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1. Abstract 

Many of the properties relevant to solar energy conversion in a liquid-semiconductor-

liquid cell are not understood, particularly at the back, “Ohmic” contact to the 

semiconductor. The goal of this project is to study how the back contact affects the cell 

voltage. We hypothesized that the open-circuit voltage of a dual-liquid-junction 

photoelectrochemical cell under illumination would decrease in a 1:1 relationship with 

an increase in the barrier height potential at the back contact.  We employed a thin layer 

cell with H-terminated n-type silicon as the semiconductor was used along with non-

aqueous metallocene-based redox couples that demonstrate facile, 1-electron transfer. 

We observed decreasing open-circuit voltage values as potential energy of the redox 

couples shifted to more positive potentials, which correspond to increasing barrier 

heights for n-Si electrodes.  Voltage values to not follow the perfect 1:1 relationship as 

predicted by the model but the relationship between open-circuit voltage and back-

contact redox potential energy supports the hypothesis. We discuss how the results 

enable more detailed analyses of surface chemistry and what factors into energy 

conversion.  We furtherer include data acquisition methodology including 

electrochemical impedance spectroscopy techniques and a near-term outlook for 

ongoing MQP projects in the Grimmgroup. 

  



 5 

2. Introduction 

2.1. An Introduction to Solar Power 

In recent years, renewable energy has become increasingly popular due to growing 

concerns about global warming. Renewable energy comes from natural renewable 

sources and in 2009 they accounted for 8% of all energy used in the US and 18% of all 

energy used globally.1-2 Solar energy has been growing in popularity, from 2008 to 2015 

the amount of solar power installed increased more than 23 times. One reason for the 

increased interest is that solar is the most abundant energy resource on earth, 173,000 

terawatts of solar power strikes the earth contiguously each day, which is more than 

10,000 times the world’s total rate of energy use.3 Solar cells, often called photovoltaic 

cells, are often made up of semiconductors. Inside of the semiconductor there are 

various stages that make up the cell. The conduction band is the lowest vacant 

electronic state and the valence band is the highest possible level of electron energy. 

Between the two is the Fermi level that is the total electrochemical potential for the 

electrons. When the sun shines on the solar cell electrons are excited causing the 

semiconductor to produce energy. The band gap is the energy difference between the 

top of the valence band and the bottom of the conduction band. Recombination occurs 

when an electron loses energy and returns to the conduction band to stabilize itself, 

combining with a hole in the process.  The absorption of light hν > Eg results in the 

promotion of an electron from the valence band to the conduction band. Net electric 

current results from the journey that electron takes back to the valence band that does 

not involve recombination.4  

When a contact is made with a semiconductor and a liquid, electrons lower their 

energy by moving from the liquid to the conduction band in the semiconductor. 5 This 

causes the bands in the semiconductor to deform so the fermi levels are the same and 

the fermi level becomes ‘pinned’ in a specific location.6 This movement in the Fermi 

level is called band bending. The energy difference between the conduction band and 
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the fermi level is called the barrier height. 7 Photoelectrochemical cells can be used to 

test these properties to understand how they affect the Voc.  

There are two different types of contacts that can be formed between the metal (or 

liquid) and the semiconductor. First is an Ohmic contact that creates a linear 

relationship between the current and the voltage and the contacts do not limit the 

current.8 Alternatively, a rectifying contact occurs when the electrons can only move in 

one direction and must overcome a bias based on the charge applied such that the 

electrons must overcome a barrier.9 An ideal semiconductor should show a linear trend 

when the Voc values are compared to the effective solution potential.10 These contacts 

effect how the electrons move through the cell. 

There are many contacts a semiconductor can make in order to bend the bands 

and collect current. When a p-type semiconductor comes into contact with an n-type of 

the same semiconductor and the bands bend it is called a homojunction solar cell. In a 

heterojunction solar cell, two different semiconducting materials compromise the n-

type and p-type materials. In a Shottky-style solar cell, a metal is used to form the 

contacting phase with either a p-type or n-type semiconductor. Finally, a 

semiconductor-liquid junction behaves similarly to a Shottkey contact, but instead of 

metal the contact phase is a redox couple that can move charge carriers to and from the 

surface.  
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Figure 1.  Traditional Solar Cell. The figure above depicts an n-type silicon solar cell with band 

bending at the front contact.  

 

2.2. Semiconductor-Liquid Junctions 

In photoelectrochemisty a semiconductor-liquid junction is employed, where against 

the front and back contact of the semiconductor a liquid is placed that can manipulate 

the band edge potentials so it can produce a specific voltage. This would be especially 

desirable in water splitting where the band edge potentials have to be positioned 

favorably in respect to the half reactions for O2 evolution and H2 evolution for solar fuel 

to be produced.11 The ability to increase the voltage would also be helpful in creating 

efficient solar cells that could produce more energy. 

There are various different semiconductors that can be used to solar cell. An 

extrinsic semiconductor has been doped to give it different electrical properties. There 

are two classifications of extrinsic semiconductors, p-type and n-type. P-type 

semiconductors have a larger concentration of hole then electrons compared to n-type 

semiconductors which have a larger concentration of electrons then holes. 12  In a 

semiconductor-liquid junction, n-type will be used in this example, the work function of 

the metal is smaller then the work function of the semiconductor. The work function is 
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the fermi energy of the metal. Understanding how semiconductor types function can 

help explain why specific Voc values occur. 

 

2.3. Open Circuit Voltage  

The open circuit voltage, often called Voc, reflects a change in the quasi-Fermi levels is a 

measure of the amount of voltage moving through the cell.  Definitions of Voc vary 

based on derivations of the majority vs the minority carrier current, and various 

simplifications.13-14 Solar cell Voc is a kinetic balance between photocurrent (jph) and the 

other ‘dark’ currents in the cell. Dark current is the residual current that flows through a 

cell when there is no illumination, and consists of jth, jbc, jss, and jbr. Equation 1 specifies 

the net current, j, as a function of bias voltage, V, and photocurrent, jph, when 

dominated by thermionic emission in the absence of other dark current processes, i.e. jbc 

= jss =  jbr = 0.   

 𝑗 = 𝐴𝑇% exp )*+,,.
/0

	 exp *234
/0

− 1 − 𝑗78 ≅ 𝐴𝑇% exp )*+,,.
/0

exp *234
/0

− 𝑗78 (1) 

At no net current, j=0, the voltage under illumination is termed the open-circuit voltage, 

V(j = 0) ≡ Voc, and is given by eq 2.  

 𝑉;< = 𝜙>,? +
/0
*
ln CDE

F0G
 (2) 

In eqs 1 and 2, A is the Richardson constant, which is 112 A cm–2 K–2 for n–Si; q is the 

fundamental unit of charge, or 1.602 × 10–19 C; k is the Boltzmann constant, 1.38 × 10–23 J 

K–1; T is temperature, 298 K; and 𝜙>,? is the barrier height for the front contact, which 

can take any value between 0 V and q–1Eg (1.12 V for silicon). 15  The term /0
*
ln CDE

F0G
 will 

always be negative because jph is much smaller than AT2. Using this equation, the 

maximum Voc for silicon can be found as exhibited in eq 3 where jph is 25 mA cm–2, 

which is a typical photocurrent density for polished silicon under 1 “Sun” of light. 

 𝑉;< = 1.12	V +
K.LM×KOPGQ	 RS		%TM	U

K.VO%×KOPWX	Y
	ln

%Z	[\
4[G

KK%OOO	 [\
4[GSG

		%TM	UG
 (3) 
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Under the assumptions of ideal behavior and dark current dominated by jth and no 

other dark processes, the highest Voc n-type Si can achieve is 0.611 V. Using these eqs 1–

3, the Voc can be found for a cell where only the bands by the front contact are bent. 

There have been a number of studies trying to understand the affect the front 

contact has on the Voc. Many of these studies have included research into chemically 

altering the surface of the semiconductor and studying its effect on band bending and 

photovoltage behavior.16 Studies have also utilized different semiconductor surfaces 

such as TiO2 and ZnO to study transfer properties.17 -18 However, few studies have 

looked into the back liquid-semiconductor contact. The back contact is generally 

considered ohmic and is not included in the testing or Voc computations.19 Such studies 

motivate the present investigation.  

 

2.4. Project Goal 

Herein, we report the photoelectrochemical behavior of n-Si electrodes upon variation 

of the potential of its back contact. We theorized the back contact is not necessarily 

Ohmic and we studied how that affects the Voc. We hypothesized that a back-contact 

barrier height (𝜙],^) would negatively impact the Voc as seen in eq 4.  

 𝑉;< = 𝜙>,? − 𝝓𝑩,𝐛 +
/0
*
ln CDE

F0G
 (4) 

This indicates the voltage would decrease linearly with a one to one ratio as the back 

contact barrier height increased. We examined this by testing the voltage produced by 

the solar cell when the front contact is kept the same but the back contact is varied. 

Instead of employing the traditional electrochemical cell that utilizes a metal back 

contact of fixed work function, the present experiments utilize a dual-liquid-junction 

thin-layer cell. The dual-liquid-junction thin-layer cell allows for redox couples to be 

tested at the back contact while the front contact can stay the same. The thin-layer cell 

allows for efficient testing of the back contact and allows for the opportunity to study 
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the surface chemistry of the semiconductor. We employed hydrogen-terminated n-

Si(111) due to its well-understood chemical and structural properties, and in order to 

remove any variables such as interfacial dipoles that could affect the Voc. A number of 

different redox couples were employed to study the effect of varying the back contact 

redox couple. These redox couples included ferrocene+/0, cobaltocene+/0, 

dimethylferrocene+/0, octamethylferrocene+/0, and decamethylferrocene+/0. Ferrocene was 

used as the front contact facing illumination to maintain consistence in the experiments. 

Varying the back contact allows us to learn more about the relationship between the 

back contact and the Voc. The experiments and simulations describe a comprehensive 

depiction of the chemistry and carrier dynamics of semiconductor-liquid junctions.  

 

3. Experimental Section 

3.1. Hypothesis Calculations 

To arrive at eq 4 for our hypothesized relationship between Voc and the back-contact 

barrier height, we started with eq 1 that only takes in to account 𝜙],?, and considered 

the photocurrent at open circuit (j = 0) as shown in eq 5. 

 𝑗78 = 𝐴𝑇% exp )*+,,.
/0

	 exp *234
/0

 (5) 

From eq 5, we assume that a barrier height at the back contact, 𝜙>,^, would attenuate the 

photocurrent, thus reducing 𝑗78 to 𝑗78	exp
)*+,,b
/0

.  Adjusting eq 5 with the attenuated 

photocurrent yields eq 6, with subsequent rearrangements in eqs 7–8. 

 𝑗78	exp
)*+,,b
/0

= 𝐴𝑇% exp )*+,,.
/0

exp *2cd
/0

 (6) 

 CDE
F0G

= exp )*+,,.
/0

	exp *+,,b
/0

exp *2cd
/0

 (7) 

 ln CDE
F0G

= )*+,,.
/0

+ *+,,b
/0

+ *2cd
/0

. (8) 
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From there *
/0

 was divided out and Voc was solved which produced the final eq 9, which 

is identical to eq 4.  The back-contact barrier height term is in bold to highlight the 

difference as compared to eq 2.  

 𝑉;< = 𝜙>,? − 	𝝓𝑩,𝐛 +
/0
*
ln CDE

F0G
 (9) 

Several important implications exist for the additional 𝜙>,^ term in eq 9 as compared to 

eq 2.  When the back contact is Ohmic, 𝜙>,^ = 0, and eq 9 reduces to eq 2 as expected.  

However, the presence of a barrier height at the back serves to directly and linearly 

decrease Voc values concomitant with changes in 𝜙>,^.  Testing this relationship between 

𝜙>,^ and Voc motivates this work. 

 

3.2. Preparation of N-Si(111) 

Phosphorus doped, n–Si(111) (Silicon Inc., Boise, Idaho, 1.3–2.5 Ω cm resistivity, 500 ± 

25 µm thick, double-side polished) wafers, were diced into ~2 × 1 cm rectangles. Diced 

silicon pieces were initially sonicated in isopropyl alcohol (99.9%, Fisher Scientific) for 

10 minutes then rinsed with H2O (18 MΩ cm Millpore). Following sonication, the RCA 

Standard Clean–1 (SC–1 or RCA–1) and Standard Clean–2 (SC–2 or RCA–2) procedures 

further cleaned the silicon surfaces with each reaction consisting of a ten-minute 

immersion. The wafers were then dried and treated with 6M HF(aq) (diluted from stock 

solution, 49%, Transene, Danvers, Massachusetts) for 10 seconds, then thoroughly 

rinsed in H2O to remove any remaining chemical oxide. The samples were dried and 

transferred to a nitrogen-purged glove box (LABstar Glove Box Workstation, M. Braun 

Incorporated, Stratham, New Hampshire) for storage until needed. 

 

3.3. Chemicals Employed in Photoelectrochemical Experiments 

 The mixtures employed for the experiments used nonaqueous metallocene-based 

redox couples along with the accompanying electrolyte. The electrochemical studies 
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employed five redox couples: ferrocene/ferrocenium (Cp2Fe, ferrocene+/0), 

cobaltocene/cobaltocenium (Cp2Co, cobaltocene +/0), 

decamethylferrocene/decamethylferrocenium (Cp*
2Fe, decamethylferrocene+/0), 

octamethylferrocene/octamethylferrocenium (Me8Cp2Fe, octamethylferrocene+/0), and 

dimethylferrocene/dimethylferrocenium (Me2Cp2Fe, dimethylferrocene+/0). 

Sublimation under vacuum purified the metallocenes: cobaltocene (Cp2Co, 

bis(cyclopentadienyl)cobalt(II), 99%, Sigma-Aldrich), ferrocene (Cp2Fe, 

bis(cyclopentadienyl)iron(II), 99%, Sigma-Aldrich), and decamethylferrocene 

(Me10Cp2Fe or Cp*
2Fe, bis(pentamethylcyclopentadienyl)iron(II), 99%, Sigma-Aldrich). 

Chemical oxidation of decamethylferrocene with p-quinone (98+%, Alfa Aesar) and 

HBF4 (50 wt % aqueous solution, Alfa Aesar) produced decamethylferrocenium 

tetrafluoroborate following literature techniques. The metallocenium compounds: 

cobaltocenium hexafluorophosphate (Cp2CoPF6, 

bis(pentamethylcyclopentadienyl)cobalt(III)hexafluorophosphate, 97%, Sigma-Aldrich), 

ferrocenium hexafluorophosphate (Cp2FePF6, 

bis(pentamethylcyclopentadienyl)iron(III)hexafluorophosphate, 97%, Aldrich), and 

decamethylferrocenium tetrafluoroborate (Me10Cp2FeBF4 or Cp*
2FeBF4, 

bis(pentamethylcyclopentadienyl) were purified through recrystallization and then 

degassed under a vacuum.   

Octamethylferrocene (Me8Cp2Fe) was synthesized by refluxing 2.8 g of Iron (II) 

Chloride (FeCl2, anhydrous, 99.5%, Fisher Scientific) and 50 mL of Tetrahydrofuran 

(C4H8O, spectrophotometric grade 99.7+%, Alfa Aesar) then adding 3.0 g of Lithium 

Tetramethylcyclopentadiene (LiC5H(CH3)4, 97%+, Alfa Aesar) by cannula transfer.20 The 

solution was subsequently refluxed for 24 hours, the solvent was removed at 25 °C, and 

the resulting precipitate was sublimated under vacuum for several hours at 100 °C to 

yield long, yellow-orange needles.  The octamethylferrocenium salt was prepared 
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utilizing the same procedure that produced dimethylferrocenium tetrafluoroborate. An 

Ag/Ag+ electrode was used to assess the purity and it affirmed the appropriate 

compound had been synthesized.  

Lithium perchlorate (battery grade, Sigma-Aldrich) was used as received.  A 

commercial solvent drying system (JC Meyer Solvent System, Laguna Beach, CA) 

supplied “dry” trichloroethylene (99.9%, Fisher Scientific) that was stored in the glove 

box over activated molecular sieves (3Å, 1−2 mm beads, Alfa Aesar).  Propylene 

carbonate (99.5% anhydrous, Acros Organics) was stored over activated 3 Å molecular 

sieves in the glove box.  

 

3.4. Thin-Layer Photoelectrochemistry 

 The methods used in the thin-layer cell followed literature techniques and can be 

seen in Fig. 2.21 A copper wire was connected to the side of an indium tin oxide (ITO) 

slide using GaIn liquid alloy. Inside of the glove box the front ITO glass was placed into 

a custom-fabricated Delrin holder (McMaster Carr, not shown in Fig. 1) facing 

illumination. A pipette (0.2–2 µL Fisherbrand, NU00446) was used to place 0.5–1.0 µL of 

the redox couple onto the slide. A silicon wafer was carefully layered on top of the first 

redox couple. The pipet added 0.5–1.0 µL of the redox couple to the back of the silicon 

wafer. A second ITO glass was layered on top of the redox couple but slightly off center 

due to the wire connected to the first ITO glass. Two type-304 stainless steel clamps 

were placed on the top of the cell to maintain uniform compression between the two 

ITO slides. The back ITO slide that faces away from illumination connected to the 

working electrode and the front ITO slide that faces the illumination connected to the 

reference and counter electrode connections. The potentiostat (Biologic, SP-300) 

measured and recorded the desired values.  
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Figure 2.  Experimental setup employed for the dual thin-layer photoelectrochemistry cell. 

 

3.5. Differential Capacitance Potential  

Two different setups were used to perform the differential capacitance potential 

experiments. The thin layer cell was used and setup as previously mentioned for the 

tests involving both ferrocene and cobaltocene. Ferrocene was used as the front contact 

and cobaltocene was used as the back. For the gallium indium experiments the thin 

layer cell was used. 0.5–1.0 µL of ferrocene was placed onto an ITO glass and on top of 

that was placed a piece of gallium indium that was connected to a wire. The 

appropriate tests were taken. The data was fit using a program called LabVIEW. The 

data was loaded in and fit so outlier data was not included. Each point was fit by itself 

and the overall data could not be viewed during that fitting. This was done so the final 

graph and overall data was not considered or used to obstruct the fit of the individual 

points. Eq 10 was used to determine the flat-band potential.  

   𝐸?^ = 𝐸(𝐶)% = 0) − /0
*

 (10) 

Eq 11 determined the barrier height in n-type Si based on the extrapolated flat-band 

potential. 
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 𝜙>,j = 𝐸?^ +
/0
*
ln	 kl

km
 (11) 

ND is the dopant density of the semiconductor, which is 1 x 1015 K
noQ for n-type Si, and NC 

is the density of states in the conduction, which is 3.2 x 1019 K
noQ.22  

 

4. Results 

4.1. Differential Capacitance Potential  

Figure three presents the area-corrected differential capacitance–potential (A2Cdiff–2 vs E) 

of a thin layer cell using hydrogen-terminated n-Si (111) plotted with the electrode area 

corrected for differential capacitance as the y-axis and potential as the x-axis. Cp2Fe was 

used as the front contact facing illumination and Cp2Co as the back contact farther away 

from illumination.  

 
Figure 3.  Differential capacitance potential measured in the thin layer cell with ferrocene (Cp2Fe) as 

the front contact and cobaltocene (Cp2Co) as the back contact with hydrogen-terminated n-Si 

(111).  

By plugging the potential, roughly -0.83V, found in this experiment into eq 10 the flat 

band potential was determined to be -0.26V.  

𝐸pq = −0.83𝑉 − 25𝑉 
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That number was then placed into eq 11 to determine the barrier height for n-type 

silicon. 

𝜑qv =
−0.26𝑉
1𝐶 − 0.25𝑉	𝑙𝑛(

1𝑥10KZ 1
𝑐𝑚L

3.2𝑥10KT 1
𝑐𝑚L

) 

The back contact barrier height is -0.46V. 

 

4.2. Voc as a Function of the Back-Contact Potential 

 Figure 4 demonstrates photocurrent density potential (J-E) traces for the thin 

layer cell using hydrogen-terminated n-Si (111) where Cp2Fe is used as the front contact. 

Measurements were taken under ELI-simulated 100 mW cm-2 illumination. The solid 

line corresponds to measurements taken with Cp2Co as the back contact and represents 

the Voc = -450 ± 20 mV. the dashed line corresponds to measurements taken with 

Me2Cp2Fe as the back contact and represents the Voc = -170 ± 90 mV. This cell has a 

highly resistive current density which does not reach the light limited plateau and a fill 

factor of 0.25. This is attributed to the resistive behavior from insufficient compression 

that leads to the liquid being to thick inside of the cell to achieve the thickness needed to 

match the diffusion length of the metallocene species and the lithium perchlorate in the 

propylene carbonate.  
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Figure 4.  Open circuit voltage plot. Photocurrent density potential (J-E) measured in the thin layer 

cell with ferrocene (Cp2Fe) as the front contact and cobaltocene (Cp2Co) as the back contact 

with hydrogen-terminated n-Si (111). The solid lines correspond to scans taken under ELH-

simulated 100mW cm-2 illumination while the dashed lines correspond to scans taken in the 

dark. 

Table 1 presents the open-circuit photovoltage, Voc, results for the hydrogen 

terminated n-Si (111) in a dual thin-layer photoelectrochemical cell as a function of the 

back contact. All measurements were taken with ELH-simulated 100 mW cm-2 

illumination using ferrocene (Cp2Fe+/0) as the front contact. The table contains the 

sample number, back contact, Voc, margin of error, number of trials and the half wave 

potentials. The half wave potential demonstrates the formal potential for the redox 

couple vs. the ferrocene formal potential. 
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Case 
Number 

Back Redox 
Couple 

Voc (V) 
Num.  

Samples 
E0’ vs 

E(Fc+/0) (V) 

1 Cp2Co+/0 –0.446 ± 0.023 4 -1.33 

2 (CpCO2CH3)2Co+/0 ~–0.4 (est) 
 

-0.763 

3 Cp*2Fe+/0 –0.310 ± 0.010 4 -0.468 

4 Me8Cp2Fe+/0 –0.290 ± 0.030 4 -0.406 

5 Me2Cp2Fe+/0 –0.170 ± 0.009 3 -0.1 

6 Cp2Fe+/0 –0.050 ± 0.020 4 0 

7 Cp(COCH3)CpFe+/0 ~+0.1 (est)  0.261 

 

Table 1. Open-circuit voltage data. Open-circuit photovoltage, Voc, for n-Si(111) electrodes 

measured in a thin layer cell under illumination with ELH-simulated 1 sun illumination. All redox 

couple solutions consist of 100 mM for the species that accepted the minority photocarriers, and 

50 mM for the species that accepted the majority carriers, and 1M LiClO4 in propylene 

carbonate. 

 

Figure seven plots Voc versus the effective solution potential vs E (Cp2Fe) using 

hydrogen terminated n-Si(111) electrodes under ELH-simulated 100 mW cm-2 

illumination. Cp2Fe was used as the front contact and the back contact was varied and 

the error bars were added to show the possible error in measurement. Moving from 

right to left across the x-axis and from up to down across the y-axis the points 

correspond to the following redox couples in descending order: Cp(COCH3)CpFe+/0, 

Cp2Fe+/0, Me8Cp2Fe+/0, Me8Cp2Fe+/0, Cp*2Fe+/0, Cp2Co+/0, and (CpCO2CH3)2Co+/0. The line 

serves as a guide to indicate an overall trend in the behavior of the back contact.  
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Figure 5.  Open circuit voltage graph. Open circuit voltage versus the effective solution potential vs. 

E (Cp2Fe) with ferrocene (Cp2Fe) used as the front contact while the back contact was varied. 

The solid line acts as a guide to show the overall trend in the behavior. 

 

5. Discussion 

By analyzing the results of the various experiments, we were able to understand 

more about the relationship between the back contact and photoelectrochemical 

voltage. As seen in figure five when the open circuit voltage, or Voc, is compared to the 

redox solution potential there is a one to one linear slope. The linear trend shows the 

junction between the two is not ohmic and the back contact does deleteriously affect Voc. 

 The solution redox potentials position affects the Voc. When the solution potential 

is above the conduction band edge there is no barrier, the back contact is ohmic, and 

large Voc values are observed as is the case with Cp2Co. When the solution potential is 

between the semiconductor valence band and conduction band the Voc scales one to one 

with the solution potential. This indicates the hypothesis is correct the back contact does 

affect the Voc so eq 9 is valid. 
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 𝑉;< = 𝜙>,? − 	𝝓𝑩,𝐛 +
/0
*
ln CDE

F0G
 (9) 

is valid. So to obtain a high open circuit voltage factors that lead to barriers at the back 

contact such as surface states and non-ideal contacts should be avoided.  

The barrier height was measured and calculated from the differential capacitance 

potential experiment. The thermodynamic limit for Voc in n-type silicon is 0.7V, since 

about 0.4V are lost to recombination. The absolute value of the barrier height measured 

in the impedance tests was 0.46V, which is close to the absolute value of the measured 

Voc using the same front and back contact, 0.446V. This indicates there is a barrier 

height.   

The linear slope of the Voc vs. redox solution potential also indicates the back 

contact is ideal. In an ideal contact the metal and liquid are in contact on the atomic 

scale however the components do not intermix. So there are no surface charges or 

absorbed impurities at the interface. This means that experiments studying changes in 

the surface chemistry of the semiconductor can be performed and the back contact will 

not affect the results. Additionally, the accuracy of these results indicate that the thin 

layer liquid cell can produce accurate results so it can be used in future experiments. 

 

 

6. Future work 

Future goals for this project would be to test different semiconductors and redox 

couples in the thin layer cell. The thin layer cell is an efficient way to measure the open 

circuit voltage so it would be an effective way to test various types of semiconductors. 

This could include but is not limited to methylated silicon, perovskites, and various 

sulfides. Specifically, with the methylated silicon it would be interesting to see how it 

compared to the hydrogen terminated silicon when the same redox couples are used. 

Additionally, testing other redox couples to see how the trend continues could produce 
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noteworthy results. The thin layer cell is an interesting way to study 

photoelectrochemistry and there are a number of different directions this project could 

take.  
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1. Appendix One: Photoelectrochemistry 

1.1. Acquire the Appropriate Materials 

Appropriate materials include: two prepared ITO glasses, the delrin holder, multiple n-

type silicon wafers, the redox couple solution, the pipette and multiple tips. Materials 

that should already be in the glove box include: the potentiostat wires, kimwipes, 

gloves, and the metal plate that can be screwed into the box to hold the setup in place.  

1.2. Preparation Inside the Glove Box 

Screw the metal plate in such that the hole aligns with the hole in the bottom of the box. 

Screw in the delrin holder so the hole in the bottom aligns with the hole in the plate. 

Place the first ITO glass down so the wire side is towards the back of the holder (where 

it connects to the metal pole/plate).  

Place the appropriate amount of the redox couple onto the center of the ITO glass. Layer 

the wafer ontop such that it fully covers the redox couple. Place the next redox couple 

onto the center of the wafer. Then layer the ITO glass ontop with the wire on the 

opposite side of the wire on the first ITO glass (towards the front opening of the hole). 
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Make sure not to move the cell or smear the liquid so the redox couples don’t mix. 

Tighten the clamps on either side of the cell or place a small weighted object on top of 

the cell to compress it. Connect the appropriate wires from the potentiostat to the cell.  

1.3. Preparation Outside the Glove Box 

Turn on the potentiostat. Open up the EC-Lab program and press the connect button 

(it’s a small plug shaped button). Next press the plus button on the column on the left 

hand side and say yes to switching to modify mode. Then select OCV. Load the settings 

listed in the picture below: 

 

Then select CV and load the settings listed in the picture below: 
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Then select CV and load the settings listed in the picture below: 
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So you should have one OCV and two CVs. Then click the advanced settings (in the left 

hand column) and check text export. Then go into the EC-Lab folder in the grimmgroup 

drive and create a new file for your experiment with the title: date-your initials-front 

contact-material type-back contact-experiment number. Turn off all the lights in the lab 

and shut the shades, you are now ready to start the experiment.  

1.4. Experimentation 

Press the green arrow on the bottom of the column on the far left, this will begin your 

experiment. Save your experiment to the file you created earlier. Turn the light on so it 

shines through the bottom of the box. Turn it on about 1 second into the first OCV. 

Keep it on for the OCV and the second CV and turn it off for the last CV. Repeat as 

needed.  
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1.5. Organizing the Data 

Open IGOR and a new word file. Save the word file into the folder you previously used 

and name it the same thing as the folder. Drag the text files from the folder into IGOR 

then copy and paste them into the word document. Use the key combination CTRL+N 

to get rid of files you have already copied. Continue until you are done.  

 

2. Appendix Two: Impedance  

2.1. Preparation Inside the Glovebox 

Follow the procedures from 1.1 and 1.2 of appendix one.  

2.2. Preparation Outside the Gloveboc 

Turn on the potentiostat. Open up the EC-Lab program and press the connect button 

(it’s a small plug shaped button). Next press the plus button on the column on the left 

hand side and say yes to switching to modify mode. Then select OCV. Load the settings 

listed in the picture below: 

 

Then select SPEIS and load the following settings: 
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Then select SPEIS and load the following settings which allow you to scan backwards 

and in-between the previously collected data points: 
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So you should have one OCV and two SPEISs. Then click the advanced settings (in the 

left hand column) and check text export. Then go into the EC-Lab folder in the 

grimmgroup drive and create a new file for your experiment with the title: date-your 

initials-front contact-material type-back contact-experiment number. Turn off all the 

lights in the lab and shut the shades, you are now ready to start the experiment.  
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2.1. Experimentation 

Press the green arrow on the bottom of the column on the far left, this will begin your 

experiment. Save your experiment to the file you created earlier. Turn the light on so it 

shines through the bottom of the box. Turn it on about 1 second into the first OCV then 

turn it off for both of the SPEIS runs.  

2.2. Organizing the Data 

Open up LabVIEW. Select open existing: \\research.wpi.edu\grimmgroup\EIS… and 

click the white arrow once a screen with four graphs pops up. From there click new and 

load your first SPEIS file in. Move the window such that the bottom left graph is not 

visible. Now fit the data by dragging the red line so it fits with the open circles. Once 

you have gone through all the data points the graph on the bottom left should look like 

a straight line. Save this file then repeat the procedure with the second SPEIS file. Then 

save that and load both SPEIS files in and fit both. Finally save that file then import 

them to IGOR using the procedure listed in appendix one-1.5.  

 

3. Appendix 3: Ag/Ag+ Reference Electrode 

3.1. Materials 

For this experiment you will need: AgNO3  (liquid), vycor Frit Disks that are ~7mm 

diameter ~2mm long, needle, silver wire, small septum for the top of the glass tubing 

and 6mm glass tubing about 6” long.  

3.2. Preparation 

1. Figure out what gauge needle the Ag wire goes through to thread the 

catheter 

2. Practice threading Ag wire into septum using a needle and a “dirty” wire 

3. Figure out heat shrink situation for the glass and the frit 

1. Try using the teflon heat shrink (it’s a pale white color)  
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4. Practice putting the septum on the 6mm glass outside of the glove box 

1. Try using a metal spatula to hold one side down while you push 

down the other side 

3.3. Cleaning 

1. Clean the Ag wire by abrading it (rubbing lightly with soft sand paper), 

the dip it into 10% Nitric Acid solution for 30 seconds, then rinse it off 

with 18-Ohmic H2O, and dry it  

1. 1.2ml nitric acid and rest h20 in 10 ml graduated cylinder dip for 10 

min dip in aqua regia 

2. Clean the glass using the standard technique (RCA 1 & 2) and then dry it 

in the oven overnight 

3. Wipe down the metal spatula with isopropanol  

3.4. Parts to Build Outside of the Glove Box 

1. Attach the septum to the bottom of the glass tubing with heat shrink and 

use a heat gun (Not the soldering iron!) to shrink the heat shrink 

2. Put the glass/vicor/heat shrink into the oven for a couple hours/overnight 

3. Thread Ag wire into the septum using the needle with the longer end 

“under” (the lower bottom side) the septum 

1. Only touch the top of the Ag wire (not the end going into the filling 

solution)  

2. Make sure it is dry then put it directly into the glove box 

3.5. Inside the Glove Box 

1. Prepare the solvent and supporting electrolyte solution, make sure it is 

stirred well and fully mixed. Do NOT add the redox species! 
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2. Dip the glass/vicor in solvent/electrolyte solution to wet the vicor fit  

3. Add 2-3 grains of AgNO3 to the electrode. The vicor frit can hit the bottom 

of the container 

4. Take the solvent/electrolyte solution and fill the electrode ⅓ to ⅔ of the 

way full 

5. Attach the septum to the top of the electrode.  

1. Using a spatula will help  

6. Put the wire/septum into solution and close the septum over the top of the 

glass tubing. Connect the reference electrode to part of the silver wire that 

is sticking out the top of the septum. 

3.6. Experimentation 

1. Add the redox species to the traditional electrochemical cell 

2. If you’re only adding one electrochemical species make sure you’re 

scanning in the correct direction for the species that you have 

3. Do not stir while collecting the CV, the solution must be quiescent  

 

 

 

 

 

 

 


