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Abstract 
This thesis grounds the design of learning technologies in cognitive learning theory to explore 
deeper formative measurement of the learning process. This work implements Graspable Math 
(GM; Ottmar, Landy, Weitnauer, Goldstone, 2015), a dynamic learning technology that has been 
designed using perceptual-motor learning theory, which has been shown to have a strong 
connection to mathematical reasoning (Kirshner, 1989; Kellman, Massey, & Son, 2010; 
Goldstone, Landy, & Son, 2010).  With this dynamic mathematics learning technology, we can 
measure the algebraic problem solving process in ways that are not possible with pencil and paper 
or other more traditional learning technologies. By collecting this data, this research will explore 
how to move beyond traditional correctness-based assessment and design more formative 
measures of the learning process. This work provides a rich perspective on the evolution of 
research on mathematical proficiency, how this research is applied in practice, and an in-depth 
example of how one technology-based learning environment has been developed to measure 
mathematical proficiency. This work has three main objectives: 1) develop a theoretical 
framework to assess mathematical proficiency within GM, 2) explore GM-based measures of 
mathematical proficiency across K-12 populations, and 3) design GM-based tools that are 
grounded in theory on mathematical proficiency.  

This work first presents a conceptual model that maps student behavior data measured 
through GM onto the five theoretical strands of mathematical proficiency as defined by the 
National Research Council’s 2001 publication, Adding it Up. The first study reveals underlying 
constructs in Elementary student data and suggests there is an added benefit of including these 
formative measures within predictive models. Above and beyond background characteristics and 
summative measures of knowledge, formative measures of the learning process revealed subtle 
interactions based on student behaviors and prior knowledge.  These constructs also show potential 
in mapping onto certain strands of mathematical proficiency. The second study compares 
underlying constructs within Elementary data to High School data using exploratory factor 
analysis and finds similar factors across both populations. These results suggest that certain 
constructs may underlie different age groups and have the potential to be used as measures of 
mathematical proficiency. While the first two sections describe the definition and measurement of 
mathematical proficiency within GM, the final section explores the implementation of these 
measures within the design process of new GM-based activities for students and tools for teachers. 
Ultimately, the goal of this work is to serve as an example method for other researchers, educators, 
and designers to move beyond summative measures of assessment and enhance the formative 
assessment capabilities of learning technologies by grounding measures in theories of learning. 
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Part 1: Theoretical and Conceptual Framework 
 
Integrating learning technologies into schools has become increasingly popular since technologies 
have become faster, more portable, and more accessible for the classroom. The US Department of 
Education has spent $6 billion in K-12 and $5.9 billion on Information and Communication 
Technologies (ICT) in 2009 (Nut, 2010). While government funding is a key component of giving 
teachers and students access to technologies, it is just the first step. Giving classrooms technologies 
like chromebooks has not yet proven to be successful in terms of learning gains or increasing 
motivation and affect (Darling-Hammond, Zielezinski, & Goldman, 2014; Gülbahar, 2007). This 
is due in part to implementation issues in terms of usability, content relevance, and theoretical 
grounding. Once we have a better understanding of how students learn the content and how to 
support and measure that learning, we can then design more effective technologies that meet 
student and teacher needs in the classroom 

There are many potential benefits to learning technologies for students and teachers alike 
(Figure 1). Learning technologies can make learning more personalized, connected, and mobile 
for students (Johnson, Pavleas & Chang, 2013). These dynamic environments have the potential 
to increase engagement for students who might not otherwise be interested by providing them with 
adaptive scaffolding, timely feedback, and more adaptive content not offered by traditional, paper-
and-pencil-based summative assessments (Romero & Ventura, 2010; Foster, 2008). For teachers, 
these technologies instantly collect student data and can automatically grade and display student 
progress reports, which can then be used to inform instruction. Frequently using formative 
assessments to adapt teacher instruction has been shown to improve student achievement (Bergan, 
Sladeczek, Schwarz, & Smith, 1991; Speece, Molloy, & Case, 2003). Using learning technologies 
can amplify teacher abilities (Baker, 2016), such as increase on-on-one time while other students 
are working on their devices (Schofeld, 1995; Holstein, McLaren, & Aleven, 2018). Learning 
technologies can ultimately enhance classroom management by individualizing student learning 
and improving teacher knowledge about their students’ learning. In turn, teachers can use this 
knowledge to inform instruction and feedback to students. In order to transform education with 
learning technologies, their design needs to be grounded in learning theory and take into account 
the relationship between the student, teacher, and the device. 
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Figure 1-1. Benefits of learning technologies described through the relationships between the 
student, teacher, and device.  
 

This thesis grounds the design of learning technologies in cognitive learning theory to 
explore deeper formative measurement of the learning process. This work implements Graspable 
Math (GM; Ottmar, Landy, Weitnauer, Goldstone, 2015), a dynamic learning technology that has 
been designed using perceptual-motor learning theory, which has been shown to have a strong 
connection to mathematical reasoning (Kirshner, 1989; Kellman, Massey, & Son, 2010; 
Goldstone, Landy, & Son, 2010).  With this dynamic mathematics learning technology, we can 
measure the algebraic problem solving process in ways that are not possible with pencil and paper 
or other learning technologies that give simple multiple choice or type-in answers. By collecting 
this data, this research will explore how to move beyond traditional correctness-based assessment 
and design more formative measures of the learning process.  

Part 1 of this thesis reviews the importance of using learning technologies in mathematics 
education to foster algebraic understanding, in particular, as it is the foundation for higher 
mathematics. The review also discusses mathematical proficiency, how it has been defined, and 
how it has evolved into the current common core standards for mathematics. It culminates in a 
definition of mathematical proficiency situated within a mathematics education and cognitive 
psychology perspective that focuses on specific skills that students develop over time across 
problem types and processes. Lastly, this section explains the theoretical framework behind 
Graspable Math (GM), the sole technology being researched in this thesis. Together, the first 
section set up the stage for the current work, which aims to take a technology that is already 
grounded in theory for teaching and learning mathematics, and develop a theoretical framework 
to assess that learning so it can be utilized by teachers to inform instruction. 

Part 2 of this work explores how to utilize GM as a tool for mathematics practice and for 
the measurement of mathematical proficiency. Rather than focusing on learning outcomes, this 
section explore the benefits of using formative measurement to analyze the learning process. Two 
studies test the feasibility of GM in an Elementary and High School population. These studies also 
analyze and compare latent constructs of problem solving behavior in both populations as 
measured by GM. The benefits and pitfalls of this method of formative assessment is discussed in 
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terms of the relationship between the revealed constructs and theoretical framework of 
mathematical proficiency. 

Part 3 of this work utilizes the theoretical framework and study results from sections 1 and 
2 to inform the development of new GM-based activities. These new activities serve as example 
method of how to design technology-based learning environments with a goal of measuring 
mathematical proficiency. This section describes the iterative design process to create technology-
based activities that have the potential to measure the five components of mathematical 
proficiency. This highlights the twists and turns of the development process all the way through to 
a final pilot study which implements the technology into high school classrooms. The goal of this 
section is to give practitioners and researchers a concrete example of applying research into 
practice via learning technologies. The final chapter discusses related and future work that applies 
GM in the context of formative assessment and discusses its potential in terms of implementation 
in the classroom. 

Together, these three sections provide a rich perspective on the evolution of research on 
mathematical proficiency, how this research is applied in practice, and an in-depth example of how 
one technology-based learning environment has been developed to measure mathematical 
proficiency. Ultimately, the main goal of this work is to explore student problem solving behavior 
within GM in order to tease apart components of mathematical proficiency more efficiently and at 
a deeper level than possible with traditional summative assessment. In order to accomplish this, 
this work has three objectives: 

1) develop a theoretical framework to assess mathematical proficiency within GM 
2) explore GM-based measures of mathematical proficiency across K-12 populations 
3) design GM-based tools that are grounded in theory on mathematical proficiency 

Chapter 1: Literature Review 
This work is situated in the intersection of mathematics education, learning sciences, and 
educational technologies. The first objective of this work, to  develop a theoretical framework to 
assess mathematical proficiency within GM, is addressed in the first two chapters. This review 
first highlights the importance of algebraic reasoning in the context of mathematics education and 
the evolution of defining mathematical proficiency. Then, it explores the benefits of learning 
technologies in K-12 populations, including their potential role in formative assessment. Lastly, 
the review introduces the theoretical framework of Graspable Math (GM), the primary learning 
technology used throughout this work. Ultimately, this first section develops a conceptual 
framework to ground GM in theory on the assessment of mathematical proficiency. This method 
of theoretical and conceptual framing could serve as an approach for grounding any learning 
technology within teaching and learning theory.  

 
Mathematics Education and Mathematical Proficiency 
Only 33% of 8th grade and 25% of 12th grade students in the US are proficient in mathematics 
(McFarland et al., 2017).  In an aim to define and better understand student proficiency in 
mathematics, the primary aim of this research is to explore the use of dynamic learning 
technologies in K-12 populations to formatively measure and assess mathematical proficiency. 
More specifically, this work focuses on algebraic learning as it is seen as the foundation of higher 
mathematics and the stepping stone from arithmetic to algebraic generalizations (Carraher, 
Schliemann, Brizuela, & Earnest, 2006). This switch from concrete numerical symbols to abstract 
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variables, typically faced in middle school, is notoriously difficult, likely due to increased 
abstractness and reliance on a deep conceptual knowledge of symbolic structure and equivalency 

(Booth, Barbieri, Eyer, & Pare-Blagoev, 2014; Koedinger & MacLaren, 2002; Kaput, 1998).  
However,  Many students demonstrate inflexibility with algebraic structure and struggle to 
understand which strategies are appropriate when presented with non-standard equations (Sfard & 
Linchevski, 1994; Jiang, Cooper, & Alibali, 2014). Students also often become frustrated and 
disengaged with mathematics and never master fundamental algebraic skills (Stein, Kaufman, 
Sherman, & Hillen, 2011). Algebra is a precursor and a strong predictor of success in advanced 
mathematics courses, so it is crucial for students to have access to algebra courses, to acquire the 
fundamental skills, and to have a positive experience for future motivation, engagement and 
performance in higher mathematics (Adelmann, 1999; Nord et al, 2011). 
 Research posits that the deficit in mathematical and algebraic understanding begins to arise 
as students enter the transitional shift between concrete representation of numbers and abstract 
conceptualization. This may occur due to a lack of understanding of number sense and the ability 
to see the flexibility and fluidity of expressions through operations (Kalchman et al., 2011). One 
of the most important developments in children's mathematical thinking is number sense, or 
flexibility in thinking about numbers (NCTM, 2000). This involves being able to understand how 
to represent numbers in different ways, understand the size of numbers, and understand how 
different operations will impact the transformation of numbers (Sowder, 1992). There are specific 
misconceptions and difficulties that students struggle with, namely, the overall understanding of 
order of operations, the use of parentheses within an expression, and the concept of equivalence 
(use of the equal sign) (Knuth et al., 2006; Welder, 2012; author). For example, children often do 
not understand that parentheses also function as a multiplicative indicator as well as an 
organizational tool. As an example, the value of 18 may be written as 3x6 or 3(6). Importantly, 18 
can also be written using multiple combinations of operations and symbols, like this: (3+17) - 2. 
Children who do not have a solid understanding of the order of operations would likely struggle 
to determine the appropriate order in which they could solve the expression, making complex math 
expressions that require multiple operations nearly unsolvable. These difficulties continue 
throughout schooling, with order of operations being noted as a major area of confusion for 
students learning algebra (Welder, 2012).  

Students also struggle with decomposition, or the ability to recognize and that any number 
can be broken down many combinations of other numbers (Clements & Sarama, 2007). 
Decomposition as a math tactic is defined as the understanding that numbers are made of many 
different components, and may be rearranged in a way that makes the most sense to the student 
(Clements & Sarama, 2007). When considering decomposition, students begin with a single 
number and are asked to explore its properties, for example, “what two numbers can make 10?” 
Inclination and tactics of decomposition are taught as early as kindergarten, as teachers see the 
meaningful action behind children understanding grouping, relationships, and patterns. Acting as 
a springboard for children’s math understanding at an early age, decomposition is imperative to 
understanding progressively more formal mathematical learning such as algebra. According to the 
NCTM Principles and Standards (2000), "students should be able to compose and decompose two-
and three-digit numbers" by the second grade. When students have a solid base in number sense 
and decomposition, they are more likely to be successful with algebra (VanDerHeyden & Burns, 
2009). Decomposition allows students to see various ways for them to approach problems (ex. 4 x 
6 = 24 replace 6 to 4+2 to see 4 x (4 + 2) = 24, maintaining the same value about the equal sign). 
However, many times decomposition tasks only involve one operation and often this skill is not 
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explicitly taught in relation to algebra despite its position as a fundamental algebraic concept 
(Clements, 2000).  

Equivalence in mathematics is also noted as a rudimentary foundation of algebra, and relies 
on strong quantitative skills fostered in early elementary mathematics teachings (Knuth et al., 
2006). For instance, children when presented with 3 + 3 = 4 + 2 instead of 3 + 3 = 6 and 4 + 2 = 
6, may begin to understand the flexibility of the equivalence notation rather than view it as a rigid 
obstacle (i.e. the number to the right of the equal sign does not need to be the expressions definitive 
answer). The notation of equality and its role, is fostered in students understanding of the 
symbolism of equivalence, rather than as a directional symbol or one that separates problem from 
answer (Welder, 2012). This understanding becomes critical in algebraic understanding as students 
must be able to correctly interpret equal sign and view its relation and equivalence (Knuth et al., 
2006; Welder, 2012). If provided early, exposure to not only decomposition of the expressions 
numbers, but also flexibility about the equal sign, may help increase mathematical understanding. 
Through the introduction and exposure of critical algebraic reasoning and fundamental concepts 
at earlier ages, children are provided the necessary tools to succeed in algebraic and future math 
conceptualization. Students who are successful in learning algebra progress through a series of 
conceptual steps that can be more precisely defined as number sense, representation, fact families, 
and (most importantly) decomposition (VanDerHeyden & Burns, 2009).  

It is upon this foundation that the learning of algebraic ideas is built in middle and high 
school. By following the natural development of number sense and cardinality, interventions that 
begin with building a solid foundation of number sense and the concrete properties of numbers 
may result in improved mathematical understanding. However, it is likely that the deficit in 
algebraic performance and formal math understanding stems from both lack of exposure to 
algebraic concepts and misconceptions that develop early, in critical windows where students form 
the foundations of math understanding. To better prepare students for future algebraic learning, 
some researchers suggest introducing algebraic concepts in early elementary school (Blanton, 
Stephens, Knuth, Gardiner, Isler, & Kim, 2015; National Council of Teachers of Mathematics 
(NCTM), 2000). Children begin to develop the ability to reason algebraically even before they 
begin formal schooling (Doig & Ompok, 2010); developmentally, many students are certainly 
capable of learning algebraic ideas early, provided that the topic is scaled down to meet their skill 
level (Bay-Williams, 2001; Carpenter, Levi, Franke, & Zeringue, 2005; Carraher, Schliemann, 
Brizuela & Earnest, 2006). By exposing children to algebraic ideas earlier, as students progress in 
their mathematical thinking, they may be better prepared to learn more difficult concepts down the 
road (Koedinger, Alibali, & Nathan, 2008; Bransford & Schwartz, 1999; NCTM, 2000).  

To understand algebraic thinking within a younger age group, it would be beneficial, from 
a research perspective, to develop a theoretical framework to define proficiency in early 
mathematics. At a basic level, mathematical proficiency are the skills and practices needed to be 
“learn mathematics successfully” (NRC, 2001, p. 5). These skills and practices, however, are 
defined differently based on the goals and perspective of the person who is measuring them. While 
teachers and students may want to identify what students know and do not know in order to identify 
areas of need, mathematicians may want to know more about the broader spectrum of math content 
and processes students engage in, policy makers may want indicators of how well the school 
system is doing, while test developers may want to know about the validity of the psychometric 
properties of the assessment itself (Schoenfeld, 2007). All of these goals are important and make 
an impact on each student’s education. A key issue with high stakes testing is that it has an different 
overarching goal compared to classroom teaching. This often plays out in the difference between 
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measuring students’ ability to perform calculations on demand, compared to measuring their 
deeper, conceptual knowledge (Ramaley, 2007). The first measurement has its place as it often has 
high test-retest reliability, meaning that students will perform similarly on the test one week 
compared to the next. This is great for making assessments to compare students across the nation. 
However, the latter measurement is necessary for identifying valid constructs of deeper learning 
and ensuring that students learn mathematics for application in the real world. This work uses a 
definition of assessment from Niss and colleagues (1998), which “refers to the identification and 
appraisal of students’ knowledge, insight, understanding, skills, achievement, performance, and 
capability in Mathematics”. In typical US classrooms, however, assessment in mathematics is 
defined with content, skills and ability to reproduce these on demand (Royer, 2003).  

The early 2000s was a time where mathematical proficiency was in the spotlight for both 
the National Council of Teachers of Mathematics (NCTM) and the National Research Council 
(NRC), as this time period followed the height of the Math Wars in the United States (Klein, 2003). 
In 2000, NCTM defined five process standards that describe mathematical practices students 
should engage in to reach proficiency in mathematics. These standards were problem solving, 
reasoning and proof, communication, connections, and representation. Problem solving was 
defined as applying and adapting a variety of strategies to solve problems as well as monitor and 
reflect on the process of problem solving. Reasoning and proof means that students can develop 
and evaluate mathematical arguments and use various types of reasoning and methods of proof. 
Communication refers to using mathematical language to express mathematical ideas precisely 
and the ability to analyze and evaluate the mathematical thinking of others. Making Connections 
is defined as understanding how mathematical ideas build upon each other to produce a coherent 
whole, as well as applying mathematics to other contexts. Lastly, Representation means that 
students can create, analyze, connect, and apply multiple representations model and reason about 
physical, social, and mathematical phenomena. These five standards were created to guide teachers 
in the type of mathematical processes students should have the opportunity to practice in order to 
learn mathematics content.  

Around the same period of time, the NRC published one of the most widely cited 
definitions of “mathematical proficiency” today. Adding it Up (NRC, 2001), highlights that 
mathematical proficiency in problem solving requires a set of interwoven and interdependent skills 
that can be represented by 5 strands: conceptual understanding, adaptive reasoning, procedural 
fluency, strategic competence, and productive disposition. Conceptual understanding is the 
comprehension of mathematical concepts, while adaptive reasoning is the capacity for explanation 
and reflection on problem solving. Procedural fluency can be defined as the skill of carrying out 
procedures accurately, efficiently and flexibly whereas strategic competence is the ability to 
represent and solve math problems. The last strand, productive disposition, is not based on 
procedural or knowledge-based components, but rather is defined as the self-efficacy, motivation, 
and the ability to see the utility of mathematics. While these strands are defined separately, they 
are inherently connected and intertwined (Figure 2).  
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Figure 1-2. Five strands of mathematical proficiency as described by the NRC 
publication Adding it Up (2001) 

 
 

Together, the 5 strands of Mathematics Proficiency and Process Standards became the 
foundation for the eight mathematical practices that are used in the Common Core State Standards 
for Mathematics (CCSSM) in current classrooms (National Governors Association Center & 
Council of Chief State School Officers, NGA & CSSO, 2010). Based on two pillars of process and 
proficiency, the CCSSM identify eight mathematical practices that reflect practices of students 
who are mathematically proficient (Table 1) Making sense of problems and persevering through 
them refers to students’ ability to think mathematically and persist through challenges. 2) Reason 
abstractly and quantitatively means that students can both contextualize and de-contextualize the 
elements of the problem at hand to better understand quantities and their properties. 3) Construct 
viable arguments and critique the reasoning of others refers to the ability to understand, evaluate, 
and justify mathematical arguments. 4) Model with mathematics means that students can apply 
their mathematical knowledge to solve problems in the real world. This also involves reflecting on 
their solutions and asking if they make sense. 5) Use appropriate tools strategically describes 
students’ ability to understand the benefits and limitations of different tools and choose tools 
appropriately for the situation. 6) Attend to precision means that mathematically proficient students 
clearly define their processes and communicate clearly about mathematics. 7) Look for and make 
use of structure refers to the practice of analyzing mathematical structures, decomposing problems 
into parts, and noticing mathematical patterns that are useful to sense making. 8)  Look for and 
express regularity in repeated reasoning means that students can maintain the big picture of the 
process, while also discovering the details including repeated calculations that could serve as 
shortcuts for problem solving. These standards have moved far beyond the procedural vs. 
conceptual debate of the Math Wars to try and highlight the best mathematical processes, 
proficiencies, and practices. Today these standards have been adopted by 45 of the 50 United States 
and serve as a starting point for providing the right opportunities for students to become 
mathematically proficient.  
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Table 1-1. NRC Strands of Mathematical Proficiency (2001)a, NCTM Process Standards 

(2000)b, and Common Core State Standards for Mathematics (2010)c. Original figure used in 
Allsopp, Lovin, & van Ingen (2017) 

 
In conclusion, this section has overviewed multiple perspectives on mathematical 

proficiency in the 20th and 21st century and how they have evolved into the current Common Core 
Standards for Mathematics today. The current work will utilize the modern definition of 
Mathematical Proficiency as the 5 Strands as defined by the NRC in 2001. While the Process 
Standards (NCTM, 2000) contain important practices and contexts for developing mathematical 
proficiency,  this work argues that the 5 Strands are more descriptive of core skills that contribute 
to mathematical proficiency. While the research shows that these strands are important, there is 
less conclusive work on applying these measures in classrooms. While some summative 
assessments and qualitative analyses have been applied to evaluate students’ mathematical 
proficiency (Samuelsson, 2008; Gotwals, Philhower, Cisterna, & Bennett, 2015), there is a lack of 
measuring all five strands during the process of learning. Learning technologies might be the right 
tool to provide formative assessment of mathematical proficiency in one context that could be used 
to inform further instruction and learning.  
 
Mathematics Education and Assessment Facilitated by Learning Technologies  
Learning technologies can provide students with immediate feedback, more individualized and 
self-paced learning, and more engagement through interactive content that rarely exists in more 
traditional forms of summative assessment (Cayton-Hodges, Feng, & Pan, 2015; Kiili, Devlin, 
Perttula, Tuomi, & Lindstedt, 2015). Compared to traditional pencil and paper tasks, these 
dynamic environments can provide students with scaffolding, adaptive content, and timely 
feedback such as hints or motivational messages (Romero & Ventura, 2010). Together, these 
features have been shown to enhance student learning compared to other learning technologies or 
traditional instruction (Kulik & Fletcher, 2016) and be nearly as effective as one-on-one in-person 
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tutors (VanLehn, 2011). Learning technologies can also benefit students by giving them control 
over their own learning by allowing them to choose the pace of learning, the hints requested and 
whether to skip problems. Such choices produce higher learning gains and more positive affect 
(Ostrow & Heffernan, 2015; Aleven & Koedinger, 2000).These technologies turn learning into a 
self-paced and more individualized experience and  can bring life to learning theories that can be 
experienced in ways not possible with traditional pencil-and-paper tasks. 
 Much work has been done in the field of educational data mining in terms of utilizing 
artificial intelligence and machine learning-based models to adapt content and features to best fit 
student needs (Conati, Gertner, & VanLehn, 2002). Substantial attention has been made to using 
student behaviors within the adaptive features of intelligent tutoring systems (ITS) to predict lower 
level student features such as student knowledge and next problem correctness (Botelho, Adjei, & 
Heffernan, 2016; Ferguson, Arroyo, Mahadevan, Woolf, & Barto, 2006; Pardos & Heffernan, 
2011; Roll, Baker, Aleven, & Koedinger, 2014). ITS-based detectors can determine student 
knowledge level by recording their performance behaviors within the tutor, such as the number of 
attempts made and the time it takes to solve a problem. When it detects that a student is too 
challenged, the ITS can adapt feedback and scaffolding on an individual student level.  
 Not only have detectors been used to respond to student knowledge level, but also higher-
level behaviors such as detecting student affect (Arroyo et al., 2014; Wixon et al., 2014) gaming 
the system (Baker, Corbett, Koedinger, & Wagner, 2004) and help seeking behavior (Roll, Baker, 
Aleven, & Koedinger, 2014). Student emotion, i.e., attitudes, interests, and values that students 
exhibit and acquire in school, can play a profoundly important role in students' post-school lives, 
possibly an even more significant role than that played by students' cognitive achievements 
(Popham, 2009). Research shows that student emotion (e.g., boredom, confusion, and frustration) 
while involved in online problem solving can impact learning and performance. Affect is 
recognized as a key indicator of student engagement and is crucial to learning (Pekrun, Vogl, Muis, 
& Sinatra, 2017; Bieg, Goetz, & Lipnevich, 2014; Goleman, 1996). Online feedback and support 
is crucial for student’s negative emotion, such as disengagement and boredom (DiMello et al., 
2008; Pekrun, Goetz, Daniels, Stupnisky, & Perry, 2010). While traditional ITS feedback tends to 
be in the form of identifying errors and providing extra hints and examples to support students, 
other ITS have implemented feedback that targets supporting student affect. MathSpring (formally 
called Wayang Outpost), for example, adapts problems to individual students using a student 
model that assesses both cognition and effort (Arroyo et al., 2014) MathSpring also provides 
affective support in the form of an avatar that instills Growth Mindset, worked-out examples, 
multimedia hints tailored to each problem, and tutorial videos (Arroyo, Woolf, Cooper, Burleson, 
& Muldner, 2011). Embodying a Growth Mindset has been shown to be hugely effective in 
increasing student motivation to solve more problems, as well as improving student attitudes 
towards challenging content (Dweck, 2002). MathSpring invites students to grow a garden, where 
each problem set is represented by a growing plant; in doing so, it engages students in a game-like 
activity where the reward is to grow these plants that represent their sustained effort in a problem 
set, as well as mastery charts that represent a students’ achievement. MathSpring has been found 
to increase student learning (Arroyo, Beal, Murray, Walles, & Woolf, 2004), as well as increase 
motivation and engagement (Arroyo & Woolf, 2005; Arroyo et al., 2011). 
 Recently, a few projects have emerged that apply ITS-based detectors in learning platforms 
to inform instruction and learning. One project, Lumilo, has implemented multiple detectors into 
a single platform that serves both as an intelligent tutoring system for learners and a classroom 
management system for teachers (Holstein, Hong, Tegene, McLaren, B. & Aleven, et al., 2018). 
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While ITS have been shown to be effective for student learning in many contexts (Kulik & 
Fletcher, 2016), often these systems focus on the student experience and leave out the role of 
teacher facilitation and orchestration of the classroom (Baker, 2016; Yacef, 2002). Lumilo, 
however, provides a platform to transform both the learning experience for students and the 
classroom management experience for teachers. Lumilo utilizes ITS-based detectors to provide 
teachers with real time analytics on their students through a mixed-reality smart glasses (Holstein 
et al., 2018). By incorporating multiple measures of learning through multiple detectors, this 
system is able to synthesize more about the learning process than traditional summative tests, 
which focus on the learning outcomes. Lumilo can measure how much effort a student puts into 
their work in the form of help-seeking behavior, wheel-spinning, and gaming. Not only does this 
technology give a better view of student knowledge and the learning process than traditional 
classroom assessments, but it also displays this information in a way that helps teachers transform 
the learning experience. Lumilo restructures the learning environment by allowing teachers to see 
live analytics in a mixed-reality format. In a randomized-controlled experiment, researchers found 
that adding Lumilo to the classroom can affect both student and teacher behaviors to improve 
learning gains (Holstein, McLaren, & Aleven, 2018). Giving teachers the ability to monitor 
students with the glasses changed student behavior as they became aware that they could be 
monitored and produced more desirable behaviors. Adding the real-time analytics, changed teacher 
behavior to spend more time with struggling students, which in turn, narrowed the achievement 
gap between low and high knowledge students from pre to post test. This research exemplifies 
how technology can be used to measure the learning process more deeply and can be applied to 
restructure the learning environment and teaching and learning practices to enhance the learning 
experience.  

These are state-of-the-art examples of how user modeling of student interactions with 
learning technologies can be applied to student knowledge, emotion, and affect. While some 
detectors are used to prevent or respond to negative behaviors, such as gaming and boredom, most 
detectors are implemented with the ultimate goal of creating effective learning environments that 
can identify and encourage strong predictors of positive behaviors, specifically learning gains. 
Learning technologies, like ITS provide ample data to recreate student problem solving activities, 
as well as build models of optimal problem solving behavior, learning curves, moments of 
learning, and even student affect (Arroyo et al., 2016; Baker, Goldstein, & Heffernan, 2011; 
Koedinger & Mathan, 2004). One limitation in detecting knowledge, however, is that prediction 
models of learning often focus on correctness of solution to determine learning. For example, 
identifying learning curves relies on students mastering concepts, which often is defined as 
answering a certain number of problems correctly in row. However, log files from intelligent tutors 
can potentially predict so much more, such as more formative measures of learning (number of 
hints chosen, number of problem attempts, time between steps, and error types) or assessments 
during the process of learning. Whereas correctness is summative and can only be assessed once 
a problem is finished, formative measures could be better indicators of learning during the process 
of problem solving.  

This work acknowledges the research that has been done within the mathematics education 
community in terms of breaking down components of mathematical learning, as well as the 
learning sciences community in terms of modeling that student knowledge and learning. The 
overarching goal is to integrate the theoretical framework of the five strands of mathematical 
proficiency into the assessment and measurement capabilities of learning technologies. May this 
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work serve as one method to develop a theoretical and conceptual framework that grounds the 
formative assessment of learning through technology within the context of mathematics.   

Chapter 2: Graspable Math as a Tool to Measure and Develop 
Mathematical Proficiency 
The current work focuses on Graspable Math (GM), an innovative dynamic learning technology 
that utilizes motion to teach algebraic structure and problem solving (Ottmar, Landy, Goldstone, 
& Weitnauer, 2015). During problem solving, users transform and solve equations by physically 
moving the terms of an equation or expression on the screen. Figure 2-1 shows a few step-by-step 
images of how algebraic transformations work in GM. For example, if users want to distribute the 
2 in 2*(x+3)=10, they need to click and drag the two from the outside to the inside of the 
parentheses. Then the system automatically multiplies the 2 across to the x and the 3. In another 
example, if users try to incorrectly add two unlike terms, such tapping the plus sign between 2 and 
3x, the system will shake the entire expression from left to right, like a shaking head, to indicate 
that this action is invalid.  
 

 
 

Figure 2-1. Step-by-step algebra transformations in Graspable Math 
 
In one sense, the system supports users in fully performing algebraic transformations, such as 
distributing out across all terms in the parentheses. In another sense, it allows users to attempt to 
make algebraic mistakes, like adding unlike terms, but provides immediate feedback that prevents 
users from committing to mathematical errors. Compared to traditional problem solving on pencil 
and paper, GM allows students to dynamically transform equations, making the problem solving 
process more fluid. GM also provides users with immediate feedback that reinforces mathematical 
rules. GM has been shown to increase student performance and engagement compared to non-
motion based methods of instruction (Landy & Goldstone, 2007; 2010; Ottmar, Landy, & 
Weitnauer, 2015; Weitnauer et al., 2016; Ottmar, Landy, & Manzo, 2017; Ottmar, et al., 2017). 
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Theoretical Framework 
Algebra pedagogy is progressing from memorizing rules and static line-by-line problem 

solving to using alternative modalities including learning technologies and physical movement. 
Algebra has been found to have a strong element of perceptual-motor learning (Kirshner, 1989; 
Kellman, Massey, & Son, 2010; Goldstone, Landy, & Son, 2010). Being able to manipulate the 
terms of an equation as objects allows students to better understand and manipulate algebraic 
notation. Experts in mathematics have shown to rely on perceptual motor cues in order to solve 
problems quickly and efficiently (Braithwaite et al, 2016; Rumelhart et al, 1986).  Teachers can 
facilitate the learning and practice of these perceptual skills through the use of manipulatives, like 
tiles, that students can physically move. This taps into students’ perceptual learning systems, 
allowing them to explore the innate structure of algebra physically and visually, and has shown to 
improve student engagement and algebraic reasoning (Ottmar, Landy, & Goldstone, 2012). They 
key to successful perceptual practice and manipulation of algebraic structures relies on systems 
that correctly embody mathematical rules.  

One pitfall of using physical manipulatives to represent algebraic equations is that these 
manipulatives are used to replace the mathematical system rather than explain it (Uttal, Scudder, 
& DeLoache, 1997). Though many argue that giving students concrete objects that represent 
mathematical expressions can increase understanding, this only happens when students can also 
relate the manipulatives to their underlying mathematical concepts (Ball, 1992; Gentner & 
Ratterman, 1991). Physical manipulatives do not guarantee that students will understand the 
underlying concept. Physical manipulatives can also fall apart when students try to use them in 
unintended ways. Computer-based manipulatives, however, can be more specifically designed and 
can provide students with flexibility in thinking in ways that physical manipulatives cannot 
(Clements, 2000). In addition to more flexible design features, computer-based manipulatives can 
provide students with immediate and individual feedback. Rather than competing with other 
students for teacher feedback, designing a system with technology can provide students with 
scaffolding and feedback that informs them when they are on the right or wrong path. 

GM is based on a perceptual-motor framework (Goldstone, Landy, & Son, 2010) that 
allows students to physically move algebraic terms around the screen as if they were literal objects. 
Prior research has shown the benefits of perceptual-motor learning in algebraic understanding by 
enabling students to “see” terms in an equation as objects to manipulate (Kellman, Masey, & Son, 
2010; Kirshner, 1989). By embedding the rules of algebra within the structure and environment of 
the gesture-based system and providing instantaneous feedback so that students know exactly what 
moves are mathematically correct and incorrect, GM encourages students and users to explore and 
‘play’ with the structure of algebra in every move. Using this approach, prior work has shown that 
use of GM can increase students’ engagement and knowledge of early algebraic ideas, compared 
to non-motion based instructional activities (Landy & Goldstone, 2007; 2010; Ottmar, Landy, & 
Weitnauer, 2015; Weitnauer, Landy, & Ottmar, 2016; Ottmar, Landy, & Manzo, 2017; Ottmar, et 
al., 2017; Braith, Daigle, Manzo, & Ottmar, 2017).  
 
GM-based Tools 

One instantiation of GM is a game-based activity called From Here to There! (FH2T). The 
primary focus of FH2T is to practice foundational algebraic concepts and create a solid basis of 
understanding surrounding the decomposed properties and flexibility of numbers. The intended 
audience for FH2T is middle school, where algebra is traditionally introduced, but has the potential 
to support students through early high school as algebra is the foundation of higher mathematics. 
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The game's universe-like module progression aligns with the Common Core standards and allows 
students to ‘play’ the game by slowly increasing in complexity through levels (i.e. subtraction, 
addition, order of operation). 

Each module presents a series of puzzles. Rather than simply solving for “x”, students are 
asked to make the given expression look like an equivalent expression that was specified in the 
goal (Figure 2-2. Both gamified and plain versions). To achieve this goal, students perform a series 
of dynamic interactions, including rearranging terms to apply the commutative and associative 
properties, decomposing numbers, combining terms (like 1+1=2 or 2*1=2), and performing the 
same operation to both sides of an equation (like multiplying by 3). This promotes the essential 
algebraic skills of number sense and decomposition, as students must understand how to break 
apart and recombine numbers in order to progress. The unique features of FH2T such as its goal-
state ‘solution’, provide a suitable environment for students to engage in trial-and-error 
decomposition while remaining within the confines of natural math law.  

 

 
 

Figure 2-2. Gamified and plain versions of FH2T. 
 
Current Work: Measuring Mathematical Proficiency with Graspable Math 
The idea of better measurement of mathematical proficiency is not new. NCTM’s publication, An 
Agenda for Action (1980), called for a new direction for mathematics and wider range of measures 
than conventional testing, however, even today, most assessments used in schools are summative, 
test procedural knowledge, and emphasize the correctness of the answers (Darling-Hammond et 
al., 2013; Pellegrino et al., 2016; Pellegrino, 2012; Chudowsky & Pellegrino, 2003; Schoenfeld, 
2007; Rittle-Johnson, 2017). Not only do correctness-based assessments exclude any measures of 
process, but they also ignore measures of student disposition, motivation, and persistence, which 
have been shown to be key elements in reforming understanding, preparing for future learning, 
and developing expertise (Hiebert & Grouws, 2007; Kapur, 2010; Skemp, 1971). Though each of 
these elements of mathematical proficiency are comprised of separate skills, understanding the 
relationships between them will provide insight into what types of students are successful and how 
mathematical proficiency is developed. However, without appropriate measures of these skills in 
a single problem solving context, it is difficult to examine these relationships (Schoenfeld, 2007). 
As a field, we need to break away from correctness-based standardized testing and design more 
innovative assessment features that help students learn and succeed by measuring the entire 
learning process in real time (Chudowsky, & Pellegrino, 2003; NRC, 2001). Utilizing the data 
collection capabilities of dynamic learning technologies could be the solution, providing a single 
platform to analyze many aspects of mathematical problem solving.  

Many learning technologies have the ability to collect process data, but much research and 
classroom practices still focus on correctness and other external factors such as prior knowledge, 
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gender, and SES. Though many of these external factors are strong predictors of learning, this 
work also proposes that in-app behaviors can add a lot in terms of explaining students’ 
misconceptions and their learning process. GM technology shows great potential as a tool to 
research mathematical proficiency compared to other learning technologies due to its unique 
gesture-based system. These gestures allow the system to record all student actions, including 
intentional steps and errors, during algebraic problem solving. GM is the perfect platform to 
explore student problem solving behavior and to tease apart the strands of mathematical 
proficiency. By adding in-app behaviors into our models, we may be able to see trends that explain 
more about the learning process. This thesis is a first step to understanding how to leverage the 
data collected within the app to identify different aspects of mathematics proficiency.  

In order to do this, the GM team spent a considerable amount of time and effort on feature 
design using GM measures. This included deciding what variables should be recorded for every 
GM-based study and defining exactly what each variable measures in relation to user interactions 
with the system. Based on these definitions, the conceptual model below (Figure 2-3) situates the 
formative measures of GM within the theoretical framework of mathematical proficiency 
developed in Chapter 1. In the innermost layer, the model depicts the five strands of mathematical 
proficiency (NRC, 2001). The middle layer then maps those strands onto constructs of learning 
found in the literature on educational research. Finally, the outermost layer maps the specific 
measures collected in GM onto both the learning constructs and strands of mathematical 
proficiency. This conceptual model will serve as a guide on how to ground the measurement of 
mathematical proficiency within the theoretical framework and in the context of GM. This work 
proposes that building a conceptual model on theory is a key component of designing effective 
learning technologies both in learning theory and assessment. This conceptual framework will 
continue to be used throughout this work as a guide to test the hypothesized mappings of GM-
based measures onto the five strands in Section 2. This framework will also guide work in Section 
3, which describes the iterative development of GM-based activities designed for supporting and 
potentially measuring mathematical proficiency. 
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Figure 2-3. 	A conceptual model that maps GM measures of problem solving process 
(indicators) onto learning constructs and the 5 strands of mathematical proficiency. 

 
 This work utilizes Graspable Math to tease apart components of mathematical proficiency 
more efficiently and at a deeper level than possible with traditional summative assessment. These 
first two chapters contextualized the current work within the fields of mathematics education, 
learning sciences, and educational data mining. The major contribution of this work is developing 
a theoretical and conceptual framework to assess mathematical proficiency within GM 
specifically, but could be a method applied to any learning technology to assess components of 
learning. The chapters in Part 2 will compare constructs of mathematical proficiency across 
elementary and high school populations and attempt to map those constructs onto the conceptual 
framework. These studies lead into Part 3 and inform the development process of new GM-based 
activities and tools which aim to support the learning of all strands of mathematical proficiency, 
validate measures of mathematical proficiency, and design tools to support the implementation of 
these GM-based resources into K-12 classrooms.  
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Part 2: Graspable Math in K-12 Classrooms for 
Learning and Assessment 
 
Part 2 addresses the second objective of this work, to explore GM-based measures of 
mathematical proficiency across K-12 populations. Two studies evaluate the feasibility of GM in 
elementary and high school populations, as well as the benefits of using GM as a formative 
measurement tool to analyze the learning process.  Previous research has shown the potential of 
the middle school version to increase student performance and engagement compared to non-
motion based methods of instruction (Landy & Goldstone, 2007; 2010; Ottmar, Landy, & 
Weitnauer, 2015; Weitnauer et al., 2016; Ottmar, Landy, & Manzo, 2017; Ottmar, et al., 2017). 
Though the GM approach had been tested extensively at the middle school level, it had not yet 
been tested extensively at the elementary or high school levels. The studies in this section aim to 
fill that gap. While the first study implements GM into elementary school classrooms, the second 
study brings GM to high school classrooms where many students are considerably below grade 
level. Together, these two studies analyze 1) the added benefit of utilizing formative in-app 
measures in predicting learning, and 2) how these formative measures map onto the theoretical 
strands of mathematical proficiency in both populations. 

Chapter 3: Feasibility and Formative Assessment: Graspable Math in 
Elementary School 
This study has been published in the Journal of Educational Technology Research and 
Development (2019). This chapter extends the work previously established by Lindsay Braith for 
her Master’s Qualifying Project (2017), as well as her, Dan Manzo, Maria Daigle, Erin Ottmar, 
and Jeanine Skorinko’s poster presented at the American Psychological Society Conference 
(2017).  
 
Citations: 
Hulse, T., Daigle, M., Manzo, D., Braith, L., Harrison, A., & Ottmar, E. (2019). From here to there! 

Elementary: a game-based approach to developing number sense and early algebraic 
understanding. Educational Technology Research and Development, 67(2), 423-441. 

 
Braith, L., Ottmar, E., & Skorinko, J. (2017). Even Elementary Students Can Explore Algebra! 

(Undergraduate Major Qualifying Project No. E-project-042717-103336). Retrieved from 
Worcester Polytechnic Institute Electronic Projects Collection: https://web.wpi.edu/Pubs/E-
project/Available/E-project-042717-103336/   

 
Braith, L, Daigle, M,  Manzo, D, & Ottmar, E. (2017). Even Elementary Students Can Explore Algebra!: 

Testing the Feasibility of from Here to There!, a Game-Based Perceptual Learning Intervention. 
Poster Presented at the American Psychological Society Conference, Boston, MA. 

 
This first study was inspired by work that started as a Major Qualifying Project (MQP) at 
Worcester Polytechnic Institute by Lindsay Braith (2017). It is important to note that this was an 
incredible team effort by many of our lab members that spanned several years. Lindsay, along with 
our team sought out to 1) test the feasibility of scaling GM to the elementary level and 2) determine 
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if there were any learning differences based on three conditions: traditional instruction, a plain 
version of the FH2T:E intervention, and a gamified version of FH2T:E (Braith, Daigle, Manzo, & 
Ottmar, 2017). First, changes were made to the middle school version of FH2T! so that the content 
was developmentally appropriate. This included focusing on the decomposition of numbers, 
scaling down the GM-based gesture tutorial to only introduce the four operations and 
decomposition, and limiting the vocabulary in written instructions and hints. In that study, there 
were nine second-grade classrooms (106 female, 113 male). Preliminary results showed that 
FH2T:E is feasible for elementary-aged students, as there was significant learning improvement 
from pre to post tests in relation to a traditional teaching control. However, there were no 
differences between the plain and gamified conditions of FH2T:E, suggesting that gamified 
elements in the intervention did not contribute to explaining learning gains. 

That project used an established method of comparing experimental conditions to 
traditional classroom instruction. This was the first step in making GM accessible to students in 
elementary school, where the first ideas of pre algebra are introduced. Though the study found that 
students learned more if they engaged with the FH2T:E intervention, it is unclear what components 
of the program relate to those learning gains. This inspired the method for the study in Chapter 3, 
which uses the in-app data to examine the learning process at a more fine-grained level. Perhaps 
there is more to be explained when introducing in-app problem solving behavior into predictive 
models. There is natural variation in how students engage with the intervention, so it is logical to 
include this variance when explaining differences in learning. This study was designed to serve as 
an example method for learning technology-based interventions that includes both formative (in-
app data) and summative (pre and post) assessments of learning. 

With feasibility already assessed in that project, the main objectives of this chapter are to 
dig deeper into these findings to explore possible predictors and moderators. Using the student log 
data created during mathematical problem solving, we reveal latent constructs of mathematical 
proficiency within the context of FH2T. This study addresses three research questions:  

1. Are there differences in learning between the gamified and non-gamified versions of 
FH2T:E? 

2. Do in-app measures of student problem solving process predict learning gains? 
3. Do certain student behaviors within FH2T:E differentially predict learning for high or low-

knowledge students?  
 
Participants, Experimental Conditions, and Procedures 
The study included 185 second grade students from ten classrooms in three different elementary 
schools in Massachusetts (116 female, 78 male) participated in this study. The study spanned 3 
weeks and followed a pretest, intervention, posttest structure (Figure 3-1). During week 1, students 
were given a 15-item pretest that assessed Common Core Standards for second grade mathematics. 
Students were then randomized into one of two experimental conditions: gamified versus non-
gamified (see figure 2-2). During week 2, all students interacted with the app in their mathematics 
classrooms across 4 days in 20-minute sessions, for a combined total of 80 minutes of play. As 
part of the gamified condition, students played through the version of the game that possessed 
game-like features. Gamification elements included the presence of levels, color, prizes, bonuses, 
stars, etc. The non-gamified version of FH2T:E was stripped down to display only the 18 math 
problems within each level. As students played through this plain version, there was no recognition 
of level completion or rewarded points for accuracy and efficiency. This lack of reward-based 
prizes was intended to assess the degree to which the learning gains stemmed from the gamification 
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features or the goal-state dynamic approach that the FH2T:E game provided. The math content in 
each version was exactly the same. The only differences between conditions were the presence or 
absence of gamified visual material. Therefore, if differences in learning between conditions are 
statistically significant, results may highlight possible mechanisms by which FH2T:E leads to 
gains. Finally, in week 3, all students were given the post-test assessment that matched the pre-test 
assessment with slight modifications. 
 

 
 

Figure 3-1. Pretest, Intervention, Posttest Study Design 
Measures 
Data collected for this project included a combination of student scores on pre- and post- study 
worksheets and in-app data logs of the students interacting with the game. 

Pre and post assessments: Prior to the introduction to the game, students completed a 15-
item pre-study worksheet to assess prior math knowledge. These questions mirrored second grade 
math standards set forth by the Common Core (Common Core State Standards of Mathematics 
(CCSSM), 2010) and tested baseline understanding of decomposition, operational strategies, and 
basic notation. Completion of the pre-assessment was done one week before interaction with the 
game. A week after the four sessions were completed, students completed the post-study 
worksheet. The problems and expressions on the posttest were similar to those found on the pretest. 
To ensure baseline equivalence, an independent-samples t-test was conducted to compare pretest 
scores for gamified and plain conditions. There was not a significant difference in pretest scores 
for the gamified (M=9.85, SD=3.89) and plain (M=9.95, SD=3.60) conditions; t(183)=0.17, p = 
.865. 

In app process data: As mentioned, FH2T:E has a data logging system that records all 
student actions, mouse clicks and trajectories, errors, and moment-by-moment problem solving 
steps while interacting with the system. The recorded data for this study were compiled and 
aggregated across problems, levels, sessions and overall to create a series of variables that 
described problem solving processes. This paper uses the 19 overall variables to represent 
composite measures of student action and problem solving process in FH2T:E over the duration 
of the study. A summary of the main measures are described in Table 3-1.  
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Table 3-1. Labels and definitions of primary variables measured in FH2T:E. 
 

 
 
An exploratory factor analysis, using Principal Axis Factoring, was then conducted to 

identify the number and structure of the factors underlying the overall data variables that were 
recorded within FH2T:E as students solved problems. Before conducting the factor analysis, all 
34 of the initial variables were examined in a correlation matrix to test a few assumptions. It is 
recommended that all variables should be significantly correlated with at least one other variable 
(Tabachnick & Fiddell, 2007). It is also recommended that factors should not be correlated above 
.9, as that would violate assumptions of multicollinearity (Field, 2009). There was only one factor 
that did not correlate with any others, Star Score. However, three groups of variables with 
correlations above .9: 1) Extra Problems Completed and 2) Percentage Extra Completed, Average 
Time Per Problem, Problems Per Minute, and Average of Best Time, as well as 3) Distinct 
Problems Completed, Distinct Problems Unlocked, Percentage Problems Completed, Extra 
Problems Completed, Completed Stars and User Stars. We chose to remove Star Score from 
analyses as it was an engineered measure from multiple other measures and did not correlate with 
any others. As for the groups of multicollinear variables, we decided to choose one variable from 
each group to represent the rest. We chose Extra Problems Completed to represent group 1 (about 
extra completed problems), Average Time Per Problem to represent group 2 (about time), and 
Distinct Problems Completed to represent group 3 (about overall completed problems). This left 
us with a total of 19 variables in the final analyses. 

The KMO test values above .5 can be considered for EFA, with values above .9 considered 
as excellent (Hutcheson & Sofroniou, 1999). Our KMO resulted in .751, which means our sample 
is adequate for producing reliable factors. The Bartlett test was significant 2(171) = 5877.65, p < 
.001, which means our correlations are significantly different from zero. With these considerations 
met, our sample was determined suitable for EFA.  

Using SPSS 22, Principal Axis Factoring was conducted using a Promax rotation. Promax 
was chosen as it is an oblique rotation that assumes the factors are correlated.  Communalities 
describe the proportion of variance explained by the underlying factors and values above .5 are 
considered adequate for factor analysis (MacCallum, Widaman, Zhang, & Hong, 1999)  
Communalities in our sample all resulted in values above .5. In fact, all variables except Extra 
Problems resulted in values above .9. Next, 5 factors were extracted using Kaiser’s criterion (1958) 
criterion: that eigenvalues are greater than 1.00, that each factor be comprised of at least two factor 
loadings of > 0.40, and that the resulting components demonstrate good internal consistency.  
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Five factors with eigenvalues greater than 1.00 and sufficiently large loadings were 
extracted and they explained 29.74%, 24.70%, 21.29%, 8.82%, and 6.22% respectively, explaining 
a total of 90.78% of the variance (Table 3-2). The five factors are described in Table 3-2 and have 
been classified based on how variables loaded onto each factor. Factor 1, which included Total 
Go-Backs, Percentage of Attempts, Percent of Go-Backs, Number of attempts, and Overall Time 
Interaction has been classified as Engagement in Problem Solving. This factor represents a 
measure of the number of problems solve: however, this measure does not represent greater 
progression through the app. students with higher scores on the go-backs factor were more likely 
to attempt and complete the same problems multiple times. Factor 2, which included Distinct 
Problems Completed, Completed Best Step, and Extra Problems Completed has been classified as 
Progression. For example, students with higher scores on this progression factor solved more 
distinct problems and progressed through the app more quickly. The distinction between factor 1 
and factor 2 is important as it allows us to test whether it is simply practicing problems (attempting 
and completing the same problem more than once) or progression through the app (moving through 
the app and completing more unique problems) that is more beneficial for students. Factor 3, which 
included Percentage of Resets, Average Attempts Completed, Total Resets, and Average Resets 
has been classified as Strategic Flexibility. This represents a measure of how often students reset 
problems to try different approaches before successfully completing the puzzles. Factor 4, which 
included Average Time Per Step, User First Step, Percentage Stars, User Total Step, and First 
Efficiency has been classified as Strategic Efficiency. Higher scores for Factor 4 (strategic 
efficiency) represents using a minimal number of steps while solving problems. Finally, Factor 5, 
which included Average Time Per Problem and Best Time has been classified as Speed, a measure 
of student rate of solving problems. Correlations indicated that the  5 factors were also sufficiently 
independent of one another, indicating that they measure separate latent constructs.  

 
Approach to Analysis 

 First, descriptive statistics and correlations were calculated for each factor and variables. 
Next, four multiple regressions were conducted to examine relations between predictors and 
outcomes. The first model examined whether there were differences in performance between 
students in the gamified and non-gamified condition. Next, in model 2, the 5 latent in-app process 
measures were added into the analysis to explore which game behaviors contributed to learning. 
Our next step was to examine whether certain behaviors within FH2T:E mattered more for high 
or low performing students. In this study, we hypothesized that the two indicators of problem 
solving practice within the app (progression and engagement with problem solving) may vary 
depending on students prior knowledge levels. In model 3, we examined the interaction between 
progression and prior knowledge, while in model 4, we examined the interaction between 
engagement with problem solving and prior knowledge.   
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Table 3-2. Structure coefficients from principal axis factor 

Item Engagement Progress Strategic 
Flexibility 

Strategic 
Efficiency Speed Mean SD 

Total Go-Backs 0.935     25.41 49.42 
Percentage of Attempts 0.908     2.00 0.91 
Percent of Go-Backs 0.873     0.19 0.29 
Number of Attempts 0.778     151.61 66.03 
Overall Time Interaction 0.677     2601.70 868.83 
Problems Completed  1.049    78.53 21.53 
Completed Best Step  1.038    122.43 44.34 
Extras Completed  0.774    18.06 7.24 
Percentage of Resets   0.880   0.20 0.11 
Ave Attempts 
Completed 

  -0.864   0.70 0.15 

Total Resets   0.821   15.50 9.58 
Average Resets   0.784   0.10 0.05 
Ave Time-Step    0.834  7.84 2.65 
User First Step    -0.687  190.56 80.29 
Percentage Stars    0.666  0.88 0.08 
User Total Step    -0.635  366.22 189.77 
First Efficiency    0.554  2.67 1.81 
Ave Time-Problem     0.999 27.48 9.96 
Best Time     0.585 2077.05 1002.77 

        
Eigenvalues 5.65 4.69 4.05 1.68 1.18   
Percent of Variance (%) 29.74 24.70 21.29 8.82 6.22 Total: 90.78 

 
Results 

Means, standard deviations, and correlations among the pretest, posttest, and latent factors 
are presented in Table 3-4. Pretest scores were correlated with higher completion (r=0.27), higher 
go-backs (r=0.24), and higher post-test scores (r=0.70). Solving problems more quickly (time) was 
related to greater completion (r=0.37) and fewer go-backs (r=-0.25). Results from all models are 
presented in Table 3-5. 

Research Question 1: Our first aim was to determine whether there were differences in 
math posttest performance between students who received the gamified and non-gamified 
conditions. Results suggest that there were no differences in post test performance between the 
gamified and non-gamified conditions (p>0.05), when only condition, gender and pretest 
performance were used to predict posttest performance.  
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Table 3-4. Descriptive Statistics and Correlations 

Factor Correlations 1 2 3 4 5 6 7 8 9 
1. Posttest Score --         

2. Pretest Score .70*
* 

--     

3. Gender .09 .14 --       

4. Condition -.05 .01 .01 --      

5. Factor 1- Engagement .21* .23 .05 .33** --     

6. Factor 2- Progress .27*
* 

.32*
* 

.05 .26** .04 --    

7. Factor 3- Strategic 
Flexibility 

.12 .06 .07 -
.22** 

.16** .21** --   

8. Factor 4- Strategic 
Efficiency 

.12 .11 -.07 -.09 .01 -
.23** 

.23*
* 

--  

9. Factor 5 Speed -.07 -.08 -
.18* 

.04 -
.22** 

.51** .25*
* 

-
.18* 

-
- 

Mean 74.2
3 

65.9
1 .53 0.61 0 0 0 0 0 

Standard Deviation 23.9
6 

25.1
4 0.50 0.49 1 1 1 1 1 

*p < .05; ** p < .01 
 
Research Question 2: After including in-app student interaction components, a significant 

effect of condition emerged (p<0.05). Students in the gamified condition performed, on average, 
6.58 points higher on the posttest than students in the non-gamified condition. Further, progress 
(factor 2) was approaching significance (p=.056), suggesting that students who progressed faster 
and completed more unique problems in the app may demonstrate higher posttest scores. More 
specifically, for every one standard deviation increase in completion, students performed 
approximately 3.07 points higher on the posttest. No other in-app measures predicted learning.  

Research Questions 3 and 4: As displayed in figure 3, a significant interaction was present 
for Progress (factor 2) and prior knowledge. Students with lower initial pretest scores who 
completed more problems in the FH2T:E game demonstrated increased learning gains compared 
to students who completed less problems. However, posttest achievement for initially high 
knowledge students was similar, regardless of the amount of problems students completed (Figure 
3-2). A similar interaction and pattern emerged for Engagement with Problem Solving (Figure 3-
3), with low knowledge students who engaged more with problems gained more than students who 
did not go-back and solve problems more than once. Engagement with Problem Solving did not 
seem to relate to achievement for high knowledge students.    
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Table 3-5. Model results predicting post-test achievement 

Parameter Model 1 Model 2 Model 3 Model 4 

(Constant) 27.95 (4.04)** 31.24 (4.34)** 33.91 (4.41)** 34.25 (4.36)** 

Gender -0.03(2.61) -0.37 (2.72) 0.52 (2.70) 0.54 (2.68) 
PreTest % Correct 0.68 (0.05)** 0.60 (0.06)** 0.58 (0.06)** 0.55 (0.06)** 
Gamified 3.86 (2.61) 6.58 (3.16)* 5.51 (3.14) + 8.39 (3.14)** 
Engagement  1.90 (1.56) 15.17 (5.60)** 2.30 (1.53) 
Progress  3.49 (1.81)+ 3.07 (1.80) + 14.55 (4.09)** 
Strategic Flexibility  0.63 (1.58) -0.74 (1.59) 0.22 (1.55) 
Strategic Efficiency  1.38 (1.48) 1.39 (1.46) 1.60 (1.45) 
Speed  -1.48 (1.73) -0.80 (1.72) -1.28 (1.69) 
Engagement x Pretest   -0.17 (0.07)**  
Progress x Pretest    -0.16 (0.05)** 
     
F 57.54 22.45 21.25 21.93 
R2 0.50 0.52 0.54 0.55 
Standard errors in parentheses. +p <. 10; *p < 0.05; **p < 0.01 

 
 

 
 

Figure 3-2. Interaction of Progression and Prior Knowledge on Posttest Achievement 
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Figure 3-3. Interaction of Engagement and Prior Knowledge on Posttest Achievement 

Discussion 
            This study examined several factors related to student behavior and math learning within 
From Here to There!:Elementary. Several main findings emerged from this study of second grade 
students. First, upon first examination, there did not appear to be significant differences in learning 
between gamified and non-gamified conditions. However, after accounting for in-app problem 
solving interactions, significant differences emerged, with students in the gamified condition being 
more likely to have larger gains on the posttest than students in the non-gamified condition. Next, 
solving more problems within the app could be related to higher achievement. Third, two 
significant interactions emerged, suggesting that solving problems within FH2T:E may be 
especially beneficial for low performing students: low performing students who solved more 
problems in the app and engaged in more behaviors in problem solving, including more attempts 
and going back to retry problems, were more likely to have larger learning gains than students who 
had initial higher levels of achievement.  
 After accounting for in-app behaviors, there is an advantage for gamification over non-
gamification. Adding the support of gamified features may motivate students to engage with more 
difficult content that they have never learned before in a non-threatening environment. 
Furthermore, gamification may motivate these children to improve their problem solving strategies 
in order to receive rewards for the most efficient solution. However, it is important to note that 
efficiency and time were not significant predictors of mathematics learning. This is consistent with 
other work in mathematics education that values flexible problem solving process and thinking 
over speed and efficiency, even from the early years of mathematics instruction (Baroody, 2003). 
Completing more unique problems and progressing further through the app was related to 
improved learning, providing additional evidence of learning benefits by engaging with and using 
the app. It may be that completing more problems provided more opportunities for learning by 
increasing exposure to different types of content and problems that young children may have never 
seen before, such as more complex opportunities for decomposition with multiple operations.  
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 The significant interaction effects identify differences in the more subtle aspects of 
interaction with the program and addresses the question, Who does FH2T:E help most? Results 
suggest that playing with and completing more problems in FH2T:E appears to be more beneficial 
for low performing students compared to high performing students whose learning did not 
significantly change. This may be due to the fact that low performing students have more to gain 
in terms of learning and FH2T:E can give low performing students a valuable learning opportunity. 
One benefit of online math games is that students can progress through the app at their own pace, 
allowing lower performing students to continue to practice mathematical concepts and problems 
within a safe environment. Interestingly, it does not seem to matter if low performing students 
complete more unique problems that continue to progress them through the app or if students 
practice the same easier problems multiple times (repeated practice). Similar patterns of gains in 
achievement are observed for both types of problem solving practice for low and average 
performing students. These findings are consistent with other work examining the benefits of math 
apps that allow for differentiation of learners with varying achievement levels (Moyer-
Packenhaum & Suh, 2012), pointing to the importance of allowing students to re-do problems 
(attempts, go-backs) and solve math problems at their own pace. These findings are promising for 
using perceptually-guided puzzle-based problem solving  as a means of decreasing the 
achievement gap between high knowledge and struggling students. Future studies should also 
address whether FH2T:E will benefit students with different demographic characteristics (racial, 
ethnic, linguistic, cultural, etc.) than those in the study population. 
 While we cannot definitively say why FH2T:E especially helped struggling students, it 
may be that the perceptual feedback, hints, and ability to reset and retry problems created new 
affordances for students that typically paper and pencil assessments does not provide. One 
plausible explanation may be that the puzzle-based design of the game was more motivating and 
engaging and less threatening for struggling students that the emphasis on correctness. Although 
we did not specifically measure math anxiety in this sample, these patterns are consistent with 
prior work in FH2T which suggested that students with higher levels of math anxiety and lower 
prior knowledge who engaged with FH2T solved more problems and did not experience 
detrimental effects of math anxiety on achievement compared to students who received more 
traditional instruction (Ottmar et al., 2015). Future studies should more closely examine the in-app 
data to compare the behaviors and relations between low and high performing students.  

 
Implications for Math Teaching, Research, and Practice 

These results suggest that it is feasible and productive to use games to support young students 
algebraic thinking through practicing early algebraic content, such as decomposition and order of 
operations. All students, regardless of their prior knowledge, were able to easily progress through 
the game. The flexible and accessible nature of the FH2T:E program supports the creation of new 
games in the future that can introduce physical interaction with content via a technological 
interface. From a preparation for future learning perspective, games might be especially effective 
because they can provide both motivation and learning gains while gradually exposing students to 
more difficult content and feedback within a supportive learning environment. The accessibility 
that web-based games provide may not only provide affordable opportunities for students to 
continue their math practice during the school year, but it may also serve as a promising 
intervention to bridge the gap over summer break when students often lose ground in content 
understanding. 
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Game-based learning technologies also have the potential to measure and assess student 
learning during the problem solving process. Though many instructional technologies have the 
ability to record all student interactions, there is little research on how these data can be used and 
mapped onto learning constructs of mathematical practice during instruction. This study is the first 
time that we have explored the predictability of new measures of in app interactions to assess 
mathematical learning within the FH2T:E game context. The additional information provided by 
this data revealed previously hidden effects of game-based components on learning Following 
these findings, future research directions should include studies to expand and generalize the 
FH2T-E approach within this age range and to develop additional versions of gamed-based 
perceptual learning algebra interventions designed for even younger students (Clements & Sarama, 
2007; Lins & Kaput, 2004).  

Now that we have identified five factors that seem to reflect student interaction with the 
game, the next step is to validate these factors within a different data set. Once validated, we can 
more generally use these composite scores to predict learning, as well as create profiles of student 
behavior to better understand which students succeed and fail. This could begin to tease apart 
differences in age, prior knowledge, and engagement with the app and shed light on how students, 
despite differing starting points, could utilize FH2T:E to increase mathematical performance. 
Future studies could include outcome measures reflecting differences in student engagement, 
motivation or strategy obtained from the in-app data logged for each individual student’s “game-
session.” Finally, within this in-app data, the FH2T:E program has the capability to analyze errant 
attempts made by students as they approach solving various items. Thus, it enables researchers to 
visualize both the effective strategies used by students and the errors and maladaptive approaches. 
This sort of data could be used to examine questions of mathematical flexibility and intervene 
earlier by providing immediate feedback and additional practice more effectively.  

 
Conclusion 

Overall, this study provides further evidence of efficacy for From Here to There!: Elementary on 
improving student mathematical understanding. By providing activities that embed 
developmentally appropriate content and activities may make the introduction of early algebraic 
concepts into school classrooms more feasible and impactful. This study also shows the power of 
formative assessment in addition to summative assessment in understanding student problem 
solving behavior as they engage with the technology. It was only when in-app measures were 
added to the regression models that interaction effects were revealed between student prior 
knowledge and problem solving constructs (progression and engagement in problem solving). 
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Chapter 4: GM Problem Solving Behavior in Elementary and High School  
This study has been presented as a poster at the 2019 Worcester Polytechnic Institute Graduate 
Research Innovation Exchange. This poster was  awarded 1st place in the Social Sciences & 
Business category. 
  
Citation: 
Hulse, T., Manzo, D., Harrison, A., & Ottmar, E. (2019). Measuring Mathematical Proficiency Within a 

Dynamic Learning Technology. Poster presented as a finalist at the Graduate Research Innovation 
Exchange. Worcester Polytechnic Institute. 

 
Chapter 3 explored the latent constructs of mathematical problem solving behavior in an 
Elementary population. That study showed the benefit of adding the formative measures within 
GM to the predictive models compared to only including summative measures alone. However, 
little is known whether the constructs measured by GM are consistent across grade levels. This 
chapter explores the latent constructs of mathematical problem solving behavior in a High school 
population using the same method as Chapter 3. Then the results from the Elementary and High 
school populations are compared in terms of the latent constructs that emerged from the interaction 
data. 

The current study takes the first step in comparing problem solving behavior between two 
populations within the context of GM. While GM was initially designed to target pre-algebra and 
algebra content, which is typically introduced in middle school, the previous study already 
confirmed the feasibility of using GM as a formative assessment tool within elementary 
populations. This study will first replicate this in a high school population. Then it will compare 
problem solving behaviors of high school students to elementary students. This study serves as an 
example of how other learning technologies can explore measuring mathematical proficiency 
across populations while also grounding assessments in theory. In order to accomplish these 
research goals, this study answers the following research questions:  

1. For a high school population, are there latent constructs of mathematical proficiency within 
the context of GM? 

2. How do the latent constructions of high school students compare to the constructs revealed 
within the elementary student data? 

 
To do this, an Exploratory Factor Analysis (EFA) will be conducted to reveal latent constructs of 
mathematical problem solving behavior within the data. Then the results of the High School EFA 
will be compared to the results from the Elementary School EFA. 
 
Participants, Experimental Conditions, and Procedures 
The high school population included 94 9th grade students from an urban high school. In the study, 
all participants were asked to engage with GM and solve algebraic problems in a puzzle-based 
activity. All problems in the intervention were goal-based and asked students to transform an 
expression or equation to reach a certain goal state, rather than asking students to find “x”. After 
learning how to use the system in a tutorial level, students moved on to a series of levels that 
targeted specific skills such as basic operations, distribution and factoring, and applying operations 
to both sides of the equation. All students engaged with these problems for at least 30 minutes and 
at most 50 minutes. In the last 5 minutes of the study, students were asked to solve a final problem. 
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This problem was intentionally difficult to test students’ persistence. After 2 minutes of working 
on the final problem, students were given the option to skip the problem or continue working.  
 

 
 

Figure 4-1. High School Study Design 
 

The second population, elementary school students, is the same population from the study 
in Chapter 3. They included 185 second grade students from ten classrooms in three different 
elementary schools in Massachusetts (116 female, 78 male). The main difference between the 
study procedure in Elementary and High School populations was the complexity of the problems 
and the number of sessions. While Elementary students were given a set of problems that focused 
on expressions, decomposition and basic arithmetic, high school students were given problems 
that reached higher levels of algebra knowledge, such as distribution, factoring, and equations. In 
the study procedure, Elementary students interacted with GM across three sessions (m=78 total 
problems), while High School students interacted with GM in only one session (m=36 total 
problems). Student interactions logged within GM, however, were exactly the same. 
 
Measures 
In app process data: GM logs student clickstream data including all actions, mouse clicks, and 
problem solving steps. These data were aggregated across problems, levels, sessions, and overall. 
Identical to the method used for the Elementary study, analyzing the High School data started with 
31 variables to represent composite measures of student problem solving behaviors. Table 4-1 
shows the category types for variables logged in GM.  
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Table 4-1. Labels and definitions of primary variables measured in GM 
 

 
 
Before conducting the EFA, all variables were examined in a correlation matrix to test a 

few assumptions. It is recommended that all variables should be significantly correlated with at 
least one other variable (Tabachnick & Fiddell, 2007). It is also recommended that factors should 
not be correlated above .9, as that would violate assumptions of multicollinearity (Field, 2009). 
There were a few variables that did not have any recorded data during this study including Number 
of Sessions, Problems Unlocked, Extra Problems Completed, and Percentage of Extra Problems 
Completed. There were two variables that did not correlate with any others in this study, 
Percentage of Go-backs and Average Resets. However, three groups of variables with correlations 
above .9: 1) Overall Time, Best Time and Average Time per Session 2) Average Time per Problem 
and Average Time per Minute as well as 3) Distinct Problems Completed, Percentage Problems 
Completed, Percentage of Problems Completed, Total Problems Completed, Completed Stars, 
User Stars, User First Step, and Completed Best Step. We chose to remove the three variables 
without recorded data, as well as Percentage of Go-backs and Average Resets as it did not correlate 
with any other variables. As for the groups of multicollinear variables, we decided to choose one 
variable from each group to represent the rest. We chose Overall Time to represent group 1 (about 
larger measures of time), Average Time Per Problem to represent group 2 (about smaller measures 
of time), and Distinct Problems Completed to represent group 3 (about overall completion rates). 
This resulted in a total of 11 variables in the final analyses. 

 
Analyses 
RQ1 uses EFA to explore underlying constructs in student problem solving behavior in GM. To 
do this, we used 11 student problem solving behavior measures recorded in GM and used them as 
features in the EFA. Descriptive statistics and correlations were calculated for each factor and 
variables. These descriptive statistics were then analyzed to identify common threads and to 
explore their potential of  mapping onto the five strands of mathematical proficiency.  

RQ2 compares the results of the EFA between the elementary and high school students. 
This includes examining both the factors and the individual items within each factor. While some 
constructs might be similar, they may be made up of slightly different items. This analysis will 
also relate the constructs back to the theoretical framework and the five strands of mathematical 
proficiency to determine if the five strands are present in both populations. This question aims to 
explore the differences between problem solving behaviors in elementary and high school 
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populations within the context of GM, while also grounding GM measurement in a theoretical 
framework. 

 
RESULTS 

RQ1: For a high school population, are there latent constructs of mathematical proficiency within 
the context of GM? An exploratory factor analysis was conducted using a total of 11 variables. To 
conduct an EFA, multiple criteria need to be reviewed. First, is a sample size of 300 is 
recommended for factor analyses (Tabachnick & Fiddell, 2007), so the current sample of 87 
students is considered somewhat low. Second, KMO test values above .5 are considered 
appropriate for EFA, with values above .9 considered as excellent (Hutcheson & Sofroniou, 1999). 
Our KMO was .630, which means that our sample is adequate for producing reliable factors. The 
Bartlett’s test of sphericity was significant X2(91) = 1076.53, p < .001, which means that our 
correlations are significantly different from zero. With these considerations met, our sample was 
determined suitable for EFA.  

Using SPSS 22, Principal Axis Factoring was conducted using a Promax rotation. Promax 
was chosen as it is an oblique rotation that assumes the factors are correlated.  Communalities 
describe the proportion of variance explained by the underlying factors and values above .5 are 
considered adequate for factor analysis (MacCallum, Widaman, Zhang, & Hong, 1999)  
Communalities resulted below .5 for three variables, Star Score (.263), Total Go-backs (.165), and 
Percentage of Resets (.165). These variables were removed and the EFA rerun. After removing 
those three variables all variables resulted in communalities above .5, except for two, Percentage 
of Stars (.427) and First Efficiency (.425). Since they were above .4, they were included in 
analyses.  

Next, factors were extracted using Kaiser’s criterion and by examining the scree plot. Three 
factors with eigenvalues greater than 1.00 and sufficiently large loadings were extracted and they 
explained 40.31%, 21.83%, and 18.81% respectively, explaining cumulatively 80.95% of the 
variance (Table 4-3). The three factors have been classified based on how variables loaded onto 
each factor. Factor 1 (40.31% of the variance), which included Total Steps, Distinct Problems 
Completed, Attempts, Resets, Efficiency, First Efficiency has been classified as Engagement in 
Problem Solving as it incorporates a wide range of problems solving behaviors. Factor 2 (21.83% 
of the variance), which included Percentage of Attempts, Average Attempts Completed has been 
classified as Strategic Flexibility as it incorporates only attempt-related items. Factor 3 (18.81% 
of the variance), which included Total Time, Time Per Problem, and Time Per Step has been 
classified as Speed, as it includes all time-related items.  
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Table 4-2. Principal axis factor loading with Promax rotation and Kaiser normalization 
 

 
 
RQ2: How do the latent constructs of high school students compare to the constructs revealed 
within the elementary student data? Using the same data from Elementary students as Chapter 3, 
this analysis compares the similarities and differences between the EFA results in high school and 
elementary problem solving behaviors within GM. Table 4-4. Displays the results from both EFAs 
side-by-side. Text in black reflects variables and factors included only in the Elementary analysis. 
Text in Red reflects variables and factors included in the High School analysis, which also overlaps 
with data in the Elementary data.  

While the elementary school data revealed five constructs, the high school data revealed 
only three. However, those three factors, Engagement, Strategic Flexibility, and Speed, were 
defined as factors in both populations. Engagement in Elementary school looked like attempting 
problems, going back to re-attempt problems, and time spent using GM overall. Engagement in 
High School, however, was much broader, including attempts, completion, resets, and efficiency. 
Since there were only three factors defined in the High School data, the Engagement factor seemed 
to incorporate variables from the Progress and Strategic Efficiency factors that only appeared in 
the Elementary School data.  

Strategic Flexibility in the Elementary School data included four variables, while the High 
School data only included two variables. Some of the variables in the Elementary School factor of 
Strategic Flexibility were not included in the High School analysis, accounting for some of this 
difference. In both the Elementary and High School factors, Average attempts completed had a 
negative relationship with the factor. This suggests that while students were attempting and 
resetting problems, they were not completing those attempts. This might reflect more of a factor 
of exploration, rather than strategic flexibility as the number of attempts increased, the number of 
attempts decreased. 
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Table 4-3. EFA comparison between elementary and high school student problem solving 
behavior within GM 

 

 
 
Speed was another factor that appeared in both the Elementary and High School data. In 

the Elementary factor, only Average time per problem and Best time were included, as Overall 
Time and Average time per step loaded onto other factors more strongly. However, all of these 
factors (except Best Time, which was not included in the High School analysis) overlap with the 
High School factor of Speed. This suggests that measures of time carry through as a single factor 
to account for variance in both Elementary and High School populations. 

In terms of fit, the Elementary School EFA clearly models the data better than the High 
School EFA. First, the Kaiser-Meyer-Olkin measure of sampling adequacy for the Elementary 
school analysis (KMO=.751) was higher than the High School analysis (KMO=.630). This 
suggests that the Elementary sample has a higher proportion of variance that could be explained 
by underlying factors. The Bartlett’s test of sphericity was significant in both populations, however 
the chi-square statistic was much higher for the Elementary School population, X2(171) = 5877.65, 
p<.001, compared to the High School population X2(91) = 1076.53, p<.001. This suggests that the 
Elementary School data might be better able to detect separate factors that would be more useful 
in terms of interpretation. Lastly, after conducting the EFA, the Elementary School model 
accounted for 90.78% of the variance, compared to only 80.95% in the High School model. While 
both analyses had adequate fit for explaining the variance in problem solving behavior within GM, 
the Elementary School EFA was a better model than the High School EFA overall. 
 

Discussion 
The current study explored differences between elementary and high school students in latent 
constructs of problem solving behaviors within GM. First, an exploratory factor analysis was 
conducted to reveal three factors in the high school data, Engagement in Problem Solving, 
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Strategic Flexibility, and Speed (RQ1). Next, this EFA model was compared to that of the 
elementary school students, which revealed five factors, Engagement in Problem Solving, 
Progress, Strategic Flexibility, Strategic Efficiency, and Speed (RQ2). The first major difference 
between the elementary and high school problem solving behaviors was the difference in the 
number of factors. This result could mean a few different things. First, this might mean that there 
is less variability in problem solving behavior in high school compared to elementary school. This 
is likely because elementary students might be more prone to exploring with the technology. 
Further analysis revealed that even though the high school students had more complex problems 
in terms of the number of steps required to solve, elementary students took more steps on average 
(m=5.2) to solve than high school students (m=3.8, p<.01).  Another possible explanation is that 
this difference in factors could be due to a different number of starting variables. Some of the 
variables recorded for the elementary school study, like go-backs and certain measures of resets, 
were not available for the high school data.  

Despite a different number of factors, the variables in each EFA were categorized in similar 
ways. Three of the factors were labeled with the same name, Engagement in problem solving, 
Strategic Flexibility, and Speed, because they were so similar in both populations. The only two 
factors that appeared in the elementary data that did not appear in the high school data were 
Progress and Strategic Efficiency. The variables within these two factors in the elementary data 
were absorbed by the Engagement in Problem Solving factor within the high school data. Another 
variable that was recorded in the elementary data, but not the high school data, was extra problems 
completed. In the elementary study, students only had to complete 75% of the problems in each 
level. Extra problems were considered those attempted or completed beyond the required 
problems. This variable was not recorded during the high school study, which might have 
contributed to the Progress factor not appearing in the high school data. While most of the 
variables that loaded onto the Strategic Efficiency factor in the elementary data were present in the 
high school data, they instead loaded onto Engagement in Problem Solving. As seen in Table xx, 
a few of these variables have reverse signs. For example, User Total Step has a negative factor 
loading in the elementary factor, Strategic Efficiency, it has a positive coefficient in the high school 
factor, Engagement in Problem Solving. This makes sense as more less steps would contribute to 
more strategic efficiency (negative sign, negative relationship) and more steps would contribute to 
more engagement in problem solving (positive sign, positive relationship).  

Ultimately this study takes the first step in identifying constructs of mathematical problem 
solving behavior across K-12 populations within the context of GM. While the two populations 
resulted in a different number of latent constructs, these constructs still resembled similar 
measures, such as engagement in problem solving, strategic flexibility, and speed. This shows 
some potential for measuring components of mathematical problem solving across different age 
groups and only through student interactions with GM. The next step in this work is addressing 
how these latent constructs map onto the conceptual framework proposed in Chapter 2 of this 
work. Also, the two studies in this section only use one method for extracting components of 
student problem solving behavior. EFA is a logical first choice because it uses all data to extract 
latent factors in the data. While this is a good method to start mapping student interactions with 
GM onto components of mathematical proficiency, other top-down methods might elicit stronger 
correlations to the five strands. These limitations and conclusions are addressed in the following 
chapter.  
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Chapter 5: Future Work and Conclusions 
Elements and ideas presented in this chapter (Comparing Bottom-up and Top-Down Approaches) 
have been accepted as a research report to the 2019 National Council of Teachers of Mathematics 
Research Conference.  
 
Citation: 
Hulse, T., Harrison, A, Manzo, D, & Ottmar, E (2019). Developing Measures of Mathematical Proficiency 

in a Learning Technology. Research Report presented at the Annual Research Meeting of the 
National Council of Teachers of Mathematics (NCTM). 

 
This chapter will extend the results from the last chapter by mapping the EFA constructs from the 
Elementary and High School populations onto the conceptual framework presented in Chapter 2. 
This chapter also describes how future work will address the limitations to the study in Chapter 4, 
including work that has already been done to compare multiple approaches to measuring 
mathematical proficiency.  
 
Mapping onto Mathematical Proficiency 
In addition to comparing populations, another aim of this work is to explore the theoretical 
framework of mathematical proficiency in the context of problem solving behavior from 
clickstream data. Using a bottom-up approach, such as an EFA, are the five strands of 
mathematical proficiency present? To explore the strands in terms of GM-based measures, let’s 
revisit the conceptual model proposed in the introduction (Figure 2-3). In the elementary school 
population, five latent factors were revealed, Engagement in Problem Solving, Progress, Strategic 
Flexibility, Strategic Efficiency, and Speed. In the high school population, three latent factors were 
revealed, Engagement in Problem Solving, Strategic Flexibility, and Speed. The two factors that 
were only present in the elementary school population, Progress and Strategic Efficiency, seemed 
to all load onto the Engagement in Problem Solving factor in the high school population. Based on 
the factor loadings, data structure, and the constraints of the task, these data only clearly mapped 
onto procedural fluency and strategic competence. It can also be argued that one of the factors 
could be related to productive disposition.   
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Figure 5-1. Conceptual model of how strands of mathematical proficiency and EFA constructs 
map onto GM-based measures. 

 
Based on the factor loadings, Progress (Elementary only) and Speed (Elementary and High 

School) closely resemble the hypothesized measures of Procedural Fluency. Progress included 
problems completed, best step overall, and extra problems completed, which maps onto the 
hypothesized measures of number of problems solved and problem solving steps in the model. 
Speed may also be a factor of procedural fluency based on its factor loadings of time interaction, 
time per step, time per problem, and first efficiency (efficiency as measured by the first attempt of 
every problem).   

In terms of strategic competence, which included hypothesized measures of strategy 
choice, efficiency, attempts, and variability, Strategic Efficiency (Elementary) and Strategic 
Flexibility (Elementary and High School) were closely related. Strategic Efficiency included 
efficiency-related measures such as time per step, number of steps to solve all problems on the 
first attempt (User First Step), number of steps to solve compared to the minimum required to 
solve (Stars), the total number of steps used on all problems and attempts (User Total Step), and 
the number of steps to solve the problem on the first attempt (First Efficiency). Strategic Flexibility 
included at least the average number of attempts and percentage of attempts completed in both 
populations, as well as reset-related measures in the elementary population. While Strategic 
Efficiency reflects efficiency and strategy choice as measured by a lower number of steps, Strategic 
Flexibility actually reflects variability in strategy which would be measured by a higher number of 
attempts. This suggests that there are two components of the strand Strategic Competence that are 
competing in terms of efficiency and exploration. In order to learn how to be efficient and learn 
how to be strategic in terms of their problem solving approach, students will need to engage in a 
trial and error process, which can be measured through their attempts in GM. This is an important 
finding because it reflects how these formative measures might differ from summative measures. 
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While an end of the unit exam might assess students’ “learned” strategic competence in terms of 
their efficiency, formative assessment within GM might focus more on the trial and error process 
and aim to engage students in exploring strategies. In terms of measurement, this may mean that 
students are less efficient, however, they might gain multiple strategy usage for future problem 
solving.  

Productive Disposition is defined as self-efficacy, motivation, and the ability to see the 
utility of mathematics. In terms of GM this was hypothesized as resets and exploration to reflect 
engaged behavior and hesitation and skips to reflect potential challenges and opportunities to 
persist. One factor within the elementary and high school populations, Engagement in Problem 
Solving, partially mapped onto the hypothesized measures of Productive Disposition. This factor 
was made up of go-backs, attempts, overall time interaction, total steps in the elementary 
population and attempts, problems completed, resets, and efficiency in the high school population. 
This only partially maps onto Productive Disposition for a few reasons. First, the factor is not 
completely consistent across both populations. This is a limitation as it may vary with each 
population. Second, Engagement in Problem Solving only reflects components of Productive 
Disposition such as motivation and engagement with problem solving, however ignores other 
components such as self-efficacy and perceived utility of mathematics. Measuring these 
components would only be possibly through means other than problem-solving measures within 
GM.  

It was interesting that two of the factors in the high school, Engagement in Problem Solving 
and Strategic Exploration, data represent behaviors that relate to exploration and slow practice. 
Only one factor, Speed, relates to problem solving that is more efficient and focused on speedy 
practice. It was surprising that the construct of Strategic Efficiency was not present as its own 
factor in the high school data. Student who were strategically efficient could exist, but they would 
probably be present in the data only as having low levels of Engagement in Problem Solving, 
which could also be mistaken for students who are off-task or confused. The idea of efficiency vs. 
exploration has important implications on research in learning. Using this bottom-up approach, 
there is not a clear construct of strategic efficiency in the high school data. This could have negative 
implications for researching this population as it might overlook this important behavior in 
students. If learning technologies are to capture all five theoretical strands of mathematical 
proficiency, a more top-down approach might be necessary. Instead of only constructing factors 
based on latent constructs, grounding assessment on theory might involve designing features based 
on the theoretical definition of the five strands.  
 
Future Work 
One of the major limitations in the two studies presented in Part 2 of this work was that the content 
and method of analysis both had constraints in terms of their potential to measure all five strands 
of mathematical proficiency. This method of analysis was a purely bottom-up approach as EFA 
uses all available data to reveal underlying constructs. While this is a great first step and method 
to uncover trends, it is ultimately driven by the data, not the theoretical framework. Future work 
should also compare bottom-up and top-down approaches that start with the theoretical framework 
to define strands of mathematical proficiency. 
 Related work has taken the first step in this process by conducting a study that compares 
the problem solving behavior of high school and college students engaging with GM goal-state 
problems. In that method, three of the five strands of mathematical proficiency were defined using 
GM-based measures (Table 5-1). The three strands, procedural fluency, strategic competence, 
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and productive disposition, were chosen as a starting point because they do not need verbal 
explanation as a measure, whereas conceptual understanding and adaptive reasoning by definition 
require explanation of conceptual thought.   
  

Table 5-1. Theoretical mapping of three strands of mathematical proficiency onto 
measures within GM. 

 

 
  

Procedural fluency in GM can be seen as a user’s efficiency in solving a problem, which 
can be measured by the amount of time to solve a problem. Procedural fluency can also account 
for the number of distinct problems solved as users with higher procedural knowledge would be 
expected to progress further through the system than users with lower procedural knowledge. 
Independent samples t-tests determined that there are statistically significant differences between 
the mean high school (M=45.49) and college (M=75.67) distinct problems completed at the p<0.05 
Level.  The higher completion and clear rates at the college Level suggested that college students 
were also more efficient in solving problems in terms of time. To examine this further, independent 
samples t-tests determined significant differences between mean speed per problem and mean 
speed per step in high school (M=49.26, 16.79) and college populations (M=27.25, 10.57) at the 
p<0.05 Level. While all Levels were included for the analyses for total problems completed, only 
Levels 1-3 were included in the analyses for speed per problem and step, as this was the last Level 
where each population had at close to 50% of students. 

Strategic competence in GM was defined by behaviors related to a user’s efficiency and 
flexibility or variability in strategy use. Independent samples t-tests determined differences in 
population means on efficiency (steps) and retrying behavior. In terms of efficiency, the college 
population (M=2.93) used significantly fewer steps to solve problems on average than the high 
school population (M=3.89) at the p<0.05 Level. To capture retrying behavior in GM, we measured 
the number of resets per problem and the number of times students go back to problems they have 
already attempted. Descriptive statistics suggest that both forms of retrying behavior were 
considerably low for both populations resulting in resetting in only about 10% of problems and 
only going back to an average of three problems for a second attempt or more. Independent 
samples t-tests indicate that there are no statistically significant differences in retrying behavior 
(resets, gobacks) between high school (M=10.19, 3.2) and college students (M=9.34, 3.14) who 
used GM in this study. While all Levels were included for the analyses for total resets and go-
backs, only Levels 1-3 were included in the analyses for speed per problem and step, as this was 
the last Level where each population had at close to 50% of students. 
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This study also aimed to measure certain components of productive disposition, such as 
persistence. In order to measure this, students must be presented with challenging situations. In 
this study, all students were presented with a final challenge problem that was expected to be 
challenging even for adults and math “experts”. Productive disposition during this challenge 
problem is measured in the amount of time that students persisted in working with the problem as 
well as the amount of steps taken in an attempt to solve the problem. Time alone would not be 
sufficient as a student could have the problem open on their screen without actively working on 
the problem. Independent samples t-tests identified significant differences in both time and steps 
on the final challenge problem at the p<0.05 Level. college students spent significantly more time 
and took significantly more steps (M=337.78 seconds, M=37.40 steps) than high school students 
(M=300.83 seconds, M=25.52 steps). 

Overall, college students completed more problems, cleared more levels, and solved 
problems more quickly than high school students (Procedural Fluency). This suggests that college 
students display more procedural fluency than high school students in these populations. This was 
to be expected as the high school students were in 9th grade and most were below grade-Level in 
math performance while the college population were from a high-performing engineering school. 
What is perhaps more interesting, however, is how these two populations exhibit strategy use 
(Strategic Competence) and persistence (Productive Disposition). While college students were 
more efficient in terms of the number of steps to solve a problem, there was no difference in 
retrying behavior between populations, showing that very few students in both populations 
attempted a problem more than once. This suggests that experts and novices in both populations 
generally do not try multiple strategies per problem and typically stick with the results of their 
initial attempt.  During the challenge problem, college students persisted more as measured by 
time and the number of steps taken. One possible explanation for this finding is that the college 
students’ expertise may play a role in making it easier to persist in the challenge problem either 
due to the difficulty of the content or motivation to continue. Ultimately, this research 
demonstrates the potential of using GM as a platform for measuring multiple strands of 
mathematical proficiency with a top-down formative measure of assessment. 

Another major limitation of this work is that all of the data comes from one type of activity. 
Both the elementary and high school studies are based on the goal-state activity. This is where 
students are given a starting expression or equation and are asked to transform it into a designated 
goal-state (Figure 5-2). As students solve these problems, GM can measure the steps students take, 
the time it takes to solve (per problem, per step), the number of times students reset problems, the 
number of problems students go-back to solve problems again, the overall number of problems 
solved, and combinations of those variables. Based on the five strands of mathematical proficiency 
and the constructs that were revealed using EFA methods, only certain strands could be measured 
using the clickstream data from a problem like this. Goal-state problems have the potential to 
measure procedural fluency based on the how fast the students are in their transformations and 
how many problems they complete, strategic competence based on the efficiency and flexibility 
of strategy use, and components of Productive Disposition based on student engagement in 
problem solving. However, other components of Productive Disposition, as well as measures of 
Adaptive Reasoning and Conceptual Knowledge would need to be assessed using other measures 
only available with alternative activity types. This issue will be addressed in the following section 
that describes the iterative design process of development new GM-based activities. 
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Figure 5-2.  Example of a goal-state problem in GM 
 

 
 
The primary goal of this research is to move beyond summative measures of correctness to 
formative measure of mathematical proficiency. These results give a more intricate perspective on 
mathematical proficiency compared to traditional summative assessments based on correctness. 
Instead of simply knowing the percentage of problems student got correct, these measures within 
GM provide the first steps towards teasing apart the 5 strands of mathematical proficiency. These 
studies serve as an example method of comparing mathematics problem solving behavior in two 
populations of different age groups, elementary and high school. Also, this study presents 
preliminary measurements of at least procedural fluency, strategic competence and components of 
productive disposition, but these have not yet been validated in this system. Now that this work 
has tested the feasibility of finding statistical differences between expert and novice populations 
using GM measures of progress, efficiency, retrying behavior, and persistence, future work can 
focus on validating these measures as constructs of procedural fluency, strategic competence, and 
productive disposition.  

This research exemplifies the potential in research that can be done with a learning 
technology like GM to compare population differences at a more fine-grained level. GM measures 
clickstream behavior of users, which allows researchers and in the future, teachers, to access step 
by step information on mathematics problem solving behavior.  This kind of rich research presents 
an opportunity to tease apart the components of mathematical proficiency across different 
populations in a method that is more efficient and at a deeper level than traditional summative 
assessment. 

Part 3: Applications for GM in Classrooms 
This section uses the theoretical framework from section 1 and the results from section 2 to 
describe a real-world application of this work. The primary goal of this section is to design GM-
based tools that are grounded in theory on mathematical proficiency. The first chapter details 
the iterative design process to create GM-based activities that have the potential to measure five 
components of mathematical proficiency. The final chapter will highlight the potential for this 
work to be implemented in K-12 classrooms.  
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Chapter 6: Designing Activities for Promoting and Assessing 
Mathematical Proficiency 
This work has been presented as research reports at the 2019 National Council of Teachers of 
Mathematics (NCTM) research conference as well as at the 2019 meeting of the International 
Society for Technology in Education (ISTE). 
 
Citations: 
 
Sawrey, K., Ottmar, E., Hulse, T., Weitnauer, E., Harrison, A. (2019). Exploring Dynamic Learning 

Technologies for Experiencing Algebraic Notation. Discussion session presented at the National 
Council of Teachers of Mathematics Research Conference, April, 2019. San Diego, CA. 

 
Weitnauer, E., Hulse, T., Sawrey, K. (2019). Graspable Math: Making Algebra Notation Accessible (and 

Even Fun!) to Every Student. International Society for Technology in Education. June, 2019. 
Philadelphia, PA. 

 
The team received a Small Business Innovation and Research (SBIR) grant to establish the 
technical merit, feasibility, and educational potential of Graspable Math (GM). Three major 
components were designed as part of the project, 1)  a pre and post assessment of mathematical 
proficiency, 2) a set of activities to introduce GM to students and develop algebraic 
understandings, and 3) a platform for teachers and researchers to create their own activities, 
including a teacher dashboard to display student progress. The main purpose of the assessment and 
activities are to create a usable learning tool that measures student progress by moving beyond 
simple correctness and gauging student performance in all 5 strands of mathematical proficiency. 
The main purpose of the platform was to provide a usable teacher tool that supports classrooms in 
creating GM activities that meet their curricula needs, as well as presents student progress within 
a teacher dashboard.  

This section will focus on Graspable Activities and how their designs evolved in response 
to input from the team members, our consultants, teachers, and students during user testing. In 
terms of our workflow, the core team members followed the Scrum framework, an agile 
development approach with short feedback cycles. This entails breaking down projects into 
detailed lists of prioritized tasks for each 2 week development sprint. Additionally to the sprint 
planning and review meetings, our team met in short daily standup meetings to synchronize our 
work and to quickly address roadblocks. Throughout the project, we regularly met with an 
educational consultant, for advice on activity structure and content. 

A total of five activity types and two additional template types were implemented. To see 
each activity played in real-time, visit tiny.cc/graspableactivities. 

 
In the Goal state activity, users manipulate 
expressions to match a goal state. This breaks out of 
the formulaic and repetitive solve-for-x approach 
and let’s students practice strategic flexibility and 
procedural fluency. The GM algebra notation let’s 
students explore, while preventing them from 
committing to mathematical mistakes. 
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The Transformations activity is a quick-paced 
activity in which students manipulate an expression 
to clear blocks that appear on the screen. This 
activity was designed to promote procedural 
fluency, adaptive reasoning, and to reinforce users’ 
understanding of equivalency. 
 
 
 
 
In Connecting Properties, students connect 
property terms to mathematical actions. This 
activity is designed to bridge the gap from 
procedural to conceptual knowledge and from 
computations to relational thinking. 
 
 
 

 
 
In Sequence Sort, users sequence a set of equations or 
expressions to mathematically connect start and end 
states. This activity encourages reflecting on algebraic 
actions, understanding the reasoning of others, and 
provides scaffolding to solving equations 
independently.  
 
 
 
 
 
 
In the Justification Match, users are given a 
derivation and are asked to identify which property (as 
provided on cards) supports each transformation. This 
activity is designed to encourage students to generalize 
algebraic actions, moving from procedural to 
conceptual understandings. 
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The Introduction and Gesture activity templates allow content creators to include 

instructional videos, pictures, text, and GM gesture animations into an assignment. This can be 
used to teach the GM interface to students or to introduce them to new mathematical concepts and 
can be part of self-paced learning or flipped classroom instructions. 

In terms of iterative development, all of the GM Activities first underwent user testing by 
undergraduate students. The major aims of this study were to 1) to test initial usability of the 
prototypes with users, and 2) to solicit feedback and information about how the prototypes could 
be improved. Participants included undergraduate students who were majoring in STEM fields 
were used for this study, rather than middle or high school students, because it was conducted over 
the summer and public school students were not in session. With prior knowledge on the algebraic 
content, undergraduate students were ideal participants to provide us with both high level (e.g., 
order of the activities, favorite activities) and low level (e.g., presentation of the progress bar, use 
of timer) feedback about their experiences. The detailed study procedure is described in the table 
below. Four WPI students participated in a 1.5 hour interview where they were asked to play all 
five activities and think-aloud as they were experiencing the system. They were asked to comment 
on both system ease of use, clarity of the instructions and tasks, as well as to identify any bugs that 
they found in the system. Data was recorded through a screen and audio recording of the session 
in addition to notes taken by the researcher who led the study. During these 4 user testing sessions, 
several initial bugs in the system were identified and many recommendations for improvement 
were made. These data were reviewed by the development and research teams, as well as the 
project consultants (mathematics educators) and informed the next iterative development cycle of 
the product.  
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Table 6-1. User Testing Procedure 
 
Schedule Content 

Study Introduction  
(5 minutes) 

Introducing user testing procedure 
Consent form 

Goal State  
(15 minutes) 

Commuting, Addition, Subtraction, Multiplication, Division, 
Decomposition, Distribution, Factoring  
(80 items) 

Transformation  
(15 minutes) 

Commuting, Addition, Subtraction, Multiplication, Division, 
Decomposition, Distribution, Factoring  
(6 boards, ~80 items) 

Derivation Sort  
(15 minutes) 

Commuting, Addition, Subtraction, Multiplication, Division, 
Decomposition, Distribution, Factoring  
(10 problems, ~50 steps) 

Break  
(5 minutes) 

 

Connecting Properties  
(15 minutes) 

Commuting; Adding, Subtracting, Multiplying, Dividing (Simplifying), 
Splitting, Distributing, Factoring  
(50 items) 

Justification Match  
(15 minutes) 

Simplifying, Splitting, Distributing, Factoring  
(~45 items) 

Final Discussion  
(5 minutes) 

Overall Discussion on usability, gaming the system, and participant 
background in technology and mathematics 
Debriefing and Compensation 

 
As a result user testing many initial bugs, issues, and successes were identified in the GM 
Activities. These user issues and comments ranged from the instructional materials, to the visual 
cues, to activity structure, to bugs. A detailed list of user comments are described in the table 
below. 
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Table 6-2. Comments made during user testing 
 

GM 
Component 

User Issue/Comments 

Instructional 
Materials 

● Include audio in the video 
● Show mouse clicks in the videos 
● Goal-State practice screens with 4 problems on one page is too much 
● Add undo and reset buttons for practice problems 
● The intro for splitting a number is confusing 
● More clearly define rules for the transformation game 

Saving Progress ● Users want to be able to save their work and go back to problems 

Visual cues ● Make sure the progress circles show up as green even when they click next on 
instructional problems 

● When a problem is solved correctly, there are three flashes of green. This takes 
too long. One flash would suffice. 

● The keyboard in the transformation game covers blocks, making it hard to 
remember what you’re solving 

● The timing of the animations in connecting properties is not consistent. Some 
animations are very slow while others are too fast. 

● Make the “check” button more obvious in the Derivation Sort and Justification 
Match activities. Users wait once they connect all items for the system to 
automatically check. 

Activity 
Structures 

● Show a 3-2-1 step counter for when a new block will fall in the transformations 
● Give the users the option to retry levels in transformations 
● In connecting properties, users might want to be able to click on an incorrect card 

to see the original problem/animation 
● Add a second level to justifications where there are distractor cards or a 

bottomless number of all cards for users to choose from 

Activity 
Content 

● The Goal State problems only went through some of the gestures and might need 
to be shortened. It took a long time to get through them and users might need less 
practice to understand the gestures. 

● The transformation game problems ranged from too easy to too difficult. Need to 
find a better balance. 

● Do not simplify distribution automatically. Instead of 2(x+3) → 2x + 6, it should 
be 2(x+3) → 2*x + 2*3 

● Can we find a better word for “balancing equations”. This was unfamiliar to users 

Bugs ● The keyboard isn’t working correctly with pressing buttons on the screen 
● In the derivation sort activity a few green lines were missing when users got the 

problem correct 
● In connecting properties, sometimes the animations do not show 2 times 

 
As a result of this user testing, four major changes were made to the design of Graspable Activities. 
These changes were implemented before feasibility testing in high school classrooms. 
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1. Ordering and presentation of the activities: In user testing, we initially presented each of 
the activities to students separately and played with the order in which we should present 
these activities to students. Throughout development, the activities started to fall into a 
specific order: Goal State, Transformations, Connecting Properties, Derivation Sort, and 
Justification Match. The decision to present the goal state activities first provided students 
with short gesture tutorials and practice problems that introduced them to and helped train 
them on the GM gestures. Once they were familiar with the gestures, procedures, and 
connections to the math, the transformations activity gave them additional opportunities to 
practice. The connecting properties activity provided the mathematical language for 
student, while the derivation sort and the justification match tied all of these pieces 
together.  

2. Combining 2 activities into 1 connected pair: Though all of these activities were originally 
designed to be independent of each other and serve as standalone products, conversations 
resulting from user testing revealed that two of the activities were deeply connected. 
During user testing, users saw at least ten problems of Derivation Sort then they saw at 
least ten different problems of Justification Match afterwards. While users said this seemed 
acceptable and engaging to users, discussions with users, consultants, and the GM team 
suggested that these two activities might be stronger if they were presented in alternating 
problems, meaning that users would see one Derivation Sort and a corresponding 
Justification Match immediately after. That way, users would see the same problem twice. 
First, they would sort the shuffled steps to put the derivation in order. Then, they would 
justify those steps by matching the corresponding property names. This change was made 
in preparation for the classroom studies.  

3. Modifications to the Transformation Game: It was clear from this study that the 
Transformations activity presented particular challenges in both the design and 
development in the classroom study. In study 2, the transformations game was very 
challenging to win or lose this game. There was too much space for blocks to fall in order 
to lose, but too difficult to win quickly. Anecdotally, many students became stuck in the 
problems without much motivation to win or lose. During an exit interview with the Study 
2 teacher, we asked her opinion on each of the activities. She knew right away that this was 
the most frustrating. She had an idea that we should keep the blocks falling based on 
strategy, but also include a timer to indicate the end of the activity. That way students are 
always “winning” and keep playing to increase their own high score. The GM team thought 
this was a brilliant idea and have implemented it for the second classroom study. Originally 
we liked the idea of keeping the game as similar to Tetris as possible since it is a simple, 
but long lasting game that many users would be familiar with. To make our activity like 
Tetris, we would need to include a timer and base the game on speed. Using a timer with 
mathematics, however, can induce math anxiety and would likely be more frustrating than 
fun for many students. Instead, we decided to make blocks fall based on strategic moves. 
Every three moves a user makes, which could include actions like dragging to commute, 
tapping to add/multiply, dragging to distribute, pressing the keypad button to decompose 
or factor, a new block appears. That way students are judged on efficiency in terms of 
strategy rather than speed.  

4. Use of Mathematical Language: Another concern identified in user testing was the use of 
mathematical language. The Goal-State, Transformation, and Sequence Sort activities 
focus on performing mathematical actions and steps, while the Connecting Properties and 



 46 

Derivation Justification activities asked users to match mathematical terms to their 
corresponding actions. Much thought was given to the mathematical language used to 
bridge this gap between procedural and conceptual knowledge.  During user testing, the 
GM team experimented with a variety of labels and terms in regards to varying levels of 
formality. Some of the terms used were direct property names, like “Distribution”, while 
other terms were taken from common practice like “Simplifying”, while other terms were 
described in terms of GM-based gestures like “. This sparked a long discussion with the 
team’s consultants on the use of mathematical language in classrooms, how this language 
relates to formal property terms, and how the language should be implemented in 
Graspable Activities. The most difficult mathematical action to term is what happens when 
you add 2x+5x to make 7x. Most teachers and even textbooks call this “Combining like 
terms” or “simplifying”. However, this action  can be labeled as “Substitution property of 
equality” because  2x+5x was substituted with 7x. It can also be labeled as  “Distribution” 
because  x is distributed in x*(2+5) to get x*(7) or 7x.However, using distribution as a 
label for the step from 2x+5x to 7x is very distant from how combining like terms is taught 
in classrooms. For user testing with undergraduate students “Simplifying” was used. For 
the classroom study, the team took the purest approach and only used terms that were 
property names, so “Substitution” (for substitution property of equality) was chosen as the 
final term in this example. 

 
Mapping onto Mathematical Proficiency 
Graspable Activities was designed with the five strands of mathematical proficiency in mind. One 
of the major goals of  Graspable Activities was to bridge the gap from procedural to conceptual 
knowledge. The studies in chapter 3 and 4 suggested that only procedural fluency and strategic 
competence (and potentially elements of productive disposition) could be measures through the 
goal-state activity. These new activities as part of the SBIR project provide new GM-based 
measures that could potentially measure most, if not all five strands. The new activity types 
introduced in Graspable Activities could also support the gap students when first practicing algebra 
thinking from arithmetic to generalizations, and from computations to relational thinking. 

Figure 6-1. shows hypothetical mappings of Graspable Activities onto the conceptual 
model of GM measures of the five strands of mathematical proficiency. Both the goal-state activity 
and transformation game could measure procedural fluency, as both of these activities ask users to 
manipulate algebraic notation. The transformation game and derivation sorting could both provide 
measures of strategic competence, as they require users to engage with sequences of strategy. 
Connecting properties was specifically designed to connect algebraic transformations with 
property identification, which maps onto the strand of conceptual knowledge. Derivation 
justification is the first GM-based activity that asks users to engage with algebraic derivations and 
justify their actions. This activity is designed to map onto measures of adaptive reasoning, which 
is defined by explanation, justification, and metacognition. Productive disposition is still the most 
difficult to measure through computation-based practice. All five of these activities have the 
potential to challenge students and measure their persistence through challenge and engagement 
in problem solving. However, this still does not measure students’ self-efficacy or attitudes 
towards the utility of mathematics. While these activities cannot yet get at those aspects of 
productive disposition, the pre and post measures created for the SBIR project included validated 
measures of student self-efficacy and math attitudes (described in more detail in chapter 7). These 
measures can then be used to predict problem solving behaviors in GM. 
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Figure 6-1. Mapping GM activities onto the conceptual model of the five strands of 

mathematical proficiency. 
 

The work accomplished in Graspable Activities provides a strong foundation for the 
development of a final product that is usable, enjoyable, and supports students in a variety of task 
types that target specific learning goals within algebra. First, the final user studies confirmed that 
the prototype is usable by students and feasible to implement in classrooms. Students were able to 
adjust to the novel interface and all activity types quickly, they were highly engaged while working 
through the content, and the teachers we worked with were very excited about the promise of the 
app. Second, teacher and student feedback allowed us to refine how to structure teacher training 
and in-app student tutorials, how to combine tasks into coherent assignments, and how to refine 
the individual activity templates to address confusion or frustration with the interface. Third, 
teacher feedback provided us with valuable clues about how Graspable Activities fits their needs 
in the classroom. For example, all of our teachers were excited about being able to create and 
adjusting tasks themselves, instead of just selecting from preexisting ones. Another example is the 
specific language used across teachers to describe what they appreciated about the activities, such 
as promoting productive risk-taking of their students.  

The work presented in this chapter suggests that GM has great potential for transforming 
the algebra learning experience. GM can be applied in a multitude of activity types that provide 
classrooms with options for differentiated instruction of algebraic problem solving that is often 
limited in traditional instruction. In addition to this, these activities were grounded in theory from 
the initial design and incorporate learning goals that target a variety of components of algebraic 
thinking and problem solving. Graspable Activities not only provides practice in multiple skills of 
mathematical proficiency in the context of algebra, but also has the potential to measure the five 
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individual strands. In order to fully implement Graspable Activities in classrooms as both an 
instructional and measurement tool of mathematical proficiency, future work needs to be done in 
order to 1) validate the measures of mathematical proficiency within GM, and 2) work with 
teachers to create a teacher dashboard that displays GM-based measures in a way that fits their 
needs. Both of these areas of future research are discussed in Chapter 7.  
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Chapter 7: Future Work and Conclusions 
After establishing the feasibility of Graspable Courses with students in classrooms, the next step 
is to create reliable measures and usable tools for teachers to utilize those measures. This chapter 
describes the future work of GM in terms of creating a suite of tools that can be easily adopted into 
classrooms. This includes the design of a pre and post measure of mathematical proficiency that 
has previously-validated measures. The pre and post measures can then be used evaluate the 
formative measures recorded through user interactions in GM described in the studies of Chapters 
3 and 4. This chapter also describes the design for a platform that allows teachers to create their 
own problem sets through the activity types created for the SBIR project. GM Courses includes a 
course builder to build problem sets, as well as a teacher reports feature that provides teachers with 
GM-based formative measures of assessment. Lastly, this chapter will discuss major conclusions 
that address the overarching aims of this entire work. 
 
Validating Measures 

Chapter 5 mentioned comparing bottom-up and top-down methods of measuring the 
strands of mathematical proficiency. In order to do this, an analysis should be conducted that 
compares the factors revealed in the EFA analysis of high school data in Chapter 4 (bottom-up) 
with the three strands of proficiency defined in this study (top-down). It would be critical to 
validate these two approaches in terms of how they correlate with or predict previously validated 
measures of mathematical proficiency. One approach would be to create a pre and post assessment 
of validated measures to compare to the GM-based interaction measures. 

As mentioned in the previous chapter, a major component of the SBIR project was to 
develop pre and post assessments. These assessments were designed to measure mathematical 
proficiency as well as usability, math anxiety, and self-efficacy. The usability items were based on 
the system usability scale (SUS, Brooke, 1996)(α~.90). The SUS Likert scale questions were 
adapted to the SBIR project to measure student perceptions of how easy it was to use Graspable 
Activities. Items included “I would like to use the activities for math class” and “I would need help 
from someone to work with the activities”.  These measures have often been shown to be strong 
predictors of student math performance (CITE). They were also included because they might map 
onto elements of productive disposition that include student motivation and affect in the context 
of mathematics. These pre and post measures can be used in future analyses to correlate with or 
predict problem solving behavior within GM. This may be one method to validate the motivational 
and affective measures of productive disposition within GM.   

The four math confidence rating items were designed to measure students’ perception on 
their ability to solve math problems varied in difficulty level (e.g., calculate 403-125, and simplify 
5(4+3x)). The five self-efficacy items were adapted from the Academic Efficacy subscale of the 
Patterns of Adaptive Learning Scales (α=.82;Midgley et al., 2000) designed to measure student 
perceptions of their ability in mathematics.  Items on the self-efficacy scale included “I know I can 
learn the skills taught in math this year” and “I can do almost all of the work in math if I work 
hard at it”. The five math anxiety items for this project was based on five items that were adapted 
from the Student Beliefs about Math Survey (α=.61; Kaya, 2008) (α=.61). designed to measure 
student perceptions of their own anxieties towards mathematics. Items on the math anxiety scale 
included “I feel nervous before a math test” and “I can’t sit still when I do math”. These measures 
have been used in our prior work and have been found to predict algebra learning in our system 
(Ottmar, Landy, & Goldstone, 2012; Ottmar & Landy, 2017).  
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Table 7-1. Example Items from the pre and post assessment of mathematical proficiency 
 

Strand  Example Item 

 
 
 
 
Procedural Fluency 

 

 
 
 
 
Strategic Flexibility/ 
Adaptive Reasoning 

 

 
 
Conceptual Understanding 

 

 
 
 
Productive Disposition 

 
 

Students’ mathematical understanding was assessed before and after the GM sessions.  The 
pre- and post-test was each composed of nine items adapted from a previously validated measure 
of procedural fluency, flexibility, and conceptual understanding in algebra (Star, Rittle-Johnson & 
Durkin, 2016). The post-test closely mirrored the pre-test but with different numbers in the 
algebraic problems. Though this measure is considered a standard in the field, it needed to be 
extended for the scope of this project. This scale was not designed to measure the strand of 
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productive disposition, so this project used measures of productive disposition from a previously 
validated scale developed by Samuelsson (2008). This scale was validated with x-grade students 
in Swedish classrooms. Since this project combined two separate surveys for mathematical 
proficiency, some modifications needed to be made. First, the original measures from both of the 
the previously validated measures were much longer, so for the purposes of this project only certain 
items were chosen. The goal was to have 10 problems to assess mathematical proficiency. Second, 
it is important to note that only four of the five distinct strands of mathematical proficiency are 
included in the pre/post assessment of this project. Since the definitions of strategic flexibility and 
adaptive reasoning as proposed by NCTM (2001) are so similar that in this project they were 
collapsed and considered together under the Star, Rittle-Johnson, and Newton measure of 
flexibility. Samples of each measure are presented in Table 7-1. 

Based on the initial classroom study, a few minor changes were made to the pre and post 
assessments for the second classroom study.  

1. Ordering of affective measures: The timing of the second study was altered so that the 
math anxiety and self-efficacy items were included in the pre-study surveys. This change 
was made in order to run analyses that use these items as predictors of behaviors within 
Graspable Activities or learning gains from pre to post. This will allow the GM team to 
answer research questions like “Do students with varying levels of math anxiety benefit 
more from using Graspable Activities?”, or “Do students with higher self-efficacy retry 
problems more than students with lower self-efficacy?”.  

2. Increasing reliability of productive disposition measures: Items used to measure 
productive disposition were slightly altered to better match the content students 
experienced in Graspable Activities. The original items asked students to rate their 
confidence on performing calculations like “403-125” and “12-3=__+5. In the first 
classroom study, the average response to all of these items was over 4 (out of 5), indicating 
a ceiling effect. To address this, items were modified to ask students to rate their confidence 
on performing calculations like “7*(53-27)” and “15-3=2*(__+5).  

 
In the final user study, 100% of students attempted at least 75% of both the pre and post 

surveys. This is partly due to the implementation of all pre and post tests online using Qualtrics. 
In previous high school studies, using paper and pencil pre and post tests resulted in only 35% of 
students attempting 75% of the problems. This kind of attrition is typical of classroom studies, but 
makes analysis of pre to post learning gains challenging. Learning from that previous study, the 
classrooms studies administered all pre and post surveys online, as well as kept the surveys short, 
including just 10 math problems. In addition to successful completion rates, many of the pre and 
post measures showed high reliability, including the Math Self Efficacy and Math Anxiety items (α 
= .92) and Usability items (α =.89). However, the reliability of the mathematics knowledge items 
were not ideal (α = .56). This suggests that some of the items did not reliably measure student 
knowledge in our population. This work highlights the reality that previously-validated measures 
will not always generalize to all populations. Future work should focus on adjusting these 
measures, which were previously-validated in other populations, so that they can be validated in 
the target population for this research. Once the pre and post measures are found to be reliable, 
then future work can continue in validating GM in-app problem solving behaviors as measures of 
individual strands of mathematical proficiency. 
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Implementation in Classrooms 
In order for GM to be adopted into classrooms, it needs to serve the needs of both the teachers and 
the students. In the introduction of this work, a Venn Diagram was presented on the relationships 
between teachers, students, and devices. When focusing on teachers, learning technologies were 
identified as having an effective role in instruction, data collection, and classroom management. 
In order to make GM easily adoptable into classroom, its design needs to focus on supporting the 
teacher in those roles. The final component of the SBIR project, Graspable Courses, is a a tool 
specifically designed for teachers and is situated in those roles of instruction, data collection, and 
classroom management. The major goals for this platform were to be able to create and share 
activities to students and access the teacher dashboard that is linked to student progress reports. 
Currently, Graspable Courses, is still in the prototype phase and has tested with two teachers. 
Ideally, once in-app measures of mathematical proficiency are validated, they can be shared with 
teachers through the Graspable Courses dashboard. This section first describes the design features 
of Graspable Courses as a creation tool and how the dashboard could be used to display formative 
measures recorded by GM and be used to inform instruction. 
 In Graspable Courses, each teacher can create a unique account that enables them to save 
both classrooms and assignments (Figure 7-1). The tabs in the top left corner allow users to switch 
from classroom view to assignment view. Teacher can then link assignments to specific 
classrooms. Currently, the options for each classroom include edit, tokens, and archive. Editing a 
classroom allows the teacher to assign lessons. Tokens are what students need to log in. With each 
classroom study, we assign tokens with a random combination of numbers so that students can 
remain anonymous. In the future, students will have their own accounts and logins to create 
themselves. The archive option is there to remove any classrooms that are no longer relevant to 
the teacher.  
 

 
 

Figure 7-1. Graspable Courses Classrooms screen.  
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Figure 7-2. Graspable Courses Assignment screen. 
 

There are also options for each assignment: edit, grade, copy, run (Figure 7-2). These are 
also useful for teachers to create and edit assignments, as well as to access the grades dashboard. 
Edit allows the teacher to access the assignment editing tool (Figure 7-3). In this tool, teachers can 
manipulate the title and overall order of the tasks. Teachers can click add task for a new item and 
choose between the five Graspable Activities, an informational screen with text or video, or 
animation presentation. Within these options teacher can “copy” assignments, which makes it 
easier to modify their lessons. They can also “run” assignments to test out how the assignment 
would look in student view.  
 

 
 

Figure 7-3. Graspable Courses assignment editing tool. 
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The last option is “grade”, which brings teachers to the dashboard that shows student 
progress through the assignment. The classroom view is presented in Figure 7-4. In the top half of 
the screen, teachers can view the assignment name and the data shown. In the bottom half of the 
screen, the students are shown (via their randomized tokens) on the left column with each problem 
presented on the top row. The very top icons (IM, GT, GS) are indicators of problem type, e.g. GS 
means a Goal State problem. Teachers can choose which data they want to see from a dropdown 
list (Figure 7-5). Currently the data options are time, errors, completion, total steps taken, and 
resets. However, there is much more data being logged that could be made available if the teachers 
in our professional development session find it useful. Descriptions of the different types of data 
is also available by clicking an information icon on the classroom view screen. 

 

 
 

Figure 7-4. Graspable Courses teacher dashboard for student progress 
 

 
 

Figure 7-5. Graspable Courses options for viewing student progress within the teacher 
dashboard 
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The teacher dashboard is continually being developed. Teacher input on the functionality 

and usability of Graspable Courses is invaluable to the project and will continue to drive the design 
of the dashboard. Once the formative measures of mathematical proficiency are validated with the 
pre and post tests, they will be implemented as an option for teachers to display in their reports. 
This option could give teachers insight on how each individual student, as well as the class as a 
whole, is developing each strand of mathematical proficiency. For example, the dashboard could 
notify teachers that the class is generally high on measures of procedural fluency and strategic 
competence, but they lack in their ability to justify why their strategies are effective (adaptive 
reasoning). The teacher could then use this information to drive their instruction for the next day. 
The teacher may decide to add a ten minute activity to the beginning of class to practice adaptive 
reasoning, such as the Derivation Sort and Match activities within Graspable Courses.  

A major goal of this work is to make tools and activities that are useful for the teachers and 
students who use them. Part of this is making activities that are engaging and helpful to student 
learning. The other part is making data available to teachers that helps them better address their 
students’ needs. To accomplish this, the research team was comprised not only with learning 
sciences researchers, but also developmental psychologists, mathematicians, computer scientists, 
and educators who want to use these tools in their classrooms. These diverse perspectives are key 
in creating tools that are effective for users and easily implemented into authentic contexts. These 
perspectives, especially from teachers, will continue to drive the design changes for the next 
iterations of Graspable Courses, including the activities, builder, and teacher reports.  
 

Conclusions 
Overall, the major objectives of this work were to 1) develop a theoretical framework to assess 
mathematical proficiency within GM, 2) explore GM-based measures of mathematical proficiency 
across K-12 populations, and 3) design GM-based tools that are grounded in theory on 
mathematical proficiency. Together, the three sections that addressed these objectives provide a 
rich perspective on the evolution of research on mathematical proficiency, how this research is 
applied in practice, and an in-depth example of how one technology-based learning environment 
has been developed to measure mathematical proficiency.  

By grounding measurements in educational theory, there is greater potential to evaluate 
current research in the field. First, this work suggests there is an added benefit of including 
formative measures within predictive models. Above and beyond background characteristics and 
summative measures of knowledge, formative measures of the learning process revealed subtle 
interactions based on student behaviors and prior knowledge. Second, this work showed the 
feasibility of using a learning technology, like Graspable Math, as a formative assessment tool. 
The second study compared the EFA factors of student problem solving behavior between an 
elementary and high school population. While the number of factors differed, the variables in each 
EFA resembled similar measures, such as engagement in problem solving, strategic flexibility, and 
speed. This shows some potential for measuring components of mathematical problem solving 
across different age groups and only through student interactions with GM. Lastly, this work 
described the development process of new GM-based activities designed to support and measure 
student progress within each strand of mathematical proficiency. This work suggests that GM has 
great potential for transforming the algebra learning experience. GM can be applied in a multitude 
of activity types that provide classrooms with options for differentiated instruction of algebraic 
problem solving that is often limited in traditional instruction.   
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There are many potential applications for the GM-based measures of mathematical 
proficiency proposed in this work. First, these measures could give students a better representation 
of their learning process by assessing their progress in more incremental measures. This could give 
a broader population of students more opportunities to express their learning process. Some 
students may think differently from the way in which tests are written, disadvantaging them from 
the start because they conceptualize information differently than the way it is presented. This 
includes students with special needs or students from different cultures who are learning English 
as a second language. Developing better measures of math proficiency has the potential to better 
represent the process of learning as well as create more measures that express both learning and 
effort. This is one way that learning technologies could make learning accessible and equitable for 
all types of learners. 

Second, these measures could be used by teachers to create data-informed practices that 
meet the needs of their unique students. The GM development team is already in the process of 
creating teacher dashboards that allow teachers to see the most relevant information about their 
students’ progress within the system. Many learning technologies can measure the number of 
attempts that students take or the time they take to solve, but GM has the ability to show teachers 
every step that a student took to solve a given problem. GM also has a visualizer feature that can 
show a classroom-wide visual of the most popular steps to take and how other students deviated 
from that method. With these detailed measures, teachers can better assess the learning process 
rather than the learning outcome and inform their instructional practices in the classroom to meet 
students where they are in the process.  

Third, these measures could also be made into a student dashboard where students can 
assess their own learning at any point.  Learning is a complex process that involves many self 
regulatory behaviors such as planning, metacognitive monitoring, and reflection (Azevedo, 2007). 
Learning can be enhanced with instructional activities that focus on metacognitive practices, which 
can be efficiently and automatically facilitated with learning technologies (Aleven & Koedinger, 
2002). GM has the potential to extend typical metacognitive practices to incorporate all five strands 
of mathematical proficiency. Together, these applications have major practical implications to 
increase data-driven practices that provide more individualized classroom experiences for 
students, as well as more metacognitive engagement in student reflection of their own learning. 
All of which stem from, and could only exist from, a perceptual-motor-based learning technology 
like GM. 

The work presented in this thesis has shown that the potential for Graspable Math is 
immense, not only as a learning tool, but as a teaching and measurement tool as well. GM is not 
only applicable to algebra I classrooms, but any classroom that uses algebra, including physics, 
chemistry, and engineering courses. GM could also be a great tool for elementary students who 
are seeing expressions for the first time. The immediate feedback and fluid gestures allows users 
to explore the laws of mathematics in a risk-free environment. In terms of measurement, GM is 
also a great platform for exploring the components of mathematical proficiency. With GM’s great 
logging capabilities, researchers can tease apart the five strands and continue to work with teachers 
to determine how these formative measures could inform teaching practices and benefit students 
algebraic reasoning. Ultimately the goal of this work is to serve as an example method for other 
researchers, educators, and designers to move beyond summative measures of assessment and 
enhance the formative assessment capabilities of learning technologies by grounding measures in 
theories of learning. 
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