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ABSTRACT

Readmissions are a financial burden and challenge for hospitals. Prior work has explored var-

ious structured predictors and machine learning algorithms to predict the risk of readmissions due

to complications following colorectal, cardiac, and abdominal surgeries [1] and heart failure [2].

Models trained on clinical notes have generally resulted in a much better predictive performance

for the hospital readmission task. The goal of this project is to analyze the results achieved in prior

work and build a model which predicts readmission risk from a combination of clinical notes, vital

signs and ICD codes. This will be achieved by concatenating clinical BERT embeddings created

via pre-training on clinical notes, the vital signs data and the ICD codes embedding for each pa-

tient’s visit to predict readmission within the 30-day time period after discharge. In addition, we

will also explore various BERT models including ClinicalBERT that has been pre-trained on dis-

charge summaries and clinical text for the task of predicting readmission within 30 days using the

MIMIC-III dataset and rigorously evaluate alternative approaches.
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NOMENCLATURE

BERT Bidirectional Encoder Representations from Transformers

ICD International Classification of Disease

EHR Electronic Health Records

CNN Convolutional Neural Network

RNN Recurrent Neural Network

TL Transfer Learning

MLM Masked Language Modeling

NSP Next Sentence Prediction

NLP Natural Language Processing

ML Machine Learning

HHC Home Healthcare

ITL Inductive Transfer Learning

AUROC Area Under the Receiver Operating Characteristic curve

AUPRC Area Under the Precision-Recall curve

RP80 Recall-Precision at 80%
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1. INTRODUCTION

1.1 Introduction

Hospital readmission is among the most critical issues in the healthcare system due to its high

frequency and cost. A hospital readmission is defined as an admission to a hospital shortly after

discharge within a short period of time (typically within 30 days) after an original admission [3]

where the patient requires retreatment. Readmitted patients represent a significant health care value

problem and are associated with high financial costs, which ultimately make the high readmission

rates undesirable. Readmissions can be for planned or unplanned reasons [3] and could be at the

same hospital as original admission or a different one. Since readmissions are an economic burden

on the healthcare system, it is necessary that hospitals reduce their readmission rates in a cost ef-

fective manner while identifying patients who indeed require readmission after being discharged.

Approximately 10% of critically ill patients following discharge face the adverse outcome expe-

rience of being readmitted [4]. Such a high rate of readmission is also an indicator of poor or

incomplete medical care [4] provided by the hospital.

Electronic Health Records (EHRs) contain huge amounts of patient information including pa-

tient physiological data, interventions, treatments and diagnoses [5]. EHRs also include clinical

notes, vital sign data and ICD code information. Clinical notes written by clinicians and care-

givers provide a much richer insight of a patient’s symptoms, radiology results, daily activities and

patient history since the time of admission [6]. In addition, the instability of vital signs during a pa-

tient’s stay and at the time of discharge can also be used as an important feature to assess readiness

and safety of discharge, and to lower 30 day mortality and readmissions [7]. Furthermore, ICD

(International Classification of Disease) coding, which are alphanumeric codes assigned to every

disease, injury and symptom, are used by doctors, healthcare consulting firms and public health

agencies all over the globe to represent different diagnoses. They are considered one of the most

predictive variables that classify and encodes all diagnoses, symptoms and procedures associated
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with a patient’s visit, which can aid in hospital readmission prediction.

In prior work, methods have been developed to predict the risk of readmissions due to com-

plications following colorectal, cardiac, and abdominal surgeries [1] and heart failure [2]. These

previous efforts to predict readmission risk, have relied mostly on structured predictors [1] and ma-

chine learning algorithms. Many studies have trained ML classifiers such as Random Forest (RF),

Logistic Regression (LR) and Support Vector Machine (SVM) [8] to obtain a patient’s risk of read-

mission. Some have even considered this problem as a binary classification task [3], while others

have stated the need for a solution tailored for specific disease groups for better prediction. Models

trained on clinical notes ([6],[9]) have indeed resulted in a much better predictive outcome for the

hospital readmission task. Very few prior approaches have combined structured and unstructured

data as inputs to a model, which we explore.

With the increase in free and unstructured clinical text data available nowadays and the pre-

dictive ability of ICD codes and vital signs, our main contribution in this work will be to develop

a model and evaluate it’s predictive capabilities on 30-day readmission using all three data types

as input features to a ML model. In this research, we will utilize the MIMIC-III dataset, a large

database comprising of information relating to patients admitted to critical care units, to build a

BERT (Bidirectional Encoder Representations from Transformers)-based model that can perform

predictions for our specific task of patient readmission within a 30 day time period using clinical

notes, vital signs and ICD codes. A transformer [10] is a deep learning model that adopts the mech-

anism of self-attention and assigns a different weight to each part of the input. Similarly, BERT is

a transformer-based language representation model designed to pre-train deep bi-directional rep-

resentations from unlabeled text by jointly conditioning on both left and right context in all layers.

BERT models are good at handling language-based tasks and have outperformed many models on

simple NLP tasks. In rigorous evaluation, we will compare our proposed model with previously

proposed BERT and Machine Learning (ML) baseline models including ClinicalBERT [6], which

are text representations that were developed from clinical notes to leverage the temporal infor-

mation of the sequence of the notes. Both [6] and [9] use physician and nursing notes from the

2



MIMIC-III dataset. These models represent the state-of-the-art in readmission risk prediction, and

have outperformed the baseline models BERT [11], XLNet [12], highlighting the need for building

models tailored to clinical data. To assess the performance differences amongst the models, we

will use the standard precision, recall, F-measure evaluation metrics as well as AUROC, AUPRC

and RP80.

1.2 Importance of using high-quality clinical notes to make predictions

The use of clinical notes to predict clinical outcomes has become widespread. These notes

impart rich information regarding a patient’s medical and socio-behavioral risk factors [13]. In

[13], each clinical nursing note documented for a Home Healthcare patient is classified as either

"concerning" or "not concerning", using a rule-based NLP system that identifies the various risk

factors that may lead to a patient’s risk of hospitalization. Another study [14] leveraged both

longitudinal electronic health records and clinical documentation to improve predictive models of

HIV diagnosis. This study showed that NLP models were able to extract clinical terms that were

highly indicative of high-risk behaviour. The predictive model which combined the baseline and

NLP keyword model, yielded the highest precision, an F-measure of 0.74 much better than the

baseline model itself that did not include keywords indicative of additional HIV risk factors [14].

1.3 Importance of Real-time EHR data

The use of electronic health records (EHRs) has sky-rocketed in the past couple of years. In

2009, 12.2% of US hospitals had a basic EHR system, which has increased to 75.5% by 2014 [15].

Many machine learning techniques are applied to EHRs data to identify patients at high risk of

serious conditions. The adoption of digital records over paper records is mainly due to how patient

data is organized digitally and made accessible. EHRs offer access to longitudinal data that may

aid in predicting future outcomes or diagnoses, and open opportunities to personalize decision-

making for a given patient [16]. These comprehensive digital records store both structured and

unstructured data and its real-time recording has shown to improve patient care greatly.

3



1.3.1 Incorporating vital signs data for better prediction

Vital signs are measurements of a body’s most basic functions. There are four main vital signs

that are routinely monitored by clinical professionals and health care specialists which include:

body temperature, pulse rate (heart rate), blood pressure and breathing rate. The utility of these

vital signs has been majorly neglected and underutilized to identify disease severity in patients.

Therefore, in [17], the authors show that an increase in the respiratory rate can have a significant

impact on patients who suffer from sepsis and early and timely interventions with the help and

incorporation of vital signs data can improve the outcome for the patients.

1.4 Measuring patient health using ICD codes

International Classification of Diseases (ICD) code is an important label of EHR. They are used

to identify symptoms and signs, diseases and abnormal findings, or operations as general labels for

clinical records [18]. A study conducted in [19], compared the predictive power of the uniformly

available ICD codes to Injury Severity Score (ISS) to derive survival risk ratios, and confirmed that

ICD diagnosis codes could be equal or better predictors of survival. Another study [20], sought to

determine the accuracy of ICD-9-CM(Clinical Modification) codes for identifying cardiovascular

and stroke risk factors and concluded that ICD-9-CM codes alone do not guarantee the presence

of heart failure, coronary artery disease, diabetes, hypertension and stroke and requires additional

data to make solid conclusions. However, the study did conclude that ICD-9-CM codes for all risk

factors had high specificity (>0.95) and low sensitivity (<=0.76).

1.5 Impact of structured and unstructured data on prediction

As discussed in section 1.3, EHRs are gaining rapid adoption due to their rich, longitudinal

qualities and their versatility to contain both structured and unstructured data. Structured data

is easier to extract and incorporate into a predictive model than unstructured data. But recent

advancements in NLP, have opened new opportunities to developing techniques that have allowed

the easy extraction of valuable information from unstructured text in EHR progress notes [21].

In addition, the authors demonstrated in their study, [21], that both unstructured and structured
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information combined, have exhibited interesting patterns that enhance the predictive ability of the

model and facilitate early detection of diseases such as heart failure. The idea that NLP is more

focused on word, sentence and document-level representations of unstructured text and that patient

health data can be represented in structured forms such as medical codes, demographics and vital

signs, gives a monumental launching off point for future deep clinical research [22].

1.6 Advantages of models that utilize Transfer Learning

In recent advancements, the field of NLP has witnessed the rise of several transfer learning

methods and architectures being applied in the field, which have remarkably improved upon state-

of-the-art models on a number of NLP tasks. The idea behind transfer learning, is to transfer

parameters or knowledge from one trained model to another [23]. Modern transfer learning meth-

ods focus on the pre-training stage, understanding the information that the learnt representations

capture and adapting these models to downstream NLP tasks. Usually architecture modifications

entail adding a few additional embeddings to additional layers on top of a pre-trained model or

inserting intervening layers or modules inside the pre-trained model [24]. TL is divided into trans-

ductive transfer learning and inductive transfer learning (ITL). We will be focusing on ITL which

is further divided into four categories: Sequential fine tuning, adapter modules, feature-based and

zero-shot. The sequential fine tuning approach, is regarded as one of the dominant approaches in

the field as compared to the other approaches. BERT’s architecture follows the sequential trans-

fer learning approach and is trained on two unsupervised tasks, Masked Language Model (MLM)

and Next Sentence Prediction (NSP). Thus fine-tuning simply entails providing the model with the

required inputs and outputs representations that are compatible for the tasks.

1.7 Thesis overview

In order to measure the performance of clinical notes with ICD codes, we proposed a model

that used the embeddings of both input features to predict hospital readmission. We evaluated our

model against the state-of-the-art ClinicalBERT model and previously proposed ML classifiers.

We incorporated the learnings from the previously proposed models and utilized the data from
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the MIMIC-III dataset in this study. Feature selection is an important task to maximize the target

task’s performance.

1.8 Novelty of this thesis in relation to prior work

This thesis explores the importance of predicting hospital readmissions using clinical notes,

EHRs and ICD codes. Previously no studies have incorporated all three features using a BERT

model to predict readmissions. There have been studies that have investigated common causes

and pattern of short and long term readmissions in stroke patients [25]. Many other have utilized

machine learning algorithms to predict readmission but none used the BERT approach with these

input features.

1.9 Thesis contributions

• We proposed a method to combine structured and unstructured data using BERT models

• We proposed a set of embeddings as representations for combining structured and unstruc-

tured data types

• Systematic evaluation of our approach against the ClinicalBERT baseline model for predict-

ing hospital readmission including rigorous experiments with ML classification baselines as

comparisons to our new model

1.10 Thesis outline

The thesis is presented in subsequent chapters as follows. Chapter 2 summarizes a background

of hospital readmission, followed by prior works that have tackled the readmission prediction task

as well. In Chapter 3, we proposed a model for readmission prediction that uses ICD codes and

clinical notes, the MIMIC-III dataset and evaluation methods. The evaluation results are presented

in Chapter 4 with discussion in Chapter 5. Finally, Chapter 6 concludes this study and discusses

any possible future work.
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2. BACKGROUND AND RELATED WORK

2.1 Hospital Readmission

Multiple factors can prompt a reason for a patient’s readmission to a hospital and many factors

such as age, co-morbidities, economic disadvantage and number of previous admissions have been

used as predictor variables to predict hospital readmissions. But the outcome obtained from these

models have not been very conclusive due to the non-homogeneity of the patient groups [26].

Moreover, studies ([27],[28]) have found that the most common reasons for readmission have been

heart failure [29], gastrointestinal disorders, pneumonia[30] and acute myocardial infarction (AMI)

[31]. These diseases pose a substantial health and economic burden nationally and readmissions

due to them are expected to grow significantly in the next two decades in the United States [31].

The use of data obtained from inpatient care records, discharge notes and clinical data have shown

to reduce preventable readmissions more than the above mentioned factors.

2.2 Machine learning models used to predict hospital readmission

Recent comparative studies have suggested that machine learning techniques can improve pre-

diction ability over traditional statistical approaches [32]. Performance of ML models used for

readmission risk prediction can be improved by incorporating feature selection techniques and

class imbalance. Feature selection techniques allow the identification of the most important vari-

ables of a dataset and this has proven useful in identifying the key variables associated to a dis-

ease. In addition, feature selection techniques aid in reducing overfitting and the complexity of

the model, increasing model interpretability. Class imbalance on the other hand deals with an

imbalanced training dataset, that causes a resulting model to be biased to a majority class. ML

techniques such as Logistic Regression and neural network models have proven to be the more

dominant modelling methods [32].
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2.3 Prior work predicting hospital readmission

This section reviews previous work on hospital readmission prediction of patients using ma-

chine learning classifiers including Random Forest (RF), Support Vector Machine (SVM), Logistic

Regression (LR) and Multi-Layer Perceptron (MLP), ClinicalBERT [6] and ClinicalXLNet [9].

A similar study conducted in [8] explores the MIMIC III dataset, in particular the International

Classification of Disease (ICD) codes, vital signs from chart events and gender from demographics

data to target the problem of 30-day readmission prediction. Before generating the feature vectors,

they identified the patient visits that were readmissions. For each visit they extracted the features

from the database (vital signs and ICD codes) and performed aggregation at visit level for both the

vital sign measurements and ICD code embeddings, which were used as input to the classifiers.

They trained four classifiers, Random Forest (RF), Support Vector Machine (SVM), Logistic Re-

gression (LR) and Multi-Layer Perceptron (MLP), of which Random Forest gave the best results

of accuracy 0.656 and area under the ROC curve of 0.660. The limitations with SVM, LR and

MLP were that they had a higher false positive rate compared to RF, with most visits incorrectly

classified as readmission.

Another study [3], formalized the task of predicting early patient readmissions as a binary clas-

sification task using the New Zealand National Minimum dataset, obtained from the New Zealand

Ministry of Health. They used a few background variables such as a patient’s race, sex, age, and

length of stay, and the most informative aspect of the dataset as noted by them, the large collection

of ICD-10-AM (Austria modification) medical codes assigned to each patient visit. Just as the

previous study, Random Forest and deep neural networks have significantly better predictive per-

formance than Logistic Regression. While deep learning models pose the most challenges due to

the large number of model parameters, they also possess the greatest potential to boost predictive

accuracy in statistical approaches to predicting early admission [3].

While [3] is a study that was done in 2015, they identified that ”local” methods that were

specific to a particular patient population outperformed a ”global” method that did not take in to

account the varying nature of the different disease groups. The benefit of this as noted by them is
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that the model would be tailored to the specific population of interest and consequently result in a

better prediction of readmissions of specific subgroups.

Barbieri et al. [4], in their study compared several deep learning models for predicting the risk

of readmission within 30 days of discharge from the ICU, based on the full clinical history of a

patient. They concluded from their research that attention-based networks may be preferable to

recurrent networks and that diagnosis and procedure codes associated with ICU admissions prior

to the index admission, as well as medications and vital signs, alone provide limited additional

value when predicting readmission.

The more recent work [33] on readmission prediction has used clinical notes to predict read-

mission within 48 hours of a patient being admitted to the hospital. The proposed predictive

model showed better prognostic capability in predicting readmission than the machine learning

model alone. They showed significant improvements of 11%-28% in sensitivity and 1%-3% in the

area-under-the-receiver operating characteristic (AUROC) curve. Also, as mentioned in [34], pre-

diction models using EMR (Electronic Medical Records) data have better predictive performance

than those using administrative data.

ClinicalBERT [6] and ClinicalXLNet [9] made use of clinical notes which is unexploited in

predictive modeling compared to structured data. In [9] the clinical notes leveraged temporal

information of the sequence of the notes and their experiments demonstrated that Clinical XLNet

outperformed the best baselines consistently.

Our work will differ from all prior work because we are focusing on combining vital signs

with embeddings generated from two types of input data (clinical text and ICD codes) to predict

readmission and to investigate whether the aforementioned information will produce better read-

mission risk prediction using the BERT architecture and compare our results with the previously

pre-trained BERT ([6]) model.
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2.4 Background

2.4.1 Deep Learning and Natural Language Processing (NLP)

Natural Language Processing (NLP) with Deep Learning (DL) is a powerful combination. With

the creation of neural language models the process of obtaining good word embeddings has become

much easier. The first word embedding model utilizing neural networks was published in 2013 [35]

by research at Google. Word embeddings have become an integral part of NLP models nowadays,

mainly because of their effectiveness in modeling the semantic importance of a word by placing

semantically similar inputs close together in the embedding space and in a numeric form, which

makes it easier to perform mathematical operations [36]. Embeddings allow tranforming high-

dimensional vectors into a relatively low-dimensional vector.

Word embeddings which is a learned representation of text where individual words are repre-

sented as real-valued vectors in a predefined vector space and words that have the same meaning

have a similar representation. This has been one of the key breakthroughs when it comes to the out-

standing performance of deep learning methods on natural language processing tasks. In addition,

the word representations computed using neural networks as stated in [35], is particularly exciting

because the learned vectors explicitly encodes many linguistic regularities and patterns. Simple

word embedding approaches have performed quite well, but the selection of a word embedding

technique is based upon task-specific requirements and careful, thorough experimentation, as well

as fine-tuning the word embedding models to improve overall accuracy.

In our work we will be generating embeddings for the clinical text data as well as the ICD

codes. We will use embeddings as part of our project because we intend to capture the meaningful

information drawn from the context of the clinical notes and this approach has proven to make

textual data understandable to machine learning and NLP models. In addition, embeddings make

it easier to do machine learning on large inputs and can be learned and reused across models.
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2.4.2 BERT:Overview

Bidirectional Encoder Representations from Transformer (BERT) is a language representation

model designed to pretrain deep bidirectional representations from unlabeled text by jointly con-

ditioning on both left and right context in all layers. The BERT framework can be divided into two

steps: pre-training and fine-tuning. During the pre-training phase the model is trained on unlabeled

data over different pretraining tasks. While during the fine-tuning step, the BERT model is first

initialized with the pre-trained parameters, and subsequently all of the parameters are fine-tuned

using labeled data from the downstream task.[11]

BERT eliminates the major shortcoming of the previous standard language models that are

unidirectional by using a ”Masked Language Model” (MLM) pre-training objective. The MLM

procedure allows some percentage of the input tokens to be masked at random, while consequently

predicting these same masked tokens. Too little masking might be too expensive to train while too

much masking might not have enough context. 80% of the time the masked token is replaced with

[MASK], 10% of the time with a random word and the remaining 10% with the same word. In

addition, the BERT model also utilizes the ”Next Sentence Prediction” task that jointly pre-trains

text-pair representations to understand the relationship between two sentences. When choosing

sentences A and B, half of the time sentence B is the actual sentence that follows sentence A,

while the other 50% of the time it is a random sentence from the corpus. Figure 1 gives a visual

overview of BERT’s framework on downstream tasks. [11]

Each input token is represented as a sum of three embeddings: token embeddings, segment

embeddings and position embeddings. BERT has an embedding layer that enables the conver-

sion of each word into a fixed length vector of defined size. The attention mask indicates which

inputs require additional attention and which do not. Self-Attention is an attention mechanism

relating different positions of a single sequence in order to compute a representation of the same

sequence. This inturn helps in avoiding locality bias which means that long distance context has

"equal opportunity".

Consequently, the encoder layer reads the text input and produces a prediction for the task. The
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"bert-base" architecture is composed of 12 successive transformer layers, each having 12 attention

heads and 768 hidden features. [11]. A distinctive feature of BERT is its unified architecture across

different tasks as well as its ability to produce word representations that are dynamically informed

by surrounding words, regardless of context. This new state-of-the-art model is conceptually sim-

ple and empirically powerful.

Figure 2.1: Overall pre-training and fine-tuning procedures for BERT. The same architecture is
used for pre-training and fine-tuning. [11]

2.4.3 Need for domain-specific BERT models

The BERT framework has been pre-trained using text from Wikipedia. Applying the same

model to text that is domain specific (e.g clinical, legal, financial) will not give a high accuracy

result and will require continuing training BERT with some of the text data or on a more domain-

specific language model. Some domain-specific language models that have been created by train-

ing the BERT architecture from scratch on a domain-specific corpus that generate embeddings

better suited for the domain-specific NLP problems, include:

BioBERT (biomedical literature corpus): Domain-specific language representation model pre-
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trained on a large scale biomedical corpora [37]

ClinicalBERT (clinical notes corpus): Pre-trained BERT using clinical text from approximately

2M notes in the MIMIC-III database and fine-tuned on the task of hospital readmission [6]

mBERT (corpora from multiple languages): A Multilingual BERT (mBERT) which provides

sentence representations for 104 languages, making it useful for many multi-lingual tasks. [38]
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3. METHODOLOGY

Figure 3.1: This diagram highlights the steps for preprocessing and combining the structured and
unstructured data used to train our ClinicalICDBERT model

3.1 Dataset

The Medical Information Mart for Intensive Care (MIMIC-III) dataset is a publicly available

critical care database maintained by the Massachusetts Institute of Technology (MIT)’s Labora-

tory for Computational Physiology [39]. The availability of the MIMIC-III dataset has enabled

researchers to benchmark machine learning models for studying clinical outcomes such as length

of hospital stay [6] and mortality. It is a relational database consisting of 26 tables comprised of

deidentified, comprehensive clinical records of patients admitted to an Intensive Care Unit (ICU)

during 2001 and 2012 at the Beth Israel Deaconess Medical Center (BIDMC) in Boston, Mas-
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Figure 3.2: The schema of tables from the MIMIC-III dataset

sachusetts. The database includes information relating to demographics, vital sign measurements

made at bedside (approximately 1 data point per hour), laboratory test results, procedures, med-

ications, caregiver notes, imaging notes and mortality. MIMIC-III contains data associated with

53,423 distinct hospital admissions for adult patients, aged 15 years or above and 7,870 newborns

admitted to an ICU at BIDMC. In addition, it has 2,083,180 recorded clinical note events [9].
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3.2 Research Methodology

For this thesis, the research focused on developing a model for learning deep representations

of a combination of clinical text, vital signs and ICD codes as seen in Figure 3.3. We employed

a pre-trained ClinicalBERT that was initially trained on the BERT model using all the clinical

notes from MIMIC III. These notes can be found in the NOTEEVENTS table in the database. We

also used the vital signs and ICD codes data from the MIMIC-III database which can be found in

the CHARTEVENTS and OUTPUTEVENTS, and DIAGNOSES ICD and PROCEDURES ICD

tables respectively. We understood the embedding layers, attention mask and encoder layer of

the ClinicalBERT model to develop a model that further explores the impact of all three of our

inputs. A token from the clinical text data will be represented as a sum of the token embedding,

a learned segment embedding and a position embedding. The embedding layer preserved the

different relationships between the text in the clinical data including semantic, syntactic, linear and

contextual relationships. Similarly, ICD codes were mapped to "embeddings" using the Doc2Vec

embedding technique. And consequently, concatenate vital signs data with the embeddings of the

clinical notes and ICD codes.

These embeddings will be further processed by the attention mechanism, the dot-product at-

tention, to compute a weighted average of the text and code embeddings separately, where a higher

weight is assigned to the most relevant text and codes. Lastly, the computed clinical embeddings,

diagnoses/procedures and vital signs will be concatenated to a vector of static variables and passed

to a fully connected layer with a sigmoid activation layer to the output of the BERT model. The

output of the model will correspond to the risk of readmission to the hospital within 30 days of

discharge.

3.3 Baseline Models

We conducted a set of experiments against the state-of-the-art ClinicalBERT baseline and ML

classifiers:

• ClinicalBERT is a modified BERT model, pre-trained on MIMIC-III patient clinical notes,
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used for predictive downstream tasks. The model outperforms BERT by uncovering high-

quality relationships between medical concepts and jargon

• Random Forest is a supervised machine learning algorithm that is used widely in classifica-

tion

• Gradient Boosted Machines (GBM) is a machine learning technique used in regression and

classification tasks

• Ada Boosting is a popular boosting technique that aims at combining multiple weak classi-

fiers to create one strong classifier

• SVMs are a set of supervised learning methods used for classification, regression and outliers

detection

• Naive Bayes is from the family of probabilistic classifiers which is used for the classification

task

• k-Nearest Neighbor (kNN) is one of the simplest, yet efficient supervised learning algorithms

used to solve classification

3.4 Evaluation Metrics

To measure the performance of the models in predicting 30-day readmission, we used the area

under the receiver operating characteristic (AUROC) curve, the precision-recall curve, accuracy

and RP80 (Recall Precision at 80%) at specific thresholds. These are all calculated using false

positive (FP), true positive (TP), true negative (TN) and false negative (FN) as follows:

• Area under the receiver operating characteristic curve (AUROC): The area under the true

positive rate versus the false positive rate

• Area under the precision-recall curve (AUPRC): The area under the plot of precision versus

recall
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• Recall at precision at 80% (RP80): Fixing precision at 80% (or, 20% false positive in the

positive class predictions). This threshold is used to calculate recall. This metric enables

building models that minimizes the false positive rate.

• Accuracy: It is calculated as the ratio between the number of correct predictions to the total

number of predictions.

Accuracy =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
(3.1)

• Recall: The measure of the model correctly identifying true positives

Recall =
True Positive

True Positive + False Negative
(3.2)

• Precision: Number of true positives divided by the total number of true positives plus the

number of false positives

Precision =
True Positive

True Positive + False Positive
(3.3)

3.4.1 Evaluation Method

Holdout validation: Hold-out validation includes splitting the dataset into a ’train’ and ’test’

set. The training set is used to train the model and the test set is used to evaluate the model on

unseen data. The data was split into train, validation and test sets of respectively 80%, 10% and

10% splits. The main idea of splitting the dataset into a validation set is to prevent our model from

overfitting i.e., the model classifies samples in the training set accurately but does not generalize

over data it has not seen before and mis-classifies.
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3.5 Embeddings

3.5.1 ICD-9 codes embeddings

In the MIMIC-III dataset each patient has a unique "Subject_ID". Each hospital admission of

a patient has a separate admisssion ID denoted by "HADM_ID" (Hospital Admission ID). Which

means one subject_id can be associated with multiple hadm_ids when a patient has had multiple

admissions. The "DIAGNOSES_ICD" table contains tuples of patient ID (subject_id), admis-

sion ID (hadm_id), and ICD-9 code. We created a list of all the ICD codes linked with a single

unique patient ID and used Doc2Vec to generate a representation of the ICD codes for each patient.

Doc2Vec is an unsupervised method and the goal of doc2vec is to create a numeric representation

of a document, regardless of its length. But unlike words, documents do not have a logical struc-

ture. Therefore, the concept suggested by Mikilov and Le [40] was that they used the word2vec

model, and added another feature vector, which is document-unique. So in case of ICD codes,

when we trained the list of codes, at the end of training, we obtained a numeric representation for

all the ICD codes linked with each patient.

3.5.2 Pre-trained ClinicalBERT embeddings

ClinicalBERT has been pre-trained on clinial notes. For our experiments we utilized the pre-

trained ClinicalBERT embeddings directly instead of training the model again from scratch.

3.6 Vital Signs

While we have not yet included vital signs in our experiments, we plan to incorporate it as part

of future work as part of this thesis.

3.7 Experimental Setup

We evaluated the proposed ClinicalICDBERT on the readmission prediction task using AU-

ROC, AUPRC and RP80. We compared two types of models: (1) existing state-of-the-art Clini-

calBERT model pre-trained on the MIMIC-III clinical notes and fine-tuned directly on the read-

mission task; and (2) refined ClinicalICDBERT fine-tuned using ICD codes on the readmission
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Figure 3.3: This diagram shows the overview of our proposed approach

task.

3.7.1 Datasets

We evaluated the performance of the ClinicalICDBERT model on three MIMIC-III dataset

features: (a) clinical notes (b) ICD codes (c) vital signs. Table summarizes the MIMIC-III dataset.

For a fair comparison between both models, we used the same training, development and test sets

to train and evaluate the models. MIMIC-III consists of 2,083,180 rows of de-identified clinical

free-text notes. In the DIAGNOSES_ICD table there are 172335 unique admission IDs.

We experimented with the readmission prediction based on discharge notes.

• Discharge summary notes: This clinical note set contains discharge summaries. A discharge

summary is a written summary of a patient’s status during an admission. It includes valu-
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able information such as reasons of hospitalization, diagnosis, a complete list of prescribed

medications, and a radiology report [41]. The discharge summaries set that we will be utiliz-

ing for our experiments contains 6162 unique admissions. We split the discharge summary

associated with a patient into text chunks of size 512.

3.7.2 Baseline

As our baseline model, we use the ClinicalBERT and perform supervised fine-tuning of its pa-

rameters for the readmission task. ClinicalBERT serves as a good baseline as its one of the inital

models to be trained on clinical notes and provides a single LM to adapt to different domain fea-

tures. In addition, we also considered ML classifiers including Gradient Boosting, Ada Boosting,

SVM, Naive Bayes, Random Forest and kNN as additional baselines and compared our results

with them which fared much better than the ML classifiers.

3.7.3 Training

Our implementation of ClinicalICDBERT is based on the work of [6]. We employed Clini-

calBERT to generate embeddings for the clinical notes which used the AdamW, a variant of the

Adam optimizer with weight decay as the optimizer with a learning rate of 2e−5 and a batch size

of 32. In addition, all the tokenized texts were chunked to span no longer than 512 tokens and the

model regularized with dropout of 0.1. In similar fashion, we fine-tuned our model, ClinicalICD-

BERT, on the discharge summary notes in the MIMIC dataset and the corresponding ICD codes of

each patient. We then passed the clinical notes embeddings and ICD codes embeddings through a

dropout layer and concatenated both outputs to predict readmission.

3.7.4 Classification Architecture

Following standard practice we passed the final layer [CLS] token representation to a task-

specific feed-forward layer for prediction.
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3.7.5 Fine-tuning

For fine-tuning, different model hyperparameters were experimented with to observe changes

across both BERT variants, ClinicalICDBERT and ClinicalBERT. For our hospital readmission

task, we used a learning rate of 2e−5 and a batch size of 8. We trained the results for 10 epochs

in total and performed early stopping, choosing the best checkpoint based on validation set per-

formance (evaluating every 3200 optimization steps). And we used 10% of the training set as

validation split.dWe then compared the performance of the ClinicalBERT model with our model.

ClinicalICDBERT was trained using the PyTorch library for machine learning in Python. Training

our model for 10 epochs took 9 hours on the three tables from the dataset.

3.7.6 Hyper-Parameter Tuning

Table 3.1: Hyperparameters for clinicalICDBERT hospital readmission classifier

Hyperparameter Assignment
Number of epochs 3

Patience 2
Batch size 8

Learning Rate 2e−5

Dropout 0.1
Feedforward layer 1

Classification Layer 1
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4. RESULT

One of the key aspects of building practical models is it’s fast adaptation to new domains. The

purpose of our research was to analyze and explore the results presented in the ClinicalBERT paper

and test our own model ClinicalICDBERT. To achieve this we decided to utilize clinical notes and

ICD codes to develop a model and evaluate it’s predictive capabilities on 30-day readmission using

these input features. All three features were extracted using the MIMIC-III dataset tables and were

linked using the "subject_id" of each patient. Table 4.1 shows the results of each model on the

readmission task.

Table 4.1: Results

Model AUROC AUPRC RP80 Precision Recall F-1 Score
ClinicalBERT 0.851 0.83 0.662 0.738 0.748 0.743
ClinicalICDBERT 0.851 0.83 0.665 0.740 0.746 0.743
Gradient Boosting 0.492 0.498 - 0.529 0.124 0.51
Ada Boosting 0.490 0.489 - 0.484 0.417 0.49
SVM 0.540 0.512 - 0.25 0.5 0.5
NB 0.492 0.500 - 0.486 0.444 0.49
KNN 0.525 0.54 - 0.512 0.459 0.52
Random Forest 0.492 0.494 - 0.25 0.5 0.5
Assaf et al.[8] 0.66 - - - - -

Readmission prediction is a hard problem to solve and much work has been previously done

to improve results using BERT models and ML classifiers. The results presented in this section

are similar to the ones achieved by ClinicalBERT and can be improved with a little more work.

Our model’s area under the ROC curve came about to be 0.851, the Precision-Recall curve is 0.83

and the RP80 0.665. We added a dropout layer of 0.1 on the clinical notes and the ICD codes and

passed the ICD codes through a linear fully connected layer before making the final readmission

prediction by another fully connected layer with linear activation for binary classification.
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Figure 4.1: The area under the ROC Curve for the ClinicalICDBERT
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Figure 4.2: The Recall-Precision Curve for the ClinicalICDBERT
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5. DISCUSSION

According to widely available research, our thesis attempts to explore and produce results on the

readmission prediction problem based on MIMIC. There are still lots of limitations and improve-

ments that can boost the model performance. A step towards better prediction could include im-

proving the type of clinical notes used to create embeddings. Since we only utilized discharge

summary notes, using early admission notes in addition to discharge notes could improve the clin-

ical embeddings generated using ClinicalBERT.

Although the use of ICD codes with clinical notes in the prediction of hospital readmission did

not significantly surpass the results achieved by ClinicalBERT but we did see an improvement in

results compared to those that were presented in the paper [8], by almost 20%.

We did notice that our model ClinicalICDBERT had a slightly higher precision value than the

ClinicalBERT model. We speculate that this may be due to the fact that ICD codes helped in

identifying patients that were to be readmitted within the 30 day period. This also means that

fewer false positives were detected.

Limitations of using a pre-trained BERT: Most of the drawbacks we faced in improving our

results were due to using a pre-trained BERT which was one of the main reasons observed as to

why our model never converged. Had we decided to train the BERT model from scratch we would

have required more computation due to its size, which comes at a cost. This would require lots

more GPUs.

Another problem that we noticed is that because we were using pre-trained embeddings, our model

did not converge even after running it for 15 epochs and fell prey to overfitting after the third epoch.

Our ClinicalICDBERT model produced an AUROC of 0.851 which is much better than the

AUROC of 0.66 achieved by random forest [8]. We have yet to see the impact of vital signs on our

prediction model. However, a useful insight we have gleaned while analyzing the dataset is that

stable vital signs are a great measure associated with important clinical consequences. While BERT

alone is a powerful model to produce embeddings for text, it has proved to be a powerful model to
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produce results for features in both structured and unstructured form. Although our model did not

outperform ClinicalBERT significantly, we believe that pre-training the BERT model from scratch

on both features instead of using pre-trained embeddings could increase performance by a margin.

A major limitation of not pre-training our model from scratch was due to limited computational

resources. A model like ClinicalBERT took 2 days to train with a lot of computational resources.

Even after using all those resources the model began to overfit after 3 epochs, which confirmed

our analysis and experimentations that the pre-trained embeddings of clinicalBERT may not give

us much performance boost.

Many of the LM that were pretrained from scratch performed much better than the ones that

were simply fine-tuned. even if keeping the architecture the same. Example like bio-bert (see

paper)
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6. CONCLUSION

Readmissions are a financial burden and a challenge for hospitals. The ability to predict future

readmissions can facilitate preventive action. Prior work has explored various structured predictors

and machine learning algorithms to predict the risk of readmissions. Clinical notes contain rich

data, which is unexploited in predictive modeling compared to structured data. In this work, we

are explored a readmission prediction model based on pre-trained clinical notes embeddings and

ICD code embeddings. We concatenated both embeddings and fine-tuned our model to predict

readmission. Our main contribution was combining structured and unstructured data and using the

BERT model for prediction. Our approach performed much better than the machine learning mod-

els, achieving an AUROC of 0.851 and a AUPRC of 0.83 but did not improve on results achieved

by ClinicalBERT significantly. Readmission predictions can be further improved by training the

BERT model from scratch on the input features so as to ensure the model learns better. Readmis-

sion prediction is a world-wide challenge being researched by many healthcare institutions. This

issue is even more important and challenging if we evaluate hospital and providers based on how

patient condition improves over time. These results only highlight the possibility that the concate-

nation of ICD codes with clinical notes can improve results and create a more robust model.

6.1 Future work

For future work, we can train the BERT model from scratch with the input features instead of

using pre-trained embeddings which we saw does not improve the training loss but rather makes it

worse over time and also causes overfitting. In addition, MIMIC being a dataset with rich temporal

data gives us more opportunity to improve the features we can select to better represent the patient

condition. I do believe that incorporating vital signs data for a patient with clinical notes and ICD

codes will further improve the results.

As part of future research we can include some descriptive statistics showing the percent of

patient records that include vital signs data, ICD codes and clinical notes. As well as those records,
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that have all three features for each record. We can also compute, track and use information that

shows how many times a patient has been previously been re-admitted (for e.g. in the preceding

year) according to the records. This data could also be presented in a time-series format with the

dates of prior readmissions.

Additionally, generating results for each feature separately, such as, vital signs data only, ICD

codes only, clinical notes only, using the new model ClinicalICDBERT could give us a better idea

of the importance and information each feature brings to the model. For our work, we proposed

to incorporate the vital signs data but we faced issues with the complexity of the data and a more

comprehensive analysis of the features is required to understand how to incorporate these feature in

our model. Therefore paying attention to ML features that prior work have found to be important

details for vital signs data would be a valid and sensible approach.

While we simply deployed the Binary Cross Entropy(BCE) loss to compute our metrics, mod-

ifying the loss function by looking at papers that have used different loss functions, could produce

better or optimized results for the metrics that we have used in this work such as AUROC, F1,

precision and recall.

Lastly, while our model ClinicalICDBERT, uses both clinical notes and ICD codes we could

also experiment by re-crafting previous models such as ClinicalBERT or ML models to produce

results for each of the three features separately that is vital signs data only, ICD codes only and

clinical notes only. This would give a more comprehensive comparison of the results we get to the

results they claim they have gotten on these features, giving us a deeper insight on how we could

improve on the implementation details.
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