

ReportAid

by

Stephen Lucas

John Parrick

An Interactive Qualifying Project

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

in Computer Science

by

__

May 13, 2020

APPROVED:

Dr. Therese Smith

1

Abstract

The goal of this project was to fix the various UI issues with the ReportAid GitHub

project. Our initial focus was fixing the UI menu so it would resize proportionally to the

window’s current size. While working on this project, we had discovered several issues that

impede our progress. Most of these issues related to the installation of ReportAid, though there

were a few issues with the window resizing.

2

Table of Contents

Abstract 2

Table of Figures 4

Figure 1: Instructions and List of Dependencies on the Github Page. 10 4

Introduction 4

Background: ReportAid 5

Background: Humanitarian Free and Open Source Software 6

Description of Work 7

Installation of ReportAid 8

Constraints/Challenges within the Project 11

Recommendations for the Next Team 16

Conclusion 18

References 19

3

Table of Figures
Figure 1: Instructions and List of Dependencies on the Github Page 11

Figure 2: Error when Compiling Program. 13

Figure 3: Error Messages from Ganache 14

Figures 4: Example of ReportAid’s Menu 15

Figures 5: Example of Web3 Missing 17

Figures 6: Command to Install Windows-Build-Tools 18

4

Introduction

The goal of this IQP is to contribute to an ongoing non-profit software project. After

searching through Github, we found a few projects that we were interested in and felt that we had

sufficient skills to contribute. We chose ReportAid because it clearly identified the tasks to be

worked on. We were also interested in the project because it would enable humanitarian groups

to use an improved method when doing aid reports. Three years ago, at the UN World

Humanitarian Summit in Istanbul, an agreement was reached that a new report for aid methods

would be essential. One possible method to improve aid reports is through blockchains.

Blockchain could allow for a more efficient and secure way to manage the finances of

humanitarian aid. The project proprietor and primary programmer is Steve Huckle, a Ph.D.

student at the University of Sussex. He also goes by Glowkeeper.

Our primary objective over most of the IQP period, October 2019 to May 2020, has been

to fix the various UI issues. The main priority of the project was an issue with resizing the menu

bar. The content of the menu bar did not change size when the width of the ReportAid window

changed. We were able to uncover many bugs during the installation and setup process. These

complications impeded progress and prevented the program from compiling or working. By the

end of the IQP period, we had not found a plausible solution for our initial goal of resizing the

menu items. The Humanitarian toolbox IQP has given us experience in jumping into unfamiliar

projects, learning unfamiliar program languages, difficulties of installation of various platforms,

gaining project group skills, and gaining real-life work experience through communicating with

the team.

5

Background: ReportAid

Blockchain is commonly used in banking, investment, and cryptocurrency. It is used to

keep track of financial transactions between participants. Each block stores transaction

information and chains them together in chronological order. This process makes it easy to track

the movement of money while making it difficult for a single block to be doctored. "This is the

repository of ReportAid – a tool for reporting on humanitarian aid. ReportAid is a blockchain

implementation of IATI (International Aid Transparency Initiative) Standard." 3(Huckle) The

purpose of this program is to use blockchains to deliver trustworthy aid reports by making them

transparent, to make sure that the funds are actually going to the qualified people in a timely

manner. Blockchains are created in chronological close-knit stacks, and it is impractical to falsify

transactions because of the excess computation required to change any information. The project

was first drafted by another person, but they ended up pursuing a different purpose for the

program. Steve Huckle wanted to continue the original concept and prove that it can be done. A

significant focus that came out of the 2016 UN World Humanitarian Summit in Istanbul was

referred to as "Grand Bargain." The precedence over finding a transactional tracking method that

fits the "3 Ts"- traceability, totality, and timeliness. Potentially, blockchains could be used, but at

the moment, there is limited research on its effectiveness and may require a costly technological

overhaul to be implemented everywhere.

6

Background: Humanitarian Free and Open Source Software

Humanitarian Free and Open Source Software (HFOSS) is a type of open-source

software intended to be used by non-profit organizations worldwide to help people in need.

Higher education institutions have been adding HFOSS projects into their STEM programs. The

benefits of experience working on a project are numerous, including; "improved student

learning, increased motivation to study computing, attracting women to computing and increased

appreciation of the societal impact of computing." 4 They also gain experience about doing a

professional project. Not only do they learn about group coordination and organization skills, but

they also experience more of exploring Free and Open Source Software (FOSS) communities

like Github, fleshing out their programs with open community imports and learning how to

distribute the finished software. The participants contributing to humanitarian open source

projects inherently are welcoming to women and underrepresented minorities, and tolerant to

students' emerging skills. Students get to increase their skills in computer science, the

opportunity to work with a professional team, and a tangible project to showcase to potential

employers.

Description of Work

The main focus of the work, while not handling the necessary humanitarian finances, is to

fix UI issues. Specifically, our focus was on fixing the issue related to the menu bar. The issue

with the menu bar was that it did not properly adjust when the window was resized. Our goal

7

was to make the menu bar fit inside a percentage of the screen no matter the size of the window.

The project requires knowledge of Git, JSX (JavaScript XML), TypeScript, Material-UI, and the

program's internal workings. This required researching programs on the web, and then learning

how to use them. In order to facilitate testing the fixes to the menu problem, ReportAid needs to

be downloaded to our computer in a runnable format. Changes and improvements need to be

tested directly with ReportAid to verify that it is working. The goal is to produce a testable

software improvement. Once completed and verified, we will provide the changes to the project

manager. We currently have the code, but we are still working on getting it to run. At several

points, we have run into incompatible errors and reported them to the Github repository issues

page. After reporting the issues, there were delays where we waited for any responses and fixes.

Our initial approach was to utilize the response delay which could be as long as one or two

weeks by trying to reverse-engineer the ReportAid UI JSX Code Sandbox emulator. Our Success

was limited in creating a menu because that part of the code had deep relations to other parts of

the program, so it was impractical to import all the necessities into a sandbox. A significant

breakthrough was discovering that ReportAid had incompatibility problems with newer versions

of Node.js. It was quickly fixed after bringing it to Huckle's attention, and he immediately fixed

it. Without this intervention, he would not have known that his program only worked on his

computer. After finishing setups, we focused on learning React, Redux, and TypeScript to

understand where the UI bug was coming from and ways to fix it. As we worked and made

changes to the main program, all our changes were documented and sent to a separate version of

the repository pull. As we discovered new errors in the program, we posted on the ReportAid

8

issue page and sent a report on the issue of the project page on Github and explained the problem

we had.

We have the code but did not have all the components to run it because it depended on

setting up other programs and specific console commands, that were unfamiliar to us.

Installation of ReportAid

Installation of ReportAid required multiple steps,though they are clearly listed on the

ReportAid Github repository page, the multiple downloads and requirements were confusing and

time-consuming. In order for ReportAid to work, several dependencies had to be installed first.

The first dependency is the MetaMask extension for Firefox. This extension would allow for the

browser to easily interface with the blockchain application. MetaMask also had to be configured

to point to the Rinkeby Faucet. The next dependency is the Firefox Dat P2P Protocol extension,

which makes the dat://protocol available to be modified and accessed. Other dependencies

required for ReportAid are node.js and npm. Node.js is a dependency for npm. Npm is a

package installation service used to install the rest of the dependencies for ReportAid. Some of

the last dependencies that must be manually downloaded and installed are Ganache and Truffle.

Ganache is a blockchain tool used for developing blockchain applications like ReportAid.

Truffle is a development environment for developing blockchain applications. The last

dependency that must be manually downloaded and installed is http-server. This step is done by

9

running the command "npm -I http-server". This is used to run the server that will host the

ReportAid application.

After downloading Ganache, it will need to be installed by going to the Ganache

directory and running "npm install && npm start". The command will install Ganache, along

with any of Ganache's dependencies, and start Ganache. The next step requires going to

ReportAid repository's/app directory and run "npm install", which will install any other

dependencies for ReportAid.

Next, we will publish the contracts to your local blockchain using Ganache. To do this,

first, we will start Ganache and ensure that it is running on http://localhost:8545. In the /app

directory of ReportAid, we will run the following commands in sequence: "npm run generate",

"npm run develMigrate". Lastly, we will modify the config file /app/src/app/utils/config.ts of

ReportAid so that the contract static variables contain the addresses generated by "npm run

develMigrate".

Finally, we will compile ReportAid by running "npm run compile" in the /app directory

of ReportAid. Afterward, we start ReportAid by running "npm run start" In order to access

ReportAid, all you have to do is open up a Firefox window and go to the url

http://localhost:8083.

10

Figure 1: Instructions and List of Dependencies on the Github Page.

11

Constraints/Challenges within the Project

A significant hurdle throughout the project was installing ReportAid on our computers.

We attempted to utilize simulators to get around installing the program so we could start

identifying solutions and recommend improvements. Unfortunately, the complexity of the code

requires that ReportAid needs to be installed directly on our computer for testing. The first

obstacle with installation was that ReportAid's initial calibration was not compatible with the

consumer version of node.js 11. It only worked on Steve Huckle's computer setup, but thankfully

it was quickly fixed.

The next problem, discovered late November, was an error in a third-party

program-Ganache had an update which resulted in missing an executable "start" script (see

below) so we could not compile it. We were unable to resolve the error, thus halting our

progress. We believe it has been there all along, but we had not noticed it. It is missing a

runnable script, which required us to place an error report on the ganache Github page.

12

Figure 2: Error when Compiling Program..

13

Figure 3: Error messages from Ganache

We were not the only ones experiencing errors. There were multiple complaints posted

on Github, so it eventually was resolved with the next update sometime early January. Now that

Ganache was working, we moved on to build and deploy smart contracts but overlooked an

explicit instruction that required that Report aid's app/ directory needed to be installed with npm,

14

setting up the rest, and also how to start up the program casually. After that, we were partially

successful in setting up and having access to a running version of ReportAid. Our Attempts to

recompile the program with changes to the program failed, and then it became difficult again to

reinstall ReportAid.

Figures 4: Example of ReportAid’s Menu.

With it installed, we now needed to learn how the program controls the menu's UI and how to fix

it best. The UI, in addition to being all shaded blue, the top menu bar contents do not fit when the

window shrinks. We had ideas on how to apply changes to the program but unable to test our

possible solutions despite the program now running. It was refusing to accept the changes we

15

made and failing to compile them. Our central belief is that the errors originate from where the

menu bar was created, appBar.tsx. One method that we were unable to test was to encase each

<MenuItem> in the file with a <grid Container>, so it will dynamically adjust to the screen side.

During March, the Coronavirus had hit, causing confusion and delays in working on the

project, as we all had to work out how to do college courses remotely. Working from home was

challenging from difficulty in finding a quiet space with family around, staying motivated &

focused outside a college environment, and occasionally local internet not being available. The

significant delay was digitally getting back in contact with the other project members and

working remotely together.

Various computer obstacles prevented the project members from independently making

much progress, and without physically having access to the same computer, they have not been

able to resolve errors and troubleshoot in real-time. Sheltering in place negatively impacted our

IQP progress because of the inefficiency of not being able to see each other's computers, and the

inability to seek campus provided technical support or help from members of the programming

club & the community board.

By the end of April, we were finally able to resolve the initial obstacles from working

from home and got together as a team. We ascertained the compiling issue and we attempted to

reinstall ReportAid to learn why the running program gave compile errors. When trying to run

again, new problems occurred such as; the importing of 'Web3' could not be resolved.

16

Figures 5: Example of Web3 Missing

Recommendations for the Next Team

As was mentioned earlier in the report, it is necessary to learn and install the program's

languages: JSX, TypeScript, and Material-IU. We recommend the next group resolve possible

issues and delays with installing ReportAid on Linux or Mac. We think the program is more

compatible with Windows because npm has made the Windows-Build-Tools package.

17

Figures 6: Command to Install Windows-Build-Tools.

Another suggestion would be not to either do this IQP in only one term or finding a

method to get a quicker response from the project proprietor/ primary programmer, Steve

Huckle. We recommend doing it over at least three terms as we did. As discussed, there can be a

week delay when messaging the manager because this is his side project. The next group could

also consider improving the Report Aid's GitHub documentation to better explain the steps to

install the program and how to use it. Huckle had also been looking into adding a logging/error

reporting feature in the app so users can report their issues in the app instead of going to Github.

18

Conclusion

The main goal of the IQP was to contribute to an ongoing non-profit software project to

gain experience providing real-life team projects that benefit society. The project we chose from

Github, ReportAid, meets all criteria. The main focus was to fix UI issues, specifically fixing an

issue related to the menu bar. The project requires knowledge of Git, JavaScript XML,

TypeScript, & Material-UI, learning these languages was essential to fix the problem. We felt

that our contributions to the project had been helpful but limited because of difficulties in

installing the program. During the first term of the IQP, we thought we would install a working

version of the program at the end of winter vacation. Because of the bugs we encountered across

all three terms, we currently don't have a working version of the code, however, we helped with

the processes of installation and we hope this will allow future teams to progress.

19

References
1. Mary K. Pratt, “How to Write a Statement of Work”, 22 MAY 2006, Accessed 9 November

2019

http://www.computerworld.com/s/article/111327/How_to_Write_a_Statement_of_Work

2.https://www.brighthubpm.com/project-planning/55260-writing-an-effective-statement-of-work

/

3.Steve Huckle ReportAid Abstract,

https://github.com/glowkeeper/ReportAid/blob/master/docs/abstract.md. Accessed 9 November

2019

4. Postner, Lori & Burdge, Darci & Jackson, Stoney & Ellis, Heidi & Hislop, George &

Goggins, Sean. (2015). Using humanitarian free and open-source software (HFOSS) to introduce

computing for the social good. ACM SIGCAS Computers and Society.

45. 35-35. 10.1145/2809957.2809967.

20

