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Abstract  
Human Immunodeficiency Virus (HIV-1) Protease Inhibitors (PIs) have become one of the most 

effective anti-viral drugs on the market. Darunavir (DRV), the most potent FDA-approved and 

clinically prescribed PI has been a cornerstone in Highly Active Antiretroviral Therapy (HAART) 

and the fight against HIV/Acquired Immunodeficiency Syndrome (AIDS). However, the ability of 

the HIV protease to mutate, grow resistance against PIs and proliferate rapidly has become a global 

concern. To address this issue, a new series of PIs were designed using the substrate envelope 

hypothesis to resist resistant mutations. The first set of PIs, UMass 1-10, are derived from the DRV 

backbone and have an aniline, methoxy, hydroxymethyl, benzodioxole, or a benzothiazole 

modification implemented on the P2’ site, and 2-methylbutane or isohexyl modification on the P1’ 

site. The second set of compounds, the mono- and di-hydroxyl series, also derived from the DRV 

backbone and contain a mono- or di-hydroxyl modification on their P2’ site, and isobutyl, 2-

methylbutane, or isohexyl modification on their P1’ site. All of these compounds were kinetically 

tested against various mutants of the HIV-1 protease, and crystal structures were solved in order 

to structurally analyze the binding mode. In general, the UMass 1-10 compounds exhibit pico-

molar Ki’s against protease mutants, comparable to DRV. The mono- and di-hydroxyl series show 

promising results, as pico-molar potencies are also observed. In combination with crystal 

structures, these results can be utilized to design new PIs with enhanced inhibitory potencies 

against a wide range of HIV-1 protease mutants.  
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Chapter 1: Introduction 

Throughout this report, we focus on the Human Immunodeficiency Virus (HIV) protease 

and how it utilizes evolution via numerous genomic mutations to circumvent the human immune 

system. The HIV protease is an aspartyl homodimer, with only 99 amino acids in each chain. It is 

responsible for cleaving along twelve nonhomologous sites which leads to a mature virus. It has 

the ability to mutate a large portion of its sequence to evade inhibitors while maintaining its normal 

function. The analysis of novel protease inhibitors specifically designed to resist the rapid mutation 

rate of the HIV protease is the main focus of this project. Along with the Wild Type (WT) strain, 

the various protease mutants of interest were I84V, I50V, I50V;A71V, and V82I. Utilizing the 

backbone of currently prescribed protease inhibitors such as Darunavir (DRV) and Lopinavir 

(LPV), the P1’ and P2’ moieties were modified and tested on the mutants previously mentioned. 

Prior to synthesizing any compounds, modeling simulations can be utilized to estimate how 

inhibitor modifications will affect binding to the active site and the overall interactions that might 

incur due to inhibitor modifications. 

In order to effectively optimize these new inhibitors, it is crucial to understand how and 

where natural substrates fit within the enzyme’s active site. The specificity of the protease cannot 

be determined by the sequences of the substrates cleaved. In previous studies conducted by the 

Schiffer lab, it was determined that there is a consistent consensus volume throughout all HIV-1 

protease variants, referred to as the substrate envelope. Based on this, it was determined that the 

specificity of the enzyme relies on substrate shape rather than sequence (1). Using a substrate 

envelope guided drug design approach, novel inhibitors can be modeled and synthesized. 

To study the effectiveness of these inhibitors, inhibition assays were conducted in order to 

determine the inhibition constant (Ki) for every respective drug and variant. In addition to Ki, the 

Michaelis Menten constant (Km) of WT and numerous mutants were determined via a Km assay. 

The Km parameter was used to analyze the apparent affinity of each mutant to the substrate. Lastly, 

crystal structures of compounds in complex with mutants of interest were solved. Solved crystal 

structures were then utilized to visualize the inhibitors inside the substrate envelope. Such analysis 

allowed us to determine major differences in inhibitor binding and mutant structure compared to 

DRV. Furthermore, this analysis informed us about the relationship between the calculated Ki’s 

and the observed inhibitor binding inside the substrate envelope. Considering all of the data and 
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analysis gathered, hypotheses regarding the inhibition capability of each compound can be made. 

This will help determine which inhibitor(s) are worth undergoing further testing in more complex 

laboratory procedures, such as viral passaging, computer simulations to determine van der Waals 

(vdW) interactions, and molecular dynamics simulations to properly visualize the inhibitors in a 

dynamic state. 

1.1 Epidemiology of HIV  

Since its first categorized case over 30 years ago, the Centers for Disease Control and 

Prevention (CDC) estimates that 37 million people worldwide are living with HIV. Of these, the 

World Health Organization (WHO) claims that 1.1 million die every year due to the virus (2) . In 

2015, the United States had 39,513 positive HIV diagnoses, which represents a 4.8% increase from 

2014. The three main causes of new HIV infection in order of prevalence are male-to-male sexual 

contact, heterosexual contact, and injection drug use.  

No cure currently exists for HIV, and once a patient is infected, it is necessary for them to 

remain on therapeutic drug treatments. The virus has a very high risk of remission and drug 

resistance, which is why it is essential to continue constant treatment. Patients are often treated 

with a mixture of therapeutic drugs, targeting the virus at various stages of its cycle. No prevention 

vaccines exist for HIV. However, there are multiple research projects that are exploring the 

possibility and effectiveness of a preventative HIV vaccine (3) .  

HIV-1 specifically attacks and enters CD4 cells, also known as T-helper white blood cells 

of the immune system. Once the virus enters the host cell, it hijacks the cell’s native machinery 

(e.g., ribosomes, golgi apparatus, etc.) to make copies of its genome. When a patient is infected 

with HIV, they typically do not express symptoms immediately. Rather, HIV will stay dormant 

and asymptomatic in the host body, typically 3-12 years and sometimes longer, while building up 

a viral load (4). Once the viral load reaches a critical value, the host cell lyses and the virions are 

released into the bloodstream (5). Alternatively, the virions can bud off, leaving the host intact. 

The released virions mature outside the host cell and bind to uninfected CD4 cells, thus repeating 

the cycle and conducting further replication. Once a patient's White Blood Cell (WBC) count 

decreases below 200/mm3 (healthy adults have a WBC count ≥ 1000/mm3), they are said to have 

Acquired Immunodeficiency Syndrome (AIDS) (4). 
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1.2 HIV Genome Map 

In order to obtain a full understanding of the HIV-1 lifecycle and structure, we must first 

discuss its genome and its components. At its center, HIV contains two copies of single-stranded, 

positive sense RNA molecules approximately 7.9 Kb each (6) . The HIV-1 genome can be divided 

into several genes; gag, pol, and env, all of which are synthesized as a long chain termed the gag-

pro-pol polyprotein. These genes are responsible for coding all of the necessary proteins and 

enzymes needed by the virus to recognize and bind to host cells, enter CD4 cells, replicate, 

assemble, and finally bud from host cells and mature. The full genome map is shown in Figure 1. 

 
Figure 1: HIV-1 Genome Map  

The gag gene is the first region in the genome. This region encodes for several structural 

proteins, which are essential for viral assembly and maturation. A summary of the 5’ LTR and Gag 

gene regions, as well as their function, is shown in Table 1.  

Table 1: Function Summary of the 5’ LTR and Gag Genes 
Gene Region Function 

5’ LTR / Regulatory regions for transcription initiation and 
polyadenylation 

Gag 

P17 (MA) Codes for the matrix structural proteins 
P24 (CA) Codes for the capsid structural proteins 

P2 Spacer peptide - regulates conformational changes during 
maturation 

P7 (NC/p9) Codes for the nucleocapsid structural proteins 

P1 Spacer peptide - regulates conformational changes during 
maturation 

P6 Contains binding sites for other proteins and accessory 
viral proteins 
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The pol gene region of the HIV genome is responsible for encoding the protease (p10), 

reverse transcriptase (p51), integrase (p31), and RNase (p15) (see Figure 1). The 3’ end of the gag 

gene includes a cis-acting RNA motif that induces a frameshift when encountered by the 

ribosomes. This results in the ribosomes continuing uninterrupted translation, resulting in a gag-

pol region. The HIV protease gene undergoes autoproteolysis to free itself from the pol gene. After 

the protease monomer is free, it forms a dimer and goes on to cleave up to 12 different sites on the 

gag, pol, and env regions (7) .  

The env region of the HIV genome, often termed gp160, gives rise to the surface 

glycoprotein gp120 and the transmembrane glycoprotein gp41 post cleavage by the protease. 

Together with the CCR5/CXCR4 HIV co-receptors, gp120 and gp41 are vital for recognition and 

binding to the host CD4 cell (8). Without co-receptor binding, HIV cannot enter the host cell.  

The HIV genome also includes regulatory regions. The Tat region produces two forms of 

Tat (a 72 AA and 101 AA form) that bind to the 5’ end of the HIV RNA and initiates transcription 

(9). The Rev region is an RNA specific binding protein that aids in the transition from early to late 

HIV gene expression (10). In addition to the regulatory genes, the HIV genome contains four 

accessory genes; nef, vif, vpr and vpu. These genes aid in facilitating HIV replication in the host 

cell and enhance virion release post-assembly (11-13).  

1.3 HIV-1 Structure and Life Cycle  

The general structure of HIV-1 and its components are shown Figure 2. Retroviruses use 

Ribonucleic Acid (RNA) as their genetic material. The RNA is encapsulated by the nucleocapsid, 

which in turn is surrounded by the capsid. Enclosed within the capsid are the three main enzymes 

needed for replication; reverse transcriptase, integrase, and the protease. Reverse transcriptase is 

necessary to convert RNA into double-stranded DNA (14). Integrase is needed to integrate the 

produced DNA into the host DNA (15). Finally, the protease is used to cleave the polyprotein, 

which is an essential step in developing mature infectious virions (16). Glycoproteins on the 

surface of the membrane allow for recognition of and binding to CD4 cells. 
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Figure 2: Structure and Components of HIV-1 (17) 

Once the virus has identified the CD4 cells, it binds to the CD4 and CCR5 co-receptor on 

the surface of the cell. The virus then initiates fusion with the cell’s membrane. Host cell 

recognition begins when gp120 binds to the CD4 receptor on the surface of White Blood Cells 

(WBCs). Binding to the CD4 receptor causes a gp120 conformational change, which exposes the 

CCR5 co-receptor binding site (18). The double binding results in the fusion peptide of gp41 to 

insert itself in the membrane of the host cell creating a hairpin loop (see Figure 3). The cell 

membrane of the virus fuses with the cell membrane of the host cell and the viral capsid enters the 

cell. Once inside, the viral genetic material is released into the cytoplasm along with the enzymes 

necessary to aid in the virus’ incorporation into the cell’s genome (i.e. reverse transcriptase and 

integrase).  

 
Figure 3: HIV Binding and Entering a Host CD4 Cell (19)  
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Inside the cell, the viral RNA is first reversely transcripted by reverse transcriptase into 

double stranded DNA. The double stranded DNA is then integrated into the host chromosome by 

the enzyme integrase, followed by transcription and translation. This process is depicted in steps 

2 through 3 in Figure 4. It is important to note that once viral DNA has been integrated, it remains 

in the host cell’s genome, replicating not just once but as often as the host cell replicates.  

 
Figure 4: Reverse Transcription and Viral DNA Integration 

Once viral DNA is replicated, it is translated back into viral RNA. This process marks the 

beginning of the virion formation, which are immature viruses. Virions consist of essential initial 

enzymes and the uncleaved polyprotein, which is transcribed by the host cell’s ribosomes. Next, 

the virions undergo early-stage maturation, which are marked by Env cleavages, giving way to 

capsid assembly on the cytoplasmic side of the cell membrane.  

At this point, the viral RNA along with essential proteins and the polyprotein begin to 

assemble for budding. The specifics of the budding process are depicted in Figure 5, starting from 

the bottom of the figure. 
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Figure 5: Budding and Maturation Schematic (20) 

The viral envelope glycoproteins are trafficked through the cytoplasm from the rough 

endoplasmic reticulum via the secretory pathway system. The precursors of the Gag polyprotein 

are synthesized and assembled in the cytoplasm of the cell. The assembled Gag recruits the viral 

genomic RNA, which was transcribed after DNA integration, and reaches the plasma membrane 

via a pathway yet to be defined. The Gag-RNA complex latches onto the lipid rafts microdomains 

via insertion of its amino-terminal myristate into the lipid bilayer and hydrophobic interaction with 

the phospholipid bilayer. The assembling particle then recruits env as well as endosomal sorting 

complexes required for completion of the budding (ESCRT-I and ESCRT-III). Lastly, the ESCRT-

III collaborates with the Vacuolar Protein Sorting 4 (VPS4) complexes to drive the membrane 

scission reaction that leads to particle release. In order for the virion to mature, proteolytic cleavage 

of the Gag and Gag-Pro-Pol polyprotein complexes must occur by the HIV protease. Post budding, 

the newly-formed virions enter late-stage maturation mediated by the protease, to become 

infectious, which involves a series of polyprotein cleavages. The mature virions can now go on to 

infect other CD4 cells and repeat the process.  

The HIV life cycle and genome present many opportunities for therapeutic drug targets. 

These therapies aim to disrupt the normal life cycle of the virus at various stages and halt 
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replication. In the upcoming sections, we explore the potential therapeutic sites and the classes of 

medications used against those targets.  

1.4 Current FDA Approved HIV-1 Medications and Protease Inhibitors 

Considering the life cycle of HIV and its mode of entry into the host cell, researchers have 

been able to identify four potential pharmacological target sites. The potential target sites include 

the reverse transcriptase, receptors on the surface of the CD4 cell, HIV integrase, and the HIV 

protease. Currently, there are 24 FDA approved medications, each falling in one of the following 

classifications; Nucleoside Reverse Transcriptase Inhibitors (NRTIs), Non-Nucleoside Reverse 

Transcriptase Inhibitors (NNRTIs), fusion inhibitors, entry inhibitors, integrase inhibitors, and 

Protease Inhibitors (PIs). Here we will mainly focus on PIs. Specifically, we will focus on 

Darunavir (DRV), which is currently the most potent clinically-approved PI prescribed. In addition 

to DRV, we will also discuss an early generation inhibitor, Lopinavir (LPV). LPV is not as potent 

at DRV. However, it was utilized to make DRV/LPV hybrid compounds. Structures of DRV and 

LPV are shown in Figure 6. 

 
Figure 6: DRV And LPV Chemical Structures 

The HIV-1 protease is highly susceptible to mutations. These mutations allow the virus to 

evade and develop resistance to targeted drug therapies while maintaining normal function. For 

that reason, many HIV therapy regimens rely on pharmacokinetic enhancers and combination HIV 

medications. Pharmacokinetic enhancers strengthen the action of other HIV medications, making 

them more effective. Combination HIV medications composed of three or more medications are 

often used as part of the HIV treatment regimen to attack the virus at multiple target sites in its life 

cycle. The use of combination drugs reduces the possibility of the virus building resistance to a 

certain medication and thus keeps viral load to a safe minimum. 
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Protease Inhibitors (PIs) and Pharmacokinetic Enhancers 

The protease is perhaps the most enticing therapeutic drug target due to its vital role in 

virion maturation. Protease Inhibitors (PIs), like DRV and LPV, are competitive inhibitors that 

bind to the active site of the protease as shown in Figure 7 (7). If the protease cannot bind and 

cleave its natural substrate, the virus will not have the necessary proteins to replicate and mature.  

 
Figure 7: DRV In the Active Site of the HIV-1 Protease 

Often, when patients are prescribed PIs, they are usually also prescribed Cobicistat (COBI) 

(21). COBI is classified as a pharmacokinetic enhancer. When COBI is given in conjunction with 

PIs, it boosts their action by inhibiting cytochrome P450 3A enzymes (CYP3A). CYP3A is 

responsible for drug metabolism in the human body. By suppressing the function of CYP3A, the 

prescribed drugs are able to stay in the bloodstream longer without being metabolized, therefore 

increasing the time of action against the virus (21).  

Combination HIV Medicines 

In most HIV patients, physicians opt to follow Highly Active Antiretroviral Therapy 

(HAART). HAART is a combination of at least three different classes of medications that attack 

the virus at multiple therapeutic targets simultaneously (22). In a 3-month clinical trial, HAART 

has shown a decrease in viral load and increased WBC count. However, patients on HAART can 

show increased drug intolerance and some (~25%) are taken off these medications due to 

intolerance (22). Physicians can alter therapy based on patient response and tolerance to reach a 

mixture of mediations that produces the best results for that particular patient. 

1.5 HIV-1 Protease and the Substrate Envelope 

As mentioned earlier, the HIV-1 protease is an aspartic acid homodimer composed of only 

99 residues that cleaves along twelve different sites of the gag-pro polyprotein, giving rise to 
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structural, enzymatic, and accessory proteins. Analysis of the different cleavage sites shows that 

these sites are non-homologous and asymmetric in sequence, charge, and size distribution, sharing 

very little homology (23). The lack of sequence specificity and homology between the cleavage 

sites has raised an interesting question for the Schiffer laboratory; how does the protease recognize, 

bind, and cleave along the nonhomologous sites? In order to answer this question, one must first 

look at the crystal structure of the protease, shown in Figure 8 with the catalytic aspartic acid (D25) 

and catalytic aspartate (D25’) (PDB 1T3R).  

 
Figure 8: HIV Protease Crystal Structure 

The protease possesses a C2 symmetry (180°), but despite the conserved symmetry in its 

structure and active site, the protease is able to recognize and cleave asymmetric polyproteins. The 

Schiffer laboratory has conducted numerous studies in an effort to determine what kind of 

specificity the protease utilizes to bind and cleave its substrate. By analyzing six complexes of 

HIV-1 protease that correspond to six substrate cleavage sites, the lab was able to superimpose 

each of the different peptides and come up with a consensus volume that includes all of the 

peptides. It has been strongly suggested that the protease uses shape specificity rather than 

sequence specificity. This consensus volume has been referred to as the substrate envelope, which 

is depicted in Figure 9.  
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Figure 9: Substrate Envelope with Superimposed Substrates (24) 

The six superimposed substrates occupy a relatively similar space inside the active site. By 

analyzing the relative regions that the substrates occupy, the laboratory has been able to identify 

and conclude that this is a highly conserved space that the protease is able to recognize and 

selectively cleave the substrate. By studying the substrate envelope, conclusions are able to be 

made regarding the specific ways that substrates bind, including where hydrogen bonds and van 

der Waals (vdW) interaction occur. The Figure 10 depicts the conserved hydrogen bonds that have 

been observed across all six of the HIV-1 protease complexes tested in the study. 

 
Figure 10: Hydrogen Bonding of Substrate with Active Site of Protease (1) 

Most of the hydrogen bonds occur between the backbone of the protease and the backbone 

of the substrate residues. Eight of these are completely conserved throughout the complexes and 
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involve the P4-P4’ sites of the substrates. The specific protease residues involved in hydrogen 

bonding are Asn 25’, Gly 27/27’, Asp 29/29’, and Gly 48/48’. Furthermore, there are six partially 

conserved hydrogen bonds. Four of these involve the backbone atoms and two involve one of the 

side chains on the substrate and the amino nitrogen atom of Asp 29/29′ and Asp 30/30′. All of 

these hydrogen bonds are formed between the residues mentioned and the substrate peptide in a 

nonspecific manner. As the substrate slides through the active site and gets cleaved, new hydrogen 

bonds are formed with the rest of the uncleaved peptide.  

1.5.1 HIV-1 Protease Mode of Action  

The HIV-1 protease is a hydrolase; therefore, it requires the presence of a water molecule 

to facilitate the cleavage of the scissile bond. Within the active site, D25 will be a charged aspartic 

acid residue while D25’ will be in the deprotonated form; aspartate. It is important to note that the 

protonation states of D25 and D25’ are interchangeable. However, both residues cannot be in the 

aspartate form simultaneously, as this would result in unfavorable repulsions. On the flip side, both 

residues cannot exist in the aspartic acid form simultaneously, which render the protease unable to 

cleave its substrate. Figure 11 shows DRV bound to WT; D25 (green) and D25’ (blue) are shown 

in stick form. It is important to note that the hydroxyl of DRV (black circle) orients its hydrogen 

towards chain B (blue). Thus, showing that D25’ is in the aspartate form while D25 is in the 

aspartic acid form. For the remainder of this paper, we will use green to denote chain A and blue 

to denote Chain B.  

 
Figure 11: Chain A Versus Chain B 
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The conserved water molecule highlighted in the red circle shown in Figure 11 is 

responsible for facilitating the cleavage of the scissile bond. This water molecule is also highly 

conserved in all solved crystal structures of HIV-1 protease bound to an inhibitor. The proposed 

protease mechanism is shown in Figure 12. 

 
Figure 12: Proposed HIV-1 Cleavage Mechanism  

The deprotonated oxygen of D25 attacks the water molecule and becomes neutral. The OH 

then performs a nucleophilic attack on the carbonyl of the scissile bond, which in turn takes a 

proton from D25’. This leads to the transition state with two hydroxyls, as shown in the middle of 

Figure 12. The deprotonated oxygen of D25’ then retakes a proton from one of the hydroxyls, 

which sets up a negatively charged oxygen where one of the lone pairs of electrons collapses on 

the single bond, creating a double bond. This facilitates the breaking and cleavage of the scissile 

bond. The lone pair of the scissile nitrogen becomes protonated by taking a proton from D25, 

bringing D25 and D25’ to their starting states, thus resetting the catalytic site for another cleavage. 

The end product is the C terminus of one protein and the N terminus of another. 

Competitive protease inhibitors are peptidomimetics that are designed to mimic the 

transition state. Transition state analogs bind tightly to the enzyme by converting the short-lived 

natural transition state to a stable thermodynamic state (25). The inhibitors shown in this study 

utilize either the hydroxyethylamine-sulfonamide (I) or the hydroxyethylene (II) transition state 

analogs (see Figure 12). These analogs are modified in four positions; P2, P2’, P1, and P1’ 

position. More specifically, compounds are designed to mimic the interactions that occur by the 

natural transition states prior to cleavage. The hydroxyl group in the peptidomimetics is un-

cleavable, which allows the inhibitor to be locked in the active site without getting cleaved.  
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1.5.2 HIV-1 Protease Wild Type Variants  

It is important to note that HIV-1 and HIV-2 are two genetically distinct viruses. HIV-1 is 

the main topic of this paper. Within the subgroup of HIV-1, there are multiple strains that are 

genetically distinct. Figure 13 shows the four groups of HIV-1 and their subgroups. Group M is 

the “Major” group of HIV-1 that is mainly responsible for the current HIV-1 epidemic. 

 
Figure 13: HIV-1 Groups and Subgroups (26) 

The presence of multiple groups and subgroups gives rise to many wild type strains of the 

HIV-1 protease. Here we look at the two WT strains tested in this study. The Celia Schiffer wild 

type (CS_WT) contains the Q7K mutation, which corresponds to genotype SF2. This mutation 

avoids autoprotolysis. The Ron Swanstrom wild type (RS_WT) contains Q7K, K41R, P63L, and 

V64I, which corresponds to genotype NL4-3. The corresponding amino acid sequence and their 

mutations are shown in Figure 14. 
CS_WT: 

PQITLWKRPLVTIRIGGQLKEALLDTGADDTVLEEMNLPGKWKPKMIGGIGGFIKVRQYDQIPVEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNF 
RS_WT: 

PQITLWKRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNF 

Figure 14: CS_WT Vs RS_WT 

Throughout this study, we utilize RS constructs that contain the five baseline mutations in 

addition to the resistant mutation. For example, RS_I84V contains Q7K, K41R, P63L, V64I, and 

I84V. The CS_WT construct was utilized for comparative analysis between the wild types.  

1.5.3 HIV-1 Protease Mutations and Drug Resistance  

Designing new inhibitors using the substrate envelope hypothesis is of crucial importance 

considering how the protease develops drug resistance. Protease mutations will typically occur 

where inhibitor atoms protrude from the substrate envelope and contact protease residues. Making 

contact with residues beyond the substrate envelope puts selective pressure on the protease to 

mutate. When protease residues mutate, inhibitor binding is greatly impaired, as inhibitors are 
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designed to interact via hydrogen bonds with specific residues. However, substrate recognition, 

binding, and cleavage is not affected, since hydrogen bonding with the substrate is non-specific. 

Early protease inhibitors, such as Ritonavir (RTV), were designed without the substrate 

envelope hypothesis. Despite this, RTV has been shown to be a potent inhibitor (Ki = 55 pM in 

WT/Q7K). A key feature of all protease inhibitors is that they are designed to be substrate 

transition state analogs with an un-cleavable hydroxyl moiety at the P1 position (see Figure 12). 

Although RTV is a potent inhibitor, it is not confined within the substrate envelope when compared 

to DRV, as shown in Figure 15 (RTV in blue and DRV in green).  

Figure 15: Ritonavir (RTV) And DRV Inside the Substrate Envelope 
As a consequence of the P2’ moiety protruding from the substrate envelope, patients that 

were treated with RTV show resistant mutations such as I82V and I84V shortly after treatment, 

thus failing RTV therapy. Currently, RTV is no longer prescribed as a PI due to its numerous side 

effects. The same mechanism allows the protease to develop resistance to many of the currently 

used PIs. 

The use of structural-based drug design gave rise to DRV, the most clinically potent PI 

prescribed today (27). DRV fits fairly well inside the substrate envelope (see Figure 16) and makes 

many backbone interactions through its novel bis-THF moiety on the P2 position. The use of the 

substrate envelope hypothesis along with the bis-THF moiety makes DRV extremely potent 

against WT (Ki = 5 - 10 pM). Despite picomolar inhibition, DRV is still capable of inducing 

mutations on the protease, such as I82V, I84V, and I50V;A71V. These can greatly impair DRV’s 

ability to competitively bind to the active site. 
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Figure 16: DRV Inside the Substrate Envelope  

The observed electrostatic interactions of DRV inside the active site, in the form of 

hydrogen bonds, are shown in Figure 17. Starting from the P2’ position, three hydrogen bonds are 

observed between the backbone nitrogen of D29 and D30 with the bis-THF moiety. These bonds 

are of crucial importance to the measured potential of the DRV. Two carbonyl groups form a 

coordinated four-way hydrogen bonding network between the backbone nitrogen of I50 and I50’ 

through a conserved water molecule. This water molecule is highly conserved along with those 

four hydrogen bonds because they play an important role in closing the flaps of the protease. The 

uncleavable hydroxyl group interacts with the catalytic D25 and D25’ residues. The nitrogen atom 

between the P2 and P1 moieties forms a hydrogen bond with the carbonyl of the G27. Lastly, the 

P2’ moiety forms a hydrogen bond with the backbone carbonyl of D29’ and with the side chain of 

D30’ mediated by a water molecule. It is important to note that while the P1 and P1’ moieties do 

not form hydrogen bonds, they are important when considering Van der Waals interactions. 
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Figure 17: DRV Hydrogen Bonds Within the Active Site  

When considering where to modify DRV, three possible locations arise; the P1, P1’, and 

P2’ moieties. Several modifications to the P1’ and P2’ moieties have been made and two series of 

compounds have been synthesized focused on these two positions. First, the UMass 1 - 10 

compounds compared two modifications at the P1’ position and five modifications at the P2’ 

position. The UMass compounds were tested through enzymatic assays to obtain Ki data and 

crystal structures were solved to visualize hydrogen bonds. This analysis gave rise to the LR series. 

This series attempted to modify the best performing UMass compounds to obtain greater 

inhibition. A subdivision of the LR series includes six compounds that are a hybrid of DRV and 

LPV. 
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1.6 Evolution of Resistant Drug Design and Novel Protease Inhibitors  

As mentioned earlier, the UMass 

compounds were made by modifying the P1’ 

and P2’ moieties. In the P1’ position, 

compounds 1 - 5 had a 2-methylbutane group 

substitution, while compounds 6 - 10 had an 

isohexyl group substitution. It is important to 

note that these compounds are grouped 

according to their P2’ moity, such that UMass 1 

and 6 are a pair, UMass 2 and 7 are a pair and 

so on, as shown in Figure 18. UMass 1 and 6 

contained the same amine group in the P2’ 

position as DRV. The remainder of the 

compounds had either a methoxy, 

hydroxymethyl, benzodioxole, or a 

benzothiazole group in the P2’ position. For 

various reasons discussed in the discussion 

section, DRV and UMass 3 were chosen to be 

further modified and give rise to the LR and 

LR2 series compounds. 

The LR series contains a mono-hydroxyl 

moiety while the LR2 series contains a di-hydroxyl 

moiety on the P2’ position, as shown in Figure 19. These compounds also experimented with the 

stereochemistry of the hydroxyl groups. Lastly, the P1’ position was modified to contain either 

isobutyl, 2-methylbutane, or isohexyl groups. These modifications were made to study the effects 

of adding extra methyl groups at the P1’ position. These modifications gave rise to twelve 

compounds shown in Figure 19. Like the UMass compounds, the LR/LR2 series were synthesized 

by corresponding substitutions, illustrated by the bold lines. 

Figure 18: UMass 1-10 Compounds 
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Figure 19: LR and LR2 Series 

The LR2 series was further expanded to include six new compounds that are hybrids 

between LPV and DRV. These compounds are shown in Figure 20. Once again, these compounds 

correspond as pairs, based on their P1’ moiety. 

 
Figure 20: LR2 Series Continued - LPV/DRV Hybrids 

The bis-THF moiety of DRV has shown to make highly favorable interactions with the 

backbone residues of the active site, making for a valid argument and idea to see if substitution of 

this group into older compounds would be beneficial to their inhibition potency. Thus, the 
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motivation behind the hybrid compounds was to study if first generation compounds can be 

modified with the bis-THF moiety of DRV to increase their inhibition. 

1.7 Experimental Design 

In order to qualitatively determine inhibition potential, computer modelling and chemical 

properties for each compound, such as ClogP and Molecular Weight (MW), were determined. 

Computer programs such as ChemDraw and Maestro were utilized to carry out initial analysis. By 

using already solved crystal structures, the P1’ and P2’ positions of already bound ligands can be 

modified into compounds of interest in Maestro and the type of interactions made can be 

determined if they are favorable or unfavorable. Furthermore, chemical properties can be 

calculated in ChemDraw and used to analyze how well a compound would be able to enter the cell 

(ClogP) in a natural environment and how much a compound weighs (MW).  

All of the above compounds presented promising results, so the next step in determining 

their potency was carrying out kinetic inhibition assays in order to determine the inhibition 

constant (Ki) for each compound. Once the Ki’s were determined, they were compared to the Ki of 

DRV and those closest to the potency of DRV were selected for further studying. Crystal structures 

of compounds of interest in multiple protease constructs were solved. Furthermore, Van der Waals 

(vdW) interactions for each inhibitor-protease construct were calculated to learn about 

hydrophobic interactions between the inhibitor and the protease. Lastly, Molecular Dynamics 

(MD) simulations were carried out to understand the inhibitor-protease interaction in a dynamic 

state versus a static state (i.e. crystal structures). The MD simulations were utilized to supplement 

vdW, Ki, and structural data. All of this analysis combined can be studied and investigated in order 

to understand how and why specific compounds inhibit the protease the way they do and how 

protease structure varies between compounds and between mutants.  

As previously mentioned, protease mutations greatly affect inhibitor binding, yet substrate 

binding and cleavage is able to occur without any visible effects. An important baseline kinetic 

parameter is the apparent affinity constant (Km), which is a measure of the affinity the enzyme has 

for its substrate. The Km values for each variant tested had not been determined previously. 

Determining Km values of the mutants and comparing those values with the Km of WT protease 

would inform us if the affinity for substrate for each mutant is affected by the specific mutations. 

In order to determine these Kms, a Km assay was carried out for each variant. All of the data 

obtained for each compound and mutant was crucial in characterizing the ability of the designed 



 28 

compounds to inhibit protease activity, how each mutant behaves under inhibitor pressure and 

what unique behavioral and structural features each mutant possesses.  
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Chapter 2: Materials and Methods 
2.1 Km Assay 

Km assays were carried out on all protease variants of interest to calculate the apparent 

affinity constant, Km. The fluorogenic substrate shown in Figure 21, contains the same FRET pair 

as the Ki assay substrate. Km assay substrate is a natural sequence (MA/CA), however it is not 

optimized like the Ki assay substrate. This substrate does not need to be optimized and must be a 

natural sequence to calculate a biologically relevant Km value.  

 
Figure 21: Km Assay Substrate 

2.1.1 Determining Km Values 

Km assays were done in nonbinding surface 96-well black half-area plates. All assays were 

conducted in 6% DMSO for wells 1-11 and 8% DMSO for well 12 with a total reaction volume of 

60 µL. Each plate was used to test one protease construct in triplicates. Plate setup schematic is 

shown in Figure 22. Increasing substrate concentration (0-40 µM) in 2X assay buffer [100 mM 

sodium Acetate and 200mM sodium chloride] and the appropriate DMSO concentrations were 

centrifuged [1000 x g for one minute] using a plate centrifuge at 20°C. This assay did not have an 

incubation period. The reaction was initiated by the addition of 5 µL of 10 nM of HIV-1 protease 

(RS_WT, CS_WT, RS_I82V, RS_I84V, RS_I50V, and RS_I50V;A71V). Fluorescence was 

monitored using a PerkinElmer EnVision plate reader (excitation at 340 nm, emission at 492 nm). 

Substrate concentration points were globally fitted to the Michaelis-Menten equation to obtain the 

Km value of the protease constructs. 
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Figure 22: Km Assay 96-Well Plate Setup 

Progression curves were generated for each triplicate across the twelve substrate 

concentrations. The progression curves were inputted into a log equation to obtain the initial 

velocity of the reaction. The initial velocity was then used to calculate the Km using the Michaelis-

Menten equation shown below. 

 

 (Equation 1) 

 

An example of progression curves and a Km graph is shown in Figure 23. The calculations 

and following graphs were generated using Prism 7 software. 

Figure 23: Processing Km Data 

2.1.2 Correcting for the Inner Filter Effect 

Utilizing fluorescence change for kinematic assays is convenient for monitoring enzyme 

kinetics. However, fluorescence loses linearity and therefore, accuracy, with high substrate 

concentrations. Referred to as “quenching”, the fluorophore is overcrowded by the free-floating 

quencher once cleave occurs, leading to significantly reduced emissions for substrate 
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concentrations over 20 µM (28). This is known as the inner filter effect and can alter enzymatic 

assay results. As seen in the resulting graph in Figure 23 above, the reaction curve seems to level 

off quite early in the reaction. The value of Km is biochemically determined to be half of Vmax, and 

this is not represented by the graph. A correction assay for higher concentrations of substrate was 

carried out in order to provide a ratio of the correction value needed to be applied to the obtained 

results for the Km assays. This ratio increases the values of the observed Kms, leading to an accurate 

estimate of the Kms of various mutants.  

A solution of 6% DMSO was prepared. Three rows of a 96-well plate, each containing 12 

wells, were utilized for this assay. 27.5 uL of 6% DMSO were added to each of the wells. 

Increasing substrate concentration (0-40 µM) in 2X assay buffer [100 mM sodium Acetate and 

200mM sodium chloride] were serially diluted into each of the rows. A popular donor for 

developing FRET pairs called EDANS was used for this assay. 5 uL of 6 uM EDANS in 2% 

DMSO was suspended into each well and the fluorescence reading of the plate was recorded five 

times. Fluorescence was monitored using a PerkinElmer EnVision plate reader (excitation at 340 

nm, emission at 492 nm). After a series of calculations, the obtained correction ratios were 

determined and are depicted in the results section. These ratios were then applied to the obtained 

initial velocities from each Km assay for each substrate concentration. The results of the corrected 

Km values are shown in the results section. 

2.2 HIV-1 Enzyme Inhibition Assays (Ki)  

Enzyme inhibition assays were carried out on all inhibitors of interest to calculate the 

inhibition constant, Ki. Inhibitors such as DRV and all of the tested inhibitors are tight binding 

inhibitors. For that reason, an assay of high sensitivity is needed to accurately calculate a Ki. The 

fluorogenic substrate, shown in Figure 24, is a highly optimized substrate that was used in all Ki 

assays presented in this paper. The Fluorescence Resonance Energy Transfer (FRET) pair of the 

substrate consists of the fluorophore (EDANS) and the quencher (DABCYL). In un-cleaved 

substrate molecules, the DABCYL is in close proximity to the EDANS, thus “quenching” EDANS 

fluorescence. When the substrate is cleaved by the HIV-1 protease between the phenylalanine and 

the leucine, EDANS and DABCYL separate. As a result, EDANS fluorescence can be measured 

as a function of time. The arginine residues on either end of the substrate increase its solubility in 

solution.  
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Figure 24: Fluorogenic Assay Substrate (29)  

Ki assays were done in nonbinding surface 96-well black half-area plates. All assays were 

conducted in 4% DMSO with a total reaction volume of 60 µL. Each plate was used to test two 

inhibitors in triplicates. The last two rows were reserved for a DRV control, which was ran as a 

replicate. Inhibitor concentration were varied in each lane of the well, ranging from zero inhibitor 

concentration to the desired maximum inhibitor concentration in either ⅔ or ½ dilutions. 

Concentrations of inhibitor were optimized for the specific inhibitors and mutants being tested. 

Plate setup schematic is shown in Figure 25. For each assay, 5 mL of a 0.77 nM HIV-1 protease 

(WT, V82I, I84V, I50V, and I50V;A71V) was prepared by a series of two dilutions. First, the 

concentration of the stock protein was measured using the A280 and Beer’s Law. Then, the stock 

protein was diluted down to 500 nM by adding enough 2X assay buffer [100 mM sodium Acetate 

and 200mM sodium chloride] to yield 500 µL. The protein was diluted once more to yield 5 ml 

with a final concentration of 0.77 mM. 27.5 µL of 0.77 nM protein were added to each well. After 

all the components have been added to the plate, the plate was centrifuged at 1000 x g at 20°C for 

one minute using a plate centrifuge. The plate was then preincubated at room temperature for 1 

hour. After the incubation period, the reaction was initiated by the addition of 5 µL of the HIV-1 

optimized substrate to a final concentration of 10 µM. Fluorescence was monitored using a 

PerkinElmer EnVision plate reader (excitation at 340 nm, emission at 492 nm). The triplicates for 

each tested inhibitor contained 12 inhibitor concentration point. The concentration points were 
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globally fitted to the Morrison Ki equation for tight binding inhibitors to obtain the Ki value of the 

inhibitor for each triplicate to a specific protease construct.  

 
Figure 25: Ki Assay 96-Well Plate Setup 

Progression curves were generated for each triplicate across the twelve inhibitor 

concentrations. The progression curves were inserted into a log equation to obtain the initial 

velocity of the reaction. The initial velocity was then used to calculate the Ki using the Morrison 

Ki equation for tight fitting inhibitors. An example of progression curves and a Ki graph is shown 

in Figure 26. The calculations and following graphs were generated using GraphPad Prism 7 

software. For a more detailed schematic of the Ki assay calculation procedure, see Appendix B. 

 
Figure 26: Processing Ki Data 

Why Do We Use the Morrison Ki Equation? 

Regular inhibitors require high concentrations relative to the total enzyme concentration in 

order to inhibit enzyme activity. Tight-binding inhibitors, on the other hand, require concentrations 

relatively similar to the concentration of total enzyme in order to exhibit high inhibition of enzyme 

activity. Competitive inhibitors facilitate rapid formation of the Enzyme-Inhibitor (EI) complex. 
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This complex is maintained considerably longer by tight-binding inhibitors compared to regular 

inhibitors, so the concentration of the EI complex in solution is no longer negligible compared to 

the overall concentration of I. This adds another variable to the system as a whole and to the 

determination of Ki. The process of enzyme-substrate and enzyme-inhibitor interactions with tight 

binding inhibitors is detailed in the schematic below.  

 
Figure 27: Schematic of Enzyme Kinetics 

When a competitive inhibitor binds an enzyme, it blocks the substrate from binding to the 

enzyme’s active site and undergoing catalysis. For regular inhibitors, high inhibitor concentrations 

are required in order to observe a considerable EI concentration. Due to the high inhibitor 

concentration relative to total enzyme concentration, the change in total inhibitor concentration [I] 

during EI complex formation is negligible, so it is assumed that total inhibitor concentration does 

not change. This is demonstrated by the equation below. 

 

 

 

 

(Equation 2) (30)  

This equation does not consider a change in [I] and it neglects the EI complex. With tight 

binding inhibitors, constant [I] cannot be assumed since total enzyme and inhibitor concentrations 

are relatively similar. Free inhibitor concentration decreases with the formation of the EI complex, 

indicating a direct correlation. For this reason, Morrison and colleagues determined a kinetic 

equation that accounted for a change in [I] when the EI complex is formed (Equation 2). Modern 

softwares, like GraphPad Prism, utilize this equation for rapid Ki calculations given specific 

constraints. These constraints include a known Et, Km, and substrate concentration, [S]. This 
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equation takes into account the experimentally determined initial speed of the reaction in the 

absence of the inhibitor (vo), the determined speed of the reaction under the influence of the 

inhibitor (v), the level of fluorescence (Y) measured by the Envision, and inhibitor concentration 

(X). Using all of these specifications, the program is able to extrapolate an accurate Ki value.  

  
 

     
 (Equation 3) (29)  
 
 

2.3 Crystallography  

Crystals were obtained through the hanging drop method. In order to co-crystallize the protein, 

bound to an inhibitor of interest, three- to five-fold molar excess of inhibitor to protease were 

initially incubated at 4°C overnight, then incubated at room temperature until rod-like crystals 

were observed. The final concentration of protease was between 1-2 mg/mL. A 2:1 ratio of 

inhibitor–protein volumes were combined to set up hanging drops of 5 µL. The reservoir solution  

consisted of 23-24% (w/v) Ammonium Sulfate with 0.1M Bis-Tris-Methane Buffer at pH 

5.5. Crystals were grown at room temperature and were evident within 24–72 hours. The crystals 

used for data collection were transferred into a cryoprotectant containing 25% glycerol, mounted 

in the Mitegen Micromounts and flash-frozen over a nitrogen stream. Intensity data for 13c wild-

type protease complex were collected at −80 °C on an in- house Rigaku X-ray generator equipped 

with an R-axis IV image plate. Then 360 frames were collected per crystal with an angular 

separation of 0.5° and no overlap between frames. Crystals of all complexes were of the P212121 

space group, with one dimer per asymmetric unit. 

2.4 Van der Waals  

Van der Waals (vdW) interactions were determined by running a computer script that is 

part of the Schrodinger family of programs. The output of the script is an excel file that displays 

the Lennard Jones Potential, in Kcal/mol, for each residue in the protease, calculated by the 

following equation: 

V(r) = 4ϵ[(σ/r)12−(σ/r)6    (Equation 4) (31)  
where 

• V = the intermolecular potential between the two atoms or molecules 
• ϵ = the well depth and a measure of how strongly the two particles attract each other. 
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• σ = the distance at which the intermolecular potential between the two particles is zero. σ 
gives a measurement of how close two nonbonding particles can get and is thus referred to 
as the vdW radius. σ is equal to one-half of the internuclear distance between nonbonding 
particles 

• r is the distance of separation between both particles (measured from the center of one 
particle to the center of the other particle) 

• A = 4ϵσ12, B=4ϵσ6 

Equation 4 is often expressed as: 

V(r) = (A/r12) − (B/r6)     (Equation 5) (31)  

The script used by the lab can calculate the Lennard Jones Potential for all residues and 

ignores residues with a vdW value under a certain cutoff value. The output can then be sorted by 

chain and residue number and plotted using the Prism 7 software. The script can be run for all 

constructs of interest and the vdW values for multiple constructs can be compared using Prism 7.  
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Chapter 3: Results 

The HIV-1 protease is arguably the most important therapeutic drug target in the fight 

against HIV/AIDS. The protease’s importance to viral maturation means that effective and 

efficient inhibition would essentially stop the production of new virions and the maturation of 

immature ones. Despite its incredibly sensitive task of recognizing, binding, and cleaving 12 non-

homologous substrates, the HIV-1 protease is capable of mutating up to half its amino acid 

sequence and still recognize and cleave its natural substrate. To understand how mutations effect 

natural substrate cleavage, Km values were obtained using a natural MA/CA substrate with a FRET 

pair attached. The Km values for several HIV-1 protease variants are shown in Table 2. The results 

of the Km assays show that drug resistant mutations such as I84V, V82I, and I50V;A71V retain the 

same affinity to substrate as the WT. The assays helped demonstrate the compensatory nature of 

the A71V mutation; the I50V mutant alone shows a Km of 2620 µM while the I50V;A71V mutant 

has a Km of 73.2 µM. The Km values are only suggestive of how the variants bind to the natural 

substrate. To understand how these inhibitors bind to the variants, the Ki value for each individual 

inhibitor-variant combination must be calculated. For a more details on the Km results, including 

raw data, see Appendix A.  

Table 2: HIV-1 Protease Variants Km Values  
Variant Corrected Km (µM) 
RS_WT 62.4 ± 4.9 
CS_WT 55.9 ± 6.09 

RS_I84V 66.4 ± 4.343 
RS_V82I 61.7 ± 4.39 
RS_I50V 2620 ± 6566 

RS_I50V;A71V 73.2 ± 9.08 
 

The high potency of DRV and its pico-Molar Ki in HIV-1 WT protease and multiple drug 

resistant mutants was a revolutionary step in protease inhibitor design. However, development of 

drug resistant mutants to even the most potent drug on the market still remains a concern. The 

group at the Schiffer Laboratory is focused on optimizing the DRV backbone at the P1’ and P2’ 

positions in hopes to discover an even more potent protease inhibitor. The main design criteria for 

the UMass 1-10 compounds, LR/LR2 series, and DRV/LPV hybrids were: (1) fits well inside the 

substrate envelope; (2) based on the backbone of an already known tight fitting inhibitor; (3) 
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optimized P1’ and P2’ to maintain contacts and increase binding potentials with evolutionarily 

favorable residues of the protease, especially in multi-drug resistant mutants; and (4) the 

compound binds at sub-picomolar affinity and presents favorable viral passing data. At the 

beginning of this study, premade compounds were tested for their respective Ki values in various 

HIV-1 protease constructs and crystal structures were solved.  

Ki Calculations and Structural Data for UMass 1-10 and LR/LR2 Series 

A series of compounds premade by the Schiffer laboratory were tested against mutants of 

interest for their Ki values. Table 3 shows the calculated Ki values of compounds UMass 1-10 in 

RS_I84V and RS_I50V;A71V.  

Table 3: UMass 1-10 Ki Values in RS_I84V and RS_I50V;A71V 

Inhibitor P1’ P2’ Ki – I84V (pM) (fold 
Change) 

Ki – I50V;A71V 
(pM) (fold Change) 

DRV 
  

25.0 ± 3.6 (5) 67.5 ± 4.9 (14) 

UMass 1 
  

26.1 ± 3.7 (5) 110.3 ± 5.9 (22) 

UMass 2 
  

< 5 15.1 ± 2.7 (3) 

UMass 3 
  

9.9 ± 2.7 (2) 79.9 ± 5.9 (16) 

UMass 4 
  

10.5 ± 1.8 (2) 32.9 ± 3.0 (6.7) 

UMass 5 
  

7.0 ± 1.7 (1.4) 7.8 ± 0.9 (1.6) 

UMass 6 
  

12.8 ± 3.1 )2.6) 100.0 ± 9.9 (20) 

UMass 7 
  

12.1 ± 4.5 (2.4) 18.2 ± 3.0 (3.6) 

UMass 8 
  

< 5 55.4 ± 4.0 (11) 

UMass 9 
  

7.6 ± 1.6 (1.5) 42.3 ± 2.6 (8.5) 

UMass 10 
  

14.3 ± 9.3 (3) 5.8 ± 1.1 (1.2) 
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The Ki results, in combination with the solved crystal structures of the UMass compounds, led the 

Schiffer Laboratory to further modify the hydroxyl P2’ moiety of UMass 3 and 8. The modification 

gave rise to the LR series which contains a mono-hydroxyl P2’ moiety as well as the LR2 series 

which contains a di-hydroxyl P2’ moiety (see Figure 19). It is important to note that the P1’ 

moieties of UMass 3 and 8 were utilized as well as the DRV P1’ moiety. Table 4 shows the 

calculated Ki values of the LR series in RS_I84V, while Table 5 shows the calculated Ki values of 

the LR2 series in RS_I84V. 

Table 4: LR Series Ki Values in RS_I84V 

 
 The determined Ki’s for these compounds showed promising results for LR-85 and LR-

100, both ranging right around DRV’s affinity (19.9 and 28.3 pM, respectively). For this reason, 

crystal structures of these compounds in complex with RS_WT were solved to visualize how they 

bind within the active site. It is important to note that while crystal structures are usually solved in 

the RS_WT construct, Ki data is usually shown for the RS_I84V construct. This is due to the fact 
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that in RS_WT, all inhibitors are extremely potent and observing fold differences between 

inhibitors is sometimes not possible. Also, the interactions made and maintained in the two 

constructs are virtually identical between the two mutants, as the mutation on residue 84 does not 

affect active site binding. For these reasons, Ki calculations in RS_I84V are primarily carried out 

during initial testing to observe fold differences between inhibitors.  

 
Figure 28: LR-85 In Complex with RS_WT 

 Overall, LR-85 shows similar binding as DRV. The same hydrogen bonds that DRV creates 

in the active site are made and maintained by LR-85. The hydroxyl substitution at the P2’ position 

seems to maintain the same backbone and water-mediated bonds that are seen by the amino group 

on DRV with residues D29’ and D30’. The un-cleavable hydroxyl group is nicely contacting D25 

and D25’, and the P2-bis-THF group is not disturbed, hovering right over and contacting D29 and 

D30.  
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Figure 29: LR-100 In Complex With RS_WT 

The same results observed with the LR-85 crystal structure are observed with LR-100. 

Visibly identical interactions are made and maintained in the active site, even though the 

stereochemistry of the P2’ hydroxyl group is reversed in LR-100. Replacing the P2’ amino moiety 

with a hydroxyl extension does not seem to disturb any of the interactions made by DRV, but also 

does not contribute to more interactions within the active site.  

 Based on the results obtained from the LR series, and in an attempt to increase interaction 

within the active site, the group designed the LR-2 series where a second hydroxyl group was 

added to the P2’ extension and the stereochemistry of this group was varied. A total of six 

compounds maintaining the same P1’ variables as the last set were synthesized and tested for their 

Ki’s. The results are shown in Table 5 below.  
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Table 5: LR2 Series Ki Values in RS_I84V 

 
 Of these compounds, LR2-26 showed equipotent inhibition to DRV, resulting in a Ki of 

57.4 ± 4.0 pM, a two-fold increase from DRV. Based on the LR compounds, the lab had 

hypothesized that adding an additional hydroxyl group to the P2’ moiety would increase 

interactions within the active site, leading to a better experimental Ki. In order to analyze why this 

was not the case, a crystal structure of LR2-26 in the RS_WT construct was solved (see Figure 

30). 
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Figure 30: LR2-26 In Complex With RS_WT 

 Compared to LR-85 and LR-100 series, the P2’ group of LR2-26 interacts with residues 

D29’ and D30’ in a very different manner. The water mediated bond is lost with LR2-26, and 

instead, two hydrogen bonds are formed with the backbone of D29’ and D30’. Traditionally, 

gaining backbone interactions with conserved residues is deemed beneficial to the potency of an 

inhibitor. Although a backbone interaction was gained from the addition of a hydroxyl, the 

obtained experimental Ki provides an insight of the importance of a water mediated bond in that 

area of the active site. 

Ki Calculations and Structural Data for LPV/DRV Series 

 In addition to the mono- and di-hydroxyl compounds, another set of compounds were 

designed as hybrids between two highly potent drugs, LPV and DRV. These hybrids included the 

DRV P1 and P2 moieties and the LPV P1’ and P2’ moieties. Table 6 shows the calculated Ki 

values of the LR2 hybrid series in RS_WT, RS_I84V, and RS_I50V;A71V. As seen in Table 6, 

LR2-35 and LR2-32 showed near DRV inhibition against RS_WT. LR2-42 and LR2-44 were 

about 30 and 80 orders of magnitude less potent than DRV in WT, respectively. LR2-41 and LR2-



 44 

43 showed extremely poor inhibition against RS_WT with Ki values equal to 10.6 nM and 55.5 

nM, respectively. This extreme loss of potency is believed to be caused by poor compound 

solubility in DMSO. Furthermore, when tested against major drug resistant mutants, such as 

RS_I84V and RS_I50V;A71V, we can see that the LPV/DRV hybrids do not inhibit nearly as 

tightly as DRV. Lastly, it is important to note that when all six LPV/DRV inhibitors were tested 

against RS_I50V;A71V, only LR2-35 and LR2-42 had a measurable Ki. For the rest of the 

LPV/DRV hybrids, the raw data against this construct was ambiguous and could not be fitted to 

the one phase association equation normally utilized. 
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Table 6: LPV/DRV Hybrids Ki Values in RS_WT, RS_I84V, and RS_I50V;A71V 

 
Following the results of the Ki assays, crystal structures of LR2-32 and LR2-35 in complex 

with RS_WT and RS_I84V were solved to understand how these inhibitors bind to the active site 

and how they fit within the substrate envelope space. Crystal structures of LR2-41, LR2-43, LR2-

42, and LR2-44 in complex with RS_WT were also solved but are not shown here due to their 

poor inhibitory activity. Figure 31 shows the binding of LR2-32 in complex with RS_WT and 

RS_I84V, while Figure 32 shows the binding of LR2-35 in complex with RS_WT and RS_I84V. 
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Figure 31: LR2-32 In Complex with RS_WT and RS_I84V 

 The solved crystal structures of both LR2-32 and LR2-35 showed very similar binding. For 

both inhibitors, the P2 bis-THF moiety maintained the three hydrogen bonds normally observed 

with DRV. As with DRV, G27 and G27’ both maintained their hydrogen bonds with the nitrogen 

atoms on the backbone of the inhibitor. The conserved water molecule and its network of four 

hydrogen bonds is also maintained. Furthermore, D25 and D25’ maintain the hydrogen bonds with 

the un-cleavable hydroxyl group. The P2’ carbamate moiety contacts the backbone carbonyl of 

G49’ directly and through a water mediated bond. Lastly, the carbamate also contacts the backbone 

nitrogen of D29’. Despite having similar binding, it is important to note that LR2-35 orients its P2 

bis-THF moiety on chain B versus chain A, unlike DRV and LR2-32.  
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Figure 32: LR2-35 In Complex With RS_WT and RS_I84V 

 The solved crystal structures were then overlaid in the substrate envelope to see how well 

these inhibitors fit in that chemical space. Figure 33 shows LR2-32 in the substrate envelope while 

Figure 34 shows LR2-35 in the substrate.  

 
Figure 33: LR2-32 Inside the Substrate Envelope 

 LR2-32 fits in the substrate envelope in a similar fashion as DRV. The P2 bis-THF moiety 

as well as the P1-phenyl group extend slightly beyond the envelope. The rest of the inhibitor fits 

into the envelope nicely. The binding of the P2 bis-THF moiety of LR2-35 does not affect the 

observed hydrogen bonds. However, this binding mode means that LR2-35 fits into the envelope 

drastically different than LR2-32. As seen in Figure 34, the P2 bis-THF and the P1 phenyl group 

fit entirely inside the substrate envelope. While the P1’ phenyl group of LR2-32 fits inside the 

envelope nicely, the P1’ phenyl group of LR2-35 does not. Lastly, like LR2-32, the P2’ carbamate 

group of LR2-35 tucks in entirely inside the envelope. 
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Figure 34: LR2-35 Inside the Substrate Envelope 

 Van der Waals energy was also calculated for LR2-32 and LR2-35 in complex with both 

RS_WT and RS_I84V. Table 7 summarizes the calculated vdW potentials. DRV vdW potential is 

also shown as a control.  

Table 7: DRV, LR2-32, and LR2-35 vdW Potential in RS_WT and RS_I84V 
Construct/Inhibitor vdW (Kcal/mol) 

RS_WT DRV -80.1 
RS_WT LR2-32 -89.6 
RS_WT LR2-35 -89.3 
RS_I84V DRV -79.6 

RS_I84V LR2-32 -88.2 
RS_I84V LR2-35 -89.1 

 

The overall vdW potential for LR2-32 in complex with RS_WT and RS_I84V is -89.6 

Kcal/mol and -88.2 Kcal/mol, respectively. The vdW potential for DRV in complex with RS_WT 

and RS_I84V is -80.1 Kcal/mol and -79.3 Kcal/mol, respectively. In both RS_WT and RS_I84V, 

this represents at least a 9 Kcal/mol difference compared to DRV.  

The overall vdW potential for LR2-35 in complex with RS_WT and RS_I84V is -89.3 

Kcal/mol and -89.3 Kcal/mol, respectively. The vdW potential for DRV in complex with RS_WT 

and RS_I84V is -80.3 Kcal/mol and -79.6 Kcal/mol, respectively. In both RS_WT and RS_I84V, 

this represents at least a 9 Kcal/mol difference compared to DRV. 
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Chapter 4: Discussion and Future Direction 
4.1 The Role of Adaptive Resistance in HIV-1 Protease 

 Throughout this study, it has been evident how elegant and intelligent of a protein the HIV-

1 protease is. DRV, as well as other potent inhibitors created in the last decade, are slowly losing 

their potency against mutated variants of the protease. Mutants such as I84V and I50V;A71V are 

able to withstand the potency of DRV by as much as 10-fold compared to WT, increasing the 

protease’s chances for survival and therefore, leading to more successful HIV proliferation. Patient 

isolates continue to show new mutations developed by the protease, with some isolates showing 

as many as 26 new mutations within its genome. Despite all of these mutations, the protease is 

able to maintain its substrate specificity with a Km comparable to that of WT protease. The rate at 

which the protease mutates is directly dependent on the selective pressure exerted on specific 

residues by inhibitors used in therapies, such as DRV and LPV.  

 Kinetic data in conjunction with crystal structures and other molecular dynamics 

simulations have helped create an idea of favorable and unfavorable inhibitor-protease interactions 

in the active site. Identifying highly variable residues, such as V32, I50, V82 and I84, has helped 

in the inhibitor design process such that new inhibitor designs avoid making direct interactions 

with these residues. Furthermore, focusing on increasing interactions with the backbone of 

invariant residues, such as D29 has shifted focus towards designing inhibitors that interact with 

these residues. The UMass series are a perfect example of this, modifying the P2’ moiety so more 

interactions are made with the backbone of D29 and D30. The UMass series show promising 

results, as their potency is comparable to DRV amongst WT and some DRV resistant mutants, 

such as I84V.  

 The mono-hydroxyl and di-hydroxyl compounds also show inhibition comparable to DRV 

in WT and the I84V mutant, suggesting that such substitutions in the P2’ moiety have no drastic 

impact on the potency of the inhibitor. Crystal structure data also shows that the mono-hydroxyl 

substitutions bind in a similar fashion as the DRV P2’ amine moiety, interacting directly with the 

backbone of D29’ and creating a water-mediated bond with the backbone of D30’. On the other 

hand, both of the hydroxyl chains on the di-hydroxyl compounds interact directly with D29’ and 

D30’ without the formation of a water-mediated bond. In terms of potency, the mono-hydroxyl 

compounds resulted in lower Kis than the di-hydroxyl compounds, suggesting that the water-

mediated bond to the backbone of D30’ is essential to the tight binding of the inhibitor. This result 
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is quite interesting, as it was originally thought that interacting in a direct hydrogen bond with both 

D29’ and D30’ would increase the potency of the compounds.  

Other inhibitor designs, such as the DRV/LPV hybrids, focused on combining the scaffolds 

of two of the most potent inhibitors in the hopes of developing an even more potent series. The 

surprising results showed that the combined scaffolds led to a drastic decrease in potency and 

molecular simulations highlighted the instability of the new scaffold. In particular, the bis-THF 

moiety proved to be extremely unstable, sampling space away from the backbone of D29 and D30 

thus failing to make direct contact with them.  

 Although the UMass and mono- and di-hydroxyl series show promising potency results, 

viral passaging data is necessary to verify how effective they are in avoiding new induced 

mutations. However, these compounds fail to deliver more potent inhibition than current FDA 

approved inhibitors, proving that successful P2’ modifications are extremely difficult to carry out. 

This may be due to the limited invariant residues present in that region of the active site. Taking 

the results of recent compound data into account, the laboratory continues to explore different 

substitutions in order to optimize the DRV scaffold in the hopes of developing a more potent 

inhibitor that induces little to no selective pressure on the HIV-1 protease.  

4.2 Optimizing the DRV scaffold: P2’ and P1’ Moiety Substitutions 

The Ki and crystallographic data of the UMass 1-10 compounds, the LR/LR-2 compounds, 

and the LPV/DRV hybrids were instrumental in helping us develop new compounds. Despite the 

potency of DRV and recent attempts to further optimize inhibition of HIV-1 protease, the virus 

still remains one of the most infectious in the world. The virus is capable of mutating up to half of 

its genome, allowing the HIV-1 protease to develop resistance to even the most potent inhibitors 

(32). Localizing specific residues susceptible to mutations and analyzing solved crystal structures 

are crucial methods to understanding and developing optimized next-generation inhibitors.  

Optimizing the structure of the already potent DRV has proven to be a challenge, as no 

inhibitor has been able to top its low pico-Molar binding affinity and resistance profile. When 

optimizing the structure of DRV, there are several key features of the backbone that have proven 

to be robust and are usually conserved. The un-cleavable hydroxyl group makes two hydrogen 

bonds with the catalytic aspartic acid/aspartate (D25/25’). Perhaps the next robust feature of DRV 

is the highly conserved hydrogen bonding network between the P2-bis-Tetrahydrofuran (P2-bis-

THF) group and residues D29 and D30 of chain A in the active site. No other inhibitor groups 
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have been able to make and maintain such tight hydrogen bonding in the active site pocket than 

the bis-THF group.  Lastly, another conserved moiety is the phenyl group in the P1 position. This 

moiety contributes to the observed VDW interactions and for that reason, is usually conserved. 

The P1’ position is usually variable and various alkyl chains have been placed on the amide of the 

P1’. It is usually preferred to place small groups in the P1’ position to avoid sticking out of the 

substrate envelope and making unfavorable contacts with drug resistant residues such as V82 and 

I84. Although the isobutyl P1’ moiety of DRV is small, I84V is still a major drug resistant mutation 

for DRV. This suggests that despite the isobutyl group not protruding from the envelope, I84 is 

still capable of mutating to resist the binding of DRV. On the P2’ position, the aniline group makes 

a water mediated hydrogen bond with the side chain of residue D30’ and another hydrogen bond 

with the carbonyl backbone of D30’. However, these bonds are not nearly as conserved and stable 

as those of the P2-bis-THF moiety. 

Although the P1 moiety of DRV is usually conserved in most all DRV analogs, several 

compounds have attempted to modify this group. One such example is GRL-10413 developed by 

by the Amano laboratory in conjunction with the Ghosh laboratory, attempts to modify the P1 

moiety to make contact with the invariant residues R8’ and G49 (see Figure 35A, PDB 5KAO). In 

the solved crystal structure, the 1-chloro-2-methoxybenzene P1 group was observed to have two 

conformations in the crystal structure. The first shows the chlorine making a halogen bond with 

the carbonyl oxygen of G49. The second show the chlorine making two halogen bonds with the 

nitrogen(s) of R8’ (see Figure 35B).  

Figure 35: Molecular Structure and Bonds of GRL-10413 

Based on the solved crystal structure of GRL-10413, nine di-halogenated-P1 compounds 

were designed with the main goal of maintaining both halogen bonds with G49 and R8' 

simultaneously (see Figure). The compounds utilize chlorine, fluorine, and bromine in the P1 

position. In the P1' position, these compounds either contain the DRV isobutyl, the UMass 1 2-



 52 

methylbutane, or the UMass 6 isohexyl. The DRV like P2 bis-THF and P2' amine groups were 

unchanged. Prior to synthesis, these compounds were tested through varies computational methods 

that can predict the potency of each inhibitor. 

 
Figure 36: Di-Halogenated P1 Moiety Compounds 

Further exploration and analysis of the LR2 compounds led to various conclusions 

regarding the P2’ moiety and the stability of compounds with different linkers. LR2-32 and LR2-

35 were of particular interest due to their observed Ki’s in the RS_WT scaffold. Further exploration 

of their crystal structures provided a better understanding of how these compounds bind in the 

active site. The carbamate group extending from the carbonyl linker of both compounds was 

observed to make favorable interactions with residues D29’ and D30’. Based on this analysis, 

another set of compounds were designed using the DRV backbone and the sulfonamide linker, 

KK-01 and KK-03, respectively (Figure37). These compounds contained a carbamate moiety on 

the P2’ position extending from the phenyl ring in the hopes to increase interactions with the D29’ 

and D30’ residues (Figure 37). These compounds were sketched in ChemDraw and modeled in 

Maestro in order to analyze their chemical properties as well as electrostatic interactions within 

the active site of the HIV-1 protease.  
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Figure 37: Carbamate compounds KK-01 and KK-03 
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Appendix 

Appendix A: Km Data 
Variant Uncorrected Km (µM) Corrected Km (µM) 
RS_WT 24.9 ± 1.5 62.4 ± 4.9 

RS_2Mut1 17.3 ± 1.6 55.1 ± 12.41 
RS_4Mut2 12.9 ± 1.27 21.1 ± 2.71 

RS_4GMut3 60.6 ±  71.0 ± 4.61 
RS_8Mut4 38.3 ± 3.8 123.8 ± 30.1 
RS_10Mut5 31.3 ± 66.4 ± 4.3 

L76V 45.8 ± 299.9 ± 102.3 
L33F 20.4 ± 1.2 34.7 ± 2.2 
V32I 17.6 ± 1.5 30.6 ± 3.0 

V32I;L33F 34.4 ± 3.9 306.6 ± 130.8 
ATA 216 45.5 ± 691.8 ± 103.4 
KY 267 25.9 ± 74.4 ± 13.4 

SLK 198 6.7 ± 11.0 ± 1.0 
VEG 239 18.5 ± 1.7 9.9 ± 0.8 

VSL 2310 41.9 ± 5.3 
219.7 ± 77.4 

 

 

 

 

 

                                                
1 V82F, I84V 
2 V32I, M46I, V82F, I84V 
3 K45I, M46I, V82F, I84V 
4 I13V, G16E, V32I, L33F, K45I, M46I, V82F, I84V 
5 I13V, G16E, V32I, L33F, K45I, M46I, A71V, L76V, V82F, I84V 
6 L10F, K20M, V32I, L33F, M36I, M46I, I47V, I54M, I62V, L63P, G73T, I84V, L89V, L90M 
7 L10V, K20M, V32I, L33F, K43T, M46I, I47V, I54M, I62V, L63P, A71I, I72L, G73S, V77I, V82A, L89V, L90M 
8 L10I, M36I, G48M, F53L, I54V, I62V, L63P, A71V, V82A, I84V, I85V, L89V 
9 L10I, K20V, V32I, L33F, M36I, M46I, I47V, I54M, Q58E, L63P, A71V, G73S, I84V, L90M 
10 L10I, K20R, L33F, M36I, K43T, G48V, I50V, I54S, I62V, L63P, A71V, I72V, G73T, V77I, V82A, I85V 



 55 

Appendix B: Ki Sample Calculation/Processing the Ki Data  
 

1. Prepare 100 mL 2X Assay Buffer [100 mM Sodium Acetate – 200 mM Sodium Chloride]  
- Start with 3M stock Sodium Acetate  

C1V1 = C2V2 

3M (X) = 0.1M (100mL) 
X = 3.3 mL of 3M Sodium Acetate 

- 200 mM Sodium Chloride (M * MW * V = g) 
0.2M * 58.44 !

"#$
 * 0.1 L = 1.17g of NaCl  

- Add H2O to the 100 mL  
 

2. Prepare 5 mL of 4% DMSO 
- 200 μL of 100% DMSO + 4800 μL of H2O 

 
3. Inhibitor Prep for 2/3 serial dilution and 60 μL final well volume  

- %&$$	(#$)"&	
*+,-.-/#0	(#$)"&	

 = Fold Dilution à 12	34	
56.8	34

= 2.2	𝐹𝑜𝑙𝑑	𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 
- To well 12, 82.5 μL of inhibitor will be added, then 55 μL will be serially diluted to well 11 leaving 

behind 27.5 μL. The serial dilution process will be repeated until well 2. Well 1 is a control well and 
does not get any inhibitor; 55 μL will be taken about of well 2 and discarded.  

- Well 12 gets 82.5 μL * 3 replicate = 247.5 μL à prepare 275 μL 
- Final	Well	(well	12)	inhibitor	concentration = 1500	pM 

1500	𝑝𝑀 ∗ 2.2	𝑓𝑜𝑙𝑑	𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 = 3,300	𝑝𝑀 
- 275 μL * 3,300 pM = 11 μL (4% of 275 μL because the assay is in 4% DMSO) * X 

X = 82.5nM Inhibitor Concentration  
 
32 μL (82.5nM Inhibitor) = 500 nM Stock * X [prepare 32 μL to avoid pipetting volumes under 5 μL] 
X = 5.28 μL of 500 nM stock Inhibitor  
 
32.0 μL – 5.28 μL = 26.72 μL of 100% DMSO 
 
Scheme: 5.28 μL of 500 nM Inhibitor + 26.72 μL DMSO à 11 μL of that + 264 μL H2O à gives us 
275 μL needed to start the dilution at well 12 

 
4. Protein Prep at 0.35nM (A280 will differ for each construct, this is just an example calculation) 

- 0.35 nM * 2.2-Fold Dilution = 0.77 nM 
- A280 10-Fold = 0.172 (A280 is measured in 90 μL refolding buffer + 10 μL protein = 10-fold dilution) 

1.72 / 24,980 = 69 μM * 40% Active Protein (we assume only 40% activity because the protein is not 
entirely pure) = 27.6 μM 
500 μL * 500 nM = 27600 nM * X 
X = 9.06 μL + 491 2X Assay Buffer  

- 0.77nM Protein Prep  
5 mL * 0.77 nM = 500 nM * X 
X = 7.7 μL + 492.3 μL 2X Assay Buffer 
 

5. Substrate Prep  
- Total Assay Volume * [S] = Concentration added to assay * Volume needed 

60 μL * 10 μM = 5 μL * X 
X = 120 μM 

- Minimum volume needed for machine * X from previous = 30 μL * Concentration  
1500 μL * 120 μM = 30 μL * X  
X = 6 mM 

- 750 μL 2X Assay Buffer PLUS 720 μL H2O PLUS 30 μL of 6 mM substrate   
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6. Plate Setup 
- 27.5 μL of 4% DMSO are added to wells 1 – 11  
- 82.5 μL of inhibitor are added to well 12  
- Serially dilute 55 μL from well 12 to 11 and so on until well 2. Well 1 does not get inhibitor. Take 55 

μL from well 2 and discard  
- Add 27.5 μL of the 0.77 nM protein to all wells  
- Spin plate at 1000 x g for 1 minute at room temperature 
- Pre-incubate for 1 hour are room temperature  
- Reaction starts when 5 μL of substrate is inserted by the Envision  
- Run Envision program to collect 200 reads per well 
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