated in Equation 2.2, is Var`(π
∗
`) > ε. Alternatively, the algorithm

terminates if it achieves the goal state during the iterative process v` = vL.

8.3 Results and Discussion

In this section, we aim to address a couple questions in tandem. First, the effect of waiting for

path-plan convergence in a locally optimal location versus actively traversing the estimated optimal

path-plan given ∆v is explored. Waiting is considered by planning the optimal vertex sequence

of length ∆v within the actor horizon set H with ‘5-way’ connectivity, meaning that an actor can

also remain at the same vertex. Second, a direct comparison of performance between SAMI from

Chapter 6 and Active SAMI is explored.

The experiments conducted were unimodal Nm = 1 threat fields which were randomly gen-

erated as in all previous chapters, with Ns = 3 sensors, in an environment of size 25km2 and

number of vertices in the workspace set to 212. The sensors were constrained to %min = 0.05

and %max = 0.5. We took alternate path-plan samples of count Na = 10. Lastly, the termination

threshold was fixed to ε = 1.

The study consisted of performing ACT-CSCP with the SAMI surrogate function and the

104

8.3. RESULTS AND DISCUSSION

(a) (b)

Figure 8.4: Numerical results for the ACT-CSCP study. (a) Average iterations for each scenario. (b) Average
percent suboptimality for each scenario. Studies performed for ∆v = {1, 3, 5}.

Active SAMI alternative, which includes the β coefficient for weighting emphasis on exploring

the actor’s horizon setH. Secondly, each iteration the actor was able to either ‘wait’ by traversing

the ‘5-way’ connected horizon set H, or ‘go’ by following the estimated optimal path-plan π∗` .

The results of this study are shown in Figure 8.4 and summarized in what follows.

Large horizon reduces iterations at the expense of increased suboptimality

For each ‘go’ case, we saw that the increase in value of ∆v led to a reduction in iterations

required to achieve or plan for the goal state. However, this was proportional to increased percent

suboptimality. This intuitively indicates that a practitioner can choose between the trade-off of

convergence time and threat avoidance performance when setting the value of ∆v if it is possible

to do so in the application.

Waiting only advantageous under strong assumptions

With no exception, waiting took more iterations on average and incurred more threat exposure

percent suboptimality on average than traversing the estimated optimal path-plan. We note that

waiting for convergence is beneficial if and only if the waiting position happens to be low cost.

Otherwise, a locally minimum basin of threat exposure, when drawn out over many iterations

while waiting, can incur more penalties than the ‘go’ option. Waiting is only justifiable if the

immediate vicinity is assumed low-cost given the problem context.

105

8.4. SAMI VS ACTIVE SAMI DEMONSTRATIVE EXAMPLE

Active SAMI reduces percent suboptimality in dynamic actor scenarios

The key realization of this study is that in all cases, the use of Active SAMI (for go or wait

scenarios) improved the percent suboptimality of the path-planning. By introducing consideration

of the actor’s horizonH, occasional emphasis is placed on ensuring that the active agent is knowl-

edgeable about the threats within it’s current iteration horizon. This enables avoidance until the

ACT-CSCP algorithm can converge to a near optimal path-plan from v` to vL.

8.4 SAMI vs Active SAMI Demonstrative Example

For brevity, we utilize the same environment and scenario setup as in the numerical study.

However, in this example, we do not consider waiting as previously presented and just demonstrate

the scenario where the actor traverses over ∆v vertices in the estimated path-plan. The optimal

path-plan cost for this example is 15.08. ACT-CSCP with SAMI took 8 iterations to converge and

had path cost of 17.09. Meanwhile, ACT-CSCP with Active SAMI took 10 iterations but had a

path cost of only 15.14.

Figures 8.5 through 8.12 show the ACT-CSCP algorithm for both SAMI and Active SAMI

reward functions and the corresponding sensor configurations and resulting path-plans and actor

movements (dashed green line). In the initial iteration Figure 8.5, the distinction between the two

approaches is clear. The SAMI function performs a more exploratory initial sensor configura-

tion whereas using Active SAMI leads to sensor configuration nearby the actor’s starting horizon.

While both methods do not follow the true optimal path-plan exactly, we see that by iteration ` = 4,

Active SAMI is deciding between going vertically or to the right, while SAMI is still looking to

the left side of the workspace. This example serves to show that the SAMI surrogate function aims

to simply find a near-optimal path plan through various exploration and exploitation sensor con-

figurations. Likewise, after iteration ` = 2, the SAMI based agent traversal backtracks, showing it

prone to overshoot. In scenarios in which waiting for such a decision are not possible, the Active

SAMI surrogate function places some emphasis on avoidance within the actor horizon while still

doing the exploration and exploitation adaptively as in the base version of SAMI.

106

8.4. SAMI VS ACTIVE SAMI DEMONSTRATIVE EXAMPLE

(a) (b) (c) (d)

Figure 8.5: (a) Sensor Configuration with SAMI, (b) SAMI Path-Plan Update, (c) Sensor Configuration with
Active SAMI, (d) Active SAMI Path-Plan Update at ` = 0.

(a) (b) (c) (d)

Figure 8.6: (a) Sensor Configuration with SAMI, (b) SAMI Path-Plan Update, (c) Sensor Configuration with
Active SAMI, (d) Active SAMI Path-Plan Update at ` = 1.

(a) (b) (c) (d)

Figure 8.7: (a) Sensor Configuration with SAMI, (b) SAMI Path-Plan Update, (c) Sensor Configuration with
Active SAMI, (d) Active SAMI Path-Plan Update at ` = 2.

(a) (b) (c) (d)

Figure 8.8: (a) Sensor Configuration with SAMI, (b) SAMI Path-Plan Update, (c) Sensor Configuration with
Active SAMI, (d) Active SAMI Path-Plan Update at ` = 3.

107

8.4. SAMI VS ACTIVE SAMI DEMONSTRATIVE EXAMPLE

(a) (b) (c) (d)

Figure 8.9: (a) Sensor Configuration with SAMI, (b) SAMI Path-Plan Update, (c) Sensor Configuration with
Active SAMI, (d) Active SAMI Path-Plan Update at ` = 4.

(a) (b) (c) (d)

Figure 8.10: (a) Sensor Configuration with SAMI, (b) SAMI Path-Plan Update, (c) Sensor Configuration
with Active SAMI, (d) Active SAMI Path-Plan Update at ` = 5.

(a) (b) (c) (d)

Figure 8.11: (a) Sensor Configuration with SAMI, (b) SAMI Path-Plan Update, (c) Sensor Configuration
with Active SAMI, (d) Active SAMI Path-Plan Update at ` = 6.

(a) (b) (c) (d)

Figure 8.12: (a) Sensor Configuration with SAMI, (b) SAMI Path-Plan Update, (c) Sensor Configuration
with Active SAMI, (d) Active SAMI Path-Plan Update at terminal iterations (7 and 9, respectively).

108

Chapter 9

Conclusions and Future Works

In this dissertation, we provided a coupled sensor configuration and path-planning (CSCP)

algorithm which allocated sensor network observations of direct consequence to a path-planning

task for an agent. We considered sensor network field of view and directly addressed the trade-off

in measurement quality and quantity. The iterative algorithm is shown to converge to a near-

optimal path-plan while collecting minimal data.

To quantify the performance of coupled sensor configuration and path-planning we developed

a task-driven information gain (TDIG) metric which measures the reduction in variance of the path-

plan. The method models the environment using a nonparametric statistical modeling technique

known as Gaussian Process Regression. Inference of this model yields an estimate and covariance

of the environment which allows for measures of uncertainty used in the TDIG metric and for

determining an estimated optimal path-plan.

For safety-critical scenarios, we developed a Greedy Batch CSCP variation which greedily

explores and batches sensor observations to drive path uncertainty below the strict safety-critical

optimality requirements. This method successfully finds a near-optimal path-plan within these

safety-critical optimality requirements, and does so while reducing runtime and iterations. Like-

wise, an Exploration Efficient CSCP variation was devised for scenarios in which large amounts

of sensors were available. A critical finding with this method is it’s capability to expand the per-

formance gap between task-driven and information-driven sensor configuration.

The framework was further expanded to consider qualitative sensor configuration. Through

adaptive clustering analysis, fast-approximate sensor configurations were made which closely

matched the true optimized sensor configurations. It adaptively switches between exploratory

and exploitative clustering and can act as a dimensionality reduction method. The main result is a

significant drop in computation time at the expense of a few additional iterations for convergence.

109

A main result of this dissertation is the ability to perform near-optimal sequential optimization

of sensor configuration with a self-adaptive mutual information (SAMI) surrogate function. This

function is shown to be submodular and as such the sequential optimization to be (1 − 1/e) near-

optimal. We show that the SAMI surrogate, which is used in place of the TDIG metric during

sensor configuration optimization, further reduces required iterations to converge and the recurrent

function evaluation during optimization is computationally cheaper.

The SAMI method was then applied to scenarios in which the sensor network is comprised

of heterogeneous sensor payloads observing multimodal environments. We demonstrate the ex-

tension of SAMI and along with a realization of mission-level fusion of the environment utilizing

a Gaussian Process kernel for correlated multi-task learning. We detail the various optimization

nuances of fully observable, partially observable, and uniquely observable sensor network sensing

payloads. We show that unimodal sensor payloads, with their added degree of freedom over partial

or fully observable with equivalent sensor counts, are ideal and can be optimized in parallel for

faster sensor configuration optimization.

These previous methods operate under the assumption that the agent, for which the path-plan

is constructed, is passive as it awaits a path-plan after the iterative sensor configuration loop. The

CSCP algorithm is updated to account for active planning such that at each discrete time step the

agent is capable of traversal. The Active SAMI surrogate function is developed to include actor’s

traversal horizon, enabling sensor configuration for avoiding spatially-proximal threats. We show

that waiting in passive threat environments is far more suboptimal than active traversal. Likewise,

we describe how the active method may be applied to the scenario in which the environment is no

longer static, but dynamically varying with time.

The result of this dissertation is an efficient framework for sensor configuration as it pertains

to spatial path-planning. A variety of variations are provided to deal with application specific

cases, numerical methods for lowering computational complexity, and extensions to heterogeneous

sensor networks, active agents and dynamic environments. We show the sensor configuration can

be solved sequentially. In unimodal heterogeneous networks sensor configuration can be solved

both sequentially and amongst each mode in parallel.

110

9.1. FUTURE WORK CONSIDERATIONS

9.1 Future Work Considerations

Herein, future work considerations to extend the outcomes of this dissertation are presented.

We describe additionally constraints and parameters that can be considered, objective function

considerations, and the ability to actively select which sensors make observations or even choose

when and at what level to perform sensor fusion. Finally, an application for real-time sensor

coordination in tracking scenarios is described.

9.1.1 Sensor Field of View Constraints and Parameters

In this dissertation, we considered a sensor configuration as the collection of each kth sensor

location and radius C = {s1, %1, s2, . . . , %Ns}. The assumption was threefold, (1) the sensor field

of view was parallel to the 2D environment, (2) the field of view noise is uniform and only grows

monotonically with increasing radius, and (3) the field of view was area-based and circular. Using

an example of a UAV, we may need to consider 3D coordinates and sensors equipped to a gimbal

which can rotate about all three axes. The parameter space then becomes: heading, 3D coordinates,

and the 3D sensor angle. Each parameter could additionally be constrained to a 3D coordinate

space and the 3D angle confined to a subset of a hemisphere. With such a high dimensionality,

the SAMI surrogate function for sequential optimization becomes highly beneficial. However, it

would need to be modified to account for non-parallel and non-circular field of views. Sensors also

do not necessarily need to be area-based. Of interest is studying how noise is effected by elongated

field of view away from the sensing apparatus for non-parallel observations.

9.1.2 Sensor Network Costs

The content of this work implicitly assumed that the mobile sensor network was instantly con-

figurable to any location within the workspace without any penalties incurred. However, in UAV

applications, there are many costs or heuristics that can be considered during sensor configuration.

In a UAV setting, we could consider the lateral, ascent, and descent speeds along with maximum

battery lifetime. Additionally, the amount of data obtained from heterogeneous sensor types can

111

9.1. FUTURE WORK CONSIDERATIONS

vary. All of these parameters could be used to regularize the sensor configuration objective func-

tion. For example, we could add a heuristic for the amount of data collected, valuing sensors which

collect less data with just as much information quality.

9.1.3 Selective Sensing

In tandem with the suggestion of adding sensor network costs, we could extend the sequential

optimization to the concept of selective sensing. Utilizing the SAMI objective function, which is

submodular and exhibits a diminishing returns property, we could prematurely stop finding sensor

configurations for all available sensors once the returns from optimizing each sensor in sequence

falls below a specified threshold. Such an implementation could further reduce the number of

required observations of the environment in achieving the near-optimal path-plan and save time

during sensor configuration optimization.

9.1.4 Human-in-the-loop Considerations

Early adoptions of the CSCP algorithm for real-world physical systems may not involve full

autonomy of the sensor networks and agent planning. As such, there may be need for human

intervention to help support and guide the CSCP efforts and aid in path-plan convergence. A user

interface (UI) could be developed which allows for a practitioner to intervene during the CSCP

iterative procedure. A few ideas for how this could benefit the CSCP methodology are as follows.

Human intervention could provide support for early termination of the CSCP algorithm prior

to discovering a path-plan which satisfies the path cost variance is below a specified termination

threshold. A practitioner could visually confirm that the path is satisfactory and therefore reduce

the number of iterations for finding a path-plan. Additionally, a human could select locations for

the agent to travel during active CSCP scenarios as in Chapter 8.

Human intervention could also be applied to sensor network configuration tasks. After deter-

mining optimal sensor configurations, a user could specify which sensors in the network will be

sent to these configurations and optionally only select a certain amount to be deployed to these

configurations. Additionally, given a UI for the environment, a user could circle or prune regions

112

9.1. FUTURE WORK CONSIDERATIONS

Figure 9.1: Multimodal Coupled Sensor Configuration and Tracking Loop

of the environment for selecting a custom region of interest separate from what is described in the

previous chapters. This could allow sensor configuration to optimize over user defined regions and

reduce computational complexity if the workspace resolution is large and/or the planning environ-

ment is a very large area.

9.1.5 Efficient Real-Time Sensor Configuration for Tracking

Consider a scenario where various vehicle types with different features such as a van, a car, a

truck, a diesel 4-wheeler, and a gas 4-wheeler need to be tracked. The vehicles may have differ-

ence colors, emit sound and ground vibrations at different frequencies, and have variable thermal

readings. Given a sensor network comprised of heterogeneous sensors such as electro-optical

(EO), infrared (IR), acoustic arrays, passive-RF (P-RF), sesimometers, and radar. It would then be

the task of this collection of sensors to classify and track the various vehicle types. An example

multimodal coupled sensor configuration and tracking loop could look something like Figure 9.1.

Mission agnostic tasks would be the data collection and processing of the various sensor types

and the fusion and prediction thereof. Mission specific tasks would involve tracking the identified

objects, predicting their movements, and coordinating select sensors for data collection.

One of the main challenges with this multimodal tracking problem is that not all sensing

113

9.1. FUTURE WORK CONSIDERATIONS

Figure 9.2: Various sensors and their applicability mapping to the vehicle tracking problem

modalities observe the same type of mission specific data. A diagram of the types of data that

can be extrapolated for such a problem is shown in Figure 9.2. To make the problem even more

challenging, the fusion and prediction stage could also be selected as a meta-sensor type, i.e.

a unimodal observation prediction from EO or a fused multimodal prediction from EO and IR.

Specifically, selections could be made for feature level, decision-level, or mission-level fusion

as shown in Figure 9.3, which would act as meta-sensors for a realization of CSCP. Criteria for

selection could include the aforementioned topics in the Future Works section, namely the amount

of data collected, the physical costs, information quality, etc. Additionally, considerations about

the type of information (classification and/or localization) need to be accounted for during sensor

configuration.

CSCP could be modified such that the threats are modeled as the likelihood of an object at a

particular location and the path-plan the projected routes resulting from a tracking algorithm. The

region of interest would then be composed of the projected future vehicle tracks and optionally

sampled from the statistical model. The objective could be changed to maximizing the accuracy of

vehicle identification and tracking over a finite time-span of interest.

114

9.1. FUTURE WORK CONSIDERATIONS

(a)

(b)

(c)

Figure 9.3: Feature-level fusion (a), decision-level fusion (b), and mission-level fusion (c) for the tracking
problem.

115

Appendix A

CSCP for Multi-Agent Multi-Goal Scenarios

We make the following application note of the CSCP algorithm applied to scenarios which

require multiple-agents which need to arrive at the same goal location, but which start at a va-

riety of initial locations. Alternatively, it could also be applied to applications which require a

many-to-many agent/goal location scenario. In this scenario, each agent has a unique goal vertex

state to achieve. Luckily, the CSCP algorithm can work for such scenarios with the following

modifications to key elements of the algorithm.

First, consider that there are maximum Naa ∈ N agent/goal pairings which need to be routed

in an unknown threat environment. Therefore, the initial path-plan estimate and subsequent path-

plan estimates need to be found as π(i)∗
` ∀ i ∈ Naa for all iterations ` ∈ {L}. The region of interest

is naturally updated to the union of each agent’s path-plan individual region of interest as:

R` := R(1)
` ∪R

(2)
` ∪ · · · ∪ R

(Naa)
`

From this formulation of R`, the region of interest incidence vector r can be determined for use

in the TDIG metric or R for the SAMI surrogate. We note that alternate statistically feasible

path-plans can be sampled as introduced in Chapter 4. Finally, the termination condition can be

computed as:
Naa∑
i=1

Var`(π
(i)∗
`) > ε (A.1)

The termination check of Equation A.1 is an additive function of the individual path-cost vari-

ance values for each agent/goal route. Due to this additive nature, the problem can be decoupled

and independently solved. This separability ensures the aforementioned properties of the CSCP

algorithm hold in multi-agent multi-goal scenarios.

116

Appendix B

CSCP in Spatiotemporally Evolving Threat Fields

There exists many use cases in which the threat environment is not static, but dynamically

evolving through time. In this situation, we require time-varying coupled sensor configuration

and path-planning to handle spatiotemporal threats. Given a spatiotemporally evolving threat field

setting, it may be necessary for an agent to avoid threats while simultaneously trying to create a

path-plan which assists the agent in achieving it’s goal state. We directly build upon the sequen-

tial sensor configuration abilities demonstrated in Chapter 6 and the active CSCP formulations of

Chapter 8. We detail necessary and suggested modifications to the statistical field estimate which

handles spatiotemporally evolving threats, allowing for forward looking environment predictions.

B.1 TV-CSCP

In what follows, we present an application of coupled sensor configuration and path-planning

for time-varying threat fields (TV-CSCP). We note that the algorithm follows that of ACT-CSCP

from Chapter 8, but has special sensor configuration conditions. We modify the threat estima-

tion and planning to handle spatiotemporal threats, where the threat field is now represented as

c(x, t)→ R>0. The termination condition is shown to conditionally converge when provided a fi-

nite mission time. We note that the following framework modifications follow the same procedure

of Algorithm 8.1 but with nuances.

B.1.1 Problem Overview

We make the following modifications to the problem formulations from Chapter 2. First,

consider a finite mission-time NT ∈ N. We may then enforce that the terminal iteration is L 6 NT

and additionally is taken such that it is larger than or equal to the minimum realizable path-length

117

B.1. TV-CSCP

NT > λ for a given set of start and goal vertices v0 and vL. For a 4 or 5-way connected workspace

we make the following assumption about the mission-time.

Assumption 3. A finite mission-time NT ∈ N is such that NT > 2
√
Ng + 1.

This assumption assures that a valid path is achievable within the allotment of mission-time

NT . The finite mission-time assures we can utilize Djikstra’s algorithm for finding a minimal

cost path, as it confines the search space to a 3D workspace with the added dimensionality of

time. Likewise, we can find an optimal path-plan π∗ as a minimum-cost path that minimizes the

time-based function J (π) := ∆p
∑

k∈λ c(pπk
, k∆t). Relevant incidence vectors, such as the path

incidence vector, can be expanded to accommodate the mission-time as vπ ∈ {0, 1}NgNT .

B.1.2 Time-Dependent Threat Estimation

Until now, the kernels considered for the Gaussian Process modeling were stationary, that is,

they only depended upon the relationship between pairs of parameter inputs. Instead, we may

utilize non-stationary kernels which produce outputs which are not spatially agnostic. We recom-

mend the reader review the work of (Duvenaud et al.), which details the various kernel structure

properties of the sum and product of various stationary and non-stationary kernels. Given the con-

text of the environment being modeled, it may be beneficial to learn non-stationary linear trends,

periodicity, etc. Some common kernels for capturing time-based trends (linear, polynomial, peri-

odic) are written as follows.

KLIN [i, j] := θcx
T
i xj (B.1)

KPOLY [i, j] := (xT
i xj + θc)

d (B.2)

KPER[i, j] := exp

(
−2
∑
k

sin2(
π

θp
(xi,k − xj,k))/θ`

)
(B.3)

These kernels could then be applied directly to the existing kernel structures from previous

chapters via their summation or multiplication.

118

B.1. TV-CSCP

B.1.3 Sensor Configuration and Algorithm Termination

The methodology for optimizing sensor configuration largely remains the same, as we utilize

the SAMI formulation as in Chapter 8 which was shown to be advantageous in scenarios where

the agent actively traversed the threat environment. Likewise, the Active SAMI surrogate function

emphasizes information gain within the actor horizon H, which is conducive to avoiding time-

varying threats. In regards to algorithm termination, we note that this also does not change, as

the GP regression with the ability to learn trends over time, it is capable of finding (though for

complex environments difficult to achieve) a path-plan with a specified termination threshold ε >

0. Otherwise, the algorithm proceeds until v` = vL.

119

Appendix C

Sparsity Techniques for CSCP

This appendix deals techniques for sparsity at various operations within the CSCP algorithm.

Herein, we describe a selection of methods which can be used to reduce time complexity for the

environment modeling, aggregation of measurement data, and the SAMI function.

C.1 Sparse Environment Modeling

The statistical environment models in this work rely on Gaussian Process Regression tech-

niques for nonparametric estimation of the underlying threat field. While the exact determination

of a Gaussian Process model’s hyperparameters was presented, the inference time scales unfavor-

ably with the amount of training data that is aggregated when inference is performedO(n3), where

n is the amount of training data. The following approaches are provided as a non-exhaustive se-

lection of strategies that a practitioner could use to reduce this computational burden that may be

helpful in certain applications.

C.1.1 Recursive Updates

One of the more direct approaches to deal with the growing amount of training data is to deal

with the modeling strategy directly. Rather than aggregate data each iteration of the CSCP algo-

rithm, one could define and train a GP model for just the current iteration training data. Once the

model is trained, we store the current field estimate and estimation error covariance and toss out

the previous sensor measurements. Given the assumption that the learned model follows a Gaus-

sian likelihood, a recursive weighted update may be applied, fusing the current and previous model

estimation. Let µ∗ and Σ∗ be the inferred values from the GPR model at iteration `. Using these

posteriors, we calculate the threat estimate and error covariance based on the previous estimate and

120

C.1. SPARSE ENVIRONMENT MODELING

error covariance, as follows:

Λ := (P `−1 + Σ∗)
−1 (C.1)

f ` := Σ∗Λf `−1 + P `−1Λµ∗, (C.2)

P ` := P `−1ΛΣ∗ (C.3)

We provide a note of caution in using this formulation. Due to the spatial properties of certain

kernels used in GP regression, the posterior estimates away from each iterations training data may

not capture the inherent uncertainty fully. As such, it may be overconfident in these regions and

generate a biased estimator of the underlying field model.

C.1.2 Sparse GP

In contrast to generating a new model each iteration, a practitioner could utilize a GP varia-

tion called Sparse Gaussian Processes or Sparse Variational Gaussian Processes (and other similar

variations) (Titsias, 2009). These methods rely on a set of m inducing points, which are such that

m << n, where n is the training data. In basic terms, the inducing points are either randomly

selected from the training set and optionally optimized to locations within the training set domain.

In doing so, the GP model requires only using these m inducing points for inference and thereby

reduces the prediction time complexity to O(nm2).

C.1.3 Online GP

Of notable consideration is the approach of training the GP in an online sequential fashion as

training data is made available. Conceptually, the GP would make modifications with the newly

available data while not having to relearn a good structure from scratch. A particular method of

note is the WISKI algorithm which utilizes the Woodbury Identity in combination with structured

kernel interpolation for constant-time O(1) online operations (Stanton et al., 2021). The method

additionally has caching capabilities of sub-computations. Such a method enables fast inference

and training while not requiring keeping a history of previous measurement data.

121

C.2. OBSERVATION SPARSITY

C.2 Observation Sparsity

Another area in which sparsity may be enforced is by directly altering the measurements which

are collected by the sensor network. Sometimes, too much data can be a burden even when applied

to the aforementioned sparse modeling approaches. Thus, we require a way to either combine the

provided information or reject some of that information depending on it’s quality.

C.2.1 Pooling to Workspace Vertices

One potential method for reducing the number of measurements aggregated prior to fitting

the statistical environment model is by pooling data which is spatially relevant to the workspace

vertices. Figure C.1 depicts two such methods, K-Nearest Neighbors (KNN) and pooling within a

cell. KNN operates by finding k measurements which are closest to a particular workspace vertex

and combines just those points. By contrast, the cell combines all points which are contained in

that area. KNN can therefore have a smoothing effect while the cell-based approach is a holistic

approach to combine the data within a defined spatial region in which a sensor FoV cover F

intersects some point i ∈ V . The observations are combined in a weighted manner at any vertex

i ∈ V for any j ∈ W such that j corresponds to the M ∈ N candidate observations for pooling:

zi = (zᵀjσ
2
j)/(1ᵀσj

2) (C.4)

σ2
i = (ΠM

j=1σ
2
j)/(1ᵀσj

2) (C.5)

C.2.2 Novelty Criteria and Surprise

Rather than pooling data or otherwise combining it, methods for statistically pruning data

which is not considered novel or does not possess a notion of surprise to the existing model is con-

sidered. Online learning using a Bayesian surprise metric is developed in (Hasanbelliu et al., 2012)

122

C.3. SPARSE SAMI REWARD FUNCTION

(a) (b)

Figure C.1: Example of observation combinations. (a) Combining with K-Nearest Neighbors with k = 3.
(b) Combining with cell region pooling. In these figures are the sensor Fov (dotted circle), workspace grid
points (black dots), observations (blue dots).

by assessing the prior and posterior distributions of the existing model when the data of question

is introduced. The data is classified as an outlier (discarded), interesting (kept for updating the

model), or redundant (discarded) based on an approximation to the Kullback-Leibler divergence

between the model with and without the new data point.

C.3 Sparse SAMI Reward Function

In Chapter 6 we presented the SAMI surrogate function, in Chapter 7 the multimodal SAMI

updates, and in Chapter 8 the modified Active SAMI surrogate function. The reward vector Γ

requires an upfront computational burden prior to optimizing the SAMI surrogate function for

optimal sensor configuration. We noted that for each variation of SAMI the scenario where i /∈ R,

i /∈ H, and i /∈ Rc the conditional entropy for each i could be batch computed given the respective

formulation. Likewise, whenever i was in any of these sets, we could compute the entropy for i

given each set exclusive of i in parallel. In either case, however, matrix inversion was required.

We note that the RBF Kernel KR has a covariance matrix structure equivalent to the cor-

relation matrix. Namely, for any point i, j ∈ N the correlation of f(i) and f(j) where f can

be described as a normal distribution is exactly κ(i, j). We can then define a region of support

123

C.3. SPARSE SAMI REWARD FUNCTION

Rsup ⊂ V as any i ∈ V that satisfies κ(i, j) > εsup for any j ∈ R,H,Rc, respectively, and εsup is

the threshold for minimum considered correlation.

Given the region of support Rsup, we can selectively compute a subset of workspace vertices

that satisfies the threshold εsup as batch or parallel operations as previously stated. For any i /∈

Rsup, we can set the Sami Reward vector as γ[i] = 0.

124

Appendix D

Supplementary Chapter 2 Results

(a) (b)

Figure D.1: Average percent error (a) and iterations (b) reduction by using CSCP instead of Info-Max for
various parameters and ε = 1.

(a) (b)

Figure D.2: Average percent error (a) and iterations (b) reduction by using CSCP instead of Info-Max for
various parameters and ε = 0.1.

125

(a) (b)

Figure D.3: Average percent error (a) and iterations (b) reduction by using CSCP instead of Info-Max for
various parameters and ε = 0.01.

(a) (b)

Figure D.4: Average percent error (a) and iterations (b) for Info-Max for various parameters and ε = 1.

126

(a) (b)

Figure D.5: Average percent error (a) and iterations (b) for Info-Max for various parameters and ε = 0.1.

(a) (b)

Figure D.6: Average percent error (a) and iterations (b) for Info-Max for various parameters and ε = 0.01.

(a) (b)

Figure D.7: Average percent error (a) and iterations (b) for CSCP for various parameters and ε = 1.

127

(a) (b)

Figure D.8: Average percent error (a) and iterations (b) for CSCP for various parameters and ε = 0.1.

(a) (b)

Figure D.9: Average percent error (a) and iterations (b) for CSCP for various parameters and ε = 0.01.

128

Figure D.10: Heatmap of average iterations required for CSCP convergence over Info-Max for various Ns,
resolution

√
Ng, threat parameters Np, and measurement density Mk for a termination threshold ε = 1.

129

Figure D.11: Heatmap of average iterations required for CSCP convergence over Info-Max for various Ns,
resolution

√
Ng, threat parameters Np, and measurement density Mk for a termination threshold ε = 0.1.

130

Figure D.12: Heatmap of average iterations required for CSCP convergence over Info-Max for various Ns,
resolution

√
Ng, threat parameters Np, and measurement density Mk for a termination threshold ε = 0.01.

131

Figure D.13: Heatmap of average error incurred for CSCP over Info-Max for various Ns, resolution
√
Ng,

threat parameters Np, and measurement density Mk for a termination threshold ε = 1.

132

Figure D.14: Heatmap of average error incurred for CSCP over Info-Max for various Ns, resolution
√
Ng,

threat parameters Np, and measurement density Mk for a termination threshold ε = 0.1.

133

Figure D.15: Heatmap of average error incurred for CSCP over Info-Max for various Ns, resolution
√
Ng,

threat parameters Np, and measurement density Mk for a termination threshold ε = 0.01.

134

Bibliography

A. B. Abdessalem, N. Dervilis, D. J. Wagg, and K. Worden. Automatic Kernel Selection for

Gaussian Processes Regression with Approximate Bayesian Computation and Sequential Monte

Carlo. Frontiers in Built Environment, 3, 2017. ISSN 2297-3362. doi: 10.3389/fbuil.2017.

00052.

S. Aggarwal and N. Kumar. Path planning techniques for unmanned aerial vehicles: A review, so-

lutions, and challenges. Computer Communications, 149:270–299, Jan. 2020. ISSN 01403664.

doi: 10.1016/j.comcom.2019.10.014.

W. H. Al-Sabban, L. F. Gonzalez, and R. N. Smith. Wind-energy based path planning for Un-

manned Aerial Vehicles using Markov Decision Processes. In 2013 IEEE International Con-

ference on Robotics and Automation, pages 784–789, May 2013. doi: 10.1109/ICRA.2013.

6630662.

T. Allen, A. Hill, J. Underwood, and S. Scheding. Dynamic path planning with multi-agent data fu-

sion - The Parallel Hierarchical Replanner. In 2009 IEEE International Conference on Robotics

and Automation, pages 3245–3250, May 2009. doi: 10.1109/ROBOT.2009.5152883.

M. Alodat and M. K. Shakhatreh. Gaussian process regression with skewed errors. Journal of

Computational and Applied Mathematics, 370:112665, May 2020. ISSN 03770427. doi: 10.

1016/j.cam.2019.112665.

S. Anavatti, S. Francis, and M. Garratt. Path-planning modules for Autonomous Vehicles: Current

status and challenges. pages 205–214, Oct. 2015. doi: 10.1109/ICAMIMIA.2015.7508033.

G. Andrew, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin. Bayesian Data Analysis,

Third Edition. Chapman & Hall/CRC, Boca Raton, FL, 2014. ISBN 978-1-4398-4095-5.

D. Arthur and S. Vassilvitskii. K-means++: The advantages of careful seeding. In Pro-

ceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

135

BIBLIOGRAPHY

’07, page 1027–1035, USA, 2007. Society for Industrial and Applied Mathematics. ISBN

9780898716245.

J. Banfi, J. Guzzi, A. Giusti, L. Gambardella, and G. A. Di Caro. Fair multi-target tracking in

cooperative multi-robot systems. In 2015 IEEE International Conference on Robotics and Au-

tomation (ICRA), pages 5411–5418. IEEE, 2015.

E. Blasch, D. A. Lambert, and E. Bosse. High-Level Information Fusion Management and Systems

Design. Artech House, 2012. ISBN 978-1-60807-151-7.

E. Blasch, J. J. Salerno, I. Kadar, S. J. Yang, L. Fenstermacher, M. R. Endsley, and L. Grewe.

Summary of human social, cultural, behavioral (hscb) modeling for information fusion panel

discussion. Proceedings of SPIE - The International Society for Optical Engineering, 8745:

87451I, May 2013.

E. Blasch, S. Liu, Z. Liu, and Y. Zheng. Deep Learning Measures of Effectiveness. In NAECON

2018 - IEEE National Aerospace and Electronics Conference, pages 254–261, July 2018. doi:

10.1109/NAECON.2018.8556808.

E. Blasch, R. Cruise, A. Aved, U. Majumder, and T. Rovito. Methods of AI for Multimodal Sensing

and Action for Complex Situations. AI Magazine, 40(4):50–65, 2019.

M. Blum and M. Riedmiller. Optimization of Gaussian Process Hyperparameters using Rprop.

Computational Intelligence, page 6, 2013.

S. Calinon, F. Guenter, and A. Billard. On Learning, Representing, and Generalizing a Task in a

Humanoid Robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

37(2):286–298, Apr. 2007. ISSN 1941-0492. doi: 10.1109/TSMCB.2006.886952.

R. J. G. B. Campello, D. Moulavi, and J. Sander. Density-based clustering based on hierarchical

density estimates. In J. Pei, V. S. Tseng, L. Cao, H. Motoda, and G. Xu, editors, Advances

in Knowledge Discovery and Data Mining, pages 160–172, Berlin, Heidelberg, 2013. Springer

Berlin Heidelberg. ISBN 978-3-642-37456-2.

136

BIBLIOGRAPHY

G. C. Cawley and N. L. C. Talbot. Preventing Over-Fitting during Model Selection via Bayesian

Regularisation of the Hyper-Parameters. page 21.

S. Chakravorty and R. Saha. Simultaneous planning localization and mapping: A hybrid Bayesian/

frequentist approach. In 2008 American Control Conference, pages 1226–1231, June 2008. doi:

10.1109/ACC.2008.4586660.

J. Chen, T. Li, T. Shu, and C. W. De Silva. Rapidly-Exploring Tree With Linear Reduction: A Near-

Optimal Approach for Spatiotemporal Sensor Deployment in Aquatic Fields Using Minimal

Sensor Nodes. IEEE Sensors Journal, 18(24):10225–10239, Dec. 2018. ISSN 1558-1748. doi:

10.1109/JSEN.2018.2874393.

H.-T. Chiang, N. Rackley, and L. Tapia. Runtime SES planning: Online motion planning

in environments with stochastic dynamics and uncertainty. In 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 4802–4809, Oct. 2016. doi:

10.1109/IROS.2016.7759705.

S. Chung, J. Lim, K. J. Noh, G. Kim, and H. Jeong. Sensor Data Acquisition and Multimodal

Sensor Fusion for Human Activity Recognition Using Deep Learning. Sensors, 19(7):1716,

Jan. 2019. doi: 10.3390/s19071716.

D. Cochran and A. O. Hero. Information-driven sensor planning: Navigating a statistical manifold.

In 2013 IEEE Global Conference on Signal and Information Processing, pages 1049–1052, Dec.

2013. doi: 10.1109/GlobalSIP.2013.6737074.

B. Cooper and R. V. Cowlagi. Decentralized Interactive Planning and Sensing in an Unknown

Spatiotemporal Threat Field. In 2019 Sixth Indian Control Conference (ICC), pages 110–115,

Dec. 2019a. doi: 10.1109/ICC47138.2019.9123221.

B. Cooper and R. V. Cowlagi. Interactive Planning and Sensing in Spatiotemporally Varying

Uncertain Environments. In 2019 18th European Control Conference (ECC), pages 2058–2064,

June 2019b. doi: 10.23919/ECC.2019.8796184.

B. S. Cooper and R. V. Cowlagi. Interactive planning and sensing in unknown static environments

137

BIBLIOGRAPHY

with task-driven sensor placement. Automatica, 105:391–398, July 2019c. ISSN 00051098. doi:

10.1016/j.automatica.2019.04.014.

M. M. Costa and M. F. Silva. A Survey on Path Planning Algorithms for Mobile Robots. In 2019

IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC),

pages 1–7, Apr. 2019. doi: 10.1109/ICARSC.2019.8733623.

R. V. Cowlagi. Multiresolution path-planning with traversal costs based on time-varying spatial

fields. In 53rd IEEE Conference on Decision and Control, pages 3745–3750, Dec. 2014. doi:

10.1109/CDC.2014.7039972.

A. C. Damianou and N. D. Lawrence. Deep Gaussian Processes. In 16th International Conference

on Artificial Intelligence and Statistics, volume 31, Scottsdale, AZ, USA, 2013. W&CP.

M. A. Demetriou and D. Uciński. State estimation of spatially distributed processes using mobile

sensing agents. In Proceedings of the 2011 American Control Conference, pages 1770–1776,

June 2011. doi: 10.1109/ACC.2011.5991065.

X. Deng, Y. Jiang, L. Yang, M. Lin, L. Yi, and M. Wang. Data Fusion Based Coverage Optimiza-

tion in Heterogeneous Sensor Networks: A Survey. Information Fusion, 52, Dec. 2018. doi:

10.1016/j.inffus.2018.11.020.

R. Du and R. V. Cowlagi. Interactive sensing and path-planning with incremental 3D path repair

for a quadrotor UAV in cluttered and partially known environments. In 2017 IEEE 56th Annual

Conference on Decision and Control (CDC), pages 933–938, Dec. 2017. doi: 10.1109/CDC.

2017.8263778.

J. Dunik, O. Straka, M. Simandl, and E. Blasch. Random-point-based filters: Analysis and com-

parison in target tracking. IEEE Transactions on Aerospace and Electronic Systems, 51(2):

1403–1421, Apr. 2015. ISSN 1557-9603. doi: 10.1109/TAES.2014.130136.

H. Durrant-Whyte and T. C. Henderson. Multisensor data fusion. In B. Siciliano and O. Khatib, ed-

itors, Springer Handbook of Robotics, pages 867–896. Springer International Publishing, Cham,

2016. ISBN 978-3-319-32552-1. doi: 10.1007/978-3-319-32552-1\%00835.

138

BIBLIOGRAPHY

D. Duvenaud, J. R. Lloyd, R. Grosse, J. B. Tenenbaum, and Z. Ghahramani. Structure Discovery

in Nonparametric Regression through Compositional Kernel Search. page 9.

M. Elbanhawi and M. Simic. Sampling-Based Robot Motion Planning: A Review. IEEE Access,

2:56–77, 2014. ISSN 2169-3536. doi: 10.1109/ACCESS.2014.2302442.

M. Farsi, M. A. Elhosseini, M. Badawy, H. Arafat Ali, and H. Zain Eldin. Deployment Techniques

in Wireless Sensor Networks, Coverage and Connectivity: A Survey. IEEE Access, 7:28940–

28954, 2019. ISSN 2169-3536. doi: 10.1109/ACCESS.2019.2902072.

M. Fernández-Delgado, M. Sirsat, E. Cernadas, S. Alawadi, S. Barro, and M. Febrero-Bande. An

extensive experimental survey of regression methods. Neural Networks, 111:11–34, Mar. 2019.

ISSN 08936080. doi: 10.1016/j.neunet.2018.12.010.

S. Fine. Efficient SVM Training Using Low-Rank Kernel Representations. page 22.

D. Garagić, J. Peskoe, F. Liu, M. S. Claffey, P. Bendich, J. Hineman, N. Borggren, J. Harer,

P. Zulch, and B. J. Rhodes. Upstream fusion of multiple sensing modalities using machine

learning and topological analysis: An initial exploration. In 2018 IEEE Aerospace Conference,

pages 1–8, Mar. 2018. doi: 10.1109/AERO.2018.8396737.

S. S. M. Gharib and P. Esmaili. ANFIS Based UKF-SLAM Path Planning Method. In 2019 3rd

International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT),

pages 1–5, Oct. 2019. doi: 10.1109/ISMSIT.2019.8932958.

K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and J. Schmidhuber. LSTM: A Search

Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10):2222–

2232, Oct. 2017. ISSN 2162-237X, 2162-2388. doi: 10.1109/TNNLS.2016.2582924.

T. Gu, K. Song, and C. Miao. A Motion Planning Algorithm Based on Uncertainty Prediction. In

2013 International Conference on Information Science and Cloud Computing, pages 1–6, Dec.

2013. doi: 10.1109/ISCC.2013.8.

M. Guo and M. M. Zavlanos. Probabilistic Motion Planning Under Temporal Tasks and Soft

Constraints. IEEE Transactions on Automatic Control, 63(12):4051–4066, Dec. 2018. ISSN

1558-2523. doi: 10.1109/TAC.2018.2799561.

139

BIBLIOGRAPHY

W. Guo, J. Wang, and S. Wang. Deep Multimodal Representation Learning: A Survey. IEEE

Access, 7:63373–63394, 2019. ISSN 2169-3536. doi: 10.1109/ACCESS.2019.2916887.

E. Hasanbelliu, K. Kampa, J. C. Principe, and J. T. Cobb. Online learning using a bayesian surprise

metric. In The 2012 International Joint Conference on Neural Networks (IJCNN), pages 1–8,

2012. doi: 10.1109/IJCNN.2012.6252734.

R. Herbrich, N. D. Lawrence, and M. Seeger. Fast Sparse Gaussian Process Methods: The Infor-

mative Vector Machine. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural

Information Processing Systems 15, pages 625–632. MIT Press, 2003.

Y. Huang and K. Gupta. RRT-SLAM for motion planning with motion and map uncertainty for

robot exploration. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, pages 1077–1082, Sept. 2008. doi: 10.1109/IROS.2008.4651183.

H. Igarashi. Motion planning of a mobile robot as a discrete optimization problem. In Proceed-

ings of the 2001 IEEE International Symposium on Assembly and Task Planning (ISATP2001).

Assembly and Disassembly in the Twenty-First Century. (Cat. No.01TH8560), pages 1–6, May

2001. doi: 10.1109/ISATP.2001.928957.

A. S. H. H. V. Injarapu and S. K. Gawre. A survey of autonomous mobile robot path planning

approaches. In 2017 International Conference on Recent Innovations in Signal Processing and

Embedded Systems (RISE), pages 624–628, Oct. 2017. doi: 10.1109/RISE.2017.8378228.

S. A. Israel and E. Blasch. Context Assumptions for Threat Assessment Systems. In L. Snidaro,

J. Garcı́a, J. Llinas, and E. Blasch, editors, Context-Enhanced Information Fusion, pages 99–

124. Springer International Publishing, Cham, 2016. ISBN 978-3-319-28969-4 978-3-319-

28971-7. doi: 10.1007/978-3-319-28971-7 5.

X. Ji and J. Li. Online Motion Planning for UAV under Uncertain Environment. In 2015 8th

International Symposium on Computational Intelligence and Design (ISCID), volume 2, pages

514–517, Dec. 2015. doi: 10.1109/ISCID.2015.178.

B. Kahler and E. Blasch. Predicted radar/optical feature fusion gains for target identification. In

140

BIBLIOGRAPHY

Proceedings of the IEEE 2010 National Aerospace Electronics Conference, pages 405–412, July

2010. doi: 10.1109/NAECON.2010.5712986.

M. Kamezaki, J. Yang, H. Iwata, and S. Sugano. Visibility enhancement using autonomous mul-

ticamera controls with situational role assignment for teleoperated work machines. Journal of

Field Robotics, 33(6):802–824, 2016.

L. Kaufman and P. J. Rousseeuw. Partitioning around medoids (program pam). Finding groups in

data: an introduction to cluster analysis, 344:68–125, 1990.

H. Kawano. Method for applying reinforcement learning to motion planning and control of under-

actuated underwater vehicle in unknown non-uniform sea flow. In 2005 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 996–1002, Aug. 2005. doi: 10.1109/IROS.

2005.1544973.

A. Khan, B. Rinner, and A. Cavallaro. Cooperative robots to observe moving targets. IEEE

transactions on cybernetics, 48(1):187–198, 2016.

J. Ko, D. J. Klein, D. Fox, and D. Haehnel. GP-UKF: Unscented kalman filters with Gaussian

process prediction and observation models. In 2007 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 1901–1907, San Diego, CA, Oct. 2007. IEEE. ISBN

978-1-4244-0911-2. doi: 10.1109/IROS.2007.4399284.

A. Krause, A. Singh, and C. Guestrin. Near-Optimal Sensor Placements in Gaussian Processes:

Theory, Efficient Algorithms and Empirical Studies. page 50.

A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in gaussian processes:

Theory, efficient algorithms and empirical studies. Journal of Machine Learning Research, 9

(2), 2008.

A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Robust Sensor Placements at Informative and

Communication-Efficient Locations. 2010.

P. Krishnamurthy and F. Khorrami. Optimal Sensor Placement for Monitoring of Spatial Networks.

IEEE Transactions on Automation Science and Engineering, 15(1):33–44, Jan. 2018. ISSN

1558-3783. doi: 10.1109/TASE.2016.2573818.

141

BIBLIOGRAPHY

H. Kurniawati, T. Bandyopadhyay, and N. M. Patrikalakis. Global Motion Planning under Uncer-

tain Motion, Sensing, and Environment Map. page 8.

M. W. Y. Lam, X. Chen, S. Hu, J. Yu, X. Liu, and H. Meng. Gaussian Process Lstm Recurrent

Neural Network Language Models for Speech Recognition. In ICASSP 2019 - 2019 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7235–7239,

May 2019. doi: 10.1109/ICASSP.2019.8683660.

S. M. LaValle. Motion Planning. IEEE Robotics Automation Magazine, 18(1):79–89, Mar. 2011.

ISSN 1558-223X. doi: 10.1109/MRA.2011.940276.

J. Li, B. Dai, D. Liu, Z. Zhao, and J. Ren. An optimal sampling-based path planning under un-

certainty based on linear quadratic regulator. In 2017 2nd International Conference on Robotics

and Automation Engineering (ICRAE), pages 84–88, Dec. 2017. doi: 10.1109/ICRAE.2017.

8291358.

J. Li, S. X. Yang, and Z. Xu. A Survey on Robot Path Planning using Bio-inspired Algorithms. In

2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), pages 2111–2116,

Dec. 2019. doi: 10.1109/ROBIO49542.2019.8961498.

S. Li, H. Zhang, S. Liu, and Z. Zhang. Optimal sensor placement using FRFs-based clustering

method. Journal of sound and vibration, 385:69–80, 2016. ISSN 0022-460X.

Z. Li, X. Hong, K. Hao, L. Chen, and B. Huang. Gaussian process regression with heteroscedastic

noises — A machine-learning predictive variance approach. Chemical Engineering Research

and Design, 157:162–173, May 2020. ISSN 02638762. doi: 10.1016/j.cherd.2020.02.033.

K. Liu, Y. Zhang, A. Dobson, and D. Berenson. Asymptotically Near-Optimal Methods for Kino-

dynamic Planning With Initial State Uncertainty. IEEE Robotics and Automation Letters, 4(2):

2124–2131, Apr. 2019. ISSN 2377-3766. doi: 10.1109/LRA.2019.2899931.

J. Llinas, L. Snidaro, J. Garcı́a, and E. Blasch. Context and Fusion: Definitions, Terminology. In

L. Snidaro, J. Garcı́a, J. Llinas, and E. Blasch, editors, Context-Enhanced Information Fusion,

pages 3–23. Springer International Publishing, Cham, 2016. ISBN 978-3-319-28969-4 978-3-

319-28971-7. doi: 10.1007/978-3-319-28971-7 1.

142

BIBLIOGRAPHY

C.-K. Lu and P. Shafto. Multi-source Deep Gaussian Process Kernel Learning. arXiv:2002.02826

[cond-mat, stat], Feb. 2020.

T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser. Heuristic approaches in robot path planning:

A survey. Robotics and Autonomous Systems, 86:13–28, Dec. 2016. ISSN 09218890. doi:

10.1016/j.robot.2016.08.001.

R. Madankan, S. Pouget, P. Singla, M. Bursik, J. Dehn, M. Jones, A. Patra, M. Pavolonis, E. Pit-

man, T. Singh, and P. Webley. Computation of probabilistic hazard maps and source parameter

estimation for volcanic ash transport and dispersion. Journal of Computational Physics, 271:

39–59, Aug. 2014. ISSN 00219991. doi: 10.1016/j.jcp.2013.11.032.

S. Martı́nez and F. Bullo. Optimal sensor placement and motion coordination for target tracking.

Automatica, 42(4):661–668, Apr. 2006. ISSN 00051098. doi: 10.1016/j.automatica.2005.12.

018.

A. Mavrinac and X. Chen. Modeling coverage in camera networks: A survey. International journal

of computer vision, 101(1):205–226, 2013.

D. P. Mesquita, J. P. Gomes, F. Corona, A. H. Souza, and J. S. Nobre. Gaussian kernels for

incomplete data. Applied Soft Computing, 77:356–365, Apr. 2019. ISSN 15684946. doi: 10.

1016/j.asoc.2019.01.022.

P. Mohajerin Esfahani, D. Chatterjee, and J. Lygeros. Motion Planning for Continuous-Time

Stochastic Processes: A Dynamic Programming Approach. IEEE Transactions on Automatic

Control, 61(8):2155–2170, Aug. 2016. ISSN 1558-2523. doi: 10.1109/TAC.2015.2500638.

M. Mohanan and A. Salgoankar. A survey of robotic motion planning in dynamic environments.

Robotics and Autonomous Systems, 100:171–185, Feb. 2018. ISSN 09218890. doi: 10.1016/j.

robot.2017.10.011.

J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng. Multimodal Deep Learning. page 8.

L. V. Nguyen, S. Kodagoda, R. Ranasinghe, and G. Dissanayake. Adaptive Placement for Mobile

Sensors in Spatial Prediction Under Locational Errors. IEEE Sensors Journal, 17(3):794–802,

Feb. 2017. ISSN 1558-1748. doi: 10.1109/JSEN.2016.2633958.

143

BIBLIOGRAPHY

B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli. A Survey of Motion Planning and

Control Techniques for Self-Driving Urban Vehicles. IEEE Transactions on Intelligent Vehicles,

1(1):33–55, Mar. 2016. ISSN 2379-8904. doi: 10.1109/TIV.2016.2578706.

B. Patle, G. Babu L, A. Pandey, D. Parhi, and A. Jagadeesh. A review: On path planning strate-

gies for navigation of mobile robot. Defence Technology, 15(4):582–606, Aug. 2019. ISSN

22149147. doi: 10.1016/j.dt.2019.04.011.

D. Praveen Kumar, T. Amgoth, and C. S. R. Annavarapu. Machine learning algorithms for wireless

sensor networks: A survey. Information Fusion, 49:1–25, Sept. 2019. ISSN 15662535. doi:

10.1016/j.inffus.2018.09.013.

L. Quan, L. Han, B. Zhou, S. Shen, and F. Gao. Survey of UAV motion planning. IET Cyber-

systems and Robotics, 2(1):14–21, 2020. ISSN 2631-6315. doi: 10.1049/iet-csr.2020.0004.

G. R. and V. Uma. Ontology based knowledge representation technique, domain modeling lan-

guages and planners for robotic path planning: A survey. ICT Express, 4(2):69–74, June 2018.

ISSN 24059595. doi: 10.1016/j.icte.2018.04.008.

D. Ramsden. OPTIMIZATION APPROACHES TO SENSOR PLACEMENT PROBLEMS.

page 80.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. Adaptive

Computation and Machine Learning. MIT Press, Cambridge, Mass, 2006. ISBN 978-0-262-

18253-9.

S. Reece and S. Roberts. An introduction to Gaussian processes for the Kalman filter expert. In

2010 13th International Conference on Information Fusion, pages 1–9, Edinburgh, July 2010.

IEEE. ISBN 978-0-9824438-1-1. doi: 10.1109/ICIF.2010.5711863.

S. Rhode. Non-stationary Gaussian process regression applied in validation of vehicle dynam-

ics models. Engineering Applications of Artificial Intelligence, 93:103716, Aug. 2020. ISSN

09521976. doi: 10.1016/j.engappai.2020.103716.

144

BIBLIOGRAPHY

S. Roberts, M. Osborne, M. Ebden, S. Reece, N. Gibson, and S. Aigrain. Gaussian processes

for time-series modelling. Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 371(1984):20110550, Feb. 2013. ISSN 1364-503X, 1471-

2962. doi: 10.1098/rsta.2011.0550.

C. Robin and S. Lacroix. Multi-robot target detection and tracking: taxonomy and survey. Au-

tonomous Robots, 40(4):729–760, 2016.

R. Sarrate, J. Blesa, and F. Nejjari. Clustering techniques applied to sensor placement for leak

detection and location in water distribution networks. In 22nd Mediterranean Conference on

Control and Automation, pages 109–114, Palermo, Italy, June 2014. IEEE. ISBN 978-1-4799-

5901-3 978-1-4799-5900-6. doi: 10.1109/MED.2014.6961356.

M. Schürch, D. Azzimonti, A. Benavoli, and M. Zaffalon. Recursive estimation for sparse

Gaussian process regression. Automatica, 120:109127, Oct. 2020. ISSN 00051098. doi:

10.1016/j.automatica.2020.109127.

O. Sharma, N. C. Sahoo, and N. B. Puhan. A Survey on Smooth Path Generation Techniques for

Nonholonomic Autonomous Vehicle Systems. In IECON 2019 - 45th Annual Conference of

the IEEE Industrial Electronics Society, volume 1, pages 5167–5172, Oct. 2019. doi: 10.1109/

IECON.2019.8926946.

D. Shen, E. Blasch, P. Zulch, M. Distasio, R. Niu, J. Lu, Z. Wang, and G. Chen. A joint

manifold leaning-based framework for heterogeneous upstream data fusion. Journal of Al-

gorithms & Computational Technology, 12(4):311–332, Dec. 2018. ISSN 1748-3026. doi:

10.1177/1748301818791507.

V. N. Sichkar. Reinforcement Learning Algorithms in Global Path Planning for Mobile Robot.

In 2019 International Conference on Industrial Engineering, Applications and Manufacturing

(ICIEAM), pages 1–5, Mar. 2019. doi: 10.1109/ICIEAM.2019.8742915.

P. Skoglar, J. Nygards, and M. Ulvklo. Concurrent Path and Sensor Planning for a UAV - Towards

an Information Based Approach Incorporating Models of Environment and Sensor. In 2006

145

BIBLIOGRAPHY

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2436–2442, Oct.

2006. doi: 10.1109/IROS.2006.281685.

L. Snidaro, J. Garcı́a, J. Llinas, and E. Blasch, editors. Context-Enhanced Information Fusion:

Boosting Real-World Performance with Domain Knowledge. Advances in Computer Vision and

Pattern Recognition. Springer International Publishing, Cham, 2016. ISBN 978-3-319-28969-4

978-3-319-28971-7. doi: 10.1007/978-3-319-28971-7.

B. Song, G. Qi, and L. Xu. A Survey of Three-Dimensional Flight Path Planning for Unmanned

Aerial Vehicle. In 2019 Chinese Control And Decision Conference (CCDC), pages 5010–5015,

June 2019. doi: 10.1109/CCDC.2019.8832890.

H. Soni, V. Gupta, and R. Kumar. Motion Planning using Reinforcement Learning for Electric

Vehicle Battery optimization(EVBO). In 2019 International Conference on Power Electronics,

Control and Automation (ICPECA), pages 1–6, Nov. 2019. doi: 10.1109/ICPECA47973.2019.

8975684.

S. Stanton, W. Maddox, I. Delbridge, and A. G. Wilson. Kernel interpolation for scalable online

gaussian processes. In International Conference on Artificial Intelligence and Statistics, pages

3133–3141. PMLR, 2021.

F. Stulp and O. Sigaud. Many regression algorithms, one unified model: A review. Neural Net-

works, 69:60–79, Sept. 2015. ISSN 08936080. doi: 10.1016/j.neunet.2015.05.005.

C. Sun, Y. Yu, V. O. Li, and J. C. Lam. Optimal Multi-type Sensor Placements in Gaussian Spatial

Fields for Environmental Monitoring. In 2018 IEEE International Smart Cities Conference

(ISC2), pages 1–8, Sept. 2018. doi: 10.1109/ISC2.2018.8656676.

H. Sun, W. Deng, S. Zhang, S. Wang, and Y. Zhang. Trajectory planning for vehicle autonomous

driving with uncertainties. In Proceedings 2014 International Conference on Informative and

Cybernetics for Computational Social Systems (ICCSS), pages 34–38, Oct. 2014. doi: 10.1109/

ICCSS.2014.6961812.

Y. Sung, A. K. Budhiraja, R. K. Williams, and P. Tokekar. Distributed simultaneous action and

146

BIBLIOGRAPHY

target assignment for multi-robot multi-target tracking. In 2018 IEEE International conference

on robotics and automation (ICRA), pages 3724–3729. IEEE, 2018.

T. Tao, Y. Huang, F. Sun, and T. Wang. Motion Planning for SLAM Based on Frontier Exploration.

In 2007 International Conference on Mechatronics and Automation, pages 2120–2125, Aug.

2007. doi: 10.1109/ICMA.2007.4303879.

E. L. Thorn. Autonomous Motion Planning Using a Predictive Temporal Method. page 171.

S. Thrun. Learning Occupancy Grid Maps With Forward Sensor Models. page 28.

S. Thrun. Probabilistic robotics. Communications of the ACM, 45(3), Mar. 2002. ISSN 00010782.

doi: 10.1145/504729.504754.

M. Titsias. Variational learning of inducing variables in sparse gaussian processes. In Artificial

intelligence and statistics, pages 567–574. PMLR, 2009.

A. Toriz Palacios and A. Sánchez López. A New Strategy for Exploring Unknown Environments

for the SLAM Problem. In 2017 Sixteenth Mexican International Conference on Artificial Intel-

ligence (MICAI), pages 9–14, Oct. 2017. doi: 10.1109/MICAI-2017.2017.00010.

V. Tresp. A Bayesian Committee Machine. Neural Computation, 12(11):2719–2741, Nov. 2000.

ISSN 0899-7667, 1530-888X. doi: 10.1162/089976600300014908.

D. Uciński. Sensor network scheduling for identification of spatially distributed processes. Inter-

national Journal of Applied Mathematics and Computer Science, 22(1):25–40, Mar. 2012. ISSN

1641-876X. doi: 10.2478/v10006-012-0002-0.

L. Van Nguyen, S. Kodagoda, R. Ranasinghe, and G. Dissanayake. Locational optimization based

sensor placement for monitoring Gaussian processes modeled spatial phenomena. In 2013 IEEE

8th Conference on Industrial Electronics and Applications (ICIEA), pages 1706–1711, June

2013. doi: 10.1109/ICIEA.2013.6566643.

S. Vasudevan. Data fusion with Gaussian processes. Robotics and Autonomous Systems, 60(12):

1528–1544, Dec. 2012. ISSN 09218890. doi: 10.1016/j.robot.2012.08.006.

147

BIBLIOGRAPHY

J. K. Verma and V. Ranga. Target tracking with cooperative networked robots. In 2020 7th In-

ternational Conference on Signal Processing and Integrated Networks (SPIN), pages 981–985,

2020. doi: 10.1109/SPIN48934.2020.9071411.

H. Wang, Y.-M. Zhang, J.-X. Mao, and H.-P. Wan. A probabilistic approach for short-term predic-

tion of wind gust speed using ensemble learning. Journal of Wind Engineering and Industrial

Aerodynamics, 202:104198, July 2020. ISSN 0167-6105. doi: 10.1016/j.jweia.2020.104198.

J. Wang and X. Su. An improved K-Means clustering algorithm. In 2011 IEEE 3rd International

Conference on Communication Software and Networks, pages 44–46, May 2011. doi: 10.1109/

ICCSN.2011.6014384.

C. K. I. Williams and M. Seeger. Using the Nyström Method to Speed Up Kernel Machines. In

T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing

Systems 13, pages 682–688. MIT Press, 2001.

A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing. Deep Kernel Learning. arXiv:1511.02222

[cs, stat], Nov. 2015.

J. Xie, X. Shen, Z. Wang, and Y. Zhu. Gaussian Process Fusion for Multisensor Nonlinear Dynamic

Systems. In 2018 37th Chinese Control Conference (CCC), pages 4124–4129, July 2018. doi:

10.23919/ChiCC.2018.8483873.

R. Xu and D. Wunsch. Survey of clustering algorithms. IEEE Transactions on Neural Networks,

16(3):645–678, 2005. doi: 10.1109/TNN.2005.845141.

T. Yan, Y. Zhang, and B. Wang. Path Planning for Mobile Robot’s Continuous Action Space Based

on Deep Reinforcement Learning. In 2018 International Conference on Big Data and Artificial

Intelligence (BDAI), pages 42–46, June 2018. doi: 10.1109/BDAI.2018.8546675.

Y. Yang, J. Pan, and W. Wan. Survey of optimal motion planning. IET Cyber-systems and Robotics,

1(1):13–19, 2019. ISSN 2631-6315. doi: 10.1049/iet-csr.2018.0003.

D. Yoganathan, S. Kondepudi, B. Kalluri, and S. Manthapuri. Optimal sensor placement strategy

for office buildings using clustering algorithms. Energy and buildings, 158:1206–1225, 2018.

ISSN 0378-7788.

148

BIBLIOGRAPHY

M. Younis and K. Akkaya. Strategies and techniques for node placement in wireless sensor

networks: A survey. Ad Hoc Networks, 6(4):621–655, June 2008. ISSN 15708705. doi:

10.1016/j.adhoc.2007.05.003.

Y. Zhao, Z. Zheng, and Y. Liu. Survey on computational-intelligence-based UAV path planning.

Knowledge-Based Systems, 158:54–64, Oct. 2018. ISSN 09507051. doi: 10.1016/j.knosys.

2018.05.033.

X. Zhou, Z. Yi, Y. Liu, K. Huang, and H. Huang. Survey on path and view planning for UAVs.

Virtual Reality & Intelligent Hardware, 2(1):56–69, Feb. 2020. ISSN 20965796. doi: 10.1016/

j.vrih.2019.12.004.

149

	Introduction
	Motivation and Problem Statement
	Background and Literature Review
	Model Estimation, Inference, and Forecasting
	Path-Planning and Motion-Planning under Uncertainty
	Optimal and Near-Optimal Sensor Placement
	Multimodal Sensing and Data Fusion
	Interactive Planning and Sensing in Time-Varying Environments

	Dissertation Overview and Statement of Contributions
	Dissertation Overview
	Statement of Contributions

	Coupled Sensor Configuration and Path-Planning
	Problem Overview
	Coupled Sensor Configuration and Path-Planning
	Algorithm Initialization
	Sensor Network Configuration
	GPR-based Field Estimation
	Termination Criteria
	Algorithm Properties and Convergence
	Results and Discussion

	Disaster Scenario in St. Lucia

	Greedy Batched CSCP for Safety Critical Scenarios
	Greedy Batched CSCP
	Greedy Region of Interest Pruning
	Batched Sensor Configuration
	Algorithm Properties

	Results and Discussion
	Demonstrative Example

	Exploration Efficient CSCP with High Sensor Counts
	Exploration Efficient CSCP
	Generating Statistically Feasible Path-Plans
	Region of Interest Weighting

	Performance Comparison

	Qualitative Sensor Configuration for CSCP
	Adaptive Cluster Analysis for CSCP
	CLAN Algorithm
	Exploratory Clustering
	Exploitative Clustering
	Cluster Check and Polishing

	Performance Comparison
	Applied Comparison

	Self-Adaptive Mutual Information for CSCP
	Problem Motivation
	Surrogate Optimization Function
	Sequential Optimization Optimality Guarantees
	Performance Comparison
	TDIG vs. SAMI Performance
	Joint vs. Sequential Sensor Configuration Optimization
	Effects of the Adaptation Parameter

	Demonstrative Example

	CSCP in Multimodal Threat Environments
	Problem Motivation
	Multimodal Threat Environment
	Heterogeneous Sensor Payloads
	Multimodal Field Estimation
	Sensor Configuration for Heterogeneous Sensor Networks
	Fully Observable Sensor Payloads
	Partially Observable Sensor Payloads
	Uniquely Observable Sensor Payloads

	Results and Discussion
	Demonstrative Example

	Active Coupled Sensor Configuration and Path-Planning
	Problem Motivation
	Active CSCP
	Actor Horizon and Planning
	Environment Estimation and Sensor Configuration
	The Active SAMI Surrogate Function
	Algorithm Termination

	Results and Discussion
	SAMI vs Active SAMI Demonstrative Example

	Conclusions and Future Works
	Future Work Considerations
	Sensor Field of View Constraints and Parameters
	Sensor Network Costs
	Selective Sensing
	Human-in-the-loop Considerations
	Efficient Real-Time Sensor Configuration for Tracking

	Appendix CSCP for Multi-Agent Multi-Goal Scenarios
	Appendix CSCP in Spatiotemporally Evolving Threat Fields
	TV-CSCP
	Problem Overview
	Time-Dependent Threat Estimation
	Sensor Configuration and Algorithm Termination

	Appendix Sparsity Techniques for CSCP
	Sparse Environment Modeling
	Recursive Updates
	Sparse GP
	Online GP

	Observation Sparsity
	Pooling to Workspace Vertices
	Novelty Criteria and Surprise

	Sparse SAMI Reward Function

	Appendix Supplementary Chapter 2 Results

