

Sparse Matrix Multiplication on a

Field-Programmable Gate Array

A Major Qualifying Project Report

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

______________________________ ______________________________

Ryan Kendrick Michael Moukarzel

Date: October 11, 2007

 __

Professor Edward A. Clancy, Major Advisor

 -ii-

Abstract

 To extract data from highly sophisticated sensor networks, algorithms derived

from graph theory are often applied to raw sensor data. Embedded digital systems are

used to apply these algorithms. A common computation performed in these algorithms is

finding the product of two sparsely populated matrices. When processing a sparse

matrix, certain optimizations can be made by taking advantage of the large percentage of

zero entries. This project proposes an optimized algorithm for performing sparse matrix

multiplications in an embedded system and investigates how a parallel architecture

constructed of multiple processors on a single Field-Programmable Gate Array (FPGA)

can be used to speed up computations. Our final algorithm was easily parallelizable over

multiple processors and, when operating on our test matrices, performed 49 times the

operations per second than a normal full matrix multiplication. Once parallelized, we

were able to measure a maximum parallel speedup of 5.2 over a single processor’s

performance. This parallel speedup was achieved when the multiplication was

distributed over eight Microblaze processors, the maximum number tested, on a single

FPGA. In this project, we also identified paths for the further optimization of this

algorithm in embedded system design.

 -iii-

Executive Summary

In the study of graph theory, a graph is defined as “Any mathematical object

involving points and connections between them” (Gross & Yellen, 2004). Graphs are

composed of sets of vertices which share connections between each other. The

connections are referred to as edges. Graphs are used to model many systems that are of

interest to scientists and engineers today such as communications between computers,

social networks between people, and even bonds between proteins and molecules.

 Through the act of graph processing, useful information from a graph can be

extracted. Often times, algorithms to find the most important vertex in the graph or the

shortest path between two vertices are applied. When a computer is used to apply these

algorithms, each graph is represented as an adjacency matrix. Commonly, these matrices

contain many more zeros than non-zeros meaning that they are considered sparse

matrices; matrices with enough zeros in it that advantages can be had by exploiting them.

 Graph processing algorithms often determine the most important vertex in a

graph. Though the mathematics required to find a vertex’s importance are outside the

scope of this project, it is important to note that the majority of computational operations

involved in performing this algorithm are due to the multiplications of sparse matrices.

The Embedded Digital Systems group at MIT Lincoln Laboratory focuses heavily

on the study of knowledge processing. Knowledge processing is the act of transforming

basic sensor data, bits and bytes, into actual useable knowledge. The data can often be

modeled as a graph. Graph processing algorithms, such as vertex importance, are

extremely time consuming and inefficient. This inefficiency means that in order to find

results quickly, more powerful computers are needed to apply the algorithms. Often

times, raw data are communicated from the sensor back to a more powerful computer to

be processed. Because it would be faster, and require less communication bandwidth, a

heavy focus exists on developing embedded digital systems that can perform graph

processing algorithms quickly and efficiently at the front end of the sensor application.

Because embedded digital systems are often limited in both their memory size and

their computational power, the key to making them perform graph processing algorithms

faster is to reduce the requirements of the algorithm. Since these requirements are based

 -iv-

on graph theory, and thus process with sparsely populated matrices, exploiting their

sparsity is the best way to reduce the requirements on the system. By storing and

processing only non-zero values, the computational and memory requirements of a graph

processing algorithm are minimized, allowing it to be performed on an embedded system.

This project sought to achieve two goals. The first goal was to develop an

efficient, parallelizable algorithm for both the storage and multiplication of two sparse

matrices. Current methods for performing the multiplication of these matrices on a

microprocessor perform at operational efficiencies of between 0.05 and 0.1%. In this

context, efficiency is defined as:

%100
#

% x
processorsrequencyOperatingF

TotalTime
rationsNonzeroOpe

Efficiency
×

=

Sparse matrix algorithms are made more operationally efficient if they perform

more non-zero operations per clock cycle. The second goal was to investigate how the

performance of this algorithm could be increased in by parallelizing operations over

multiple processors in an embedded system. In this case, performance, measured in non-

zero operations per second is calculated by the following equation:

TotalTime

rationsNonzeroOpe
ePerformanc =

During the development of our multiply algorithm, we assumed that the input

matrices could be in any storage format. Therefore we tested multiple types of formats

for sparse matrices as well as their corresponding multiplication algorithms. Each of the

storage formats and multiplication algorithms were developed and tested in MATLAB.

Three storage types of storage formats in addition to full matrix format were tested in all.

The aim of these tests was to determine the most efficient methods for storing and

multiplying sparse matrices. The first was a basic sparse matrix storage format, which

stored only the non-zero value. Next, because matrix multiplication is basically repeated

row by column multiplication, a sorted sparse method was tried in which the first matrix

was sorted by row and the second was sorted by column. Finally we tested compressed

storage formats, specifically compressed row storage (CRS) by compressed column

storage (CCS). Our test proved that CRSxCCS multiplication performed more efficiently

 -v-

than any other format for sparse matrices with densities 1% to 5%. Results of these tests

are shown in Figure 1.

Efficiency of Sparse Multiplication Methods Versus Full Matrix

Multiplication for Matrices 1-5% Density

0.00000%

0.00500%

0.01000%

0.01500%

0.02000%

0.02500%

0.03000%

0.03500%

1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00% 4.50% 5.00%

Density of Input Matrices

%
 E
ff
ic
ie
n
c
y

FullxFull

BasicSparse

SortedSparse

CRSxCCS

Figure 1: Multiplicational Efficiency of Various Sparse Storage Formats

This figure shows the multiplication algorithm’s efficiency for each of the sparse storage formats we tested

compared to the efficiency of a full matrix multiplication for sparse matrices of 1-5% density.

Once our multiplication algorithm had been determined, we parallelized it on a

single Field-Programmable Gate Array. An FPGA is a type of programmable logic

device which is well suited for embedded systems design. FPGAs consume less power

and use less space than a programmable processor performing the same function. An

FPGA allows an engineer to implement virtually any digital circuit imaginable through

the use of a hardware definition language (HDL). HDL files to implement many

commonly used functions can be found online. These files are referred to as Intellectual

Property (IP) cores and can implement a wide range of functions such as USB drivers,

signal processing applications, and even programmable microprocessors. A

programmable microprocessor implemented in the logic of an FPGA through an HDL is

referred to as a soft-core processor. Soft-core processors are often used in FPGA

development because they are easy to implement and can interface easily with specialized

hardware circuits on the FPGA.

 -vi-

This project used multiple Microblaze soft-core processors working in parallel on

one Xilinx Inc. FPGA to increase the performance of a sparse matrix multiplication

algorithm. Our final design incorporated a highly optimized matrix multiplication

algorithm, a parallel architecture, and an advanced matrix splitting technique to achieve a

parallel speedup of the multiplication algorithm on a single FPGA.

Our final matrix multiplication was able to multiply two sparse matrices, A and B,

stored in CRS and CCS formats, respectively. The algorithm was highly parallelizable

and was capable of computing the product of two 128x128 sparse matrices with 1%

density 49 times faster than the speed at which a full matrix multiplication was capable.

This type of algorithmic performance was comparable to the abilities of other optimized

sparse matrix multiplication algorithms, but was highly parallelizable. A parallel

implementation of this algorithm achieved a speedup of 5.20 when mapped over eight

parallel processors. The algorithm consisted of a load distribution technique that split

matrix B into submatrices of its columns, thereby providing intelligent distribution of the

matrix multiplication workload among multiple processors. Figure 2 shows the measured

speedups provided by parallelizing our algorithm over a varying number of Microblazes.

 -vii-

Measured Performance of Multiplication Algorithm on 128x128

Matrices with Varying Number of Processors

0

50000

100000

150000

200000

250000

300000

350000

0 1 2 3 4 5 6 7 8 9

Number of Processors

P
e
rf
o
rm
a
n
c
e
 (
N
o
n
-Z
e
ro

O
p
e
ra
ti
o
n
s
 p
e
r
S
e
c
o
n
d
)

Figure 2: Matrix Multiplication Algorithm Performance over Multiple Processors

This plot shows the speedups achieved by mapping our final matrix multiplication algorithm over a varying

number of parallel processors. The test matrices were 128x128 matrices with 1% density.

A major recommendation for future research into sparse matrix multiplication on

FPGAs would be to implement the matrix multiplication algorithm in logic on the FPGA

rather in software on a soft-core processor. Implementing a matrix multiplication in the

logic circuitry on an FPGA could provide a projected efficiency increase of 11 over the

current abilities of the soft-core Microblaze processor to perform this computation and

would assist in developing highly optimized embedded system designs to perform sparse

matrix multiplication.

 -viii-

Contributions

 This project was completed by Ryan Kendrick and Michael Moukarzel of the

WPI class of 2008.

 In the summer of 2007, prior to working on this MQP, Ryan and Michael worked

as summer interns at MIT Lincoln Laboratory. During this period of time, background

research was performed to determine optimized algorithms to be implemented on the

FPGA. Michael focused mostly on the testing and development of various data

structures, multiplication algorithms, and conversions between storage formats while

Ryan focused his efforts on background mathematical research into the algorithms and

the testing of various load distribution techniques.

 Once the actual project began Michael shifted his efforts towards the actual

implementation of these algorithms on the Xilinx FPGA in C-code. His work consisted

of the configuring of Microblaze processors and their communication links in hardware

on the FPGA. Also, Michael was responsible for loading code to these Microblazes and

debugging to be sure the code worked properly in the system.

Ryan assisted in technical work for the first few weeks of this project, converting

his MATLAB algorithms for matrix splitting to C-code. After writing this code for the

FPGA implementation, Ryan took on the responsibility of editing the MQP paper.

Though Ryan still took part in every technical decision made during the course of this

project, the primary focus of his efforts was the development of the MQP paper and the

presentations.

Both partners have reviewed their contributions to this project and both feel that

each contributed equally to the overall efforts involved in completing this project.

 -ix-

Table of Contents

Abstract ... ii

Executive Summary... iii

Contributions.. viii

List of Illustrations... xi

1 Introduction... 13

1.1 Project Goals... 17

1.1.1 Goal Measurementt Metrics.. 18

2 Background ... 19

2.1 Graph Processing .. 19

2.2 Sparse Matrices... 22

2.2.1 Sparse Matrix Storage... 23

2.2.2 Compressed Column Storage (CCS) .. 24

2.2.3 Compressed Row Storage (CRS).. 26

2.2.4 The Length Vector vs. Pointer .. 26

2.2.5 Compressed Diagonal Storage (CDS) .. 27

2.2.6 Storage Size Comparison.. 30

2.2.7 Matrix Multiplication.. 32

2.3 Matrices of Interest ... 33

2.4 Field Programmable Gate Arrays (FPGAs).. 36

2.4.1 FPGA Architecture ... 38

2.4.2 Soft-Core Microprocessors ... 41

2.4.3 PowerPC processor ... 44

2.5 ML310 Development Board ... 45

2.6 Xilinx Virtex-II Pro XC2VP30... 48

3 Algorithm Performance Analysis ... 49

3.1 Optimized Matrix Multiplication Algorithm .. 49

3.1.1 Full Matrix Multiplication .. 51

3.1.2 Sparse Matrix Multiplication .. 52

3.1.3 Sorted Sparse Matrix Multiplication... 53

3.1.4 CRS x CCS Matrix Multiplication Using Pointer 55

3.1.5 CRS x CCS Matrix Multiplication Using Length..................................... 56

3.1.6 Counting Non-Zero Operations .. 56

3.1.7 Algorithm Efficiency Results ... 57

3.2 Optimized Parallelization and Load Balancing Technique 59

3.2.1 Pointer vs. Length Vector in Parallelization ... 61

3.2.2 Block-Column Distribution .. 64

3.2.3 Block-Values Distribution .. 65

3.2.4 Block-Cyclic Distribution... 67

3.2.5 Inverse Block-Cyclic Distribution .. 68

3.2.6 Column-Cyclic Distribution.. 69

3.2.7 Performance Evaluation of Load Balancing Techniques.......................... 70

4 FPGA Implementation .. 75

 -x-

4.1.1 Microblaze Multiplication .. 75

4.1.2 Parallel Microblaze Load Distribution.. 76

5 Algorithm Performance Results.. 78

5.1 CRSxCCS Multiplication vs. Full Matrix Multiplication in C 79

5.2 Theoretical Maximum Allowable Matrix Size ... 80

5.3 FPGA Parallel Speedup Predictions ... 86

5.3.1 Microblaze Execution Speed .. 86

5.3.2 Fast Simplex Link ... 88

5.3.3 Microblaze System Theoretical Performance Estimate............................ 89

5.4 FPGA Parallel Speedup Measurements .. 90

6 Discussion and Conclusions ... 95

6.1 Sparse Matrix Multiplication Algorithm .. 95

6.2 Parallelization of Multiplication Algorithm on FPGA 96

6.3 Future Recommendations ... 97

6.4 Future Impacts .. 100

Annotated Reference List ... 103

Appendix A... 108

Full Matrix Multiplication .. 108

Basic Sparse Matrix Multiplication (Unsorted).. 108

Sorted Sparse Matrix Multiplication... 110

Compressed Sparse Matrix Multiplication (CRSxCCS) using Pointer Vector 111

Compressed Sparse Matrix Multiplication (CRSxCCS) using Length vector............ 112

Appendix B ... 114

Block-Column Distribution .. 114

Block-Values Distribution .. 115

Block-Cyclic Distribution... 117

Inverse Block-Cyclic Distribution .. 120

Column-Cyclic Distribution.. 123

Appendix C ... 125

Appendix D... 127

Appendix E ... 128

Column-Cyclic Splitting ... 128

Column-Cyclic Reassembly.. 129

Appendix F.. 131

Appendix G... 142

Appendix H... 143

Appendix I .. 149

Appendix J .. 151

IEEE Code of Ethics ... 153

 -xi-

List of Illustrations

Figure 1: Multiplicational Efficiency of Various Sparse Storage Formats......................... v

Figure 2: Matrix Multiplication Algorithm Performance over Multiple Processors vii

Figure 3: Graph Example.. 13

Figure 4: Knowledge Processing .. 15

Figure 5: Small Social Network Represented by a Graph .. 19

Figure 6: Adjacency Matrix Representation of Social Network Graph............................ 20

Figure 7: Full Matrix Format .. 23

Figure 8: Sparse Matrix Format.. 24

Figure 9: Compressed Column Format (CCS).. 25

Figure 10: Compressed Row Format (CRS)... 26

Figure 11: Compressed Column using Length Vector ... 27

Figure 12: Diagonal Assignments in Compressed Diagonal Storage............................... 28

Figure 13: Diagonal Vector Example ... 28

Figure 14: Diagonal Values .. 29

Figure 15: Banded Matrix Example.. 30

Figure 16: Storage Method Sizes on a Square Matrix .. 31

Figure 17: General form for Matrix Multiplication .. 32

Figure 18: General Form for Computing a Dot Product... 33

Figure 19: Structured RMAT Matrix.. 34

Figure 20: Randomized RMAT Matrix .. 35

Figure 21: Performance Density and Efficiency between device families 37

Figure 22: FPGA Architecture.. 39

Figure 23: FPGA Logic Block.. 40

Figure 24: Microblaze Architecture.. 43

Figure 25: Software Algorithm vs. Hardware... 44

Figure 26: PowerPC Architecture... 45

Figure 27: Xilinx ML310 Development Board .. 47

Figure 28: Data Locality in Sorted Sparse Matrix Multiplication 54

Figure 29: Efficiency of Different Multiplication Methods 1-99% Density 57

Figure 30: Efficiency of Different Multiplication Methods 1-5% Density 58

Figure 31: Parallelization Block Diagram .. 60

Figure 32: Splitting a Full Matrix into Smaller Matrices ... 62

Figure 33: Split Matrices Stored using Pointer... 62

Figure 34: Split Matrices Stored using Length ... 63

Figure 35: Block-Column Load Distribution.. 65

Figure 36: Block-Values Load Distribution ... 66

Figure 37: Block-Cyclic Load Distribution .. 68

Figure 38: Inverse Block-Cyclic Load Distribution ... 69

Figure 39: Performance of Various Load Balancing Techniques on Structured Matrix .. 72

Figure 40: Performance of Various Load Balancing Techniques on Randomized Matrix74

Figure 41: Allowable Memory per Input Matrix Estimate ... 82

Figure 42: Required Memory Space of Compressed Matrix .. 84

Figure 43: Size of Input Matrices vs Number of Processors .. 85

Figure 44: Theoretical Parallel Microblaze Performance... 89

 -xii-

Figure 45: Parallel System of Microblazes... 91

Figure 46: Measured Performance of Parallel Multiplication of 128x128 Matrices 93

Figure 47: Realistic Timeline of Parallel Algorithm .. 94

Figure 48: Proposed Logic Circuit States to Perform Matrix Multiplication 99

Figure 49: Projected Speedups with Microblazes and Logic Circuits 100

Figure 50: Parallelizable Algorithm in Multiple Computer Environments 102

 13

1 Introduction

In the study of graph theory, a “graph” is defined as “Any mathematical object

involving points and connections between them” (Gross & Yellen, 2004). The individual

elements in a graph are referred to as “vertices” while the various interconnections

between them are “edges.” Figure 3 shows an example of a graph. The idea of a graph

can be used to model many different types of science and engineering problems today.

Figure 3: Graph Example

This is an example of a graph. The various vertices are shown by either a black box or circle while the

various interconnections. “Edges” are shown as black lines connecting the vertices. (Borgatti, 2003)

Graphs can be used to represent physical structures such as computer networks,

transportation systems, pictures, or even interconnections between proteins and

molecules. More abstract ideas can also be represented by graphs such as social

relationships between people. Useful results such as computing the shortest path between

 14

a pair of vertices or the most important vertex in a network can be found through the

application of graph processing algorithms. These results prove to be extremely useful in

many applications.

The identification of a shortest path between two vertices in a network could be a

meaningful result for a telecommunications company wanting to send a message through

their network with the shortest delay. Other applications for this result include

“geographical information systems, operations research, plant and facility layout,

robotics, transportation, and [electrical circuit] design.” (Chen, 2007)

Identification of the most important vertex in a network would be helpful

information for an electricity company which could identify the most important power

stations to the functioning of its power grid. Perhaps the Northeast Blackout of 2003 may

not have happened if the power companies had real time data about their infrastructure.

The result could also help determine vulnerable points in a network, both for

strengthening or disabling a network:

The meaningful purpose for attack vulnerability studies is for the sake of

protection: If one wants to protect the network by guarding or by a temporary

isolation of some vertices, the most important vertices, breaking of which would

make the whole network malfunction, should be identified. Furthermore, one can

learn how to build attack-robust networks, and also how to increase the

robustness of vital biological networks. Also in a large network of criminal

organization, the whole network can be made to collapse by arresting key

persons, which can be identified by a similar study.(Holme et al., 2002)

These graph computations such as calculating the shortest path or the most

important vertex can be useful in many types of analyses. There are multiple other

characteristics one can derive from the analysis of a graph which are also extremely

useful.

 15

At MIT Lincoln Laboratory in Lexington, Massachusetts researchers work on the

development of highly sophisticated surveillance and intelligence systems. Group 102,

the Embedded Digital Systems group, focuses on what is called knowledge processing.

Knowledge processing is the act by which raw data from a camera, radar, antenna, or

some other sensor, is converted into useable information. In these surveillance systems,

this work is carried out by small embedded computer systems which accompany the

sensor itself. Figure 4 shows an example of the steps involved in knowledge processing.

Figure 4: Knowledge Processing

This figure shows, from bottom to top, the transition of raw data collected from sensors up to the

intelligence level where it can actually be used. This transition is done through the process known as

knowledge processing. In the case of modern sensor systems, some of this information takes the form of

graphs. (http://www.nsa.gov)

A large percentage of the data processed by these systems takes the form of

graphs. Since a tactical advantage is held by whoever can translate information from the

bit level to actual knowledge the fastest, a strong focus is placed on performing graph

processing algorithms faster and more efficiently.

Once entered into a computer, the information no longer looks like a graph.

Often, it takes the form of a sparsely populated matrix (a matrix containing a majority of

zeros) called an adjacency matrix. During knowledge processing, intelligence is

 16

extracted from the matrices using various algorithmic tools. A common kernel

performed in these algorithms is the multiplication of two adjacency matrices. Tests on

matrix multiplication algorithm performance have been conducted by group 102 of MIT

Lincoln Laboratory. The results showed efficiencies, or the percentage of arithmetic

operations performed out of the peak possible arithmetic operations, of between 0.05 and

0.1% when performed on conventional microprocessor systems (Bliss, 2007).

Our project focused on finding a matrix multiplication algorithm that performed

with efficiency similar to those of current algorithms, but was highly parallelizable. We

focused on demonstrating the parallelizable properties of our algorithm through

implementation on a system of multiple parallel processors in an embedded system

design. This design achieved speedup through the utilization of the matrix multiplication

algorithm and a load distribution algorithm which distributed the workload evenly among

parallel processors.

Since certain advantages can be had when dealing with a sparse matrix, this

project explored various formats for the storage of sparse matrices. These formats were

used to develop a more efficient algorithm for the multiplication of sparse matrices.

Once an optimized matrix multiplication algorithm was developed, an effective method

for parallelizing its operations on an embedded system was determined.

The final result of this project was to implement a field-programmable gate array

(FPGA), a common type of programmable logic chip in embedded system design, which

was capable of performing our algorithm. The FPGA implementation demonstrated how

the matrix multiplication process, a key kernel in graph processing, can be made more

 17

efficient by exploiting the sparsity of the matrices in a more efficient multiplication

algorithm and how parallelization of operations can speed up the entire kernel.

The two main goals of this project were to develop an efficient algorithm for the

multiplication of two sparse matrices and to implement a way of easily parallelizing this

algorithm in a small embedded system. By utilizing a sparse matrix storage method, the

storage requirements for many matrices that, if stored in full format, were too large to be

stored on an FPGA, became small enough be processed in a single FPGA. With multiple

processors working together in parallel, the final FPGA design performed perform many

more non-zero arithmetic operations per second than a single processor could perform.

The final result design can serve as an example for future research into the area of

optimized sparse matrix multiplication. It can also serve as a model for a complete

hardware implementation of this algorithm, such as the development of an Application-

Specific Integrated Circuit (ASIC) which would be able to perform these multiplications

faster than any other device.

1.1 Project Goals

The goals of this project were as follows:

1. To determine a highly parallelizable method for the storage and multiplication of two

sparsely populated matrices which can perform computations at efficiencies comparable

to the 0.05% to 0.1% achieved by optimized sparse matrix multiplications on traditional

microprocessor systems

2. To demonstrate how the optimized multiplication algorithm can be parallelized on a

single FPGA to achieve a parallel speedup by distributing the load over multiple

processing elements.

 18

1.1.1 Goal Measurementt Metrics

To compute the product of two sparse matrices, there are a certain number of

arithmetic operations that must occur regardless of how the matrix is stored. These

operations are the multiplications and additions of non-zero entries in the two matrices.

In goal number one of this project, we aimed for efficiency and parallelizability.

Efficiency means we will be calculating the total number of non-zero operations

performed divided by the total number of possible non-zero operations. One clock tick

on one processor is the time required to perform one non-zero operation. Therefore, our

equation to calculate efficiency is as follows:

%100
#

% x
processorsrequencyOperatingF

TotalTime
rationsNonzeroOpe

Efficiency
×

=

Therefore, the efficiency of our algorithm is independent of the number of processors

used and somewhat independent of the clock cycle of those processors.

 Performance is only the numerator of the efficiency formula. Our measure of

performance will depend solely on the number of non-zero operations done and the time

required to perform them. The performance is expressed in units of non-zero operations

per second:

TotalTime

rationsNonzeroOpe
ePerformanc =

Therefore, the performance of our design can be increased with the addition of more

processors working in parallel or by increasing the clock speed of those processors.

 19

2 Background

2.1 Graph Processing

Graph processing extracts meaningful data from a graph of vertices and edges.

Studying a graph of vertices with numerous interconnections between them is not only of

interest to Lincoln Laboratory, but also can help scientists and engineers in other

industries. An easily visualized example of modeling using a graph is a small social

network. Suppose Diane is a popular member of her class, and knows many people such

as Andre, Carol, and Ed. A graph representing her social network might look something

like Figure 5:

Figure 5: Small Social Network Represented by a Graph

This figure shows how a social network of friends can be represented by a graph. The people in the graph

are represented by vertices while the fact that two of them have some sort of relationship together is shown

by an edge connecting their two vertices.

It is easy to see from this graph that Diane is obviously an important person in this

network. Beverly and Fernando do not know each other, but the easiest way for them to

meet would be through Diane. The same situation is had by Andre and Garth. Also,

Heather, even though she doesn’t know Diane, is an important person in this network; she

 20

serves as the only connection between Ike and Jane and the rest of the network.

(Robinson, 2007)

When these types of graphs are processed on a computer, they are stored in the

form of an adjacency matrix. The following is an example of an adjacency matrix

representation of Diane’s network.

A
n
d
re

B
e
v
e
rl
y

C
a
ro
l

D
ia
n
e

E
d

F
e
rn
a
n
d
o

G
a
rt
h

H
e
a
th
e
r

Ik
e

J
a
n
e

Andre 0 1 1 1 0 1 0 0 0 0

Beverly 1 0 0 1 1 0 1 0 0 0

Carol 1 0 0 1 0 1 0 0 0 0

Diane 1 1 1 0 1 1 1 0 0 0

Ed 0 1 0 1 0 0 1 0 0 0

Fernando 1 0 1 1 0 0 1 1 0 0

Garth 0 1 0 1 1 1 0 1 0 0

Heather 0 0 0 0 0 1 1 0 1 0

Ike 0 0 0 0 0 0 0 1 0 1

Jane 0 0 0 0 0 0 0 0 1 0

Figure 6: Adjacency Matrix Representation of Social Network Graph

This figure is an adjacency matrix showing how the graph in Figure 5 can be represented as sparsely

populated matrix. The number of rows and columns is equal to the number of vertices in the graph. An

edge is represented by a one in the intersecting rows and columns of the two vertices it connects.

The adjacency matrix shown above is a way of showing which vertices in a graph

are connected by an edge. For example, the graph on the previous page showed that

Diane knew six other people; these relationships were shown as an edge connecting

Diane to her friends. In an adjacency matrix, these edges are shown as a one in the cell

which is the intersection of Diane’s column and her friends’ rows. Also, a one will be

found in the intersection of Diane’s row and her friends’ columns.

 21

Zeros are found along the main diagonal, in the intersection of each person’s row

and column. Some adjacency matrices store all ones along the main diagonal and some

do not; whether these cells are filled with zeros or not usually depends on the application.

Also, while the adjacency matrix in Figure 6 has symmetry across the diagonal, not all

adjacency matrices have this symmetry. In unidirectional adjacency matrices, vertex A

can be connected to vertex B without B being connected back to A.

Adjacency matrices sometimes use values other than one in cells to show the

strength of an edge. For example, if Andre and Fernando were brothers rather than just

friends, a three or a four may be contained in their intersecting cells rather than just a one

to signify a stronger relationship.

Once these graphs grow to contain hundreds or thousands of vertices and edges,

computers become responsible for locating the important vertices. To find them, an

algorithm to find the “betweenness centrality” of a certain vertex is used. Vertices which

are on the shortest path between many other pairs of vertices have a high betweenness

centrality. In the graph example, Diane appeared on the shortest path between many

other people, therefore she was an important vertex on the graph.

The matrix representation of a graph is commonly large and sparsely populated. In

the adjacency matrix above, there are 100 cells, only 36 of which contain a non-zero

value; commonly, this type of matrix is referred to as a sparse matrix. For a graph with N

vertices, the number of cells in its adjacency matrix is N
2
. When dealing with a graph of

tens or even hundreds of thousands of vertices, adjacency matrices become too large to

be processed by an average desktop computer.

 22

Though betweenness centrality algorithms are complicated and outside the scope of

this project, their performance “is dominated by sparse matrix multiply performance”

(Robinson, 2007). The sparse matrix multiply kernel is the limiting factor in performing

this algorithm. Conventional algorithms which perform these multiplications prove

extremely inefficient. Since the number of zeros in a sparse matrix is high, the frequency

of a meaningful calculation—multiplying or adding two non-zero values together—is

low. Often, when sparse matrix multiplication algorithms are performed on a

conventional processor, the frequency of non-zero multiplies with relation to the

computer’s clock cycle is low, between 0.05% and 0.1%. To effectively handle sparse

matrices, specialized formats can be used to store only the non-zero values, thus

shrinking the size of the matrix in memory greatly. These formats will be discussed in

the next section.

2.2 Sparse Matrices

There is no concrete rule defining when a matrix is sparse and when it is not.

Professor Tim Davis from the University of Florida claims a sparse matrix is: “…any

matrix with enough zeros that it pays to take advantage of them” (Davis, 2007). This

definition means that whether or not a matrix is sparse depends on how many zero entries

it has as well as how well the user can take advantage of those zeros. When dealing with

large sparsely populated matrices, an increasingly common technique to process and store

them is to take advantage of their sparsity. Since many of the sparse matrices used in

science and engineering today have large dimensions, on the order of tens or hundreds of

thousands, exploiting the sparsity of a matrix can give enormous advantages in both

storage space required and processing efficiency. There are two ways one would exploit

 23

the sparsity of a matrix: first, to store only the non-zero elements of the matrix and

second, to process only the non-zero elements of the matrix. (Zlatev, 1991)

2.2.1 Sparse Matrix Storage

A full matrix representation of a matrix stores every value, regardless of whether

it is zero or non-zero. The total size is approximately equal to:

)(#)(# ofColumnsofRowsMemoryFullMatrix ×=

Note: This calculation is approximate because some other small values may be

stored such as the number of rows and the number of columns. If this matrix is sparsely

populated, meaning it contains a majority of zero entries, the storage space can be

reduced greatly by using a sparse matrix storage technique. To demonstrate how one

converts a sparsely populated matrix into a sparse matrix format an example will be

given. Figure 7 is a five by five full matrix with only eight non-zero entries: Only eight

non-zeros means the computer is storing 17 zero values which are not needed.

Figure 7: Full Matrix Format

The full matrix storage format is shown above. It stores all values in the matrix, non-zero and zero. It

becomes an inefficient storage method when the majority of the values are zero.

 To take advantage of the fact that a matrix is sparse it can be converted into a

sparse matrix storage format. A sparse format means only the non-zero entries are stored

as well as their corresponding row and column indices. MATLAB, the powerful

 24

mathematics and engineering program, currently uses this basic sparse matrix format.

The following figure is the same matrix as shown above stored in the basic sparse format.

Figure 8: Sparse Matrix Format

The most basic form of sparse matrix storage formats. It stores the corresponding row, column, and value

of every non-zero entry in the matrix.

The total space required to store a matrix in the basic sparse matrix format is

approximately equal to:

)(#3 NonzerosoryeMatrixMemBasicSpars ×=

This method stores three values for every non-zero entry in the matrix. Therefore, for

matrices with less than 33% density, the sparse matrix storage method will use less

memory space than a full matrix storage method.

2.2.2 Compressed Column Storage (CCS)

 The fact that the column vector is sorted can be taken advantage of to further

compress this matrix. Instead of storing the column vector entirely, a column pointer can

be stored. The column pointer is a vector telling the user when the column pointer

 25

increments and can be made much shorter than the original column vector shown in

Figure 8.

 An extra number is added to the pointer vector equal to the total number of non-

zero entries plus one. With the compression of the column vector to a pointer, the total

number of values stored in memory will be approximately equal to:

1)(#)(#2 ++×= ofColumnsNonzerosemoryCCSMatrixM

Figure 9 shows the same matrix stored in a compressed column format (Dongarra, 2007).

Two consecutive pointer values being equal indicates that the column vector has

incremented twice on that entry and thus there is an empty column.

Figure 9: Compressed Column Format (CCS)

This figure is an example of the compressed column storage format. This format stores the value, row, and

column pointer of the non-zero entries in the matrix. The column pointer tells the user on which entries in

the value vector, are stored in the next column from the previous entry.

 To find how many entries are in any column, the user just needs to find the

difference between the sequential pointer values. For example: to find out how many

entries there are in column three, entry three in the pointer would be subtracted from

entry four. In the above example, the numbers are five and seven. We can conclude that

there are two entries in column three and the first one is entry number five in the value

vector. Likewise, if there are two repeated numbers in the pointer, there is an empty

column in the matrix.

 26

2.2.3 Compressed Row Storage (CRS)

It is important to notice that the same process for compression applies to a

compressed row format. The difference is that the entries will be sorted according to row

rather than column and there will be a row pointer instead of a column pointer. The

following is the same matrix stored in compressed row storage rather than compressed

column. (Dongarra, 2007)

Figure 10: Compressed Row Format (CRS)

This figure is an example of the compressed row storage format. This format stores the value, column, and

row pointer of the non-zero entries in the matrix. The row pointer tells the user on which entries in the

value vector are stored in the next row from the previous entry.

Because the compressed row storage is similar to the compressed column storage, but

stored by row rather than column, the total number of values required to store a

compressed row matrix is equal to:

1)(#)(#2 ++×= ofRowsNonzerosemoryCRSMatrixM

2.2.4 The Length Vector vs. Pointer

An alternate way to use a compressed row or column storage is to use a length

vector instead of a pointer vector. The length vector has a size equal to the number of

columns in the matrix and stores the number of values in each column (Zhuo &

Prasanna, 2005). Below is the original matrix stored in compressed column format using

a length vector rather than a pointer. In the case of the length vector, an empty column

would be marked by a zero entry.

 27

Figure 11: Compressed Column using Length Vector

This figure shows the Compressed Column format utilizing a Length vector rather than a Pointer. The

Length vector tells the user how many Val entries are stored in the current column.

Compression using the length vector is very much the same as the compressed methods

using the pointer vector. The only difference is that the length vector is exactly equal to

the number of rows or columns while the pointer vector is equal to this value plus one.

Therefore, the difference between the two formats is one value.

2.2.5 Compressed Diagonal Storage (CDS)

A third type of compressed format that can be useful for some applications is

compressed diagonal storage (CDS). Like the column and row compressed methods,

CDS stores values that are in the same diagonal alongside one another in memory. CDS

stores multiple vectors, one for each diagonal, with their corresponding diagonal indices.

The diagonal indexes are assigned with diagonal zero always starting at the upper left-

hand cell of the matrix, as shown in Figure 12.

 28

Figure 12: Diagonal Assignments in Compressed Diagonal Storage

This figure is an example of Compressed Diagonal Storage. In this type of storage, the values that are

located diagonally from upper-left to lower-right will be stored next to each other in memory. This type of

compression format becomes especially effective when storing banded matrices.

The original full matrix, shown in Figure 7, would be stored as a vector of length

four and a matrix with four rows and five columns. The vector contains the diagonal

numbers and tells the user the diagonal indices of the values stored in the matrix.

Because non-zero values exist on diagonals 1, 0, -2, and -4 in the matrix above, the

diagonal index vector contains those diagonal indices:

Figure 13: Diagonal Vector Example

An example of what the diagonal vector for the original matrix stored in CDS would look like. This vector

tells the user which diagonals the values in the diagonal values matrix below are located in.

The matrix that is stored along with this vector contains the values from each diagonal in

a row of the matrix. For this matrix, the storage matrix is shown in Figure 14.

 29

Figure 14: Diagonal Values

This figure shows the diagonal values matrix for the Compressed Diagonal Storage of the original matrix.

It would be stored in conjunction with the Diag. vector shown previously. In this case, the elements in row

one are from diagonal one. The elements in row two are from diagonal zero. These diagonal indices are

found in the Diag. vector.

The original matrix can be reassembled from the storage matrix and its

corresponding diagonal vector. The values in row one of the storage matrix belong in

diagonal one of the original. Because the first entry of diagonal one of the original

matrix is outside its boundaries, the first entry is zero. Diagonal -4 only has one entry on

the original matrix thus every entry but its first is filled in with a zero. (Dongarra, 2007)

The CDS format is most useful for banded matrices. Banded matrices are matrices

with most of the entries stored diagonally across the matrix. They have a high frequency

of non-zero entries along their diagonals. In the case of a banded matrix, CDS storage

can become smaller than a row or column compressed format. There is no general

formula for the number of values stored by the CDS format because it is so highly

dependent on the structure of the matrix and the number and location of bands.

 30

Figure 15: Banded Matrix Example

The image above is an example of what is called a banded matrix. Non-zero entries are shown as a non-

white color. The majority of non-zero values are concentrated along diagonals from the upper left-hand

side of the matrix to the lower right-hand corner. (Davis, 2007)

For most other cases, however, in which the original matrix is not banded, the

diagonal method can actually become larger than the original matrix. This increase in

size is due to the fact that the diagonals often overrun the boundaries of the matrix and

are filled in with zeros where appropriate.

2.2.6 Storage Size Comparison

A plot has been generated to show the number of values in various matrix storage

methods versus the density of the matrices. The methods that were compared were the

full matrix storage method, the basic sparse matrix storage method, the row-compressed,

and the column-compressed methods.

 31

Storage Size Vs Density on a 16x1024 matrix

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Density of Matrix

N
u
m
b
e
r
o
f
In
te
g
e
rs
 S
to
re
d

Full Matrix Storage

Sparse Matrix Storage

Row-Compressed Storage

Col-Compressed Storage

Figure 16: Storage Method Sizes on a Square Matrix

This figure shows the size of each storage method versus the density of the matrix. Because full matrix

storage stores all values, regardless of their value, its size is consistent throughout the entire range of

densities. For a basic sparse matrix storage method, it is smaller than a full matrix method for densities of

less than 33%. The two compressed methods are smaller than full matrix storage up to almost 50% density.

In this figure, row-compressed is smaller than column-compressed because its size is dependant on the

number of rows while column-compressed depends on the number of columns.

It is shown in Figure 16; the sparse and compressed sparse matrix formats can be

much smaller than a full matrix storage method for sparsely populated matrices. Once

the matrix becomes more than half full of non-zero entries, the full matrix representation

becomes the smallest method. In Figure 16 the row-compressed method is much smaller

than the column compressed method. This size difference is due to the fact that the

matrix has many fewer rows than columns. If the matrix were a square matrix, the sizes

of the compressed methods would be exactly equal.

 32

2.2.7 Matrix Multiplication

As stated previously, matrix multiplication is a key kernel in knowledge processing

and the analysis of graphs. The general format for multiplying two matrices is shown

below where matrix A times matrix B is equal to matrix C. An important fact to note is

the number of columns in matrix A must equal the number of rows in matrix B for the

multiplication to be possible. The final matrix will have the same number of rows as

matrix A and the same number of columns as matrix B. Therefore, a matrix with

dimensions (X x Y) multiplied by a matrix with dimensions (Y x Z) will give a resultant

matrix with dimensions (X x Z). Figure 17 shows the general form of a matrix

multiplication:

A x B = C



















=



















×



















XZXX

Z

Z

YZYY

Z

Z

XYXX

Y

Y

CCC

CCC

CCC

BBB

BBB

BBB

AAA

AAA

AAA

L

MOMM

L

L

L

MOMM

L

L

L

MOMM

L

L

21

22221

11211

21

22221

11211

21

22221

11211

Where:

 C11=A11B11+A12B21+…A1YBY1

 C12=A11B12+A12B22+…A1YBY2

 CX1=AX1B11+AX2B21+…AXYBY1

 and

CXZ=AX1B1Z+AX2B2Z+…AXYBYZ

Figure 17: General form for Matrix Multiplication

This figure shows the general form for performing the multiplication of two matrices. In this case, A is an

X by Y matrix, B is a Y by Z matrix and the resultant, C is an X by Z matrix. (Weisstein, 2006)

 33

The value in any cell of matrix C is equal to a multiplication of a row from matrix

A and a column from matrix B. This vector by vector multiplication is also known as

computing the dot product of two vectors. The value of a dot product is a single number

that is the sum of the products of corresponding values from each vector. Figure 18

shows the general form for computing a dot product is as follows:

[] [] []CBABABA

B

B

B

AAA xx

x

x =+++=



















• L
M

L 2211

2

1

21

Figure 18: General Form for Computing a Dot Product

This figure shows the general form to compute a dot product. The row vector A and the column vector B

dotted together give the answer, C. C is the sum of the products of corresponding values from each vector.

Therefore, to compute the product of matrix A times matrix B, an algorithm must cycle

through the rows of A and the columns of B, computing the dot product of each row and

each column.

2.3 Matrices of Interest

The matrices with which algorithm development will be based upon are sparsely

populated adjacency matrices with density, or frequency of non-zero entries, of about

1%. These matrices can be generated by the RMAT function in MATLAB. RMAT is a

MATLAB function designed to generate random adjacency matrices of different sizes

and densities for testing. RMAT does not generate the same matrix every time it is given

the same parameters. It was developed at MIT Lincoln Laboratory by Dr. Jeremy

Kepner of group 102. RMAT generates matrices with a power-law distribution, meaning

that there are few vertices on the graph with very high importance (high betweenness

 34

centrality) and numerous vertices with low importance. The range of edge values also

follows a power-law distribution, meaning there are many weak edges, signified by an

entry of one in a cell, and few strong edges which are signified by larger integers.

RMAT is capable of generating two types of matrices. The first will be referred to as a

structured RMAT matrix; the second will be referred to as a randomized RMAT matrix.

 The structured RMAT matrix is an adjacency matrix with properties similar to

those found in a real world adjacency matrix. The structure is based on the idea of

Kronecker Graphs (for more information on Kronecker Graphs see Leskovec &

Faloutsos, 2007) and exhibits an interesting matrix structure to researchers at Lincoln

Laboratory. Though the mathematical complexities of this matrix structure are beyond

the scope of this project, it is important to understand its structure.

Figure 19: Structured RMAT Matrix

This figure shows a 1024 x 1024 structured adjacency matrix generated by the RMAT function with

density of 5%. This is the first type of structure used in the testing of the multiplication and parallelization

algorithms. Non-zero entries are shown as blue dots in the figure.

The structured RMAT matrix shown in Figure 19 has a block like structure which

is repeated throughout the matrix. The more dense rows and columns are found towards

 35

the left and upper parts of the matrix. This same structure is repeated in smaller and

smaller blocks throughout the entire structure. Because of this block structure, dense

rows and columns are repeated at constant intervals throughout the matrix.

The randomized RMAT matrix contains the same type of data as a structured

RMAT matrix but the vertices have been randomized. This randomization means that

instead of being grouped together, the dense rows and columns are randomly and

uniformly distributed throughout the matrix. This same randomization process could be

applied to any adjacency matrix. It is as simple as reordering the vertex labels in the

rows and columns.

Figure 20: Randomized RMAT Matrix

This figure shows a 1024 x 1024 randomized adjacency matrix generated by the RMAT function with

density of 5%. This is the second type of structure used in the testing of the multiplication and

parallelization algorithms. Non-zero entries are shown as blue dots in the figure

Figure 20 shows a Randomized RMAT matrix. The non-zero entries on the randomized

version are much more evenly distributed throughout the matrix than in the case of the

Structured RMAT matrix. It is important to note that although the RMAT matrices look

 36

as though they might be symmetric across the major diagonal, they are unidirectional

adjacency matrices and not symmetric.

2.4 Field Programmable Gate Arrays (FPGAs)

A final deliverable of this project was to parallelize the optimized sparse matrix

multiply algorithm on a field-programmable gate array (FPGA). An FPGA is a type of

programmable logic device (PLD) with which an engineer can develop almost any logic

circuit s/he wishes, or even multiple copies of the same logic circuit. Using multiple

copies of a specialized logic circuit enables an FPGA to perform operations

simultaneously, thus processing data in parallel. Implementing parallel processing on a

single chip gives a large advantage over an array of conventional microprocessors which

is slowed by inefficient communication. Inside an FPGA, separate circuits have high

connectivity and can transmit data between each other quickly and efficiently.

Research has shown that the implementation of an FPGA with multiple

interconnected copies of the same circuit can parallelize operations and achieve “almost

supercomputer-class performance” at a “tiny fraction of the cost of more general-purpose

supercomputing hardware” (Pellerin, and Thibault, 2005). FPGAs enable developers to

design a circuit which performs exactly the computations they need it to and nothing

more. By parallelizing and optimizing for one algorithm, a device can be made much

more capable to perform its job; however, this optimization simultaneously makes it less

versatile:

Parallel architectures can be more powerful, but are less general. A special-

purpose circuit can always outperform a microprocessor-based implementation

for a small class of problems ….The very specialization which provides this

parallelism also necessarily limits the range of its application.(Oldfield & Dorf,

1995)

 37

FPGA’s are often a good choice for the development of a complicated yet

dedicated hardware circuit. Once a system becomes massively produced, implementing

it on an Application Specific Integrated Circuit (ASIC) is usually more economical and

can provide another level of optimization above the FPGA.

 Embedded system developers constantly strive to achieve the same capabilities

using smaller and more power-efficient packages. The low power consumption and

small package size is another reason FPGAs are often utilized in embedded system

engineering. Figure 21 shows the efficiencies of a field-programmable gate array versus

those of a programmable processor or ASIC system.

Figure 21: Performance Density and Efficiency between device families

This plot shows a performance comparison between microprocessors, FPGAs, and VLSI circuits in Giga-

Operations per Second (GOPS) per volume (Liter) and power consumption (Watt). (Graph Courtesy of

MIT Lincoln Laboratory)

As shown in Figure 21, FPGAs can perform more operations per second than

programmable processors while using less space and consuming less power. It is

important to realize there is a cost factor missing from this chart. Much more time and

 38

money will be spent to develop an FPGA solution to a problem rather than using a

programmable processor. Even more resources will be needed to develop a Very Large

Scale Integration (VLSI) implementation such as an ASIC. There is a direct relation

between time, cost, level of development, and performance. For this project, achieving

the performance of an FPGA implementation is a reasonable target for the available time

and resources.

2.4.1 FPGA Architecture

An FPGA is a reprogrammable semiconductor device which is becoming very

commonly used in the development of embedded systems. Its ability to be

reprogrammed in the field is unlike other programmable logic devices which, once

configured, cannot be changed. On an FPGA, an engineer can implement almost any

type of logic circuit. These logic circuits are implemented by using a hardware definition

language (HDL) like Verilog or VHDL. The range of implementation can range from a

simple logic gate such as an OR or an AND gate to extremely complex circuits. Figure

22 shows a diagram of the basic structure inside an FPGA.

 39

Figure 22: FPGA Architecture

This figure shows the inner architecture of a basic FPGA. The blue blocks in the middle are Configurable

Logic Blocks (CLBs), while the red blocks on the outer edges are I/O blocks. Between the blocks, in

yellow, are the row and column programmable interconnects. (Floyd, 2006)

 The inside of an FPGA is mainly comprised of a grid of programmable logic

blocks and interconnections. By combining a number of these blocks and connecting

them through the grid of programmable interconnects, the FPGA can take on the role of

almost any logic circuit. A single programmable logic block consists of a Look-Up Table

(LUT), a D Flip-Flop connected to the main clock of the device, and output logic

(Computer Engineering Research Group, University of Toronto, 2007). Figure 23 shows

the basic internal structure of a programmable logic block.

 40

Figure 23: FPGA Logic Block

This figure shows the inner workings of a Configurable Logic Block. It consists of a Look-Up Table

(LUT), a D flip flop and output logic. (Cofer & Harding, 2006)

The I/O blocks on an FPGA are also configured by the user. These blocks control how

and where information is transferred in and out of the FPGA (which pin or pins the inputs

are read through and the outputs are sent through). Modern FPGAs often have other

hardware devices embedded in them such as block RAM, Universal Asynchronous

Receiver-Transmitters (UARTs) or even PowerPC processors.

Many Intellectual Property (IP) or soft-cores can be implemented on an FPGA as

well. IP cores are files written in a Hardware Definition Language (HDL) which can be

obtained through various sources and perform a specific application. An engineer would

have to load the HDL file onto the FPGA. There is a large variety of IP or Soft-cores

available that perform commonly used circuits. A quick internet search can find

 41

downloadable IP cores for encryptions, Fast Fourier Transforms (FFTs), USB controllers

or even microprocessors. This high degree of versatility and performance is why FPGAs

are often a good choice for embedded systems engineers.

2.4.2 Soft-Core Microprocessors

Embedding a soft-core processor can reduce the time and effort involved in

designing an embedded system with an FPGA. A soft-core processor is an entire

microprocessor implemented in the hardware of an FPGA through an HDL file. These

processors can run software, just like the processor in the average desktop computer.

When implementing an algorithm on an FPGA, it is often most cost effective to

implement only the most time-intensive parts of the algorithm in gate-level hardware,

while leaving the less time consuming parts to be completed by software run by a soft-

core processor. Soft-core microprocessors allow an engineer to develop a system on an

FPGA which is a hybrid between hardware and software (Eskowitz et al., 2004). With

the option of a soft-core software implementation, an engineer can decide which parts of

their algorithm will benefit most from a gate-level hardware circuit and which ones are

more efficiently performed by software.

A soft-core microprocessor can also increase a company’s ability for rapid

development and deployment of systems by allowing production and development times

to overlap. An original design of an FPGA could perform most of its functions by a soft-

core processor embedded on the FPGA. The company could begin mass production of a

working product while its engineers were still developing and optimizing the design’s

logic circuits. Later, due to the FPGA’s field programmability, the company could

update its systems with more gate-level hardware implementations. This process could

 42

continue until, eventually, the entire design was optimized through gate-level hardware

implementations.

Perhaps the most commonly used soft-core microprocessor is the Xilinx

Microblaze. The Microblaze is a soft-core processor designed for use on Xilinx’s

Spartan and Virtex lines of FPGAs. It is a 32 bit processor using RISC architecture

which is capable of running at 100 MHz on the Virtex-II Pro FPGA. The Microblaze

contains many features of a typical microprocessor including: 32 registers, an ALU, a

multiplier, a divider, a barrel shifter, interrupts, UART, and an off-chip memory

interface. (Xilinx Microprocessor Controller and Peripheral, 2007) A diagram of the

Microblaze architecture is shown in Figure 24.

 43

Figure 24: Microblaze Architecture

This figure shows the typical layout and architecture of the Xilinx Microblaze soft-core processor.

(Rosinger, 2004)

The Microblaze is truly designed for use inside an FPGA. Since soft-cores run at much

slower clock speeds than a hard-core processor, the primary reason for using a soft-core

on an FPGA would be to use it in conjunction with other IP that can speed up the

algorithm overall. Therefore, the Microblaze is designed with a port for high speed

connection to specialized IP circuits called the Fast Simplex Link (FSL). For many

designs, utilizing specialized IP cores can increase the overall efficiency of an algorithm.

Figure 25 displays an example of the same algorithm performed by both software and

hardware.

 44

Figure 25: Software Algorithm vs. Hardware

This figure shows the same process performed by a microprocessor in software on the left and by a

hardware circuit on the right. A, B, C, D, E, F, and G are assumed to be numeric values stored in the

memory of the system. (Rosinger, 2004)

The hardware solution of this algorithm requires two clock cycles while the

software requires 12. A specialized logic circuit is often the best choice for speeding up

complicated functions in an FPGA design and often provides motivation for a soft-core

processor to outsource some of its more time consuming jobs to hardware.

2.4.3 PowerPC processor

Another option to a developer using the Xilinx Virtex-II Pro FPGA is to utilize

the embedded hard-core PowerPC microprocessor. This is a more powerful processor

than the Microblaze. It consists of a 32 bit RISC architecture. Connecting IP circuits to

 45

the PowerPC is different than in the Microblaze. Any IP cores utilized by the PowerPC

are connected through the On-Chip Peripheral Bus rather than the Fast Simplex Link.

Figure 26: PowerPC Architecture

This figure shows an example of an embedded system utilizing an embedded PowerPC microprocessor on a

Xilinx FPGA. (Xilinx PowerPC 405 Processor, 2007)

The embedded PowerPC will not be used in our hardware implementation, but it is

available for future use.

2.5 ML310 Development Board

The FPGA board that the final design of this project was implemented on is

Xilinx’s ML310 development board. The ML310 is a board meant for rapid system

prototyping of embedded systems using the Virtex-II Pro FPGA. The ML310 comes

standard with a Xilinx Virtex-II Pro XC2VP30 chip. It also comes with a myriad of

peripheral devices such as USB ports, parallel and serial connections, IDE connections

for hard drives or CD ROMs, an LCD interface, LEDs, a UART connector to send out

 46

data to a terminal, an Ethernet port, audio in and out connections, a 512 MB

CompactFlash card, 256 MB of DDR RAM, PS/2 mouse and keyboard ports, 5.0V and

3.3V PCI slots. Shown in Figure 27 is a picture of the ML310.

For this project, we only used the Virtex-II Pro itself as well as the UART terminal

to print data to the computer screens. It was programmed through the JTAG cable, J9.

The FPGA is shown as U37 in the diagram while its UART connector is shown as J4.

 47

Figure 27: Xilinx ML310 Development Board

This figure is a diagram showing the Xilinx ML310 development board. The board is used for rapid

embedded system prototyping and comes with many useable peripherals. The Virtex-II Pro FPGA is

shown above as U37. The UART port we used to print text to our screen is marked J4 while the JTAG

connector used to program the Virtex is marked at the top as J9. (ML310 User Guide)

 48

2.6 Xilinx Virtex-II Pro XC2VP30

The Virtex-II Pro XC2VP30 is a high performance FPGA platform developed by

Xilinx Inc., a leading FPGA manufacturer. The Virtex-II Pro line of FPGAs is targeted

towards communication and DSP applications and is manufactured using a 0.13 µm

CMOS nine-layer copper process. The XC2VP30 model contains 30,816 logic cells,

each consisting of a 4-input look-up table, a flip-flop, and carry logic. It also contains

136 18x18 bit multipliers and 136 blocks of RAM of 2.25 KB each; making the total

RAM available 306 KB.

Furthermore, it contains eight RocketIO transceiver blocks which are responsible for

high speed connectivity and conversions between parallel and serial interfaces. Two

hard-core PowerPC microprocessors (400MHz) are also embedded on the XC2VP30.

The Microblaze soft-core processor can also be implemented in the logic of the

XC2VP30. An implementation of the Microblaze on this FPGA can run at a clock speed

of 100MHz. (Virtex-II Pro Data Sheet)

 49

3 Algorithm Performance Analysis

There are multiple techniques an engineering team could pursue when building

and parallelizing an optimal sparse matrix multiplication algorithm. Because of the many

options and the inherent memory constraints on an FPGA, we sought an algorithm which

would both perform multiplication quickly and efficiently while keeping memory

requirements to a minimum. The methodology section discusses the processes of both

optimizing a multiplication algorithm and implementing the algorithm on an FPGA.

When developing the FPGA algorithm, multiple methods for the storage and

multiplication of two sparse matrices were simulated in MATLAB to find a technique

that both compressed the matrices effectively and performed the multiplication at a

higher efficiency than a full matrix multiplication. After determining the formats and

algorithm for optimized multiplication, load distribution methods were simulated to find

one that efficiently parallelized the multiplication between multiple processing elements.

3.1 Optimized Matrix Multiplication Algorithm

To multiply a set of two matrices, a certain number of calculations must be

performed regardless of storage type and indexing method. These calculations are the

non-zero arithmetic operations; multiplying and summing the corresponding values in a

row of matrix A and a column of matrix B. Each type of matrix multiplication has some

overhead involved in performing these non-zero calculations. In the case of full matrix

multiplication, the overhead takes the form of multiple zero operations (multiplying by a

zero or adding zero) that are not important to product. In the case of sparse matrix

multiplications, the overhead takes the form of more complicated indexing and searching

 50

operations which find the intersecting values to be multiplied. The most efficient

multiplication method will perform these non-zero operations with the least amount of

overhead.

To determine the most efficient method to store and multiply two sparse matrices

for multiplication, storage methods from those discussed in the background were tested to

find one with high multiplicational efficiency and maximum compression of the matrices.

The definition of efficiency we used was the number of non-zero operations divided by

the maximum possible number of non-zero operations performed by the processor. The

target matrices were adjacency matrices with less than 5% density. Four separate storage

methods were tested to find a combination which organized the matrices optimally for

multiplication.

Four different multiplication algorithms were tested for efficiency in MATLAB.

Because MATLAB itself utilizes C functions to perform some of its calculations faster,

none of the test functions ran faster than MATLAB’s embedded matrix multiplication

functions. The tests sought to test different multiplication methods against each other on

the same level of development. MATLAB served as the common platform upon which

all algorithms were built. Testing these algorithms in MATLAB provided an estimate of

their relative efficiencies in other programming languages such as C or even hardware

definition languages like VHDL.

During the testing procedures, the efficiency of each algorithm was calculated.

To measure efficiency, two RMAT test matrices with dimensions 1024x1024 were

generated for each density tested (1% to 99%). The total number of non-zero

calculations (multiplications and additions) to multiply the two test matrices was counted

 51

using a specialized function we developed. The multiplication was timed, and the

number of calculations was divided by the total time. The performance of each

algorithm, in non-zero operations per second, was divided by the clock speed of the

processor, giving the efficiency of the algorithm. A plot was generated showing the

efficiency of each matrix multiplication in non-zero operations per second.

These tests were run on machines with the same hardware specifications to ensure

their consistency. During testing, the machines were monitored to ensure there was no

additional CPU load unrelated to testing. The machines were Quad core 3.066 GHz

processors with 2.5 Gigabytes of RAM each; part of the MIT-Lincoln Laboratory group

102 cluster. Five instances of each matrix multiplication test were run and averaged.

The test’s goal was to determine which multiplication method performed most efficiently

on the target matrices and to determine the range of densities for which these methods

performed at higher efficiency than a full matrix multiplication. The plot made strong

suggestions as to which algorithm worked with the least overhead.

3.1.1 Full Matrix Multiplication

To multiply two full matrices in a full matrix storage format, a function was

developed in MATLAB so each sparse method could be compared against it. Because all

the RMAT matrices were originally stored in a full format, tests could easily be run on

these matrices before converting them to various sparse formats to be tested. A full

matrix multiplication stores and multiplies all entries inside the matrices regardless of

whether they’re zero or not. Building our own full matrix multiplication function

allowed our plots to show the benefits of multiplication in the sparse domain versus the

full domain.

 52

MATLAB does have its own full matrix times full matrix function built in

(matrixA*matrixB), but MATLAB’s function utilizes C-code which operates on a much

lower level than MATLAB and is much faster. MATLAB’s function would not be

comparable to the sparse matrix multiplication methods which were tested. We therefore

built our own function in MATLAB which would be comparable.

3.1.1.1 Full Matrix Multiplication Algorithm

The following is pseudocode showing the full matrix multiplication algorithm

which was tested:

for (x=1; x<matrixA.row; x++) //<- cycle for every row in A
 for (y=1; y<matrixB.column; y++)) //<- cycle by column in B

 Compute dot product of Row x in A and Column y in B
 Write result to entry (x,y) in resultant matrix

 end
end

This process cycles through the rows of A and the columns of B performing vector by

vector multiplication. The dot product of each row by each column is computed and the

answer is written to the corresponding cell in matrix C. The actual MATLAB code used

for the simulation can be found in Appendix A.

3.1.2 Sparse Matrix Multiplication

When a sparsely populated matrix is multiplied in a full fashion, many

unnecessary zero operations (multiplying by zero or adding with zero) are performed. By

storing the matrices in a sparse format, these operations are eliminated and only useful

operations are performed. The disadvantage of using sparse matrix storage to multiply is

that the multiplication algorithm takes on an overhead of more complicated indexing and

 53

searching operations. In basic sparse matrix storage format each matrix is sorted by

column. Sorting by column means values in the same row are not stored near each other

in memory and the algorithm must perform extensive searching to find the row values it

needs to multiply.

3.1.2.1 Sparse Matrix Multiplication Algorithm

The following is the pseudocode showing the algorithm for the multiplication of

two sparse matrices stored in a basic sparse matrix format (both sorted by column).

for (x=1; x<matrixB.column; x++) //<- cycle by column in B
 determine appropriate column indices
 (determine how many indices there are)

 for (y=1; y<matrixA.row; y++)) //<- cycle by row in A
 determine appropriate row indices
 (search for all the appropriate indices)

 determine matching indices
 vector multiplication
 assign final values
 end
end

The actual MATLAB code used for the simulation can be found in Appendix A.

3.1.3 Sorted Sparse Matrix Multiplication

In sorted sparse matrix multiplication, only non-zero values are computed as in

the basic sparse multiplication, but each matrix is sorted in an optimal way for

multiplication to be performed. Because matrix multiplication multiplies the rows of

matrix A by the columns of matrix B, it is most efficient to store matrix A sorted by row

and matrix B sorted by column. When finding the values in a row or column, no

searching operations are needed, only counting of the indices.

 54

Figure 28: Data Locality in Sorted Sparse Matrix Multiplication

This figure shows how values in the same column are stored adjacent to one another in memory when

sorted by column and values in the same row are stored adjacent to one another in memory when sorted by

row. Because matrix multiplication is the dot product of one row of A by one column of B at a time,

sorting the first matrix by row and the second matrix by B is the ideal ordering of entries and eliminates all

searching.

3.1.3.1 Sorted Sparse Matrix Multiplication Algorithm

The following is the pseudocode showing the algorithm for the multiplication of

two sparse matrices stored in a sorted sparse matrix format (A by row, B by column).

for (x=1; x<matrixB.column; x++) //<- cycle by column in B
 determine appropriate column indices
 (count how many indices there are, no searching)

 for (y=1; y<matrixA.row; y++)) //<- cycle by row in A
 determine appropriate row indices
 (count how many indices there are, no searching)

 determine matching indices
 vector multiplication
 assign final values
 end
end

The actual MATLAB code used for the simulation can be found in Appendix A.

 55

3.1.4 CRS x CCS Matrix Multiplication Using Pointer

Compressed sparse matrix multiplication utilizes all the optimization techniques

of both sparse and sorted sparse multiplication. Any type of sparse multiplication only

processes non-zero elements. Sorted sparse multiplication also sorts the values in the

optimal order to be multiplied, by row and by column, respectively. This sorting means

that the sorted sparse algorithm needs only to count the number of values in a certain row

or column and need not search for them. Using the compressed format with a pointer, the

algorithm can find exactly how many values are in that row or column by subtracting

consecutive pointer values. By using the pointer vector, the algorithm can easily find

where the values are stored and how many there are; thus removing all searching for, and

counting of, indices.

3.1.4.1 CRSxCCS Using Pointer Multiplication Algorithm

The following is the pseudocode showing the algorithm for the multiplication of

two compressed sparse matrices stored using the pointer vector (A stored in CRS and B

stored in CCS).

for (x=1; x<matrixB.column; x++) //<- cycle by column in B
 determine appropriate column indices (subtract consecutive Pointers)

 for (y=1; y<matrixA.row; y++)) //<- cycle by row in A
 determine appropriate row indices (subtract consecutive Pointers)

 determine matching indices
 vector multiplication
 assign final values
 end
end

The actual MATLAB code used for the simulation can be found in Appendix A.

 56

3.1.5 CRS x CCS Matrix Multiplication Using Length

The alternative method for performing compressed sparse matrix multiplications

is to use a length vector. To find how many entries are in a row or column, the algorithm

needs to read the value of the corresponding length entry. Reading the corresponding

length entry is analogous to subtracting adjacent entries in the pointer vector.

3.1.5.1 CRSxCCS Using Length Multiplication Algorithm

The following is the pseudocode showing the algorithm for the multiplication of

two compressed sparse matrices stored using the length vector (A stored in CRS and B

stored in CCS).

for (x=1; x<matrixB.column; x++) //<- cycle by column in B
 determine appropriate column indices (specified by Length vector)

 for (y=1; y<matrixA.row; y++)) //<- cycle by row in A
 determine appropriate row indices (specified by Length vector)

 determine matching indices
 vector multiplication
 assign final values
 end
end

The actual MATLAB code used for the simulation can be found in Appendix A.

3.1.6 Counting Non-Zero Operations

To count the non-zero operations, a specialized MATLAB function was

developed. This function was called OperationsCounter and takes in two sparse matrices

as parameters. The function cycles through every row in matrix A and every column in

matrix B looking for intersecting values. It then counts the non-zero multiplies and

additions that would be needed to compute the total result of the multiplication. This

function was run separately from the timing tests to determine the total number of non-

 57

zero operations required to multiply two matrices. The full code for this function can be

found in Appendix C.

3.1.7 Algorithm Efficiency Results

Figure 29 and Figure 30 show the multiplicational efficiency of each of these

storage techniques. Each plot is the result of five multiplications performed at each

density for each method with their performances averaged. The plots compare the

efficiency of all four storage methods during matrix multiplication. The density of the

matrices is the independent variable and non-zero operations per second is the dependant

variable. As matrices become denser and denser, it becomes less beneficial to utilize

sparse formats.

Efficiency of Sparse Multiplication Methods Versus Full Matrix

Multiplication for Matrices 1-99% Density

0.00000%

0.10000%

0.20000%

0.30000%

0.40000%

0.50000%

0.60000%

0.70000%

0.80000%

0.90000%

1.00000%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Density of Input Matrices

%
 E
ff
ic
ie
n
c
y FullxFull

BasicSparse

SortedSparse

CRSxCCS LEN

CRSxCCS PTR

Figure 29: Efficiency of Different Multiplication Methods 1-99% Density

This figure shows the efficiency of different multiplication methods in non-zero mathematical operations

per second. As the density of the matrices grows, the performance of a full matrix multiplication becomes

higher. For sparser matrices, Compressed Row times Compressed Column multiplication performs best.

 58

Efficiency of Sparse Multiplication Methods Versus Full Matrix

Multiplication for Matrices 1-5% Density

0.00000%

0.00500%

0.01000%

0.01500%

0.02000%

0.02500%

0.03000%

0.03500%

0.04000%

1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00% 4.50% 5.00%

Density of Input Matrices

%
 E
ff
ic
ie
n
c
y

FullxFull

BasicSparse

SortedSparse

CRSxCCS LEN

CRSxCCS PTR

Figure 30: Efficiency of Different Multiplication Methods 1-5% Density

This plot is a zoomed in version of the plot in Figure 29. It shows the efficiency of each matrix

multiplication algorithm we tested for matrices of 1% to 5% density.

The data demonstrates that different matrix storage formats can be multiplied

more efficiently than others for certain input matrix densities. Figure 29 shows the

efficiency of each matrix multiplication algorithm over a broad range of matrix densities,

from 1% to 99%. Basic sparse matrix multiplication performs more efficiently than a full

matrix multiplication until the matrices reach 31% density. Figure 30 shows that

performance of basic sparse multiplication, for our target range of densities, performs

poorer than other forms of sparse multiplication, but slightly better than full matrix

multiplication.

Once the sparse matrices are sorted by row and column respectively, the

advantage becomes more apparent. For our target matrices shown in Figure 30, it is

shown that sorted sparse matrix multiplication performs significantly better than full

 59

matrix multiplication and basic sparse matrix multiplication. For higher densities, in

Figure 29, sorted sparse multiplication performs better than full matrix multiplication

until the density of the input matrices reaches 45%. These plots illustrate the advantage

given by the optimal sorting of the matrices.

A final leap in efficiency is achieved once the compressed formats are

implemented and both searching and counting operations are eliminated completely. The

two types of compressed multiplications (utilizing the Length vector and using the

Pointer Vector) performed similarly for the matrices of interest to this project as shown in

Figure 30. CRSxCCS multiplication using the pointer vector performed only slightly

better on average than using the length vector. For densities of up to 99%, both

CRSxCCS multiplications performed significantly better than all other methods until the

input density reaches about 53%, at which point full matrix multiplication became more

efficient. From these numbers, it is clear that compressed sparse matrix multiplication is

the most efficient method. Because of their similar efficiencies, the decision of whether

to use the length or pointer vector depended on each storage format’s functionality during

parallelization of the multiplication algorithm.

3.2 Optimized Parallelization and Load Balancing Technique

In section 3.1.7 it was shown why we chose compressed row times compressed

column formats in which to store our matrices. Because of the way the matrices were

sorted, the ways we could easily split the matrices for parallelization were limited. We

could either split matrix A into submatrices of its rows or matrix B into submatrices of its

columns. Splitting both of these matrices simultaneously was not feasible since it would

 60

require an exponential increase in processing elements (splitting matrices A and B each

into four submatrices would require 16 processing elements.)

The parallelization method we decided to implement was to have each processing

element on the FPGA multiply the entire matrix A times a submatrix of matrix B. Each

submatrix of B was comprised of a set of columns from the original B matrix. This

section will outline the parallel architecture as well as the different load balancing

techniques which were tested to find one that distributed data evenly between the

processors. The following is a block diagram of the structure of our entire system inside

the FPGA:

Figure 31: Parallelization Block Diagram

This figure shows the parallelization technique used to parallelize multiplications inside the FPGA. Each

processing element (PE) will be responsible for multiplying a submatrix composed from columns of B by

the entire matrix A. The results of each will be read into a final matrix assembly process and the resultant

matrix C was output.

 61

 As shown in the graphic above, matrix A will be supplied to each processing

element as soon as it enters the FPGA. Matrix B will be split into N submatrices by a

splitting algorithm (N is the number of processing elements on the chip). Each

processing element will multiply A by a submatrix of B producing a submatrix of C. The

result will then be combined by a final matrix assembly algorithm and the resultant

matrix, C will be output from the FPGA.

To work effectively, a parallel architecture needs a method for distributing

computations evenly between processors. The following sections will discuss the type of

multiplication we chose to implement and why it is better for parallelization. The tests

performed on various load distribution techniques will also be discussed.

3.2.1 Pointer vs. Length Vector in Parallelization

In the multiplication testing section, both compressed sparse matrix storage

techniques (using the pointer vector and using the length vector) performed similarly.

This comparable performance between the two formats differs once parallelization is

considered. The differences in parallel performance using each storage method will be

outlined in this section.

During parallelization of the multiplication algorithm, matrices are broken down

into smaller matrices for distribution to individual processing elements. When dividing

compressed sparse matrices, matrices stored using a pointer vector and matrices stored

using a length vector require different operations when splitting. An example is shown

below of how these storage methods differ.

 62

Figure 32: Splitting a Full Matrix into Smaller Matrices

This figure serves as an example of how a full matrix, on top, may be split into two smaller matrices both

comprised of a set of columns from the original matrix.

 Above is a figure showing a full matrix being split at column two into two

submatrices. If this matrix were in a column compressed format, Figure 33 would show

the two resultant matrices if the pointer vector were used:

Figure 33: Split Matrices Stored using Pointer

The above figure shows how a CCS matrix stored using the column pointer, on top, would be split into two

smaller submatrices. Notice that the pointer needs to be recalculated in the second submatrix.

 63

It is shown that the first submatrix is a piece cut directly from the original matrix data.

For the second submatrix, the pointer vector needed to be completely recalculated.

The following is the same split, except the matrices are stored with the length

vector rather than a pointer:

Figure 34: Split Matrices Stored using Length

The above figure shows how a CCS matrix stored using length vector would be split into two smaller

submatrices. Notice that the length vector does not need to be recalculated for either matrix. The

algorithm only needs to calculate the point at which to split the original length vector.

In the case of the length vector, the vector did not need to be recalculated for either sub

matrix. Both of the submatrices appear exactly as they do in the larger matrix. They can

be split into submatrices and merged into a complete matrix with no recalculation of the

length vector needed. Because the parallelization method often requires matrices to be

split into and rebuilt from submatrices the length vector is the preferred storage method

because it allows easier splitting and rebuilding of the length vector.

One disadvantage of using the length vector is that the non-zero entries in the

portions of the matrix are less accessible. If a computer needed to access a non-zero

entry somewhere in the middle of a matrix, the length vector would need to be summed

up to the column of that non-zero value. The sum would then be used as an index to find

 64

the corresponding number in the value vector. If this value was to be obtained from a

matrix stored using a pointer, the computer could easily look at what entry in the value

vector starts that column and then use that index to find that number in the value vector.

Since the priority of this project is to focus solely on completing the multiplication as

quickly and efficiently as possible on the FPGA, the compressed storage methods will

utilize a length vector.

3.2.2 Block-Column Distribution

Once we determined that we would use compressed matrices using the length

vector and which parallelization architecture we would follow, more tests were needed to

determine the best way to distribute the matrices among the parallel processors. The

simplest type of load balancing technique tested was a block-column distribution. In a

block-column distribution, matrix B is divided into N submatrices where N is the number

of parallel processing elements in the system. Each of these submatrices contains

approximately the same number of adjacent columns from matrix B. Each submatrix is

sent to a different processing element of the system. The following is a graphic showing

this type of division among four processing elements on a structured adjacency matrix.

 65

Figure 35: Block-Column Load Distribution

This figure shows how the block-column distribution works. N sections, each composed of approximately

the same number of adjacent columns from B are generated. Each is sent to a different processing element

to be multiplied by matrix A.

The algorithm for this process attempts to split the length vector of the CCS

matrix into N pieces of equal size. The entries in the value and column vectors that

correspond to each piece of the length vector are copied over and a new submatrix is

created. The MATLAB code used to test the block-column distribution can be found in

Appendix B.

3.2.3 Block-Values Distribution

The second method tested was a block-values distribution. This distribution

attempts to give an equal number of non-zero values from matrix B to each processor.

An equal number of non-zero values to each processor means that in the more dense part

of the matrices, fewer columns are assigned to the processor. Likewise, in the more

 66

sparsely populated sections of the matrix, a processor will be given more columns, but

still the same number of non-zeros to process. The following is a graphic showing how

the columns are distributed if applied to the same structured adjacency matrix as before:

Figure 36: Block-Values Load Distribution

This figure shows the block-values distribution. As in the block-column distribution, matrix B is split into

N submatrices of adjacent columns. In the block-values distribution, each one of these submatrices

contains approximately the same number of non-zero values.

This algorithm works by giving each processor a value vector of approximately

the same length. Since the denser part of the matrix in this picture is towards the left,

processor one is given fewer columns to process, but the same number of non-zero

entries as the others. The MATLAB code used to test the block-values distribution can

be found in Appendix B

 67

3.2.4 Block-Cyclic Distribution

A block-cyclic distribution works similarly to the block-column distribution. The

block-cyclic distribution splits the matrix into blocks, each composed of the same number

of columns from B. In block-cyclic distribution, B is split into 2N blocks instead of N.

Each processor is given two of these blocks, one from each half of the matrix. If one side

of the matrix is denser than the other, as is the case in structured adjacency matrices, the

processor will be given both a dense submatrix and a sparser submatrix of B. The blocks

will be distributed between the processing elements in a cyclic manner. Cyclic means

that the blocks are assigned in a repeated sequential order (proc 1, proc 2, proc 3, proc 4).

Once all processors have been assigned one piece of the matrix, the cycle repeats again

until all pieces have been distributed. A cyclic distribution of blocks will help to equalize

the load between all processors. The following is a graphic showing how a block-cyclic

distribution works:

 68

Figure 37: Block-Cyclic Load Distribution

The above figure shows the block-cyclic load distribution technique. The matrix is broken down into 2N

matrices of adjacent columns from B. These matrices are distributed to different processing elements in a

cyclic manner. Each processor is given two submatrices to process; one from the left side of the matrix and

one from the right side.

The MATLAB code used to test the block-cyclic distribution can be found in Appendix

B.

3.2.5 Inverse Block-Cyclic Distribution

The inverse block-cyclic distribution is very similar to the block-cyclic. Again, it

divides matrix B into 2N blocks compromised of adjacent columns from B. The

difference is that it distributes them in an inverse cyclic manner. Once all processors

have been given one block, from the left side of the matrix, the blocks will continue to be

assigned in the reverse order. In the inverse cyclic distribution, processor one will always

 69

get the first block and the last block of the matrix. This distribution is useful when

dealing with structured adjacency matrices because the left side of the matrix is very

dense while the right is very sparse. Following is a graphic showing this distribution:

Figure 38: Inverse Block-Cyclic Load Distribution

This graphic shows the workings of an Inverse block-cyclic distribution. Each block is composed of an

equal number of columns from matrix B. In the inverse cyclic distribution, processor one will always be

given the first and last block. This method helps to distribute matrices in which one side is denser than the

other.

The MATLAB code used to test the inverse block-cyclic distribution can be found in

Appendix B.

3.2.6 Column-Cyclic Distribution

The column-cyclic distribution is the most complicated splitting method. This

distribution requires indexing through every column in matrix B and assigning each to a

 70

different processor. The column-cyclic distribution assigns individual columns in a

cyclic manner. The cycling continues until every column in the matrix has been given to

a processor. This method attempts to distribute the dense sections as well as the sparse

sections as evenly as possible between the elements. The cyclic distribution is not easily

shown through a graphic so pseudocode has been generated to show its process.

N=Number of processing elements
X=Index of current processing element
for (i=1; i<matrixB.column; i++) //<- cycle by column in B
 X=i mod N; //modular division of current row by N

 if X==0 //if result of modular division is 0, X=N
 X=N;

 Assign row I to processor X;

End

As shown by the pseudocode above, the process is very simple, but needs to cycle

for each column in matrix B. The variable X, which determines which processor the

column gets assigned, repeats the series 1, 2, …(N-1), N, 1, 2, …(N-1), N. The modular

division function determines which processor a certain column is assigned. The

MATLAB code used to test the column-cyclic distribution can be found in Appendix B.

3.2.7 Performance Evaluation of Load Balancing Techniques

Tests were run in MATLAB to see the performance of each load balancing

technique on both structured and random adjacency matrices. We were not seeking an

algorithm that performed the best for each type of matrix, rather a more versatile

algorithm that performed reasonably well on both structured and randomized adjacency

matrices. These simulations were not actually run on a parallel system. Instead we

measured the time it took to split up matrix B and reassemble matrix C. In between, we

measured the time it took to multiply each submatrix of matrix B by matrix A

 71

individually. The total time was computed by summing the split time, the rebuild time,

and the longest submatrix multiply time.

Once the total time for each computation was found, we again counted the

number of non-zero computations involved in computing the product matrix. The

performance of each load distribution technique was displayed in non-zero operations per

second. In these tests, the size and density of the test matrices were held constant while

the number of simulated processing elements became the independent variable.

3.2.7.1 Performance on Structured Adjacency Matrices

The first set of tests was performed on structured adjacency matrices as discussed

in the background section. The test matrices were 8192 x 8192 adjacency matrices with

1% density. The independent variables in this plot are the number of processors and the

method we used to distribute the load of the multiplication among processing elements.

The dependent variable is the number of non-zero operations per second performed by

the algorithm. Figure 39 shows the average of three runs for each load distribution

method done in MATLAB. The ideal case is also plotted on the graph. The ideal case is

simulated by assuming that the total non-zero computations per second increases linearly

with every processor added; it was extrapolated from the single processor performance.

 72

Load Distribution Performance vs. Number of Processors on Structured

Social-Networking Matrices

0.00

500000.00

1000000.00

1500000.00

2000000.00

2500000.00

0 5 10 15 20

Number of Processors

N
o
n
-Z
e
ro
 O
p
e
ra
ti
o
n
s
 P
e
r

S
e
c
o
n
d

Block-Column

Inv Block-Cyclic

IDEAL

Block-Cyclic

Block-Values

Column-Cyclic

Figure 39: Performance of Various Load Balancing Techniques on Structured Matrix

This figure shows the performance of different load balancing techniques on structured adjacency matrices.

The performance is shown in non-zero operations per second and is dependent on the number of simulated

processing elements. It is shown above that in this test the Column-Cyclic distribution comes closest to

performing ideally.

It is shown that the lowest performing type of parallelization is a block-values

distribution; only achieving a total speedup factor of 6.8 with 20 processors. Block-values

is followed closely by block-cyclic and block-column distributions which achieved

speedup factors of 9.47 and 9.75 respectively. The inverse block-cyclic distribution

performs the best of the block distributions. It achieves a speedup factor of 12.58 with 20

processors. Finally, the best overall performance was achieved by the column-cyclic

distribution. This distribution achieved a maximum speedup factor of 16.99 with 19

processors. However, caution must be taken when applying the column-cyclic

distribution, especially when using it on structured adjacency matrices. In the plot above,

the column-cyclic has a very inconsistent speedup. This inconsistency is due to the

structure of the matrix to which it was applied. The structured adjacency matrices have

repeated dense columns occurring at evenly spaced intervals. These intervals are always

 73

an even number of columns apart. When applying a cyclic splitting method to these

matrices, a resonance type effect can happen in which the same processor is repeatedly

assigned the denser columns. This effect cuts down on the performance of the algorithm

dramatically for some certain numbers of processors since a single processor is assigned

many more non-zero values than the others. Therefore, it is recognized that this type of

distribution is an effective one, but the number of processors should be taken into

consideration when applying it to a structured adjacency matrix.

3.2.7.2 Performance on Randomized Adjacency Matrices

The second set of tests we performed was on randomized adjacency matrices.

This randomization made the data distribution inherently much more even, meaning it

was less important to have a good load distribution and more important to just have a

very quick method of splitting. Figure 40 is the plot showing the average of three runs

for each load distribution technique in MATLAB. Again, the ideal case is also plotted for

comparison. The ideal case is simulated by assuming that the total non-zero

computations per second increases linearly with every processor added; it was

extrapolated from the single processor performance.

 74

Load Distribution Performance vs. Number of Processors on

Randomized Social-Networking Matrices

0.00

100000.00

200000.00

300000.00

400000.00

500000.00

600000.00

700000.00

0 5 10 15 20

Number of Processors

N
o
n
-Z
e
ro
 O
p
e
ra
ti
o
n
s
 P
e
r
S
e
c
o
n
d

Column-Cyclic

IDEAL

Block-Column

Inv Block-Cyclic

Block-Values

Block-Cyclic

Figure 40: Performance of Various Load Balancing Techniques on Randomized Matrix

This figure shows the performance of different load balancing techniques on randomized adjacency

matrices. The performance is shown in non-zero operations per second and is dependent on the number of

simulated processing elements. It is shown above that in this test the Block-Column distribution comes

closest to performing ideally, followed closely by the Column-Cyclic distribution.

As shown in Figure 40, the results of each test were very similar. The block-

column distribution performed best of all, but by a close margin. The block-column

achieved a speedup of 18.69 with all 20 processors and performed closest to ideal. The

block-column was followed closely by the column-cyclic distribution. Even though

block-column performed best on randomized matrices, we chose to implement the

column-cyclic distribution on the FPGA. It performed the best of all methods on

structured matrices and performed second best on the randomized matrices. The column-

cyclic technique was the more versatile splitting algorithm and could perform well in

most circumstances.

 75

4 FPGA Implementation

Once the best algorithms for multiplication and parallelization had been decided,

the complete system was implemented on the FPGA. In the FPGA implementation, the

matrix multiplication algorithm was performed by multiple embedded Microblaze soft-

core processors working in parallel. Also, the processes of load distribution,

multiplication, and final matrix assembly were all performed by a host Microblaze which

distributed jobs to the multipliers. The optimized methods for multiplication and

parallelization were converted from functions in MATLAB to functions in the

programming language C to run on the Microblaze processors.

In the C-code implementation of these algorithms, we originally thought it would

be beneficial to develop a structure to store the sparse matrices in. We soon realized that

a C-structure to store these matrices in was not beneficial. Referencing of structures in C

reduced the efficiency of the code significantly. Instead, all of our matrix functions take

in each individual piece of information on the matrices. This means the matrix’s

dimensions, its value vector, its index vector, and its length vector are all passed in to

each function as parameters.

4.1.1 Microblaze Multiplication

It was shown previously in the Algorithm Performance Analysis section how

CRSxCCS multiplication, with each format utilizing a length vector, was the most

efficient method we tested to perform sparse matrix multiplication. The results from

these tests were why CRSxCCS multiplication was chosen for implementation on the

FPGA. To make the Microblaze processors perform this algorithm, we needed to convert

 76

our previously developed code from MATLAB into C, a lower level programming

language.

4.1.1.1 C Code for CRSxCCS Multiplication

The first step to writing our parallel matrix multiplication algorithm was to

implement the CRSxCCS multiplication function in C. This code was very similar to the

MATLAB code developed previously, but it could run on the Microblaze soft-core

processor inside the FPGA. The full C-code can be found in Appendix D.

4.1.2 Parallel Microblaze Load Distribution

The chosen load distribution technique for implementation on the FPGA was the

column-cyclic distribution. This splitting algorithm was performed by software on the

Microblaze processor to split load of the matrix multiplication as evenly as possible

between the processing elements. After the multiplication had completed, the same

Microblaze reassembled the individual submatrices of C into the final matrix.

4.1.2.1 Inter-Microblaze Communication via the Fast Simplex Link

Before implementation of the splitting algorithm, communication needed to be

established between the different elements inside the FPGA. This communication was

supported through the use of the Fast Simplex Link (FSL). Configuring the FSL to

transmit data between Microblazes required modifications to the hardware configuration

file. The entire hardware configuration file, a Xilinx .mhs file, can be seen in Appendix

F.

Once the FSL hardware was configured, creating a link between two processors,

the use of the communication links was coded inside a C program. The header file fsl.h

 77

must be included; and the sending and receiving of data between Microblazes is done by

using the functions putfsl(val,id) and getfsl(val,id), respectively. The function putfsl is

used by the sending processor. The function is given two parameters, the data to send

over the link and the id number of the FSL (a number 0-7) to send it through. Once the

sending processor has put the value on the FSL, getfsl must be called by the receiving

processor. The function getfsl takes in the value from the first processor and stores it in a

variable with the name given by “val”. By using these functions, data transfer between

two Microblaze processors is achieved. Each Microblaze is able to utilize up to eight Fast

Simplex Links for sending data, and another eight for receiving data.

4.1.2.2 FPGA Implementation of Column-Cyclic Distribution

Because the column-cyclic load distribution was the chosen method to implement

on the FPGA, C-code needed to be developed to split up matrix B and to reassemble the

submatrices of matrix C. The functions columnCyclic and assembleColumnCyclic are

functions that break up and reassemble the matrices, respectively. The actual C-code for

this implementation can be found in Appendix E.

 78

5 Algorithm Performance Results

Once our optimized matrix multiplication algorithm had been developed using C-

code, we were able to test its efficiency against full matrix multiplication to confirm our

performance estimates and to optimize the code. The code testing and optimization of

our algorithm was more easily performed on a desktop computer. The testing against a

full matrix multiplication was completed to ensure that our algorithm worked faster,

solidifying the results obtained in MATLAB.

Once our final C-code was loaded onto the FPGA, results were obtained about the

memory usage of the soft-core microprocessors and the Fast Simplex Links. The

memory measurements were used as part of a small study of the total memory usage

inside the FPGA. Because memory space on an FPGA is often a limiting factor, the size

of the code in memory made a difference in the maximum size of the matrices our design

could store and process.

Once the FPGA hardware had been generated to utilize parallel processing

elements, tests were run with various numbers of processing elements on the FPGA to

evaluate their performance and determine the parallel speedup. A plot was generated

showing the parallel speedup factor given by an increasing number of parallel processors.

The performance of each case was measured in non-zero operations per second. Each of

these tests were done on randomized adjacency matrices with 1% density generated by

the RMAT function.

 79

5.1 CRSxCCS Multiplication vs. Full Matrix Multiplication in C

In the methods section we discussed the compressed row times compressed column

multiplication method. It was shown in MATLAB that the compressed multiplication

performed much more efficiently than the full matrix multiplication. We wanted to

confirm these results by running the code on a desktop computer to be sure that this

difference in efficiency was also reflected when completed in C-code. The CRSxCCS

multiplication algorithm was tested against a full matrix multiplication function in C.

The actual C-code for the full matrix multiplication is shown in Appendix G. These tests

were run by multiplying two 128x128 adjacency matrices with 1% density together on a

PC-based Pentium 4 processor while timing the result. Our OperationsCounter function

determined that there were 412 non-zero operations required to multiply the two

matrices. The clock rate of the desktop’s processor was 3.4GHz. The processor

computed the product of the two matrices using both multiplication functions and the

total time for each was measured. The efficiency was calculated using the following

formula, as discussed in the introduction:

%100
#

% ×
××

=
processorsrequencyOperatingFTotalTime

tionsnzeroOperaNumberofNo
Efficiency

The multiplication of the two matrices was looped 10,000 times in the code to

ensure accurate measurements. To multiply the two matrices in a full matrix format, the

multiplication took 92.057 seconds. Because it performed 412x10000 non-zero

operations total, the processor performed multiplications at a rate of 44,754 non-zero

operations per second. Dividing this performance by the clock frequency (3.4 GHz)

gives an efficiency of 0.0013%.

 80

The CRSxCCS multiplication performed the same loop of 4.12 million total non-

zero operations in 1.87 seconds meaning it multiplied the matrices at a rate of 2.193

Million non-zero operations per second. Dividing by the clock rate gives an efficiency of

0.0645%. From these results, we concluded that the CRSxCCS multiplication method

truly performs more efficiently; completing 49 times the non-zero operations per second

of a full matrix multiplication.

5.2 Theoretical Maximum Allowable Matrix Size

We generated a plot showing the estimated size of the matrices that the FPGA

could process vs. the number of Microblazes implemented on the Xilinx Virtex-II Pro

XC2VP30. As the number of Microblaze processing elements on the FPGA increases,

the RAM space with which to store the matrices decreases. An estimate was desired to

determine if the maximum number of parallel processors, eight, would be capable of

multiplying two of our 128x128 test matrices. A set of equations, derived subsequently,

was developed to show the trade-off between the number of processing elements and the

allowable matrix size. This prediction incorporated the size of the machine code and

Microblazes in block RAM as well as the predicted size of the resultant matrix of this

multiplication.

Through our program files in Xilinx Platform Studio 9.1, we determined that the

host processor and its instruction code, responsible for breaking up matrix B and

reassembling the final matrix, would need approximately 15.8KB of block RAM. Also,

each individual parallel Microblaze multiplier would require 12.3KB of RAM. Both of

these sizes were rounded up to 16KB.

 81

To estimate how much block RAM would be available to store the matrices, we

needed to determine when and where each matrix, A, B, and C, would need to be stored

on the FPGA. Because matrix A was distributed as a whole to the individual processing

elements, every processor, including the host, needed enough memory to store matrix A.

This storage scheme meant the total memory size used for matrix A storage would be

equal to the number of processors on the FPGA times the size of a single matrix A in

memory. Matrix B would be stored on the host processor, and then an equal sized piece

of matrix B would be distributed to each parallel processor meaning that the total size

needed for matrix B would be two times the size of a single matrix B. A submatrix of the

resultant matrix C would also need to be stored in each multiplier as well as an entire

matrix C on the host processor. In an actual implementation on the FPGA, both the

splitting and rebuilding algorithms will be performed on the host processor. Because the

host processor does not need to store matrix A or B after it has sent each of them out to

the parallel processors, this space was reused to store part of matrix C.

Sparse matrix multiplications often result in a denser product matrix. Because of

this increase in density, tests were run in MATLAB to predict the density of the output

matrix. These tests were run to find the average product matrix for the multiplication of

two randomized adjacency matrices and two structured adjacency matrices. Each of

these tests utilized two adjacency matrices with dimensions 128x128 and 1% density.

The results showed that the multiplication of two randomized adjacency matrices would

result in a 128x128 matrix with average density of 1.2% and standard deviation of 0.22%.

In the case of the structured adjacency matrices, the resultant matrix would have an

average density of 3.2% with a standard deviation of 0.21%. Assuming that these matrix

 82

density values follow a Gaussian distribution, five standard deviations beyond 3.2%

would give a density of 4.25%. Therefore, if enough memory is allocated for a matrix C

with 4.25% density, we will statistically be able to process 99.99994% of all 128x128

adjacency matrices, randomized or structured, with 1% density generated by the RMAT

function (Weisstein, 2003).

 The function in Figure 41 can be used to approximate the memory size of the

matrix we can process depending on the number of processors. This function makes two

main assumptions. First, it assumes that the size of a matrix increases linearly with its

density. Second, it assumes that the product matrices of matrices with dimensions close

to the 128x128 we tested will also have approximately the same densities:

25.225.42#

*#16306

+++

−
=

processors

processorsKBKB
ryMAXMatrixMemo

Figure 41: Allowable Memory per Input Matrix Estimate

This figure shows the formula used to estimate maximum memory size that could be allocated to an input

matrix depending on the number of processors. The numerator is equal to the total memory space left after

all of the Microblazes and their code has been loaded onto the chip. The numerator is divided by the

denominator which estimates how many total copies of the original matrix will need to be stored on the

FPGA. The numbers in this formula are specific to the sizes of a 128x128 sparse adjacency matrix with

1% density.

The numerator in the function above estimates how much memory will be left

over to store matrices after all the processors and their code have been loaded to the

FPGA. The available memory space is calculated by the total amount of block RAM on

the FPGA (306KB) minus 16KB (the memory required for one processor) times the

number of processors. The remaining memory must be divided among the total number

of matrices stored on the FPGA. The total storage size required by these matrices is

calculated by the value in the denominator. Because A is distributed to each processor,

the first addend is equal to the number of total processors on the chip. Because two B’s

 83

will be stored on the chip, one on the host processor and one divided evenly among the

parallel processors, the second addend is equal to two. If we are sure to allocate for an

output matrix with density equal to 4.25% and we assume that the size required to store a

matrix increases approximately linearly with the density of that matrix, the third addend

is 4.25. The last addend in the denominator is equal to 2.25. This value is due to the fact

that the resultant matrix C will need to be stored on the host processor after reassembly.

Because matrix A and B had been stored on the host processor originally but are not

needed after being sent out to the parallel processors, by freeing them the processor

already has enough space to store 2/4.25 of the final matrix C. Therefore, the only

additional memory needed is another 2.25 times the original matrix size.

To estimate the dimensions and density of the input matrices depending on the

available memory size, an equation was needed to calculate the memory size required by

matrices of certain dimensions and density. Each matrix, if stored in CRS or CCS, will

be required to store the following values:

The number of Rows 1x32 bit integer

The number of Columns 1x32 bit integer

The Value vector 2x 32 bit integers (storing length and size of array)

 1x 32 bit integer null terminator of array

Number of Non-Zero (NNZ) integers (one entry for

each non-zero in matrix)

The Index vector 2x 32 bit integers (storing length and size of array)

 1x 32 bit integer null terminator of array

 NNZ integers

 84

The Length vector 2x 32 bit integers (storing length and size of array)

 1x 32 bit integer null terminator of array

(Row or Col integers) one for each length or row in

matrix (depending if it is CRS or CCS)

Because each compressed sparse matrix stores all of these numbers, the total size of the

matrix in memory is equal to:

KB

bytes

zerosnonrowsorofcolumns
bytes

KBinSizeMatrix

1024

int))(2)__(#11(
int

4

−++
=

Figure 42: Required Memory Space of Compressed Matrix

The equation above shows how the total memory requirements for a matrix are calculated. Each matrix

requires a number of integers to be stored in memory. There are eleven single integers plus three arrays of

integers. Two of these arrays are equal to the number of non-zero entries in the matrix. The third array is

equal to the number of columns in a column compressed matrix or the number of rows in a row compressed

matrix. All of these integers use four bytes of memory.

The equation shown in Figure 42 for matrix memory prediction was used to create

a Microsoft Excel spreadsheet which allowed a user to look up the size of a matrix by

entering the density and dimensions. The spreadsheet was used for quick reference when

determining the memory space required for square matrices of varying sizes and

densities. A sample of this spreadsheet for matrices with 1% density can be found in

Appendix H.

 From these equations, the following plot was constructed to estimate the

relationship between the number of processors on the FPGA and the maximum

dimension of the square, 1% density matrices which it could process.

 85

Size of Matrices Vs Number of Parallel Processors

553

510

472

437
405

375
345

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9

Number of Soft-Core Processors

R
o
w
 a
n
d
 C
o
lu
m
n
 D
im
e
n
s
io
n

o
f
In
p
u
t
M
a
tr
ic
e
s

Figure 43: Size of Input Matrices vs Number of Processors

This figure shows the tradeoff between more soft-core processors implemented on the FPGA and the size

of the matrices it is able to process. This plot assumes that the input matrices are square and have a 1%

density. The plot shows the dimension of the input matrices as a function of the number of processors

implemented on the FPGA.

Figure 43 allows the theoretical conclusion that an FPGA implementation with eight

parallel processors could processes matrices with dimensions of 345x345 with 1%

density. To generate this plot, assumptions were made which reduced its accuracy. This

plot was based on the product density study of 128x128 matrices. The output density of

the matrices was assumed to be 4.25% density. Because the predicted output density is

true only for matrices with dimensions of 128x128, the exact dimensions of the predicted

matrix sizes matrices are slightly inaccurate. A second imperfection of the estimate is

that it assumes memory can be divided in any arbitrary way among the processors. In

reality, the RAM is divided into block RAMs, each of size 2.25 KB. On an actual FPGA,

the block RAMs cannot be divided, they are allocated discretely. The estimate suggests

 86

that a theoretical implementation of eight parallel processors would have enough RAM

available to multiply two 128x128 matrices of 1% density.

5.3 FPGA Parallel Speedup Predictions

Before measuring results of the parallel implementation, predictions were made on

the performance of a single Microblaze performing the multiplication of two 128x128 1%

adjacency matrices. The same prediction model was used with the parallel architectures.

To make the prediction, information was gathered about the Microblaze’s performance

compared to that of a PC-based Pentium 4 processor. Once a ratio was found, predictions

of the Microblaze’s execution time for our splitting, multiplying, and reassembling

algorithms were made by running the functions on the PC-based Pentium 4 processor and

scaling by the performance ratio. These predictions were later compared to actual

measurements from certain FPGA implementations.

5.3.1 Microblaze Execution Speed

In order to estimate the performance of the 128x128 multiplication on the

Microblaze, simulations of our C-code for splitting, multiplying, and rebuilding matrices

were completed on desktop computers. First, a ratio was needed between the speed of a

Pentium 4’s execution of our algorithms and that of the Microblaze. To find this ratio, a

sample multiplication task was performed on each and timed. Our two test matrices,

128x128 with 1% density, were multiplied together. To compute the product of these

two matrices, 412 non-zero operations were required. By looping this multiplication 100

thousand times and finding its execution time on both the Pentium 4 and the Microblaze,

we were able to find a ratio between the two different processor’s performances.

 87

The Pentium 4 was able to perform all 41.2 Million non-zero computations in 20

seconds while a single Microblaze performed them all in 682 seconds. 682 seconds

corresponds to a single Microblaze matrix multiplication being performed in 0.0068

seconds. Note: The Microblaze computations were timed with a stopwatch due to the

fact that the Xilinx compiler does not support a simple program timing function. From

these measurements, we were able to compute the ratio:

SMNonzeroOP 06.2
sec20

000,200,41
NonzeroOPS Pentium4 ==

Ops

SKNonzeroOP 4.60
sec682

000,200,41
NonzeroOPSMicroblaze ==

Ops

1.34
10*4.60

10*06.2
Ratio Microblaze toPentium

3

6

==

The performance ratio was equal to 34.1 Pentium operations per Microblaze operation.

This number is very close to the difference in clock speed between the two processors.

The Microblaze operates at 100 Megahertz while the Pentium 4 operates at 3.4 Gigahertz.

Because the difference in time was almost exactly proportional to the difference in clock

speed and there was some human error introduced in timing, it was concluded that the

two processors were able to perform the matrix multiplication algorithm with the same

efficiency and the difference in performance was mostly due to the difference in clock

speed. Our estimates assumed that operations done on the Microblaze would be

completed by the Pentium 4 in 1/34
th
 the time.

 By performing this experiment, we were able to measure the time that one

Microblaze would take to perform the multiplication of our 128x128 test, 0.0068

seconds. This point became the first point for our predicted results section as well as our

actual results section. The ratio of 34:1 Pentium computations per Microblaze

 88

computation was used to predict the matrix splitting, matrix multiplication, and matrix

rebuilding times for Microblaze systems involving parallel processors.

5.3.2 Fast Simplex Link

In the methods section, MATLAB simulations served to model the performance

gains made by parallel multiplication of matrices. These MATLAB simulations were

successful in modeling the total processing time to perform the computations, but

assumed ideal communication between processors. This communication time must be

considered when predicting multiplication in a parallel manner.

In the parallel FPGA design, the communication was between processors through

the utilization of the Fast Simplex Link. To model this performance, calculations needed

to be done involving the speed of the FSL. The FSL is a 32 bit wide bus used for fast

transfer of data between IP cores on an FPGA. The FSL is capable of transmitting 32 bits

in one clock cycle of the Microblaze, meaning that if the Microblaze runs at 100MHz, the

FSL can transmit at 400MB per second. The peak data rate of 400MB per second was

used to estimate the communication times in our performance prediction.

The imperfection in our estimates was that our FSL communications did not run

at full speed. In the case of our matrices, which are stored in vector formats, the

Microblaze must cycle through each vector and send each entry in the vector through the

FSL individually. Because of this cycling, there are extra clock cycles involved in the

sending over the FSL and the link will not perform at its top speed.

 89

5.3.3 Microblaze System Theoretical Performance Estimate

A prediction of performance was generated using our existing knowledge about

the FSL links, the Microblaze processor, and the Microblaze’s performance compared to

that of a Pentium 4 processor. For each number of processors, the splitting,

multiplication, and rebuilding times were simulated on a Pentium 4 processor and scaled

by the performance ratio to predict the Microblaze performance. These numbers were

added with the total prediction of communication times over the FSL links, which were

predicted assuming a full speed FSL.

Predicted Performance of Multiplication Algorithm on 128x128

Matrices with Varying Number of Processors

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 1 2 3 4 5 6 7 8 9

Number of Processors

P
e
rf
o
rm
a
n
c
e
 (
N
o
n
-Z
e
ro

O
p
e
ra
ti
o
n
s
 p
e
r
S
e
c
o
n
d
)

Figure 44: Theoretical Parallel Microblaze Performance

This figure shows the theoretical prediction we generated for the performance of parallel Microblaze

systems in the multiplication of two 128x128 adjacency matrices with 1% density.

The performance prediction is shown in Figure 44. This estimate is surely an optimistic

prediction for multiple reasons. It assumes that the multiplication load will be perfectly

distributed between the multiple processors. It also assumes that the communication

 90

between the Microblazes will work at its full speed, 400MB per second. The real

multiplication load will not be perfectly distributed between the Microblaze processing

elements and the FSL, as discussed previously, needs to cycle through the entries in each

vector meaning that data transfer will not happen at its full speed. The measured

performance curve will level off more quickly as more processors are added. This

estimate served as prediction for the actual performance of parallel Microblaze systems.

After actual implementation of parallel Microblazes, the measured performance was

compared against the prediction from Figure 44.

5.4 FPGA Parallel Speedup Measurements

Two separate hardware configurations were successfully implemented and tested

on the FPGA. The first system was a single Microblaze system used as a benchmark to

show the difference in performance between one processor and parallel processors. The

second system implemented was a system with three Microblaze processors; a host

processor and two Microblazes connected to work in parallel. The host processor

performed the splitting algorithm on matrix B and the reassembly algorithm on the

submatrices of matrix C. Figure 45 shows the block diagram of the parallel configuration

of two Microblazes.

 91

Figure 45: Parallel System of Microblazes

This figure shows a block diagram of a parallel Microblaze system we implemented on the Virtex-II Pro

FPGA. Microblaze zero at top is the host processor. It sends out matrix A and submatrices of B to the two

parallel Microblazes, 1a, and 1b. The FSL links between Microblazes are shown in pink while the

Microblaze connections to its own instruction set and block RAM are shown as blue. Microblaze_0 is

connected through the on-chip peripheral bus to the UART RS232 port (used to read out results through the

desktop computer) and external DDR RAM (Not used).

 92

The hardware configuration (.mhs) files for both the single Microblaze system and the

parallel Microblaze system can be found in Appendix F. The hardware configuration

files are used by the Xilinx compiler to configure hardware on the FPGA.

Multiple implementations of parallel architectures such as three, four, or even eight

processors in parallel were outside the scope of this project. A single implementation of

two processors in parallel was all that was needed to simulate the performance of more

parallel processors. The final results for both one Microblaze and two parallel

Microblazes are actual results, while all implementations with more than two parallel

processors were simulated on the two processor implementation and compiled to predict

performances for more parallel Microblazes. The performances of parallel

implementations were calculated using the following formula, as discussed in the

introduction:

TotalTime

rationsNonzeroOpe
ePerformanc =

Once we implemented a parallel architecture consisting of one host Microblaze and

two parallel Microblazes, measurements were taken to determine the parallel speedup

possible with this architecture. To measure the actual performance, the code was run on

the Microblaze and timed. Because we could not directly measure the performance of

other parallel implementations, these results were simulated using the existing parallel

implementation on the FPGA. Each communication, multiplication, and splitting process

that would happen in larger parallel implementations was simulated using the two

Microblazes system and timed, allowing us to measure performance of further

parallelized systems.

 93

Predicted vs. Measured Performance of Multiplication Algorithm

on 128x128 Matrices with Varying Number of Processors

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 2 4 6 8 10

Number of Processors

P
e
rf
o
rm
a
n
c
e
 (
N
o
n
-Z
e
ro

O
p
e
ra
ti
o
n
s
 p
e
r
S
e
c
o
n
d
)

Measured Performance

Predicted Performance

Figure 46: Measured Performance of Parallel Multiplication of 128x128 Matrices

This figure shows the actual measured performance of 128x128 matrix multiplication in parallel versus

different numbers of processors. It is plotted against the predicted performance of these implementations

from section 5.3.3. The predicted performance was very close to the actual performance for up to six

processors; at which point the actual performance curve started to lose slope drastically.

Figure 46 shows that we successfully achieved a parallel speedup of the algorithm

by utilizing multiple processors. The maximum speedup factor achieved was 5.20 with

the implementation of eight Microblaze processors working in parallel. The model

predicted close to the actual performance for one, two, three, and four processors.

The main sources of performance difference between the actual implementation

and the prediction are the imperfect load distribution and the speed of the FSL links. In

reality, the column-cyclic algorithm does not distribute the load of multiplication evenly

across the processors. The multipliers had slightly different loads put on them.

Furthermore, the FSL links performed slower than ideal, due to the array indexing

discussed earlier. A diagram showing a realistic timeline of operations on a system of

parallel processors is shown in Figure 47.

 94

Figure 47: Realistic Timeline of Parallel Algorithm

This figure shows a realistic timeline of what would occur on each different processor in an eight parallel

Microblaze system. Unlike our prediction, in a real implementation, the multiply times would not be

balanced evenly between each processor and the FSL link would perform at much less than its top speed.

Two timing diagrams like the one above can be found in Appendix I with the actual

timings we measured shown in the plot. Plots have been generated for both a two parallel

Microblaze system and an eight parallel Microblaze system.

 95

6 Discussion and Conclusions

We were successful in developing a highly efficient and parallelizable algorithm

for the multiplication of two sparse matrices. Furthermore, we were able to display a

performance increase in this algorithm by mapping it over multiple parallel processors.

6.1 Sparse Matrix Multiplication Algorithm

Our first goal was as follows:

To determine a highly parallelizable method for the storage and multiplication of

two sparsely populated matrices which can perform computations at efficiencies

comparable to the 0.05% to 0.1% achieved by optimized sparse matrix

multiplications on traditional microprocessor systems.

Our optimized method for storage and multiplication was to store matrix A in a

row-compressed format and matrix B in a column-compressed format. Each of these

matrices was stored using the length vector. The multiplication algorithm performed

vector by vector multiplication, multiplying a row of matrix A by a column of matrix B at

a time. Because of the row and column compressed formats, the values in the same row

of matrix A and the same column of matrix B were stored locally. This type of data

locality proved to be the optimal storage method among the methods we tested to perform

matrix multiplication.

When operating on our test matrices, randomized adjacency matrices with

dimensions of 128x128 and densities of 1%, our algorithm for multiplication achieved an

efficiency of 0.0645% on a PC-based Pentium 4 processor when implemented using C-

code. This efficiency means that our algorithm is comparable to the efficiencies of

 96

between 0.05 and 0.1% achieved by the most optimized sparse matrix multiplication

algorithms today while our algorithm also maintains high parallelizability. Our algorithm

performs at about 49 times the efficiency of a full matrix multiplication (0.0013%

efficiency) when processing a sparsely populated matrix.

6.2 Parallelization of Multiplication Algorithm on FPGA

The second goal of our project, as stated in the introduction, was as follows:

To demonstrate how the optimized multiplication algorithm can be

parallelized on a single FPGA to achieve a parallel speedup by

distributing the load over multiple processing elements.

This goal was achieved as discussed in section Error! Reference source not found..

We were able to measure a parallel speedup of 5.20 through the implementation of eight

Microblazes in parallel.

The parallelization technique we used distributed the entire matrix A to every

parallel processor. Assuming that N is the total number of parallel processors, Matrix B

was distributed using a column-cyclic splitting algorithm which split it into N

submatrices each containing approximately 1/N of the total columns in B. The splitting

algorithm was performed by the host processor. Each parallel processor multiplied

matrix A times its submatrix of B and output a submatrix of the final matrix, matrix C, in

a column compressed format. The pieces of matrix C in column compressed format were

put through a reassembly algorithm which constructed the final matrix. This type of

parallelization technique is useful information to researchers at Lincoln Laboratory as

well as other scientists or engineers who are interested in the parallelizing of sparse

matrix multiplication.

 97

6.3 Future Recommendations

We have determined promising paths for further research into parallel sparse matrix

multiplication on an FPGA. Implementation of these ideas may be able to further

increase the effectiveness of similar FPGA designs. These ideas include new methods for

transferring data between the system’s components, a lower level type of multiplication

algorithm, and the implementation of specialized, gate-level logic circuits to complete the

compressed sparse matrix multiplication.

A major consumer of time in our FPGA design was the communication between

system components. The FSL required serial transmission of data from one processor to

another. An improvement that may help speed up the transfer of data is sharing of the

same RAM between processors. With the freedom involved in FPGA design, if an

engineer could implement the sharing of RAM among multiple processors, the parallel

processors could begin multiplication immediately after the splitting algorithm had been

performed by the host. The communication times in this type of design would be reduced

significantly because the parallel processors would only have to access memory, not

receive serial transmissions.

A second recommendation is to implement a bitwise method to search for

intersecting indices in a row and column. The compressed row by compressed column

multiplication algorithm currently indexes through the corresponding indices given by a

row of A and a column of B searching for common entries in the two vectors. These

indices could be mapped, bit by bit, into a small memory buffer to easily find

intersections. For example, if there was an entry in column five of the row vector and

row five of the column vector, a one would be written to the fifth bit of each buffer

 98

creating a map of bits. These two buffers, symbolizing the index entries, could be

ANDed in only a single clock cycle and the processor could quickly find the indices that

were common to each vector. This bitwise mapping of the indices found in a row of A or

a column of B could also be used to easily export index data to a peripheral IP core. All

of the index data could be exported to an IP core in a bitmap, rather than an array of

integers, greatly reducing the amount of information that needed to be transferred..

 Though the implementation of a peripheral IP core to assist in the multiplication

of matrices would be extremely time consuming to develop, it could provide another

level of performance above our current algorithm. A large improvement on both

performance and efficiency could be achieved through the implementation of a logic

circuit which was capable of performing matrix by matrix multiplication and could take

the place of a parallel Microblaze. The logic circuit could be sent matrix A and a

submatrix of B through the FSL (or shared memory could be utilized). The logic circuit

could perform the multiplication itself and return the resultant matrix to the host. A host

Microblaze could connect to up to eight of these logic circuits simultaneously.

Implementing this type of circuit on the FPGA would certainly require significantly

fewer logic blocks than the implementation of a soft-core processor. The following is a

state diagram of a logic circuit capable of performing CRSxCCS multiplication. A circuit

of this type could be implemented through a hardware definition language on an FPGA.

 99

Figure 48: Proposed Logic Circuit States to Perform Matrix Multiplication

This figure shows the logic states that would be required of a circuit to perform sparse matrix

multiplication. Each box contained above signifies a single clock cycle. Depending on the complexity of

each step, the state may be shown in more than one box in the logic diagram. For example, the two looping

steps, A and B, contain a check (to see if they’re done cycling yet) and then the increment of a variable.

These two steps require two clock cycles each while simply checking if two indices match, C, only would

take only a single clock cycle. A logic circuit of this type could be implemented in gate-level logic and

could perform the same functions as the parallel Microblazes in our design. A more complete state

diagram showing each operation individually can be found in Appendix J.

We conducted a small study on the performance of the state machine diagram

shown in Figure 48. This analysis was done by incrementing multiple variables at

various places in our C-code multiplier that corresponded to states in the logic circuit.

The sum of these variables provided an estimate of the number of state transitions with

which the logic circuit could compute the product of the two test matrices. The results

suggest that a circuit of this type could perform the multiplication of our two 128x128

test matrices in only 60,908 state transitions. Assuming a 10ns logic state transition

 100

period (equal to the Microblaze’s clock cycle of 100MHz), 60,908 state transitions

corresponds to a total computation time of 610 microseconds, 11 times faster than the 6.8

ms of which the C algorithm run on a Microblaze is capable.

With different combinations of hardware circuits and soft-core processors, an

FPGA system’s performance could increase the performance of our implementation

hundreds of times over as shown in Figure 49.

Microblazes
Only C

Algorithm

1 Logic Circuit

Per Processor

4 Logic Circuits

Per Processor

8 Logic Circuits

Per Processor

1 Microblaze 1 11.16 44.65 89.32

4 Microblaze 3.57 39.84 159.4 318.9

8 Microblaze 5.20 58.03 232.2 464.5

Figure 49: Projected Speedups with Microblazes and Logic Circuits

This figure shows the theoretical speedup factors that could be attained over the current abilities with a

single Microblaze. The speedups with multiple Microblazes were obtained from the data we collected in

our parallel experiments. The speedups given by the implementation of logic circuits are optimistic

predictions based on the state transition counts for the logic state machine shown in Figure 48.

Implementation of some of these recommendations could help to develop an

FPGA with performance and efficiency far beyond those we achieved in this project.

Sparse matrix multiplication is an extremely difficult problem for a computer engineer

and more time and research into parallel architectures, advanced algorithms, and logic

circuits for performing these multiplications need to be done before these matrices can be

processed effectively.

6.4 Future Impacts

The research we have performed into parallelizable sparse matrix multiplication

will have many future impacts for research MIT Lincoln Laboratory. Because of the high

level research we have performed, results from our project can filter down to many

 101

different types of systems for sparse matrix processing. Results of our project could

assist researchers with sparse matrix processing on multi-core processors, logic circuit

implementations, or even grid computing.

The value in this project comes from the methods for storage of sparse matrices and

parallelizable multiplication we developed. Our implementation of multiple processor

cores on a single FPGA was not faster than even a single Pentium 4, but the algorithm

and parallelization method can be replicated in other systems that could potentially

perform multiplication hundreds of times faster than even the fastest desktop computer as

shown in Figure 50.

 102

Figure 50: Parallelizable Algorithm in Multiple Computer Environments

This figure shows how the parallelizable sparse matrix multiplication algorithm developed in this project

can be used in many different types of computing systems, both large scale clusters and embedded.

 103

Annotated Reference List

Bliss, Nadya T. E-Mail interview. 20 Sept. 2007. These numbers are based on

information taken off of figures sent to us by Nadya Bliss on the performance of

sparse and full matrix multiplications on a 1.5 GHz PowerPC microprocessor and

a 3.2 GHz Intel Xeon Processor.

Borgatti, Stephen P. The Key Player Problem. Dynamic Social Network Modeling and

Analysis, 2002, National Research Council of the National Academies.

Washington, DC: National Academies P, 2002. A research paper presented at a

workshop on social network analysis in 2002. The workshop was sponsored by

National Research Council committee on Human Factors. The paper focuses on

finding the key people in any social network.

Chen, Danny Z., comp. Developing Algorithms and Software for Geometric Path

Planning Problems. University of Notre Dame, Department of Computer Science.

Sept. 2007. <http://www.cs.brown.edu/people/rt/sdcr/chen/chen.html>. A student

website which discusses the importance of developing algorithms to find the

shortest path between vertices in a graph.

Cofer, R. C., and Ben Harding. Rapid System Prototyping with FPGAs: Accelerating the

Design Process. Burlington, MA: Elsevier, 2006. A text book discussing the

rapid development of embedded systems using FPGAs.

Davis, Timothy, comp. University of Florida Sparse Matrix Collection. University of

Florida. June-July 2007.

<http://www.cise.ufl.edu/research/sparse/matrices/index.html>. A large

collection of sparse matrices and information on sparse matrices compiled by Tim

Davis, an Associate Professor at the University of Florida.

 104

Dongarra, J., comp. Sparse Matrix Storage Formats. University of Tennessee At

Knoxville. June-July 2007.

<http://www.cs.utk.edu/~dongarra/etemplates/node372.html>. An online version

of a book on sparse matrices by J. Dongarra. It is found on a website maintained

by the University of Tennessee at Knoxville. It discusses various methods of

compressing sparse matrices depending on their structures.

Eskowitz, Michael, Vitaliy Gleyzer, James Haupt, and Roya Mirhosseini. Adaptive

Beamforming Using Field Programmable Gate Array Embedded

Microprocessors. Worcester Polytechnic Institute Major Qualifying Project.

Worcester, Ma, 2004. A Major Qualifying Project report by former students at

Worcester Polytechnic Institute. It discusses the use of soft-core microprocessors

embedded on FPGAs to develop an embedded system used for adaptive

beamforming applications.

Floyd, Thomas. Digital Fundamentals. Upper Saddle River, NJ: Pearson/Prentice Hall,

2006. 642. A basic textbook on the fundamentals of digital logic design.

Groww, Jonathan L., and Jay Yellen. Handbook of Graph Theory. CRC P, 2004. 2. A

popular book on graph theory. It discusses algorithms to pull important

information out of graphs as well as the many applications of graph theory.

Holme, Petter, Beom Jun Kim, Chang No Yoon, and Seung Kee Han. Attack

Vulnerability of Complex Networks. American Physical Society. 2002. Aug.-

Sept. 2007. <http://prola.aps.org/pdf/PRE/v65/i5/e056109>. A research paper

discussing the disassembly of complex networks by the removal of the most

important vertices.

Leskovec, Jure, and Christos Faloutsos. Scalable Modeling of Real Graphs Using

Kronecker Multiplication. Carnegie Mellon University. International Conference

 105

on Machine Learning, 2007. 20 Sept. 2007.

<http://www.cs.cmu.edu/~jure/pubs/kronFit-icml07.pdf>. A research paper

discussing the use of Kronecker Graphs to simulate realistic graphs.

ML310 User Guide. Xilinx Inc. Xilinx Inc., 2007. 1 Oct. 2007.

<http://direct.xilinx.com/bvdocs/userguides/ug068.pdf>. The users guide for

Xilinx's ML310 Embedded Development Platform.

Oldfield, John V., and Richard C. Dorf. Field Programmable Gate Arrays. New York:

John Wiley and Sons Inc., 1995. xvi. A book discussing the advantages of using

FPGAs in the development of embedded systems.

Pellerin, David, and Scott Thibault. Practical FPGA Programming in C. Westford, MA:

Prentice Hall, 2007. 27. A book describing the use of C-Programming to develop

FPGA solutions for embedded systems design.

Robinson, Eric. "Array Based Betweenness Centrality." MIT Lincoln Laboratory.

Summer Intern Presentations. MIT Lincoln Laboratory, Lexington, MA. 8 Aug.

2007. A presentation given by Eric Robinson, a 2007 summer intern at Lincoln

Laboratory, on computer algorithms for betweenness centrality calculations on

large graphs.

Rosinger, Hans-Peter. Connecting Customized IP to the MicroBlaze Soft Processor Using

the Fast Simplex Link (FSL) Channel. Xilinx, Inc. 2004. Sept. 2007.

<http://www.xilinx.com/bvdocs/appnotes/xapp529.pdf>. An instructional report

found on Xilinx's website about the use of the Fast Simplex Link to speed up

connectivity between IP cores and the Xilinx Microblaze processor in embedded

system design.

"Signals Intelligence Homepage." NSA.Gov. National Security Agency. 29 Aug. 2007.

<http://www.nsa.gov/sigint/index.cfm>. A website found off the homepage of the

 106

National Security Agency. It outlines the process of processing raw data to

convert it into useable information in the context of Signals Intelligence

(SIGINT).

"Virtex-II Pro / Prox PowerPC 405 Processor." Xilinx.Com. Xilinx, Inc. 10 Sept. 2007.

<http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex_ii_pro_fpg

as/capabilities/powerpc.htm>. A site found off of Xilinx's homepage which

discusses the capabilities of the PowerPC processor in embedded systems design

using their Virtex II pro FPGA.

Virtex-II Pro Data Sheet. Xilinx Inc. Xilinx Inc., 2005. 1 Oct. 2007.

<http://www.xilinx.com/bvdocs/publications/ds083.pdf>. A data sheet containing

data on the Xilinx Virtex-II Pro FPGAs.

Weisstein, Eric W. "Matrix Multiplication." Mathworld-a Wolfram Web Resource. 21

Mar. 2006. 24 Sept. 2007.

<http://mathworld.wolfram.com/MatrixMultiplication.html>. A webpage

discussing the intricacies of how to perform matrix multiplications. It is found on

Wolfram MathWorld, a mathematics website.

Weisstein, Eric W. "Standard Deviation." Mathworld-a Wolfram Web Resource. 17 Oct.

2003. 5 Oct. 2007. <http://mathworld.wolfram.com/StandardDeviation.html>. A

website on standard deviations. It is found on Wolfram MathWorld, a

mathematics website.

"Xilinx Microprocessor Controller and Peripheral." Xilinx.Com. Xilinx, Inc. 6 Sept.

2007.

<http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=

micro_blaze>. A webpage found off of Xilinx's homepage. It discusses the use

 107

of the Microblaze soft-core processor in embedded systems development using

Xilinx FPGAs.

Zhuo, Ling, and Viktor K. Prasanna. "Sparse Matrix-Vector Multiplication on FPGAs."

Proceedings of the 2005 ACM/SIGDA 13th International Symposium on Field-

Programmable Gate Arrays (2005). 1 June 2007.

<http://portal.acm.org/citation.cfm?id=1046202>. A paper presented at an FPGA

conference in 2005. It discusses the FPGA structure and circuits used to perform

compute the product of a sparse matrix times a vector.

Zlatev, Zahari. Computational Methods for General Sparse Matrices. Boston, MA:

Kluwer Academic, 1991. A book discussing the optimization of sparse matrix

processing algorithms in computer systems.

 108

Appendix A

This appendix contains all the multiplication codes we used to test various

multiplication methods in MATLAB.

Full Matrix Multiplication

The following is the MATLAB code for the full matrix by full matrix

multiplication that was used to run our tests against. The inputs, matrixA and matrixB

are both matrices stored in MATLAB’s full matrix format.

function MatrixC = FullxFull(matrixA, matrixB)
% Written by Ryan Kendrick WPI '08

% This function takes in two dense matrices and multiplies them.

matrixArow=size(matrixA,1);
matrixAcol=size(matrixA,2);
matrixBrow=size(matrixB,1);
matrixBcol=size(matrixB,2);

if (matrixAcol==matrixBrow) %check that cols inA equal rows in B

 MatrixC=zeros(matrixArow,matrixBcol); %allocate space for result

 for i=1:matrixBcol %loops for each column in matrixB

 % i=current row being calculated

 for j=1:matrixArow %loops for each row in matrixA

 % j=current column being calculated

 %Row x Col multiplication
 MatrixC(j,i)=(matrixA(j,:))*(matrixB(:,i));
 end
 end
else
 error('columns in first matrix must equal rows in second matrix');
end

Basic Sparse Matrix Multiplication (Unsorted)

Below is the MATLAB code used to simulate the performance of the basic sparse

matrix multiplication.

function objf = multiplyColxCol(obj1, outputType, row1, col1, vector_row1, vector_col1,
vector_val1, row2, col2, vector_row2, vector_col2, vector_val2)
%Written by Michael Moukarzel WPI 2008

%This function performs sparse matrix multiplication.
%Sparse sorted by Row x Sparse sorted by Col = Sparse sorted by Col

 109

%Inizilaize temporary variables
vector_row = zeros(1, row1*col2);
vector_col = zeros(1, row1*col2);
vector_val = zeros(1, row1*col2);

%Inizialize the pointers
pointer_fin = 0;

pointer_ori = 1;
pointer_len = 0;

%Cycle by Column
for col=1 : col2
 %Set the pointers
 pointer_ori = pointer_ori + pointer_len;
 pointer_len=0;

 %Determine the number of values in the column
 while(((pointer_len+pointer_ori) <= size(vector_col2,1)) && (vector_col2(pointer_ori
+ pointer_len) <= col))
 pointer_len = pointer_len + 1;
 end

 %Determine the valid Column values and there indices
 indices2 = pointer_ori:pointer_ori+pointer_len-1;
 ind2 = vector_row2(indices2)';

 %Cycle by Row
 for row=1 : row1
 %Determine the valid Row values and there indices
 indices1 = zeros(1, row1);
 ind1 = zeros(1, row1);
 ptr3 = 1;
 %Search the number of values in the row, and there locations
 for ind=1 : size(vector_row1, 1)
 if(vector_row1(ind) == row)
 indices1(ptr3) = ind;
 ind1(ptr3) = vector_col1(ind);
 ptr3 = ptr3+1;
 end
 end
 val = 0;
 pos2 = 1;

 %Matching Sequence -> Search for the matching row and column indices
 for pos1=1:size(indices1,2)
 %Search for a match
 while ((pos2 <= size(ind2,2)) && (ind1(pos1) > ind2(pos2)))
 pos2=pos2+1;
 end
 %if there is a match then multiply and add it to the final value
 if ((pos2 <= size(ind2,2)) && (ind1(pos1) == ind2(pos2)))
 val = val + vector_val1(indices1(pos1)) * vector_val2(indices2(pos2));
 end
 end

 %Add value if it is not a zero
 if(val ~= 0)
 pointer_fin = pointer_fin+1;
 vector_row(pointer_fin) = row;
 vector_col(pointer_fin) = col;
 vector_val(pointer_fin) = val;
 end
 end
end

%Output the final matrix in sparse col format using the temporary variables
objf = sparseMatrix(row1, col2, vector_row(1:pointer_fin)', vector_col(1:pointer_fin)',
vector_val(1:pointer_fin)');

 110

Sorted Sparse Matrix Multiplication

Below is the MATLAB code used to simulate the performance of the sorted

sparse matrix multiplication.

function objf = multiplyRowxCol(obj1, outputType, row1, col1, vector_row1, vector_col1,
vector_val1, row2, col2, vector_row2, vector_col2, vector_val2)
%Written by Michael Moukarzel WPI 2008

%This function performs sparse matrix multiplication.
%Sparse sorted by Row x Sparse sorted by Col = Sparse sorted by Col

%Inizilaize temporary variables
vector_row = zeros(1, row1*col2);
vector_col = zeros(1, row1*col2);
vector_val = zeros(1, row1*col2);

%Inizialize the pointers
pointer_fin = 0;
pointer_ori_col = 1;
pointer_len_col = 0;

%Cycle by Column
for col=1 : col2
 %Set the Column pointers
 pointer_ori_col = pointer_ori_col + pointer_len_col;
 pointer_len_col=0;

 %Determine the number of values in the column
 while(((pointer_len_col+pointer_ori_col) <= size(vector_col2,1)) &&
(vector_col2(pointer_ori_col + pointer_len_col) <= col))
 pointer_len_col = pointer_len_col + 1;
 end

 %Determine the valid Column values and there indices
 indices2 = pointer_ori_col:pointer_ori_col+pointer_len_col-1;
 ind2 = vector_row2(indices2)';

 %Set the column pointers
 pointer_ori_row = 1;
 pointer_len_row = 0;

 %Cycle by Row
 for row=1 : row1
 %Set the row pointers
 pointer_ori_row = pointer_ori_row + pointer_len_row;
 pointer_len_row=0;

 %Determine the number of values in the row
 while(((pointer_len_row+pointer_ori_row) <= size(vector_row1,1)) &&
(vector_row1(pointer_ori_row + pointer_len_row) <= row))
 pointer_len_row = pointer_len_row + 1;
 end

 %Determine the valid Row values and there indices
 indices1 = pointer_ori_row:pointer_ori_row+pointer_len_row-1;
 ind1 = vector_col1(indices1)';

 %Matching Sequence -> Search for the matching row and column indices
 val = 0;
 pos2 = 1;
 for pos1=1:size(indices1,2)
 %Search for a match
 while ((pos2 <= size(ind2,2)) && (ind1(pos1) > ind2(pos2)))
 pos2=pos2+1;
 end
 %if there is a match then multiply and add it to the final value

 111

 if ((pos2 <= size(ind2,2)) && (ind1(pos1) == ind2(pos2)))
 val = val + vector_val1(indices1(pos1)) * vector_val2(indices2(pos2));
 end
 end

 %Add value if it is not a zero
 if(val ~= 0)
 pointer_fin = pointer_fin+1;
 vector_row(pointer_fin) = row;
 vector_col(pointer_fin) = col;
 vector_val(pointer_fin) = val;
 end
 end
end

%Output the final matrix in sparse row format using the temporary variables
objf = sparseMatrixRow(row1, col2, vector_row(1:pointer_fin)',
vector_col(1:pointer_fin)', vector_val(1:pointer_fin)');

Compressed Sparse Matrix Multiplication (CRSxCCS) using
Pointer Vector

Below is the MATLAB code used to simulate the performance of the compressed

row times compressed column matrix multiplication using the pointer vector.

function objf = multiplyCRSxCCStoCCS(obj1, row1, vector_val1, vector_ind1, vector_len1,
vector_ptr1, col2, vector_val2, vector_ind2, vector_len2, vector_ptr2, outputVersion)
%Written by Michael Moukarzel WPI 2008

%This function performs compressed sparse matrix multiplication.
%CRS x CCS = CCS using the Pointer vector

%Inizilaize temporary variables
vector_val = zeros(1, row1*col2);
vector_ind = zeros(1, row1*col2);
vector_ptr = zeros(1, row1*col2);

%Inizialize the pointers
pointer_ptr = 1;
vector_ptr(1) = 1;

%Cycle by Column
for col=1 : col2
 %Determine the valid Column values and there indices
 indices2 = vector_ptr2(col):vector_ptr2(col+1)-1;
 ind2 = vector_ind2(indices2);

 %Set the pointers
 pointer_ptr = pointer_ptr+1;
 vector_ptr(pointer_ptr) = vector_ptr(pointer_ptr-1);

 for row=1 : row1
 %Determine the valid Row values and there indices
 indices1 = vector_ptr1(row):vector_ptr1(row+1)-1;
 ind1 = vector_ind1(indices1);

 %Set the pointers
 val = 0;
 pos2 = 1;

 %Matching Sequence -> Search for the matching row and column indices
 for pos1=1:size(indices1,2)
 %Search for a match
 while (pos2 <= size(ind2,2)) && ind1(pos1) > ind2(pos2)

 112

 pos2=pos2+1;
 end
 %if there is a match then multiply and add it to the final value
 if ((pos2 <= size(ind2,2)) && (ind1(pos1) == ind2(pos2)))
 val = val + vector_val1(indices1(pos1)) * vector_val2(indices2(pos2));
 end
 end

 %Add value if it is not a zero
 if(val ~= 0)
 vector_val(vector_ptr(pointer_ptr)) = val;
 vector_ind(vector_ptr(pointer_ptr)) = row;
 vector_ptr(pointer_ptr) = vector_ptr(pointer_ptr) + 1;
 end
 end
end

%Output the final matrix in CCS format using the temporary variables
objf = sparseCCSMatrix(row1, col2, vector_val(1:vector_ptr(pointer_ptr)-1),
vector_ind(1:vector_ptr(pointer_ptr)-1), vector_ptr(1:pointer_ptr), []);

Compressed Sparse Matrix Multiplication (CRSxCCS) using
Length vector

Below is the MATLAB code used to simulate the performance of the compressed

row times compressed column matrix multiplication using the length vector.

function objf = multiplyCRSxCCStoCCS(obj1, row1, vector_val1, vector_ind1, vector_len1,
vector_ptr1, col2, vector_val2, vector_ind2, vector_len2, vector_ptr2, outputVersion)
%Written by Michael Moukarzel WPI 2008

%This function performs compressed sparse matrix multiplication.
%CRS x CCS = CCS using the Length vector

%Inizilaize temporary variables
vector_val = zeros(1, row1*col2);
vector_ind = zeros(1, row1*col2);
vector_len = zeros(1, row1*col2);

%Inizialize the pointers
pointer_val = 0;
pointer_len = 1;
pointer_col = 1;

%Cycle by Column
for col=1 : col2
 %Determine the valid Column values and there indices
 indices2 = pointer_col:vector_len2(col)+pointer_col-1;
 ind2 = vector_ind2(indices2);

 %Set the pointers
 pointer_col = vector_len2(col)+pointer_col;
 pointer_row = 1;

 %Cycle by Row
 for row=1 : row1
 %Determine the valid Row values and there indices
 indices1 = pointer_row:vector_len1(row)+pointer_row-1;
 ind1 = vector_ind1(indices1);

 %Set the pointers
 pointer_row = vector_len1(row)+pointer_row;
 val = 0;
 pos2 = 1;

 113

 %Matching Sequence -> Search for the matching row and column indices
 for pos1=1:size(indices1,2)
 %Search for a match
 while (pos2 <= size(ind2,2)) && ind1(pos1) > ind2(pos2)
 pos2=pos2+1;
 end
 %if there is a match then multiply and add it to the final value
 if ((pos2 <= size(ind2,2)) && (ind1(pos1) == ind2(pos2)))
 val = val + vector_val1(indices1(pos1)) * vector_val2(indices2(pos2));
 end
 end

 %Add value if it is not a zero
 if(val ~= 0)
 pointer_val = pointer_val+1;
 vector_val(pointer_val) = val;
 vector_ind(pointer_val) = row;
 vector_len(pointer_len) = vector_len(pointer_len)+1;
 end
 end

 %Increment length pointer
 pointer_len = pointer_len+1;
end

%Output the final matrix in CCS format using the temporary variables
objf = sparseCCSMatrix(row1, col2, vector_val(1:pointer_val), vector_ind(1:pointer_val),
[], vector_len(1:pointer_len-1));

 114

Appendix B

This appendix contains all the code used to test various load distribution techniques in

MATLAB.

Block-Column Distribution

The following is the MATLAB function to test block-column distributions. It

breaks up the matrices into submatrices composed of equal numbers of columns from B.

It then performs each multiplication and reassembles the final matrix. The splitting and

reconstruction steps are timed as well as the actual multiplications. The inputs are

matrixA a CRS matrix, matrixB, a CCS matrix, and N, the number of simulated

processing elements to use.

function [Y] = ParallelMultiplyByColumns(matrixA,matrixB,N)
%Written by Ryan Kendrick WPI '08

%This function tests possible parallel implementation of sparse matrix
%multiplication. It will split matrixB into N parts of equal size,
%and perform N sets of multiplication. In a real parallel implementation,
%each of these sets of multiplication would be done by a different
%processing element. The point of this function is to time the different
%sets of multiplication to see how equally this method of splitting
%distributes work between processing elements.

if ((isa(matrixA,'sparseCRSMatrix')== 1) && (isa(matrixB,'sparseCCSMatrix')==1))
 if (matrixA.col== matrixB.row)

 % SPLIT MATRIX A INTO N different parts

 disp('Time to split up jobs takes')
 tic
 Ptr1=1;

 Values(N).v=[];
 Columns(N).v=[];
 Pointer(N).v=[];
 for i=1:N % loop once for each processor
 if i~=N
 Ptr2=(round(i*(matrixB.col)/N));
 else
 Ptr2=size(matrixB.vector_ptr,2);
 end
 %write values to separate matrices

Values(i).v=matrixB.vector_val(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2)-1));

Columns(i).v=matrixB.vector_ind(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2)-1));
 Pointer(i).v=[(matrixB.vector_ptr(Ptr1:(Ptr2-1))-(matrixB.vector_ptr(Ptr1)-
1)) (size(Values(i).v,2)+1)];
 Ptr1=Ptr2;
 end
 CCSpart(N).v=[];

 115

 for k=1:N
 CCSpart(k).v=sparseCCSMatrix(matrixB.row,(size(Pointer(k).v,2)-
1),Values(k).v,Columns(k).v,Pointer(k).v,[]);
 end
 toc
 Result(N).v=[];
 %perform parallel multiplications, time each one
 for j=1:N
 fprintf('Time to perform Multiplication on PE %g is:\n',j)
 tic
 Result(j).v=multiply(matrixA,CCSpart(j).v,'CCS',1);
 toc
 end

 disp('Final Matrix Construction Takes')
 %time the final matrix reconstruction
 tic
 ValRowLength=0;
 for d=1:N
 ValRowLength=ValRowLength+size(Result(d).v.vector_val,2);
 end

 FinalValue=zeros(1,ValRowLength);
 FinalRowIndex=zeros(1,ValRowLength);
 FinalPointer=zeros(1,(matrixB.col+1));

 Valptr=0;
 Rowptr=0;
 Ptrptr=0;
 %loop N times to reassemble final matrix
 for h=1:N
 if h==1

FinalPointer((Ptrptr+1):(Ptrptr+size(Result(h).v.vector_ptr,2)))=Result(h).v.vector_ptr;
 Ptrptr=Ptrptr+size(Result(h).v.vector_ptr,2);
 else

FinalPointer((Ptrptr+1):(Ptrptr+size(Result(h).v.vector_ptr(2:size(Result(h).v.vector_ptr
,2)),2)))=(Result(h).v.vector_ptr(2:size(Result(h).v.vector_ptr,2))+max(FinalPointer)-1);

Ptrptr=Ptrptr+size(Result(h).v.vector_ptr(2:size(Result(h).v.vector_ptr,2)),2);
 end

FinalValue((Valptr+1):(Valptr+size(Result(h).v.vector_val,2)))=Result(h).v.vector_val;
 Valptr=Valptr+size(Result(h).v.vector_val,2);

FinalRowIndex((Rowptr+1):(Rowptr+size(Result(h).v.vector_ind,2)))=Result(h).v.vector_ind;
 Rowptr=Rowptr+size(Result(h).v.vector_ind,2);

 end

Y=sparseCCSMatrix(matrixA.row,matrixB.col,FinalValue,FinalRowIndex,FinalPointer,[]);
 toc
 end
end

Block-Values Distribution

The following is the MATLAB function to test block-values distributions. It

breaks up the matrices into submatrices composed of columns from B. Each submatrix

contains approximately the same number of non-zero values. After splitting B into

submatrices, the function performs each multiplication and reassembles the final matrix.

 116

The splitting and reconstruction steps are timed as well as the actual multiplications. The

inputs are matrixA a CRS matrix, matrixB, a CCS matrix, and N, the number of

simulated processing elements to use.

function [Y] = ParallelMultiplyByValues(matrixA,matrixB,N)
%Written by Ryan Kendrick WPI '08

%This function tests possible parallel implementation of sparse matrix
%multiplication. It will split matrixB into N parts. The size of each
%part depends on how many values are contained in that part of the matrix.
%It attempts to keep the number of nonzeros present in each part of matrixB
%equal by splitting the Values vector as evenly as possible.
%In an actual implementation of this algorithm, each of these
%multiplications would be done by a different processing element. The point
%of this function is to time the different sets of multiplication to see
%how equally the workload is distributed.

if ((isa(matrixA,'sparseCRSMatrix')== 1) && (isa(matrixB,'sparseCCSMatrix')==1))
 if (matrixA.col== matrixB.row)
 DivisionsizeB= size(matrixB.vector_val,2)/N;

 % SPLIT MATRIX A INTO N different parts with equal number of values
 disp('Time to split up jobs takes')
 tic
 Ptr1=1;
 Values(N).v=[];
 Columns(N).v=[];
 Pointer(N).v=[];

 for i=1:N
 if i~=N
 [trash Ptr2] = min(abs(matrixB.vector_ptr - (DivisionsizeB*i)));
 else
 Ptr2=size(matrixB.vector_ptr,2);
 end

Values(i).v=matrixB.vector_val(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2)-1));

Columns(i).v=matrixB.vector_ind(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2)-1));
 Pointer(i).v=[(matrixB.vector_ptr(Ptr1:(Ptr2-1))-(matrixB.vector_ptr(Ptr1)-
1)) (size(Values(i).v,2)+1)];
 Ptr1=Ptr2;
 end
 CCSpart(N).v=[];
 for k=1:N
 CCSpart(k).v=sparseCCSMatrix(matrixB.row,(size(Pointer(k).v,2)-
1),Values(k).v,Columns(k).v,Pointer(k).v,[]);
 end
 toc
 Result(N).v=[];
 %perform individual multiplications, time each
 for j=1:N
 fprintf('Time to perform Multiplication on PE %g is:\n',j)
 tic
 Result(j).v=multiply(matrixA,CCSpart(j).v,'CCS',1);
 toc
 end
 disp('Final Matrix Construction Takes')
 tic
 ValRowLength=0;
 for d=1:N
 ValRowLength=ValRowLength+size(Result(d).v.vector_val,2);
 end

 FinalValue=zeros(1,ValRowLength);
 FinalRowIndex=zeros(1,ValRowLength);
 FinalPointer=zeros(1,(matrixB.col+1));
 Valptr=0;
 Rowptr=0;
 Ptrptr=0;

 117

 for h=1:N %reassemble final matrix by looping N times

 if h==1

FinalPointer((Ptrptr+1):(Ptrptr+size(Result(h).v.vector_ptr,2)))=Result(h).v.vector_ptr;
 Ptrptr=Ptrptr+size(Result(h).v.vector_ptr,2);
 else

FinalPointer((Ptrptr+1):(Ptrptr+size(Result(h).v.vector_ptr(2:size(Result(h).v.vector_ptr
,2)),2)))=(Result(h).v.vector_ptr(2:size(Result(h).v.vector_ptr,2))+max(FinalPointer)-1);

Ptrptr=Ptrptr+size((Result(h).v.vector_ptr(2:size(Result(h).v.vector_ptr,2))),2);
 end

FinalValue((Valptr+1):(Valptr+size(Result(h).v.vector_val,2)))=Result(h).v.vector_val;
 Valptr=Valptr+size(Result(h).v.vector_val,2);

 FinalRowIndex((Rowptr+1):(Rowptr+size(Result(h).v.vector_ind,2)))=
Result(h).v.vector_ind;
 Rowptr=Rowptr+size(Result(h).v.vector_ind,2);
 end
Y=sparseCCSMatrix(matrixA.row,matrixB.col,FinalValue,FinalRowIndex,FinalPointer,[]);
 toc
 end
end

Block-Cyclic Distribution

The following is the MATLAB function to test block-cyclic distributions. It

breaks up the matrices into 2N submatrices with equal number of columns of B in each.

The function then performs each multiplication and reassembles the final matrix. The

splitting and reconstruction steps are timed as well as the actual multiplications. The

inputs are matrixA a CRS matrix, matrixB, a CCS matrix, and N, the number of

simulated processing elements to use. (Note: the block-cyclic method of parallelization

was previously referred to as the round robin technique.) As you can see, it is a

significantly more involved algorithm to perform.

function [Y] = ParallelMultiplyRoundRobin(matrixA,matrixB,N)
%Written by Ryan Kendrick WPI '08

%This function tests possible parallel implementation of sparse matrix
%multiplication. It will split matrix B into N parts and perform N
%multiplications between the N matrices of matrix B and matrixA.
%This function uses a round robin technique meaning that each smaller matrix
%is made up of two different pieces of matrix B, one from the denser side
%of matrix B and one from the sparser side.
%The round robin technique attempts to equalize the work
%between separate processors; Especially in power-law matrices. The N
%multiplications occur in series in this M-file...in a real life
%application with multiple processors they would run simultaneously in
%parallel.

if ((isa(matrixA,'sparseCRSMatrix')== 1) && (isa(matrixB,'sparseCCSMatrix')==1))
 if (matrixA.col== matrixB.row)

 118

 % SPLIT MATRIX A INTO N different parts
 disp('The time required to split up the jobs is:')
 tic
 Values(N).v=[];
 Columns(N).v=[];
 Pointer(N).v=[];
 Ptr1=1;
 Ptr2=zeros(1,(2*N));
 for i=1:(2*N)

 if i~=(2*N)
 Ptr2(i)= round(i*((matrixB.col)/(2*N)))+1;
 else
 Ptr2(i)=size(matrixB.vector_ptr,2);
 end
 if i<=N

 %This section creates vectors for the first set of columns
 %that will be given to each processing element

 Values(i).v=
matrixB.vector_val(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2(i))-1));
 Columns(i).v=
matrixB.vector_ind(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2(i))-1));
 Pointer(i).v=[(matrixB.vector_ptr(Ptr1:(Ptr2(i)-1))-
(matrixB.vector_ptr(Ptr1)-1)) (size(Values(i).v,2)+1)];
 Ptr1=Ptr2(i); %Ptr2 is kept as a vector..may need this for reconstruction

 elseif i>N

 %This section adds on the sectond set of columns that will
 %be given to each processing element. The values are
 %simply concatenated to the existing values vectors, but
 %the pointer must do some math to have it done correctly.

 Values(i-N).v= [Values(i-N).v
matrixB.vector_val(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2(i))-1))];
 Columns(i-N).v= [Columns(i-N).v
matrixB.vector_ind(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2(i))-1))];
 Pointer(i-N).v= [Pointer(i-N).v (max(Pointer(i-
N).v)+cumsum(diff(matrixB.vector_ptr(Ptr1:(Ptr2(i)-1))))) (size(Values(i-N).v,2)+1)];
 Ptr1=Ptr2(i);

 end
 end

 %This loop simply creates separate CCS Matrices using the values
 %, columns, and pointer vectors constructed in the last step.

 CCSpart(N).v=[];

 for h=1:(N)
 CCSpart(h).v=sparseCCSMatrix(matrixB.row,(size(Pointer(h).v,2)-
1),Values(h).v,Columns(h).v,Pointer(h).v,[]);
 end
 toc
 % This next section Performs Each Multiplication, CRS matrixA X Each part of CCS
 % matrixB. It uses the same process as the normal CRSxCCS
 % function.

 Result(N).u=[];
 %perform individual multiplications
 for j=1:N
 fprintf('Time to perform Multiplication on PE %g is:\n',j)
 tic
 Result(j).u= multiply(matrixA,CCSpart(j).v,'CCS',1);
 toc
 end

 %This section takes the results calculated in the last step and
 %picks out which part goes where...it basically constructs the final matrix
 %by cutting and pasting pieces from the results.

 disp('The required to reassemble final matrix is:')
 tic

 119

 ColDist=[(Ptr2(1)-1) diff(Ptr2)]; %Makes a vector showing the column
distriibution
 %How many columns each piece of B is
 %made up of

 ValRowLength=0;
 for d=1:N
 ValRowLength=ValRowLength+size(Result(d).u.vector_val,2);
 end

 FinalValue=zeros(1,ValRowLength);
 FinalRowIndex=zeros(1,ValRowLength);
 FinalPointer=zeros(1,(matrixB.col+1));

 Valptr=0;
 Rowptr=0;
 Ptrptr=0;

 for k=1:(2*N)

 if k<=N

 %FinalPointer must be constructed before FinalValue
 %becuase it bases its numbers off of the current length of
 %FinalValue

 if k==1

FinalPointer((Ptrptr+1):(Ptrptr+size((size(FinalValue,2)+Result(k).u.vector_ptr(1:(1+ColD
ist(k)))),2)))=(Valptr+Result(k).u.vector_ptr(1:(1+ColDist(k))));

Ptrptr=Ptrptr+size((size(FinalValue,2)+Result(k).u.vector_ptr(1:(1+ColDist(k)))),2);

 else

FinalPointer((Ptrptr+1):(Ptrptr+size((size(FinalValue,2)+Result(k).u.vector_ptr(2:(1+ColD
ist(k)))),2)))=(Valptr+Result(k).u.vector_ptr(2:(1+ColDist(k))));

Ptrptr=Ptrptr+size((size(FinalValue,2)+Result(k).u.vector_ptr(2:(1+ColDist(k)))),2);

 end

FinalValue((Valptr+1):(Valptr+size(Result(k).u.vector_val(1:(Result(k).u.vector_ptr(1+Col
Dist(k))-1)),2)))= Result(k).u.vector_val(1:(Result(k).u.vector_ptr(1+ColDist(k))-1));

Valptr=Valptr+size(Result(k).u.vector_val(1:(Result(k).u.vector_ptr(1+ColDist(k))-1)),2);

FinalRowIndex((Rowptr+1):(Rowptr+size(Result(k).u.vector_ind(1:(Result(k).u.vector_ptr(1+
ColDist(k))-1)),2)))= Result(k).u.vector_ind(1:(Result(k).u.vector_ptr(1+ColDist(k))-1));

Rowptr=Rowptr+size(Result(k).u.vector_ind(1:(Result(k).u.vector_ptr(1+ColDist(k))-1)),2);

 elseif k>N

 FinalPointer((Ptrptr+1):(Ptrptr+size((cumsum(diff(Result(k-
N).u.vector_ptr((ColDist(k-N)+1):(ColDist(k-
N)+ColDist(k)+1))))),2)))=(cumsum(diff(Result(k-N).u.vector_ptr((ColDist(k-
N)+1):(ColDist(k-N)+ColDist(k)+1))))+Valptr+1);
 Ptrptr=Ptrptr+size((cumsum(diff(Result(k-N).u.vector_ptr((ColDist(k-
N)+1):(ColDist(k-N)+ColDist(k)+1))))),2);

 FinalValue((Valptr+1): (Valptr+size(Result(k-
N).u.vector_val(nonzeros((Result(k-N).u.vector_ptr(1+ColDist(k-N))):Result(k-
N).u.vector_ptr((ColDist(k)+ColDist(k-N))+1)-1)),2)))=Result(k-
N).u.vector_val(nonzeros((Result(k-N).u.vector_ptr(1+ColDist(k-N))):Result(k-
N).u.vector_ptr((ColDist(k)+ColDist(k-N))+1)-1));
 Valptr=Valptr+size(Result(k-N).u.vector_val(nonzeros((Result(k-
N).u.vector_ptr(1+ColDist(k-N))):Result(k-N).u.vector_ptr((ColDist(k)+ColDist(k-N))+1)-
1)),2);

 FinalRowIndex((Rowptr+1): (Rowptr+size(Result(k-
N).u.vector_ind((Result(k-N).u.vector_ptr(1+ColDist(k-N))):Result(k-
N).u.vector_ptr((ColDist(k)+ColDist(k-N))+1)-1),2)))=Result(k-N).u.vector_ind((Result(k-

 120

N).u.vector_ptr(1+ColDist(k-N))):Result(k-N).u.vector_ptr((ColDist(k)+ColDist(k-N))+1)-
1);
 Rowptr=Rowptr+size(Result(k-N).u.vector_ind((Result(k-
N).u.vector_ptr(1+ColDist(k-N))):Result(k-N).u.vector_ptr((ColDist(k)+ColDist(k-N))+1)-
1),2);

 end
 end

Y=sparseCCSMatrix(matrixA.row,matrixB.col,FinalValue,FinalRowIndex,FinalPointer,[]);
 toc
 end
end

Inverse Block-Cyclic Distribution

The following is the MATLAB function to test Inverse block-cyclic distributions.

It breaks up the matrices into 2N submatrices of B. Each submatrix is composed of an

equal number of columns from B. The function then performs each multiplication and

reassembles the final matrix. The splitting and reconstruction steps are timed as well as

the actual multiplications. The inputs are matrixA a CRS matrix, matrixB, a CCS matrix,

and N, the number of simulated processing elements to use. (Note: The inverse block-

cyclic method of parallelization was previously referred to as the inverse round robin

technique.) As you can see, it is the most complicated splitting algorithm we tested.

function [Y] = ParallelMultiplyInverseRoundRobin(matrixA,matrixB,N)
%Written by Ryan Kendrick WPI '08

%This function tests possible parallel implementation of sparse matrix
%multiplication. It will split matrix B into N parts and perform N multiplications
between
% the N matrices of matrix B and matrixA.
%This function uses an inverse round robin technique meaning that each smaller matrix
%is made up of two different pieces of matrix B that are not next to
%eachother. The round robin technique attempts to equalize the work
%between separate processors. This is an improvement over the regular round
%robin function because it works inversely; meaning that if a processing
%element receives the MOST DENSE piece of the matrix then its second piece
%will be the MOST SPARSE. This is an attempt to equalize both size and
%average density that each processing element deals with. The N
%multiplications occur in series in this M-file...in a real life
%application with multiple processors they would run simultaneously in
%parallel.

if ((isa(matrixA,'sparseCRSMatrix')== 1) && (isa(matrixB,'sparseCCSMatrix')==1))

 if (matrixA.col== matrixB.row)

 % SPLIT MATRIX A INTO N different parts
 disp('The time required to split up the jobs is:')
 tic
 Values(N).v=[];
 Columns(N).v=[];
 Pointer(N).v=[];
 Ptr1=1;
 Ptr2=zeros(1,(2*N));

 121

 for i=1:N

 Ptr2(i)= round(i*((matrixB.col)/(2*N)))+1;

 %This section creates vectors for the first set of columns
 %that will be given to each processing element
 Values(i).v=
matrixB.vector_val(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2(i))-1));
 Columns(i).v=
matrixB.vector_ind(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2(i))-1));
 Pointer(i).v=[(matrixB.vector_ptr(Ptr1:(Ptr2(i)-1))-
(matrixB.vector_ptr(Ptr1)-1)) (size(Values(i).v,2)+1)];
 Ptr1=Ptr2(i); %Ptr2 is kept as a vector..
 end

 for p=N:-1:1

 if p~=1
 Ptr2((2*N+1)-p)= round(((2*N+1)-p)*((matrixB.col)/(2*N)))+1;
 else
 Ptr2((2*N+1)-p)=size(matrixB.vector_ptr,2);
 end

 %This section adds on the sectond set of columns that will
 %be given to each processing element. The values are
 %simply concatenated to the existing values vectors, but
 %the pointer must do some math to have it done correctly.

 Values(p).v= [Values(p).v
matrixB.vector_val(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2((2*N+1)-p))-1))];
 Columns(p).v= [Columns(p).v
matrixB.vector_ind(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2((2*N+1)-p))-1))];
 Pointer(p).v= [Pointer(p).v
(max(Pointer(p).v)+cumsum(diff(matrixB.vector_ptr(Ptr1:(Ptr2((2*N+1)-p)-1)))))
(size(Values(p).v,2)+1)];
 Ptr1=Ptr2((2*N+1)-p);

 end

 %This loop creates separate CCS Matrices using the values
 %, columns, and pointer vectors constructed in the last step.

 CCSpart(N).v=[];
 for h=1:(N)
 CCSpart(h).v=sparseCCSMatrix(matrixB.row,(size(Pointer(h).v,2)-
1),Values(h).v,Columns(h).v,Pointer(h).v,[]);
 end

 toc

 % This next section Performs Each Multiplication, CRS matrixA X Each part of CCS
 % matrixB. It uses the same process as the normal CRSxCCS
 % function.

 Result(N).u=[];
 %perform individual multiplications
 for j=1:N
 fprintf('Time to perform Multiplication on PE %g is:\n',j)
 tic
 Result(j).u= multiply(matrixA,CCSpart(j).v,'CCS',1);
 toc
 end
 %This section takes the results calculated in the last step and
 %picks out which part goes where...it basically constructs the final matrix
 %by cutting and pasting pieces from the results.

 disp('The required to reassemble final matrix is:')
 tic
 ColDist=[(Ptr2(1)-1) diff(Ptr2)]; %Makes a vector showing the column
distriibution
 %How many columns each piece of B is
 %made up of

 %Preallocate memory for the FinalValue and FinalRowIndex vectors
 ValRowLength=0;

 122

 for d=1:N
 ValRowLength=ValRowLength+size(Result(d).u.vector_val,2);
 end
 FinalValue=zeros(1,ValRowLength);
 FinalRowIndex=zeros(1,ValRowLength);
 FinalPointer=zeros(1,(matrixB.col+1));
 Valptr=0;
 Rowptr=0;
 Ptrptr=0;

 for k=1:N

 %FinalPointer must be constructed before FinalValue
 %becuase it bases its numbers off of the current length of
 %FinalValue

 if k==1

FinalPointer((Ptrptr+1):(Ptrptr+size(Result(k).u.vector_ptr(1:(1+ColDist(k))),2)))=(Valpt
r+Result(k).u.vector_ptr(1:(1+ColDist(k))));
 Ptrptr=Ptrptr+size(Result(k).u.vector_ptr(1:(1+ColDist(k))),2);
 else

FinalPointer((Ptrptr+1):(Ptrptr+size(Result(k).u.vector_ptr(2:(1+ColDist(k))),2)))=(Valpt
r+Result(k).u.vector_ptr(2:(1+ColDist(k))));
 Ptrptr=Ptrptr+size(Result(k).u.vector_ptr(2:(1+ColDist(k))),2);
 end

FinalValue((Valptr+1):(Valptr+size(Result(k).u.vector_val(1:(Result(k).u.vector_ptr(1+Col
Dist(k))-1)),2)))= Result(k).u.vector_val(1:(Result(k).u.vector_ptr(1+ColDist(k))-1));

Valptr=Valptr+size(Result(k).u.vector_val(1:(Result(k).u.vector_ptr(1+ColDist(k))-1)),2);

FinalRowIndex((Rowptr+1):(Rowptr+size(Result(k).u.vector_ind(1:(Result(k).u.vector_ptr(1+
ColDist(k))-1)),2)))= Result(k).u.vector_ind(1:(Result(k).u.vector_ptr(1+ColDist(k))-1));

Rowptr=Rowptr+size(Result(k).u.vector_ind(1:(Result(k).u.vector_ptr(1+ColDist(k))-1)),2);
 end

 for k=N:-1:1

FinalPointer((Ptrptr+1):(Ptrptr+size(cumsum(diff(Result(k).u.vector_ptr((ColDist(k)+1):(C
olDist(k)+ColDist((2*N+1)-
k)+1)))),2)))=(cumsum(diff(Result(k).u.vector_ptr((ColDist(k)+1):(ColDist(k)+ColDist((2*N
+1)-k)+1))))+Valptr+1);

Ptrptr=Ptrptr+size(cumsum(diff(Result(k).u.vector_ptr((ColDist(k)+1):(ColDist(k)+ColDist(
(2*N+1)-k)+1)))),2);
 FinalValue((Valptr+1):
(Valptr+size(Result(k).u.vector_val(nonzeros((Result(k).u.vector_ptr(1+ColDist(k))):Resul
t(k).u.vector_ptr((ColDist(k)+ColDist((2*N+1)-k))+1)-
1)),2)))=Result(k).u.vector_val(nonzeros((Result(k).u.vector_ptr(1+ColDist(k))):Result(k)
.u.vector_ptr((ColDist(k)+ColDist((2*N+1)-k))+1)-1));

Valptr=Valptr+size(Result(k).u.vector_val(nonzeros((Result(k).u.vector_ptr(1+ColDist(k)))
:Result(k).u.vector_ptr((ColDist(k)+ColDist((2*N+1)-k))+1)-1)),2);
 FinalRowIndex((Rowptr+1):
(Rowptr+size(Result(k).u.vector_ind(nonzeros((Result(k).u.vector_ptr(1+ColDist(k))):Resul
t(k).u.vector_ptr((ColDist(k)+ColDist((2*N+1)-k))+1)-
1)),2)))=Result(k).u.vector_ind(nonzeros((Result(k).u.vector_ptr(1+ColDist(k))):Result(k)
.u.vector_ptr((ColDist(k)+ColDist((2*N+1)-k))+1)-1));

Rowptr=Rowptr+size(Result(k).u.vector_ind(nonzeros((Result(k).u.vector_ptr(1+ColDist(k)))
:Result(k).u.vector_ptr((ColDist(k)+ColDist((2*N+1)-k))+1)-1)),2);

 end

Y=sparseCCSMatrix(matrixA.row,matrixB.col,FinalValue,FinalRowIndex,FinalPointer,[]);
 toc
 end
end

 123

Column-Cyclic Distribution

The following is the MATLAB function to test column-cyclic distributions. It

breaks up the matrices into submatrices composed of columns from B. The function then

performs each multiplication and reassembles the final matrix. The splitting and

reconstruction steps are timed as well as the actual multiplications. The inputs are

matrixA a CRS matrix, matrixB, a CCS matrix, and N, the number of simulated

processing elements to use.

function [Y] = ParallelMultiplyCyclic(matrixA,matrixB,N)
%Written by Ryan Kendrick WPI '08

%This function tests possible parallel implementation of sparse matrix
%multiplication. It will split matrixB into N parts of equal size,
%and perform N sets of multiplication....The columns are distributed to the
%separate processing elements in a cyclic manner. the algorithm starts on
%the first column and distributes them cyclically until the last column is
%reached.

if ((isa(matrixA,'sparseCRSMatrix')== 1) && (isa(matrixB,'sparseCCSMatrix')==1))
 if (matrixA.col== matrixB.row)

 % SPLIT MATRIX A INTO N different parts

 disp('Time to split up jobs takes')
 tic
 Values(N).v=[];
 Columns(N).v=[];
 Length(N).v=[];
 RunningSum=1; %keeps a sum of the total len's used

 for i=1:matrixB.col
 X=mod(i,N); %X is the processing element number that this row will be
assigned to
 if X==0
 X=N;
 end
 Length(X).v = [Length(X).v matrixB.vector_len(i)];
 Values(X).v = [Values(X).v
matrixB.vector_val(RunningSum:(RunningSum+matrixB.vector_len(i)-1))];
 Columns(X).v = [Columns(X).v
matrixB.vector_ind(RunningSum:(RunningSum+matrixB.vector_len(i)-1))];
 RunningSum=RunningSum+ matrixB.vector_len(i);
 end

 CCSpart(N).v=[];

 for k=1:N

CCSpart(k).v=sparseCCSMatrix(matrixB.row,(size(Length(k).v,2)),Values(k).v,Columns(k).v,[
],Length(k).v);
 end

 toc
 Result(N).v=[];
 %perform each individual multiplication
 for j=1:N
 fprintf('Time to perform Multiplication on PE %g is:\n',j)
 tic
 Result(j).v=multiply(matrixA,CCSpart(j).v,'CCS',2);
 toc

 end

 124

 disp('Final Matrix Construction Takes')
 tic
 ValRowLength=0;
 for d=1:N
 ValRowLength=ValRowLength+size(Result(d).v.vector_val,2);
 end

 FinalValue=zeros(1,ValRowLength);
 FinalRowIndex=zeros(1,ValRowLength);
 FinalLength=zeros(1,matrixB.col);
 Valptr=0;
 Rowptr=0;
 LenIndex=1;
 LenIndexCounter=0;
 IndexArray=ones(1,N);

 for h=1:matrixB.col

 X=mod(h,N); %X is the processing element number that this row will be
assigned to
 if X==0
 X=N;
 end
 %Assemble Final Length Vector

 FinalLength(h)= Result(X).v.vector_len(LenIndex);

FinalValue((Valptr+1):(Valptr+size(Result(X).v.vector_val(IndexArray(X):(IndexArray(X)+Re
sult(X).v.vector_len(LenIndex)-1)),2))) =
Result(X).v.vector_val(IndexArray(X):(IndexArray(X)+Result(X).v.vector_len(LenIndex)-1));

Valptr=Valptr+size(Result(X).v.vector_val(IndexArray(X):(IndexArray(X)+Result(X).v.vector
_len(LenIndex)-1)),2);

FinalRowIndex((Rowptr+1):(Rowptr+size(Result(X).v.vector_ind(IndexArray(X):(IndexArray(X)
+Result(X).v.vector_len(LenIndex)-1)),2))) =
Result(X).v.vector_ind(IndexArray(X):(IndexArray(X)+Result(X).v.vector_len(LenIndex)-1));

Rowptr=Rowptr+size(Result(X).v.vector_ind(IndexArray(X):(IndexArray(X)+Result(X).v.vector
_len(LenIndex)-1)),2);
 IndexArray(X)=IndexArray(X)+Result(X).v.vector_len(LenIndex);
 LenIndexCounter=LenIndexCounter+1;

 if LenIndexCounter==N
 LenIndexCounter=0;
 LenIndex=LenIndex+1;
 end
 end

Y=sparseCCSMatrix(matrixA.row,matrixB.col,FinalValue,FinalRowIndex,[],FinalLength);
 toc
 end
end

 125

Appendix C
The following is the MATLAB code used to determine the number of non-zero

operations needed to the product of two sparse matrices. The inputs are A, a CRS matrix

and B, a CCS Matrix. The function returns the total number of non-zero operations

(multiplies and adds) needed to compute the final product of the matrix.

function operations = OperationsCounter(matrixA, matrixB)
% Written by Ryan Kendrick WPI '08
%Counts the number of floating point operations needed to multiply two
%matrices.

if ((isa(matrixA,'sparseCRSMatrix')== 1) && (isa(matrixB,'sparseCCSMatrix')==1))

 %make sure columns in A equal rows of B
 if (get(matrixA,'col')== get(matrixB,'row'))

 len_total1 = 0;
 len_total2 = 0;
 matrixAcol = get(matrixA,'vector_ind');
 matrixBrow = get(matrixB,'vector_ind');
 lengthA = get(matrixA,'vector_len');
 lengthB = get(matrixB,'vector_len');
 matrixAval = get(matrixA,'vector_val');
 matrixBval = get(matrixB,'vector_val');
 matrixArows=get(matrixA,'row');
 matrixBcols=get(matrixB,'col');

 operations=0;

 for current_row=1:matrixArows %loop for each row in matrixA
 len_total2=0;
%******************building the col_values vector******
 col_values=zeros(1,lengthA(current_row));
 for t=1:size(col_values,2)
 col_values(t)=matrixAcol(len_total1+t); %builds a vector showing which
columns there are entries in
 end
 for current_column=1:matrixBcols %loop for each col in matrixB
%**********************building the row_values vector********
 row_values=zeros(1,lengthB(current_column));
 for g=1:size(row_values,2)
 row_values(g)=matrixBrow(len_total2+g);
 end
%Cycle through nonzero entries in row of A and col of B
 col=1;
 additions=0;
 multiplications=0;
 for row=1:size(row_values,2)
 while (col <= size(col_values,2)) && row_values(row) >
col_values(col)
 col=col+1;
 end
 if ((col <= size(col_values,2)) && (row_values(row)==
col_values(col)))
%if two values to be multiplied are found, increment the multiplications variable
 multiplications=multiplications+1;
 end
 end
 additions=multiplications;
%increment the operations variable with new data acquired from row and column
 operations = operations + multiplications + additions;
 len_total2=len_total2 + size(row_values,2);
 end
 len_total1=len_total1 + size(col_values,2); %keeps a cumulative total of
all the length values we've used
 end

 126

 else
 error('columns in first matrix must equal rows in the second matrix')
 end
else
 error('first matrix must be in CRS storage, second must be a CCS')
end

 127

Appendix D

This appendix contains the C-code used to perform compressed row by

compressed column matrix multiplication on the Microblaze soft-core processor.

void multiplication(int total_row, int total_col, int* val_A, int* ind_A, int* len_A,
int* val_B, int* ind_B, int* len_B, int* val_C, int* ind_C, int* len_C){
 //Pointers and indexings used for loops and keeping track of locations
 int row=0, col=0, pos1=0, pos2=0, value=0, pointer_col=0, pointer_val=0,
pointer_len=0, limit_lenA=0, limit_lenB=0;

 //Cycle by Column
 for(col=0; col< total_col; col++){
 //set the value at this memory location to 0, as to increment everythime a
value is added
 len_C[pointer_len]=0;

 //Set the pointers
 limit_lenA = 0;
 pointer_col = limit_lenB;
 limit_lenB += len_B[col];

 //Cycle by Row
 for(row=0; row< total_row; row++){
 //Set the pointers
 pos2 = pointer_col;
 pos1=limit_lenA;
 limit_lenA += len_A[row];

 //Matching Sequence -> Search for the matching row and column
indices
 while(pos1<limit_lenA && pos2 < limit_lenB){
 //If indexA value is greater than indexB value
 if(ind_A[pos1] > ind_B[pos2])
 pos2++;

 //If indexA value is less than indexB value
 else if(ind_A[pos1] < ind_B[pos2])
 pos1++;

 //Otherwise indexA matches indexB whcih indecates a match
 else{
 value += (val_A[pos1] * val_B[pos2]);
 pos1++;
 pos2++;
 }
 }

 //Add value if it is not a zero
 if(value != 0){
 val_C[pointer_val] = value;
 ind_C[pointer_val] = row+1;
 len_C[pointer_len]++;
 pointer_val++;
 value = 0;
 }
 }

 //Increment length pointer
 pointer_len++;
 }
}

 128

Appendix E

This appendix contains the parallelization code for the column-cyclic distribution.

This code runs on the Microblaze processing elements on the FPGA to distribute matrix

B as evenly as possible among the individual processing elements and to reassemble the

submatrices of the final matrix, C.

Column-Cyclic Splitting

To properly complete the splitting algorithm using C code, two functions were

needed, one that split the matrix into submatrices composed of columns from matrix B,

and another that reassembled the submatrices of matrix C into the entire matrix C. In the

case of the column-cyclic distribution, these functions were called columnCyclic and

assembleColumnCyclic respectively.

The parameters given to columnCyclic are a pointer to the original matrix, which

submatrix you would like returned, and N, the number of pieces to split the matrix into.

The following is the actual C code for this function.

void columnCyclic(int* val_B, int* ind_B, int* len_B, int* val_F, int* ind_F, int* len_F,
int section, int N, int size_nnz, int size_len){
 int i=0;
 int j=0;
 int lensum=0;
 int entries=0;
 int X=0;
 int totalCols=0;
 int lenpointer=0;
 int valpointer=0;
 int valpointerB=0;

 //copy memory over to subMatrixB
 for(i=0;i<COL_B;i++){
 //Determine which column to capture
 if(currentProc==N)
 currentProc=0;
 currentProc++;

 //Add the column section for the appropriate processor
 if(section==currentProc){
 len_F[lenpointer]=len_B[i];
 lenpointer++;
 for(j=0;j<len_B[i];j++){
 val_F[valpointer+j]=val_B[valpointerB+j];
 ind_F[valpointer+j]=ind_B[valpointerB+j];
 }

 129

 valpointer=valpointer+len_B[i];
 }
 valpointerB=valpointerB+len_B[i];
 }
}

Column-Cyclic Reassembly

The function shown below, assembleColumnCyclic is responsible for the

reassembly of the submatrices of matrix C into the final matrix.

void assembleColumnCyclic(int* val_C, int* ind_C, int* len_C, int* val_C1, int* ind_C1,
int* len_C1, int* val_C2, int* ind_C2, int* len_C2, int* val_C3, int* ind_C3, int*
len_C3, int* val_C4, int* ind_C4, int* len_C4){
 int totalCols=0;
 int i=0;
 int valPointerFinal=0;
 int NUMBER_OF_PES=4;
 int currentProc=0;
 int currentValue[4]={0,0,0,0};
 int currentLen[4]={0,0,0,0};

 //Copy entries into FinalMatrix
 for(i=0;i<COL_C;i++){
 //Determine which processor data to add
 if(currentProc==NUMBER_OF_PES)
 currentProc=0;
 currentProc++;
 switch(currentProc){
 case 1://sub_Matrix_1
 //copy over value and index vectors
 memcpy((void *)&val_C[valPointerFinal], (void
*)&val_C1[currentValue[currentProc-1]],len_C1[currentLen[currentProc-1]]*sizeof(int));
 memcpy((void *)&ind_C[valPointerFinal], (void
*)&ind_C1[currentValue[currentProc-1]],len_C1[currentLen[currentProc-1]]*sizeof(int));

 //copy over len entries
 memcpy((void *)&len_C[i], (void
*)&len_C1[currentLen[currentProc-1]], sizeof(int));

 //update indexes for submatrices and Final Matrix
 currentValue[currentProc-1]+=len_C1[currentLen[currentProc-
1]];
 valPointerFinal+=len_C1[currentLen[currentProc-1]];
 currentLen[currentProc-1]++;
 break;
 case 2://sub_Matrix_2
 //copy over value and index vectors
 memcpy((void *)&val_C[valPointerFinal], (void
*)&val_C2[currentValue[currentProc-1]],len_C2[currentLen[currentProc-1]]*sizeof(int));
 memcpy((void *)&ind_C[valPointerFinal], (void
*)&ind_C2[currentValue[currentProc-1]],len_C2[currentLen[currentProc-1]]*sizeof(int));

 //copy over len entries
 memcpy((void *)&len_C[i], (void
*)&len_C2[currentLen[currentProc-1]], sizeof(int));

 //update indexes for submatrices and Final Matrix
 currentValue[currentProc-1]+=len_C2[currentLen[currentProc-
1]];
 valPointerFinal+=len_C2[currentLen[currentProc-1]];
 currentLen[currentProc-1]++;
 break;
 case 3://sub_Matrix_3
 //copy over value and index vectors

 130

 memcpy((void *)&val_C[valPointerFinal], (void
*)&val_C3[currentValue[currentProc-1]],len_C3[currentLen[currentProc-1]]*sizeof(int));
 memcpy((void *)&ind_C[valPointerFinal], (void
*)&ind_C3[currentValue[currentProc-1]],len_C3[currentLen[currentProc-1]]*sizeof(int));

 //copy over len entries
 memcpy((void *)&len_C[i], (void
*)&len_C3[currentLen[currentProc-1]], sizeof(int));

 //update indexes for submatrices and Final Matrix
 currentValue[currentProc-1]+=len_C3[currentLen[currentProc-
1]];
 valPointerFinal+=len_C3[currentLen[currentProc-1]];
 currentLen[currentProc-1]++;
 break;
 case 4://sub_Matrix_4
 //copy over value and index vectors
 memcpy((void *)&val_C[valPointerFinal], (void
*)&val_C4[currentValue[currentProc-1]],len_C4[currentLen[currentProc-1]]*sizeof(int));
 memcpy((void *)&ind_C[valPointerFinal], (void
*)&ind_C4[currentValue[currentProc-1]],len_C4[currentLen[currentProc-1]]*sizeof(int));

 //copy over len entries
 memcpy((void *)&len_C[i], (void
*)&len_C4[currentLen[currentProc-1]], sizeof(int));

 //update indexes for submatrices and Final Matrix
 currentValue[currentProc-1]+=len_C4[currentLen[currentProc-
1]];
 valPointerFinal+=len_C4[currentLen[currentProc-1]];
 currentLen[currentProc-1]++;
 break;
 }
 }
}

 131

Appendix F

This section displays our two Xilinx hardware description files. These files are

used by Xilinx software to configure the hardware on a Xilinx FPGA. The first is a .mhs

file used to configure a single Microblaze system on the FPGA. The second configures a

system of three Microblazes, one host and two in parallel.

Created by Base System Builder Wizard for Xilinx EDK 9.1 Build EDK_J.19

Tue Sep 04 16:28:24 2007
Target Board: Xilinx Virtex-II Pro ML310 Evaluation Platform Rev D

Family: virtex2p

Device: xc2vp30
Package: ff896

Speed Grade: -6

Processor: Microblaze
System clock frequency: 100.000000 MHz

Debug interface: On-Chip HW Debug Module
On Chip Memory : 64 KB

Total Off Chip Memory : 256 MB

- DDR_SDRAM_32Mx64 = 256 MB

 PARAMETER VERSION = 2.1.0

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_Clk_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_Clk, DIR = O

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_Clkn_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_Clkn, DIR = O

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_Addr_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_Addr, DIR = O, VEC = [0:12]
 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_BankAddr_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_BankAddr, DIR = O, VEC

= [0:1]

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_CASn_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_CASn, DIR = O
 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_CKE_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_CKE, DIR = O

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_CSn_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_CSn, DIR = O

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_RASn_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_RASn, DIR = O
 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_WEn_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_WEn, DIR = O

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_DM_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_DM, DIR = O, VEC = [0:3]

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_DQS_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_DQS, DIR = IO, VEC = [0:3]
 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_DQ_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_DQ, DIR = IO, VEC = [0:31]

 PORT fpga_0_RS232_Uart_RX_pin = fpga_0_RS232_Uart_RX, DIR = I

 PORT fpga_0_RS232_Uart_TX_pin = fpga_0_RS232_Uart_TX, DIR = O
 PORT fpga_0_LEDs_8Bit_GPIO_IO_pin = fpga_0_LEDs_8Bit_GPIO_IO, DIR = IO, VEC = [0:7]

 PORT fpga_0_ORGate_1_Res_pin = fpga_0_ORGate_1_Res, DIR = O

 PORT fpga_0_ORGate_1_Res_1_pin = fpga_0_ORGate_1_Res, DIR = O
 PORT fpga_0_ORGate_1_Res_2_pin = fpga_0_ORGate_1_Res, DIR = O

 PORT fpga_0_DDR_CLK_FB = ddr_feedback_s, DIR = I, SIGIS = CLK, CLK_FREQ = 100000000

 PORT fpga_0_DDR_CLK_FB_OUT = ddr_clk_feedback_out_s, DIR = O
 PORT sys_clk_pin = dcm_clk_s, DIR = I, SIGIS = CLK, CLK_FREQ = 100000000

 PORT sys_rst_pin = sys_rst_s, DIR = I, RST_POLARITY = 0, SIGIS = RST

BEGIN microblaze

 PARAMETER INSTANCE = microblaze_0
 PARAMETER HW_VER = 6.00.a

 PARAMETER C_USE_FPU = 0

 PARAMETER C_DEBUG_ENABLED = 1
 PARAMETER C_NUMBER_OF_PC_BRK = 2

 BUS_INTERFACE DLMB = dlmb

 BUS_INTERFACE ILMB = ilmb
 BUS_INTERFACE DOPB = mb_opb

 BUS_INTERFACE IOPB = mb_opb

 PORT DBG_CAPTURE = DBG_CAPTURE_s

 132

 PORT DBG_CLK = DBG_CLK_s

 PORT DBG_REG_EN = DBG_REG_EN_s
 PORT DBG_TDI = DBG_TDI_s

 PORT DBG_TDO = DBG_TDO_s

 PORT DBG_UPDATE = DBG_UPDATE_s
END

BEGIN opb_v20
 PARAMETER INSTANCE = mb_opb

 PARAMETER HW_VER = 1.10.c

 PARAMETER C_EXT_RESET_HIGH = 0
 PORT SYS_Rst = sys_rst_s

 PORT OPB_Clk = sys_clk_s

END

BEGIN opb_mdm

 PARAMETER INSTANCE = debug_module
 PARAMETER HW_VER = 2.00.a

 PARAMETER C_MB_DBG_PORTS = 1

 PARAMETER C_USE_UART = 1
 PARAMETER C_UART_WIDTH = 8

 PARAMETER C_BASEADDR = 0x41400000

 PARAMETER C_HIGHADDR = 0x4140ffff
 BUS_INTERFACE SOPB = mb_opb

 PORT DBG_CAPTURE_0 = DBG_CAPTURE_s

 PORT DBG_CLK_0 = DBG_CLK_s
 PORT DBG_REG_EN_0 = DBG_REG_EN_s

 PORT DBG_TDI_0 = DBG_TDI_s
 PORT DBG_TDO_0 = DBG_TDO_s

 PORT DBG_UPDATE_0 = DBG_UPDATE_s

END

BEGIN lmb_v10

 PARAMETER INSTANCE = ilmb
 PARAMETER HW_VER = 1.00.a

 PARAMETER C_EXT_RESET_HIGH = 0

 PORT SYS_Rst = sys_rst_s
 PORT LMB_Clk = sys_clk_s

END

BEGIN lmb_v10

 PARAMETER INSTANCE = dlmb

 PARAMETER HW_VER = 1.00.a
 PARAMETER C_EXT_RESET_HIGH = 0

 PORT SYS_Rst = sys_rst_s

 PORT LMB_Clk = sys_clk_s
END

BEGIN lmb_bram_if_cntlr
 PARAMETER INSTANCE = dlmb_cntlr

 PARAMETER HW_VER = 2.00.a

 PARAMETER C_BASEADDR = 0x00000000
 PARAMETER C_HIGHADDR = 0x0000ffff

 BUS_INTERFACE SLMB = dlmb

 BUS_INTERFACE BRAM_PORT = dlmb_port
END

BEGIN lmb_bram_if_cntlr
 PARAMETER INSTANCE = ilmb_cntlr

 PARAMETER HW_VER = 2.00.a

 PARAMETER C_BASEADDR = 0x00000000
 PARAMETER C_HIGHADDR = 0x0000ffff

 BUS_INTERFACE SLMB = ilmb

 BUS_INTERFACE BRAM_PORT = ilmb_port
END

BEGIN bram_block
 PARAMETER INSTANCE = lmb_bram

 PARAMETER HW_VER = 1.00.a

 BUS_INTERFACE PORTA = ilmb_port
 BUS_INTERFACE PORTB = dlmb_port

END

BEGIN opb_uartlite

 PARAMETER INSTANCE = RS232_Uart

 133

 PARAMETER HW_VER = 1.00.b

 PARAMETER C_BAUDRATE = 9600
 PARAMETER C_DATA_BITS = 8

 PARAMETER C_ODD_PARITY = 0

 PARAMETER C_USE_PARITY = 0
 PARAMETER C_CLK_FREQ = 100000000

 PARAMETER C_BASEADDR = 0x40600000

 PARAMETER C_HIGHADDR = 0x4060ffff
 BUS_INTERFACE SOPB = mb_opb

 PORT RX = fpga_0_RS232_Uart_RX

 PORT TX = fpga_0_RS232_Uart_TX
END

BEGIN mch_opb_ddr
 PARAMETER INSTANCE = DDR_SDRAM_32Mx64

 PARAMETER HW_VER = 1.00.c

 PARAMETER C_MCH_OPB_CLK_PERIOD_PS = 10000
 PARAMETER C_REG_DIMM = 1

 PARAMETER C_DDR_TMRD = 20000

 PARAMETER C_DDR_TWR = 20000
 PARAMETER C_DDR_TRAS = 60000

 PARAMETER C_DDR_TRC = 90000

 PARAMETER C_DDR_TRFC = 100000
 PARAMETER C_DDR_TRCD = 30000

 PARAMETER C_DDR_TRRD = 20000

 PARAMETER C_DDR_TRP = 30000
 PARAMETER C_DDR_AWIDTH = 13

 PARAMETER C_DDR_DWIDTH = 32
 PARAMETER C_DDR_COL_AWIDTH = 10

 PARAMETER C_DDR_BANK_AWIDTH = 2

 PARAMETER C_NUM_CLK_PAIRS = 2
 PARAMETER C_MEM0_BASEADDR = 0x50000000

 PARAMETER C_MEM0_HIGHADDR = 0x5fffffff

 BUS_INTERFACE SOPB = mb_opb
 PORT DDR_Addr = fpga_0_DDR_SDRAM_32Mx64_DDR_Addr

 PORT DDR_BankAddr = fpga_0_DDR_SDRAM_32Mx64_DDR_BankAddr

 PORT DDR_CASn = fpga_0_DDR_SDRAM_32Mx64_DDR_CASn
 PORT DDR_CKE = fpga_0_DDR_SDRAM_32Mx64_DDR_CKE

 PORT DDR_CSn = fpga_0_DDR_SDRAM_32Mx64_DDR_CSn

 PORT DDR_RASn = fpga_0_DDR_SDRAM_32Mx64_DDR_RASn
 PORT DDR_WEn = fpga_0_DDR_SDRAM_32Mx64_DDR_WEn

 PORT DDR_DM = fpga_0_DDR_SDRAM_32Mx64_DDR_DM

 PORT DDR_DQS = fpga_0_DDR_SDRAM_32Mx64_DDR_DQS
 PORT DDR_DQ = fpga_0_DDR_SDRAM_32Mx64_DDR_DQ

 PORT DDR_Clk = fpga_0_DDR_SDRAM_32Mx64_DDR_Clk & ddr_clk_feedback_out_s

 PORT DDR_Clkn = fpga_0_DDR_SDRAM_32Mx64_DDR_Clkn & 0b0
 PORT Device_Clk90_in = clk_90_s

 PORT Device_Clk90_in_n = clk_90_n_s

 PORT Device_Clk = sys_clk_s
 PORT Device_Clk_n = sys_clk_n_s

 PORT DDR_Clk90_in = ddr_clk_90_s

 PORT DDR_Clk90_in_n = ddr_clk_90_n_s
END

BEGIN opb_gpio
 PARAMETER INSTANCE = LEDs_8Bit

 PARAMETER HW_VER = 3.01.b

 PARAMETER C_GPIO_WIDTH = 8
 PARAMETER C_IS_DUAL = 0

 PARAMETER C_IS_BIDIR = 0

 PARAMETER C_ALL_INPUTS = 0
 PARAMETER C_BASEADDR = 0x40000000

 PARAMETER C_HIGHADDR = 0x4000ffff

 BUS_INTERFACE SOPB = mb_opb
 PORT GPIO_IO = fpga_0_LEDs_8Bit_GPIO_IO

END

BEGIN util_reduced_logic

 PARAMETER INSTANCE = ORGate_1

 PARAMETER HW_VER = 1.00.a
 PARAMETER C_OPERATION = or

 PARAMETER C_SIZE = 2

 PORT Op1 = sys_rst_s & 0b0
 PORT Res = fpga_0_ORGate_1_Res

END

 134

BEGIN util_vector_logic
 PARAMETER INSTANCE = sysclk_inv

 PARAMETER HW_VER = 1.00.a

 PARAMETER C_SIZE = 1
 PARAMETER C_OPERATION = not

 PORT Op1 = sys_clk_s

 PORT Res = sys_clk_n_s
END

BEGIN util_vector_logic
 PARAMETER INSTANCE = clk90_inv

 PARAMETER HW_VER = 1.00.a

 PARAMETER C_SIZE = 1
 PARAMETER C_OPERATION = not

 PORT Op1 = clk_90_s

 PORT Res = clk_90_n_s
END

BEGIN util_vector_logic
 PARAMETER INSTANCE = ddr_clk90_inv

 PARAMETER HW_VER = 1.00.a

 PARAMETER C_SIZE = 1
 PARAMETER C_OPERATION = not

 PORT Op1 = ddr_clk_90_s

 PORT Res = ddr_clk_90_n_s
END

BEGIN dcm_module

 PARAMETER INSTANCE = dcm_0

 PARAMETER HW_VER = 1.00.a
 PARAMETER C_CLK0_BUF = TRUE

 PARAMETER C_CLK90_BUF = TRUE

 PARAMETER C_CLKIN_PERIOD = 10.000000
 PARAMETER C_CLK_FEEDBACK = 1X

 PARAMETER C_DLL_FREQUENCY_MODE = LOW

 PARAMETER C_EXT_RESET_HIGH = 1
 PORT CLKIN = dcm_clk_s

 PORT CLK0 = sys_clk_s

 PORT CLK90 = clk_90_s
 PORT CLKFB = sys_clk_s

 PORT RST = net_gnd

 PORT LOCKED = dcm_0_lock
END

BEGIN dcm_module
 PARAMETER INSTANCE = dcm_1

 PARAMETER HW_VER = 1.00.a

 PARAMETER C_CLK0_BUF = TRUE
 PARAMETER C_CLK90_BUF = TRUE

 PARAMETER C_CLKIN_PERIOD = 10.000000

 PARAMETER C_CLK_FEEDBACK = 1X
 PARAMETER C_DLL_FREQUENCY_MODE = LOW

 PARAMETER C_PHASE_SHIFT = 72

 PARAMETER C_CLKOUT_PHASE_SHIFT = FIXED
 PARAMETER C_EXT_RESET_HIGH = 0

 PORT CLKIN = ddr_feedback_s

 PORT CLK90 = ddr_clk_90_s
 PORT CLK0 = dcm_1_FB

 PORT CLKFB = dcm_1_FB

 PORT RST = dcm_0_lock
 PORT LOCKED = dcm_1_lock

END

The following is the hardware configuration file used to configure a system of

three Microblazes. Two Microblazes in parallel which performed the multiplications in

our design and a single host Microblaze that distributes jobs to the parallel processors.

 135

The processors are connected through Fast Simplex Links. FSLs are also configured in

this hardware configuration file.

**

* mhs File -> hardware description *
**

Written by Michael Moukarzel WPI 2008

Created by Base System Builder Wizard for Xilinx EDK 9.1 Build EDK_J.19

Tue Sep 11 12:38:45 2007

Target Board: Xilinx Virtex-II Pro ML310 Evaluation Platform Rev D
Family: virtex2p

Device: xc2vp30

Package: ff896
Speed Grade: -6

Processor: Microblaze

System clock frequency: 100.000000 MHz
Debug interface: On-Chip HW Debug Module

On Chip Memory : 64 KB

Total Off Chip Memory : 256 MB
- DDR_SDRAM_32Mx64 = 256 MB

 PARAMETER VERSION = 2.1.0

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_Clk_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_Clk, DIR = O

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_Clkn_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_Clkn, DIR = O

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_Addr_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_Addr, DIR = O, VEC = [0:12]
 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_BankAddr_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_BankAddr, DIR = O, VEC

= [0:1]

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_CASn_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_CASn, DIR = O
 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_CKE_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_CKE, DIR = O

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_CSn_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_CSn, DIR = O

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_RASn_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_RASn, DIR = O
 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_WEn_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_WEn, DIR = O

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_DM_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_DM, DIR = O, VEC = [0:3]

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_DQS_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_DQS, DIR = IO, VEC = [0:3]
 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_DQ_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_DQ, DIR = IO, VEC = [0:31]

 PORT fpga_0_RS232_Uart_RX_pin = fpga_0_RS232_Uart_RX, DIR = I

 PORT fpga_0_RS232_Uart_TX_pin = fpga_0_RS232_Uart_TX, DIR = O
 PORT fpga_0_ORGate_1_Res_pin = fpga_0_ORGate_1_Res, DIR = O

 PORT fpga_0_ORGate_1_Res_1_pin = fpga_0_ORGate_1_Res, DIR = O

 PORT fpga_0_ORGate_1_Res_2_pin = fpga_0_ORGate_1_Res, DIR = O
 PORT fpga_0_DDR_CLK_FB = ddr_feedback_s, DIR = I, SIGIS = CLK, CLK_FREQ = 100000000

 PORT fpga_0_DDR_CLK_FB_OUT = ddr_clk_feedback_out_s, DIR = O

 PORT sys_clk_pin = dcm_clk_s, DIR = I, SIGIS = CLK, CLK_FREQ = 100000000
 PORT sys_rst_pin = sys_rst_s, DIR = I, RST_POLARITY = 0, SIGIS = RST

** MICROBLAZE **

-------------------- MICROBLAZE: 0 --------------------

Main Setup
BEGIN microblaze

 PARAMETER INSTANCE = microblaze_0

 PARAMETER HW_VER = 6.00.b
 PARAMETER C_USE_FPU = 0

 PARAMETER C_DEBUG_ENABLED = 0

 PARAMETER C_NUMBER_OF_PC_BRK = 2
 PARAMETER C_FSL_LINKS = 2

 BUS_INTERFACE DLMB = dlmb0

 BUS_INTERFACE ILMB = ilmb0
 BUS_INTERFACE DOPB = mb_opb

 BUS_INTERFACE IOPB = mb_opb

 BUS_INTERFACE MFSL0 = fsl_v20_0a
 BUS_INTERFACE MFSL1 = fsl_v20_0b

 BUS_INTERFACE SFSL0 = fsl_v20_1a

 BUS_INTERFACE SFSL1 = fsl_v20_1b
PORT DBG_CAPTURE = DBG_CAPTURE_s0

PORT DBG_CLK = DBG_CLK_s0

PORT DBG_REG_EN = DBG_REG_EN_s0

 136

PORT DBG_TDI = DBG_TDI_s0

PORT DBG_TDO = DBG_TDO_s0
PORT DBG_UPDATE = DBG_UPDATE_s0

 PORT CLK = sys_clk_s

END

Local Memory Bus -> Instruction

BEGIN lmb_v10
 PARAMETER INSTANCE = ilmb0

 PARAMETER HW_VER = 1.00.a

 PARAMETER C_EXT_RESET_HIGH = 0
 PORT SYS_Rst = sys_rst_s

 PORT LMB_Clk = sys_clk_s

END

Local Memory Bus -> Data

BEGIN lmb_v10
 PARAMETER INSTANCE = dlmb0

 PARAMETER HW_VER = 1.00.a

 PARAMETER C_EXT_RESET_HIGH = 0
 PORT SYS_Rst = sys_rst_s

 PORT LMB_Clk = sys_clk_s

END

Local Memory Bus -> Instruction Controller

BEGIN lmb_bram_if_cntlr
 PARAMETER INSTANCE = dlmb_cntlr0

 PARAMETER HW_VER = 2.00.a
 PARAMETER C_BASEADDR = 0x00000000

 PARAMETER C_HIGHADDR = 0x0000ffff

 BUS_INTERFACE SLMB = dlmb0
 BUS_INTERFACE BRAM_PORT = dlmb_port0

END

Local Memory Bus -> Data Controller

BEGIN lmb_bram_if_cntlr

 PARAMETER INSTANCE = ilmb_cntlr0
 PARAMETER HW_VER = 2.00.a

 PARAMETER C_BASEADDR = 0x00000000

 PARAMETER C_HIGHADDR = 0x0000ffff
 BUS_INTERFACE SLMB = ilmb0

 BUS_INTERFACE BRAM_PORT = ilmb_port0

END

B-RAM

BEGIN bram_block
 PARAMETER INSTANCE = lmb_bram0

 PARAMETER HW_VER = 1.00.a

 BUS_INTERFACE PORTA = ilmb_port0
 BUS_INTERFACE PORTB = dlmb_port0

END

-------------------- MICROBLAZE: 1a -------------------

Main Setup

BEGIN microblaze
 PARAMETER INSTANCE = microblaze_1a

 PARAMETER HW_VER = 6.00.b

 PARAMETER C_USE_FPU = 0
 PARAMETER C_DEBUG_ENABLED = 0

 PARAMETER C_NUMBER_OF_PC_BRK = 2

 PARAMETER C_FSL_LINKS = 1
 BUS_INTERFACE DLMB = dlmb1a

 BUS_INTERFACE ILMB = ilmb1a

BUS_INTERFACE DOPB = mb_opb
BUS_INTERFACE IOPB = mb_opb

 BUS_INTERFACE SFSL0 = fsl_v20_0a

 BUS_INTERFACE MFSL0 = fsl_v20_1a
PORT DBG_CAPTURE = DBG_CAPTURE_s1a

PORT DBG_CLK = DBG_CLK_s1a

PORT DBG_REG_EN = DBG_REG_EN_s1a
PORT DBG_TDI = DBG_TDI_s1a

PORT DBG_TDO = DBG_TDO_s1a

PORT DBG_UPDATE = DBG_UPDATE_s1a
 PORT CLK = sys_clk_s

END

 137

Local Memory Bus -> Instruction
BEGIN lmb_v10

 PARAMETER INSTANCE = ilmb1a

 PARAMETER HW_VER = 1.00.a
 PARAMETER C_EXT_RESET_HIGH = 0

 PORT SYS_Rst = sys_rst_s

 PORT LMB_Clk = sys_clk_s
END

Local Memory Bus -> Data
BEGIN lmb_v10

 PARAMETER INSTANCE = dlmb1a

 PARAMETER HW_VER = 1.00.a
 PARAMETER C_EXT_RESET_HIGH = 0

 PORT SYS_Rst = sys_rst_s

 PORT LMB_Clk = sys_clk_s
END

Local Memory Bus -> Instruction Controller
BEGIN lmb_bram_if_cntlr

 PARAMETER INSTANCE = dlmb_cntlr1a

 PARAMETER HW_VER = 2.00.a
 PARAMETER C_BASEADDR = 0x00000000

 PARAMETER C_HIGHADDR = 0x0000ffff

 BUS_INTERFACE SLMB = dlmb1a
 BUS_INTERFACE BRAM_PORT = dlmb_port1a

END

Local Memory Bus -> Data Controller

BEGIN lmb_bram_if_cntlr
 PARAMETER INSTANCE = ilmb_cntlr1a

 PARAMETER HW_VER = 2.00.a

 PARAMETER C_BASEADDR = 0x00000000
 PARAMETER C_HIGHADDR = 0x0000ffff

 BUS_INTERFACE SLMB = ilmb1a

 BUS_INTERFACE BRAM_PORT = ilmb_port1a
END

B-RAM
BEGIN bram_block

 PARAMETER INSTANCE = lmb_bram1a

 PARAMETER HW_VER = 1.00.a
 BUS_INTERFACE PORTA = ilmb_port1a

 BUS_INTERFACE PORTB = dlmb_port1a

END

-------------------- MICROBLAZE: 1b -------------------

Main Setup
BEGIN microblaze

 PARAMETER INSTANCE = microblaze_1b

 PARAMETER HW_VER = 6.00.b
 PARAMETER C_USE_FPU = 0

 PARAMETER C_DEBUG_ENABLED = 0

 PARAMETER C_NUMBER_OF_PC_BRK = 2
 PARAMETER C_FSL_LINKS = 1

 BUS_INTERFACE DLMB = dlmb1b

 BUS_INTERFACE ILMB = ilmb1b
BUS_INTERFACE DOPB = mb_opb

BUS_INTERFACE IOPB = mb_opb

 BUS_INTERFACE SFSL0 = fsl_v20_0b
 BUS_INTERFACE MFSL0 = fsl_v20_1b

PORT DBG_CAPTURE = DBG_CAPTURE_s1b

PORT DBG_CLK = DBG_CLK_s1b
PORT DBG_REG_EN = DBG_REG_EN_s1b

PORT DBG_TDI = DBG_TDI_s1b

PORT DBG_TDO = DBG_TDO_s1b
PORT DBG_UPDATE = DBG_UPDATE_s1b

 PORT CLK = sys_clk_s

END

Local Memory Bus -> Instruction

BEGIN lmb_v10
 PARAMETER INSTANCE = ilmb1b

 PARAMETER HW_VER = 1.00.a

 138

 PARAMETER C_EXT_RESET_HIGH = 0

 PORT SYS_Rst = sys_rst_s
 PORT LMB_Clk = sys_clk_s

END

Local Memory Bus -> Data

BEGIN lmb_v10

 PARAMETER INSTANCE = dlmb1b
 PARAMETER HW_VER = 1.00.a

 PARAMETER C_EXT_RESET_HIGH = 0

 PORT SYS_Rst = sys_rst_s
 PORT LMB_Clk = sys_clk_s

END

Local Memory Bus -> Instruction Controller

BEGIN lmb_bram_if_cntlr

 PARAMETER INSTANCE = dlmb_cntlr1b
 PARAMETER HW_VER = 2.00.a

 PARAMETER C_BASEADDR = 0x00000000

 PARAMETER C_HIGHADDR = 0x0000ffff
 BUS_INTERFACE SLMB = dlmb1b

 BUS_INTERFACE BRAM_PORT = dlmb_port1b

END

Local Memory Bus -> Data Controller

BEGIN lmb_bram_if_cntlr
 PARAMETER INSTANCE = ilmb_cntlr1b

 PARAMETER HW_VER = 2.00.a
 PARAMETER C_BASEADDR = 0x00000000

 PARAMETER C_HIGHADDR = 0x0000ffff

 BUS_INTERFACE SLMB = ilmb1b
 BUS_INTERFACE BRAM_PORT = ilmb_port1b

END

B-RAM

BEGIN bram_block

 PARAMETER INSTANCE = lmb_bram1b
 PARAMETER HW_VER = 1.00.a

 BUS_INTERFACE PORTA = ilmb_port1b

 BUS_INTERFACE PORTB = dlmb_port1b
END

************************************* Fast Simplex Link ************************************
----------------- Fast Simplex Link: 0a ----------------

BEGIN fsl_v20

 PARAMETER INSTANCE = fsl_v20_0a
 PARAMETER HW_VER = 2.10.a

 PARAMETER C_EXT_RESET_HIGH = 0

 PORT FSL_Clk = sys_clk_s
 PORT SYS_Rst = sys_rst_s

END

----------------- Fast Simplex Link: 1a ---------------

BEGIN fsl_v20

 PARAMETER INSTANCE = fsl_v20_1a
 PARAMETER HW_VER = 2.10.a

 PARAMETER C_EXT_RESET_HIGH = 0

 PORT FSL_Clk = sys_clk_s
 PORT SYS_Rst = sys_rst_s

END

----------------- Fast Simplex Link: 0b ---------------

BEGIN fsl_v20

 PARAMETER INSTANCE = fsl_v20_0b
 PARAMETER HW_VER = 2.10.a

 PARAMETER C_EXT_RESET_HIGH = 0

 PORT FSL_Clk = sys_clk_s
 PORT SYS_Rst = sys_rst_s

END

----------------- Fast Simplex Link: 1b ---------------

BEGIN fsl_v20

 PARAMETER INSTANCE = fsl_v20_1b
 PARAMETER HW_VER = 2.10.a

 PARAMETER C_EXT_RESET_HIGH = 0

 139

 PORT FSL_Clk = sys_clk_s

 PORT SYS_Rst = sys_rst_s
END

********************************** On Chip Perifferal Bus **********************************
BEGIN opb_v20

 PARAMETER INSTANCE = mb_opb

 PARAMETER HW_VER = 1.10.c
 PARAMETER C_EXT_RESET_HIGH = 0

 PORT SYS_Rst = sys_rst_s

 PORT OPB_Clk = sys_clk_s
END

************************* Slaves of On Chip Perifferal Bus(mb_opb) *************************
---------------------- DDR Memory ---------------------

BEGIN mch_opb_ddr

 PARAMETER INSTANCE = DDR_SDRAM_32Mx64
 PARAMETER HW_VER = 1.00.c

 PARAMETER C_MCH_OPB_CLK_PERIOD_PS = 10000

 PARAMETER C_REG_DIMM = 1
 PARAMETER C_DDR_TMRD = 20000

 PARAMETER C_DDR_TWR = 20000

 PARAMETER C_DDR_TRAS = 60000
 PARAMETER C_DDR_TRC = 90000

 PARAMETER C_DDR_TRFC = 100000

 PARAMETER C_DDR_TRCD = 30000
 PARAMETER C_DDR_TRRD = 20000

 PARAMETER C_DDR_TRP = 30000
 PARAMETER C_DDR_AWIDTH = 13

 PARAMETER C_DDR_DWIDTH = 32

 PARAMETER C_DDR_COL_AWIDTH = 10
 PARAMETER C_DDR_BANK_AWIDTH = 2

 PARAMETER C_NUM_CLK_PAIRS = 2

 PARAMETER C_MEM0_BASEADDR = 0x50000000
 PARAMETER C_MEM0_HIGHADDR = 0x5fffffff

 BUS_INTERFACE SOPB = mb_opb

 PORT DDR_Addr = fpga_0_DDR_SDRAM_32Mx64_DDR_Addr
 PORT DDR_BankAddr = fpga_0_DDR_SDRAM_32Mx64_DDR_BankAddr

 PORT DDR_CASn = fpga_0_DDR_SDRAM_32Mx64_DDR_CASn

 PORT DDR_CKE = fpga_0_DDR_SDRAM_32Mx64_DDR_CKE
 PORT DDR_CSn = fpga_0_DDR_SDRAM_32Mx64_DDR_CSn

 PORT DDR_RASn = fpga_0_DDR_SDRAM_32Mx64_DDR_RASn

 PORT DDR_WEn = fpga_0_DDR_SDRAM_32Mx64_DDR_WEn
 PORT DDR_DM = fpga_0_DDR_SDRAM_32Mx64_DDR_DM

 PORT DDR_DQS = fpga_0_DDR_SDRAM_32Mx64_DDR_DQS

 PORT DDR_DQ = fpga_0_DDR_SDRAM_32Mx64_DDR_DQ
 PORT DDR_Clk = fpga_0_DDR_SDRAM_32Mx64_DDR_Clk & ddr_clk_feedback_out_s

 PORT DDR_Clkn = fpga_0_DDR_SDRAM_32Mx64_DDR_Clkn & 0b0

 PORT Device_Clk90_in = clk_90_s
 PORT Device_Clk90_in_n = clk_90_n_s

 PORT Device_Clk = sys_clk_s

 PORT Device_Clk_n = sys_clk_n_s
 PORT DDR_Clk90_in = ddr_clk_90_s

 PORT DDR_Clk90_in_n = ddr_clk_90_n_s

END

------------------- Serial Interface ------------------

BEGIN opb_uartlite
 PARAMETER INSTANCE = RS232_Uart

 PARAMETER HW_VER = 1.00.b

 PARAMETER C_BAUDRATE = 9600
 PARAMETER C_DATA_BITS = 8

 PARAMETER C_ODD_PARITY = 0

 PARAMETER C_USE_PARITY = 0
 PARAMETER C_CLK_FREQ = 100000000

 PARAMETER C_BASEADDR = 0x40600000

 PARAMETER C_HIGHADDR = 0x4060ffff
 BUS_INTERFACE SOPB = mb_opb

 PORT RX = fpga_0_RS232_Uart_RX

 PORT TX = fpga_0_RS232_Uart_TX
END

----------------------- Debugger ----------------------
BEGIN opb_mdm

PARAMETER INSTANCE = debug_module

 140

PARAMETER HW_VER = 2.00.a

PARAMETER C_MB_DBG_PORTS = 1
PARAMETER C_USE_UART = 1

PARAMETER C_UART_WIDTH = 8

PARAMETER C_BASEADDR = 0x41400000
PARAMETER C_HIGHADDR = 0x4140ffff

BUS_INTERFACE SOPB = mb_opb

PORT DBG_CAPTURE_0 = DBG_CAPTURE_s0
PORT DBG_CLK_0 = DBG_CLK_s0

PORT DBG_REG_EN_0 = DBG_REG_EN_s0

PORT DBG_TDI_0 = DBG_TDI_s0
PORT DBG_TDO_0 = DBG_TDO_s0

PORT DBG_UPDATE_0 = DBG_UPDATE_s0

PORT DBG_CAPTURE_1 = DBG_CAPTURE_s1a
PORT DBG_CLK_1 = DBG_CLK_s1a

PORT DBG_REG_EN_1 = DBG_REG_EN_s1a

PORT DBG_TDI_1 = DBG_TDI_s1a
PORT DBG_TDO_1 = DBG_TDO_s1a

PORT DBG_UPDATE_1 = DBG_UPDATE_s1a

PORT DBG_CAPTURE_3 = DBG_CAPTURE_s1b
PORT DBG_CLK_3 = DBG_CLK_s1b

PORT DBG_REG_EN_3 = DBG_REG_EN_s1b

PORT DBG_TDI_3 = DBG_TDI_s1b
PORT DBG_TDO_3 = DBG_TDO_s1b

PORT DBG_UPDATE_3 = DBG_UPDATE_s1b

END
******************************** IP - Intellectual Property ********************************

----------------------- Or Gate -----------------------
BEGIN util_reduced_logic

 PARAMETER INSTANCE = ORGate_1

 PARAMETER HW_VER = 1.00.a
 PARAMETER C_OPERATION = or

 PARAMETER C_SIZE = 2

 PORT Op1 = sys_rst_s & 0b0
 PORT Res = fpga_0_ORGate_1_Res

END

--------------- System Clock (inverted) ---------------

BEGIN util_vector_logic

 PARAMETER INSTANCE = sysclk_inv
 PARAMETER HW_VER = 1.00.a

 PARAMETER C_SIZE = 1

 PARAMETER C_OPERATION = not
 PORT Op1 = sys_clk_s

 PORT Res = sys_clk_n_s

END

--------- Clock (inverted and 90 phase shift) ---------

BEGIN util_vector_logic
 PARAMETER INSTANCE = clk90_inv

 PARAMETER HW_VER = 1.00.a

 PARAMETER C_SIZE = 1
 PARAMETER C_OPERATION = not

 PORT Op1 = clk_90_s

 PORT Res = clk_90_n_s
END

------- DDR Clock (inverted and 90 phase shift) -------
BEGIN util_vector_logic

 PARAMETER INSTANCE = ddr_clk90_inv

 PARAMETER HW_VER = 1.00.a
 PARAMETER C_SIZE = 1

 PARAMETER C_OPERATION = not

 PORT Op1 = ddr_clk_90_s
 PORT Res = ddr_clk_90_n_s

END

----------- Digital Clock Managers -> dcm_0 -----------

BEGIN dcm_module

 PARAMETER INSTANCE = dcm_0
 PARAMETER HW_VER = 1.00.c

 PARAMETER C_CLK0_BUF = TRUE

 PARAMETER C_CLK90_BUF = TRUE
 PARAMETER C_CLKIN_PERIOD = 10.000000

 PARAMETER C_CLK_FEEDBACK = 1X

 141

 PARAMETER C_DLL_FREQUENCY_MODE = LOW

 PARAMETER C_EXT_RESET_HIGH = 1
 PORT CLKIN = dcm_clk_s

 PORT CLK0 = sys_clk_s

 PORT CLK90 = clk_90_s
 PORT CLKFB = sys_clk_s

 PORT RST = net_gnd

 PORT LOCKED = dcm_0_lock
END

----------- Digital Clock Managers -> dcm_1 -----------
BEGIN dcm_module

 PARAMETER INSTANCE = dcm_1

 PARAMETER HW_VER = 1.00.c
 PARAMETER C_CLK0_BUF = TRUE

 PARAMETER C_CLK90_BUF = TRUE

 PARAMETER C_CLKIN_PERIOD = 10.000000
 PARAMETER C_CLK_FEEDBACK = 1X

 PARAMETER C_DLL_FREQUENCY_MODE = LOW

 PARAMETER C_PHASE_SHIFT = 72
 PARAMETER C_CLKOUT_PHASE_SHIFT = FIXED

 PARAMETER C_EXT_RESET_HIGH = 0

 PORT CLKIN = ddr_feedback_s
 PORT CLK90 = ddr_clk_90_s

 PORT CLK0 = dcm_1_FB

 PORT CLKFB = dcm_1_FB
 PORT RST = dcm_0_lock

 PORT LOCKED = dcm_1_lock
END

 142

Appendix G

 Shown in this appendix is the multiplication C-code for a full matrix by full

matrix multiplication. This code was used to test against our compressed matrix

multiplication to determine the advantage of our method versus full matrix multiplication.

void multiplicationFull(int dataA[ROW_A][COL_A], int dataB[ROW_B][COL_B], int
dataC[ROW_C][COL_C]){
 int row=0;
 int col=0;
 int ptr=0;

 for(row=0; row<ROW_C; row++)
 for(col=0; col<COL_C; col++)
 for(ptr=0; ptr<COL_C; ptr++)
 dataC[row][col] += (dataA[row][ptr] * dataB[ptr][col]);

}

 143

Appendix H

This appendix contains an example of the Excel spreadsheet used to estimate

matrix storage sizes in memory versus their dimensions and density. In this example,

matrix sizes are only listed up to 256x256.

THIS FILE IS USED
TO PREDICT THE
MEMORY SIZE
USED BY A CRS OR
CCS MATRIX
EACH VALUE IS
ASSUMED TO BE A 4
BYTE INTEGER.
ALL MATRICES ARE
ASSUMED TO BE
SQUARE
EACH MATRIX
CONTAINS THE
FOLLOWING
VALUES

OF ROWS = 1 INT

OF COLS = 1 INT

VALUE

LEN = 1 INT

SIZE = 1 INT

ARRAY = NNZ INTS + 1 INT(NULL CHAR)

INDEX

LEN = 1 INT

SIZE = 1 INT

ARRAY = NNZ INTS + 1 INT(NULL CHAR)

LENGTH

LEN = 1 INT

SIZE = 1 INT

ARRAY = # OF ROW OR COL + 1 INT (NULL CHAR)

ASSUMED DENSITY
OF MATRICES 0.01

ROW/COL LENGTH NNZ
TOTAL # OF
INTS

TOTAL # OF
BYTES

TOTAL KB IN
RAM

10 1 23 92 0.08984

11 1.21 24.42 97.68 0.09539

 144

12 1.44 25.88 103.52 0.10109

13 1.69 27.38 109.52 0.10695

14 1.96 28.92 115.68 0.11297

15 2.25 30.5 122 0.11914

16 2.56 32.12 128.48 0.12547

17 2.89 33.78 135.12 0.13195

18 3.24 35.48 141.92 0.13859

19 3.61 37.22 148.88 0.14539

20 4 39 156 0.15234

21 4.41 40.82 163.28 0.15945

22 4.84 42.68 170.72 0.16672

23 5.29 44.58 178.32 0.17414

24 5.76 46.52 186.08 0.18172

25 6.25 48.5 194 0.18945

26 6.76 50.52 202.08 0.19734

27 7.29 52.58 210.32 0.20539

28 7.84 54.68 218.72 0.21359

29 8.41 56.82 227.28 0.22195

30 9 59 236 0.23047

31 9.61 61.22 244.88 0.23914

32 10.24 63.48 253.92 0.24797

33 10.89 65.78 263.12 0.25695

34 11.56 68.12 272.48 0.26609

35 12.25 70.5 282 0.27539

36 12.96 72.92 291.68 0.28484

37 13.69 75.38 301.52 0.29445

38 14.44 77.88 311.52 0.30422

39 15.21 80.42 321.68 0.31414

40 16 83 332 0.32422

41 16.81 85.62 342.48 0.33445

42 17.64 88.28 353.12 0.34484

43 18.49 90.98 363.92 0.35539

44 19.36 93.72 374.88 0.36609

45 20.25 96.5 386 0.37695

46 21.16 99.32 397.28 0.38797

47 22.09 102.18 408.72 0.39914

48 23.04 105.08 420.32 0.41047

49 24.01 108.02 432.08 0.42195

50 25 111 444 0.43359

51 26.01 114.02 456.08 0.44539

52 27.04 117.08 468.32 0.45734

53 28.09 120.18 480.72 0.46945

54 29.16 123.32 493.28 0.48172

55 30.25 126.5 506 0.49414

56 31.36 129.72 518.88 0.50672

57 32.49 132.98 531.92 0.51945

58 33.64 136.28 545.12 0.53234

59 34.81 139.62 558.48 0.54539

60 36 143 572 0.55859

61 37.21 146.42 585.68 0.57195

62 38.44 149.88 599.52 0.58547

63 39.69 153.38 613.52 0.59914

64 40.96 156.92 627.68 0.61297

65 42.25 160.5 642 0.62695

 145

66 43.56 164.12 656.48 0.64109

67 44.89 167.78 671.12 0.65539

68 46.24 171.48 685.92 0.66984

69 47.61 175.22 700.88 0.68445

70 49 179 716 0.69922

71 50.41 182.82 731.28 0.71414

72 51.84 186.68 746.72 0.72922

73 53.29 190.58 762.32 0.74445

74 54.76 194.52 778.08 0.75984

75 56.25 198.5 794 0.77539

76 57.76 202.52 810.08 0.79109

77 59.29 206.58 826.32 0.80695

78 60.84 210.68 842.72 0.82297

79 62.41 214.82 859.28 0.83914

80 64 219 876 0.85547

81 65.61 223.22 892.88 0.87195

82 67.24 227.48 909.92 0.88859

83 68.89 231.78 927.12 0.90539

84 70.56 236.12 944.48 0.92234

85 72.25 240.5 962 0.93945

86 73.96 244.92 979.68 0.95672

87 75.69 249.38 997.52 0.97414

88 77.44 253.88 1015.52 0.99172

89 79.21 258.42 1033.68 1.00945

90 81 263 1052 1.02734

91 82.81 267.62 1070.48 1.04539

92 84.64 272.28 1089.12 1.06359

93 86.49 276.98 1107.92 1.08195

94 88.36 281.72 1126.88 1.10047

95 90.25 286.5 1146 1.11914

96 92.16 291.32 1165.28 1.13797

97 94.09 296.18 1184.72 1.15695

98 96.04 301.08 1204.32 1.17609

99 98.01 306.02 1224.08 1.19539

100 100 311 1244 1.21484

101 102.01 316.02 1264.08 1.23445

102 104.04 321.08 1284.32 1.25422

103 106.09 326.18 1304.72 1.27414

104 108.16 331.32 1325.28 1.29422

105 110.25 336.5 1346 1.31445

106 112.36 341.72 1366.88 1.33484

107 114.49 346.98 1387.92 1.35539

108 116.64 352.28 1409.12 1.37609

109 118.81 357.62 1430.48 1.39695

110 121 363 1452 1.41797

111 123.21 368.42 1473.68 1.43914

112 125.44 373.88 1495.52 1.46047

113 127.69 379.38 1517.52 1.48195

114 129.96 384.92 1539.68 1.50359

115 132.25 390.5 1562 1.52539

116 134.56 396.12 1584.48 1.54734

117 136.89 401.78 1607.12 1.56945

118 139.24 407.48 1629.92 1.59172

119 141.61 413.22 1652.88 1.61414

 146

120 144 419 1676 1.63672

121 146.41 424.82 1699.28 1.65945

122 148.84 430.68 1722.72 1.68234

123 151.29 436.58 1746.32 1.70539

124 153.76 442.52 1770.08 1.72859

125 156.25 448.5 1794 1.75195

126 158.76 454.52 1818.08 1.77547

127 161.29 460.58 1842.32 1.79914

128 163.84 466.68 1866.72 1.82297

129 166.41 472.82 1891.28 1.84695

130 169 479 1916 1.87109

131 171.61 485.22 1940.88 1.89539

132 174.24 491.48 1965.92 1.91984

133 176.89 497.78 1991.12 1.94445

134 179.56 504.12 2016.48 1.96922

135 182.25 510.5 2042 1.99414

136 184.96 516.92 2067.68 2.01922

137 187.69 523.38 2093.52 2.04445

138 190.44 529.88 2119.52 2.06984

139 193.21 536.42 2145.68 2.09539

140 196 543 2172 2.12109

141 198.81 549.62 2198.48 2.14695

142 201.64 556.28 2225.12 2.17297

143 204.49 562.98 2251.92 2.19914

144 207.36 569.72 2278.88 2.22547

145 210.25 576.5 2306 2.25195

146 213.16 583.32 2333.28 2.27859

147 216.09 590.18 2360.72 2.30539

148 219.04 597.08 2388.32 2.33234

149 222.01 604.02 2416.08 2.35945

150 225 611 2444 2.38672

151 228.01 618.02 2472.08 2.41414

152 231.04 625.08 2500.32 2.44172

153 234.09 632.18 2528.72 2.46945

154 237.16 639.32 2557.28 2.49734

155 240.25 646.5 2586 2.52539

156 243.36 653.72 2614.88 2.55359

157 246.49 660.98 2643.92 2.58195

158 249.64 668.28 2673.12 2.61047

159 252.81 675.62 2702.48 2.63914

160 256 683 2732 2.66797

161 259.21 690.42 2761.68 2.69695

162 262.44 697.88 2791.52 2.72609

163 265.69 705.38 2821.52 2.75539

164 268.96 712.92 2851.68 2.78484

165 272.25 720.5 2882 2.81445

166 275.56 728.12 2912.48 2.84422

167 278.89 735.78 2943.12 2.87414

168 282.24 743.48 2973.92 2.90422

169 285.61 751.22 3004.88 2.93445

170 289 759 3036 2.96484

171 292.41 766.82 3067.28 2.99539

172 295.84 774.68 3098.72 3.02609

173 299.29 782.58 3130.32 3.05695

 147

174 302.76 790.52 3162.08 3.08797

175 306.25 798.5 3194 3.11914

176 309.76 806.52 3226.08 3.15047

177 313.29 814.58 3258.32 3.18195

178 316.84 822.68 3290.72 3.21359

179 320.41 830.82 3323.28 3.24539

180 324 839 3356 3.27734

181 327.61 847.22 3388.88 3.30945

182 331.24 855.48 3421.92 3.34172

183 334.89 863.78 3455.12 3.37414

184 338.56 872.12 3488.48 3.40672

185 342.25 880.5 3522 3.43945

186 345.96 888.92 3555.68 3.47234

187 349.69 897.38 3589.52 3.50539

188 353.44 905.88 3623.52 3.53859

189 357.21 914.42 3657.68 3.57195

190 361 923 3692 3.60547

191 364.81 931.62 3726.48 3.63914

192 368.64 940.28 3761.12 3.67297

193 372.49 948.98 3795.92 3.70695

194 376.36 957.72 3830.88 3.74109

195 380.25 966.5 3866 3.77539

196 384.16 975.32 3901.28 3.80984

197 388.09 984.18 3936.72 3.84445

198 392.04 993.08 3972.32 3.87922

199 396.01 1002.02 4008.08 3.91414

200 400 1011 4044 3.94922

201 404.01 1020.02 4080.08 3.98445

202 408.04 1029.08 4116.32 4.01984

203 412.09 1038.18 4152.72 4.05539

204 416.16 1047.32 4189.28 4.09109

205 420.25 1056.5 4226 4.12695

206 424.36 1065.72 4262.88 4.16297

207 428.49 1074.98 4299.92 4.19914

208 432.64 1084.28 4337.12 4.23547

209 436.81 1093.62 4374.48 4.27195

210 441 1103 4412 4.30859

211 445.21 1112.42 4449.68 4.34539

212 449.44 1121.88 4487.52 4.38234

213 453.69 1131.38 4525.52 4.41945

214 457.96 1140.92 4563.68 4.45672

215 462.25 1150.5 4602 4.49414

216 466.56 1160.12 4640.48 4.53172

217 470.89 1169.78 4679.12 4.56945

218 475.24 1179.48 4717.92 4.60734

219 479.61 1189.22 4756.88 4.64539

220 484 1199 4796 4.68359

221 488.41 1208.82 4835.28 4.72195

222 492.84 1218.68 4874.72 4.76047

223 497.29 1228.58 4914.32 4.79914

224 501.76 1238.52 4954.08 4.83797

225 506.25 1248.5 4994 4.87695

226 510.76 1258.52 5034.08 4.91609

227 515.29 1268.58 5074.32 4.95539

 148

228 519.84 1278.68 5114.72 4.99484

229 524.41 1288.82 5155.28 5.03445

230 529 1299 5196 5.07422

231 533.61 1309.22 5236.88 5.11414

232 538.24 1319.48 5277.92 5.15422

233 542.89 1329.78 5319.12 5.19445

234 547.56 1340.12 5360.48 5.23484

235 552.25 1350.5 5402 5.27539

236 556.96 1360.92 5443.68 5.31609

237 561.69 1371.38 5485.52 5.35695

238 566.44 1381.88 5527.52 5.39797

239 571.21 1392.42 5569.68 5.43914

240 576 1403 5612 5.48047

241 580.81 1413.62 5654.48 5.52195

242 585.64 1424.28 5697.12 5.56359

243 590.49 1434.98 5739.92 5.60539

244 595.36 1445.72 5782.88 5.64734

245 600.25 1456.5 5826 5.68945

246 605.16 1467.32 5869.28 5.73172

247 610.09 1478.18 5912.72 5.77414

248 615.04 1489.08 5956.32 5.81672

249 620.01 1500.02 6000.08 5.85945

250 625 1511 6044 5.90234

251 630.01 1522.02 6088.08 5.94539

252 635.04 1533.08 6132.32 5.98859

253 640.09 1544.18 6176.72 6.03195

254 645.16 1555.32 6221.28 6.07547

255 650.25 1566.5 6266 6.11914

256 655.36 1577.72 6310.88 6.16297

 149

Appendix I

This appendix shows actual timing diagrams for two parallel processors and eight

parallel processors implemented on the FPGA. These times were obtained by measuring

the actual performance of the parallel systems. All times are in milliseconds and are

measured from t=0, the start of processing.

 150

3

3

1 2 41 2 4Proc 0

Proc 1a

Proc 1b 3

1 2 1 2 1 2 1 2 1 2 1 2

3

3

3

3

3

0 0.06m

0.12m

0.17m

0.22m

0.28m

0.34m

4

0.87m

1.02m 1.18m 1.24m 1.30m

1.15m

0.40m

0.45m 0.93m

0.86m 0.92m

1.03m 1.19m 1.24m 1.31m

1.31m

4444 4

0.87m

Proc 1c

Proc 1d

Proc 1e

Proc 1f

Proc 1g

Proc 1h

Key

1. Send A

2. Split B and Send

3. Multiply A and B

4. Receive C
Note: The times scale are in seconds

0.93m

 151

Appendix J

This appendix contains a complete flow chart for the implementation of a logic

circuit to perform the matrix by matrix multiplication algorithm in logic rather than in C-

code on a microprocessor. Implementation of parallel logic circuits of this type could be

used to significantly increase the performance of the compressed-row times compressed

column multiplication kernel.

 152

 153

IEEE Code of Ethics

We, the members of the IEEE, in recognition of the importance of our technologies in

affecting the qualify of life throughout the world, and in accepting a personal obligation

to our profession, its members, and the communities we serve, do hereby commit

ourselves to the highest ethical and professional conduct and agree:

1. To accept responsibility in making decisions consistent with the safety, health and

welfare of the public, and to disclose promptly factors that might endanger the

public of the environment;

2. to avoid real or perceived conflicts of interest whenever possible, and to disclose

them to affected parties when they do exist;

3. to be honest and realistic in stating claims or estimates based on available data;

4. to reject bribery in all its forms;

5. to improve on the understanding of technology, its appropriate application, and

potential consequences;

6. to maintain and improve our technical competencies and to undertake

technological tasks for others only if qualified by training or experience, or after

full disclosure of pertinent limitations;

7. to seek, accept and offer honest criticism of technical work, to acknowledge and

correct errors, and to credit properly the contributions of others;

8. to treat fairly all persons regardless of such factors as race, religion, gender,

disability, age, or national origin;

9. to avoid injuring others, their property, reputation, or employment by false or

malicious action;

10. to assist colleagues and co-workers in their professional development and to

support them in following this code of ethics.

The IEEE code of ethics applies in multiple ways to this Major Qualifying Project

experience. A few examples of how this applied to this experience follow.

First, being honest and realistic in stating claims or estimates was extremely

important to this project’s scope. Since our research will serve as background knowledge

for other researchers in this area, we strived not to exaggerate our findings. It is always

 154

best for a researcher to be honest in his or her findings so others will not base their own

claims off of incorrect information. Being conservative in estimates is a practice that

every engineer should adopt, not just IEEE members.

Furthermore, our project, being a research project, focused on improving the

understanding of technology and its appropriate applications. By writing a very detailed

MQP paper, we are furthering the understanding of the technology we have researched

and making it easier for other engineers understand this project.

Finally, working at a project site like MIT-Lincoln Laboratory allowed us to work on

our own project as well as observe other students working on theirs. Because we often

presented to other students, we were put in positions to give and receive constructive

criticisms. It was important to us that these criticisms be given and received in a

professional manner as we were all students and can aid in each other’s professional

development throughout this experience.

The IEEE code of ethics applies to many parts of our project than have been listed.

Only a few ways in which we followed this code were discussed. There are surely

multiple other ways which we demonstrated this code throughout our project experience.

