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Abstract

While much work has been done in mining nominal sequential data much less

has been done on mining numeric time series data. This stems primarily from the

problems of relating numeric data, which likely contains error or other variations

which make directly relating values difficult. To handle this problem, many algo-

rithms first convert data into a sequence of events. In some cases these events are

known a priori, but in others they are not. Our work evaluates a set of time se-

ries data instances in order to determine likely candidates for unknown underlying

events. We use the concept of bounding envelopes to represent the area around a

numeric time series in which the unknown noise-free points could exist. We then

use an algorithm similar to Apriori to build up sets of envelope intersections. The

areas created by these intersections represent common patterns found throughout

the data.
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Chapter 1

Introduction

Our work will evaluate a set of time series data instances in order to determine likely

candidates for unknown underlying events. To do this we will wrap each time series

in an envelope representing the noise and error inherent in numeric measurements.

These envelopes will then be intersected using a modified version of the Apriori

algorithm used commonly to mine association rules. The areas remaining after

intersecting two or more envelopes represent common patterns within the sequences

that are likely to represent some event these sequences have in common. These

resulting areas may then be used to visually learn more about the data set or to

transform numerical time series into a sequence of events over time for use in further

mining.

1.1 Time Series Data

A time series is a series of numerical measurements related through time, T =

(t1, y(t1)), (t2, y(t2)), ..., (tn, y(tn)) (see Fig. 2.1). Time series is a very common

form for collected data as companies and analysts are often concerned with discov-

ering patterns in time such that they may be capable of predicting future patterns.
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Examples of time series include stock prices, periodic temperature readings, and

other measurements made over time.

Figure 1.1: An example of time series data

While many algorithms exist to discover patterns in non-temporal data or tem-

poral nominal data few algorithms exist to find patterns within time-based numeric

data. This stems from the increased complexity of such data. Not only are pieces

of numeric data difficult to relate due to the errors and other noise which make

exact matching of values impossible, but the temporal relationships are not only

an additional dimension but also have special meaning which must be preserved in

mining.

1.2 Events

Since many data mining algorithms are not directly capable of performing mining

on numeric data, data must be somehow abstracted before using these algorithms.

In the case of time series data, one possibility is to convert the time series into a

sequence of events. These events represent an occurrence happening at a point in

time and continuing for some duration (which may be 0).

Some examples of events in a generic time series would be when the series reaches

its highest value (instantaneous), a period of monotonic increase, or a much more

specific pattern that repeats within the data. In some domains, such as the stock
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market, events for abstraction of data have already been determined by domain

experts [LR91], however in many others no such complex template events exist.

Identifying the first two types of events above in a time series is fairly straightfor-

ward. In contrast, discovering events of the third type, which is the topic of this

thesis, is much more complex.

1.3 Error

A basic assumption when mining data of any sort is that some meaningful under-

lying pattern exists within. This underlying pattern is often hidden by errors in

measurement or simply obscured by noise from other sources. The purpose of data

mining is to account for that error and attempt to find the underlying pattern.

Data can be considered to be some absolute pattern, f(t), plus an error function,

ε(t), that encompasses all the various errors that are introduced to the pattern.

However, not all error exists solely along the y-axis and thus while a single error

function can accommodate errors along the time-axis it is much more precise to

allow for another term to represent this. This time-based error we label δ(t) and

place within the function. Thus now y(t) = f(t + δ(t)) + ε(t).

For all error measurements there are two types of error that can be used. Error

that changes over time is called heteroscedastic error. On the other hand, error

that remains relatively constant is called homoscedastic error. While homoscedas-

tic error is still variable (otherwise it would not really be error), its maximum and

minimum values are generally stable and thus predictable. Since for heteroscedastic

error these bounds are variable with time, problems involving it are usually much

more difficult to solve and require a domain expert to predict the general function

that governs the error. Also, because time variables likely exist in both the pattern
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and the error, it is very difficult to extract a representation of the underlying func-

tion in these problems. Unless a problem is known to have a heteroscedastic error

model, it is reasonable to assume that the error is homoscedastic [GS99].

Our method is capable of handling both types of errors (assuming a formula for

the heteroscedastic error is known), but the remaining text will assume homoscedas-

tic error for simplicity, thus the functional aspect of the errors in the equation above

can be dropped and it may instead be represented as y(t) = f(t± δ)± ε.

1.4 Bounding Envelopes

Bounding envelopes are regions around a time series used to represent bounds for

error in the series. Since an observed series may contain within it some amount of

error, bounding envelopes are used to provide an area within which the actual data

(free from the distortions of error) is likely to lie.

Bounding envelopes may be computed in a variety of ways depending on the

chosen representation of a series’ error. For this work, we use bounding envelopes as

presented in Vlachos et al. [VHGK03]. Their bounding envelopes are constructed

as the union of bounding rectangles cast by each point.

Each bounding rectangle gives the range within which that point could exist. For

a point, p = (x, y), the bounding rectangle covers all points with y-values within

y ± ε (the vertical error) and x-values within x± δ (the time-based error).

Vlachos et al. use bounding envelopes in order to quickly determine whether

two sequences are similar enough to warrant further calculation. Any two sequences

whose bounding envelopes intersect can match perfectly with a maximum shift of δ

horizontally and ε vertically to the points in each sequence.

Our process, however, will use bounding envelopes, not as a method of eliminat-

4



Figure 1.2: Creating a bounding rectangle

Figure 1.3: Envelopes are the union of all bounding rectangles

ing poor matches before performing more precise measuring, but as a representation

for the unknown errors existing within a time series and as a facilitation for the

search with uncertainty over an open-ended search space.

1.5 The Apriori Algorithm

Agrawal and Srikant first introduced the Apriori algorithm for creating item sets

for mining association rules from a database of transactions in 1994 [AS94]. The

Apriori algorithm iteratively builds larger and larger item sets by combining items

known from the previous level to occur often enough to satisfy a minimum support

threshold.

The algorithm begins at a base level with single item sets for each item in the

database. Thus, if a database contained items A, B, and C, Apriori would first
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generate prospective item sets of {A}, {B}, and {C}. These prospective item sets

are then checked to ensure that each set is frequent. At this level this amounts

to ensuring that each item appears in the database enough to satisfy a minimum

support value. Any item sets that do not satisfy this minimum metric are discarded

from the prospective item sets. All those that do are retained as frequent item sets.

At the next level combinations between the three sets are made. Only sets which

differ in only one item are valid for combination (as the new level is supposed to

consist of item sets containing one more item than the sets of the previous level).

As all the sets are only length one this is trivial at this point. Additionally, for

convenience, items within a set are ordered to aid in matching. So for the second

level, the prospective sets {AB}, {AC}, and {BC} are created. The sets are then

tested to ensure that the two items together appear enough times in the database

to satisfy the minimum support.

The third level (and beyond) introduces a further level of optimization. Support

for an item set can only decrease as more items are added. For instance, if {AB}
does not appear often enough in the database then adding C to those instance to

create {ABC} cannot possibly make them any more common. Thus any newly

created item set must have all of its subsets be frequent or it cannot possibly be

so (as opposed to only the two sets which combine to create the new prospective

set). This property holds because the value of support is monotonically decreasing

relative to the number of items in a set.

New prospects are created by choosing two subsets which only differ in the last

term (for convenience of ordering). This ensures that the same prospect is only

created once. For instance, {AB} and {AC} can be combined, but {AB} and

{BC} cannot. However, as stated above, those subsets which do not begin with

the same n− 1 values must still be checked to ensure that they are frequent. Thus,
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even though {BC} is not used directly in determining the new prospects, it is still

checked to ensure that it is frequent. After verifying that all subsets are frequent,

the new prospect must of course still be checked to see that it itself is also frequent.

This manner of generating new candidates is used with the support metric they

put forth for mining association rules, however the property will hold for any measure

that is monotonically decreasing with the number of items. In our process we will use

this property to create sets of envelopes at time offsets that satisfy the monotonically

decreasing property of minimum length.

1.6 Related Work

While much related work has been done in finding patterns within sequences of

nominal values, less work has been done by the datamining community in finding

patterns within numerical sequences.

Han, Dong, and Yin use the Apriori property to build up partial-periodic se-

quences of nominal items [HDY99]. Allowing for errors is far less precise in nominal

sequences as the sequences are usually considered independent and thus there is no

measure for an individual item being close to the expected item. In their approach

error and variability are accounted for by allowing wildcard items in the finished

sequences (such as ab ∗ c).

Wang, et al. construct a generalized suffix tree using regular expressions to create

similar wildcard sequences with the added concept of an edit distance [WCM+94].

This edit distance specifies a maximum number of characters that a wildcard may

substitute for, thereby increasing the flexibility of the end sequences in allowing for

patterns that span unimportant data without being too distant to be considered

related.
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Related work on sequential nominal data includes that by Shalizi, Shalizi, and

Crutchfield [SSC02]. They use Hidden Markov Models to learn patterns within an

input string, but unlike many others endeavored to learn the states within the pro-

cess rather than have them specified a priori. The algorithm was designed to be

effective on a continuous stream of characters and thus evaluated only past char-

acters (within a sliding window to limit the scope to only those most influential

states). States with similar probability models were merged in order which allowed

for the learning of simple automata.

The primary difference between algorithms designed to work on nominal series

and those designed to work with numerical series is whether the algorithm worked

from the bottom up (as is usual with nominal data) or the top down (with numeric

data). The key reason for this difference is that with nominal data there are only

finitely many possibilities for each step and thus combining small sequences to form

larger ones or even generating sequences and then counting support is entirely fea-

sible. Numeric sequences on the other hand have no real limits to the number of

possibilities, but benefit from more easily allowing for imperfect matching.

Guralnik and Srivastava use a model similar to the one presented above in the

Introduction section to calculate instantaneous events in a single series [GS99]. They

accomplish this by splitting the sequence at a change-point that they slide across

the sequence and fitting each piece to a combination of model functions. The point

that splits the sequences into two smaller sequences with the least error to the fit

is the most likely event point. The process is then repeated over each subsequence

until the fitting no longer improves.

Much work has been done in quickly discarding sequences when querying for

matches. Vlachos et al. [VHGK03] use bounding envelopes and rectangles to quickly

determine sequences whose differences are too great to be considered a close match.
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As explained above, each sequence casts a bounding envelope over all points within

δ horizontal points and ε vertical distance. Sequences which do not fit within these

envelopes are known to have at least one point further than δ horizontally and ε

vertically from any point in the sequence forming the envelope.

Berndt and Clifford [BC96] use dynamic programming and a cumulative distance

matrix to determine the distance between two sequences after time warping. The

grid is constructed by finding the distance between the first point of the matching

sequence and each point of the base sequence. The smallest distance is then added

to the distances between the second point and each base point. For each point the

lower distance is used to determine the correct time warping and the cumulative

distance for this warping is used to determine if the sequences make a good match.

9



Chapter 2

Our Approach

In this section we first provide a general overview of our process, then outline the

inputs and outputs of the process, and finally provide an in-depth description of the

process followed by pseudo-code for our algorithm.

2.1 Overview

Any real-world numeric measurement is expected to have some amount of error and

other noise obscuring the desired measurement. This prevents the simpler equality

matching of values that is often used to mine patterns from data with nominal val-

ues. Our algorithm accounts for these uncertainties by casting a bounding envelope

around each time series sequence to represent possible positions for the desired mea-

surement. These envelopes provide bounds for the probable locations for the desired

measurement. Thus a larger envelope represents a stronger chance of containing the

desired measurement.

This concept means that two when two envelopes intersect they both contain

some of the same probability space to describe some of their points. Furthermore,

since a greater area indicates a greater chance that the actual measurement exists
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within the area, the probability that two envelopes are based off of the same desired

source measurement increases with the area of intersection.

Since these these measurements and envelopes exist in time and actual events

could be shifted both horizontally and vertically relative to each other, envelopes

must be intersected over all possible horizontal and vertical shifts. Time coordinates

are assumed to be integral and thus it is easy to have complete coverage for compar-

ing the results horizontal shifts. Value coordinates, however, exist on a real-valued

scale. Thus to find the optimal vertical shift to provide the greatest area we create a

special tree structure covering ranges of shifts in which the same linear function (on

shift) is used to determine area. These ranges can then be evaluated to determine

which function provides the greatest area.

When combining envelopes we use a modified version of the Apriori algorithm to

generate unique envelope-offset combinations. These envelope-offset combinations

are a set of envelopes, each with a time offset relative to the first envelope in the

set. These combinations are intersected to create new template envelopes to describe

common patterns.

Combinations are only considered valid if their intersections yield an envelope

that has a continuous set of points that have non-zero area with a length greater

than a user-input minimum length. This prevents very small coincidental combi-

nations from being considered valid. Since this envelope length property can only

decrease, larger combinations need only be considered if their sub-combinations have

already been found to be valid. Envelopes can also be considered invalid if a sub-

combination does not exist because it is known that an intersection of sufficient

length is impossible.

Thus our algorithm begins by creating combinations of two envelopes at all valid

horizontal shifts and proceeds to build larger combinations by merged two lower
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level combinations that differ only in one envelope-offset contributor. This allows

for all valid combinations to be found without searching through space known to be

invalid.

This process yields a large set of all possible valid envelope intersections. These

envelopes are then ordered according to a user specified value function. This aids

in that even though every possibility is returned certain results that might be more

important are filtered to the top. The user can then choose how many of those

results are useful.

2.2 Input and Output

The algorithm requires 5 pieces of input data from the user:

• A set of time series instances, TimeSeriesInstances.

• A horizontal bounding box range, δ.

• A vertical bounding box range, ε.

• A minimum valid envelope length, MinLength.

• A minimum time shift to use when combining an envelope with itself, MinTimeShift.

• V alue(envelope, contributors), a function determining the relative value of

an envelope based on the envelope and the contributing envelopes that were

intersected to create it.

The results of the algorithm are a set of template envelopes. These envelopes

each represent a common area within the set of envelopes created from the time

series instances and thus a description of a common pattern.
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2.2.1 Input

The first parameter, TimeSeriesInstances, is a set of time series along an integral

time axis. Each instance represents a series of datapoints progressing in time. Each

datapoint consists of an integer time coordinate and a real-valued measurement

coordinate. As these times coordinates are only used relatively, the numbers them-

selves do not matter as long as they preserve the relative distance between points.

Additionally this means that sequences with no explicit time coordinate can be used

as well by mapping each successive value to an increasing integer (see Fig. 2.1).

Sample Time Series
(1, 27.37) (2, 27.52) (3, 27.46) (4, 27.21) ...

27.37 27.52 27.46 27.21 ...
(37, 27.37) (38, 27.52) (39, 27.46) (40, 27.21) ...

Figure 2.1: The three time series all have the same temporal distance between the
same-valued points, thus they are equivalent within our algorithm.

While nothing in the algorithm innately requires that the times be integral find-

ing a best intersection between two envelopes would be far more computationally ex-

pensive and may become somewhat infeasible for longer sequences with non-integral

time values. Using integral time values also greatly simplifies storage. However, the

principles which form the basis for this algorithm do hold for real-valued time coor-

dinates and thus the algorithm is also applicable for them.

In most cases each of these time series will represent a separate data instance

within some greater dataset (i.e., companies in a stock value dataset), but a single

instance can be broken down into smaller periods to focus the algorithm on finding

patterns within a single sequence (i.e., breaking a single stock price into year long

instances).

The second and third input, δ and ε, are parameters used for creating the bound-
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ing envelopes and thus govern the tolerance of the algorithm. They represent the

expected uncertainty due to error and noise within the data. While we present δ

and ε as arbitrary but fixed here, values that are variable relative to time or specific

to each sequence (if some sequences are known to have more of less associated er-

ror) are within the capabilities of this algorithm. This is the case because once the

envelopes are created it is not necessary to create new envelopes later. Fixed values

are used here merely for simplicity of explanation.

δ measures how far the bounding box extends along the time axis to each side

of the source point. This allows for leniency along the time axis but should only

be used when the dataset is known to have some shrinking and stretching in time.

The nature of δ means that it allows points to be entirely subsumed by the points

next to them such that the algorithm is only actually guaranteed to use 1 out of

every δ + 1 points in performing its matching (see Fig. 2.2). This arises because

if for point P there is both a higher and lower measurement within δ time points

those values will be used for creating the envelope at P . Unless the sequences call

for time warping this value should usually remain at 0.

Figure 2.2: The middle point has no effect on the envelope created (δ = 1)

The ε value is not nearly so dangerous as it is applied to every point evenly and
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small increases in its value do not drastically change the shape of the constructed

envelope. Since ε is simply applied evenly it will never change which points are used

in the envelope creation, merely the height of the envelope. Since this value provides

horizontal flexibility it governs how closely two sequences’ shapes must correspond

in order to be considered a good match. Since some amount of area is required in

order to consider two envelopes as overlapping this value must be greater than 0.

The next two inputs control the suitability of envelopes created by the algorithm,

the template envelopes that represent the common patterns found within input time

series. The first value gives a minimum length at which a pattern is considered

valid while the second is a value function used to determine which envelopes are

more desirable. MinLength is the minimum number of points required in any valid

envelope. It helps ensure that results are not random coincidence by discarding

good matches that are simply the result of chance. MinLength should have a

value of at least 2 (since single point envelopes are entirely trivial) and likely even

higher. Since the process of intersecting envelopes can only reduce the total length

of a template envelope the algorithm terminates when the minimum length can no

longer be reached and thus higher values for this input will shorten the algorithm’s

processing time.

MinTimeShift dictates how far an envelope must be shifted to be considered a

possible combination with itself. This helps to prevent an envelope with a sustained

pattern from intersecting itself many times without really changing the shape. When

in doubt this value should usually be set to be at least equal to the MinLength,

but only absolutely needs to be at least 1. Higher numbers for this value will reduce

the number of items created initially and thus may reduce the total running time

by removing uninteresting combinations from the start.

The last parameter is a function designed to rank the resulting template en-
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velopes in order to display the most valuable results first. Since a very large number

of template envelopes are created it is essential to rank those template envelopes.

V alue(envelope, contributors) is a function that takes an envelope and the envelopes

intersected to create that envelope and returns a relative value for that envelope. It

determines the qualities that are most desired by the user in a template envelope.

For instance, since an envelope created from only two other envelopes could sim-

ply be coincidence, the Value function may return higher values for envelopes with

larger numbers of contributors. Similarly envelopes themselves may be evaluated

on different criteria. In some situations the length of sequences may be important

while in others the area or the average height (area divided by length) would be

most desirable.

The function should return a positive value used to rate the envelope, with

higher values being more desirable. Generally this function should be monotonically

increasing relative to the number of contributors unless there is some reason the user

wishes to favor results created with less data.

2.2.2 Output

The results of the algorithm come in the form of a set of template envelopes rep-

resenting common patterns within the time series set. These envelopes are the in-

tersection of envelopes generated from the instances and the other inputs described

above. Each template envelope expresses a common shape among the base envelopes

(the envelopes created directly from the input time series). It is our assumption that

each of these shapes is frequent because there is some common event that causes the

same output in multiple places. Thus these template envelopes can also be referred

to as event templates.

In order to determine if a new time series contains the event template the se-
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quence must first be converted to an envelope and then intersected with the template

envelope. If the new envelope completely encompasses the template then the time

series is considered to contain the event template (see Fig. 2.3). Since the envelopes

themselves have been shifted horizontally and vertically in order to create these re-

sults, their time and measurement values are only relative to each other. Thus the

template must also be shifted across the new envelope when trying to determine if

the envelope encompasses the template.

Figure 2.3: The time series envelope above completely encompasses template enve-
lope

2.3 In-Depth Process Description

In this section we provide an in-depth description of our algorithm. We will first

describe how the algorithm creates the initial envelopes from the time series data

input by the user. Next we provide a description of the special algorithm used to

find the best intersection between two envelopes. After this we explain how we

use the Apriori algorithm to combine envelopes in order to find template envelopes.

Finally we give a description of the result generation and ordering of our algorithm.

Additionally, in the section 2.4 we provide pseudo-code for each portion of our

algorithm.
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2.3.1 Creating the Initial Envelopes

For each input time series, a bounding envelope is created by combining bounding

rectangles cast by each point in the series.

Bounding rectangles represent an area capturing the possible locations for a point

after accounting for errors. A rectangle is created from all points that are within δ

on the timescale and ε along the value scale (see Fig. 2.4).

Figure 2.4: Creating a bounding rectangle

Each point is considered to be only an uncertain observation of the true output

of some event. The δ value represents the point’s possible uncertainty in time and

the ε value represents the point’s possible uncertainty in measurement. Thus after

removing these uncertainties, a point (t, y) could actually exist anywhere between

(t− δ, y − ε) and (t + δ, y + ε). Thus the bounding rectangle represents its possible

location without noise and error.

Figure 2.5: Envelopes are the union of all bounding rectangles
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Once all of the bounding rectangles have been calculated, they are unioned

together to form the bounding envelope (see Fig. 2.5). This bounding envelope

ensures that every point within it is at most δ points along the time axis and ε

along the value axis from a point in the original sequence. Thus, any two sequences

whose envelopes intersect at some number of time points can be considered to be

potentially equal at those time points. Since the envelopes dictate that, within the

bounds of uncertainty, every point within each envelope could be the true location

of the source point, if two envelopes intersect then the two time series that they

were generated from could both share some number of source points. This forms

the basis for our algorithm.

Principle. Since an observed sequence representing some phenomenon includes

some amount of uncertainty and we represent this uncertainty by bounding envelopes,

any two sequences whose bounding envelopes intersect at each of their relative time

positions have the potential to represent the same base sequence and thus the same

phenomenon.

Since we are only making comparisons at the integral time coordinates the cre-

ated envelopes can be simplified by taking only high and low values at each time

position (see Fig. 2.6). This can be done because envelopes are only ever compared

at these time indexes and overlaps occurring between points are defined by the sur-

rounding points. This reduces the problem from a comparison of areas, or even a

comparison of linear ranges to a simple comparison between high values and low

values. The algorithm will function without this assumption and optimization, but

such a change drastically increases the amount of processing required and similarly

increases the storage for each envelope.
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Figure 2.6: Only the vertical values at each relative time points are needed to
represent the bounding envelope

2.3.2 Finding the Best Intersection Between Two Envelopes

Intersecting two envelopes is not a trivial process. Because relative positions are all

that matters when finding similar shapes within sequences each intersection must

consider the full scope of horizontal and vertical shifting to align the two envelopes

in every possible position. Since horizontal shifting is based on an integral scale

simply looping through those shifts is sufficient to determine the best intersection.

The vertical scale however is real-valued and thus not so simple. Since the function

governing the overlapping area for just a single pair of ranges is discrete, simple

mathematical maximization is not possible.

The Intersection Area Function for Two Blocks

As shown in Figure 2.7, there are four basic functions making up the overall area vs.

vertical shift function: no area (at each end), linearly increasing area, constant area,

and linearly decreasing area. While the shift is such that the envelope being shifted

(the dark/blue envelope) is entirely below or above the stationary (light/green)

envelope (sections 1 and 5) the area is constant at 0. Similarly while one box

completely encompasses the other box (section 3) the area is equal to the maximum

intersection, which is a constant equal to the smaller box’s area (which does not
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Figure 2.7: The first blocks (representing the first time point) of two short envelopes
(shown in the upper left corner) are shifted vertically against each other. As two
boxes are shifted the area of their intersection creates a piecewise function.
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change throughout the optimization).

The more complex cases occur when the two boxes only partially overlap each

other. While the moving box is entering the stationary box but still only partially

matching (section 2), the area is a determined by a linear function starting at 0

and ending at the known maximum intersection. This function has a slope (the

coefficient to the variable shift value) of +1. Lastly, while the moving box is par-

tially matching the stationary box and leaving it (section 4), there is a similar but

decreasing linear function which has a slope of -1 instead of the above +1.

Figure 2.8: This figure shows both blocks of the short envelope shown in Fig. 2.7
being intersected individually (the first time point is on the left, the second on the
right). Since a shift value is applied to envelopes as a whole the two area functions
work on the same shift scale and can be added together to find a composite area
function for the total area.

The ranges and values for the above functions can be directly calculated given

two boxes. This allows us to split each overlap into 5 separate sections, each with

a continuous function governing its area (see Fig. 2.8. Since the sections for each

point of comparison within the two envelopes all exist on the same time scale these

sections can be combined together to find the total area of a series of point ranges. In

combining sections their shift ranges may need to be split into small ranges so that
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the functions remain continuous (see Fig. 2.9. The final result will be some number

of sections, each with a continuous linear function governing the total area within

that shift range. Given a continuous linear function a determining the maximum

shift is a simple matter.

Figure 2.9: The area functions created from intersecting the two blocks (from Fig.
2.8) are combined to create a unified area function which is split into subsections
with simple linear functions. The purple/dark-thin line represents the intersection
of the first point of each envelope, the orange/light line represents the intersection
of the second pair of points, and the red/dark-thick line represents the combination
of the two.
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Creating the Area Function Tree

In order to efficiently calculate the functions which dictate the total intersection

of two envelopes we created a special tree structure with a number of beneficial

properties. We describe the below the creation of the area function tree, then

explain the valuable properties that this structure gives to us, and then finally the

time complexity required to build our tree.

The root of the tree is a zero area space that extends from −∞ to +∞ (see

Fig. 2.10). When the first box of each sequence is evaluated that node will have 3

children added (since those ranges with 0 area are unimportant). When the next

pair of boxes is added, if one of its sections overlaps two sections from the previous

boxes the new section is divided up into two smaller sections and the matching pieces

are added to each of the previous sections it overlapped. Thus the very bottom of

the tree will likely contain very small sections, but the area function for each section

will contain no discontinuities.

The one special case in this tree is that if a section does not exist within any of

the shift ranges of the previous level (even if it does match a range from a level before

that) then a new node off of the root is created (as the root node serves to indicate

that within its children’s shift ranges the previous boxes did not overlap rather

than that it is the start of the sequence). This allows us to find only contiguous

overlapping sections. If discontiguous overlaps are desired then simply adding the

0 area end sections will accomplish this. We chose to only use contiguous areas

because they are more likely to represent a single pattern. Separate patterns that

appear in multiple sequences are more likely to represent a relation between two

events rather than a single event with a break in time.
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Figure 2.10: The individual sections of the functions are added together in a tree
structure. The first level is the 0 area root, the second adds in the first box and the
third adds in the second (and shows the total area function).
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Properties of the Tree

The tree that is generated has several useful properties both for storage and search-

ing. First, since the value ranges represented by each node within the tree get

progressively more specific, in order to find a node (or nodes) that covers (or is

covered) by a specific range the tree can be searched from its root downward, thus

decreasing the number of nodes that need to be searched (relative to iteratively

searching all leaves). Conversely all the information for previous blocks (which is

used when creating an envelope from a node) is stored in previous nodes rather than

repeating information for many leaf nodes. The data storage and searching is thus

very efficient.

Additionally, since each node represents adding a block to the existing area, the

area can only increase. Thus, to find the greatest area one needs only evaluate the

area at the leaf nodes. Additionally the length of the envelope represented by a

node is equal to its depth within the tree.

The ordering of the child nodes also provides another interesting property. Nodes

with no children will only appear at each edge of a level. This occurs because each

level is created by adding 3 consecutive shift ranges (with no internal gaps) with

nothing to either side. Thus any node with no children is guaranteed to have nodes

also with no children to one direction or the other. Also, if searching a level to

add new ordered ranges (like a new level), those nodes from the previous level

which occurred before the first range added will automatically be ineligible for any

subsequent ranges and any range that falls after a range already past the end of the

previous level will also fall after it.
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Properties of the Area Functions

The linear area functions themselves also have some convenient properties. Since

the functions for a single block intersection have either -1, 0, or 1 as slope all further

slopes will also be integral. Furthermore an increasing and decreasing slope will

cancel each other out to 0. Since a slope of zero within a range indicates that the

actual shift within that range is inconsequential to the actual area, this means that

an area combining an equal number of increases and decreases is also independent

of what shift (within the range) is used.

Determining the maximum area within a range is a simple matter. If the slope

is positive then the upper bound yields the greatest area. If the slope is negative

then the lower bound instead yields the greatest area. If the slope is 0, as stated

above, the actual shift does not affect the resulting area (obviously only so long as it

is within the bounds of the range). In this case we select the mid point as the best

shift since it is known to be furthest from other possibly decreasing segments and

best shift only matters for the range with the highest area, so this will only move

it away from decreasing areas. The middle point also makes for the most equal

contribution from both the increasing and decreasing area functions so that neither

is favored in further matching.

The Best Intersection

Thus, after the tree is completely generated, the leaves of the tree (having the

greatest possible area) are then individually evaluated based on their area function

and bounds to determine which contains the largest possible area. This node can

then be used to generate the best intersection.
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Time Complexity of Tree Creation

Theorem: Complexity of area tree creation algorithm. Given two envelopes

of length n, our area function tree contains at most 2n2 + n + 1 nodes, and its

construction requires at most 2n2 − n− 1 comparisons.

Proof: The number of comparisons and the number of nodes in an area function

tree are innately connected. The total number of nodes is the sum of the total nodes

at each level, while, in the worst case, the number of comparisons used to create

each level is related to the number of nodes in the previous level. Thus, our first

goal is to determine the upper bound for the number of nodes at a given level of our

tree.

Consider a level of our area function tree, l, and call the number of nodes in the

level s(l). At this new level, 3 ranges are being used to create the new nodes. Unless

a range is split across two nodes from the previous level, each range will create a

single node and 3 is therefore the best case value. More nodes are created when the

range must be split so as to fall beneath multiple nodes from level l − 1 (or from

the root node if a range falls partially outside of the previous level’s nodes). When

a range spans across the border between two nodes of the previous level it is split

from 1 range into 2 ranges. Thus, every border spanned adds 1 to the number of

nodes created in the new level. If there are s(l − 1) nodes in level l − 1, then there

are s(l − 1) + 1 borders that can be spanned by one of the three new ranges being

added. Therefore, the size of the new level, s(l), is equal to 3 + s(l − 1) + 1 or

s(l − 1) + 4.

This recurrence simplifies down to s(l) = 4(l−1)+ s(1) and given that s(1) = 3,

s(l) = 4l − 1.

s(l) = 4l − 1 (2.1)
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This result can then be used to determine the maximum number of nodes in a tree

with n levels by summing the number of nodes in each level.

n∑

l=1

s(l) =
n∑

l=1

4l − 1 = 2n2 + n (2.2)

The number of comparisons required to create each level is also based on the

number of nodes in the previous level. In order to create level l we must compare

each of the 3 new ranges to the nodes of the previous level. Fortunately the method

in which we store our data helps to prevent unnecessary comparisons through the

ordering of nodes. Since both the previous nodes and the new ranges are sequentially

ordered we know that we can skip any nodes that fall completely before the end of

the previous range.

Figure 2.11: Boxes 1-5 represent a previous node level, while boxes A-C are new
ranges being compared to them.

For instance, given the three ranges A-C in Fig. 2.11, range A will first compare

to nodes 1, 2, and 3 and then B will skip right to 3 since nodes 1 and 2 have already

been passed (while 3 has only been partially covered). The complete process goes
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as follows:

1. A compares to 1, no match

2. A compares to 2, partial match

3. A compares to 3, partial match, A finished

4. B compares to 3, partial match

5. B compares to 4, partial match, B finished

6. C compares to 4, partial match

7. C compares to 5, partial match, C finished, no more comparisons needed

In a more general sense, a node from the previous level will only be compared to

multiple new ranges if the node spans across a border between ranges. Therefore,

since 3 ranges will have 2 borders between the ranges, the number of comparisons

at any level, c(l), is equal to the number of nodes in level l − 1, s(l − 1), plus 2.

c(l) = s(l − 1) + 2 = 4l − 3 (2.3)

The total number of comparisons can thus be determined by summing the totals for

each level.
n∑

l=2

c(l) =
n∑

l=2

4l − 3 = 2n2 − n− 1 (2.4)

2.3.3 Building the Envelope Combinations

Once the envelopes have been prepared the true mining process can begin. To do this

we used a variation of the Apriori algorithm developed for finding association rules.

While the purpose of the standard Apriori algorithm is to create item sets such that
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those sets all meet a certain minimum support metric, our goal is to create sets of

envelopes that when intersected maintain a minimum length. Envelope combinations

are sets of envelopes, each with a relative time offset that are intersected with each

other to form a representative template envelope. Envelope combinations act as the

item sets in our version of Apriori.

Additionally these envelopes can be intersected at a number of different relative

time offsets such that intersecting envelope A with envelope B at time offset 1 is

different from intersecting it with time offset 3 (see Fig. 2.12). Items are thus more

closely associated with such an envelope-offset pair rather than just an envelope.

Figure 2.12: Two different envelope combinations created from the same two en-
velopes

As with standard Apriori, these envelope-offset pairs are given an ordering to

simplify the combination process. Envelope-offset pairs are first ranked according

to the (arbitrary) ordering in which the time series appear in the dataset. Then
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for those created with the same envelope the numeric ordering of the offset is used.

Thus, if envelopes are in the dataset in the order A, B, C, then B with offset 5

(designated B : 5 hereafter) is ordered after any A envelope-offset or B envelope-

offset with an offset less than 5 and before any envelope-offset pair with an envelope

of C or an envelope of B and an offset greater than 5.

The first level

The process begins with a first level consisting of envelope combinations containing

only a single envelope. Each envelope is given a fixed offset of 0. Since all offsets

within an envelope combination set are only relative to each, a single value can be

fixed without changing the relative value. We do this with the initial envelopes to

aid in later matching.

Since we wish to find only envelopes that meet a certain minimum length we

prune out at this level any envelopes that do no meet that minimum length. For

the rest of this description we consider envelopes to be valid when they meet the

user specified minimum length.

Creating the second level

Once the first level has been pruned of invalid envelopes, the second level can be

created. First each fixed envelope is combined with both itself and every other

envelope of higher order (thus A combines with A, B and C, and B combines with

B and C) to create a set of potential combinations. Except for the special case of

an envelope combining with itself, every possible time offset is given to the added

envelope. If A and B are both length 6 and the minimum valid length is 3 then A is

combined with B : −3 (to compare positions 1-3 in A with 4-6 in B) through B : 3.

In the special case of an envelope combining with itself two additional conditions
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apply. First the offset of the second instance must be positive since {A : 0, A : 3}
is no different from {A : 0, A : −3} and second the shift must be greater than or

equal to the MinTimeShift parameter. This helps to ensure that envelopes do not

combine too closely with themselves (since if that were the case straight lines would

intersect themselves at many points when it is not really a new shape to take note

of). Using a MinTimeShift equal to the example MinLength = 3 from above,

A would be combined with A : 3. It must still be remembered that the number of

positions that can potentially intersect must still meet the MinLength requirement.

Thus if A were only length 5 a shift of 3 would leave only 2 positions to consider

and no combination would be possible.

After these potential combinations have been generated they must still be inter-

sected to determine if a long enough intersection is possible. Since the horizontal

offset has already been determined by iterating over possible values, only finding

the vertical offset for each of those remains. However finding the ideal vertical shift

is not as simple as it may seem. The process used to determine such was described

above in section 2.3.2.

Creating levels beyond the second

Creating the first two levels is a special process. Creating the levels beyond two

is all done with the same algorithm. Each combination is extended by finding

other combinations that differ in only the very last term. Envelopes are no longer

added directly from the base set, but are instead selected from the previous level’s

combinations. Thus both the envelope to be added and the time offset are already

known. No worry needs to be given to whether it is adding the same envelope or

whether the offset is actually acceptable because it is already known to be a valid

potential item.
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For the two combinations to match all except the last term must be the same.

This includes both the envelope and the offset. Thus the combination {A : 0, B :

3, C : −1} can be combined with the combination {A : 0, B : 3, D : 4}, but not the

combinations {B : 3, C : −1, D : 4} or {A : 0, B : 0, D : 4}. Two valid combinations

combine together by adding the last term of the second on to the first (and since the

combination sets themselves should be ordered this will preserve the correct ordering

within the new set). For instance, from the example above, {A : 0, B : 3, C : −1}
can combine with {A : 0, B : 3, D : 4} to create {A : 0, B : 3, C : −1, D : 4}.

Once this potential envelope combination has been created it must be tested to

ensure that it is a valid combination or sets before intersecting the envelopes to

measure the intersection length. This is done by making sure that all subsets of

the new potential combination also exist as valid sets. {A : 0, B : 3, C : −1} and

{A : 0, B : 3, D : 4} are known to be valid (since they were taken from the valid

combination set), but the other two subsets of cardinality 3 ({A : 0, C : −1, D : 4}
and {B : 3, C : −1, D : 4}) must also exist. If they do not, it is known that they

were not valid and thus the new set cannot possibly be so.

One special operation must be performed in the case where the first term does

not have an offset of 0. Since envelopes that created the first level were given a

fixed offset of 0 and new envelope-offset pairs are only added to the end due to the

ordering within envelope combination sets, every envelope combination set begins

with an envelope-offset pair with an offset of 0. All other envelopes are relative to

this fixed offset and the other relative offsets.

Thus the set {B : 3, C : −1, D : 4} is made up entirely of relative offsets and since

it does not begin with an offset of 0, it could not possibly exist as is. Therefore, to

check the validity of the subset, all of the offset values must be simultaneously shifted

up or down so as to set the first offset to the fixed 0. {B : 3, C : −1, D : 4} becomes
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{B : 0, C : −4, D : 1} and can then be found within the existing sets beginning with

B (which all have offset 0). The terms all still have the same relative distance, but

the axis is changed so as to fit with the existing sets that have a fixed first term.

Once these potential envelope combination sets have been created and their sub-

sets have been checked the new envelope-offset pair (the one at the end) is intersected

with the existing intersection. This means the intersection of {A : 0, B : 3, C : −1}
is intersected with envelope D at an offset of 4 to create the new intersection of

{A : 0, B : 3, C : −1, D : 4}. If this intersection is long enough to meet the min-

imum length requirement then the potential combination is valid and is added to

the next level of combinations. The process concludes when no new combinations

are created for a level and all of the combinations are then returned.

2.3.4 Resulting Output

When the initial step can no longer create a new level of valid envelope-offset combi-

nations the process finishes. The results are the intersected envelopes created with

each envelope-offset combination set as described above. These envelopes are then

rated according to the value function and returned in order. Since every combina-

tion and subset is found, lower level envelopes may end up having a better value

and be returned higher in the list.

2.4 Pseudo-Code

2.4.1 CreateEnvelopes

CreateEnvelopes(time_series_instances, delta, epsilon)

{
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envelope_set = {}

for each (time_series in time_series_instances)

{

envelope = null

for each (time_point in time_series)

{

high_value = -infinity

low_value = +infinity

for (i = -delta to delta)

{

if (high_value < time_series[time_point + i].Value + epsilon)

{

high_value = time_series[time_point + i].Value + epsilon

}

if (low_value < time_series[time_point + i].Value - epsilon)

{

low_value = time_series[time_point + i].Value - epsilon

}

}

envelope[time_point] = (low_value, high_value)

}

envelope_set.add(envelope)

}

return envelope_set

}

2.4.2 FindBestIntersection

FindBestIntersection(stationary_envelope, moving_envelope,

horizontal_offset) -> Envelope

{

best_area = 0

best_vertical_offset = 0

temp_envelope = moving_envelope.shift(horizontal_offest)

area_function_tree = new area_function_node(low_shift = -infinity,
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high_shift = +infinity,

area_function =

0 * SHIFT + 0)

previous_leaves = area_function_tree

for each (time_point shared between

stationary_envelope and temp_envelope)

{

range1 = stationary_envelope[time_point]

range2 = temp_envelope[time_point]

new_leaves = {}

remaining_nodes = {}

max_intersect_area = Min(range1.area, range2.area)

lowest_bound = range1.low - range2.high

highest_bound = range1.high - range2.low

remaining_nodes.add(

new area_function_node(lowest_bound,

lowest_bound + max_intersect_area,

+1 * SHIFT - lowest_bound))

remaining_nodes.add(

new area_function_node(lowest_bound + max_intersect_area,

highest_bound - max_intersect_area,

0 * SHIFT + max_intersect_area))

remaining_nodes.add(

new area_function_node(highest_bound - max_intersect_area,

highest_bound,

-1 * SHIFT + highest_bound))

while (remaining_nodes is not empty)

{

node = remaining_nodes[0]

remaining_nodes.remove(node)

parent_node = FindNodeContaining(previous_leaves, node.low_shift)

if (parent_node exists)

{

node.area_function = node.area_function +

parent_node.area_function

if (parent_node.high_shift >= node.high_shift)
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{

parent_node.add(node)

}

else

{

temp_node = new area_function_node(parent_node.high_shift,

node.high_shift,

node.area_function)

node.high_shift = parent_node.high_shift

parent_node.add(node)

remaining_nodes.add(temp_node)

}

}

else

{

area_function_tree.add(node)

}

new_leaves.add(node)

}

}

all_leaves = FindAllLeaves(area_function_tree)

for each (node in all_leaves)

{

if (BestArea(node) > best_area)

{

best_area = BestArea(node)

if (node.area_function.slope > 0)

{

best_vertical_offset = node.high_shift

}

else if (node.area_function.slope < 0)

{

best_vertical_offset = node.low_shift

}

else

{

best_vertical_offset = (node.low_shift + node.high_shift)/2

}

}
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}

result_envelope = intersect(stationary_envelope, temp_envelope,

best_vertical_offset)

return result_envelope

}

2.4.3 CreateFirstTwoLevels

CreateFirstTwoLevels(base_envelope_set, min_length, min_time_shift)

-> EnvelopeCombinationSets

{

for each (envelope in base_envelope_set)

{

if (! envelope.valid)

{

base_envelope_set.remove(envelope)

}

}

result_envelope_combinations = {}

potentials = {}

for each (envelope in base_envelope_set)

{

for (offset = min_time_shift to envelope.length - min_length)

{

potentials.add({envelope:0, envelope:offset})

}

for each (new > envelope in base_envelope_set)

{

for (offset = -(new.length - min_length) to

(envelope.length - min_length))

{

potentials.add(envelope:0 + new:offset)

}

}

}

for each (potential in potentials)

{

potential.envelope = FindBestIntersection(potential.head.envelope,
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potential.tail.envelope,

potential.tail.offset)

if (! potential.envelope.valid)

{

potentials.remove(potential)

}

}

return potentials

}

2.4.4 CreateFurtherLevels

CreateFurtherLevels(envelope_combinations) -> EnvelopeCombinationSets

{

potentials = {}

for each (combination in envelope_combinations)

{

for each (new > combination in envelope_combinations)

{

// combination.head = first n-1 items from combination

// combination.tail = last item of combination

if (combination.head = new.head)

{

potentials.add(combination + new.tail)

}

}

}

for each (potential in potentials)

{

for each (length-1 subset of potential)

{

if (subset.first.offset != 0)

{

subset = subset.shift(-subset.first.offset)

}

if (! envelope_combinations.contains(subset))

{

potentials.remove(potential)

break

}

}
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}

for each (potential in potentials)

{

potential.envelope = FindBestIntersection(potential.head.envelope,

potential.tail.envelope,

0)

if (! potential.envelope.valid)

{

potentials.remove(potential)

}

}

return potentials

}

2.4.5 FindTimeSeriesTemplates

FindTimeSeriesTemplates(time_series_instances, delta, epsilon,

min_length, min_time_shift, value_function)

{

base_envelope_set = CreateEnvelopes(time_series_instances, delta,

epsilon)

result_combination_set = CreateFirstTwoLevels(base_envelope_set,

min_length,

min_time_shift)

new_combination_set = CreateFurtherLevels(result_envelope_set)

while (new_combination_set not empty)

{

result_combination_set.add(new_combination_set)

new_combination_set = CreateFurtherLevels(new_combination_set)

}

result_combination_set.orderUsing(value_function)

print(result_combination_set)

}
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Chapter 3

Experimental Results

3.1 Synthetic Data

The synthetic data is most capable of determining the algorithms capability to

function under the assumptions as to what representations an event has within a

time series. Synthetic data provides us data where we know the events that exist

within each time series.

3.1.1 Data Generation

The data was generated with the basis of a dataset ranging from 0 to 99, with

each successive instance actually being the average of the previous instance and a

random value. This represents that data usually progresses through time rather

than simply jumping to random values. The dataset consists of 20 sequences each

with 40 values. Within these sequences 4 events of length 10 are inserted. The

template event sequences are created in the same manner as the normal data but

just repeated throughout the dataset. Each point that isn’t already representing an

event has a 5% chance of beginning a new instance of a template. Additionally the
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template is shifted upwards or downwards by a random amount, but never enough

so that the maximum would be greater than 99 or less than 1. After this is done

every value is shifted up or down randomly by up to ε (which is specified at run

time).

3.1.2 Effectiveness Relative to Epsilon

For this test we generated 6 versions of the same dataset, each with a different value

for ε, ranging from 5 to 10. These values are applied to a single randomly generated

number to avoid different random generations influencing the result. Thus a point

modified upward by 5 when using an ε of 5 will be modified up by 10 for the ε = 10

version. The template sequences had lengths of 4, 5, 6, and 8 and include a repeated

single envelope within a sequence.

Results were filtered to include only envelopes that were not used to create other

envelopes. This is done to easily increase the diversity of results, but could be

replaced by a better value function to favor coverage. Without such the biggest

template’s subsets would appear above other good results.

The results consistently show the templates being found (see Fig. 3.1). 3 of the

4 templates were consistently found completely in the results. The last was only

expressed partially (two results with 5 of 6 expected instances). This highlights one

of the only ways in which the algorithm isn’t guaranteed to find every valid inter-

section. Since the algorithm to determine best vertical shift can only be performed

on pairs of envelopes being intersected the early intersections can influence later

intersections. This arises because A, B, and C cannot be intersected together so

C must intersect with the intersection of A and B rather than with the individual

envelopes. Thus when A and B are intersected without C the best area may be de-

pendent on other coincidental matching pieces and affect which envelope is created
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even though they are stripped later.

Since the valid results all existed in 4 or more sequences they true results were

always above the false positives that showed up as ε increased. Thus many of them

could be ignored simply if it was known that intersections between 2-3 sequences

were too infrequent to be valuable.

Epsilon
5 6 7 8 9 10

Full 3 3 3 3 3 3
Partial 1 1 1 1 1 1

False (4) 0 0 0 0 1 3
False (3) 0 0 0 1 4 9
False (2) 0 1 3 14 10 3
False (all) 0 1 3 15 15 15

Figure 3.1: Table of fully matched templates, partially matched templates, and false
templates by number of contributors

3.2 Unemployment Data

For the first test a set of unemployment data for three counties in Massachusetts

was mined for frequent patterns. The data contained monthly rate measurements

covering the years between 1990 and 2003. Rates varied from between 1.9% and

15.1% and had no missing values.

The counties of Barnstable, Middlesex, and Worcester were chosen because the

author has a degree of familiarity with each county and their commerce patterns.

Barnstable County’s economy is heavily influenced by summer tourists, while Mid-

dlesex County is heavily influenced by the large city of Boston, and Worcester

County surrounds the large but less active city of Worcester.

The data began as a single long stream for each county but was split into yearly

sequences to avoid forcing the mining process to begin by matching patterns across
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counties. It was hoped that the process would discover similarities between the

sequences within each county to show that it could identify known patterns (such

as employment patterns unique to each county).

3.2.1 Experiments

Our first step in experimenting with this data was to normalize the unemployment

data. We did this in order to place each year on an equal scale and to minimize the

effect of the overall economy so that good years can compare shape to bad years.

The normalized data is much more shape dependent than the non-normalized

data and this causes the Barnstable County sequences to be even more tightly tied

together (see Fig. 3.2). Worcester and Middlesex County can also be seen to be

very similar though normalization causes sequences with high points at the beginning

and end of the year to be further differentiated from others from the those counties.

This reveals a secondary trend among dates for the two city-influenced counties in

that some years (presumably while the economy was increasing) caused the overall

unemployment to drop. The holidays were usually either very good or very bad for

unemployment.

We ran tests over a variety of ε and minLength values. The values of 0.08 for ε

and 8 for minLength provided some of the best result. 3 of the most representative

envelopes discovered can be seen below.

Figures 3.3 and 3.4 show the very strong grouping of Barnstable county unem-

ployment patterns. These envelopes not only combine together to build up nearly

the entire Barnstable year pattern, but also encompass a large number of sequences,

thus showing that the pattern is very frequent. The first begins at position 5 (May)

while the bottom starts at 1 (January). Barnstable data grouped very tightly with

other Barnstable data and only very rarely was combined with either of the other
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Figure 3.2: Graph of normalized monthly unemployment rate for Middlesex, Worces-
ter, and Barnstable counties
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Contributing Envelopes and Offsets:
B1991:0, B1994:0, B1995:0, B1996:0, B1997:0, B1998:0, B1999:0, B2000:0

Figure 3.3: An unemployment template envelope
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Contributing Envelopes and Offsets:
B1990:0, B1994:0, B1995:0, B1996:0, B1997:0, B1998:0, B2001:0, B2002:0

Figure 3.4: An unemployment template envelope
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counties.

Contributing Envelopes and Offsets:
M1993:0, M1996:0, W1992:0, W1993:0, W1994:0, W1996:0

Figure 3.5: An unemployment template envelope

Figure 3.5 displays the largest grouping of non-Barnstable data instances. As

opposed to Barnstable, Worcester and Middlesex county intermixed often with each

other. This sequence displays the most frequent pattern found for Worcester and

Middlesex counties at this ε value. This pattern displays another quality of the

data in that it Worcester and Middlesex often compare well at similar time periods

rather than throughout. This likely is indicative of an economy that is more greatly

affected by the general economy than by the change of seasons when compared to

Barnstable.

One of the last general points to note about all three results is that sequences in

this dataset combined all with an offset of 0. This shows that the patterns evicted
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are likely rather predictable and very cyclic on a yearly basis.

3.3 Monthly Stock Quotes

The last dataset we used in testing our algorithm is a 5 year monthly quote of

stock prices for 4 large technology companies: Microsoft, Sun Microsystems, Intel,

and IBM. We retrieved these listings from the Yahoo Finance Stock History search.

Each quote was taken monthly and the timespan covered was January 1998 through

December 2003 (see Fig. 3.6). For our evaluation we used the adjusted close column

and normalized each time series.

3.3.1 Experiments

Figure 3.6: Graph of monthly stock values for Intel, Microsoft, Sun, and IBM
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We again performed mining over a variety of ε and MinLength inputs and

selected one of those trials as the best result by comparing the uniqueness, length,

and number of the resulting envelopes. The results below are for ε = 0.1 and

MinLength = 18. Thus the results below show trends over one and one half years.

Figures 3.7, 3.8, and 3.9 show the three most unique results found from mining

using the parameters above, along with a possible match from the predetermined

financial templates used by stock analysts. Many other results similar to the ones

above were also discovered, primarily with different offsets from the same contrib-

utors, which indicates that the data does not change very dramatically (at least

compared to the 10% ε value). The primary purpose in using this dataset was to

determine if any of the pre-established templates used in stock values could be dis-

covered by our algorithm. Each of the figures shows both a graph of the template

found through our algorithm and a possible match to a stock template. Figures

3.7 and 3.9 both show reasonably recognizable correspondence to the templates

given. Figure 3.8 has a small amount of correspondence to the ’Ascending Triangle’

template, but did not fit well with any of the predetermined templates.

However, even though comparisons can be drawn between the shapes of the tem-

plates we found and the predetermined templates it is difficult to state definitively

that our templates are truly representations of the predetermined templates. Know-

ing when to apply those templates is necessarily an inexact science performed by

domain experts and thus an expert eye would be needed to state anything conclu-

sively.
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Contributing Envelopes and Offsets:
INTC:0, INTC:51, MSFT:52, SUNW:-1, SUNW:52, IBM:52

Figure 3.7: A template envelope found by our algorithm and the ’Descending Tri-
angle’ stock value template
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Contributing Envelopes and Offsets:
INTC:0, INTC:34, MSFT:46, SUNW:0, SUNW:47

Figure 3.8: A template envelope found by our algorithm and the ’Ascending Trian-
gle’ stock value template
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Contributing Envelopes and Offsets:
INTC:0, MSFT:-21, MSFT:-1, SUNW:1, IBM:0

Figure 3.9: A template envelope found by our algorithm and the ’Broadening Top’
stock value template
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3.4 Run-time Experiments

The experiments below measure the effect on intersections performed and run-time

as properties of the experimental dataset change. Our first experiment varies the

epsilon value (both within the dataset and as a parameter to the algorithm), the

second varies the length of the data sequences, and the third varies the total number

of sequences. We chose these values to vary because they are the most likely to affect

total run time and the most commonly varied properties.

Except for the properties that vary in each experiment, the experiments use the

following properties:

• δ = 0

• ε = 5

• sequence length = 40

• number of sequences = 40

• value range = 0..99

Sequences were generated in the same manner as the artificial experiments in

Section 3.1.

The experiments were run on a machine with dual AMD Opteron 246 CPU’s,

6 GB of RAM, 4 GB of swap, an 80 GB UDMA166 hard drive, and running SuSE

Linux Enterprise Server 8.0 for x86-64.

Each experiment measures the intersections and time used during both the initial

pairing of envelopes created from the input sequences (see Section 2.3.3) and during

the further intersections performed among those pairing results (see Section 2.3.3.

The results for the initial pairing are labelled “Base Envelope Pairing” and the
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results for the further intersections are labelled “Further Combination” in the graphs

below. The graph areas are additive, thus the top line indicates total intersections

or time. All three experiments use the same base datasets, thus while individual

properties may alter the data the underlying patterns themselves do not change and

thus will not affect the results.

3.4.1 Varying Epsilon

The variation of ε is performed as in Section 3.1 above. In this experiment, ε varies

from 5 to 10 (relative to values between 0 and 99) and each of the 6 ε varying

datasets are created with the same relative variance. Thus if a value is modified

upwards by 5 in the ε = 5 dataset the same value will be modified upwards by 10

in the ε = 10 version. This prevents the random generation of noise from providing

different sets for each ε value (except for the expected difference in ε).

Figure 3.10: Graph of Intersections Performed as Epsilon Varies
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Figure 3.10 shows the number of intersections performed as the datasets’ ε-value

increases. Since intersections of all pairings and offsets must be tried regardless of

their ε-value, varying ε has no effect on the number of initial combinations. On

the other hand, since a larger ε increases the likelihood of further combinations, the

total number of intersections increases with ε.

Figure 3.11: Graph of Total Time Spent as Epsilon Varies

While intersections and time are closely related values, this experiment shows

that their relation is not perfectly linear. Even though Fig. 3.10 shows a perfectly

constant number of initial intersections, 3.11 shows that the time required for those

intersections increased with ε. This result comes form the intersection algorithm. A

larger ε creates larger intersections between sequences. Since the tree that is created

when intersecting envelopes grows larger with these larger intersections this leads

to more time spent as ε grows.
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3.4.2 Varying Sequence Length

Our next experiment measured the intersections performed and time spent as se-

quence length varied from 40 to 60. To create the varied datasets for these tests each

of the sequences was extended by adding random values to the end of the existing

sequences. Since these values are random, the number of template envelopes found

by the algorithm is not expected to vary (as the number of template sequences does

not increase).

Figure 3.12: Graph of Intersections Performed as Sequence Length Varies

Figure 3.12 shows the number of intersections performed as the length increases.

The number of intersections performed during the pairing of the initial envelopes

increases due to the longer length of sequences, but the number of intersections

needed to refine those pairings into template envelopes stays constant. This is

because the additional initial pairings are unlikely to create envelopes of valid size

and thus are discarded before the further refinements take place. Even should the
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random values create a valid envelope in the initial pairings, it would still be unlikely

to match other and thus would be filtered out after the first level.

Figure 3.13: Graph of Total Time Spent as Sequence Length Varies

Figure 3.13 shows the time spent as the length of the sequences increases. While

the longer sequences cause more total intersections these intersections do not create

larger or longer envelopes. Thus, unlike in the first experiment, do not require more

time per intersections. Thus the two graphs are roughly linearly proportionate.

3.4.3 Varying Number of Sequences

We next examined the effect on number of intersections performed and processing

time as the number of sequences in a dataset varies. Varying the number of sequences

is a simple matter of including of discarding complete instances from the dataset.

Our experiments run from 20 sequences up to 40 sequences.

Figure 3.14 shows the number of intersections vs. the total number of sequences
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Figure 3.14: Graph of Intersections Performed as Number of Sequences Varies

in the dataset. The somewhat strange shape of the further combinations section

is due to a simple quirk of the data. Since the datasets were created by dropping

sequences from the basic 40 sequence dataset used in the other experiments the

flattening that occurs beyond the 37 sequence dataset is actually due to sequences 38

through 40 not containing any expressions of the template sequences. Additionally,

due to the nature of the algorithm, every new sequence containing a template must

be matched to every other sequence also containing that template and thus each

additional sequence expressing that template increases the number of intersections

by a greater amount than the previous one. Thus, a roughly exponential increase

can be seen up until 38 sequences after which the further combinations levels out

and the increase is simply linear.

Figure 3.15 shows the corresponding time graph for varying sequences. There

are no surprises in this graph as it is roughly proportional to the intersection graph.
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Figure 3.15: Graph of Total Time Spent as Number of Sequences Varies

3.4.4 Time Spent per Intersection

Finally, figure 3.16 shows a composite graph of time vs. intersections points for

each of the experiments above. Each point represents a time vs. intersections

combination for one of our three experiments above. While the lines for the three

experiments seem to connect at approximately 56,000 intersections by 128 seconds

this is not an indication of connection between results but rather just the point

where each experiment used the same input values.

The nearly linear nature of the results from experiments on sequence length and

number of sequences shows that our intersection algorithm reacts well to changes

in those values. While the number of intersections increases the time spent per

intersection increases very little. ε, on the other hand, creates larger intersection

trees and thus increases the time spent per intersection at a much faster rate.
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Figure 3.16: Graph of Total Time Spent Relative to Intersections Perfromed
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Chapter 4

Conclusion

In this thesis we created an algorithm for use in finding patterns shared between

instances in a set of time series data. To do this we used the concept of bounding

envelopes to cast an area of probability around each time series. We then use a vari-

ation of the Apriori algorithm to build sets of envelopes that are intersected together

to create template envelopes. Intersection is performed using a specially developed

algorithm that uses a tree structure to organize the piecewise area functions that

result from the intersection of each block of the envelopes. The template envelopes

created from the intersection represent a pattern shared among all of the envelopes

in the set used to create it. Finally, these template envelopes are ranked according

to a user specified value function and returned as the results of the algorithm.

4.1 Contributions of this Work

• We have created an algorithm to find common patterns within a set

of time series data
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– Our algorithm finds all combinations of envelopes at all offsets of sufficient

length - no combinations are missed.

– Our algorithm does so in an efficient manner that minimizes unneeded

searching.

– Our algorithm is flexible enough to work with many different datasets

without requiring extensive knowledge of the user.

• We developed a special tree structure to find the best vertical shift

for intersecting two envelopes

The tree has a number of valuable properties:

– The tree structure allows us to find only contiguous intersections.

– Ranges get progressively more precise such that searching out nodes for

a point or area is very efficient.

– Information for previous intersections that are shared among multiple

nodes is stored in common ancestor nodes so that space is conserved.

– Total area always increases as nodes are added.

– Length the length of an intersection is equal to the depth of its last node.

– Children of a node cover one continuous range such that only two end-

point nodes exist.

• Our algorithm provides a valuable contribution to data mining re-

search at Worcester Polytechnic Institute (see Section 4.1.1)

– As a preprocessing tool for further data mining.

– As a tool to visualize common patterns within time series data.
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4.1.1 Contributions to Data Mining at the Worcester Poly-

technic Institute

For the past two years students at Worcester Polytechnic Institute have been work-

ing to improve the association rule mining capabilities of an open source data mining

project called WEKA [WF99]. WEKA is an open source data mining system cre-

ated at the University of Waikato in New Zealand. WEKA provides support for

many different data mining techniques but initially focussed mostly on classification

methods.

Students at WPI have been working to expand WEKA’s association rule mining

methods. Initially support for mining over data containing sets of items was added

[SS02]. More recently this work has been greatly extended to mine for association

rules over data containing sequences of temporal events [Prass]. Pray’s work assumes

that domain-dependent events of interest have been predefined.

Our work will provide a valuable preprocessing tool to use in the mining of

time series association rules by finding more complex and data dependent events.

By discovering data dependent events we expect to allow for more in-depth and

meaningful sequence mining and to make the WPI WEKA association rule mining

approach suitable for a wider range of application domains.

Additionally the finding of events is useful in and of itself. Our algorithm will

identify common patterns from any time series data. Whether those patterns will

then be used to simplify the series to a more manageable form or used more directly

depends on the goals of the user.
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4.1.2 Future Work

There are some pieces of our algorithm that could be expanded and improved in

future projects.

• Upgrade the intersection algorithm so that it supports simultaneous intersec-

tion of multiple sequences rather than only two at a time. This would make

the algorithm as a whole complete as it would avoid the small greedy aspect

caused by only being able to intersect two envelopes at a time.

• Create a set of common value functions so that a novice user could simply

select one rather than requiring them to create their own. Further evaluation

of the properties of “good” results would also be valuable.

• Perform further optimization on the algorithm to reduce overall run time.
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Appendix A

Unemployment Data

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
M1990 4.2 4.5 4.6 4.4 4.5 5 5.3 5.3 5.4 5.1 5.3 5.5
M1991 6.7 7.1 7.4 7.3 7.4 7.8 8 7.7 7.7 7.2 6.9 6.7
M1992 7.5 7.4 7.6 7.3 7.3 7.8 7.6 7.4 7.5 6.8 6.6 6.2
M1993 6.6 6.3 6.2 5.9 5.7 6 5.8 5.6 5.8 5.2 5 4.7
M1994 5.5 5.2 5.3 4.8 4.7 5.1 5.1 4.9 5 4.8 4.5 4.3
M1995 5 4.8 4.7 4.3 4.2 4.6 4.5 4.3 4.4 3.9 3.6 3.4
M1996 4 3.7 3.6 3.2 3.1 3.4 3.3 3 3.3 2.9 2.8 2.7
M1997 3.4 3.2 3.2 2.9 2.9 3.1 3.1 3.1 3.2 2.7 2.6 2.4
M1998 3 2.7 2.7 2.2 2.4 2.6 2.5 2.3 2.7 2.3 2.1 2.1
M1999 2.8 2.5 2.6 2.3 2.4 2.7 2.7 2.5 2.7 2.4 2.2 2
M2000 2.5 2.3 2.1 1.8 1.7 2.1 2.1 1.8 2 1.7 1.6 1.5
M2001 2.2 2.2 2.4 2.3 2.6 3.2 3.5 3.5 3.9 3.9 4 3.9
M2002 4.8 4.7 4.8 4.6 4.5 5.1 5.2 5 5.4 5 4.7 4.6
M2003 5 4.8 5.2 4.6 4.8 5.2 5 5 5.2 4.7 4.4 4.2
W1990 6 6.2 6.4 5.9 5.9 6.7 7.2 6.9 7 6.9 7.5 7.7
W1991 9.7 10.3 10.7 10 9.9 10.3 11.2 10.2 10 9.5 9.1 8.9
W1992 10.1 9.8 9.9 9.2 8.8 9.1 9.3 8.7 8.5 7.8 7.7 7.5
W1993 8 7.6 7.6 6.9 6.7 7 6.9 6.5 6.6 6.1 5.9 5.6
W1994 6.9 6.6 6.5 5.6 5.3 5.6 5.7 5.3 5.1 4.9 4.8 4.7
W1995 6 5.9 5.7 5.2 5 5.6 5.8 5.2 5.2 4.7 4.7 4.4
W1996 5.5 5.1 5 4.4 4.2 4.5 4.4 4 4.1 3.5 3.5 3.5
W1997 4.6 4.4 4.5 4 3.8 4.1 4.3 4 4 3.4 3.4 3.3
W1998 4.2 3.9 3.9 3 3.2 3.5 3.6 3.2 3.5 3.1 2.9 2.9
W1999 4 3.6 3.7 3 3.1 3.5 3.7 3.3 3.4 3.1 3 2.9
W2000 3.6 3.4 3.1 2.6 2.6 3 3.2 2.7 2.8 2.5 2.5 2.3
W2001 3.4 3.4 3.8 3.3 3.5 4.1 4.6 4.5 4.7 4.5 4.7 4.7
W2002 6.1 6.1 6.2 5.8 5.6 6.3 6.7 6.4 6.5 6 5.9 5.9
W2003 6.7 6.7 7.1 6.2 6.3 6.8 6.8 6.7 6.7 6.2 6 6.1

67



Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
B1990 10.9 10.5 10.6 8.5 7.1 6.6 6.5 6.6 7.3 8.4 10.6 11.9
B1991 14.7 15.1 15.1 12.6 10.6 9.6 9.1 8.6 9.2 9 10.9 11.3
B1992 14.2 14.2 13.7 11.3 9.4 8.1 7.5 7.1 8.4 8.5 10.9 11.2
B1993 12.4 12.2 11.7 9.3 8.1 7.3 6.3 5.9 6.4 6.6 8.1 9.6
B1994 12.2 11.8 11.3 8.7 7.4 6.4 5.4 5.2 5.6 6.1 7.1 7.7
B1995 9.8 9 8.2 6.4 5.3 4.6 4.5 4.3 4.4 4.8 6.4 6.4
B1996 8.7 7.9 7.2 5.5 4.5 4.3 3.9 3.3 3.9 3.8 5.4 5.7
B1997 7.9 7.5 7.1 5.5 4.5 4.1 3.6 3.4 3.6 3.3 4.9 5.1
B1998 7.1 6.1 5.8 4 3.7 3.3 2.8 2.6 3 2.5 3.5 4.3
B1999 6.3 5.2 4.8 3.3 3.1 2.9 2.6 2.4 2.6 2.5 3.3 3.7
B2000 5.4 4.7 4.1 2.9 2.5 2.5 2.1 1.9 2.2 2.2 3.1 3
B2001 5 4.6 4.5 3.3 2.8 2.5 2.6 2.4 2.5 2.6 3.6 4
B2002 5.9 5.5 5.4 4.2 3.5 3.5 3.5 3.1 3.2 3.2 4 4.4
B2003 5.8 5.5 5.8 4.4 4 3.7 3.3 3.5 3.7 3.5 4.3 4.8
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Appendix B

Monthly Stock Data

INTC 31.96 33.45 32.84 27.43 28.49 24.79 20.72 20.73 18.3
16.19 17.16 15.56 15.47 20.74 17.17 13.79 16.54 18.63
18.11 27.38 28.34 30.12 28.28 34.69 31.13 32.33 24.16
20.22 27.66 29.47 28.92 26.7 30.54 25.99 28.22 36.53
29.68 37.58 44.41 41.02 73.9 65.86 65.95 61.51 62.53
65.06 55.72 48.76 40.56 37.79 38.13 36.59 40.47 33.95
29.27 26.6 30.08 29.21 29.48 34.58 29.09 26.4 21.84
21 17.43 20.65 18.13 17.47 19.76 19.06 21.9 19.78

MSFT 27.37 25.71 26.14 27.64 26.37 26.26 25.5 24.47 25.43
24.07 23.57 23.52 25.62 28.59 26.5 21.68 24.32 23.78
27.11 25.23 25.9 29.89 28.91 31.58 32.83 31.82 28.82
25.36 28.27 32.8 36.18 34.29 33.58 27.11 29.24 30.26
21.5 28.44 34.13 29.89 34.6 34.6 39.65 31.01 34.57
52.66 44.29 48.51 57.86 45.13 45.87 44.88 45.87 42.53
44.7 39.99 40.3 44.42 37.2 43.37 34.37 30.23 26.24
27.27 23.77 27.24 26.86 21.02 22.33 22.18 21 18.49

SUNW 4.47 4.26 3.95 3.31 3.9 3.76 4.65 4.35 3.31
3.26 3.44 3.09 3.11 4.29 2.96 2.59 3.69 3.92
5.01 6.89 8.18 8.82 8.51 10.76 12.3 14.24 10.15
8.27 11.45 16.29 15.72 16.47 17.12 15.37 19.87 30.56
27.87 38.03 55.44 58.38 63.47 52.72 45.47 38.31 45.97
46.85 47.62 39.28 38.72 33.06 26.45 23.25 19.88 16.97
17.22 14.94 14.95 15.63 12.16 13.97 10.7 9.26 7.28
6.23 4.95 5.91 5.43 5.01 5.15 5.22 5.95 5.99
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IBM 92.34 90.21 88.99 87.85 81.56 80.65 81.89 87.39 84.11
77.7 77.23 77.33 76.63 85.95 77.91 57.55 74.4 69.33
70.91 79.23 82.33 102.22 96.44 105.91 118.74 113.46 105.95
89.92 97.99 103.01 111.13 109.46 112.6 94.06 97.69 109.4
83.03 91.33 96.09 109.87 128.79 109.39 106.76 104.57 108.52
115.21 100.01 109.14 104.88 100.2 95.4 117.49 120.95 121.92
125.38 112.52 101.23 85.78 82.15 88.44 88.99 79.7 71.46
61.84 54.19 63.54 55.06 56.35 55.36 49.63 49.9 46.99
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