
Protocol Analysis

via The Chase

A Major Qualifying Project Report
submitted to the faculty of

Worcester Polytechnic Institute

in partial fulfillment of the requirements
for the degree of Bachelor of Science

in

Computer Science

by

Justin Pombrio

April 29, 2011

APPROVED:

Professor Joshua Guttman, project advisor

Professor Daniel Dougherty, project co-advisor

Professor Peter Christopher, project co-advisor

Abstract

We expound a method of analyzing cryptographic protocols using geometric

logic and the Chase. Geometric logic is a formal system of logic comparable

to first order logic, and the Chase is an algorithm which finds models for

a given geometric logic theory. We use the Strand Space formalism as a

model of protocol execution. Our work includes a rigorous translation of

the Strand Space formalism, developed at MITRE, into geometric logic, a

compiler that translates cryptographic protocols into geometric logic theories,

and an algorithm for checking isomorphism between protocol executions in

a special case in linear time.

1

Contents

1 Introduction 4

2 Background 6

2.1 Graphs . 6

2.1.1 Graphs and Digraphs 6

2.1.2 Relational Structures 9

2.1.3 Cores of Graphs . 9

2.2 Geometric Logic . 11

2.2.1 Definitions . 11

2.2.2 Eliminating Redundant Constructs 13

2.2.3 C.D.E. Form . 15

2.3 The Chase . 17

2.3.1 Chase Runs . 17

2.3.2 The Chase Algorithm 18

2.3.3 Algorithms . 18

2.3.4 Theorems . 21

2.4 The Strand Space Formalism 22

2.4.1 Messages . 23

2.4.2 Strand Spaces . 25

2.4.3 Infiltrated Skeletons 25

2.4.4 Homomorphisms . 27

2.4.5 Protocols . 27

2

2.4.6 The Adversary . 28

2.4.7 Analysis . 29

3 Protocol Analysis 30

3.1 The Correctness Criterion . 31

3.2 Normalization and Efficiency 33

3.3 Chains . 34

3.4 The Functor FPrep . 37

3.4.1 Correctness of Frep . 39

3.4.2 Augmenting Frep . 40

3.5 A Chase Implementation . 43

3.6 Future Work . 44

4 Homomorphism Problems 45

4.1 Single-Inbound Graph Isomorphism Testing 45

4.1.1 Phase I - Component Discovery 46

4.1.2 Phase II - Isomorphism Testing 47

4.1.3 Single-Inbound Edge-Colored Digraphs 48

4.2 Isomorphism Complete Problems 49

4.2.1 Structure Reductions 50

4.2.2 Examples . 52

A Needham-Schroeder Protocol Definition 58

B Needham-Schroeder Compiler Output 60

C The Strand Space Theory 63

D The Protocol Compiler 71

3

Chapter 1

Introduction

One technique for analyzing a cryptographic protocol is to find a set of ex-

ecutions of the protocol that are representative of all possible executions.

This method is used by other tools such as Scyther[4] and CPSA[13]. In the

Strand Space formalism one execution is representative of another if there is a

homomorphism from it to the other. Once these executions are enumerated,

they can be used to reason about the protocol. For instance, if a message

comes from a friendly source in all representative executions, then it must

come from a friendly source in all possible executions. In general, if a prop-

erty is preserved by homomorphisms and holds in each of the representative

executions, then it must hold in all executions of the protocol.

We said above that the Chase finds a set of models of a geometric theory,

but it does more than that. The set of models produced by the Chase is

jointly universal, meaning that for any model M of the theory, there is a

homomorphism from one of the models produced by the Chase to M . Notice

the close analogy between this property of the Chase and the method of

protocol analysis. This is our primary motivation for analyzing protocols via

the Chase.

This study of protocol analysis also led our research to two purely mathe-

matical areas. First, we extend an algorithm by Aho, Hopcroft, and Ullman

4

for checking rooted tree isomorphism in linear time to work on a larger class

of graphs. Specifically, we extend it to work on single-inbound digraphs :

directed graphs in which every vertex has in-degree at most one.

Second, a number of graph-like structures, such as relational structures

and directed graphs, are similar to graphs in that their homomorphism

and isomorphism problems have the same complexities as the corresponding

graph problems. We define and give several examples of structure-reductions

- functions from one kind of structure to another which preserve homomor-

phisms and isomorphisms.

We also overcame challenges presented directly by the conversion of pro-

tocols into theories. The theory for any protocol can be divided into two

parts. Part of the theory - the dynamic part - differs among protocols, but

the majority of it - the static part - is exactly the same for any protocol. We

implemented a protocol compiler, written in Haskell, which takes a protocol

description in a standard format, and outputs the dynamic part of its theory.

Upon discovering that the static part of the theory did not work well with

the Chase, we modified it, and showed that the modified theory is logically

equivalent to the original.

5

Chapter 2

Background

2.1 Graphs

2.1.1 Graphs and Digraphs

A graph is a set of vertices together with a set of unordered pairs of vertices

called edges. A finite graph can be drawn like so, with the dots denoting

vertices and the line segments denoting edges,

H

• •

}}
}}

}}
}}

• •

A directed graph, or digraph, is like a graph, but its edges have direction.

Formally, a digraph is a set of vertices together with a set of ordered pairs

6

of vertices called edges. Digraphs can be drawn like so,

H

• // •

~~}}
}}

}}
}}

��•

OO

Edge-labelled digraphs are digraphs whose edges have been arbitrarily

labeled. Formally, an edge-labeled digraph over a set of labels L is a set of

vertices V together with a set of ordered triples of the form (l, x, y), called

edges, with l ∈ L and x, y ∈ V .

H

• a // •

b~~}}
}}

}}
}}

c

��•
a

OO

We will refer to all of these graph-like objects as structures, and uniformly

denote their vertices by V (A) and their edges by E(A).

In general, a homomorphism h from one structure A to another B is a

mapping from the vertices of A to the vertices of B that preserves edges.

Thus if e ∈ E(A) then h(e) ∈ E(B), where h(e) is defined by applying h

to each vertex in e. For instance, here is a drawing of a homomorphism

from an edge-labeled digraph G to an edge-labeled digraph H. The numbers

on the vertices of G describe which vertex in H they are being mapped to.

Notice that not every vertex in H is the image of a vertex in G; this is not

7

a requirement of a homomorphism.

•3
b

��

•2
b

oo •1r
oo

•1 r // •2 b // •3
b

OO •1

r
~~||

||
||

||

g // •

•2 b // •3
b

OO

An isomorphism φ from one structure A to another B is a homomorphism

whose inverse is also a homomorphism. This means that φ is a bijection

between the vertices of A and the vertices of B which preserves edges in

both directions. Here is an example of an isomorphism between two graphs,

G

•1 •3

||
||

||
||

•2 •4

H

•1 •2

||
||

||
||

•3 •4

The homomorphism relation is reflexive because the identity function is

always a homomorphism from a thing to itself. It is also transitive, because

the composition of a homomorphism from X to Y and a homomorphism from

Y to Z is itself a homomorphism from X to Z. Thus the homomorphism

relation forms what is called a quasi-order. But homomorphisms are not, in

general, antisymmetric (that is, they do not necessarily form a partial order).

Take, for instance, the following digraphs

• // • •oo • // •

These digraphs are not isomorphic, yet there are homomorphisms from each

to the other. When there are homomorphisms from each of two things to the

other, we call them homomorphically equivalent.

8

2.1.2 Relational Structures

Relational structures are generalizations of digraphs in which edges are col-

ored and may have more (or fewer) than two vertices. An edge’s color,

however, fixes the number of vertices it has. Colors are called relation sym-

bols, the number of vertices of an edge is called its arity, and the mapping

from relation symbols to arities is called a signature.

More formally, a signature is a pair (S,A), where S is a set of objects

called relation symbols, and A is a function from relation symbols to natural

numbers, called the symbol’s arity.

A relational structure over a given signature (S,A) is a set of objects

called vertices and a set of facts. Each fact is a relation symbol R from

S applied to an n-tuple of vertices, where n is A(R). A fact with relation

symbol R applied to vertices x1, ..., xn is written R(x1, ..., xn).

2.1.3 Cores of Graphs

Core An object for which every endomorphism is also an automorphism.

Antichain A set of objects unrelated by homomorphisms.

The concept of the core of a graph is important when studying homo-

morphisms, because the image of a core under a homomorphism must be an

identical core. This property follows immediately from the definition of a

core. The following theorems appear in class notes from Peter Cameron[3].

The proofs are largely our own, however, and do not assume the graphs are

finite as Cameron’s proofs do.

Lemma 1. A homomorphism equivalence class has at most one core.

Proof. If an equivalence class has two cores, then there are homomorphisms

from each to the other, φ and φ′. Consider the compositions φ◦φ′ and φ′ ◦φ.

The first is an endomorphism from the first object to itself, and hence an

9

automorphism, and the second is an endomorphism from second object to

itself, hence an automorphism. Since both φ◦φ′ and φ′◦φ are bijections, so are

φ and φ′. Now we can show that φ is an isomorphism. We already know that

it is a bijective homomorphism, so we need only show that it’s inverse φ−1 is

a homomorphism. φ−1 is equal to (φ′ ◦ φ)−1 ◦ φ′, which is the composition of

an automorphism and a homomorphism, which is a homomorphism. Thus φ

is an isomorphism and the equivalence class’s cores are isomorphic.

We have made use of the fact that if f◦g and g◦f are both bijections, then

f and g are bijections. This claim warrants demonstration. Let f :: A→ B

and g :: B → A. First, since f ◦g is onto, for all a in A, ∃x ∈ A. f(g(x)) = a.

Thus ∃b ∈ B. f(b) = a, namely b = g(x), and f is onto. And since f ◦g is one-

to-one, for all x and y in A, g(x) = g(y) =⇒ f(g(x)) = f(g(y)) =⇒ x = y,

so g is one-to-one. By symmetry, f must also be one-to-one and g must also

be onto, so both f and g are bijections.

Lemma 2. A core is uniquely represented as an antichain of connected cores.

Proof. Every core is the disjoint union of some connected components. Each

component must be a core, or else it would have an endomorphism which is

not an automorphism and so would the whole object. Likewise, there can be

no homomorphism between components, since it could be used to construct

an endomorphism which is not an automorphism by mapping one component

to the other, and every other component to itself. Thus the components of

any core, which are themselves connected cores, form an antichain.

Lemma 3. A graph G is uniquely represented as the infinite sequence |Hom(Fi, G)|
for any enumeration of all finite graphs Fi.

In “Homomorphisms on Infinite Directed Graphs”[2], Bauslaugh points

out that cores ought be defined as graphs for which every endomorphism is

an automorphism, and not as a vertex-minimal member of a graph homo-

morphism equivalence class as suggested by Cameron[3]. For finite graphs,

these definitions are equivalent, but for infinite graphs only the latter results

10

in cores being unique. Consider, for instance, the (countably) infinite graph

with vertices {0, 1, 2, ...} and edges {(x, y)|x < y}. Under the vertex-minimal

core definition, this graph has an infinite number of cores, given by the sub-

graphs induced by {n, n+ 1, n+ 2, ...} for any n ≥ 1. These are in the same

homomorphism equivalence class: a forward homomorphism maps x to x+n,

and a reverse homomorphism maps x to x. And each core is indeed vertex

minimal: they each have infinitely many vertices, and there is no homomor-

phism to any finite graph, since that graph would have to include a clique of

every order.

2.2 Geometric Logic

Geometric logic is a formal system of logic comparable to first order logic.

A formula in geometric logic, called a geometric theory, is a conjunction

of implications between positive existential formulas. Positive existential

formulas are similar to a first order logic formulas, but lack negation and

universal quantification. They may also have infinitary disjunctions, though

we will not make use of this fact. The form of geometric theories makes them

particularly amenable to logical analysis.

2.2.1 Definitions

A signature is a set of function symbols F together with a set of relation

symbols R and a mapping arity :: F ∪ R → N. The arity function will give

the number of arguments each relation symbol and function symbol takes.

Fix a signature (F,R, arity) and an infinite set of variables V .

1. A term is either a variable x ∈ V or a function application f(t1, ..., tn)

where f ∈ F and arity(f) = n and t1, ..., tn are terms.

2. An atom has the form r(t1, ..., tn), where r ∈ R, arity(r) = n, and

t1, ..., tn are terms.

11

3. An atomic formula is true, or false, or an equation over terms t1 = t2,

or an atom.

4. A conjunctive formula has the form α1 ∧ ..., αn, where α1, ..., αn are

atomic.

5. Positive existential formulas are the closure of existential quantifiers,

finitary conjunctions, and infinitary disjunctions over atomic formulas.

More formally, a positive existential formula is,

• An atomic formula, or

• ∃x.α, where α is positive existential, or

• α ∧ β, where α and β are positive existential, or

•
∨
i∈I αi, where I is any set and each αi is positive existential.

6. A geometric logic formula has the form α ⇒ β, where α and β are

positive existential. A geometric logic formula may be open, and if so

it is implicitly universally quantified over its free variables.

7. A geometric logic theory, geometric theory, or just theory, is a set of

geometric logic formulas. Semantically, it is the conjunction of those

formulas.

8. A relational structure consists of a setD called its domain together with

an interpretation function I that assigns a meaning to each relation

symbol and function symbol. Specifically, I assigns a function of type

Dn → D to each function symbol of arity n and a relation of type Dn

to each relation symbol of arity n.

9. A relational structure M satisfies a geometric theory T , written M |=
T if every mapping from the free variables of the theory to domain

elements of the structure makes the formulas of the theory true, under

the usual semantics of logic. We will also write M |=E T to mean

12

that M makes the formulas of T true under the particular mapping

E. Any such mapping from variables to domain elements is called

an environment. The models of a theory are the relational structures

which satisfy it. Two theories are equivalent if they have the same set

of models.

10. A homomorphism from one relational structure to another is a map-

ping from the domain of the first to the domain of the second that

preserves functions and relations. We write A
h−→ B to mean that h is

a homomorphism from A to B, and A→ B to mean that some homo-

morphism exists. In the simple case that A and B contain no function

symbols, then for all relation symbols R,

If (x1, ..., xn) ∈ A(R) then (h(x1), ..., h(xn)) ∈ B(R)

A homomorphism A→ B should capture the idea that A is a general-

ization of B.

11. Let S be a set of models of a theory T . If for every model M of T there

is a model M ′ ∈ S such that M ′ →M , then we call S jointly universal.

If M1 can be thought of as representative of M2 whenever M1 → M2,

then a jointly universal set of models of a theory is representative of

all models of a theory. This fact will be fundamental to our approach

to protocol analysis.

2.2.2 Eliminating Redundant Constructs

A number of the “features” a geometric logic are redundant, in that any

geometric theory can be written without them. Either functions or existential

quantifiers can be eliminated in lieu of the other, and equations may be

eliminated outright.

This rewriting will take a geometric theory T and produce another theory

13

T ′ whose formulas do not use functions (or existential quantifiers, or equa-

tions), but whose signature is an extension of the signature of T . It would

be convenient to say that T and T ′ are equivalent, but equivalence not well

defined because their signatures differ. All that can be said is that they are

effectively equivalent in that there is a mapping from models of T to models

of T ′ that preserves homomorphisms in both directions.

Existential quantifiers may be eliminated in a very simple way. For each

existentially quantified formula ∃x.α with free variables ~y, introduce a new

function symbol f and return α[f(~y)/x] (that is, α with all occurrences of x

replaced by f(~y)).

Equations t1 = t2 may be eliminated from a function-free theory by in-

troducing a relation E to describe equality. First, equality must be reflexive,

commutative, and transitive, so introduce the formulas,

true⇒ E(x, x)

E(x, y)⇒ E(y, x)

E(x, y) ∧ E(y, z)⇒ E(x, z)

Second, the relations of the theory must be well-defined with respect to

equality, so for each relation R of arity n and for each parameter position

1 ≤ i ≤ n of R, add the formula

R(x1, ..., xn) ∧ E(xi, y)⇒ R(x1, ..., xi−1, y, xi+1, ..., xn)

Finally, replace each equation t1 = t2 with E(t1, t2).

Conversely, functions may be eliminated from a geometric theory in lieu

of existential quantifiers by the following transformation. For each function

symbol f of arity n, introduce a new relation symbol F of arity n+1 to denote

that “the last argument is equal to f applied to the first n arguments”. Since

14

functions should be complete and well-defined, add the formulas,

true⇒ ∃y.F (x1, ..., xn, y)

F (x1, ..., xn, y) ∧ F (x1, ..., xn, y)⇒ x = y

Now any formula that makes use of f , such as

R(f(x, x, x))⇒ ∃y.R(f(x, y, z))

may be replaced by

F (x, x, x, a) ∧R(a)⇒ ∃y.F (x, y, z, b) ∧R(b)

For conceptual clarity, we will focus on function-free theories with the in-

tention that theories that do make use of functions can always be transformed

into ones that do not.

2.2.3 C.D.E. Form

Lemma 4. Positive existential formulas can always be written in D.E.C form

(for disjunction of existentials). ∨
i∈I

∃~xiαi

where αi are conjunctive formulas.

15

Proof. Rewrite a formula using the following identities,

(∃x.α) ∧ β = ∃x.(α ∧ β)(∨
i∈I

αi

)
∧ β =

∨
i∈I

(αi ∧ β)

∃x.

(∨
i∈I

αi

)
=

∨
i∈I

∃x.αi

Likewise, geometric logic theories can always be written in such a way

that their formulas have the form

α→
∨
i∈I

∃~xiβi

where α and β are conjunctive. We will call this the C.D.E form.

Lemma 5. For every geometric theory T , there is an equivalent theory T ′ in

C.D.E. form.

Proof. To see this, first write the left and right parts of each formula in the

form
∨
i∈I ∃~xiαi, then consider the following equivalences,∨

i∈I

∃~xiαi ⇒
∨
j∈J

∃~yjαj =
∨
i∈I

αi ⇒
∨
j∈J

∃~yjαj

=
∧
i∈I

(
αi ⇒

∨
j∈J

∃~yjαj

)

16

2.3 The Chase

The Chase is an algorithm which finds a jointly universal set of models of a

geometric theory. It is based upon a nondeterministic algorithm which may

find a single model of a theory (or may fail). This nondeterministic algorithm

is called a run of the Chase. We will describe the Chase in terms of theories

expressed without function symbols, and with only finite disjunctions; it can

be extended to cover these possibilities.

2.3.1 Chase Runs

The behavior of a run of the Chase is intuitive. It keeps a model and repeat-

edly picks an unsatisfiable formula from the theory and augments the model

to satisfy one of the disjuncts. If all of the formulas of a theory become sat-

isfied, a model of the theory has been found and is returned. On the other

hand, if an unsatisfied disjunct (such as ⊥) is chosen, the run fails.

An example of a Chase run may be clarifying. Consider the following

simple theory about message transmissions in the Strand Space Formalism:

Send(n, m) => Node(n) & Mesg(m)

Recv(n, m) => Node(n) & Mesg(m)

Node(n) => Exists m. Send(m)

| Exists m. Recv(m)

Send(n, m1) & Send(n, m2) => m1 = m2

Recv(n, m1) & Recv(n, m2) => m1 = m2

Send(n, m1) & Recv(n, m2) => false

Recv(n, m) => Exists n’. Send(n’, m)

The relation Send(n, m) means that n is a transmission node and msg(n) =

m, and Recv(n, m) means that n is a reception node with msg(n) = m.

Let’s begin with the model

{ Node(0) }

17

By formula 3 with binding n→ 0, choosing the second disjunct,

{ Node(0), Recv(0, 1) }

By formula 2 with binding n→ 0,m→ 1,

{ Node(0), Recv(0, 1), Mesg(1) }

By formula 7 with binding n→ 0,m→ 1,

{ Node(0), Recv(0, 1), Mesg(1), Send(2, 1) }

By formula 2 with binding n→ 2,m→ 1,

{ Node(0), Recv(0, 1), Mesg(1), Send(2, 1), Node(2) }

All formulas are now satisfied, so the run has found a model of the theory.

2.3.2 The Chase Algorithm

The Chase as a whole works by branching to explore many runs simultane-

ously. It keeps track of several models and repeatedly selects a model, then

selects a formula and environment which that model does not satisfy. Next

it constructs several new models from the old one by forcing each disjunct,

in turn, to be satisfied, and adds this models to its list.

2.3.3 Algorithms

Chase Runs

A run of the Chase is a nondeterministic algorithm which takes a geometric

theory and may either produce a model of that theory or fail.

run : : Theory −> Model | Fa i l

run (thy) = loop (emptyModel) where

loop (M) =

i f s a t i s f i e s (M, thy)

then y i e l d M

18

e l s e Let (E, ’A => B1 | . . . | Bn ’) = pickFormula (M, thy)

Nonde t e rm in i s t i c a l l y choose a natura l number i in 1 . . n

case coe r c e (Bi , M) o f

Fa i l → Fa i l

M’ → loop (M’)

pickFormula(M , T) nondeterministically picks an environment E and for-

mula f ∈ T such that M does not satisfy f under E.

It is essential that the Chase never leave a (formula, environment) pair

unevaluated forever. An implementation that always eventually examines

any (formula, environment) pair is called fair , and one that doesn’t is called

unfair. We will continue to assume that Chase implementations are fair,

since their universality property relies on this.

Definition 1. Let r be an infinite run of the chase on theory T which has

models M0 → M1 → M2 → ... at each step as it runs, with M0 being the

empty model. r is fair if for all i, whenever f is a formula of T and E is

an environment over the domain of Mi such that Mi 6|=Ef , there is a step

Mj →Mj+1 for some j ≥ i in which pickFormula(Mj, T) returns (E, f).

A nonterminating fair run of the Chase will yield as its limit an infinite

model of the theory. In this way, nonterminating runs of the Chase are

correct, though not very helpful in practice.

Disjunct Coercion

The coercion algorithm takes a conjunctive formula f , a model M , and an

environment E and either produces a new model M ′ such that M →M ′ and

M ′ |=E f or fails. It is most easily described as a stateful algorithm over M

and E (that is, it will modify M and E as it runs, and its output is the value

of M when it finishes).

algor i thm

coerce : : Conjunct ive Formula −> Model −> Environment −> Model | Fa i l

coe r c e (’ true ’) = return ;

coe r c e (’ f a l s e ’ = FAIL ;

19

coe r c e (’R(x1 , . . . , xn) ’) =

Add (E(x1) , . . . , E(xn)) to the i n t e r p r e t a t i o n o f R in M;

return ;

coe r c e (’ x = y ’) =

Replace a l l o c cur r ence s o f E(x) with E(y) in M;

Bind x to E(y) in E;

re turn ;

coe r c e (’ a & b ’) =

coe r c e (a) ;

coe r c e (b) ;

r e turn ;

coe r c e (’ Ex i s t s x . a ’) =

Generate a f r e s h domain element c in M;

Bind x to c in E;

coe r c e (a) ;

r e turn ;

The Chase

chase : : Theory −> [Model]

chase (thy) = loop ([emptyModel]) where

loop (models) =

i f empty (models)

then []

e l s e l e t M = f i r s t (models)

i f s a t i s f i e s (M, thy)

then y i e l d M

loop (r e s t (models))

e l s e l e t (E, ’A => B1 | . . . | Bn ’) = pickFormula (M, thy)

newModels = []

f o r i = 1 . . n do

case coe r c e (M, E, Bi) o f

Fa i l → do nothing

M’ → add M’ to newModels

loop (models ++ newModels)

20

2.3.4 Theorems

We prove here two theorems claimed in the notes[7] of Professor Dougherty

of WPI.

Lemma 6. If a step of the Chase changes M to M ′, then M →M ′.

Proof. Let h be the identity homomorphism from M to M . When coercing

βi, update the homomorphism h. Let E ′ be an extension of h◦E under which

both α and βi are true. The only danger is that the act of coercing βi will

invalidate the homomorphism h. There are three cases in which this could

occur. First, if an atomic formula R(x1, ..., xn) is encountered, coercion will

add (E(x1), ..., E(xn)) to RM . But R(x1, ..., xn) is already satisfied by M ′

under h ◦ E. Second, if an existential formula ∃x.γ is encountered, coercion

will bind x to a fresh domain element in M . In this case, set h(E(x)) = E ′(x).

Third, if x = y is coerced, E(x) and E(y) will be identified. But since M ′

already satisfies this formula under h ◦ E, h(E(x)) = h(E(y)), so nothing

needs to be done.

Theorem 1. For any model M ′ of a theory T , there is a run of the Chase

on T which yields a model M such that M →M ′.

Proof. We will use the model M ′ as an oracle to guide the run. Keep a

map h from the domain of the Chase model M to the domain of M ′. To

begin, the Chase model is empty and so is h. As the Chase progresses, we

will maintain the invariant that h describes a homomorphism M → M ′.

Suppose the Chase picks a formula f = α ⇒ β1 ∨ ... ∨ βn and environment

E. M |=E α, so M ′ |=h◦E α. Since M ′ satisfies the theory, we also know

M ′ |=h◦E f . To satisfy both α and β, M ′ must satisfy one of the disjuncts,

say βi. So M ′ |=h◦E βi. Have the Chase run choose βi. The homomorphism

h can be updated per the above lemma.

Theorem 2. A geometric theory is satisfiable if and only if there is a fair

run of the Chase which does not fail.

21

Proof. First, see that if a geometric theory is satisfiable then there is a run

of the Chase which does not fail. This follows from the previous theorem -

the theory is satisfiable, so it has a model M , so there is a run of the Chase

that produces a model M ′ with M ′ →M .

Next, see that if a geometric theory is unsatisfiable then every fair run of

the Chase fails. Clearly no run could succeed, because it succeeds only when

it finds a model of the theory. Nor could the Chase run forever, because then

the theory would be satisfied by the model formed by taking the union of

the structures formed by the Chase at each iteration (by the chain theorem

above).

2.4 The Strand Space Formalism

The Strand Space formalism is a mathematical model for formally reasoning

about cryptographic protocols. It was developed by researchers at MITRE,

including Joshua Guttman, Javier Thayer, and Jonathan Herzog, beginning

in 1998 [14] [11] [9]. Our description of strand spaces is largely adapted from

the relevant publications.

The Strand Space formalism distinguishes between two different kinds of

participants: regular participants and an adversary. A single physical entity

can be represented as multiple regular strands if it executes more than one

session.

Participants in a protocol run are represented by strands, and communi-

cate with each other by sending and receiving messages. A regular participant

is represented by a regular strand and must follow the protocol. The adver-

sary is represented by zero or more adversary strands, and can manipulate

the messages that regular strands send and receive.

The actions of both the regular participants and the adversary are ab-

stracted into message passing; this is assumed to be able to capture all rel-

evant information. For instance, if a private key is assumed insecure and

22

the adversary may be able to learn it, this could only be represented by an

adversary strand receiving the key. As such, every strand consists of a (non-

empty) sequence of message passing events called nodes. Each node either

sends a message or receives a message. A term is any possible message.

In our representation of this formalism, nodes and terms are the first-class

objects. Strands are represented only indirectly through nodes.

2.4.1 Messages

The Strand Space formalism admits different message algebras. In the alge-

bra we will use, a message may either be basic and indivisible, or it may be

the encryption or pairing of two other messages. To be precise,

• Every basic message is a message.

• If x and y are messages, then the pair (x, y) is a message.

• If x and k are messages, then the encryption {|x|}k is a message. We

call x the plain-text and k the key.

We call the pairing operation pairing rather than concatenation because it

is not assumed to be associative.

One message is an ingredient of another, written m1 v m2 when it can

be obtained by repeated unpairing and decryption operations. Formally, v
is defined inductively by,

• x v x

• x v (x, y)

• y v (x, y)

• x v {|x|}y

• If x v y and y v z then x v z

23

The sub-message relation, written m1 � m2 is like the ingredient relation,

except that an encryption key is considered a sub-message of an encryption.

• x� x

• x� (x, y)

• y � (x, y)

• x� {|x|}y

• y � {|x|}y

• If x� y and y � z then x� z

A message m originates at a node n if n is a transmission node, m v
msg(n), and whenever n′ ⇒+ n, m 6v msg(n′). A message uniquely origi-

nates if it originates at a unique node, and it is non-originating if it does not

originate at any node.

We are going to assume that unspecified messages are basic. For instance,

if a protocol specification states that a principal A receives a message {|x|}kA
where kA is A’s public key and x is unspecified, x may not be a pair (y, z).

And if A receives a message of the form {|(y, z)|}kA for any y and z, the

receiving strand should terminate. We make this assumption for simplicity.

It makes it easier to unify messages. Removing it may be a consideration for

future work.

A homomorphism on messages is a function h :: M1 →M2 such that

• h(x) is basic whenever x is basic

• h((x, y)) = (h(x), h(y))

• h({|x|}k) = {|h(x)|}h(k)

This definition of message homomorphisms is not identical to the usual

Strand Space definition, simply because in our algebra indeterminants must

be basic, while in the proper definition they may be replaced by any message.

24

2.4.2 Strand Spaces

Fix a set of possible messages M . A directed message is a pair (m, d) such

that m ∈ M and d is either + or -. We will call nodes for which d = −
reception nodes, and nodes for which d = + transmission nodes. We will

write msg(n) = m and dir(n) = d when n = (m, d). Let D denote the

set of all directed messages. A Strand Space is a set of strands Σ together

with a partial function trace :: Σ → D+ from strands to finite sequences

of directed messages. Strand represent participants in the protocol, and

directed messages are their actions: message transmissions and receptions.

Now fix a strand space (Σ, tr). A node is a pair (s, n) such that s ∈ Sigma
and n ∈ N such that n is no larger than the length of s. We will write

msg((s, n)) to mean the nth directed message of s. We will say that one node

n1 is the parent of another node n2 when they are in the same strand and n1

immediately precedes n2; in other words, when n1 = (s, i) and n2 = (s, i+ 1)

for some strand s ∈ Σ and natural number i ∈ N .

2.4.3 Infiltrated Skeletons

We ended up using a model of protocol executions that we call infiltrated skele-

tons. An infiltrated skeleton consists of partially executed regular and ad-

versarial strands, a set of links on the nodes of the strands, a set of mes-

sages unique representing unique-origination assumptions, and a set of mes-

sages non representing non-origination assumptions. For those familiar with

Strand Space terminology, an infiltrated skeleton can be thought of as a com-

bination of a bundle and a skeleton; it contains both the adversarial strands

of a bundle and the origination assumptions of a skeleton. The following

definition is largely an adaption of the definition of a skeleton in the Strand

Space formalism[9]. Formally, an infiltrated skeleton over a set of messages

M consists of,

• A finite set of (regular and/or adversarial) nodes N

25

• A binary relation → on N

• A finite set of basic messages non

• A finite set of basic messages uniq

• A partial order ≤ on N

such that

• If n1 ⇒ n2 and n2 ∈ N then n1 ∈ N .

• If n1 → n2 then dir(n1) = +, dir(n2) = −, and msg(n1) = msg(n2).

• Whenever dir(n) = −, there is another node n′ such that n′ → n.

• ≤ is a subset of the reflexive transitive closure of → ∪ ⇒.

• ∀k ∈ non.∀n ∈ N.k 6v msg(n)

• ∀k ∈ non.∃n ∈ N. either k � msg(n) or k−1 � msg(n).

• ∀a ∈ uniq.∃n ∈ N.a� msg(n)

• ∀a ∈ uniq. if a originates at n ∈ N then

– a originates at no other node in N

– If a � msg(n′) where n′ ∈ N , then n ≤ n′ (where ≤ is the

reflexive transitive closure of → and ⇒)

We will sometimes refer to infiltrated skeletons simply as skeletons. When

we do, we are speaking loosely, and are not referring to traditional Strand

Space skeletons.

A link is an edge from a sending node to a receiving node that have the

same message. If there is a node n with a link to a node m, n sends m a

message and m receives it unaltered. There is also a partial order ≤ on nodes

which is a superset of the transitive closure of→ and⇒. We say that a node

n1 precedes another node n2 when n1 ≤ n2.

26

2.4.4 Homomorphisms

A homomorphism from one infiltrated skeleton A to another B is a pair

(α, φ), where α is a homomorphism on messages and φ :: NA → NB such

that

1. Whenever n1 ⇒ n2, φ(n1)⇒ φ(n2)

2. ∀n ∈ NA.dir(n) = dir(φ(n))

3. ∀n ∈ NA.msg(φ(n)) = α(msg(n))

4. n1 ≤ n2 implies φ(n1) ≤ φ(n2)

5. α(nonA) ⊆ nonB

6. α(uniqA) ⊆ uniqB

7. If a ∈ uniqA and a originates at n, then α(a) originates at φ(n)

2.4.5 Protocols

In the Strand Space formalism, a protocol is a finite set of strands called

roles, together with a set of unique-origination constraints and a set of non-

origination constraints. The roles describe the actions of the regular par-

ticipants in the protocol. A unique-origination constraint over a set of roles

mentions a message appearing in one of the roles (possibly as a sub-message).

It denotes the assumption that that message originates only in that strand.

For instance, if a protocol involves one of the principals generating a fresh,

never-seen-before nonce, that could be captured by a unique origination con-

straint on the message representing that nonce in the role of that principal.

Likewise, a non-origination constraint mentions a message appearing in one

of the roles, and it denotes the assumption that that message does not orig-

inate in any strand. When a principal is trusted only to execute a role with

27

a well-kept secret, this can be expressed as a non-origination constraint on

that secret.

2.4.6 The Adversary

The Adversary in the Strand Space formalism is of typical Dolev-Yao style.

He has full control of the network (and may thus obtain any message trans-

mitted by a regular strand), and is capable of the following operations:

Generation The Adversary may obtain any basic message that is not oth-

erwise assumed to be secure.

Unpairing If the Adversary can obtain the pair (x, y), then he may decon-

struct it to obtain x and y individually.

Decryption If the Adversary can obtain the encryption {|x|}k and the de-

cryption key k−1, he can also obtain the plain-text m.

Pairing If the Adversary can obtain messages x and y, then he may also

obtain the pair (x, y).

Encryption The Adversary may perform an encryption to obtain the mes-

sage {|x|}k if he has obtained the plain-text m and the encryption key

k.

The capabilities of the Adversary can be captured by strands that per-

form the operations. A pairing operation, for instance, may be represented

by a strand with three nodes: the first receives a message x, the second

receives a message y, and the third transmits the message (x, y). These

classes of strands are called adversarial strands, and are shown below. We

call these strands generation, pairing, encryption, unpairing, and decryp-

tion strands respectively. They can be divided into two categories: those

that involve constructing a message and those that involve deconstructing

a message to obtain its ingredients. We will call generation, pairing, and

28

encryption strands constructive, and we will call unpairing and decryption

strands deconstructive. Likewise, a constructive node is one that is part of

a constructive strand, and a deconstructive node is one that appears on a

deconstructive strand.

• x // (x,y) // •

��
• x //

��
• y //

{|x|}k// •

��k−1
// •

��
• x //

x // •

��y // •

��
• (x,y) //

x // •

��k // •

��
• {|x|}k //

2.4.7 Analysis

The Strand Space formalism is a well-established mathematical model of

cryptographic protocols. It can be used to reason about protocols and their

possible executions, and under the assumption of ideal cryptography, any

conclusion proved using the formalism will be true. This makes it an excellent

model with which to perform protocol analysis.

29

Chapter 3

Protocol Analysis

Our approach to protocol analysis has two stages. In the first, a protocol is

translated into a geometric theory such that the models of the theory repre-

sent infiltrated skeletons describing the possible executions of the protocol.

In the second stage, the Chase is used to find a jointly universal set of models,

which can be interpreted as possible executions of the protocol.

The theory for any protocol can be divided into two parts: a small dy-

namic set of formulas that vary between protocols, and a larger static set of

formulas that are always the same. We generate the dynamic formulas via

our compiler, and we wrote the static formulas by hand. Our protocol com-

piler takes as input a protocol, written as an S-Expression, in a format also

used by some other protocol analysis tools, such as Scyther[4] and CPSA[13].

It outputs the dynamic portion of a theory, such that the models of the com-

bined theory represent the possible executions of the protocol. The source for

the compiler itself is in appendix D. A sample compiler input - that for the

Needham-Schroeder protocol - can be found in appendix A, and its output

may be found in appendix B.

The Needham-Schroeder protocol is a simple communication protocol be-

tween two parties. It is often used as an example because it contains a vul-

nerability which is not obvious. Below is a drawing of a correct execution of

30

the protocol, as it would be represented in the Strand Space formalism.

A B

•
{|NA,A|}KB //

��

•

��
• oo

{|NA,NB |}KA

��

•

��
•

{|NB |}KB // •

NA, NB ∈ uniq

K−1A , K−1B ∈ non

Here KA and KB are the public asymmetric keys of A and B, and NA and

NB are large randomly generated messages called nonces. They can be as-

sumed to originate uniquely because of the extreme improbability of the same

message being generated by someone else. There is a vulnerability in this

protocol from B’s perspective, but not from A’s perspective. We won’t delve

into the attack, other than to say that it stems from the fact that A never

announces her intention to communicate with B, and can be fixed by adding

B to the second message.

3.1 The Correctness Criterion

The fact that the models returned by the Chase are jointly universal is funda-

mental to our purpose. Since we use models to represent protocol executions,

we would like the set of executions returned by the Chase to be representa-

tive of all possible executions of a protocol. Specifically, we would like them

to be jointly universal under skeleton homomorphisms. This leads to the

following correctness criterion.

For any protocol P , let TP be the geometric theory obtained by taking

31

the union of the output of the compiler with the static theory. We would

like the finite models of TP to mimic as closely as possible the infiltrated

skeletons of P . Specifically, there should be a mapping from the infiltrated

skeletons of P to the finite models of TP with a one-to-one correspondence

between the homomorphisms of the skeletons and the homomorphisms of the

models.

This idea is captured by the notion of a full and faithful functor from

category theory. A category is a set of objects together with a set of mor-

phisms between them that obey certain axioms; for a full definition see [12].

We will only concern ourselves with categories whose morphisms are homo-

morphisms.

Definition 2. A functor F from a category A to a category B is a mapping

that,

• Associates to each object a ∈ A an object b ∈ B

• Associates to each morphism x → y ∈ A a morphism F(x) → F(y) ∈
B

such that,

• F maps identity morphisms to identity morphisms

• If g is a morphism x → y ∈ A and h is a morphism y → z ∈ A then

F(g ◦ h) = F(g) ◦ F(h)

F is faithful if it maps distinct morphisms to distinct morphisms. It is full

if for every morphism h : F(x) → F(y) there exists an h′ : x → y such that

F(h′) = h. It is invertible if for every object b ∈ B, there exists an object

a ∈ A such that F(a) = b.

Definition 3. For every protocol P , let SP be the category whose objects are

the infiltrated skeletons of P and whose morphisms are the homomorphisms

32

among those skeletons. Likewise, let MP be the category whose objects are

the finite models of TP and whose morphisms are the homomorphisms over

those models.

Definition 4. A theory T correctly represents a protocol P if there exists

an invertible full and faithful functor F from SP to MP . We say that F
witnesses the correctness of TP .

We can now state the correctness criterion.

Theorem 3 (Correctness). For any protocol P , TP correctly represents P .

Corollary 1. Let P be any protocol, let F be a witness of the correctness of

TP , and let M be a set of jointly universal models of TP . Then F−1(M) is a

set of jointly universal infiltrated skeletons of P .

We believe this theorem to be true, though it is infeasible to prove it. Such

a proof would involve formally reasoning about our compiler - a nontrivial

Haskell program. We will, however, present evidence in favor of this theorem

in sections 3.4 to 3.4.2. Specifically, we will explain how to construct the

functor F from the above theorem, and argue that it will be full, faithful,

and invertible.

3.2 Normalization and Efficiency

In the Strand Space Formalism, the Adversary is often capable of accom-

plishing the same task in multiple ways. Without loss of generality, however,

we can assume that he refrains from certain sequences of actions that are

unproductive. Guttman and Thayer[10] proved that two such conditions,

normality and efficiency do not limit the adversary’s capabilities.

The efficiency condition requires that the adversary always takes a mes-

sage from the earliest point at which it appears. To be precise, if n1 ≤ n2,

dir(n1) = dir(n2) = +, msg(n1) = msg(n2), and n2 → n3, then n1 = n2.

33

The second condition is called normalization and requires that the ad-

versary never performs a deconstructive operation (unpairing or decryption)

immediately following a constructive operation (pairing or encryption). To

be precise, this is saying that there is never a link (n1, n2) such that n1 is a

deconstructive node and n2 is a constructive node.

We added formulas expressing the normalization and efficiency constraints

to the static portion of the theory. These two conditions help prune the ad-

versarial actions the Chase will search for and may thereby increase the

number of protocols for which it will terminate.

3.3 Chains

Even after introducing the normalization and efficiency constraints, the Chase

generally never terminated on any protocol. The culprit was a single formula

that states that when a node receives a message, some other node must have

sent it. We will call this the link formula.

Recv(n, m) => Exists n’. Link(n’, n)

This led the Chase to explore the possible nodes that could have sent the

message, which include nodes on strands that include another reception node.

The same formula can be applied to this new reception node, and so forth.

The solution is a concept put forth by Cas Cremers[4] [5] called chaining.

The chaining condition is a generalization of the normalization condition.

Simply put, the idea is that the ingredients of a message constructed by the

adversary can always be traced back to regular strands.

To describe chains in more detail, we will need some terminology. A path

is a sequence of nodes n1, n2, ... such that for any two nodes ni, ni+1 that are

adjacent in the sequence, either ni ⇒ ni+1 or ni → ni+1. A proper path from

a node n1 to a node nk is a path n1, ..., nk such that n1 → n2 and nk−1 → nk.

Finally, a deconstruction chain, or just chain, is a proper path on which all

34

nodes, except possible the first and last nodes, are deconstructive. We will

write Chain(n, n′) to mean that there is a chain from n to n′. Next, notice

that every node must be either constructive, deconstructive, or regular. We

will make use of this fact.

Now imagine tracing an ingredient of a message back along a path. Ei-

ther that message came from a regular strand, or it was received immediately

after being constructed by the adversary (via pairing or encryption), or it

was received immediately after being extracted from a larger message by the

adversary (via unpairing or decryption). Suppose the message came from

a deconstructive adversary node. Then there must be a proper path back

to a regular node, with nothing but deconstructive adversary nodes in be-

tween. The reason is that while tracing the path backwards, you could never

encounter a constructive node, because that would violate the normality

condition, so you must encounter only deconstructive nodes until you find a

regular node. Thus every reception node must be linked to a constructive

or regular node, or it must be the end of a chain that began with a regular

node. This conclusion is expressed by the following formula, which we will

call the chain formula,

Recv(r, mr) =>

Exists n. Link(n, r) & Constructive(n)

| Exists s, ms. Regular(s) & Send(s, ms) & Chain(s, r)

Here Recv(n,m) means that n is a reception node with msg(n) = m. And

Link(n1, n2) means that n1 → n2.

To be certain that it is safe to replace the link formula with the chain

formula, we will prove that they are logically equivalent. We will make two

assumptions: first, we will assume normality, and second, we will assume that

every node has a finite number of predecessors. While the latter assumption

is true of infiltrated skeletons - which are by definition finite - it might not be

true of all models - which may be infinite. In practice, a protocol execution

in which a node has an infinite number of predecessors is unrealistic. But by

35

the compactness theorem, we cannot hope to write a theory which excludes

these infinite models.

Lemma 7. If n is a deconstructive reception node with a finite number of

inbound predecessors, then there is a regular node n′ such that Chain(n′, n).

Proof. We will induct on the number of inbound predecessors of n (an in-

bound predecessor of n is a reception node n′ such that n′ ≤ n). Say that

n has p inbound predecessors. Since n is deconstructive, it is part of either

an unpairing or a decryption strand, so there is a node n′ and message mn′

such that n′ ⇒+ n and Recv(n′,mn′). Since Recv(n′,mn′), there is a node q

such that Link(q, n′). Consider the type of q,

1. If q is constructive, then normality is violated.

2. If q is regular, we also know that Regular(q) and Chain(q, n), so we

are done.

3. If q is deconstructive, then it has at most p − 1 inbound predeces-

sors. By the inductive hypothesis, there is a regular node s such that

Chain(s, q). Thus Regular(s) and Chain(s, n) hold, so we are done.

Theorem 4. The link formula and the chain formula are equivalent in models

in which every node has a finite number of inbound predecessors.

Proof. (Forward) Assume that the chain formula holds. Now suppose that

Recv(r,mr). By the chain formula, either

1. there is a constructive node n such that n→ r, or

2. there is a chain from s to r.

36

In the latter case, the existence of a path s, n1, ...nk, r implies that nk → r.

Either way, ∃n.n → r. Thus the formula Recv(n,m) ⇒ ∃n′.Link(n′, n)

holds.

(Reverse) Assume that the link formula holds. Now suppose thatRecv(r,mr).

We would like to show that one of the disjuncts of the chain formula holds.

Then ∃n.Link(n, r) and Send(n,mr). n must be constructive, deconstruc-

tive, or regular.

1. If n is constructive, then Constructive(n) holds and we are done.

2. If n is regular, then Chain(n, r) holds and we are done.

3. Otherwise, n is deconstructive. By the above lemma, there is a regular

node s such that Chain(s, n). Since n is deconstructive, we also have

Chain(s, r), and we are done.

The static theory, including the efficiency and chaining conditions, can

be found in appendix C.

3.4 The Functor FP
rep

We will now give evidence toward the correctness theorem. First, we will

define a functor Frep from all possible infiltrated skeletons to all finite models

of our static theory, and argue that Frep is full, faithful, and invertible. We

call it Frep because given any infiltrated skeleton s, it gives the representation

of s as a model. Next we will explain how to augment Frep to act on skeletons

of any given protocol P , and argue for its correctness in the particular case

of Needham-Schroeder.

Let S be the category whose objects are infiltrated skeletons of all possible

protocols and whose morphisms are the homomorphisms between those skele-

tons. Likewise, let M be the category whose objects are the finite models

37

of our static theory, and whose morphisms are the homomorphisms between

these models. Frep is a functor from S to M. This means it maps skeletons

to models and skeleton homomorphisms to model homomorphisms. Let us

first specify how Frep acts on skeletons.

Recall that an infiltrated skeleton is a tuple (N,→,≤, non, uniq) obeying

the axioms given in section 2.4.3. Let M be the set of all messages, and let

s = (N,→,≤, non, uniq) be any infiltrated skeleton in S. Then Frep(s) is a

model with domain N ∪M and the following relations,

Node(n)∀n ∈ N

Mesg(m)∀m ∈M

Send(n,m) iff dir(n) = + and msg(n) = m

Recv(n,m) iff dir(n) = − and msg(n) = m

NonOrig(m) iff m ∈ non

UniqOrig(m) iff m ∈ uniq

Link(n1, n2) iff n1 → n2

Precedes(n1, n2) iff n1 ≤ n2

Ingredient(x, y) iff x v y

Pair(x, y, z) iff z = (x, y)

Enc(x, y, z) iff z = {|x|}y
Basic(x) iff x is a basic message

Inverse(x, y) iff x = y−1

Parent(n1, n2) iff n1 ⇒ n2

E1(n) iff n is the first node of an adversarial encryption strand

E2(n) iff n is the second node of an adversarial encryption strand

E3(n) iff n is the third node of an adversarial encryption strand

... and so on for the other adversarial nodes

38

where n, n1, n2 vary over the elements of N and m,x, y, z vary over the mes-

sages of M .

The behavior of Frep on homomorphisms is easy to describe. Recall that

a homomorphism on infiltrated skeletons is a pair (α, φ), where α is a homo-

morphism on messages, φ is a mapping from nodes to nodes, and α and φ

obey the axioms of section 2.4.4. We define Frep((α, φ)) = α ∪ φ.

3.4.1 Correctness of Frep

We will now argue that Frep is an invertible full and faithful functor.

Theorem 5. Frep is an invertible full and faithful functor from S to M.

Proof. There are four properties we must verify. Frep must be full, faithful,

a functor, and well-defined. Faithfullness is easy to verify. It says that if

(α1, φ1) 6= (α2, φ2) then α1 ∪φ1 6= α2 ∪φ2. This follows from the disjointness

of nodes and messages in the Strand Space formalism.

Assuming that Frep is well-defined, it is also easy to show that it is a

functor. This means that (i) it maps identity homomorphisms onto identity

homomorphisms, which it does because Frep((id, id)) = id∪id = id, and that

(ii) it maps the composition of homomorphisms onto the composition of their

images, which it does because Frep((α1, φ1) ◦ (α2, φ2)) = Frep((α1 ◦ α2, φ1 ◦
φ2)) = (α1◦α2)∪(φ1◦φ2) = (α1∪φ1)◦(α2∪φ2) = Frep((α1, φ1))◦Frep((α2, φ2)).

In order for Frep to be well-defined, it must map skeletons to models, and

it must map homomorphisms to homomorphisms. To see that Frep is well-

defined on skeletons, we need that for any skeleton s ∈ S, Frep(s) satisfies

the static theory. Likewise, for it to be invertible, we need that for any model

m ∈M , F−1rep(m) obeys the axioms of 2.4.3.

For example, consider the fourth axiom of 2.4.3, which states that ≤ is

a subset of the reflexive transitive closure of → ∪ ⇒. Verifying that this

axiom is satisfied involves showing that the formulas involving Precedes in

39

the static theory guarentee that it includes the transitive closure of Link and

Parent.

We are left with the well-defined property for homomorphisms and the

fullness property. The well-defined property for homomorphisms says that if

(α, φ) is a skeleton homomorphism then α∪φ is a model homomorphism, and

the fullness property says that if α ∪ φ is a homomorphism then (α, φ) is a

homomorphism. Proving this is a matter of showing that each of the axioms

of 2.4.4 is implied by relations being preserved, and that the preservation

of each relation is implied by some axiom of 2.4.4. Additionally, message

homomorphisms must be examined in a similar fashion.

As an example, suppose that α ∪ φ : Frep(s1) → Frep(s2). Now consider

the first axiom of 2.4.4. It states that n1 ⇒ n2 implies φ(n1)⇒ φ(n2). This

axiom is satisfied, because if n1 ⇒ n2 in s1, then parent(n1, n2) in Frep(s1),
so parent(φ(n1), φ(n2)) in Frep(s2), so φ(n1)⇒ φ(n2) in s2.

Verifying the full correctness of Frep is a matter of examining the rest of

the axioms of 2.4.3 and 2.4.4 and the rest of the relations of appendix C, in

order to check that,

• S is an infiltrated skeleton iff Frep(S) is a model of the static theory

(Well-defined on skeletons and invertible).

• (α, φ) is a homomorphism on skeletons iff α ∪ φ is a homomorphisms

on models (Well-defined on homomorphisms and full).

3.4.2 Augmenting Frep

We will describe how to modify Frep to handle any particular protocol P . We

will call the modified functor FPrep; we would like that FPrep be an invertible

full and faithful functor from SP to MP . The theory TP contains two kinds

of relations not found in the static theory: (i) relations which say that a node

40

is the nth node of a role in that protocol, and (ii) relations which say that a

message takes the place of a particular parameter in a role. Modifying Frep
to handle a given protocol involves only augmenting its behavior on skele-

tons to respect these relations. This is best understood by example; we will

consider the case of the Needham-Schroeder protocol from the perspective of

the initializer. We will call this protocol NS.

The dynamic portion of TNS is given in appendix B. It contains 14

relation symbols beyond those found in the static theory. Six of them, such

as init2 declare that a node is the nth node of a regular strand of a given

role. init2(n), for instance, means that n is the second node of an initiator

strand. The other eight relation symbols declare that a message takes the

place of a parameter in a role. n1 resp(n,m), for example, means that n

is a node in an instance of a responder strand, and the instance of the n1

parameter for that role is m.

We define FNSrep as follows,

• For any skeleton s of NS, FNSrep (s) is the model Frep(s) with the follow-

ing extra relations,

– a init(n,m) holds iff n ∈ N , m ∈ M , and m is the value of the

parameter a of the initiator role in the strand of n.

– b resp(n,m) holds iff n ∈ N , m ∈ M , and m is the value of the

parameter b of the responder role in the strand of n.

– init1(n) holds iff n ∈ N and n is the first node of an initiator

strand in s.

– init2(n) holds iff n ∈ N and n is the second node of an initiator

strand in s.

... and so on for the other 10 relations.

• For any skeleton homomorphism (α, φ) from one skeleton of NS to

another, FNSrep ((α, φ)) = Frep((α, φ)) = α ∪ φ.

41

By the same argument as before, proving that FPrep is an invertible full

and faithful functor involves verifying that,

• S is an infiltrated skeleton of P iff FPrep(S) is a model of the TP .

• (α, φ) is a homomorphism on skeletons of P iff α∪φ is a homomorphisms

on models of TP .

For a skeleton to be a skeleton of NS, (i) it must satisfy the origination

assumptions of the initializer, (ii) it must contain at least one initializer

strand, and (iii) all of its regular nodes must be part of either intializer or

responder strands. The first two conditions are handled by the formula,

True -> Exists _n0, a, b, n1: name(a) & name(b)

& text(n1) & non-orig(Privk) & non-orig(Privk<a>)

& uniq-orig(n1) & init3(_n0) & a_init(_n0, a)

& b_init(_n0, b) & n1_init(_n0, n1)

Here the origination assumptions are that A’s and B’s private keys are

nonoriginating, and that the message n1 is uniquely-originating. The atom

init3(n0) declares the existence of an initiator strand, and the atoms

b init(n0, b) and n1 init(n0, n1) tie the messages b and n1 to this strand.

For a strand s to be an instance of an initiator or responder role, there

must be a mapping ψ from the parameters of that role to messages under

which s is identical to an initial segment of that role, and the role’s origination

assumptions are satisfied. In this case, the roles of NS have no origination

assumptions. The mapping ψ is given by the relations a init, b init,

This mapping forces the messages of a strand to have the correct form by

formulas such as,

resp1(_n) & n1_resp(_n, n1) & a_resp(_n, a) & b_resp(_n, b)

-> recv(_n, Enc<Pair<n1, a>, Pubk>)

Finally, the fact that a regular strand must appear to be an initial segment

of a strand is given by formulas such as,

42

resp2(_n) -> Exists _m: Parent(_n, _m) & resp1(_m)

The formulas of the above form together state that whenever a node acts as

the n+ 1st node of a role for n ≥ 0, it has a parent that acts as the nth node

of that role. Formulas of the form,

b_resp(_n, _x) & Parent(_m, _n) -> b_resp(_m, _x)

then ensure that its parent shares the same parameters.

We end with the following theorem, which we believe to be true, and

which implies the correctness theorem 3,

Theorem 6. For any protocol P , FPrep witnesses the correctness of P .

3.5 A Chase Implementation

We were able to use our approach to analyze the Needham-Schroeder protocol

from the initializer’s (Alice’s) perspective, finding a single correct execution

as expected. At that point in time, we had not yet developed a protocol

compiler, so we expressed the protocol in geometric logic by hand. We used

an implementation of the Chase written by Michael Ficarra, a student at

WPI, for his Major Qualifying Project[8].

Two major stumbling blocks were the inefficiency and lack of support

for function symbols in Ficarra’s Chase implementation. This should not

be taken as criticism of his work. While the Chase algorithm itself is sim-

ple, efficiently implementing it is a difficult task. Implementing parts of

the algorithm in the obvious way, such as implementing formula satisfaction

testing by enumerating all possible environments, often leads to exponential

slowdowns. Likewise, introducing functions is convenient, but conceptually

muddles the algorithm.

43

3.6 Future Work

Future work could include improving the Chase, making the protocol com-

piler more practical to use, and integrating the compiler and the Chase into

a single tool. The Chase implementation could be improved by making it

fair (see 2.3.3), more efficient, and by adding support for function symbols.

Ideally, a user would be able to provide a protocol description, and receive

a list of possible executions in a human-readable format. Another useful

feature would be the ability to verify security properties on a protocol by

checking that they holds of all its executions. The only properties that we

know can be verified in this way are positive existential; whether there is a

usable way to verify a larger class of properties is an open question.

We conclude that the use of the Chase for protocol analysis is a promising

approach.

44

Chapter 4

Homomorphism Problems

Considering a special case of protocol executions led to our discovery of the

following algorithm. In practice this class of executions turned out to be too

restrictive to be useful, but the algorithm stands on its own as a method of

testing isomorphism on single-inbound graphs.

4.1 Single-Inbound Graph Isomorphism Test-

ing

We will present an algorithm to test isomorphism between single-inbound

graphs. A directed graph is single-inbound if each of its vertices has in-degree

at most one. Our algorithm is an extension of the rooted tree isomorphism

testing algorithm by Aho, Hopcroft, and Ullman[1], which we will call the

AHU algorithm. It assumes that graphs are represented in such a way that

a vertex’s inbound edge can be discovered in constant time.

The algorithm has two stages. In the first stage, the components of the

graph are discovered, and in the second they are compared for isomorphism.

It can be shown that the components of a single-inbound graph are either

trees or unicyclic. This simplifies component discovery; applying a cycle-

45

detection algorithm to the inbound path of an unexplored vertex will yield

either a cycle, which must be the center of a unicyclic component, or a vertex

with no inbound edge, which must be the root of a tree. This classification

of the components also simplifies isomorphism testing. The tree components

can be compared using the AHU algorithm, and we present an algorithm to

compare the unicyclic components in linear time.

Lemma 8. No component of a single-inbound graph can have more than one

cycle.

Proof. Suppose a component has two cycles, A and B. Select a vertex x that

is in A but not in B, and a vertex y that is in B but not A. Since x and

y are in the same component, there must be a path from one to the other.

Without loss of generality, we can assume that the path goes from x to y.

Now consider the first vertex in the path which lies on B. It must have two

inbound edges - one from B and one from the path. Thus, by contradiction,

no component can have more than one cycle.

We can conclude that the components of a single-inbound graph are either

rooted trees (zero cycles), or several trees whose roots are connected with a

cycle (one cycle).

4.1.1 Phase I - Component Discovery

The purpose of the first stage of the algorithm is to discover the components

of the graph. To begin, initialize three sets to be empty: a set of cycles C, a

set of tree roots R, and a set of explored vertices V . To retain linear time,

an implementation of sets with constant insertion and lookup time must be

used. Next, for each vertex v in the graph, if v is not currently in E,

• Add v to E.

• Run a cycle detection algorithm on the inbound path to v.

46

• If a cycle is detected, add it to C.

• If, on the other hand, the inbound path terminates, add the terminal

vertex to R.

4.1.2 Phase II - Isomorphism Testing

Once the components of the graph have been discovered, its tree components

and the trees within its unicyclic components may be labeled in linear time

by the AHU algorithm. The only remaining challenge is to produce an or-

dering on the unicyclic components. We devised the following algorithm to

accomplish this task.

-- Compare cycles of the same length

compareCycles :: (Ord a) => Cycle a -> Cycle a -> Ordering

compareCycles (Cycle x) (Cycle y) =

let xlist = x ++ x

ylist = y ++ y in

loop (length x) xlist xlist ylist ylist

where

loop n l [] _ _ =

if length l >= n then EQ else GT

loop n _ _ l [] =

if length l >= n then EQ else LT

loop n xtail xhead ytail yhead =

case compare (head xhead) (head yhead) of

EQ -> loop n xtail (tail xhead) ytail (tail yhead)

LT -> loop n xtail xtail (tail yhead) (tail yhead)

GT -> loop n (tail xhead) (tail xhead) ytail ytail

Our algorithm takes as input two cycles of ordered elements, and com-

pares them cycle-lexicographically. A cycle of length n can be converted

47

into a list in n different ways, by beginning the list with any element of the

cycle. For example, the cycle (1, 2, 1, 1, 2) can be converted to [1, 2, 1, 1, 2],

[2, 1, 1, 2, 1], [1, 1, 2, 1, 2], [1, 2, 1, 2, 1], or [2, 1, 2, 1, 1]. One such cycle will

be lexicographically least; in this case [1, 1, 2, 1, 2]. The cycle-lexicographic

ordering orders cycles by comparing their lexicographically least list repre-

sentations. Our algorithm performs this comparison in linear time.

4.1.3 Single-Inbound Edge-Colored Digraphs

One might wonder whether this approach can be easily extended to larger

classes of graphs. One possibility was the set of edge-colored digraphs in

which each vertex has at most one inbound edge of each color. We found,

however that this is not the case - even in the case of two colors, this problem

is as hard as general digraph isomorphism.

Let Uk be the set of edge-colored digraphs with the following two prop-

erties,

1. No vertex has two incoming edges of the same color.

2. There are at most k edge colors.

Theorem 7. The isomorphism problem for digraphs is polynomial-reducible

to the isomorphism problem for elements of U2.

Proof. We will give a translation ζ() from digraphs to U2 such that two

digraphs are isomorphic if and only if their images are. The image of a

digraph with v vertices and e edges will have e red edges, e green edges, and

v+ e vertices. Each vertex will be mapped to a vertex, and each edge will be

mapped to a new vertex along with two incoming edges: a green one from

the image of its source, and a red one from the image of its target.

48

To be more precise, let D be any digraph. Then,

V (ζ(D)) = V (D) ∪ E(D)

Egreen(ζ(D)) = (x, (x, y)) : (x, y) ∈ E(D)

Ered(ζ(D)) = (y, (x, y)) : (x, y) ∈ E(D)

Now we must show that two digraphs are isomorphic if and only if their

images under ζ() are. It is clear that if two digraphs are isomorphic then

their images are. Now suppose that φ is an isomorphism between the images

of two digraphs D1 and D2. Let (x, y) be an edge of D1. Then

x→green (x, y)←red y in ζ(D1)

=⇒ φ(x)→green z ←red φ(y) in ζ(D2) (by the isomorphism property)

=⇒ φ(x)→green (φ(x), φ(y))←red φ(y) in ζ(D2)

=⇒ (φ(x), φ(y)) in D2 (by the definition of ζ())

By symmetry, φ preserves edges in both directions: from D1 to D2 and from

D2 to D1. Thus the restriction of φ onto the vertices of D1 is an isomorphism

between D1 and D2.

4.2 Isomorphism Complete Problems

While the models returned by the Chase are jointly universal, they might not

be minimal. There may be a homomorphism, or even an isomorphism, from

one Chase model to another. In such a case, we would prefer to eliminate

the less general model. Thus the question of the complexity of the homomor-

phism and isomorphism problems for relational structures naturally arises.

Each execution can be thought of in two equally valid ways. An execution

is a relational structure, since it was produced by the Chase running on a

geometric theory. But it is also an infiltrated skeleton in a strand space.

49

Temporarily ignoring its messages and origination assumptions, its remaining

structure can be viewed as a directed acyclic graph of nodes. So we may also

ask about the complexity of the homomorphism and isomorphism problems

for DAGs.

We discovered that the complexities were the same from both perspec-

tives. In fact, for several graph-like structures - graphs, digraphs, DAGs,

edge-labeled digraphs, and relational structures - the homomorphism prob-

lems are all NP-complete while the isomorphism problems are isomorphism-

complete. We will use the word structure to refer generically to these graph-

like entities from now on.

The best known algorithms for solving NP-complete problems have expo-

nential running time. It is conjectured that they cannot be solved any faster;

this conjecture is one of the most important open problems in computer

science. Isomorphism-complete problems are defined as being equivalent in

complexity to the graph isomorphism problem. These problems have a sim-

ilar standing; the best known algorithm runs in O(N logN) time[6] (part of

the quasi-polynomial class), and it is thought, though unproven, that no

polynomial-time algorithm for them exists.

4.2.1 Structure Reductions

All of the aforementioned complexity results were known. Our contribution

in the area is an elegant and constructive way of demonstrating the equiva-

lence of the homomorphism and isomorphism problems of any two kinds of

structures. The general idea is to describe a function r of polynomial time

complexity that reduces structures of one kind to structures of another kind

in such a way that A → B iff r(A) → r(B) and A ↔ B iff r(A) ↔ r(B).

Homomorphism and isomorphism can then be tested simply by applying the

reduction and testing the resulting structures.

50

A
h

++f d a _] Z X

r
��

B

r
��

r(A)
h′

,,d a _] Z
r(B)

A→ B iff r(A)→ r(B)

If such a reduction exists, it can be concluded that the homomorphism

and isomorphism problems on the source structures are no harder than the

respective problems on the target structures. We have found a sufficient con-

dition for a reduction function to have this property. We call such functions

structure reductions. Besides being polynomial-time computable, structure

reductions have four properties. Roughly speaking, (1) They replace edges

in the graph they are given with more complex substructures, (2) they treat

similar edges similarly, (3) they are injective on the vertices of the structure

they are given, and (4) there is never any ambiguity about the preimage of

a substructure of the resulting structure. For simplicity, we will assume that

every vertex in a structure is incident with at least one edge; it should be

clear that this will not make the homomorphism and isomorphism problems

any easier.

Definition 5 (Structure Reduction). A structure reduction is a function

r :: S1 → S2 such that for all structures A,B ∈ S1 and edges e ∈ E(A),

1. r is injective on V (A)

2. r(A) =
⋃
e∈E(A) r(e)

3. If r(A)
h−→ r(B) then r−1(h(r(e))) ∈ E(B)

4. If A
h−→ B then there is a homomorphism φe such that

• r(e) φe−→ r(h(e))

51

• For all v ∈ V (e), φ(r(v)) = r(h(v))

Theorem 8 (Preservation Theorem). If a function r :: S1 → S2 is a struc-

ture reduction, then for all A ∈ S1 and B ∈ S2,

• There is a homomorphism from A to B iff there is a homomorphism

from r(A) to r(B)

• Likewise for isomorphisms

Proof. (Forward) Suppose that A
h−→ B. Let h′ = ∪e∈E(A)φe. h

′ is well defined

for the following reason: For any two edges e1, e2 ∈ E(A), if v ∈ V (r(e1)) and

v ∈ V (r(e2)) then v = r(w) for some w ∈ V (A). Thus φe1(v) = φe1(r(w)) =

r(h(w)) = φe2(r(w)) = φe2(v), and h′ is well-defined. For any edge e ∈
E(r(A)), e ⊆ r(e′) for some e′ ∈ E(A). Thus h′(e) = φe′(e) ∈ E(r(B)).

Since h′ preserves edges, r(A)
h′−→ r(B).

(Reverse) Suppose that r(A)
h−→ r(B). Let h′ :: V (A) → V (B), h′ =

r−1 ◦ h ◦ r. h′ is well-defined because r is bijective on V (B). For any edge

e ∈ E(A), h(r(e)) = r(e′) for some e′ ∈ E(B). Thus h′(e) = r−1(h(r(e))) =

r−1(r(e′)) = e′ ∈ E(B). Since h′ preserves edges, A
h′−→ B.

(Isomorphisms) Notice that in the above two cases, if h is bijective, then

h′ will also be bijective. Thus A↔ B iff r(A)↔ r(B).

We conjecture that structure reductions also preserve substructure-isomorphisms.

4.2.2 Examples

Some examples are in order. Each of the following is a structure reduc-

tion. Together, they show the equivalence of the homomorphism problems

and of the isomorphism problems on graphs, digraphs, DAGs, edge-labeled

digraphs, and relational structures.

Graph → Digraph Replace each undirected edge

•x •y

52

with two directed edges

•x **
jj •y

Digraph → Graph Replace each edge

•x // •y

with the following graph

• •

~~
~~

~~
~~

•

AA
AA

AA
AA

•

•x • G •y

where G is the center vertex of a Grotzsch Graph. This reduction relies

on the fact the the triangle and the Grotzsch Graph form an antichain;

there is no homomorphism from the triangle to G because G is triangle-

free, and there is no homomorphism from G to the triangle because G

is not three-colorable.

Digraph → DAG Replace each edge

•x // •y

with

•x •oo •oo //ww • // • // •y

DAG → Digraph The identity function

Digraph → Edge-labelled Digraph Just label each edge with a ’0’.

Edge-labelled Digraph → Digraph 1. Convert the labels into binary

sequences all of the same length. For instance, red, green, blue

may become 00, 01, 10.

53

2. Now translate an edge, say

•x
′010′ // •y

into the following structure

•OO

��

•OO

��
•x // •

��

// •y

C3

��
C5

��
C3

��
C7

By Cn we mean a vertex of the digraph cycle of length n. Here C3

denotes the digit ’0’, C5 denotes the digit 1, and C7 denotes the

end of the binary sequence. This reduction relies on the fact that

the prime-numbered cycles, C2, C3, C5, C7, ... form an antichain.

Edge-labelled Digraph → Relational Structure

•x l // •y l(x, y)

54

Relational Structure → Edge-labelled Digraph

R(x, y, z) •

1}}||
||

||
||

2
��

3

!!B
BB

BB
BB

B

R

��

•x •y •z

55

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis

of Computer Algorithms. Addison-Wesley, 1974.

[2] Bruce Lloyd Bauslaugh. Homomorphisms on Infinite Directed Graphs.

PhD thesis, Simon Fraser University, December 1994.

[3] Peter J. Cameron. Graph homomorphisms Combinatorics Study Group

Notes. In http://www.maths.qmw.ac.uk/~pjc/csgnotes/hom1.pdf,

November 2006.

[4] Cas J.F. Cremers. Scyther - Semantics and Verification of Security

Protocols. PhD thesis, Eindhoven University of Technology, November

2006.

[5] Cas J.F. Cremers. Unbounded verification, falsification, and character-

ization of security protocols by pattern refinement. In ACM Computer

and Communication Security (CCS-15), 2008.

[6] Narsingh Deo, J.M. Davis, and R.E. Lord. A new algorithm for digraph

isomorphism. In BIT International Conference on Numerical Mathe-

matics, pages 16–30, 1997.

[7] Daniel Dougherty. Some notes on geometric logic. Unpublished notes

on geometric logic and the Chase, 2011.

56

[8] Michael Ficarra. Generating universal models for geometric theories.

Major Qualifying Project Report, October 2010.

[9] Joshua D. Guttman. Shapes: Surveying crypto protocol runs. In

Veronique Cortier and Steve Kremer, editors, Formal Models and Tech-

niques for Analyzing Security Protocols, Cryptology and Information

Security Series. IOS Press, 2011.

[10] Joshua D. Guttman, F. Javier, and F. Javier Thayer Fbrega. Authenti-

cation tests and the structure of bundles. Theoretical Computer Science,

283:2002, 2002.

[11] Joshua D. Guttman and F. Javier Thayer. Authentication tests and the

structure of bundles. Theoretical Computer Science, 283(2):333–380,

June 2002.

[12] Mac Lane and Saunders. Categories for the Working Mathematician

Graduate Texts in Mathematics 5 (2nd ed.). Springer-Verlag, 1998.

[13] John D. Ramsdell, Joshua D. Guttman, and Paul D. Rowe. The

CPSA Specification: A Reduction System for Searching for Shapes in

Cryptographic Protocols. The MITRE Corporation, 2009. In http:

//hackage.haskell.org/package/cpsa source distribution, doc direc-

tory.

[14] F. Javier Thayer Fábrega, Jonathan C. Herzog, and Joshua D.

Guttman. Strand spaces: Why is a security protocol correct? In

1998 IEEE Symposium on Security and Privacy. IEEE Computer Soci-

ety Press, May 1998.

57

Appendix A

Needham-Schroeder Protocol

Definition

;;; This protocol definition is from the CPSA distribution

(herald "Needham-Schroeder Public-Key Protocol"

(comment "This protocol contains a man-in-the-middle"

"attack discovered by Galvin Lowe."))

(defprotocol ns basic

(defrole init

(vars (a b name) (n1 n2 text))

(trace

(send (enc n1 a (pubk b)))

(recv (enc n1 n2 (pubk a)))

(send (enc n2 (pubk b)))))

(defrole resp

(vars (b a name) (n2 n1 text))

(trace

(recv (enc n1 a (pubk b)))

(send (enc n1 n2 (pubk a)))

58

(recv (enc n2 (pubk b)))))

(comment "Needham-Schroeder"))

;;; The initiator point-of-view

(defskeleton ns

(vars (a b name) (n1 text))

(defstrand init 3 (a a) (b b) (n1 n1))

(non-orig (privk b) (privk a))

(uniq-orig n1)

(comment "Initiator point-of-view"))

;;; The responder point-of-view

(defskeleton ns

(vars (a name) (n2 text))

(defstrand resp 3 (a a) (n2 n2))

(non-orig (privk a))

(uniq-orig n2)

(comment "Responder point-of-view"))

59

Appendix B

Needham-Schroeder Compiler

Output

The dynamic portion of the theory for the Needham-Schroeder protocol, from the

initiator’s perspective, as output by our compiler:

a_init(_n, _x) -> Node(_n) & name(_x)

a_init(_n, _x) & a_init(_n, _y) -> _x = _y

a_init(_n, _x) & Parent(_m, _n) -> a_init(_m, _x)

b_init(_n, _x) -> Node(_n) & name(_x)

b_init(_n, _x) & b_init(_n, _y) -> _x = _y

b_init(_n, _x) & Parent(_m, _n) -> b_init(_m, _x)

n1_init(_n, _x) -> Node(_n) & text(_x)

n1_init(_n, _x) & n1_init(_n, _y) -> _x = _y

n1_init(_n, _x) & Parent(_m, _n) -> n1_init(_m, _x)

n2_init(_n, _x) -> Node(_n) & text(_x)

n2_init(_n, _x) & n2_init(_n, _y) -> _x = _y

n2_init(_n, _x) & Parent(_m, _n) -> n2_init(_m, _x)

init1(_n) & n1_init(_n, n1) & a_init(_n, a)

& b_init(_n, b) -> send(_n, Enc<Pair<n1, a>, Pubk>)

init1(_n) -> Exists n1, a, b: n1_init(_n, n1)

& a_init(_n, a) & b_init(_n, b)

60

init2(_n) & n1_init(_n, n1) & n2_init(_n, n2)

& a_init(_n, a) -> recv(_n, Enc<Pair<n1, n2>, Pubk<a>>)

init2(_n) -> Exists _m: Parent(_n, _m) & init1(_m)

init2(_n) -> Exists n1, n2, a: n1_init(_n, n1)

& n2_init(_n, n2) & a_init(_n, a)

init3(_n) & n2_init(_n, n2) & b_init(_n, b)

-> send(_n, Enc<n2, Pubk>)

init3(_n) -> Exists _m: Parent(_n, _m) & init2(_m)

init3(_n) -> Exists n2, b: n2_init(_n, n2) & b_init(_n, b)

a_resp(_n, _x) -> Node(_n) & name(_x)

a_resp(_n, _x) & a_resp(_n, _y) -> _x = _y

a_resp(_n, _x) & Parent(_m, _n) -> a_resp(_m, _x)

b_resp(_n, _x) -> Node(_n) & name(_x)

b_resp(_n, _x) & b_resp(_n, _y) -> _x = _y

b_resp(_n, _x) & Parent(_m, _n) -> b_resp(_m, _x)

n1_resp(_n, _x) -> Node(_n) & text(_x)

n1_resp(_n, _x) & n1_resp(_n, _y) -> _x = _y

n1_resp(_n, _x) & Parent(_m, _n) -> n1_resp(_m, _x)

n2_resp(_n, _x) -> Node(_n) & text(_x)

n2_resp(_n, _x) & n2_resp(_n, _y) -> _x = _y

n2_resp(_n, _x) & Parent(_m, _n) -> n2_resp(_m, _x)

resp1(_n) & n1_resp(_n, n1) & a_resp(_n, a)

& b_resp(_n, b) -> recv(_n, Enc<Pair<n1, a>, Pubk>)

resp1(_n) -> Exists n1, a, b: n1_resp(_n, n1)

& a_resp(_n, a) & b_resp(_n, b)

resp2(_n) & n1_resp(_n, n1) & n2_resp(_n, n2)

& a_resp(_n, a) -> send(_n, Enc<Pair<n1, n2>, Pubk<a>>)

resp2(_n) -> Exists _m: Parent(_n, _m) & resp1(_m)

resp2(_n) -> Exists n1, n2, a: n1_resp(_n, n1)

& n2_resp(_n, n2) & a_resp(_n, a)

resp3(_n) & n2_resp(_n, n2) & b_resp(_n, b)

-> recv(_n, Enc<n2, Pubk>)

61

resp3(_n) -> Exists _m: Parent(_n, _m) & resp2(_m)

resp3(_n) -> Exists n2, b: n2_resp(_n, n2) & b_resp(_n, b)

True -> Exists _n0, a, b, n1: name(a) & name(b)

& text(n1) & non-orig(Privk) & non-orig(Privk<a>)

& uniq-orig(n1) & init3(_n0) & a_init(_n0, a)

& b_init(_n0, b) & n1_init(_n0, n1)

62

Appendix C

The Strand Space Theory

Infiltrated Skeletons

Justin Pombrio

Joshua Guttman

Daniel Dougherty

##############

AXIOMS

##############

Every Term specified in the protocol must *explicitly* be

a Concatenation, Encryption, or Basic Term;

Term Origination is not inferred, but should be written

with the protocol rules;

Is ’Precedes’ necessary in the AdvDeConstructed rule?

It should be forced to be true by the Chain relation;

Types

Mesg(x) | Node(x);

63

Mesg(x) & Node(x) ->;

Send, Recv

Send(n, t) -> Node(n) & Mesg(t);

Recv(n, t) -> Node(n) & Mesg(t);

Node(n) -> Exists t: Send(n, t)

| Exists t: Recv(n, t);

Send(n, s) & Send(n, t) -> s = t;

Recv(n, s) & Recv(n, t) -> s = t;

Send(n, s) & Recv(n, t) -> false;

Inverse

Inverse(k, k’) -> Mesg(k) & Mesg(k’) & Inverse(k’, k);

Inverse(k, k1) & Inverse(k, k2) -> k1 = k2;

Inverse(k, k’) & Basic(k) -> Basic(k’);

Basic

Basic(t) -> Mesg(t);

Pair

Pair(g, h, t) -> Mesg(g) & Mesg(h) & Mesg(t);

Pair(g, h, s) & Pair(g, h, t) -> s = t;

Pair(G1, h1, t) & Pair(g2, h2, t) -> G1 = g2 & h1 = h2;

64

Enc

Enc(g, k, t) -> Mesg(g) & Mesg(k) & Mesg(t);

Enc(g, k, s) & Enc(g, k, t) -> s = t;

Enc(G1, k1, t) & Enc(g2, k2, t) -> G1 = g2 & k1 = k2;

Disjointness of Types

Basic(t) & Enc(g, k, t) ->;

Basic(t) & Pair(g, h, t) ->;

Enc(g, k, t) & Pair(u, v, t) ->;

Link (->)

Link(n, m) -> Exists t : Send(n, t) & Recv(m, t);

Link(n, m) & Link(p, m) -> n = p; # Broadcast semantics;

Parent (=>)

Parent(n, m) -> Node(n) & Node(m);

Parent(n, m) & Parent(n, p) -> m = p;

Parent(n, m) & Parent(p, m) -> n = p;

Uniquely Originating

UniqOrig(t, n) -> Basic(t) & Node(n);

Non-Originating

NonOrig(t) -> Basic(t);

65

###################

DEFINITIONS

###################

Precedes

Parent(n, m) -> Precedes(n, m);

Link(n, m, t) -> Precedes(n, m);

Precedes(n, m) & Precedes(m, p) -> Precedes(n, p);

Ingredient

Mesg(t) -> Ingredient(t, t);

Pair(g, h, s) & Ingredient(s, t) ->

Ingredient(g, t) & Ingredient(h, t);

Enc(g, k, s) & Ingredient(s, t) -> Ingredient(g, t);

#####################

Pruning Rules

#####################

Non-Origination

NonOrig(t) & Orig(t, n) ->;

Shortcut for NonOrigination

NonOrig(t) & Ingredient(t, s) & Send(n, s) ->;

NonOrig(t) & Ingredient(t, s) & Recv(n, s) ->;

66

Cyclicity

Precedes(n, n) ->;

##################

ADVESARIES

##################

ThreeStrand(n1, n2, n3) states that nodes n1, n2, and n3 form a

strand with precisely three nodes, in that order.

ThreeStrand(n1, n2, n3) & Parent(x, n1) ->;

ThreeStrand(n1, n2, n3) & Parent(n3, x) ->;

ThreeStrand(n1, n2, n3) ->

Parent(n1, n2) & Parent(n2, n3) &

Advesary(n1) & Advesary(n2) & Advesary(n3);

Generation

G1(n, t) & Parent(x, n) ->;

G1(n, t) & Parent(n, x) ->;

G1(n, t) -> Send(n, t) & Basic(t) & Orig(t, n) & Advesary(n);

Pairenation

C1(n1, g, h) -> Exists n2, n3 :

C2(n2, g, h) & C3(n3, g, h) & ThreeStrand(n1, n2, n3);

C2(n2, g, h) -> Exists n1, n3 :

C1(n1, g, h) & C3(n3, g, h) & ThreeStrand(n1, n2, n3);

C3(n3, g, h) -> Exists n1, n2 :

67

C1(n1, g, h) & C2(n2, g, h) & ThreeStrand(n1, n2, n3);

C1(n1, g, h) -> Recv(n1, g);

C2(n2, g, h) -> Recv(n2, h);

C3(n3, g, h) -> Exists t :

Pair(g, h, t) & Send(n3, t) & Orig(t, n3);

Encryption

E1(n1, g, k) -> Exists n2, n3:

E2(n2, g, k) & E3(n3, g, k) & ThreeStrand(n1, n2, n3);

E2(n2, g, k) -> Exists n1, n3:

E1(n1, g, k) & E3(n3, g, k) & ThreeStrand(n1, n2, n3);

E3(n3, g, k) -> Exists n1, n2:

E1(n1, g, k) & E2(n2, g, k) & ThreeStrand(n1, n2, n3);

E1(n1, g, k) -> Recv(n1, g);

E2(n2, g, k) -> Recv(n2, k);

E3(n3, g, k) -> Exists t:

Enc(g, k, t) & Send(n3, t) & Orig(t, n3);

Unpairing

U1(n1, g, h) -> Exists n2, n3:

U2(n2, g, h) & U3(n3, g, h) & ThreeStrand(n1, n2, n3);

U2(n2, g, h) -> Exists n1, n3:

U1(n1, g, h) & U3(n3, g, h) & ThreeStrand(n1, n2, n3);

U3(n3, g, h) -> Exists n1, n2:

U1(n1, g, h) & U2(n2, g, h) & ThreeStrand(n1, n2, n3);

U1(n1, g, h) -> Exists t:

Pair(g, h, t) & Recv(n1, t);

68

U2(n2, g, h) -> Send(n2, g);

U3(n3, g, h) -> Send(n3, h);

Decryption

D1(n1, g, k) -> Exists n2, n3:

D2(n2, g, k) & D3(n3, g, k) & ThreeStrand(n1, n2, n3);

D2(n2, g, k) -> Exists n1, n3:

D1(n1, g, k) & D3(n3, g, k) & ThreeStrand(n1, n2, n3);

D3(n3, g, k) -> Exists n1, n2:

D1(n1, g, k) & D2(n2, g, k) & ThreeStrand(n1, n2, n3);

D1(n1, g, k) -> Exists t:

Enc(g, k, t) & Recv(n1, t);

D2(n2, g, k) -> Exists k’:

Inv(k, k’) & Recv(n2, k’);

D3(n3, g, k) -> Send(n3, g);

##############

CHAINS

##############

Chain rule must come first!

There is a Chain from m->s to r<-t;

Chain(m, s, r, t) ->

Link(m, r)

| AdvUnpairLeft(m, s, r, t)

| AdvUnpairRight(m, s, r, t)

| AdvDecrypt(m, s, r, t);

69

AdvUnpairLeft(m, s, r, t) -> Exists x, y, n1, n2, n3:

Pair(x, y, s) & U1(n1, x, y) & U2(n2, x, y) & U3(n3, x, y) &

Link(m, n1) & Chain(n2, x, r, t);

AdvUnpairRight(m, s, r, t) -> Exists x, y, n1, n2, n3:

Pair(x, y, s) & U1(n1, x, y) & U2(n2, x, y) & U3(n3, x, y) &

Link(m, n1) & Chain(n3, y, r, t);

AdvDecrypt(m, s, r, t) -> Exists g, k, n1, n2, n3:

Enc(g, k, s) & D1(n1, g, k) & D2(n2, g, k) & D3(n3, g, k) &

Link(m, n1) & Chain(n3, g, r, t);

Recv(n, t) -> Constructed(t, n);

An Adversary Constructed Term ’t’ and sent it to Node ’r’;

Constructed(t, r) ->

AdvGenerated(t, r)

| AdvConcatenated(t, r)

| AdvEncrypted(t, r)

| AdvDeConstructed(t, r);

AdvGenerated(t, r) -> Exists n:

G1(n, t) & Link(n, r);

AdvConcatenated(t, r) -> Exists g, h, n:

Pair(g, h, t) & C3(n, g, h) & Link(n, r);

AdvEncrypted(t, r) -> Exists g, k, n:

Enc(g, k, t) & E3(n, g, k) & Link(n, r);

AdvDeConstructed(t, r) -> Exists m, s:

Regular(m) & Send(m, s) & Precedes(m, r) &

Chain(m, s, r, t);

70

Appendix D

The Protocol Compiler

{−
Copyright (c) 2011 , Jus t in Pombrio Al l r i g h t s r e s e rved .

Red i s t r i bu t i on and use in source and binary forms , with or without

mod i f i ca t i on , are permitted provided that the f o l l ow i ng cond i t i on s are

met :

Red i s t r i bu t i on s o f source code must r e t a i n the above copyr ight not i ce ,

t h i s l i s t o f c ond i t i on s and the f o l l ow i ng d i s c l a ime r .

Red i s t r i bu t i on s in binary form must reproduce the above copyr ight

not i ce , t h i s l i s t o f c ond i t i on s and the f o l l ow i ng d i s c l a ime r in the

documentation and/or other mat e r i a l s provided with the d i s t r i b u t i o n .

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

71

THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

−}

import Data . Char

import Data . L i s t

import Control .Monad

import Control .Monad . State

import System . IO

import q u a l i f i e d Data . Set as Set

import q u a l i f i e d Data .Map as Map

import SExpr

import Debug . Trace

{−
Usage :

Take a CPSA−s t y l e p ro to co l d e f i n i t i o n , and compile i t i n to a

geometr ic l o g i c theory .

> cat prot . scm | . / compi le r > prot . g l t

Overview :

The t r a n s l a t i o n p i p e l i n e i s as f o l l ow s :

S t r ing −−−−> SExpr −−−−> Protoco l −−−−> Theory −−−−> St r ing

read compi le t r a n s l a t e show , format

I f you want to change the output formatt ing (to make use of , say ,

another implementation o f the chase) , s e e the Formatting code . The

chase implementation should be ab le to handle v a r i a b l e names with

whatever cha ra c t e r s are used in v a r i a b l e s in the p ro to co l

d e f i n i t i o n .

L imi ta t i ons :

Needs a formula ” r e gu l a r (n) => i n i t 1 (n) | . . . ” .

I n t e r s p e r s ed comments cause parse e r r o r .

72

Syntax e r r o r s w i l l be shown as incomplete pat t e rns .

Protoco l a lgor i thm ignored .

Do not support l a b e l s .

Do not support node pa i r s .

Terminology :

i n i t 0 (n) & i n i t x (n , x) −> send (n , pa i r (x , x))

’ i n i t ’ p r i n c i p a l (pr inc)

’0 ’ index

’n ’ node

’x ’ parameter (param)

’ pa i r (x , x) ’ mesg

’ i n i t 0 ’ node r e l a t i o n

’ i n i t 0 (n) ’ node atom

’ i n i t x ’ parameter r e l a t i o n

’ i n i t x (n , x) ’ parameter atom

’ send ’ event r e l a t i o n

’ send (n , x) ’ send atom

−}

{− Protoco l −}

type Var = St r ing

type Sort = St r ing

data Mesg = Simple Var

| Compound St r ing [Mesg]

type D i r e c t i on = St r ing

data Event = Event D i r e c t i on Mesg

type Trace = [Event]

73

type Pred i cate = St r ing

type HTMesg = (Int , Mesg)

data Assumption = Assumption Pred i cate HTMesg

data SkelAssum = SkelAssum Pred i cate Mesg

data Precedes = Precedes (Int , Int) (Int , Int)

data Role = Role S t r ing (Map.Map Var Sort) Trace [Assumption]

type Node = (Princ , Int)

type Maplet = (Var , Mesg)

data Strand = Strand Node [Maplet]

| L i s t en e r Mesg

data Form = Protoco l S t r ing [Role]

| Ske le ton (Map.Map Var Sort) [Strand] [SkelAssum]

[Precedes]

{− Main −}

readSExprs : : Handle −> IO [SExpr Pos]

readSExprs handle = do

pos <− posHandle ”” handle

loop pos

where

loop pos = do

sexpr <− load pos

case sexpr o f

Nothing −> re turn []

Just expr −> do

74

exprs <− loop pos

re turn (expr : exprs)

testShowTheory = putStrLn $ show $ Theory ” theory ”

[Rule

[Re lat ion ”R” [term x]]

(Ex i s t s [” y” , ”z ”]

[Re lat ion ”P”

[term x ,

Function ” f ” [term x , Var iab le ”y ”]] ,

Equation

(Function ”g” [term x])

(Function ”g” [Var iab le ”z ”])])]

main = do

exprs <− readSExprs s td in

putStrLn $ show $ t r a n s l a t e ”” $ compile exprs

{− Compilation −}

compi le : : [SExpr a] −> [Form]

compi le [] = [] −− ’ sequence ’ ought j u s t i gno re Nothings . . .

compi le (form : forms) = case compileForm form o f

Nothing −> compi le forms

Just r e s u l t −> r e s u l t : compi le forms

compileForm : : SExpr a −> Maybe Form

compileForm expr @ (L (S head : body)) = case head o f

” d e f p r o t o c o l ” −> Just $ compi l eProtoco l expr

” d e f s k e l e t on ” −> Just $ compi l eSke le ton expr

” hera ld ” −> Nothing

”comment” −> Nothing

compi l eProtoco l : : SExpr a −> Form

compi l eProtoco l (L (S

75

” de f p r o t o c o l ” : S id : : r e s t)) =

l e t (r o l e s , a l i s t) = pa r t i t i o n i sRo l e r e s t in

Protoco l id (map compi leRole r o l e s)

where

i sRo l e (L (S ” d e f r o l e ” :)) = True

i sRo l e = False

compi leRole : : SExpr a −> Role

compi leRole (L (S

” d e f r o l e ” : S id : vars : t r a c e : assumptions)) =

Role id (compileVars vars) (compileTrace t r a c e)

(concatMap compileAssumption assumptions)

compileVars : : SExpr a −> Map.Map Var Sort

compileVars (L (S ” vars ” : vars)) =

Map. unions $ map compi leDecl vars

compi leDecl : : SExpr a −> Map.Map Var Sort

compi leDecl (L dec l) =

l e t s o r t = case l a s t dec l o f S s −> s

vars = map compileVar (i n i t de c l) in

Map. f romList (z ip vars (repeat s o r t))

compileVar : : SExpr a −> Var

compileVar (S var) = var

compileTrace : : SExpr a −> Trace

compileTrace (L (S ” t r a c e ” : events)) =

map compileEvent events

compileEvent : : SExpr a −> Event

compileEvent (L [S d i r e c t i on , mesg]) =

Event d i r e c t i o n (compileMesg mesg)

compileAssumption : : SExpr a −> [Assumption]

compileAssumption (L (S ”comment” :)) = []

compileAssumption (L (S pred : mesgs)) =

76

map (Assumption pred . compileHTMesg) mesgs

compileHTMesg : : SExpr a −> HTMesg

compileHTMesg (L [N index , mesg]) =

(index , compileMesg mesg)

compileHTMesg expr = (1 , compileMesg expr)

compileMesg : : SExpr a −> Mesg

compileMesg (S id) = Simple id

compileMesg (L (S head : body)) =

Compound head (map compileMesg body)

compileMesg (N x) = e r r o r $ show x

compileMesg (Q x) = e r r o r x

compi l eSke le ton : : SExpr a −> Form

compi l eSke le ton (L (S

” de f s k e l e t on ” : S id : vars : r e s t)) =

l e t (strands , a l i s t) = pa r t i t i o n i sS t rand r e s t

(precs , assums) = pa r t i t i o n i sPr e c a l i s t in

Ske le ton (compileVars vars) (map compileStrand st rands)

(concatMap compileSkelAssum assums)

(concatMap compi lePrec prec s)

where

i sS t rand (L (S ” de f s t rand ” :)) = True

i sS t rand = False

i sP r e c (L (S ” precedes ” :)) = True

i sPr e c = False

compileSkelAssum : : SExpr a −> [SkelAssum]

compileSkelAssum (L (S ”comment” :)) = []

compileSkelAssum (L (S pred : mesgs)) =

map (\ (p , m) −> SkelAssum p m) $

z ip (repeat pred) (map compileMesg mesgs)

compi lePrec : : SExpr a −> [Precedes]

compi lePrec (L (S ” precedes ” : prec s)) =

map compileNodePair prec s

77

compileNodePair : : SExpr a −> Precedes

compileNodePair (L [L [N x1 , N x2] ,

L [N y1 , N y2]]) =

Precedes (x1 , x2) (y1 , y2)

compi leStrand : : SExpr a −> Strand

compi leStrand (L [S ” d e f l i s t e n e r ” , mesg]) =

L i s t en e r $ compileMesg mesg

compi leStrand (L (S

” de f s t rand ” : S id : N s i z e : maplets)) =

Strand (id , s i z e) (map compileMaplet maplets)

compileMaplet : : SExpr a −> Maplet

compileMaplet (L [l e f t , r i g h t]) =

(compileVar l e f t , compileMesg r i gh t)

{− Theory −}

type Rel = St r ing −− r e l a t i o n symbol

type Fun = Str ing

type Princ = St r ing

type Param = Str ing

data Term = Var iab le Var

| Function Fun [Term]

data Atom = Relat ion Rel [Term]

| Equation Term Term

atom r e l vars = Relat ion r e l (map Var iab le vars)

type Conjunction = [Atom]

data Ex i s t e n t i a l = Ex i s t s [Var] Conjunction

−− Assuming that d i s j u n c t i o n s aren ’ t nece s sa ry .

78

data Rule = Rule Conjunction Ex i s t e n t i a l

data Theory = Theory St r ing [Rule]

f r e eVar s : : Term −> [Var]

f r e eVar s (Var iab le var) = [var]

f r e eVar s (Function subterms) =

nub $ concatMap f r eeVar s subterms

{− Trans la t i on −}

t r a n s l a t e : : S t r ing −> [Form] −> Theory

t r a n s l a t e name forms =

Theory name $ concatMap trans lateForm forms

trans lateForm : : Form −> [Rule]

trans lateForm protocol@ (Protoco l) =

t r an s l a t eP r o t o c o l p ro to co l

trans lateForm skeleton@ (Ske le ton) =

[t r an s l a t e Sk e l e t on sk e l e t on]

{− Protoco l Trans la t i on −}

t r an s l a t eP r o t o c o l : : Form −> [Rule]

t r an s l a t eP r o t o c o l (Protoco l names r o l e s) =

concatMap t r an s l a t eRo l e r o l e s

t r an s l a t eRo l e : : Role −> [Rule]

t r an s l a t eRo l e (Role name vars t r a c e assumptions) =

l e t varRules = Map. elems $

Map.mapWithKey (t rans l a t eVar name) vars

t raceRu le s = zipWith (t rans l a t eEvent name)

t r a c e [1 . .]

assumRules = map (trans lateAssumpt ion name)

79

assumptions in

concat (varRules ++ traceRu le s ++ assumRules)

t rans l a t eVar : : S t r ing −> Var −> Sort −> [Rule]

t rans l a t eVar pr inc var s o r t =

[paramSortRule pr inc var sort ,

paramFuncRule pr inc var ,

paramParentRule pr inc var]

t rans l a t eEvent : : S t r ing −> Event −> Int −> [Rule]

t rans l a t eEvent pr inc event index =

l e t ru l e 1 = eventRule (pr inc , index) event

ru l e 2 = eventParentRule (pr inc , index)

ru l e 3 = eventParamRule (pr inc , index) event in

case ru l e 2 o f

Nothing −> [ru le1 , ru l e 3]

Just r u l e −> [ru le1 , ru le , ru l e 3]

t rans lateAssumpt ion : : S t r ing −> Assumption −> [Rule]

t rans lateAssumpt ion pr inc (Assumption pred (index , mesg)) =

[assumptionRule (pr inc , index) pred

(t rans lateMesg id mesg)]

t rans lateMesg : : (Var −> St r ing) −> Mesg −> Term

trans lateMesg namer (Simple var) =

Var iab le (namer var)

t rans lateMesg namer (Compound ”pubk” [Simple var]) =

Function ”Pubk” [Var iab le $ namer var]

t rans lateMesg namer (Compound ” pr ivk ” [Simple var]) =

Function ”Privk ” [Var iab le $ namer var]

t rans lateMesg namer (Compound ” invk ” [Simple var]) =

Function ” Invk” [Var iab le $ namer var]

t rans lateMesg namer

(Compound ” l t k ” [Simple var1 , Simple var2]) =

Function ”Ltk” [Var iab le $ namer var1 ,

Var iab le $ namer var2]

t rans lateMesg namer (Compound ” cat ” [x , y]) =

80

Function ”Pair ” (map (trans lateMesg namer) [x , y])

−− Ensure that Cats and Encs have exac t l y two subterms .

t rans lateMesg namer (Compound ” cat ” (x : y : ys)) =

Function ”Pair ”

[t rans lateMesg namer x ,

t rans lateMesg namer (Compound ” cat ” (y : ys))]

t rans lateMesg namer (Compound ”enc” [p l a in t ex t , key]) =

Function ”Enc” (map (trans lateMesg namer)

[p l a in t ex t , key])

t rans lateMesg namer (Compound ”enc” subterms)

| l ength subterms >= 3 =

Function ”Enc” [t rans lateMesg namer

(Compound ” cat ” (i n i t subterms)) ,

t rans lateMesg namer (l a s t subterms)]

{− Rules −}

−− ” i n i t 1 (n) & b i n i t (n , b) −> non−o r i g (Privk)”

assumptionRule : : Node −> Pred i ca te −> Term −> Rule

assumptionRule (pr inc , index) pred term =

l e t vars = f r eeVar s term in

Rule (nodeAtom (princ , index) term n :

paramConj pr inc term n

(z ip vars (map Var iab le vars)))

(Ex i s t s [] [assumAtom pred term])

−− ” i n i t 1 (n) & a i n i t (n , a) & n1 i n i t (n , n1)

−− −> send (n , Enc<n1 , Pubk<a>>)”

eventRule : : Node −> Event −> Rule

eventRule (pr inc , index) (Event d i r mesg) =

l e t term = trans lateMesg id mesg

params = f reeVar s term in

Rule (nodeAtom (princ , index) term n :

paramConj pr inc term n

(z ip params (map Var iab le params)))

(Ex i s t s [] [eventAtom d i r term n term])

81

−− ” i n i t 2 (n) −> Ex i s t s m: Parent (m, n) & i n i t 1 (m)”

eventParentRule : : Node −> Maybe Rule

eventParentRule (pr inc , 1) = Nothing

eventParentRule (pr inc , index) = Just $

Rule [nodeAtom (princ , index) term n]

(Ex i s t s [var m] [parentAtom term m term n ,

nodeAtom (princ , index − 1) term m])

−− ” i n i t 1 (n) −> Ex i s t s a , n1 : a i n i t (n , a) & n1 i n i t (n , n1)”

eventParamRule : : Node −> Event −> Rule

eventParamRule (pr inc , index) (Event pred mesg) =

l e t vars = f r eeVar s (t rans lateMesg id mesg) in

Rule [nodeAtom (princ , index) term n]

(Ex i s t s vars (paramConj pr inc term n

(z ip vars (map Var iab le vars))))

−− ” a i n i t (n , x) −> Node (n) & name(x)”

paramSortRule : : Princ −> Param −> Sort −> Rule

paramSortRule pr inc param so r t =

Rule [paramAtom pr inc param [term n , term x]]

(Ex i s t s [] [sortAtom ”Node” term n ,

sortAtom so r t term x])

−− ” a i n i t (n , x) & a i n i t (n , y) −> x = y”

paramFuncRule : : Pr inc −> Param −> Rule

paramFuncRule pr inc param =

Rule [paramAtom pr inc param [term n , term x] ,

paramAtom pr inc param [term n , term y]]

(Ex i s t s [] [Equation term x term y])

−− ” a i n i t (n , x) & Parent (n , m) −> a i n i t (m, x)”

paramParentRule : : Princ −> Var −> Rule

paramParentRule pr inc var =

Rule [paramAtom pr inc var [term n , term x] ,

parentAtom term n term m]

(Ex i s t s [] [paramAtom pr inc var [term m , term x]])

82

t r an s l a t e Sk e l e t on : : Form −> Rule

t r an s l a t e Sk e l e t on (Ske le ton vars s t rands assums prec s) =

l e t nodeVars = take (l ength s t rands) var ns

precVars = take (l ength prec s) var ms

p r i n c s = map (\ (Strand (pr inc ,)) −> pr inc) s t rands in

Rule []

(Ex i s t s (nodeVars ++ Map. keys vars ++

map f s t precVars ++ map snd precVars)

(sortConj (Map. t oL i s t vars) ++

assumConj assums ++

concat (zipWith t r an s l a t eS t r and st rands nodeVars) ++

concat (zipWith (precConj p r i n c s) prec s precVars)))

t r an s l a t eS t r and : : Strand −> Var −> Conjunction

t r an s l a t eS t r and (Strand (pr inc , index) maplets) var =

l e t params = map (\ (v , m) −> (v , t rans lateMesg id m)) maplets in

nodeAtom (princ , index) (Var iab le var) :

paramConj pr inc (Var iab le var) params

{− Conjunct ions −}

−− ” b i n i t (n , b) & n2 i n i t (n , n2) & . . . ”

paramConj : : Princ −> Term −> [(Param , Term)] −> Conjunction

paramConj pr inc node params =

map (\ (name , term) −> paramAtom pr inc name [node , term]) params

−− ”Name(a) & Text (x)”

sortConj : : [(Var , Sort)] −> Conjunction

sortConj = map (\ (v , s) −> sortAtom s (Var iab le v))

−− ”Nonorig (Privk) & Orig (x)

assumConj : : [SkelAssum] −> Conjunction

assumConj =

map (\ (SkelAssum pred mesg)

83

−> assumAtom pred (trans lateMesg id mesg))

−− resp2 (m0) & i n i t 3 (m1) & lp r e c (m0, n2)

−− & lp r e c (m1, n3) & prec (m0, m1)”

precConj : : [Pr inc] −> Precedes −> (Var , Var) −> Conjunction

precConj p r i n c s (Precedes (s , n) (s ’ , n ’)) (v , v ’) =

l e t t = Var iab le v

t ’ = Var iab le v ’ in

[nodeAtom (pr i n c s ! ! (s − 1) , n) t ,

nodeAtom (pr i n c s ! ! (s ’ − 1) , n ’) t ’ ,

lprecAtom t (Var iab le $ var ns ! ! (s − 1)) ,

lprecAtom t ’ (Var iab le $ var ns ! ! (s ’ − 1)) ,

precAtom t t ’]

{− ∗Atoms∗ −}

−− ” prec (m, n)”

precAtom : : Term −> Term −> Atom

precAtom n1 n2 = Relat ion ” precedes ” [n1 , n2]

−− ” l p r e c (m, n)”

lprecAtom : : Term −> Term −> Atom

lprecAtom n1 n2 = Relat ion ” l p r e c ” [n1 , n2]

−− ” n 1 i n i t (n , x)”

paramAtom : : Princ −> Param −> [Term] −> Atom

paramAtom pr inc param args =

Relat ion (param ++ ” ” ++ pr inc) args

−− ” i n i t 1 (n)”

nodeAtom : : Node −> Term −> Atom

nodeAtom (princ , index) node =

Relat ion (pr inc ++ show index) [node]

−− ”Node (n)”

sortAtom : : Sort −> Term −> Atom

84

sortAtom so r t param = Relat ion s o r t [param]

−− ”Send (n , Enc<n1 , Pubk>)”

eventAtom : : D i r e c t i on −> Term −> Term −> Atom

eventAtom d i r node mesg = Relat ion d i r [node , mesg]

−− ”Nonorig (Privk)”

assumAtom : : Pred i cate −> Term −> Atom

assumAtom pred term = Relat ion pred [term]

−− ”Parent (n , m)”

parentAtom : : Term −> Term −> Atom

parentAtom parent ch i l d = Relat ion ”Parent” [ch i ld , parent]

−− ” L i s t en (Enc<x , y>)”

l i stenAtom : : Term −> Atom

listenAtom term = Relat ion ” L i s t en ” [term]

{− ∗Naming∗ −}

var n = ” n”

var m = ” m”

var x = ” x”

var y = ” y”

term n = Var iab le var n

term m = Var iab le var m

term x = Var iab le var x

term y = Var iab le var y

var ns = map (\x −> ” n” ++ show x) [0 . .]

var ms = map (\x −> (” m” ++ show x , ” m”

++ show (x + 1))) [0 , 2 . .]

compi leSort : : SExpr a −> Sort

compi leSort (S s o r t) = case s o r t o f

” t ext ” −> ”Text”

”data” −> ”Data”

85

”name” −> ”Name”

” skey ” −> ”SKey”

”akey” −> ”AKey”

”mesg” −> ”Basic ”

{− ∗Transc r ip t i on ∗ −}

i n s t anc e Show Theory where

showsPrec (Theory name r u l e s) =

formatTheory $ map (showsPrec 0) r u l e s

i n s t anc e Show Rule where

showsPrec (Rule [] rhs) =

formatRule (showString ”True ”) (showsPrec 0 rhs)

showsPrec (Rule l h s rhs) =

formatRule (formatConj (map (showsPrec 0) l h s))

(showsPrec 0 rhs)

i n s t anc e Show Ex i s t e n t i a l where

showsPrec (Ex i s t s vars conj) =

f o rmatEx i s t en t i a l

(map showString vars)

(formatConj (map (showsPrec 0) conj))

i n s t anc e Show Atom where

showsPrec (Re lat ion r e l terms) =

formatAtom (showString r e l) (map (showsPrec 0) terms)

showsPrec (Equation l e f t r i g h t) =

formatEquation (showsPrec 0 l e f t) (showsPrec 0 r i g h t)

i n s t anc e Show Term where

showsPrec (Var iab le var) = showString var

showsPrec (Function fun subterms) =

formatTerm (showString fun) (map (showsPrec 0) subterms)

86

{− ∗Formatting∗ −}

−− from Haske l l wik i

compose : : [a −> a] −> a −> a

compose f s v = f o l d l (.) id f s $ v

joinShows : : S t r ing −> [ShowS] −> ShowS

joinShows del im = compose . i n t e r s p e r s e (showString del im)

formatTheory : : [ShowS] −> ShowS

formatTheory r u l e s = joinShows ”” r u l e s

formatRule l h s rhs =

lh s . showString ” −> ” . rhs . showString ”\n”

f o rmatEx i s t en t i a l [] body = body

f o rmatEx i s t en t i a l vars body =

showString ” Ex i s t s ” .

joinShows ” , ” vars . showString ” : ” . body

formatConj con junct s = joinShows ” & ” conjunct s

formatEquation l h s rhs = lh s . showString ” = ” . rhs

formatAtom r e l vars =

r e l . showString ”(” . joinShows ” , ” vars . showString ”)”

formatTerm fun subterms =

fun . showString ”<” . joinShows ” , ” subterms . showString ”>”

87

